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Abstract

Bipedal Robot Locomotion is considered as one of the toughest problems in Control Engineer-

ing. In particular, one of the most challenging problems today is the design of extremely energy

efficient trajectories, which reflect exactly the constraints of each individual walking step of a

biped robot, combined with an effective trajectory tracking control scheme. More specifically,

the problem of design and effective tracking control of trajectories that obey the rules of hu-

man walking and have the energy efficiency of human locomotion - which is considered the

most energy efficient type of walking - is in the spotlight of the robotics and control community

particularly for the last year. Unfortunately, no major efforts have been made.

For the abovementioned reasons, in the current thesis, we propose a novel control system, called

Decrease & Conquer Feedback Control. The proposed system consists of the Gait Generation

and Trajectory Tracking Control Modules.

The Gait Generation Module consists of two Phases. The First Phase calculates walking trajec-

tories for a simplified biped robot (a robot model with fewer degrees of freedom), and the Second

Phase (called Energy Efficient Trajectory Synthesis and Verification) based on the calculated

trajectories of the First Phase proceeds with the calculation of energy optimal trajectories for

the complete biped robot. We implement two variants of the Gait Generation Module, based

on two discretization methods: Direct Collocation and Discrete Mechanics.

The Trajectory Tracking Control Module deals with the effective tracking control of the energy-

optimal trajectories, under missing velocity signals and disturbances, leading to minimal energy

consumption.

The walking capabilities of the biped robot are evaluated through numerous experiments in

a variety of terrains, including flat ground, downward and upward slopes, as well as walking

downstairs and upstairs. Furthermore, we proceed with the experimental study of the energetics

of the resulted bipedal robot walking.

The proposed system, turns out to be extremely effective. It provides the ability to synthe-

size energy efficient trajectories for the biped-with energy requirements comparable to human

walking-, while it applies effective trajectory tracking control under the situation of missing

velocities and disturbances, leading to minimal energy consumption. In comparison with the
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related One Phase methods and high performance commercial solutions, the proposed system is

proved to be a reliable, energy efficient and effective way for human-like biped robot locomotion

in a variety of terrains and situations.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Bipedal Robot Locomotion is one of the toughest problems in Control Engineering. The control

of biped walking remains a difficult problem due to high dimensionality, nonlinearity, the inter-

mittent contact between the feet and the ground, and constraints on kinematics and dynamics,

such as joint limitations, the foot clearance requirement, and foot-ground contact conditions

[1].

A common approach to biped walking control is through tracking periodic reference trajecto-

ries. These trajectories can be computed based on the concept of ZMP (Zero Moment Point)

[1], where emphasis is placed on enlarging the stability margin during gait planning [2, 3].

Trajectories can also be computed based on the LIPM (Linear Inverted Pendulum Model) [4].

By simplifying the dynamics to a linear system, modern control techniques can be used to

plan gaits [5 - 7]. Feedback control methods, such as PID controllers, can be used to to track

the reference trajectories [2, 8 - 10]. However, the stability obtained with the use of periodic

trajectories may be limited and even small perturbations may lead to a fall [11]. This is be-

cause a unified periodic reference trajectory for all the walking process of a robot is not the

only requirement; various terrain variations and walking step characteristics, unknown or noisy

measurements, possibly high energy requirements of the periodic trajectory (in most cases, the

1
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energy consumption of the trajectory is not even considered as a constraint) and disturbances

affect the suitability of the proposed trajectory under tracking, resulting of course in poor

tracking performance. In addition, large joint torques are needed if a large deviation from the

reference trajectories occurs [11].

One of the most challenging problems today is the design of extremely energy efficient trajec-

tories, which reflect exactly the constraints of each individual walking step of a biped robot,

combined with an effective tracking control scheme. More specifically, the problem of design

and effective tracking control of trajectories that obey the rules of human walking and have

the energy efficiency of human locomotion -which is considered the most energy efficient type

of walking- is in the spotlight of the robotics and control community particularly for the last

year. Unfortunately, no major efforts have been made. The problem of trajectory generation,

considered mostly as an optimal control problem, due to the numerous and complex constraints

involved, as well as the ineffective developed optimization algorithms, leads to poor or subop-

timal solutions, which may produce an accepted walking trajectory, but it does not inherit

biomechanical properties neither has its energy consumption minimized (when an energy con-

sumption quantity is considered as a cost function).

For the abovementioned reasons, in the current thesis, we propose a novel control system,

called Decrease & Conquer Feedback Control. Before proceeding with a brief description of

the system, we will now refer to the model of the biped robot that will be used throughout the

thesis.

The 2-link biped robot is one of the most important walking devices and is a standard bench-

mark for studying gaits. The robot consists of two links, or legs, connected by a revolute hip

joint that allows for rotational motion in the two-dimnensional plane. Figure 1.1 illustrates the

planar biped along with some important parameters. The orientation of the legs are described,

respectively, by the absolute angles q1 and q2 with positive direction defined counter-clockwise.

The leg that is in contact with the ground is called stance leg, while the other one is called

swing leg. The Cartesian Coordinates of the stance foot are described by q3, q4. Those gener-

alized coordinates (q1, q2, q3, q4) characterize four degrees of freedom. The biped is walking
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forwards, traveling up or down a slope with constant angle θ measured from the horizontal, or

is walking on a terrain that involves flat ground and down/up stairs walking. Each leg link is

identical with total length l = a+b from hip joint to feet. The center of mass of each of the legs

is located at the distances b and a from the hip and feet, respectively. The masses of the Legs

are m1, m2 and M is the mass of the hip joint connecting each leg. The actuators that will

be used are three: two rotational actuators (for applying torques to the two legs, thus affecting

the generalized coordinates q1, q2) and one linear actuator (for applying impulsive forces to

the Cartesian Coordinates of the stance foot, thus affecting q3, q4).

Figure 1.1: A 2-link, 4-DOF biped robot walking on a downward slope with angle θ

The proposed system consists of the Gait Generation and Trajectory Tracking Control modules.

The Gait Generation Module consists of two Phases. The First Phase calculates walking tra-

jectories for a simplified biped robot (a robot model with fewer degrees of freedom, in our case,

with only two degrees of freedom), and the Second Phase (called Energy Efficient Trajectory

Synthesis and Verification) based on the calculated trajectories of the First Phase proceeds

with the calculation of energy optimal trajectories for the complete 4-DOF biped robot. As we

can easily see, the Gait Generation Module is based on a Decrease and Conquer approach.

We will implement two variants of the Gait Generation Module, based on two discretization
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methods: Direct Collocation and Discrete Mechanics. These methods have been tested only

for the case of flat ground walking.

On the one hand, Discrete Mechanics proceeds with the discretization of the related principles of

mechanical systems (e.g. Hamilton’s Principle, Lagrange-D’Alembert principle, Euler-Lagrange

Equations etc.), leading to discretized equations of motion, where the first and second deriva-

tive of the configuration of the system are approximated by finite differences. In addition,

Boundary Conditions are inserted in order for the discretized system to continue obeying the

laws of physics on the discrete domain, from start to finish.

On the other hand, Direct Collocation proceeds with the approximation of the states as contin-

uously differentiable and piecewise defined as cubic polynomials between two consecutive grid

points. In addition, the controls are chosen as piecewise linear interpolating functions between

two consecutive grid points.

As we will see and on the simulation experiments on Chapter 5, the Decrease and Conquer ap-

proach utilizing Direct Collocation leads always to trajectories with lower energy consumption

than the approach utilizing Discrete Mechanics.

Please refer to Appendix A (Subchapters 8.2, 8.3.3) for the complete description of these meth-

ods, as well as for the advantages and disadvantages of each one of them.

The Trajectory Tracking Control Module deals with the effective tracking of the calculated

energy-optimal trajectories, under missing velocity signals and disturbances.

The walking of the biped robot will be evaluated in a variety of terrains, including flat ground,

downward and upward slopes, as well as walking downstairs and upstairs.

The proposed system, as we will see throughout the thesis, proves to be extremely effective.

It provides the ability to synthesize energy efficient trajectories for the biped-with energy con-

sumption comparable to human walking-, while applying effective trajectory tracking control

under missing velocities and disturbances. In comparison with conventional One Phase meth-

ods and high performance commercial solvers, the proposed system is proved to be a reliable,

extremely energy efficient and effective way for human-like biped robot locomotion in a variety

of terrains and situations.
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Figure 1.2: General block diagram of the proposed system.

1.2 Related Work

The research area of Bipedal Robot Locomotion has gained major attention and has been stud-

ied extensively in the past years, leading to various approaches (e.g. Zero Moment Point [1],

Hybrid Zero Dynamics [21], etc.). However, all these methods utilize periodic reference trajec-

tories, without taking into account the factor of energy efficiency and the specific requirements

of a current walking step.

No one till the time of writing the thesis has proposed a Decrease and Conquer Approach for

trajectory generation and optimization. Dembia[12] has worked on a preliminary trajectory

generation method based on Direct Collocation, for the case of forward walking of point-mass

biped, with not so satisfactory results (the gait generated was not looked like proper walking

and it was unstable). Pekarek et al.[13] and Sun et al [25] have developed a gait generation

method using Discrete Mechanics for a compass gait biped only for the case of forward walking

and for a very limited number of walking steps, with satisfactory results in most cases of the

experiments.

In the current thesis, we proceed with the implementation of the proposed system utilizing both

Direct Collocation and Discrete Mechanics, proving experimentally that these methods can be

used for stable and natural gait generation under various conditions and walking terrains.
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Figure 1.3: Various types of walking terrains: flat ground (a), downward slopes (b), upward
slopes (c), downstairs/upestairs (d).

1.3 Contributions

In the current thesis, for the first time in the related bibliography, we propose and implement

the idea of a Decrease and Conquer approach for Gait Generation. In particular, we propose

a design in which, for the calculation of energy-optimal trajectories to be followed by a biped

robot, we proceed with the solution of two Gait Generation problems. The first Gait Generation

problem (First Phase of the Gait Generation Module) refers to the calculation of a trajectory for

a simplified biped robot model, which has fewer degrees of freedom. The second Gait Generation

Problem (Second Phase of the Gait Generation Module) refers to the calculation of energy-

optimal trajectories for the complete biped robot model, using the calculated trajectories from

the solution of the First Gait Generation Problem. The last is achieved with the implementation
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of a novel method called Energy Efficient Trajectory Synthesis and Verification. This modeling

approach proved to be crucial for the effectiveness of the proposed system.

In addition, we implement the related One Phase approaches using Discrete Mechanics and

Direct Collocation as discretization methods and prove for the first time that they can be used

for stable and natural gait generation in a variety of terrains, including flat ground, downward

and upward slopes and walking downstairs and upstairs. Till the time of writing the thesis,

these discretization methods have been tested only for the case of forward walking.

Furthermore, under the Decrease and Conquer framework we experimentally prove that, using

the abovementioned discretization methods, we can synthesize energy-optimal trajectories for

the biped robot, achieving the energy consumption of human locomotion.

Regarding the Trajectory Tracking Control, we develop an alternative approach. Based on

whether a specific Gait Phase is considered as a fully-actuated or underactuated phase, we use

either Computed Torque Control or Partial Feedback Linearization Control, respectively. Till

the time of writing the thesis, in the related bibliography, only the Swing Phase of the biped

was being controlled. This is due to the fact that in most cases the Push-Off and Heel Strike

Phases were not modelled. In the thesis, modeling all walking phases gives the opportunity to

effectively track the calculated energy optimal trajectories under missing velocity signals and

disturbances (e.g. actuator friction). The last is done with the additional design of the related

velocity and disturbance observers and their integration in the controllers.

Finally, we proceed with the testing and verification of the effectiveness of the proposed system

under different conditions and walking terrains.

1.4 Thesis Outline

In Chapter 2, we develop the First Phase of the Gait Generation Module. Firstly, we derive

the equations of motion for the Swing and Impact Phases of the simplified, 2-DOF Biped

Robot, based on the two abovementioned discretization methods, extensively. In addition,
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we derive the General Configuration of the walking terrain for the simplified biped, which

will obviously be the same as for the complete, 4-DOF biped robot. Finally, we derive the

Gait Generation Problem of the First Phase as a finite dimensional nonlinear optimal control

problem. The solution of the Gait Generation Problem leads to the calculation of a trajectory

for the simplified biped, which will be utilized by the Second Phase for the calculation of the

energy optimal trajectory for the complete 4-DOF biped.

In Chapter 3, we develop the Second Phase of the Gait Generation Module. Firstly, we derive

the equations of motion for the Swing, Push-Off and Heel Strike Phases of the complete, 4-DOF

Biped robot, based on the abovementioned discretization methods, in great detail. Then, we

derive the Gait Generation problem of the Second Phase also as a finite dimensional optimal

control problem. Finally, we develop the core function of the Second Phase and the actual

idea of the Decrease and Conquer approach, called Energy Efficient Trajectory Synthesis and

Verification. Utilizing the calculated trajectory of the First Phase, Energy Efficient Trajectory

Synthesis and Verification calculates the final, energy-optimal trajectory to be followed by the

complete biped.

In Chapter 4, we develop the Trajectory Tracking Control Module. First of all, we develop

the case where there is availability of all measurements and there are no disturbances to the

system. Based on whether a walking phase is considered as fully actuated or underactuated

( a complete, detailed description is given in Chapter 4), we develop and apply control laws

based on Computed Torque Control and Partial Feedback Linearization, respectively. Then,

assuming that the velocity signals are not available and there are disturbances (e.g. actuator

friction) to the system, we design velocity and disturbance observers, which are integrated in

the abovementioned control laws.

In Chapter 5, we present four major expreriments in great detail for all the four tested walking

terrains (e.g. flat ground walking, downward slope walking, upward slope walking, and walking

downstairs and upstairs). For each case of walking terrain, we compare the energy efficiency of

the proposed Decrease and Conquer Gait Generation (utilizing Direct Collocation and Discrete

Mechanics) with One Phase methods (utilizing also Direct Collocation and Discrete Mechan-
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ics), and a high performance, commercial solver, called SNOPT. The Decrease and Conquer

Approach turns out to be the most energy efficient method at all carried experiments, leading

to trajectories with the minimal possible energy consumption. Then, for the Decrease and

Conquer approach, graphs of the most important measurements are shown, emphasizing the

features of the resulted gait which are also present on human locomotion, as well as the effec-

tiveness of the proposed system. Finally, after numerous walking experiments, we carry out an

experimental study on the energetics of the resulted biped walking.

For those readers who are not familiar with the theory of modeling and control of Lagrangian

Mechanical Systems, it is better to have firstly a look on the Appendix A (Chapter 7), in which

a revision on the most fundamental topics is being carried out.



Chapter 2

First Phase of the Gait Generation

Module

2.1 Introduction and Key Points of the First Phase

• Brief Analysis and Assumptions of the First Phase

As we have mentioned on Chapter 1, the Gait Generation Module of the Decrease & Conquer-

Based Feedback Control (D&C-BFC) consists of two Phases. The First Phase deals with the

natural, stable, gait generation problem on general terrain of the simplified, 2-DOF biped robot.

The complete biped robot has four degrees of freedom (the two degrees of freedom refer to the

generalized coordinates (angles) q
(i)
1 and q

(i)
2 of the legs during the i − th swing phase (during

the i − th walking step, i = 1, ..., H) and the other two refer to the generalized Cartesian

coordinates of the stance foot) and uses three actuators (two rotational joint torques τ
(i)
1 , τ

(i)
2

at the hip, which are required for the rotational motion of the two legs at the i − th walking

step, and one linear actuator for applying linear (impulsive) forces at each leg during the Push

Off Phase, as we will see extensively at Chapter 3.

The simplified biped robot, which is being developed and used throughout the current Chapter,

is a robot with just two degrees of freedom (the generalized coordinates (angles) q
(i)
1 and q

(i)
2 of

10
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the legs during the i − th walking step) and the two rotational actuators (the rotational joint

torques τ
(i)
1 , τ

(i)
2 at the hip).

In the current chapter, we develop the First Phase of the Gait Generation Module. Firstly,

the equations of motion that describe the walking phases of the 2-DOF Biped Robot (Swing

Phase and Impact Phase) are derived. The derived equations of motion will refer to the case

where the Leg 1 is the Stance Leg and the Leg 2 is the Swing Leg. For the case where the

Leg 1 is the Swing Leg and the Leg 2 is the Stance Leg, please refer to Appendix B (Chapter

8). Then, we formulate the gait generation problem as a finite dimensional nonlinear optimal

control problem. For the implemented optimization algorithms for the solution of the Gait

Generation Problems, please refer to Appendix D (Chapter 11). In addition, we will derive

the walking terrain of the robot that it will obviously be the same for the second phase of our

control system.

We develop and evaluate two variants of the of the Gait Generation Module, based on two

discretization methods: Direct Collocation and Discrete Mechanics. In order to numerically

solve a continuous-time, infinite-dimensional optimal control problem, we have to transform it

into a discretized, finite-dimensional optimal control problem.

For the First Phase of the Gait Generation Module, we make the following assumptions for the

biped robot:

1. The stance leg is rigidly connected to the ground during a complete step of the walking gait,

meaning that each point of the robot can be uniquely described by the two angles q
(i)
1 , q

(i)
2 .

2. The robot has point feet that does not experience slipping or sliding on the ground.

3. The biped robot moves in two dimensions.

4. The swing leg hits the ground with completely inelastic collision.

5. The legs and the hip are not considered to be point masses and the moment of inertia I

around their centers of mass does not equal zero.

• Robot Modeling Approach
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Figure 2.1: The simplified, 2-DOF biped robot walking on a downward slope with angle θ.

In this thesis, we implement a step-to-step modeling approach for bipedal robot locomotion

utilizing both variants, making the design more accurate by dividing the walking process of

the robot to a total number of walking steps which has to make, rather than just letting the

models decribe the whole walking process.

This initial discretization procedure is not done at random. As we can see in Appendix A

(Chapter 8), in order to numerically solve a continuous-time, infinite-dimensional optimal con-

trol problem, we have to transform it into a discretized finite-dimensional optimal control

problem. Hence, instead of just waiting to reach the stage of the optimization to discretize

the continuous-time gait generation problem with a discretization method, we will utilize the

nature of the final finite dimensional optimal control problem from the very first moment of

the continuous-time modeling.

More specifically, we define that each walking step consists of N time steps. Furthermore, we

define that the first time step (t1) of each walking step starts the execution of the walking step

(in other words, the execution of the swing phase), as well as that the collision of the swing

leg on the ground (Impact Phase for the First Phase, Heel Strike Phase for the Second Phase)

takes place in the last time step (tN) of each walking step.
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Furthermore, in the Discrete Mechanics Based approach, due to the derivation of the Discrete

Lagrangian through the direct discretization of the Continuous Lagrangian, the discretization

process is done by default.

Regarding to the notation of all the parameters (e.g. states, angular coordinates/velocities/accelerations,

control inputs, constrained forces) in the discretized setting, assuming that a walking step con-

sists of N time steps, then when we see the mathematical representation x
(i)
(1,k) for instance, we

refer to the value of the variable x1 for t = N(i−1)h+(k−1)h sec. Thus, x
(i)
(1,k) = x1(t = N(i−

1)h+(k−1)h sec), x
(i)
k = x(t = N(i−1)h+(k−1)h sec), q

(i)
(1,k) = q1(t = N(i−1)h+(k−1)h sec),

q
(i)
(2,k) = q2(t = N(i − 1)h + (k − 1)h sec), u

(i)
k = u(t = N(i − 1)h + (k − 1)h sec) etc. The

abovemetioned notation is used throughout the current thesis.

•Gait Generation Problem of the First Phase

On Subchapter 2.5 we derive the Gait Generation Problem for the First Phase of the Gait

Generation Module. The aim of the First Phase is to minimize the control effort required to

achieve a particular walking step, subject to constraints related to:

1. the derived equations of motion for each walking phase,

2. the configuration of the biped duting the impact of the swing leg with the ground,

3. some features of the swing and stance legs that lead to a proper walking behavior,

4. the physical constraints of the used actuators, and

5. additional, optional constraints (e.g. average linear walking speed of the swing leg etc.).
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2.2 Swing Phase of the 2-DOF Biped Robot for the Di-

rect Collocation Method (Leg1=Stance, Leg2=Swing)

2.2.1 Derivation of the Euler-Lagrange Equations of Motion

The first step to deriving the Lagrangian of the biped is to define the homogeneous transfer

matrices that describe the orientation and position of each link of the robot. One natural

placement of local coordinate frames is indicated in Figure 2.2, where each frame is rigidly

attached to the appropriate mass. The origins of each of these frames describe the following

important points on the planar biped:

1. o0 - Global coordinate frame fixed to the ground.

2. o1 - Coordinate frame fixed to the center of mass for the stance leg(Leg 1).

3. oM - Coordinate frame fixed to the center of mass of the hip joint.

4. o2 - Coordinate frame fixed to the center of mass for the swing leg(Leg 2).

Figure 2.2: Assignment of origins for the coordinate frames of the robot.

These coordinate frames are used to form homogeneous transformation matrices on the form

H i
j =

 Ri
j pij

01×3 1

 (2.1)
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where Ri
j ∈ R3×3 is the rotation matrix from frame j to frame i and pij ∈ R3 is the distance

between the origins of the respective frames expressed in frame i. Finding rotation matrices

is complicated, requiring a parametrization of the total rotation of each frame in suitable

coordinates. This process is greatly simplified by the fact that the planar biped only experiences

motion in a 2-D plane. The transformation matrices can then be found by trigonometry and

are stated for verification below:

H0
1 =



cos(q
(i)
1 ) −sin(q

(i)
1 ) 0 −asin(q

(i)
1 )

−sin(q
(i)
1 ) cos(q

(i)
1 ) 0 acos(q

(i)
1 )

0 0 1 0

0 0 0 1



H1
M =



1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1


H0
M = H0

1H
1
M

H0
2 =



cos(q
(i)
2 ) −sin(q

(i)
2 ) 0 lsin(q

(i)
1 ) + bsin(q

(i)
2 )

sin(q
(i)
2 ) cos(q

(i)
2 ) 0 lcos(q

(i)
1 )− bcos(q(i)2 )

0 0 1 0

0 0 0 1



(2.2)

The matrices (2.2) can now be employed to determine the position p(0) and velocity v(0) of the

center of mass of each mass in xy coordinates in the global frame o0 as

p
(0)
1 = [I2×2 02×2] ·H0

1 ·

03×1

1

 , v(0)1 = d
dt
p
(0)
1

p
(0)
M = [I2×2 02×2] ·H0

M ·

03×1

1

 , v(0)M =
d

dt
p
(0)
M

p
(0)
2 = [I2×2 02×2] ·H0

2 ·

03×1

1

 , v(0)2 = d
dt
p
(0)
2

(2.3)
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where I2×2 is the identity matrix and p(0), v(0) ∈ R2.

In order to form the Lagrangian of the system and compute the Euler-Lagrange equations, the

kinetic and potential energy of the system must be determined. The potential energy is the

sum of the potential energy at the center of mass for each mass and can be expressed as

P = (m1h
(0)
1 +Mh

(0)
M +m2h

(0)
2 )g (2.4)

where g = (sin(θi) + cos(θi))gconst, with gconst = 9.81m/s2 and θi defining the slope of the next

walking step to be achieved, is the gravitational acceleration quantity in the horizontal and

vertical axes and h(0) = p(0)[01] is the height of the respective centers of mass expressed in the

global frame o0. The total kinetic energy is the sum of the body’s centers-of-mass translational

kinetic energy and the energy of rotation around the centers of mass (rotational energy), and

can be expressed as

K =
1

2
(m1v

T
1 v1 +MvTMvM +m2v

T
2 v2) +

1

2
(I1(

˙
q
(i)
1 )2 + I2(

˙
q
(i)
2 )2) (2.5)

Using the expressions (2.4) and (2.5) for the potential and kinetic energy, the Euler-Lagrange

equations of motion can be calculated

d

dt
(
∂L
∂q̇j(i)

)− ∂L
∂qj(i)

= Ba(q
(i))

τ (i)1

τ
(i)
2

 , j ∈ [1, 2] (2.6)

where L is the Lagrangian of the system derived from (2.4) and (2.5) as

L = K − P

that extends to:

L(q
(i)
1 , q

(i)
2 ,

˙
q
(i)
1 ,

˙
q
(i)
2 ) =

1

2
(I1 +m1a

2 +m2l
2 +Ml2)

˙
q
(i)
1

2

+
1

2
(I2 +m2b

2)
˙
q
(i)
2

2

−m2blcos(q
(i)
1 − q

(i)
2 )

˙
q
(i)
1

˙
q
(i)
2 − (m1a+m2g +Ml)gcos(q

(i)
2 ) +m2gbcos(q

(i)
2 ), (2.7)
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Ba(q
(i)) is the applied forces selection matrix (it maps the applied linear forces and/or torques

to the related generalized coordinates). Here, Ba(q
(i)) =

1 0

0 1

 (thus, Ba(q
(i)) here is a full

row rank matrix) assuming that, due to the use of the two hip actuators, the torques τ
(i)
1 , τ

(i)
2

to the hip can be controlled.

Using the expressions (8.39)− (8.41) for the elements of the respective matrices, the equations

of motion for the biped can be formulated as

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) = Ba(q
(i))

τ (i)1

τ
(i)
2

 (2.8)

⇔

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) =

τ (i)1

τ
(i)
2


where

M(q) =

 p1 + I1 −p2cos(q(i)1 − q
(i)
2 )

−p2cos(q(i)1 − q
(i)
2 ) p3 + I2

 (2.9)

C(q(i), ˙q(i)) =

 0 −p2
˙
q
(i)
2 sin(q

(i)
1 − q

(i)
2 )

p2
˙
q
(i)
1 sin(q

(i)
1 − q

(i)
2 ) 0

 (2.10)

G(q(i), θi) =

−p4sin(q
(i)
1 )

p5sin(q
(i)
2 )

 (2.11)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, and the constant parameters are: I1 = 1
12
m1l

2, I2 = 1
12
m2l

2, p1 = Ml2 + m1a
2 +

m2l
2, p2 = m2lb, p3 = m2b

2, p4 = (m1a + m2l + Ml)g, p5 = m2bg. The equations of motion

(2.8) describe the continuous dynamics of the biped during the gait and is independent of the

walking surface. In order to describe what happens to the robot during the impact phase, an

impact map must be formulated to prevent trespassing of the surface during motion.

•Initial discretization of the Swing Phase for the Direct Collocation Method (Leg1
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= Stance, Leg2 = Swing)

Now we will proceed with the initial discretization (without applying the Direct Collocation

conditions yet) of the Swing Phase of the 2-DOF Biped Robot for the case where the Leg 1 is

the stance leg and the Leg 2 is the swing leg. Let k = 1, ..., N the time steps of a walking step.

In addition, let i = 1, ...H the number and the order of the total walking steps. So, when we

refer to a generalized angle q
(i)
(x,k), where x = 1, 2, k = 1, ..., N and i = 1, ..., H we will actually

mean the angle qx of the k − th time step of the i − th walking step. A discretization of the

time interval for a walking step

t0 = t1 < t2 < ... < tN = tf

is chosen. Without implementing the complete discretization process (it will be later explained

in the current chapter), the Swing Phase becomes:

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) = Ba

τ (i)(1,k)

τ
(i)
(2,k)

 , k = 1, ..., N (2.12)

⇔

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) =

τ (i)(1,k)

τ
(i)
(2,k)

 , k = 1, ..., N

where

M(qk) =

 p1 + I1 −p2cos(q(i)(1,k) − q
(i)
(2,k))

−p2cos(q(i)(1,k) − q
(i)
(2,k)) p3 + I2

 , k = 1, ..., N (2.13)

C(q
(i)
k ,

˙
q
(i)
k ) =

 0 −p2
˙

q
(i)
(2,k)sin(q

(i)
(1,k) − q

(i)
(2,k))

p2
˙

q
(i)
(1,k)sin(q

(i)
(1,k) − q

(i)
(2,k)) 0

 , k = 1, ..., N (2.14)

G(q
(i)
k , θi) =

−p4sin(q
(i)
(1,k))

p5sin(q
(i)
(2,k))

 , k = 1, ..., N (2.15)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, and with the constant parameters p1 = Ml2 +m1a
2 +m2l

2, p2 = m2lb, p3 = m2b
2,
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p4 = (m1a+m2l +Ml)g, p5 = m2bg.

•State Space equations of the Swing Phase for the Direct Collocation Method (Leg

1 = Stance, Leg 2 = Swing)

Now we will derive the state space equations of the Swing Phase of the 2-DOF Biped, and

apply the Direct Collocation Conditions.

State equations can be obtained for state variables of systems described by input-output dif-

ferential equations with the form of the equations depending on the nature of the system. For

example, the equations are time-varying for time-varying systems and nonlinear for nonlin-

ear systems. State equations for linear timeinvariant systems can also be obtained from their

transfer functions.

The algebraic equation expressing the output in terms of the state variables is called the output

equation. For multi-output systems, a separate output equation is needed to define each output.

The state and output equations together provide a complete representation for the system

described by the differential equation which is known as the state-space representation. For

linear systems, it is often more convenient to write the state equations as a single matrix

equation referred to as the state equation. Similarly, the output equations can be combined in

a single output equation in matrix form.

The general form of state space equations for linear systems are:

˙x(t) = Ax(t) +Bu(t)

y = Cx(t) +Du(t)

where x(t) is a n× 1 real vector, u(t) is a m× 1 real vector, and y(t) is a l× 1 real vector. The

matrices in the equations are: A = n × n state matrix, B = n × m input or control matrix,

C = l × n output matrix, D = l ×m direct transmission matrix.

Unfortunately, the abovementioned state space form is only valid for linear state equations.

Nonlinear state equations involve nonlinear functions (as it is in our case) and cannot be

written in terms of the matrix quadruple (A, B, C, D). A state space representation for the
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s-degree-of-freedom robot from the equations of motion:

M(q)q̈ + C(q, q̇)q̇ +G(q) = Baτ

where q = vector of generalized coordinates, M(q) = s × s positive definite inertia matrix,

C(q, q̇) = s× s matrix of velocity related terms, G(q) = s× 1 vector of gravitational terms, Ba

=s× s applied forces selection matrix and τ = vector of applied forces, are obtained as follows:

The system is of order 2s since 2s initial conditions are required to completely determine the

solution. The most natural choice of state variables is the vector

x =

x1
x2

 =

q
q̇


The associated state equations are:

ẋ1
ẋ2

 =

 x2

−M−1(x1)(C(x1, x2)x2 +G(x1))

+

 0s×s

M−1(x1)Ba

u
with the applied forces vector τ now denoted by u.

The output function is:

y = x1

This equation is linear and can be written in the standard form

y =

[
Is 0s×s

]x1
x2


The general form of nonlinear state-space equations is:

ẋ = f(x, u)

y = g(x, u)
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where f(.) (n× 1) and g(.) (l× 1) are vectors of functions satisfying mathematical conditions

that guarantee the existence and uniqueness of solution. But a form that is often encountered

in practice and includes the equations of motion of robots is:

ẋ = f(x) +B(x)u

y = g(x) +D(x)u

The abovementioned state equation is said to be afine linear in the control because the right

hand side is affine linear (in other words, includes a constant vector) for constant x.

For the 2-DOF biped robot, we will now derive the state space for the case where Leg 1 is the

Stance Leg and Leg 2 is the Swing Leg. In addition, we will apply our step-to-step modeling

approach and the initial discretization procedure to the derived state space equations. The

system is of order 4 (2s, s = 2) since 4 initial conditions are required to completely determine

the solution (q
(i)
(1,1), q

(i)
(2,1), ˙q(1,1)

(i), ˙q(2,1)
(i)). The choice of state variables is the vector:

x(i)(1,k)

x
(i)
(2,k)

 =

 q(i)k
q̇k

(i)



where x
(i)
(1,k) = q

(i)
k =

q(i)(1,k)

q
(i)
(2,k)

 and x
(i)
(2,k) = q̇k

(i) =

 ˙q(1,k)
(i)

˙q(2,k)
(i)



The state equations are:

 ˙x(1,k)
(i)

˙x(2,k)
(i)

 =

 x
(i)
(2,k)

−M−1(x
(i)
(1,k))(C(x

(i)
(1,k), x

(i)
(2,k))x

(i)
(2,k) +G(x

(i)
(1,k)), θi)

+

 02×2

M−1(x
(i)
(1,k))Ba

u(i)k



22 Chapter 2. First Phase of the Gait Generation Module

⇔

 ˙x(1,k)
(i)

˙x(2,k)
(i)

 =


x
(i)
(2,k)

(I2+p3)(p2sin(q
(i)
(1,k)
−q(i)

(2,k)
)( ˙q(2,k)

(i))2+p4sin(q
(i)
(1,k)

))−p2cos(q(i)(1,k)
−q(i)

(2,k)
)(p2sin(q

(i)
(1,k)
−q(i)

(2,k)
)( ˙q(1,k)

(i))2−p5sin(q(i)(2,k)
))

I1p1+I2p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I22

p2cos(q
(i)
(1,k)
−q(i)

(2,k)
)(p2sin(q

(i)
(1,k)
−q(i)

(2,k)
)( ˙q(2,k)

(i))2+p4sin(q
(i)
(1,k)

))−(I1+p1)(p2sin(q(i)(1,k)
−q(i)

(2,k)
)( ˙q(1,k)

(i))2+p5sin(q
(i)
(2,k)

))

I1p1+I2p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I22



+



0 0

0 0

(I2+p3)

I1p1+I2p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I22

p2cos(q
(i)
(1,k)
−q(i)

(2,k)
)

I1p1+I2p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I22

p2cos(q
(i)
(1,k)
−q(i)

(2,k)
)

I1p1+I2p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I22

(I1+p1)

I1p1+I2p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I22


u
(i)
k

(2.16)

with the applied forces vector τ
(i)
k =

τ (i)(1,k)

τ
(i)
(2,k)

 now denoted by u
(i)
k =

u(i)(1,k)

u
(i)
(2,k)


The output function is:

y
(i)
k = x

(i)
(1,k)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let x
(i)
approx(t) =

x(i)(1,approx)(t)

x
(i)
(2,approx)(t)

, where x
(i)
(1,approx)(t), x

(i)
(2,approx)(t) are the cubic approxi-

mations of the generalized coordinates q
(i)
1 , q

(i)
2 as well as of their first and second derivatives,

in the specified discretized time interval of the i− th walking step (relations 8.74-8.78). In ad-

dition, let τ
(i)
approx(t) =

τ (i)(1,approx)(t)

τ
(i)
(2,approx)(t)

, where τ
(i)
(1,approx)(t), τ

(i)
(2,approx)(t) are the approximations

of the control inputs (torques) τ
(i)
1 , τ

(i)
2 in the specified discretized time interval of the i − th

walking step (relation 8.73). Thus, the state space equations of the Swing Phase for the case

Leg 1 is the Stance Leg and Leg 2 is the Swing Leg are (relations 8.79, 8.92):

 ˙x(1,approx)
(i)(tck)

˙x(2,approx)
(i)(tck)

 =
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 x
(i)
(2,approx)(tck)

−M−1(x
(i)
(1,approx)(tck))(C(x

(i)
(1,approx)(tck), x

(i)
(2,approx)(tck))x

(i)
(2,approx)(tck) +G(x

(i)
(1,approx)(tck), θi))

+

 02×2

M−1(x
(i)
(1,approx)(tck))Ba

u(i)(approx(tck) (2.17)

which can be rewritten to the relation (2.16), having applied the collocation conditions. The

output function is:

y(i)approx(tck) = x
(i)
(1,approx)(tck)

2.2.2 Formulation of the Impact Map

When the swing foot impacts the surface of the ground, an update of the angular velocities

˙
q
(i)
1 ,

˙
q
(i)
2 should occur to prevent the biped from falling through the floor. This update can be

formulated as a mapping between the velocities just before and just after the collision with the

ground on the form  ˙
q
(i,+)
1

˙
q
(i,+)
2

 = 4(q(i)) ·

 ˙
q
(i,−)
1

˙
q
(i,−)
2

 (2.18)

where −, + denote the time instant right before and right after impact,respectively, so that

specific time interval is consided extremely small. An important property of this impact map-

ping is the assumption that the configuration of the biped, the generalized coordinates q
(i)
1 , q

(i)
2 ,

remains unchanged during ground impact (which occurs in the abovementioned time interval).

This is due to the fact that the impact forces F the biped experiences during impact are im-

pulsive in nature. There are multiple ways of calculating the velocity updates of the biped.

Presented below is a method that exploits properties of the impact to derive an impact map

for the collision on the form (2.18).
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2.2.3 Conservation of the angular momentum

Since the impact forces F are the only external forces affecting the biped, the angular momen-

tum about the impacting foot is conserved before and after the collision for the system. The

angular momentum L of a mass can be stated as

L = r ×mv + I
˙

q
(i)
COM (2.19)

where r is the position of the mass relative to a given reference point, m is the mass, v is the

velocity of the mass, I is the moment of inertia around the particular center of mass and
˙

q
(i)
COM

is the angular velocity of the particular leg where the center of mass is located. Given that the

biped is a system of masses, the angular momentum of the robot about the impacting foot is

given by:

L
(0)
Biped =

∑
i

r
(0)
i ×miv

+
i + I1

˙
q
(i,+)
1 + I2

˙
q
(i,+)
2 =

∑
i

r
(0)
i ×miv

−
i + I1

˙
q
(i,−)
1 + I2

˙
q
(i,−)
2 , i ∈ {1, 2, M}

(2.20)

where the reference point is the origin o0 (see Figure 2.3), and the position vectors r
(0)
i relative

to this point is given by

r
(0)
2 =


−asin(q

(i,−)
2 )

acos(q
(i,−)
2 )

0



r
(0)
M =


−lsin(q

(i,−)
2 )

lcos(q
(i,−)
2 )

0



r
(0)
1 = r

(0)
M +


−bsin(q

(i,−)
1 )

−bcos(q(i,−)1 )

0



(2.21)
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The translational velocities v±i are independent of the reference point and can be expressed

using the angular velocities q̇± as

v−M =


0

0

˙
q
(i,−)
1

×

lsin(q

(i,−)
1 )

lcos(q
(i,−)
1 )

0

 , v+M =


0

0

˙
q
(i,−)
2

×

−lsin(q

(i,−)
2 )

lcos(q
(i,−)
2 )

0



v−1 =


0

0

˙
q
(i,−)
1

×

asin(q

(i,−)
1 )

acos(q
(i,−)
1 )

0

 , v+1 = v+M +


0

0

˙
q
(i,+)
1

×

−bsin(q

(i,−)
1 )

−bcos(q(i,−)1 )

0



v−2 = v−M +


0

0

˙
q
(i,−)
2

×

bsin(q

(i,−)
2 )

−bcos(q(i,−)2 )

0

 , v+2 =


0

0

˙
q
(i,+)
2

×

−asin(q

(i,−)
2 )

acos(q
(i,−)
2 )

0



(2.22)

Substituting (2.21) and (2.22) into (2.20) and computing the crossproducts, yields one equation

for the two unknown velocities
˙

q
(i,+)
1 ,

˙
q
(i,+)
2 . This means that another equation is needed to solve

the system.

The only forces that the pre-impact swing leg experiences during the collision is the constraint

force acting on it from the hip joint (we assume that the torques applied to the biped during the

impact are zero). This means that the angular momentum of this leg about the hip is conserved

through the impact, yielding another equation for the updated velocities on the form:

L
(M)
Swing = r

(M)
2 ×m2v

+
2 + I2

˙
q
(i,+)
2 = r

(M)
2 ×m2v

−
2 + I2

˙
q
(i,−)
2

r
(M)
2 =


−bsin(q

(i,−)
2 )

−bcos(q(i,−)2 )

0


(2.23)

where the reference point is the origin oM and the velocities v±2 is given in (2.22). Equations
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(2.20) and (2.23) combined results in the linear system:

L(0)
Biped

L
(M)
Swing

 = Q+q̇
(i,+) = Q−q̇(i,−)L(0)

Biped

L
(M)
Swing

 =

p8 − p7c12 + I1 −p7c12 + p6 + I2

p8 + I1 −p7c12


q̇1(i,+)

q̇2
(i,+)

 =

p10c12 + I1 −p11 + I2

−p9 + I1 0


q̇1(i,−)
q̇2

(i,−)


(2.24)

where c12 = cos(q
(i,−)
1 −q(i,−)2 ) and the parameters p6 = m1l

2+Ml2+m2b
2, p7 = m1bl, p8 = m1b

2,

p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

•Discretization of the Impact Phase for both Methods (Leg1 = Stance, Leg2 =

Swing)

Based on the extensive analysis of the impact phase above, we will now proceed with the

discretization of the impact phase for both methods, for the case where Leg1 is the stance leg

and Leg2 is the swing leg. Let k = 1, ..., N the time steps of a walking step. In addition,

let i = 1, ...H the number and the order of the total walking steps. So, when we refer to a

generalized angle q
(i)
(x,k), where x = 1, 2, k = 1, ..., N and i = 1, ..., H we will actually mean the

angle qx of the k − th time step of the i− th walking step. Each walking step has of course its

own swing and impact phase.

We now define that the time instant before the impact of the swing leg at the ground (pre-

impact phase) is the time step N of a walking step, and the time instant after the impact of

the swing leg at the ground (post-impact phase) that also completes the current walking step

is the time step 1 of the next walking step.

But at the end of a walking step the swing leg becomes the new stance leg and vice versa,

for the next walking step to take place (in other words, both legs switch roles at the end of a

walking step).

Hence:

• q̇1(i,+) = ˙q(1,1)
(i+1),
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• q̇2(i,+) = ˙q(2,1)
(i+1),

• q̇1(i,−) = ˙q(1,N)
(i),

• q̇2(i,−) = ˙q(2,N)
(i).

Finally, (2.24) becomes:

p8 − p7c12 + I1 −p7c12 + p6 + I2

p8 + I1 −p7c12


 ˙q(1,1)

(i+1)

˙q(2,1)
(i+1)


=

p10c12 + I1 −p11 + I2

−p9 + I1 0


 ˙q(1,N)

(i)

˙q(2,N)
(i)


(2.25)

where c12 = cos(q
(i)
(1,N) − q

(i)
(2,N)) and the parameters p6 = m1l

2 + Ml2 + m2b
2, p7 = m1bl,

p8 = m1b
2, p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

Solving the system for q̇(i,+) by inverting the matrix Q+ gives and impact map on the form

(2.18)

q̇(i+1) = [Q−1+ . Q−]q̇(i) (2.26)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let q
(i)
approx(t) =

q(i)(1,approx)(t)

q
(i)
(2,approx)(t)

, where q
(i)
(1,approx)(t), q

(i)
(2,approx)(t) are the cubic approx-

imations of the generalized coordinates q
(i)
1 , q

(i)
2 , in the specified discretized time interval of

the i− th walking step (relations 8.74-8.78). Thus, the Impact Phase for the case Leg 1 is the

Stance Leg and Leg 2 is the Swing Leg are:

p8 − p7c12 + I1 −p7c12 + p6 + I2

p8 + I1 −p7c12


 ˙q(1,approx)

(i+1)(t1)

˙q(2,approx)
(i+1)(t1)


=

p10c12 + I1 −p11 + I2

−p9 + I1 0


 ˙q(1,approx)

(i)(tN)

˙q(2,approx)
(i)(tN)


(2.27)

where c12 = cos(q
(i)
(1,approx)(tN) − q(i)(2,approx)(tN)) and the parameters p6 = m1l

2 + Ml2 + m2b
2,
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p7 = m1bl, p8 = m1b
2, p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

Solving the system for ˙qapprox
(i,+) by inverting the matrix Q+ gives and impact map on the

form (2.18)

˙qapprox
(i+1) = [Q−1+ . Q−] ˙qapprox

(i) (2.28)

2.2.4 Definition of Impact Surface

The abovementioned impact map calculated the change in angular velocities that occur when

the biped robot impacts with the ground. In order for this update to be correctly applied when

the swing foot strikes the ground(at the time step N during the i − th walking step) , the

configurations of the robot that results in an impact must be determined. These configurations

correspond to the hypersurface S known as the impact surface or switching surface. A configu-

ration of the biped that leads to impact(at the time step N) with the ground during the i− th

walking step (it may be a downward or upward slope, a general rough terrain or just simply a

flat ground) must satisfy the relation:

Figure 2.3: Quantities used for the definition of the Impact Surface of the robot.

H(q
(i)
(1,N), q

(i)
(2,N), θi) = h1(q

(i)
(1,N)) + hθ(θi)− h2(q(i)(2,N)) = 0 (2.29)
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where

h1(q
(i)
(1,N)) = l cos(q

(i)
(1,N))

h2(q
(i)
(2,N)) = l cos(q

(i)
(2,N))

hθ(θ) = L tan(θi)

L = l sin(q
(i)
(1,N)) + l sin(q

(i)
(2,N))

(2.30)

are found by trigonometry. Substituting these expressions and simplifying using trigonometric

identities leads to the following derivation

H(q
(i)
(1,N), q

(i)
(2,N), θi) = l cos(q

(i)
(1,N)) + [l sin(q

(i)
(1,N)) + l sin(q

(i)
(2,N))]

sin(θi)

cos(θi)
− l cos(q

(i)
(2,N)) = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = cos(q

(i)
(1,N))cos(θi) + sin(q

(i)
(1,N))sin(θi)− cos(q(i)(2,N))cos(θi)+

sin(q
(i)
(2,N))sin(θi) = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = cos(−q(i)(1,N))cos(θi)− sin(−q(i)(1,N))sin(θi)− cos(q(i)(2,N))cos(θi)+

sin(q
(i)
(2,N))sin(θi) = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = [cos(−q(i)(1,N))cos(θi)− sin(−q(i)(1,N))sin(θi)]− [cos(q

(i)
(2,N))cos(θi)−

sin(q
(i)
(2,N))sin(θi)] = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = cos(−q(i)(1,N) + θi)− cos(q(i)(2,N) + θi) = 0

(2.31)

Furthermore, the configuration of the biped remains unchanged during ground impact, in the

time interval between the Nth time step of the ith walking step and the first time step of the

i+ 1th walking step, [t
(i)
N , t

(i+1)
1 ]. Thus, the switching surface S is defined as all configurations q

of the biped that satisfies the above relations and conditions and can be stated in set notation

as:

S = {q(i)(1,N), q
(i)
(2,N), q

(i+1)
(1,1) , q

(i+1)
(2,1) , θi ∈ R : H(q

(i)
(1,N), q

(i)
(2,N), θi) = cos(−q(i)(1,N)+θi)−cos(q

(i)
(2,N)+θi) = 0,

H(q
(i+1)
(1,1) , q

(i+1)
(2,1) , θi) = cos(−q(i+1)

(1,1) + θi)− cos(q(i+1)
(2,1) + θi) = 0} (2.32)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let q
(i)
approx(t) =

q(i)(1,approx)(t)

q
(i)
(2,approx)(t)

, where q
(i)
(1,approx)(t), q

(i)
(2,approx)(t) are the cubic approxi-

mations of the generalized coordinates q
(i)
1 , q

(i)
2 , in the specified discretized time interval of the
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i−th walking step (relations 8.74-8.78). Thus, with a similar prrof as above (having applied the

Direct Colloction Conditions), the switching surface S is defined as all configurations qapprox of

the biped that satisfies the above relation and can be stated in set notation as:

S = {q(i)(1,approx)(tN), q
(i)
(2,approx)(tN), q

(i+1)
(1,approx)(t1), q

(i+1)
(2,approx)(t1)θi ∈ R : H(q

(i)
(1,approx)(tN), q

(i)
(2,approx)(tN), θi) =

cos(−q(i)(1,approx)(tN) + θi)− cos(q(i)(2,N)(tN) + θi) = 0, H(q
(i+1)
(1,approx)(t1), q

(i+1)
(2,approx)(t1), θi) =

cos(−q(i+1)
(1,approx)(t1) + θi)− cos(q(i+1)

(2,approx)(t1) + θi) = 0} (2.33)

2.3 Swing Phase of the 2-DOF Biped Robot using Dis-

crete Mechanics (Leg1=Stance, Leg2=Swing)

We now develop the discretized Swing Phase of our biped robot via the use of the Discrete

Mechanics Theory. We define some important notations. Let h(i) be the sampling time for the

ith walking step, r a division ratio quantity in discrete mechanics, k = 1, ..N the number of time

steps, H the total number of walking steps, i = 1, 2, ..., H the walking step index, q
(i)
(1,k), q

(i)
(2,k)

the angles of Leg 1 and Leg 2 at the k-th time step during the i− th walking step respectively

and τ
(i)
(1,k), τ

(i)
(2,k) the discrete control inputs (torques) at the k − th time step during the i − th

walking step for Leg 1 and Leg 2 respectively.

We now derive the discretized Swing Phase and Impact Phase for the 2-DOF biped robot where

Leg 1 is the stance leg and Leg 2 is the swing leg. We firstly calculate the Discrete Lagrangian

Ldr(q
(i)
(1,k), q

(i+1)
(1,k) , q

(i)
(2,k), q

(i+1)
(2,k) ) from (8.44), (2.7) as:

Ldr(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1)) =

1

2
(I1 +m1a

2 +m2l
2 +Ml2)(

q
(i)
(1,k+1) − q

(i)
(1,k)

h(i)
)2+

1

2
(I2 +m2b

2)(
q
(i)
(2,k+1) − q

(i)
(2,k)

h(i)
)2 −m2blcos((1− a)q

(i)
(1,k) + aq

(i)
(1,k+1) − (1− a)q

(i)
(2,k) − aq

(i)
(2,k+1))

(
q
(i)
(1,k+1) − q

(i)
(1,k)

h(i)
)(
q
(i)
(2,k+1) − q

(i)
(2,k)

h(i)
)− (m1a+m2g +Ml)gcos((1− a)q

(i)
(2,k) + aq

(i)
(2,k+1))+

m2gbcos((1− a)q
(i)
(2,k) + aq

(i)
(2,k+1)) (2.34)
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Due to the fact that the left and right discrete forces (8.46) satisfy f+
d (qk, qk+1, τk) = f−d (qk, qk+1, τk)

for r = 1
2
, we set a type of control input (the torques for Leg 1 and 2) that consists only of the

left discrete external force f−d as:

τ
(i)
k := f−d (qk, qk+1, τk), k = 1, ..., N (2.35)

Substituting (2.34) into the discrete Euler-Lagrange Equations (8.49) while also deriving the

boundary conditions (8.58, 8.60), and using the discrete control inputs (2.35), we develop the

discretized Swing Phase of the 2-DOF biped:

D2L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k))+D1L

d(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1))−τ

(i)
(1,k) = 0, (k = 1, . . . , N)

(2.36)

D4L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k))+D3L

d(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1))−τ

(i)
(2,k) = 0, (k = 1, . . . , N)

(2.37)

The boundary conditions are given from the following equations:

D2L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i)) +D1L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2))− τ

(i)
(1,1) = 0 (2.38)

D4L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i)) +D3L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2))− τ

(i)
(2,1) = 0 (2.39)

−D2L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i)) +D1L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N))− τ

(i)
(1,N) = 0 (2.40)

−D4L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i)) +D3L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N))− τ

(i)
(2,N) = 0 (2.41)

Regarding some specific cases of values for the time step k for which the abovementioned

equations are valid:

• For i = 1 and k = 1, q
(i)
(1,k−1) = q

(1)
(1,0) = 0, q

(i)
(2,k−1) = q

(1)
(2,0) = 0, τ

(i)
(1,k−1) = τ

(1)
(1,0) = 0 and

τ
(i)
(2,k−1) = τ

(1)
(2,0) = 0 (due to the fact that k = [1, ..., N ]),

• For i > 1 and k = 1, q
(i)
(1,k−1) = q

(i−1)
(1,N), q

(i)
(2,k−1) = q

(i−1)
(2,N), τ

(i)
(1,k−1) = τ

(i−1)
(1,N) and τ

(i)
(2,k−1) = τ

(i−1)
(2,N) ,

• For k = N , q
(i)
(1,k+1) = q

(i+1)
(1,1) and q

(i)
(2,k+1) = q

(i+1)
(2,1) .
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The set of equations (2.36, 2.37), can be rewritten to a similar form of the model (2.8):

M(q
(i)
k ) · (

q
(i)
k+1 − 2q

(i)
k + q

(i)
k−1

(h(i))2
) + C(q

(i)
k ,

q
(i)
k+1 − q

(i)
k

h(i)
) · (

q
(i)
k+1 − q

(i)
k

h(i)
) +G(q

(i)
k , θi) = Ba

τ (i)(1,k)

τ
(i)
(2,k)


(2.42)

⇔

M(q
(i)
k ) · (

q
(i)
k+1 − 2q

(i)
k + q

(i)
k−1

(h(i))2
) + C(q

(i)
k ,

q
(i)
k+1 − q

(i)
k

h(i)
) · (

q
(i)
k+1 − q

(i)
k

h(i)
) +G(q

(i)
k , θi) =

τ (i)(1,k)

τ
(i)
(2,k)


⇔

 p1 + I1 −p2cos(q(i)(1,k) − q
(i)
(2,k))

−p2cos(q(i)(1,k) − q
(i)
(2,k)) p3 + I2


 q

(i)
(1,k+1)

−2q(i)
(1,k)

+q
(i)
(1,k−1)

(h(i))2

q
(i)
(2,k+1)

−2q(i)
(2,k)

+q
(i)
(2,k−1)

(h(i))2

+

 0 −p2(
q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)sin(q

(i)
(1,k) − q

(i)
(2,k))

p2(
q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)sin(q

(i)
(1,k) − q

(i)
(2,k)) 0


 q

(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

+

−p4sin(q
(i)
(1,k))

p5sin(q
(i)
(2,k))

 =

τ (i)(1,k)

τ
(i)
(2,k)

 (2.43)

with k = 1, ..., N , I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers

of mass, respectively, and with the constant parameters p1 = Ml2 + m1a
2 + m2l

2, p2 = m2lb,

p3 = m2b
2, p4 = (m1a+m2l +Ml)g, p5 = m2bg.

Hence, the discretized swing phase of the 2-DOF biped robot is described by the set of equations

(2.36)-(2.41).

Now for the Impact Phase of the discretized biped robot , due to the fact that the impact phase

is considered an instantaneous event, the Discrete Mechanics based model is the same as the

model that was derived in previous subchapters. So the impact phase of the biped robot using
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Discrete Mechanics is:p8 − p7c12 + I1 −p7c12 + p6 + I2

p8 + I1 −p7c12


 q

(i+1)
(1,1)

−q(i)
(1,N)

h(i)

q
(i+1)
(2,1)

−q(i)
(2,N)

h(i)

 =

p10c12 + I1 −p11 + I2

−p9 + I1 0


 q

(i)
(1,N)

−q(i)
(1,N−1)

h(i)

q
(i)
(2,N)

−q(i)
(2,N−1)

h(i)


(2.44)

where c12 = cos(q
(i)
(1,N) − q

(i)
(2,N)) and the parameters p6 = m1l

2 + Ml2 + m2a
2, p7 = m1bl,

p8 = m1b
2, p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

Solving the system for q̇(i,+) by inverting the matrix Q+ gives and impact map on the form

(2.18)

q̇(i+1) = [Q−1+ . Q−]q̇(i) (2.45)

2.4 General Configuration of the Walking Terrain

In this subsection we will define the configuration of the general walking terrain of our biped.

Based on the figures below, the different types of walking terrains for our biped robot will be

the following: flat ground, upward and downward slopes, and surfaces involving upward and

downward stairs.

Let C0 be the initial grounding point from where the biped starts to walk. On each sim-

ulation,the biped shall perform H walking steps on the terrain. We define the grounding

points Ci = (Li, Hi, Di, θi), i = 1, ...H as coordinates with reference to the previous grounding

point, Ci−1, where Li is the tangential distance between consecutive reference grounding points

(Ci−1, Ci), Hi is the step height (in cases of down/up stairs walking), Di is the step length, and

θi is the inclination angle (in cases of downward and upward slopes and stairs). The length Di

of the i− th walking step depends on the type of terrain that the walking step will take place

(see Figure 2.4).

We assume that, of course, Li, Di > 0 (the robot moves forward along the positive x-axis),

Hi > 0 in the case of upstairs walking, Hi < 0 in the case of downstairs walking, Hi = 0 in the

case of flat ground and downward/upward slope walking, and −1.13 rad ≤ θi ≤ 1.13 rad. If



34 Chapter 2. First Phase of the Gait Generation Module

Figure 2.4: Walking surfaces for the biped robot.

θi = 0, then the i − th walking step will be done on a flat ground. If θi > 0, then the i − th

walking step will be done on an upward slope or stair. Finally if θi < 0, i = 1, ..., H, then the

i − th walking step will be done on a downward slope or stair. For upstairs and downstairs

walking, only parameters Di =
√
L2
i +H2

i and θi = sin−1(Hi

Di
).

The set of points Ci, i = 1, ..., H are, in other words, the reference points for the placement of

the swing leg at the i− th walking step.
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2.5 Derivation of the Gait Generation Problem for the

First Phase

In the current subchapter, we will derive the Gait Generation Problem of the First Phase of

D&CFC. The problem will be mathematically formulated as a finite-dimensional nonlinear con-

strained optimal control problem. The aim of the First Phase is the calculation of a trajectory

for the 2-DOF Biped Robot for the i − th walking step, i = 1, ..., H, ignoring any constraint

forces(e.g. normal forces, friction forces).

We will now consider the following problem on the preliminary gait generation of the First

Phase for the 2-DOF Biped Robot:

For the 2-DOF Biped Robot that was developed throughout the Chapter 2,and

ignoring any constraint forces on the stance foot, calculate a trajectory for the

i − th walking step, i = 1, ..., H, that includes the discretized control inputs and

state variables, such that the corresponding swing leg of the 2-DOF Biped lands

at the i− th reference grounding point of a general rough terrain with stable and

natural gait.

As we have mentioned on Chapter 1, we have implemented two variants of the proposed control

system, thus we will derive the optimal gait generation problem for each one of them. In the

following, we assume that the Leg 2 initially starts the walking process. In other words, during

the odd walking steps, the Leg 1 is the stance leg and the Leg 2 is the swing leg, and during

the even walking steps the Leg 1 is the swing leg and the Leg 2 is the stance leg.

• Gait Generation Problem of the First Phase utilizing Direct Collocation

The mathematical formulation of the Gait Generation problem of the First Phase using Direct

Collocation Method is stated as follows:

For the odd walking steps:

minimize: J =
N∑
k=1

[1, 2, 4][(τ
(i)
(1,k))

2 + (τ
(i)
(2,k))

2]
h(i)

3
,
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subject to:

• Swing Phase Model in State Space Form (2.17), (1)

• Impact Phase Model (2.27), (2)

•q(i)(1,approx)(tN) = q
(i+1)
(1,approx)(t1) = sin−1(−Di

2l
)− θi, (3)

•q(i)(2,approx)(tN) = q
(i+1)
(2,approx)(t1) = sin−1(

Di

2l
)− θi, (4)

•cos(−q(i)(1,approx)(tk) + θi)− cos(q(i)(2,approx)(tk) + θi) > 0, k = 2, ..., N − 1, (5)

• Impact Surface Conditions (2.33), (6)

•sin(−q(i)(1,approx)(tk+1) + θi)
q
(i)
(1,approx)(tk+1)− q(i)(1,approx)(tk)

h(i)
−

sin(q
(i)
(2,approx)(tk) + θi)

q
(i)
(2,approx)(tk+1)− q(i)(2,approx)(tk)

h(i)
> 0, k = 1, ..., N − 1, (7)

•τmin ≤ τ
(i)
k ≤ τmax, k = 1, ..., N, (8)

• − π

2
≤ q

(i)
(1,k), q

(i)
(2,k) ≤ π, k = 1, ..., N, (9)

• − q̇max ≤ ˙q(1,k)
(i), ˙q(2,k)

(i) ≤ q̇max, k = 1, ..., N, (10)

• Average linear walking speed Vi ⇔ Vi =
Di

Ti
⇔ Ti =

Di

Vi
⇔ (N − 1)h(i) =

Di

Vi

⇔ h(i) =
Di

Vi(N − 1)
, (11)

• with initial conditions: q
(i)
(1,1), q

(i)
(2,1), ˙q(1,1)

(i), ˙q(2,1)
(i),

• and conservation of angular momentum necessary conditions.

For the even walking steps, we formulate a similar Gait Generation Problem.

Based on the abovementioned (Direct Collocation-based/Forward Dynamics Based) optimiza-

tion problem:

1. We want to minimize the control effort required to achieve the i − th walking step,

i = 1, ..., H. We have used the Simpson’s rule for approximating the cost function. The

coefficients [1, 2, 4] refer to the fact that, due to the use of the Simpson’s Rule, all the

function evaluations at points k with odd subscripts are multiplied by 4 and all the func-
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tion evaluations at points k with even subscripts are multiplied by 2, except for the first

and last ( in which the coefficient 1 refers to).

2. Constraints (1) and (2) define the Swing Phase (in State Space Form) and Impact

Phase Models of the 2-DOF Biped that were extensively developed throughout Chapter

2.

3. Constraints (3) and (4) refer to the configuration of the two legs of the 2-DOF Biped

during the Impact Phase (i.e. in the time interval [t
(i)
N , t

(i+1)
1 ]).

4. Constraint (5) refers to the fact that the Swing Leg must be above the Stance Leg and

not touch the ground surface for the duration of the Swing Phase. In other words, during

the Swing Phase, the vertical length of the swing leg is smaller than the one of the stance

leg.

5. Constraint (6) outline the configuration of the biped during the time steps of the Impact

Phase; the configuration of each leg remains the same for the small duration of the impact

of the swing leg with the ground.

6. Constraint (7) implies the height of the Swing Leg that is monotonously being decreased

at each time step of the Swing Phase.

7. Constraints (8) - (10) refer to the physical constraints of the rotational actuators.

8. Constraint (11) refers to the average linear walking speed of the swing leg, if it is

selected to be an active constraint. From the expression of the average linear walking

speed, we can calculate the duration of a time interval for the ith walking step, h(i),

otherwise a predefined value for the time interval is being used.

9. As initial values of the optimization problems are considered the generalized angles and

velocities of the two legs at the first time step of a walking step.

• Gait Generation Problem of the First Phase utilizing Discrete Mechanics

The mathematical formulation of the Gait Generation problem of the First Phase using Discrete
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Mechanics is stated as follows:

For the odd walking steps:

minimize: J =
N∑
k=1

[1, 2, 4][(τ
(i)
(1,k))

2 + (τ
(i)
(2,k))

2]
h(i)

3
,

subject to:

• Swing Phase Model (2.43), (1)

• Boundary Conditions (2.38-2.41), (2)

• Impact Phase Model (2.44), (3)

•q(i)(1,N) = q
(i+1)
(1,1) = sin−1(−Di

2l
)− θi, (4)

•q(i)(2,N) = q
(i+1)
(2,1) = sin−1(

Di

2l
)− θi, (5)

•cos(−q(i)(1,k) + θi)− cos(q(i)(2,k) + θi) > 0, k = 2, ..., N − 1, (6)

• Impact Surface Conditions (2.32), (7)

•sin(−q(i)(1,k+1) + θi)
q
(i)
(1,k+1) − q

(i)
(1,k)

h(i)
− sin(q

(i)
(2,k) + θi)

q
(i)
(2,k+1) − q

(i)
(2,k)

h(i)
> 0, k = 1, ..., N − 1, (8)

•τmin ≤ τ
(i)
k ≤ τmax, k = 1, ..., N, (9)

• − π

2
≤ q

(i)
(1,k), q

(i)
(2,k) ≤ π, k = 1, ..., N, (10)

• − q̇max ≤ ˙q(1,k)
(i), ˙q(2,k)

(i) ≤ q̇max, k = 1, ..., N(11)

• Average linear walking speed Vi ⇔ Vi =
Di

Ti
⇔ Ti =

Di

Vi
⇔ (N − 1)h(i) =

Di

Vi

⇔ h(i) =
Di

Vi(N − 1)
, (12)

• with initial conditions: q
(i)
(1,1), q

(i)
(2,1), ˙q(1,1)

(i), ˙q(2,1)
(i),

• and conservation of angular momentum necessary conditions.

For the even walking steps, we formulate a similar Gait Generation Problem.

In the abovementioned (Discrete Mechanics-Based/Inverse Dynamics-based) optimization prob-

lem, we have to use the Swing Phase Model (not the State Space Form) that was derived based
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on Discrete Mechanics and to take into account the finite difference conditions related to the

first and secomd derivative of the generalized angles of the swing and stance leg. In addition,

we have to utilize the Boundary Conditions related to the initial and terminal values of the

generalized angles and velocities of the two legs. The other constraints remain the same as in

the direct collocation-based optimization problems.



Chapter 3

Second Phase of the Gait Generation

Module

3.1 Introduction and Key Points of the Second Phase

In the current Chapter, we will implement the Second Phase of the Gait Generation Module

for the proposed system. The Second Phase, based on the trajectory that was calculated at the

First Phase, proceeds with the Gait Generation for the Complete, 4-DOF Biped Robot, using

a novel method called Energy Efficient Trajectory Synthesis and Verification.

The walking motion of the complete 4-DOF biped includes three Phases: Swing Phase, Instan-

taneous Push-off Phase and Heel-Strike Phase. The Swing phase begins at the instant just

after the stance foots hit the ground surface at heel-strike and the swing foot is away from

the ground. Two instants before the swing foot makes contact with the ground, the swing

phase ends. Then, the Push-Off Phase is applied instantaneously between the end of the swing

phase and the heel-strike process which sets the stage for the Heel Strike Phase. In the walking

process, the complete biped robot uses three actuators: two rotational joint torques at the hip

for the rotational motion of the two legs and one instantaneous push-off impulse for the stance

feet. As we will see in the equations of motion of the biped in the Second Phase, the control

inputs vector will consist of four elements: the first two are the rotational torques applied to

40
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the legs (τ1, τ2) and the remaining two are the axial components of the instantaneous impulse

applied at the Push-Of Phase (F(PO,x), F(PO,y)).

Here, we assume that the collision at heel-strike is a no-bounce process and there is no double

support after heel-strike. The instantaneous push-off just before heel-strike is a strategy to

reduce the collision loss as well as to stabilize the whole biped, which is a classical design for

the energy-optimal walking motion. We assume that there is sufficient friction between the feet

and the ground surface to prevent slippage during the whole walking process.

As we have seen in previous Chapters, the biped robot generally includes two legs that are

hinged at the hip. The leg length is l and the mass on the leg is located at the point that the

distance to the hip is lt. The complete 4-DOF biped has four degrees of freedom, q1, q2, q3, q4.

q1, q2 represent the angles of the legs with respect to the ground surface normal, and (q3, q4)

define the coordinates of the stance foot in the rectangular coordinate system that the forward

and upward directions are positive and the initial position of the stance foot is (0, 0). Therefore,

the walking model can be described by the abovementioned generalized coordinates which

characterize 4 degrees of freedom (DOF’s) of the model.

Our walking model includes in the Second Phase not only the generalized coordinates q1, q2

that describe the status of the two legs but also the generalized coordinates of the stance foot

q3, q4. There are two advantages:

•During the swing phase, the stance foot is the only point that contact with the ground. The

constrained forces of the stance foot that include the normal force and the friction force can

be obtained by constraining the position of the stance foot. Therefore, the friction force, and

whether the stance foot leaves the ground can be checked to meet the walking constraints.

•The instantaneous processes push-off and heel-strike can be described by the equivalent im-

pulses that contact with the ground. The conventional angular momentum conservation theo-

rem (used in the First Phase) is not needed for solving the heel-strike process.

Regarding to the notation of all the variables (e.g. states, angular coordinates/velocities/accelerations,

control inputs, constrained forces) in the discretized setting, assuming that a walking step con-

sists of N time steps, then when we see the mathematical representation x
(i)
(1,k) for instance, we
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refer to the value of the variable x1 for t = N(i−1)h+(k−1)h sec. Thus, x
(i)
(1,k) = x1(t = N(i−

1)h+(k−1)h sec), x
(i)
k = x(t = N(i−1)h+(k−1)h sec), q

(i)
(1,k) = q1(t = N(i−1)h+(k−1)h sec),

q
(i)
(2,k) = q2(t = N(i − 1)h + (k − 1)h sec), u

(i)
k = u(t = N(i − 1)h + (k − 1)h sec) etc. The

abovemetioned notation is used throughout the current thesis.

In the current Chapter, we firstly develop the equations of motion for all the walking phases of

the biped, for both the Direct Collocation and Discrete Mechanics Methods. Furthermore, we

derive extensively the Gait Generation Problems of the Second Phase for both methods. Then,

we develop a novel method called ”Energy Efficient Trajectory Synthesis and Verification”,

which calculates energy-optimal possible trajectory for each walking step, while respecting the

technical and physical constraints of the biped, as well as the qualitative behavior of a proper

walking step.

The key to our novel method is the calculated trajectory of the First Phase. Based on it, using

all the sets of calculated variables from each time step of the calculated trajectory as initial

values for the optimal control problems of the Second Phase, a set of new trajectories are being

calculated for the complete robot. Then, the abovementioned method, for each time step of the

walking step, finds and selects the related set of calculated variables from the newly created

trajectories with the lowest possible Energy Consumption (or Cost of Transport, COT), and

that obey all the constraints of the biped, following the qualitative behavior of a proper walking

step. For the last requirement, the first trajectory that is calculated in the Second Phase (where

we give as initial values for the optimal control problem the set of calculated variables from the

first walking step, as calculated in the First Phase) is used as a ” reference” trajectory.

The results of the proposed Decrease & Conquer architecture, as we will see in Chapter 4, are

outstanding. The utilization of the proposed system, in contrast with conventional one Phase

gait generation approaches and high performance commercial solvers, leads to the synthesis

of the most energy efficient, stable and natural walking gaits for our biped, for virtually any

ground surface: flat ground, downward and upward slopes/stairs, and general terrains involving

downward and upward stairs.

•Gait Generation Problem of the Second Phase
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On Subchapter 3.6 we derive the Gait Generation Problem for the First Phase of the Gait

Generation Module. The aim of the Second Phase is to minimize the so called Cost of Transport

(COT) required to achieve a particular walking step, subject to constraints related to:

1. the derived equations of motion for each walking phase,

2. the configuration of the biped duting the impact of the swing leg with the ground,

3. some features of the swing and stance legs that lead to a proper walking behavior,

4. the physical constraints of the used actuators, and

5. additional, optional constraints (e.g. average linear walking speed of the swing leg etc.).

3.2 Swing Phase of the 4-DOF Biped Robot for the

Direct Collocation Method (Leg1 = Stance, Leg2 =

Swing

As we have seen in Chapter 2, the first step to deriving the Lagrangian of the biped is to define

the homogeneous transfer matrices that describe the orientation and position of each link of the

robot. One natural placement of local coordinate frames is indicated in Figure 3.1, where each

frame is rigidly attached to the appropriate mass. The origins of each of these frames describe

the following important points on the planar biped:

1. o0 = o3,4 - Global coordinate frame fixed to the ground, that is, the Cartesian Coordinates

of the stance foot.

2. o1 - Coordinate frame fixed to the center of mass for the stance leg(Leg 1).

3. oM - Coordinate frame fixed to the center of mass of the hip joint.

4. o2 - Coordinate frame fixed to the center of mass for the swing leg(Leg 2).
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Figure 3.1: Assignment of origins for the coordinate frames of the robot.

These coordinate frames are used to form homogeneous transformation matrices on the form

H i
j =

 Ri
j pij

01×3 1

 (3.1)

where Ri
j ∈ R3×3 is the rotation matrix from frame j to frame i and pij ∈ R3 is the distance

between the origins of the respective frames expressed in frame i. Finding rotation matrices

is complicated, requiring a parametrization of the total rotation of each frame in suitable

coordinates. This process is greatly simplified by the fact that the planar biped only experiences

motion in a 2-D plane. The transformation matrices can then be found by trigonometry and
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are stated for verification below:

H0
1 =



cos(q
(i)
1 ) −sin(q

(i)
1 ) 0 q3 − asin(q

(i)
1 )

−sin(q
(i)
1 ) cos(q

(i)
1 ) 0 q4 + acos(q

(i)
1 )

0 0 1 0

0 0 0 1



H1
M =



1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1


H0
M = H0

1H
1
M

H0
2 =



cos(q
(i)
2 ) −sin(q

(i)
2 ) 0 q3 + lsin(q

(i)
1 ) + bsin(q

(i)
2 )

sin(q
(i)
2 ) cos(q

(i)
2 ) 0 q4 + lcos(q

(i)
1 )− bcos(q(i)2 )

0 0 1 0

0 0 0 1



(3.2)

The matrices (3.2) can now be employed to determine the position p(0) and velocity v(0) of the

center of mass of each mass in xy coordinates in the global frame o0 as

p
(0)
1 = [I2×2 02×2] ·H0

1 ·

03×1

1

 , v(0)1 = d
dt
p
(0)
1

p
(0)
M = [I2×2 02×2] ·H0

M ·

03×1

1

 , v(0)M =
d

dt
p
(0)
M

p
(0)
2 = [I2×2 02×2] ·H0

2 ·

03×1

1

 , v(0)2 = d
dt
p
(0)
2

(3.3)

where I2×2 is the identity matrix and p(0), v(0) ∈ R2.

In order to form the Lagrangian of the system and compute the Euler-Lagrange equations, the

kinetic and potential energy of the system must be determined. The potential energy is the
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sum of the potential energy at the center of mass for each mass and can be expressed as

P = (m1h
(0)
1 +Mh

(0)
M +m2h

(0)
2 )g (3.4)

where g = (sin(θi) + cos(θi))gconst, with gconst = 9.81m/s2 and θ defining the slope of the next

walking step to be achieved, is the gravitational acceleration quantity in the horizontal and

vertical axes and h(0) = p(0)[01] is the height of the respective centers of mass expressed in the

global frame o0. The total kinetic energy is the sum of the body’s centers-of-mass translational

kinetic energy and the energy of rotation around the centers of mass (rotational energy), and

can be expressed as be expressed as

K =
1

2
(m1v

T
1 v1 +MvTMvM +m2v

T
2 v2) +

1

2
(I1

˙
(q

(i)
1 )2 + I2(

˙
q
(i)
2 )2) (3.5)

Using the expressions (3.4) and (3.5) for the potential and kinetic energy, the Euler-Lagrange

equations of motion can be calculated

d

dt
(
∂L
∂q̇j(i)

)− ∂L
∂qj(i)

= Ba(q
(i))



τ
(i)
1

τ
(i)
2

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
con(q(i), q̇(i)) j ∈ [1, 2, 3, 4] (3.6)

where L is the Lagrangian of the system derived from (3.4) and (3.5) as

L = K − P

that extends to:

L(q
(i)
1 , q

(i)
2 , q

(i)
3 , q

(i)
4 ,

˙
q
(i)
1 ,

˙
q
(i)
2 ,

˙
q
(i)
3 ,

˙
q
(i)
4 ) =

m2

(
˙
q
(i)
4 + b

˙
q
(i)
2 sin

(
q
(i)
2

)
− ˙
q
(i)
1 l sin

(
q
(i)
1

))2
2

+
M
(
a

˙
q
(i)
1 cos

(
q
(i)
1

)
− ˙
q
(i)
3 + b

˙
q
(i)
1 cos

(
q
(i)
1

))2
2

+
M
(
a

˙
q
(i)
1 sin

(
q
(i)
1

)
− ˙
q
(i)
4 + b

˙
q
(i)
1 sin

(
q
(i)
1

))2
2
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+
m1

(
˙
q
(i)
3 − a

˙
q
(i)
1 cos

(
q
(i)
1

))2
2

+
m2

(
˙
q
(i)
3 +

˙
q
(i)
2 l cos

(
q
(i)
2

)
+ b

˙
q
(i)
2 cos

(
q
(i)
2

))2
2

+
m1

(
˙
q
(i)
4 − a

˙
q
(i)
1 sin

(
q
(i)
1

))2
2

− gM
(
q
(i)
4 + a cos

(
q
(i)
1

)
+ b cos

(
q
(i)
1

))
− g m2

(
q
(i)
4 − b cos

(
q
(i)
2

)
+ l cos

(
q
(i)
1

))
− g m1

(
q
(i)
4 + a cos

(
q
(i)
1

))
+

1

2
(I1(q̇1

(i))2 + I2(q̇2
(i))2) (3.7)

Ba(q
(i)) is the applied forces selection matrix (it maps the applied linear forces and/or torques to

the related generalized coordinates). Here, Ba(q
(i)) =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


(thus, Ba(q

(i)) here is not

a full row rank matrix) assuming that, due to the use of the two hip actuators (and not of the

linear actuator), only the torques τ
(i)
1 , τ

(i)
2 to the hip can be controlled. STconf

(i)
con(q(i), q̇(i)) is the

constrained force at stance foot at the i− th walking step, where Scon =

0 0 1 0

0 0 0 1

 is called

the constraint force selection matrix, and f
(i)
con(q(i), q̇(i)) =

f (i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))

 is the constraint force

vector.The topology of the values of the constraint force selection matrix leads to the conclusion

that the constraint forces will be applied to the stance foot (in other words, they will affect the

generalized coordinates q
(i)
3 , q

(i)
4 of the stance foot). Note that the stance leg at each walking

step will be either Leg 1 or Leg 2. The constraint force vector consists of the constraint

forces that are applied to the stance foot at the i − th walking step and are the friction force

f
(i)
fr (q(i), q̇(i)) and the normal force f

(i)
N (q(i), q̇(i)), so STconf

(i)
con(q(i), q̇(i)) equals to



0

0

f
(i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))


and each quantity will be derived later. Note that the linear actuators at the stance feet are

not used in the Swing Phase, but they will be extensively used in the Instantaneous Push Off

Phase.

Using the expressions (8.39)− (8.41) for the elements of the respective matrices, the equations
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of motion for the biped can be formulated as

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) = Ba(q
(i))



τ
(i)
1

τ
(i)
2

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STcon

f (i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))

 (3.8)

⇔

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) =



τ
(i)
1

τ
(i)
2

0

0


+



0

0

f
(i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))


where

M(q(i)) =



p12 + I1 −p13cos(q(i)1 ) −p16cos(q(i)1 ) −p16sin(q
(i)
1 )

−p13cos(q(i)1 ) p14 + I2 p15cos(q
(i)
2 ) p15sin(q

(i)
2 )

−p16cos(q(i)1 ) p15cos(q
(i)
2 ) p17 0

−p16sin(q
(i)
1 ) p15sin(q

(i)
2 ) 0 p17


(3.9)

C(q(i), ˙q(i))⇒ C(:, 1) =



p13sin(q
(i)
1 − q

(i)
2 )q̇2

(i) + p16(sin(q
(i)
1 )q̇3

(i) − cos(q(i)1 ))q̇4
(i)

p13sin(q
(i)
1 − q

(i)
2 )(q̇1

(i) − q̇2(i))

p16sin(q
(i)
1 )q̇1

(i)

−p16cos(q(i)1 )q̇1
(i)



C(:, 2) =



p13sin(q
(i)
1 − q

(i)
2 )(q̇1

(i) − q̇2(i))

p13sin(q
(i)
1 − q

(i)
2 )q̇1

(i) − p15sin(q
(i)
2 )q̇3

(i) + p15cos(q
(i)
2 )q̇4

(i)

−p15sin(q
(i)
2 )q̇2

(i)

p15cos(q
(i)
2 )q̇2

(i)


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C(:, 3) =



p16sin(q
(i)
1 )q̇1

(i)

−p15sin(q
(i)
2 )q̇2

(i)

0

0



C(:, 4) =



−p16cos(q(i)1 )q̇1
(i)

p15cos(q
(i)
2 )q̇2

(i)

0

0


(3.10)

G(q(i), θi) =



−gM(asin(q
(i)
1 ) + bsin(q

(i)
1 ))− agm1sin(q

(i)
1 )− glm2sin(q

(i)
1 )

bgm2sin(q
(i)
2 )

0

gm1 + gm2 + gM


(3.11)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, p12 = Ml2+m1a
2+m2l

2,p13 = m2bl, p14 = m2b
2, p15 = m2b, p16 = Ml+m1a+m2l,

p17 = m1 +m2 +M .

•Initial Discretization of the Swing Phase for the Direct Collocation Method (Leg1

= Stance, Leg2 = Swing)

Now we will proceed with the initial discretization (without applying the Direct Collocation

Conditions) of the Swing Phase of the 4-DOF Biped Robot for the case where the Leg 1 is the

stance leg and the Leg 2 is the swing leg. Let k = 1, ..., N the time steps of a walking step. In

addition, let i = 1, ...H the number and the order of the total walking steps. So, when we refer

to a generalized angle q
(i)
(x,k), where x = 1, 2, k = 1, ..., N and i = 1, ..., H we will actually mean

the angle qx of the k − th time step of the i − th walking step. A discretization of the time
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interval for a walking step

t0 = t1 < t2 < ... < tN = tf

is chosen. Without implementing the complete discretization process (it will be later explained

in the current chapter), the Swing Phase becomes:

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) = Ba(q

(i)
k )



τ
(i)
(1,k)

τ
(i)
(2,k)

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
(con,k), k = 1, ..., N − 2

(3.12)

⇔

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) =



τ
(i)
(1,k)

τ
(i)
(2,k)

0

0


+



0

0

f
(i)
(fr,k)

f
(i)
(N,k)


, k = 1, ..., N − 2

where f
(i)
(con,k) =

f (i)
(fr,k)

f
(i)
(N,k)

 =

f (i)
fr (q

(i)
k , q̇k

(i))

f
(i)
N (q

(i)
k , q̇k

(i))

, k = 1, ..., N − 2,

M(q
(i)
k ) =



p12 + I1 −p13cos(q(i)(1,k)) −p16cos(q
(i)
(1,k)) −p16sin(q

(i)
(1,k))

−p13cos(q(i)(1,k)) p14 + I2 p15cos(q
(i)
(2,k)) p15sin(q

(i)
(2,k))

−p16cos(q(i)(1,k)) p15cos(q
(i)
(2,k)) p17 0

−p16sin(q
(i)
(1,k)) p15sin(q

(i)
(2,k)) 0 p17


, k = 1, ..., N − 2

(3.13)

C(q
(i)
k ,

˙
q
(i)
k )⇒ C(:, 1) =



p13sin(q
(i)
(1,k) − q

(i)
(2,k)) ˙q(2,k)

(i) + p16(sin(q
(i)
(1,k)) ˙q(3,k)

(i) − cos(q(i)(1,k))) ˙q(4,k)
(i)

p13sin(q
(i)
(1,k) − q

(i)
(2,k))( ˙q(1,k)

(i) − ˙q(2,k)
(i))

p16sin(q
(i)
(1,k)) ˙q(1,k)

(i)

−p16cos(q(i)(1,k)) ˙q(1,k)
(i)


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C(:, 2) =



p13sin(q
(i)
(1,k) − q

(i)
(2,k))( ˙q(1,k)

(i) − ˙q(2,k)
(i))

p13sin(q
(i)
(1,k) − q

(i)
(2,k)) ˙q(1,k)

(i) − p15sin(q
(i)
(2,k)) ˙q(3,k)

(i) + p15cos(q
(i)
(2,k)) ˙q(4,k)

(i)

−p15sin(q
(i)
(2,k)) ˙q(2,k)

(i)

p15cos(q
(i)
(2,k)) ˙q(2,k)

(i)



C(:, 3) =



p16sin(q
(i)
(1,k)) ˙q(1,k)

(i)

−p15sin(q
(i)
(2,k)) ˙q(2,k)

(i)

0

0


, k = 1, ..., N − 2

C(:, 4) =



−p16cos(q(i)(1,k)) ˙q(1,k)
(i)

p15cos(q
(i)
(2,k)) ˙q(2,k)

(i)

0

0


(3.14)

G(q(i), θi) =



−gM(asin(q
(i)
(1,k)) + bsin(q

(i)
(1,k)))− agm1sin(q

(i)
(1,k))− glm2sin(q

(i)
(1,k))

bgm2sin(q
(i)
(2,k))

0

gm1 + gm2 + gM


, k = 1, ..., N − 2

(3.15)

where p12 = Ml2 + m1a
2 + m2l

2,p13 = m2bl, p14 = m2b
2, p15 = m2b, p16 = Ml + m1a + m2l,

p17 = m1 +m2 +M .

•State Space Equations of the Swing Phase for the Direct Collocation Method

(Leg1 = Stance, Leg2 = Swing)

We will now derive the state space equations of the Swing Phase and apply the Direct Collo-

cation Conditions, for the case where Leg 1 is the Stance Leg and Leg 2 is the Swing Leg, for
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the duration of the Swing Phase (k = 1, ..., N − 2). The choice of state variables is the vector:

x(i)(1,k)

x
(i)
(2,k)

 =

 q(i)k
q̇k

(i)



where x
(i)
(1,k) = q

(i)
k =



q
(i)
(1,k)

q
(i)
(2,k)

q
(i)
(3,k)

q
(i)
(4,k)


and x

(i)
(2,k) = q̇k

(i) =



˙q(1,k)
(i)

˙q(2,k)
(i)

˙q(3,k)
(i)

˙q(4,k)
(i)



The state equations are:

 ˙x(1,k)
(i)

˙x(2,k)
(i)

 =

 x
(i)
(2,k)

−M−1(x
(i)
(1,k))(C(x

(i)
(1,k), x

(i)
(2,k))x

(i)
(2,k) +G(x

(i)
(1,k), θi) + STconf

(i)
(con,k))

+

 04×4

M−1(x
(i)
(1,k))Ba(q

(i)
k )

u(i)k

where

 x
(i)
(2,k)

−M−1(x
(i)
(1,k))(C(x

(i)
(1,k), x

(i)
(2,k))x

(i)
(2,k) +G(x

(i)
(1,k), θi) + STconf

(i)
(con,k))

 is a 8× 1 matrix and

 04×4

M−1(x
(i)
(1,k))Ba(q

(i)
k )

 is a 8 × 4 matrix, the matrices M, C, G are given from the relations

(3.13-3.15), and with the applied forces vector



τ
(i)
(1,k)

τ
(i)
(2,k)

F
(i)
(PO,x)

F
(i)
(PO,y)


now denoted by u

(i)
k =



u
(i)
(1,k)

u
(i)
(2,k)

u
(i)
(3,k)

u
(i)
(4,k)


.

The output function is:

y
(i)
k = x

(i)
(1,k)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let x
(i)
appr(t) =

x(i)(1,appr)(t)

x
(i)
(2,appr(t)

, where x
(i)
(1,appr)(t), x

(i)
(2,appr)(t) are the cubic approximations

of the generalized coordinates q
(i)
1 , q

(i)
2 , q

(i)
3 , q

(i)
4 as well as of their first and second derivatives,

in the specified discretized time interval of the i−th walking step (relations 8.74-8.78). In addi-
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tion, let u
(i)
appr(t) =



τ
(i)
(1,appr)(t)

τ
(i)
(2,appr)(t)

F
(i)
(PO,x,appr)(t)

F
(i)
(PO,y,appr)(t)


, where τ

(i)
(1,appr)(t), τ

(i)
(2,appr)(t), F

(i)
(PO,x,appr), F

(i)
(PO,y,appr) are

the approximations of the control inputs (torques and linear forces) τ
(i)
1 , τ

(i)
2 , F

(i)
(PO,x), F

(i)
(PO,y)

in the specified discretized time interval of the i − th walking step (relation 8.73). Thus, the

state space equations of the Swing Phase for the case where Leg 1 is the Stance Leg and Leg 2

is the Swing Leg are (relations 8.79, 8.92):

 ˙x(1,appr)
(i)(tck)

˙x(2,appr)
(i)(tck)

 =

 x
(i)
(2,appr)(tck)

−M−1(x
(i)
(1,appr)(tck))(C(x

(i)
(1,appr)(tck), x

(i)
(2,appr)(tck))x

(i)
(2,appr)(tck) +G(x

(i)
(1,appr)(tck), θi) + STconf

(i)
con,appr(tck))


+

 04×4

M−1(x
(i)
(1,appr)(tck))Ba(q

(i)
k )

u(i)appr(tck) (3.16)

The output function is:

y(i)appr(tck) = x
(i)
(1,appr)(tck)

We will derive the particular expressions of the constraint forces at stance foot, f
(i)
(con,k), based

on each case, at subchapter 3.4.

3.3 Swing Phase of the 4-DOF Biped Robot using Dis-

crete Mechanics (Leg 1 = Stance, Leg 2 = Swing)

We now develop the discretized model of our biped robot via the use of the Discrete Mechanics

Theory. We define some important notations. Let h(i) be the sampling time for the ith walking

step, r a division ratio quantity in discrete mechanics, k = 1, ..N the number of time steps, H

the total number of walking steps, i = 1, 2, ..., H the walking step index, q
(i)
(1,k), q

(i)
(2,k), q

(i)
(3,k) and
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q
(i)
(4,k) the generalized coordinates at the k-th time step during the i−th walking step respectively

and τ
(i)
(1,k), τ

(i)
(2,k),F

(i)
(POx,k), F

(i)
(POy,k) the control inputs at the k − th time step during the i − th

walking step for the Leg 1 and Leg 2.

We now derive the discretized Swing Phase for the 4-DOF biped robot where Leg 1 is the stance

leg and Leg 2 is the swing leg. We firstly calculate the Discrete Lagrangian

Ldr(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1), q

(i)
(3,k), q

(i)
(3,k+1), q

(i)
(4,k), q

(i)
(4,k+1)) from (8.44), (3.7). Due to the fact

that the left and right discrete forces (7.46) satisfy f+
d (qk, qk+1, τk, f

(i)
k ) = f−d (qk, qk+1, τk, f

(i)
k )

for r = 1
2
, we set a discrete control input (the hip torque, that for now it is considered a

unified, combined entity of τ
(i)
(1,k), τ

(i)
(2,k)) that consists of the left discrete external force f−d and

we also set the instantaneous push-off impulse (that for now it is considered a unified, entity

of f
(i)
(fr,k), f

(i)
(N,k)) that consists of the right discrete external force f+

d as:

τ
(i)
k := f−d (qk, qk+1, τk, f

(i)
k ), k = 1, ..., N − 2 (3.17)

F
(i)
PO := f+

d (qk−1, qk, τ
(i)
k , fk) = 0, k = 1, ..., N − 2 (3.18)

Equation (3.26) is valid because the instantaneous push-off impulse is not applied during the

Swing Phase of the biped. Substituting the discrete Lagrangian into the discrete Euler-Lagrange

Equations (7.49) while also deriving the boundary conditions (8.58, 8.60), and using the discrete

control input (3.17, 3.18), we develop the discretized Swing Phase of the biped:

D2L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k), q

(i)
(3,k−1), q

(i)
(3,k), q

(i)
(4,k−1), q

(i)
(4,k))+

D1L
d(q

(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1), q

(i)
(3,k), q

(i)
(3,k+1), q

(i)
(4,k), q(4,k+1))− τ (i)(1,k) = 0, (k = 1, . . . , N − 2)

(3.19)

D4L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k), q

(i)
(3,k−1), q

(i)
(3,k), q

(i)
(4,k−1), q

(i)
(4,k))+

D3L
d(q

(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1), q

(i)
(3,k), q

(i)
(3,k+1), q

(i)
(4,k), q

(i)
(4,k+1))− τ

(i)
(2,k) = 0, (k = 1, . . . , N − 2)

(3.20)
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D6L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k), q

(i)
(3,k−1), q

(i)
(3,k), q

(i)
(4,k−1), q

(i)
(4,k))+

D5L
d(q

(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1), q

(i)
(3,k), q

(i)
(3,k+1), q

(i)
(4,k), q

(i)
(4,k+1))− f

(i)
(fr,k) = 0, (k = 1, . . . , N − 2)

(3.21)

D8L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k), q

(i)
(3,k−1), q

(i)
(3,k), q

(i)
(4,k−1), q

(i)
(4,k))+

D7L
d(q

(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1), q

(i)
(3,k), q

(i)
(3,k+1), q

(i)
(4,k), q

(i)
(4,k+1))− f

(i)
(N,k) = 0, (k = 1, . . . , N − 2)

(3.22)

The boundary conditions are given by the following equations:

D2L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D1L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− τ

(i)
(1,1) = 0 (3.23)

D4L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D3L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− τ

(i)
(2,1) = 0 (3.24)

D6L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D5L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− f

(i)
(fr,1) = 0 (3.25)

D8L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D7L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− f

(i)
(N,1) = 0 (3.26)

The following terminal conditions, despite the fact that they are valid during the Heel Strike

Phase, are given here for simplicity. Some undefined terms in the following equations (e.g.

f
(i)
HSx,N , f

(i)
HSy,N) will be clarified later in the Chapter 3.5.
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−D2L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D1L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− τ

(i)
(1,N) = 0 (3.27)

−D4L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D3L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− τ

(i)
(2,N) = 0 (3.28)

−D6L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D5L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− f

(i)
HSx,N = 0 (3.29)

−D8L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D7L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− f

(i)
HSy,N = 0 (3.30)

The set of equations (3.19-3.22), can be rewritten as:

M(q
(i)
k )·(

q
(i)
k+1 − 2q

(i)
k + q

(i)
k−1

(h(i))2
)+C(q

(i)
k ,

q
(i)
k+1 − q

(i)
k

h(i)
)·(
q
(i)
k+1 − q

(i)
k

h(i)
)+G(q

(i)
k , θi) = Ba(q

(i)
k )



τ
(i)
(1,k)

τ
(i)
(2,k)

F
(i)
(PO,x)

F
(i)
(PO,y)


+STconf

(i)
(con,k)

⇔

M(q
(i)
k )·(

q
(i)
k+1 − 2q

(i)
k + q

(i)
k−1

(h(i))2
)+C(q

(i)
k ,

q
(i)
k+1 − q

(i)
k

h(i)
)·(
q
(i)
k+1 − q

(i)
k

h(i)
)+G(q

(i)
k , θi) =



τ
(i)
(1,k)

τ
(i)
(2,k)

0

0


+



0

0

f
(i)
(fr,k)

f
(i)
(N,k)


(3.31)
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where f
(i)
(con,k) =

f (i)
(fr,k)

f
(i)
(N,k)

 =

f (i)
fr (q

(i)
k , q̇k

(i))

f
(i)
N (q

(i)
k , q̇k

(i))

, k = 1, ..., N − 2,

M(q
(i)
k ) =



p12 + I1 −p13cos(q(i)(1,k)) −p16cos(q
(i)
(1,k)) −p16sin(q

(i)
(1,k))

−p13cos(q(i)(1,k)) p14 + I2 p15cos(q
(i)
(2,k)) p15sin(q

(i)
(2,k))

−p16cos(q(i)(1,k)) p15cos(q
(i)
(2,k)) p17 0

−p16sin(q
(i)
(1,k)) p15sin(q

(i)
(2,k)) 0 p17


, k = 1, ..., N − 2

(3.32)

C(:, 1) =



p13sin(q
(i)
(1,k) − q

(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
) + p16(sin(q

(i)
(1,k))(

q
(i)
(3,k+1)

−q(i)
(3,k)

h(i)
)− cos(q(i)(1,k)))(

q
(i)
(4,k+1)

−q(i)
(4,k)

h(i)
)

p13sin(q
(i)
(1,k) − q

(i)
(2,k))((

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)− (

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
))

p16sin(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

−p16cos(q(i)(1,k))(
q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)



C(:, 2) =



p13sin(q
(i)
(1,k) − q

(i)
(2,k))((

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)− (

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
))

p13sin(q
(i)
(1,k) − q

(i)
(2,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)− p15sin(q

(i)
(2,k))(

q
(i)
(3,k+1)

−q(i)
(3,k)

h(i)
) + p15cos(q

(i)
(2,k))(

q
(i)
(4,k+1)

−q(i)
(4,k)

h(i)
)

−p15sin(q
(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

p15cos(q
(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)



C(:, 3) =



p16sin(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

−p15sin(q
(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

0

0


, k = 1, ..., N − 2
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C(:, 4) =



−p16cos(q(i)(1,k))(
q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

p15cos(q
(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

0

0


(3.33)

G(q(i), θi) =



−gM(asin(q
(i)
(1,k)) + bsin(q

(i)
(1,k)))− agm1sin(q

(i)
(1,k))− glm2sin(q

(i)
(1,k))

bgm2sin(q
(i)
(2,k))

0

gm1 + gm2 + gM


, k = 1, ..., N − 2

(3.34)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, p12 = Ml2+m1a
2+m2l

2,p13 = m2bl, p14 = m2b
2, p15 = m2b, p16 = Ml+m1a+m2l,

p17 = m1 +m2 +M .

Hence, the discretized swing phase of the 4-DOF biped robot is described by the set of equations

(3.19-3.26).

3.4 Modeling of Constraint Forces at Stance Foot

3.4.1 Constraint Forces at Stance Foot during the Swing Phase

(Leg1 = Stance, Leg2 = Swing)

As we have mentioned in the current and previous chapters, the complete biped robot has

four degrees of freedom. The two of them (q
(i)
3 and q

(i)
4 ), refer to the generalized Cartesian

coordinates of the stance foot. The constraint force at the stance foot is developed to hold

the position of the stance foot constant, for the physical constraints of walking to be met; no

slippage between the stance foot and the ground which is constrained by the forward force that

is parallel to the ground, and the stance foot is above the ground surface which is constrained
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by the upward force that is vertical to the ground. The constrained condition at the stance

foot is:

Scon · (q̇(i), q̈(i)) = 0 (3.35)

where Scon =

0 0 1 0

0 0 0 1

is the constraint force selection matrix and the vectors q̇(i), q̈(i) are

the 4x1 vectors of the generalized coordinates.

Using the general equations of motion for the swing phase of the complete biped robot:

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θ) = Ba(q
(i))u(i) + STconf

(i)
con(q(i), q̇(i)) (3.36)

and Equation (3.35), we get the following relation:

Sconq̈
(i) = −SconM(q(i))−1(C(q(i), q̇(i))q̇(i) +G(q(i), θ)− STconf (i)

con(q(i), q̇(i))−Ba(q
(i))u(i)) = 0

(3.37)

Hence, the constraint force at the stance foot at the i− th walking step (depending of course,

which leg is the stance leg at each walking step) f
(i)
con(q(i), q̇(i)) =

f (i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))

, where

f
(i)
fr (q(i), q̇(i)) is the friction force and f

(i)
N (q(i), q̇(i)) is the normal force, is obtained by the fol-

lowing relation:

f (i)
con(q(i), q̇(i)) = (SconM(q(i))−1STcon)−1SconM(q(i))−1(C(q(i), q̇(i))q̇(i) +G(q(i), θ)−Ba(q

(i))u(i))

(3.38)

For the case where the Leg 1 is the Stance Leg and the Leg 2 is the Swing Leg, using the related

equations of motion for the Swing Phase, the constraint force at stance foot becomes:

f (i)
con(q(i), q̇(i)) =

 p16sin(q
(i)
1 )(

˙
q
(i)
1 )2 − p15sin(q

(i)
2 )(

˙
q
(i)
2 )2

−p16cos(q(i)1 )(
˙
q
(i)
1 )2 + p15cos(q

(i)
2 )(

˙
q
(i)
2 )2 + p17g

 (3.39)

By proceeding with the initial discretization and applying the Direct Collocation Conditions
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(as we extensively analyzed in Chapter 2), the relation above becomes:

f
(i)
(con,appr)(tck) = p16sin(q

(i)
(1,appr)(tck))( ˙q(1,appr)

(i)(tck))
2 − p15sin(q

(i)
(2,appr)(tck))( ˙q(2,appr)

(i)(tck))
2

−p16cos(q(i)(1,appr)(tck))( ˙q(1,appr)
(i)(tck))

2 + p15cos(q
(i)
(2,appr)(tck))( ˙q(2,appr)

(i)(tck))
2 + p17g

 (3.40)

and using the Discrete Mechanics Approach, it becomes:

f
(i)
(con,k) =

 p16sin(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h
)2 − p15sin(q

(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h
)2

−p16cos(q(i)(1,k))(
q
(i)
(1,k+1)

−q(i)
(1,k)

h
)2 + p15cos(q

(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h
)2 + p17g

 (3.41)

3.4.2 Constraint Forces at Stance Foot during the Push-Off Phase

(Leg1 = Stance, Leg2 = Swing)

Following the abovementioned method for the derivation of the Constraint Forces at the Stance

Foot for the Swing Phase, using the general general equations of motion for the Instantaneous

Push-Off Phase of the complete biped (we will analyze the Push-Off Phase later in the current

Chapter):

M(q(i,PO−)) ¨q(i,PO−) + C(q(i,PO−), ˙q(i,PO−)) ˙q(i,PO−) +G(q(i,PO−), θ) = BPO(q(i,PO−))u(i,PO−)+

STconf
(i,PO−)
con (q(i,PO−), q̇(i,PO−)) (3.42)

where PO− refers to the start of the time interval of the phase, BPO(q(i,PO−)) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


is the applied forces selection matrix of the Push-Off Phase (the reasons for the values of the

matrix will be expleained later in the current chapter, when we we will develop the Push-Off

Phase) and equation (3.35), we get the following equations:
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Sconq̈
(i,PO−) = −SconM(q(i,PO−))−1(C(q(i,PO−), q̇(i,PO−))q̇(i,PO−) +G(q(i,PO−), θ)−

STconf
(i,PO−)
con (q(i,PO−), q̇(i,PO−))−BPO(q(i,PO−))u(i,PO−)) = 0 (3.43)

⇔

f (i,PO−)
con (q(i,PO−), q̇(i,PO−)) = (SconM(q(i,PO−))−1STcon)−1SconM(q(i,PO−))−1(C(q(i,PO−), q̇(i,PO−))q̇(i,PO−)+

G(q(i,PO−), θ)−BPO(q(i,PO−))u(i,PO−)) (3.44)

For the case where the Leg 1 is the Stance Leg and the Leg 2 is the Swing Leg, using the

associated equations of motion for the Swing Phase, the constraint force at stance foot becomes:

f (i,PO−)
con (q(i,PO−), q̇(i,PO−)) =

 p16sin(q
(i,PO−)
1 )(

˙
q
(i,PO−)
1 )2 − p15sin(q

(i,PO−)
2 )(

˙
q
(i,PO−)
2 )2 − F (i,PO−)

(PO,x)

−p16cos(q(i,PO−)1 )(
˙

q
(i,PO−)
1 )2 + p15cos(q

(i,PO−)
2 )(

˙
q
(i,PO−)
2 )2 + p17g − F (i,PO−)

(PO,y)


(3.45)

By proceeding with the initial discretization and applying the Direct Collocation Conditions

(as we extensively analyzed in Chapter 2), the relation above becomes:

f
(i)
(con,appr)(tN−1) =

p16sin(q
(i)
(1,appr)(tN−1))( ˙q(1,appr)

(i)(tN−1))
2 − p15sin(q

(i)
(2,appr)(tN−1))( ˙q(2,appr)

(i)(tN−1))
2−

F
(i)
(PO,x,appr)(tN−1)

−p16cos(q(i)(1,appr)(tN−1))( ˙q(1,appr)
(i)(tN−1))

2 + p15cos(q
(i)
(2,appr)(tN−1))( ˙q(2,appr)

(i)(tN−1))
2 + p17g−

F
(i)
(PO,y,appr)(tN−1)


(3.46)

and using the Discrete Mechanics Approach, it becomes:

f
(i)
(con,k) =

 p16sin(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h
)2 − p15sin(q

(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h
)2 − F (i)

PO,x,N−1

−p16cos(q(i)(1,k))(
q
(i)
(1,k+1)

−q(i)
(1,k)

h
)2 + p15cos(q

(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h
)2 + p17g − F (i)

PO,y,N−1


(3.47)
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3.5 The Impact Phase Redefined: Derivation of the Heel

Strike and Push-Off Phases of Walking

In the case of a stiff-legged robot on a surface, the notion of the impact point of the swing leg

with the walking surface would appear to be physically ambiguous, since, without a knee, and

with equal length legs, the swing leg must scuff along the ground if it remains in the sagittal

plane. McGeer has shown with his ballistic walkers, both theoretically and experimentally, that

one can basically ignore the leg clearance issue for stiff-legged models. He has done this in two

ways: in one realization, he puts additional small motors on the legs that allow him to push the

swing leg just slightly out of the sagittal plane during the swing phase and to pull the leg back

into the sagittal plane whenever he wishes to initiate contact. The second way he has done this

is to put small (essentially massless) flaps on the ends of the legs, and to fold up the flap of the

swing leg during the swing phase, and to unfold it whenever he wants to initiate contact.

Based on the first abovementioned method of McGeer, we will deal with the scuffing of the

swing leg with the use of a linear actuator, for the stance feet. We must not forget that at each

walking step, either Leg 1 or Leg 2 is the swing leg, while the other one plays the role of the

stance leg. In addition, we will extend the utility of the linear actuator by using them at the

Push-Off Phase, which will be derived and analyzed later.

Regarding the configuration of the generalized coordinates q
(i)
1 , q

(i)
2 of the legs at impact, the

Impact Surface conditions that were derived in Chapter 2 must hold. The impact between the

swing leg and the ground is modeled as a contact between two rigid bodies. As we have seen in

Chapter 2, the Impact Phase is used to obtain an expression for the velocity of the generalized

coordinates after the impact of the swing leg with the walking surface in terms of the velocity

and position before the impact.

In this thesis, the motion of the biped robot is analyzed for the case that the impact of the

swing leg with the ground results in no rebound and no slipping of the swing leg, and the stance

leg naturally lifting from the ground without interaction. The contact model requires of course

the full four degrees of freedom of the robot.
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The Impact Phase of the complete biped robot consists of two Subphases: the Heel Strike and

Push-Off Phases. The Heel Strike Phase describes the actual collision of the swing leg with

the walking surface. The Push-Off Phase takes place just before the Heel Strike, in order to

balance the new stance leg after the collision by providing the required energy to the system,

while solving the swing leg scuffing with an impulsive axial force at the old stance foot just

before the ground collision.

3.5.1 The Heel Strike Phase of Walking (Leg1 = Stance, Leg2 =

Swing)

In Chapter 2, computing the impact map by conservation of angular momentum results in a

compact mapping that only contains information about the updated velocities q̇+ ( ˙q(x,1)
(i+1), x =

{1, 2}, i = 1, · · · , H) Another quantity of interest is the initial forces that occur at the end of

the swing leg as a result of the impact, since the assumption that the biped does not slide or

trespass the ground just after the collision is dependent on these forces. It might therefore be

of interest to calculate the magnitude and direction of these initial forces to ensure that the

assumption holds.

The Heel Strike Phase is described by the following equations of motion:

M(q(i,−)) ¨q(i,−) + C(q(i,−), ˙q(i,−)) ˙q(i,−) +G(q(i,−), θ) = BHS(q(i))



τ
(i,−)
1

τ
(i,−)
2

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STHSf

(i)
HS (3.48)

⇔

M(q(i,−)) ¨q(i,−) + C(q(i,−), ˙q(i,−)) ˙q(i,−) +G(q(i,−), θ) =



τ
(i,−)
1

τ
(i,−)
2

0

0


+



0

0

f
(i)
HSx

f
(i)
HSy


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where BHS(q(i)) =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


is the applied forces selection matrix for the Heel Strike Phase

(here, as in the Swing Phase, only the hip torques can be controlled), SHS =

0 0 1 0

0 0 0 1

 is

the Heel Strike Forces Selection Matrix, f
(i)
HS =

f(HSx)
f(HSy)

 is the vector of the axial components

of the Heel Strike (Impact) Forces affecting the swing foot during the collision with the ground,

the matrices M, C, G are taken from the relations (3.9 - 3.11) and - denotes the pre-impact

time instant.

The initial discretization of (3.48) leads to the following discretized equations of motion:

M(q
(i)
N )

¨
q
(i)
N + C(q

(i)
N ,

˙
q
(i)
N )

˙
q
(i)
N +G(q

(i)
N , θ) = BHS(q

(i)
k )



τ
(i)
(1,N)

τ
(i)
(2,N)

F
(i)
(PO,x,N)

F
(i)
(PO,y,N)


+ STHSf

(i)
HS,N (3.49)

⇔

M(q
(i)
N )

¨
q
(i)
N + C(q

(i)
N ,

˙
q
(i)
N )

˙
q
(i)
N +G(q

(i)
N , θ) =



τ
(i)
(1,N)

τ
(i)
(2,N)

0

0


+



0

0

f
(i)
(HSx,N)

f
(i)
(HSy,N)


,

where the Nth time step of the ith walking step is the pre-impact time instant (and the 1st

time step of the i+1th walking step is the post-impact time instant). The state space equations

(derived from relation (3.49)), with the applied Direct Collocation Conditions are:

 ˙x(1,appr)
(i)(tN)

˙x(2,appr)
(i)(tN)

 =
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 x
(i)
(2,appr)(tN)

−M−1(x
(i)
(1,appr)(tN))(C(x

(i)
(1,appr)(tN), x

(i)
(2,appr)(tN))x

(i)
(2,appr)(tN) +G(x

(i)
(1,appr)(tN)) + STHSf

(i)
(HS,appr)(tN))


+

 04×4

M−1(x
(i)
(1,appr)(tN))BHS(q

(i)
k )

u(i)appr(tN) (3.50)

and the Equations of Motion for use with Discrete Mechanics Theory are:

M(q
(i)
N )·(

q
(i+1)
1 − 2q

(i)
N + q

(i)
N−1

h2
)+C(q

(i)
N ,

q
(i+1)
1 − q(i)N

h
)·(q

(i+1)
1 − q(i)N

h
)+G(q

(i)
N , θ) = BHS(q

(i)
k )



τ
(i)
(1,N)

τ
(i)
(2,N)

F
(i)
(PO,x,N)

F
(i)
(PO,y,N)


+ STHSf

(i)
HS,N (3.51)

⇔

M(q
(i)
N )·(

q
(i+1)
1 − 2q

(i)
N + q

(i)
N−1

h2
)+C(q

(i)
N ,

q
(i+1)
1 − q(i)N

h
)·(q

(i+1)
1 − q(i)N

h
)+G(q

(i)
N , θ) =



τ
(i)
(1,N)

τ
(i)
(2,N)

0

0


+



0

0

f
(i)
(HSx,N)

f
(i)
(HSy,N)


where the first and second derivatives of the generalized coordinates are approximated by the

finite difference relations.

We remind that q(i) = (q
(i)
1 , q

(i)
2 , q

(i)
3 , q

(i)
4 ) is the set of generalized coordinates and

f (i)
(HSx)

f
(i)
(HSy)

 =

f
(i)
(HS) represents the external forces acting on the robot at the impact point (at the generalized

Cartesian Coordinates q
(i)
3 , q

(i)
4 ). The basic premises are that:

• The impact takes place over an infinitesimally small period of time,

• The external forces during the impact can be represented by impulses,

• Impulsive forces may result in an instantaneous change in the velocities of the generalized

coordinates, but the positions remain continuous, and
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• The torques supplied by the rotational actuators are not impulsional.

With these assumptions, the abovementioned equations of motion express an instantaneous

impulse equal to the variation in the momentum of the model. In other words, we calculate the

instantaneous angular velocity just after heel strike by an equivalent impulse method which is

an easier and more accurate way for solving the discrete process in the robot dynamic systems

than the angular momentum conservation method.

The intuition behind the impulse method is the following. The swing foot contacts with the

ground with a certain linear velocity. After the since no bouce is assumed, the swing leg switches

to be the stance leg, and the velocity of the new stance foot is zero. Before the heel strike, the

two legs switch their roles. The new stance foot which is the old swing leg with linear velocity

will contact with the ground. And the new swing leg will leave the ground. The collision

between the new stance foot and the ground is equivalent to that an instantaneous impulse

force pushes the leg along the leg axis. The velocity of the new stance foot will instantaneously

decrease from a certain value to zero after the collision.

M(q(i,+))q̇(i,+) −M(q(i,−))q̇(i,−) = F
(i)
HS

⇔

M(q(i,+))q̇(i,+) −M(q(i,−))q̇(i,−) =



0

0

F
(i)
(HSx)

F
(i)
(HSy)


(3.52)

Proceeding with initial discretization and applying the Direct Collocation Conditions:

M(q
(i+1)
(x,appr)(t1)) ˙q(x,appr)

(i+1)(t1)−M(q
(i)
(x,appr)(tN)) ˙q(x,appr)

(i)(tN) =



0

0

F
(i)
(HSx,appr)

F
(i)
(HSy,appr)


(3.53)
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and with the Discrete Mechanics Approach:

M(q
(i+1)
(x,1) )

q
(i+1)
(x,1) − q

(i)
(x,N)

h(i)
−M(q

(i)
(x,N))

q
(i)
(x,N) − q

(i)
(x,N−1)

h(i)
=



0

0

F
(i)
(HSx)

F
(i)
(HSy)


(3.54)

where F
(i)
HS =

∫ t(i+1)
1

t
(i)
N

f
(i)
HS dt ≈ h(i)

3
(f

(i)
(HS,N) + f

(i+1)
(HS,1)) is the result of the integration of the

contact impulse over the heel strike duration (where we have also approximated the definite

integral with the Simpson’s Rule), - is the pre-impact time instant, + the post-impact time

instant, and in the relation (3.54) we applied the backward difference method for the first

derivatives ˙q(x,1)
(i+1), ˙q(x,N)

(i), x ∈ (1, ..., 4) respectively (relations 8.96-8.98). The forward

difference method has the same truncation error with the backward difference method (O(h(i))).

In addition, the sampling time of the i+ 1th walking step h(i+1) may not be known by default

from the start of the walking process or from the previous walking step i. The use of the

forward difference method leads to the addition of the generalized variables q([1,...,4]) at the time

step 2 of the i + 1th walking step, which may make the gait generation problem too difficult

to solve for all the variables of the biped. For all the abovementioned reasons, the backward

difference method is used, which solves these issues.

Furthermore, the Nth time step of the ith waking step is the pre-impact time instant, and the

1st time step of the i + 1 walking step is the post-impact one. Thus, q̇(i,−) = ˙q(x,N)
(i) refer to

the angular velocities just before the impact and q̇(i,+) = ˙q(x,1)
(i+1) refer to the angular veloities

just after the impact. The duration of the impact is h(i). Since the positions of the legs do not

change during the impact, q([1,2],+) = q([1,2],−) ⇔ q
(i+1)
(1,1) = q

(i)
(1,N) and q

(i+1)
(2,1) = q

(i)
(2,N) .

In order to be able to solve for all the unknowns, the linear system (3.52) must be augmented

with additional equations that proscribe what happens at the two contact ends. It is assumed

that the stance leg detaches from the ground without interaction after the collision, and thus

F(HS) need only to consider the external forces at the end of the swing leg. This point (in other

words, the cartesian coordinates of the new stance foot) has the Cartesian Coordinates:



68 Chapter 3. Second Phase of the Gait Generation Module

For the Discrete Mechanics Approach:

Y =

q(i)(3,N) + lsin(q
(i)
(1,N)) + lsin(q

(i)
(2,N))

q
(i)
(4,N) + lcos(q

(i)
(1,N))− lcos(q

(i)
(2,N))

 =

q(i+1)
(3,1)

q
(i+1)
(4,1)

 (3.55)

and for the Direct Collocation Method:

Y =

q(i)(3,appr)(tN) + lsin(q
(i)
(1,appr)(tN)) + lsin(q

(i)
(2,appr(tN))

q
(i)
(4,appr)(tN) + lcos(q

(i)
(1,appr)(tN))− lcos(q(i)(2,appr)(tN))

 =

q(i+1)
(3,appr)(t1)

q
(i+1)
(4,appr)(t1)

 (3.56)

measured in a global frame with the same orientation as the q
(i)
3 , q

(i)
4 frame. The external

forces F
(i)
(HS) affecting the end of the swing leg can then be described in terms of the horizontal

ffr (friction force) and vertical fN (normal force) components of the impact force fimp which

are the constraint forces at the swing leg (the new stance foot) for the first time step of the

next walking step (if the current walking step has index i, then we notate the next walking step

with index i+ 1) :

F
(i)
(HS) =

F (i)
(HSx)

F
(i)
(HSy)

 = ETf
(i+1)
imp = ET

f (i+1)
(fr,1)

f
(i+1)
(N,1)

 (3.57)

where E = ∂Y

∂q
(i)
(x,N)

=

 lcos(q
(i)
(1,N)) lcos(q

(i)
(2,N)) 1 0

−lsin(q
(i)
(1,N)) lsin(q

(i)
(2,N)) 0 1

 for the Discrete Mechanics Approach

and E = ∂Y

∂q
(i)
(x,appr)

(tN )
=

 lcos(q
(i)
(1,appr)(tN)) lcos(q

(i)
(2,appr)(tN)) 1 0

−lsin(q
(i)
(1,appr)(tN)) lsin(q

(i)
(2,appr)(tN)) 0 1

 for the Direct Colloca-

tion Method.

The stance leg is assumed to act as a pivot before impact, and the generalized coordinates

q
(i)
3 , q

(i)
4 are being affected by the Push-off impulse (the Push-Off Phase will be analyzed

extensively at the next subchapter) at the time step N − 1 of the ith walking step, meaning

that at the post-Push-Off time instant N , ˙q(3,N)
(i), ˙q(4,N)

(i) 6= 0. Right after impact, the former

swing leg becomes the new stance leg, and assuming no slipping or rebounding of this new

pivot we have the relation:
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For the Direct Collocation method:

dY

dt
=

∂Y

∂q
(i)
(x,appr)(tN)

˙q(x,appr)
(i+1)(t1) = E ˙q(x,appr)

(i+1)(t1) = 0 (3.58)

and for the Discrete Mechanics:

dY

dt
=

∂Y

∂q
(i)
(x,N)

q
(i+1)
(x,1) − q

(i)
(x,N)

h(i)
= E

q
(i+1)
(x,1) − q

(i)
(x,N)

h(i)
= 0 (3.59)

where in the relation (3.59) we applied the backward difference method for the first derivative

˙q(x,1)
(i+1), x ∈ (1, ..., 4) (relations 8.96-8.98), for the reasons mentioned above.

For the Direct Collocation Method, the combination of equations (3.53),(3.57),(3.58) results in

a system linear in ˙q(x,appr)
(i+1)(t1), with six equations and six unknowns which can be stated as:

M −ET

E 02×2


 ˙q(x,appr)

(i+1)(t1)

f
(i+1)
(imp,appr)

 =

M ˙q(x,appr)
(i)(tN)

02×1

 (3.60)

It is verified that an unique solution of the system always exist, and can be written:

 ˙q(x,appr)
(i+1)(t1)

f
(i+1)
(imp,appr)

 =

M −ET

E 02×2


−1 M ˙q(x,appr)

(i)(tN)

02×1

 (3.61)

For the Discrete Mechanics Method, the combination of equations (3.54),(3.57),(3.59) results

in the linear system below:

M −ET

E 02×2


 q

(i+1)
(x,1)

−q(i)
(x,N)

h(i)

f
(i+1)
(imp)

 =

M q
(i)
(x,N)

−q(i)
(x,N−1)

h(i)

02×1

 (3.62)

It is verified that an unique solution of the system always exist, and can be written:

 q
(i+1)
(x,1)

−q(i)
(x,N)

h(i)

f
(i+1)
(imp)

 =

M −ET

E 02×2


−1 M q

(i)
(x,N)

−q(i)
(x,N−1)

h(i)

02×1

 (3.63)
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3.5.2 The Push-Off Phase of Walking (Leg 1 = Stance, Leg 2 =

Swing)

The Push-Off Phase takes place just before the Heel Strike, in order to balance the new stance

leg after the collision by providing the required energy to the system, while solving the swing

leg scuffing with an impulsive axial force at the old stance foot just before the ground collision.

Since we consider walking on a terrain, the impact losses during walking will monotonously

reduce the energy of the walker until it falls over. So, additional energy input is required. We

include this by allowing the stance leg to instantaneously push off just before the impact of the

swing leg. This idea is an approximation of the push-off actions of humans, who can flex their

stance foot just before impact of the swing foot, thus adding mechanical energy to the walking

cycle.

The Push-Off Phase is described by the following equations of motion :

M(q(i,PO−)) ¨q(i,PO−)+C(q(i,PO−), ˙q(i,PO−)) ˙q(i,PO−)+G(q(i,PO−), θ) = BPO(q(i))



τ
(i,PO−)
1

τ
(i,PO−)
2

F
(i)
(PO,x)

F
(i)
(PO,y)


+STconf

(i,PO−)
(con)

(3.64)

⇔

M(q(i,PO−)) ¨q(i,PO−)+C(q(i,PO−), ˙q(i,PO−)) ˙q(i,PO−)+G(q(i,PO−), θ) =



τ
(i,PO−)
1

τ
(i,PO−)
2

F
(i)
(PO,x)

F
(i)
(PO,y)


+STconf

(i,PO−)
(con)
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whereBPO(q(i)) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


is the applied forces selection matrix for the Push-Off Phase(here,

the two rotational joint torques τ
(i)
1 , τ

(i)
2 and the axial components of the intantaneous push-off

impulse F
(i)
(PO,x), F

(i)
(PO,y) are being used), the axial components of the push-off impulse on x

and y are F
(i)
PO,x = −sin(q

(i,PO+)
1 )F

(i)
PO and F

(i)
(PO,y) = cos(q

(i,PO+)
1 )F

(i)
PO respectively, F

(i)
PO is the

push-off impulse, and the matrices M, C, G are taken from the relations (3.9 - 3.11) and PO-

denotes the pre-push-off time instant. In addition, STconf
(i)
(con,PO) is the constraint force at the

stance foot at the Push-Off Phase.

Proceeding with the initial discretization of (3.94) gives the following equations of motion:

M(q
(i)
N−1)

¨
q
(i)
N−1 + C(q

(i)
N−1,

˙
q
(i)
N−1)

˙
q
(i)
N−1 +G(q

(i)
N−1, θ) = B

(i)
PO



τ
(i)
(1,N−1)

τ
(i)
(2,N−1)

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
(con,N−1) (3.65)

⇔

M(q
(i)
N−1)

¨
q
(i)
N−1 + C(q

(i)
N−1,

˙
q
(i)
N−1)

˙
q
(i)
N−1 +G(q

(i)
N−1, θ) =



τ
(i)
(1,N−1)

τ
(i)
(2,N−1)

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
(con,N−1)

The state space equations (derived from relation (3.95)), with the applied Direct Collocation

Conditions are:

 ˙x(1,ap)
(i)(tN−1)

˙x(2,ap)
(i)(tN−1)

 =

 x
(i)
(2,ap)(tN−1)

−M−1(x
(i)
(1,ap)(tN−1))(C(x

(i)
(1,ap)(tN−1), x

(i)
(2,ap)(tN−1))x

(i)
(2,ap)(tN−1) +G(x

(i)
(1,ap)(tN−1)) + STconf

(i)
(con,ap)(tN−1))


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+

 04×4

M−1(x
(i)
(1,ap)(tN−1))BPO(q(i))

 (u(i)ap(tN−1) (3.66)

where the N − 1th time step of the ith walking step is the pre-push-off time instant, the Nth

time step of the ith walking step is the post-push-off time instant, and the Equations of Motion

for use with Discrete Mechanics Theory are:

M(q
(i)
N−1)·(

q
(i)
N − 2q

(i)
N−1 + q

(i)
N−2

h2
)+C(q

(i)
N−1,

q
(i)
N − q

(i)
N−1

h
)·(
q
(i)
N − q

(i)
N−1

h
)+G(q

(i)
N−1, θ) = BPO(q(i))



τ
(i)
(1,N−1)

τ
(i)
(2,N−1)

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
(con,N−1) (3.67)

⇔

M(q
(i)
N−1)·(

q
(i)
N − 2q

(i)
N−1 + q

(i)
N−2

h2
)+C(q

(i)
N−1,

q
(i)
N − q

(i)
N−1

h
)·(
q
(i)
N − q

(i)
N−1

h
)+G(q

(i)
N−1, θ) =



τ
(i)
(1,N−1)

τ
(i)
(2,N−1)

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
(con,N−1) (3.68)

where the first and second derivatives of the generalized coordinates are approximated by the

finite difference relations.

The push-off process is considered as that an instantaneous impulse at the stance foot push

the model along the stance leg axis. This amount of the impulse equals to the variation in the

momentum of the model:

For the Direct Collocation Method:

M(q
(i)
(x,appr)(tN)) ˙q(x,appr)

(i)(tN)−M(q
(i)
(x,appr)(tN−1)) ˙q(x,appr)

(i)(tN−1) = (J
(i)
(PO,appr))

TF
(i)
(PO,appr)

(3.69)
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and for Discrete Mechanics:

M(q
(i)
(x,N))

q
(i)
(x,N) − q

(i)
(x,N−1)

h(i)
−M(q

(i)
(x,N−1))

q
(i)
(x,N−1) − q

(i)
(x,N−2)

h(i)
= (J

(i)
PO)TF

(i)
PO (3.70)

where J
(i)
PO =



0

0

−sin(q
(i,PO+)
1 )

cos(q
(i,PO+)
1 )


. Therefore, the velocity just after the push-off is obtained by

the following relation: For the Direct Collocation Method:

˙q(x,appr)
(i)(tN) = (M(q

(i)
(x,appr)(tN)))−1(M(q

(i)
(x,appr)(tN−1)) ˙q(x,appr)

(i)(tN−1) + (J
(i)
(PO,appr))

TF
(i)
PO)

(3.71)

and for Discrete Mechanics:

q
(i)
(x,N) − q

(i)
(x,N−1)

h(i)
= (M(q

(i)
(x,N)))

−1(M(q
(i)
(x,N−1))

q
(i)
(x,N−1) − q

(i)
(x,N−2)

h(i)
+ (J

(i)
PO)TF

(i)
PO) (3.72)

3.5.3 The Cost Function for the Gait Generation Problem of the

Second Phase

The energy cost of transport (COT ) quantifies the energy efficiency of transporting an animal

or vehicle from one place to another. As a dimensionless quantity, it allows for the comparison

of dissimilar animals or modes of transportation. It has a wide range of applications, from

comparing human gaits to observing the change in efficiency of trains over time. It is calculated

in one of two ways below:

COT =
E

mgd
=

P

mgv
(3.73)

where E is the energy input to the system, which has mass m, that is used to move the system

a distance d, and g is standard gravity (9.81m/s2). Alternatively, one can use the power input

to the system P used to move the system at a constant velocity v. The cost of transport is

non-dimensional.
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It is also called specific tractive force or specific resistance, or the energy index. When the energy

comes from metabolic processes (i.e., for animals, humans), it is often called the metabolic cost

of transport. The metabolic cost of transport for human walking is about 0.1.

The Energy Cost of Transport is used as the objective function for finding the gait that min-

imizes the energy cost subject to several constraints. The energy cost of the ith walking step

E
(i)
w is given by:

E(i)
w = E

(i)
rotational actuation + E

(i)
linear actuation (3.74)

E
(i)
rotational actuation is the energy cost at all Gait Phases of the ith walking step (Swing Phase,

Push-Off Phase, Heel Strike Phase) due to the applied torques (affecting the generalized coor-

dinates q
(i)
1 , q

(i)
2 ) from the two rotational actuators at the hip of the biped.

E
(i)
linear actuation is the energy cost of the Push-Off Phase during the ith walking step, due to the

applied linear force along the stance foot (affecting the generalized coordinates q
(i)
3 , q

(i)
4 ).

These two energy cost components are described as follows:

E
(i)
rotational actuation =

∫ t
(i)
N

t
(i)
1

|P (i)
hip|dt (3.75)

E
(i)
linear actuation = E

(i)
push−off,+ − E

(i)
push−off,− (3.76)

where [t
(i)
1 , t

(i)
N ] is the time interval of the ith walking step, thus t

(i)
N − t

(i)
1 is the time duration

of the ith walking step, and P
(i)
hip = (q̇1

(i)τ
(i)
1 + q̇2

(i)τ
(i)
2 ) is the mechanical power of the hip joint

torques. E
(i)
push−off,+ and E

(i)
push−off,− are the mechanical energy due to the applied linear force

of the stance foot just after and before the Push-off Phase, respectively. Since the potential

energy is constant (because the linear force is applied to the stance foot which is in continuous

contact with the ground during the Push-off Phase), E
(i)
push−off can be expressed by the kinetic

energy difference between the moment just after and just before the Push-Off Phase. The

following relations are valid:
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For the Direct Collocation Method:

E
(i)
rotational actuation =

h(i)

3

N∑
k=1

[1, 2, 4] |P (i)
(hip, k)|=

h(i)

3

N∑
k=1

[1, 2, 4] |( ˙q(1,appr)
(i)(tk)τ

(i)
(1,appr)(tk)+

˙q(2,appr)
(i)(tk)τ

(i)
(2,appr)(tk))|

(3.77)

E
(i)
linear actuation = 1

2
mstance

∑4
n=3(( ˙q(n,appr)

(i)(tN))2 − ( ˙q(n,appr)
(i)(tN−1)

2)

and for Discrete Mechanics:

E
(i)
rotational actuation =

h(i)

3

N∑
k=1

[1, 2, 4] |P (i)
(hip, k)|=

h(i)

3

N∑
k=1

[1, 2, 4] |(
q
(i)
(1,k) − q

(i)
(1,k−1)

h(i)
τ
(i)
(1,k)+

q
(i)
(2,k) − q

(i)
(2,k−1)

h(i)
τ
(i)
(2,k))|

(3.78)

E
(i)
linear actuation = 1

2
mstance

∑4
i=3((

q
(i)
(i,N)

−q(i)
(i,N−1)

h(i)
)2 − (

q
(i)
(i,N−1)

−q(i)
(i,N−2)

h(i)
)2)

where we have used the Simpson’s rule for approximating the definite integral
∫ t(i)N

t
(i)
1

|P (i)
hip|dt. The

coefficients [1, 2, 4] refer to the fact that, due to the use of the Simpson’s Rule, all the function

evaluations at points k with odd subscripts are multiplied by 4 and all the function evaluations

at points k with even subscripts are multiplied by 2, except for the first and last ( in which the

coefficient 1 refers to).

As we can see, there exist some discontinuities in the abovemetioned equation of the Cost of

Transport (the term |P (i)
(hip,k)|), which contains a non-smooth positive-value function. Disconti-

nuities create difficulties for the numerical optimization procedure. To overcome this we use the

square root smoothing technique, which is the approximation |x|≈ (
√
x2 + ε2)/2 with a small

ε.

The COT for the ith walking step is defined as the total energy cost of the walking per distance
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traveled and per unit body weight, leading to the following expression of COT (i):

COT (i) = E
(i)
w

MtotalgconstDi

COT (i) =
E

(i)
rotational actuation+E

(i)
linear actuation

MtotalgconstDi

COT (i) = COT
(i)
rotational actuation + COT

(i)
linear actuation

(3.79)

where Mtotal = M + m1 + m2 is the total mass of the biped, Di is the step length of the ith

walking step, and gconst is the acceleration of gravity (9.81m/s2).

3.6 Derivation of the Gait Generation Problem for the

Second Phase

In the current subchapter, we will derive the Gait Generation Problem of the Second Phase

of D&CFC. The problem will be mathematically formulated as a finite-dimensional nonlinear

constrained optimal control problem. The aim of the Second Phase is the calculation of the

trajectory for the i− th walking step, i = 1, ..., H of the Complete 4-DOF Biped Robot, as we

have modeled extensively throughout Chapter 3.

We will now consider the following problem on the gait generation of the Second Phase for the

Complete 4-DOF Biped Robot:

For the Complete 4-DOF Biped Robot that was developed throughout the Chapter

3, and taking into account the constraint forces on the stance foot, calculate a

trajectory for the i− th walking step, i = 1, ..., H, that includes the control inputs

and state variables, such that the corresponding swing leg of the 4-DOF Biped

lands at the i− th reference grounding point of a general rough terrain with stable

and natural gait.

As we have mentioned on Chapter 1 & 2, we have implemented two variants of the proposed

control system, thus we will derive the optimal gait generation problem for each one of them.

In the following, (as we have done in the Gait Generation Problem of the First Phase), we

assume that the Leg 2 initially starts the walking process. In other words, during the odd
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walking steps, the Leg 1 is the stance leg and the Leg 2 is the swing leg, and during the even

walking steps the Leg 1 is the swing leg and the Leg 2 is the stance leg.

• Gait Generation Problem of the Second Phase utilizing Direct Collocation

The mathematical formulation of the Gait Generation problem of the Second Phase using Di-

rect Collocation Method is stated as follows:

For the odd walking steps:

minimize: COT (i) (3.79)

subject to:

• Swing Phase Model in State Space Form (3.16), (3.40), (1)

• Heel Strike Phase Model Equations (3.50), (3.61),(2)

• Push-Off Phase Model Equations (3.66), (3.71),(3.36)(3)

•q(i)(1,approx)(tN) = q
(i+1)
(1,approx)(t1) = sin−1(−Di

2l
)− θi, (4)

•q(i)(2,approx)(tN) = q
(i+1)
(2,approx)(t1) = sin−1(

Di

2l
)− θi, (5)

•cos(−q(i)(1,approx)(tk) + θi)− cos(q(i)(2,approx)(tk) + θi) > 0, k = 2, ..., N − 1, (6)

• Impact Surface Conditions (2.33), (7)

•sin(−q(i)(1,approx)(tk+1) + θi)
q
(i)
(1,approx)(tk+1)− q(i)(1,approx)(tk)

h(i)
−

sin(q
(i)
(2,approx)(tk) + θi)

q
(i)
(2,approx)(tk+1)− q(i)(2,approx)(tk)

h(i)
> 0, k = 1, ..., N − 1, (8)

•τmin ≤ τ
(i)
k ≤ τmax, k = 1, ..., N, (9)

• − π

2
≤ q

(i)
(1,k), q

(i)
(2,k) ≤ π, k = 1, ..., N, (10)

• − q̇max ≤ ˙q(1,k)
(i), ˙q(2,k)

(i) ≤ q̇max, k = 1, ..., N, (11)

•0 ≤ F
(i)
PO ≤ F

(i)
(PO,max), (12)

• Average linear walking speed Vi ⇔ Vi =
Di

Ti
⇔ Ti =

Di

Vi
⇔ (N − 1)h(i) =

Di

Vi

⇔ h(i) =
Di

Vi(N − 1)
, (13)

• with initial conditions: q
(i)
(1,1), q

(i)
(2,1), q

(i)
(3,1), q

(i)
(4,1), ˙q(1,1)

(i), ˙q(2,1)
(i), ˙q(3,1)

(i), ˙q(4,1)
(i)
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Based on the abovementioned (Direct Collocation-based/Forward Dynamics Based) optimiza-

tion problem:

1. We want to minimize the Cost of Transport of the i− th walking step, i = 1, ..., H.

2. Constraints (1),(2),(3) define the Swing Phase (in State Space Form), Heel Strike and

Push-off Phase equations of the 4-DOF Biped that were extensively developed throughout

Chapter 3. For the odd walking steps we have to take into account the appropriate

matrices and vectors for the Case 1: Leg 1 = Stance Leg, Leg 2 = Swing Leg. In

addition, for the even walking steps we have to take into account the appropriate matrices

and vectors for the Case 2: Leg 1 = Swing Leg, Leg 2 = Stance Leg.

3. Constraints (4) and (5) refer to the configuration of the two legs of the 4-DOF Biped

during the Heel Strike Phase (i.e. in the time interval [t
(i)
N , t

(i+1)
1 ]).

4. Constraint (6) refers to the fact that the Swing Leg must be above the Stance Leg and

not touch the ground surface for the duration of the Swing Phase. In other words, during

the Swing Phase, the vertical length of the swing leg is smaller than the one of the stance

leg.

5. Constraint (7) outline the configuration of the biped during the time step of the Heel

Strike Phase; the configuration of each leg remains the same for the small duration of the

impact of the swing leg with the ground.

6. Constraint (8) implies the height of the Swing Leg that is monotonously being decreased

at each time step of the Swing Phase.

7. Constraints (9) - (12) refer to the physical constraints of the rotational and linear

actuators.

8. Constraint (13) refers to the average linear walking speed of the swing leg, if it is

selected to be an active constraint. From the expression of the average linear walking

speed, we can calculate the duration of a time interval for the ith walking step, h(i),

otherwise a predefined value for the time interval is being used.
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9. As initial values of the optimization problems are considered the four generalized co-

ordinates and velocities of the two legs and the stance foot at the first time step of a

walking step.

For the even walking steps, we formulate a similar Gait Generation Problem.

• Gait Generation Problem of the Second Phase utilizing Discrete Mechanics

The mathematical formulation of the Gait Generation problem of the Second Phase using

Discrete Mechanics is stated as follows:

For the odd walking steps:

minimize: COT (i) (3.79)

subject to:

• Swing Phase Model (3.31), (3.41), (1)

• Boundary Conditions (3.23-3.30), (2)

• Heel Strike Phase Model Equations (3.51), (3.63),(3)

• Push-Off Phase Model Equations (3.68), (3.72), (3.47)(4)

•q(i)(1,N) = q
(i+1)
(1,1) = sin−1(−Di

2l
)− θi, (4)

•q(i)(2,N) = q
(i+1)
(2,1) = sin−1(

Di

2l
)− θi, (5)

•cos(−q(i)(1,k) + θi)− cos(q(i)(2,k) + θi) > 0, k = 2, ..., N − 1, (6)

• Impact Surface Conditions (2.32), (7)

•sin(−q(i)(1,k+1) + θi)
q
(i)
(1,k+1) − q

(i)
(1,k)

h(i)
− sin(q

(i)
(2,k) + θi)

q
(i)
(2,k+1) − q

(i)
(2,k)

h(i)
> 0, k = 1, ..., N − 1, (8)

•τmin ≤ τ
(i)
k ≤ τmax, k = 1, ..., N, (9)

• − π

2
≤ q

(i)
(1,k), q

(i)
(2,k) ≤ π, k = 1, ..., N, (10)

• − q̇max ≤ ˙q(1,k)
(i), ˙q(2,k)

(i) ≤ q̇max, k = 1, ..., N(11)

•0 ≤ F
(i)
PO ≤ F

(i)
(PO,max), (12)

• Average linear walking speed Vi ⇔ Vi =
Di

Ti
⇔ Ti =

Di

Vi
⇔ (N − 1)h(i) =

Di

Vi

⇔ h(i) =
Di

Vi(N − 1)
, (13)
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• with initial conditions: q
(i)
(1,1), q

(i)
(2,1), q

(i)
(3,1), q

(i)
(4,1), ˙q(1,1)

(i), ˙q(2,1)
(i), ˙q(3,1)

(i), ˙q(4,1)
(i)

In the abovementioned (Discrete Mechanics-Based/Inverse Dynamics-based) optimization prob-

lems, we have to use the equations of the Swing, Heel Strike and Push-Off Phases (not in the

State Space Forms) that were derived based on Discrete Mechanics and to take into account

the finite difference conditions related to the first and secomd derivative of the generalized

coordinates. In addition, we have to utilize the Boundary Conditions related to the initial and

terminal values of the generalized coordinates and velocities. The other constraints remain the

same as in the direct collocation-based optimization problems.

For the even walking steps, we derive a similar Gait Generation Problem.

3.7 Energy Efficient Trajectory Synthesis and Verifica-

tion

In the bibliography of bipedal robot locomotion, it is well known that a gait generation problem

with numerous hard motion constraints is very challenging to be solved, despite the major

advances in trajectory generation and optimization techniques. The calculated trajectories

are in most cases suboptimal, meaning that, although the resulted trajectory satisfies all the

required constraints, the value of the objective function is not the minimal possible. In addition,

the number of the discretization pointsN plays a crucial role in the optimization process, leading

to a lower value of the objective function as N increases, thus increasing the computational

effort. In the case of bipedal robot locomotion, we would ideally seek for a method that

achieves a trajectory with the lowest value of the cost function possible, while it satisfies all

the optimization constraints and with the lowest achievable discretization points which will

decrease the microcontroller’s computational effort in the case of implementation in real time.

Note that bipedal robots are autonomous systems with limited power resources, due to the use

of onboard baterries for functioning.
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In the current section we will develop one of the most important components of the proposed

system. We call it Energy Efficient Trajectory Synthesizer and Verificator. The aim of it

is to produce what is being called: a trajectory that satisfies all the physical and technical

constraints of the walking gait with the lowest energy consumption possible, approaching in

most cases the energy efficiency of human walking, which is considered the most energy efficient

method of locomotion. In other words, the term ”energy efficient” in our thesis implies that

we seek for trajectories that achieve the smallest possible value of the Cost of Transport, COT

for the ith walking step, while respecting the physical and technical constraints of a proper

walking gait. Thus, we are developing an additional novel method to achieve trajectories with

the least possible energy consumption, instead of just using the trajectories calculated by the

optimization algorithms.

The key for our novel method is the calculated trajectory of the ith walking step of the First

Phase. As we have mentioned and developed extensively in Chapter 3, the First Phase calculates

a trajectory for the 2-DOF Biped Robot (the Biped with only two DOF’s and without any

constraint forces taken into account). In the Second Phase, the values (q(i), q̇(i)) from the time

steps k = 1, ..., N − 1 of the ith walking step (in other words, the values of the generalized

coordinates q
(i)
k and generalized velocities q̇k

(i)) that were derived from the solution of the Gait

Generation Problem at the First Phase will be used as initial values for the solution (starting

from the related kth time step) of the Gait Generation Problem at the Second Phase. As

we have mentioned in previous chapters, a gait trajectory consists of N time steps, so this

method will calculate one complete trajectory (where we give as initial conditions the values

(q(i), q̇(i)) that describe the first time step (k = 1)) and N-2 sectional trajectories (where for the

calculation of each sub-trajectory we give as initial conditions the values (q(i), q̇(i)) that describe

the related time step (1 < k ≤ N − 1)), which form N-1 trajectories.

After the calculation of these N-1 trajectories, we are proceeding with the synthesis and veri-

fication of the final trajectory that will be followed by the complete 4-DOF biped robot. For

each time step k of the ith walking step, we select the entire set of values from one of the

resulted trajectories which has the lowest Point Cost of Transport (PCOT (i)). In Chapter 3.5

we have extensively derived the relation of the Cost of Transport for the ith walking step. The
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Point Cost of Transport for time step k of the ith walking step is defined as:

For Direct Collocation:

PCOT
(i)
k =


| ˙q(1,appr)

(i)(tk)τ
(i)
(1,appr)(tk) + ˙q(2,appr)

(i)(tk)τ
(i)
(2,appr)(tk)|, for k = 1, ..., N − 1,

|( ˙q(1,appr)
(i)(tN)τ

(i)
(1,appr)(tN) + ˙q(2,appr)

(i)(tN)τ
(i)
(2,appr)(tN))|+

1
2
mstance

∑4
n=3(( ˙q(n,appr)

(i)(tN))2 − ( ˙q(n,appr)
(i)(tN−1)

2), for k = N

For Discrete Mechanics:

PCOT
(i)
k =


= |(

q
(i)
(1,k)
−q(i)

(1,k−1)

h(i)
τ
(i)
(1,k) +

q
(i)
(2,k)
−q(i)

(2,k−1)

h(i)
τ
(i)
(2,k))|, for k = 1, ..., N − 1,

|(
q
(i)
(1,N)

−q(i)
(1,N−1)

h(i)
τ
(i)
(1,N) +

q
(i)
(2,N)

−q(i)
(2,N−1)

h(i)
τ
(i)
(2,N))|+

1
2
mstance

∑4
i=3((

q
(i)
(i,N)

−q(i)
(i,N−1)

h(i)
)2 − (

q
(i)
(i,N−1)

−q(i)
(i,N−2)

h(i)
)2), for k = N

Due to the fact that the generalized Coordinates q
(i)
3 , q

(i)
4 , are undefined at the First Phase (at the

start of the whole walking process we initialize them as follows: (q
(1)
(3,1), q

(1)
(4,1)) = (0, 0), ( ˙q(3,1)

(1), ˙q(4,1)
(1)) =

(0, 0)) , the related values of q
(i)
3 , q

(i)
4 from the first complete trajectory, as calculated at the

Second Phase of each walking step, will be used, where needed.

While the abovementioned trajectory synthesis method is being processed, a process called

trajectory verification is being executed. Trajectory verification ensures that the final, energy

optimal trajectory of the Second Phase has the qualitative behavior of a proper walking gait.

Qualitative behavior refers to the typical value relation of the generalized coordinates (q
(i)
1 , q

(i)
2 )

and velocities (q̇1
(i), q̇2

(i)) during the N time steps, between the current and the previous time

step of the ith walking step. As a ”reference trajectory” in terms of that proper walking gait,

the very first complete trajectory of the Second Phase is being used, where we give as initial

conditions the set of values (q(i), q̇(i)) of the first time step from the First Phase.

Trajectory Verification Method starts from the second time step of the abovementioned tra-

jectory synthesis. After the selection of a set of values from a specific complete or sectional

trajectory for the time step k of the ith walking step, trajectory verification method, based on
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the qualitative properties of the reference trajectory, checks the typical value relation of the

generalized coordinates q
(i)
1 , q

(i)
2 and angular velocities q̇1

(i), q̇2
(i) between the current and the

previous time step of the ith walking step. If the qualitative behavior is violated, then a set of

values from another trajectory with the next highest Point Cost of Transport for the same time

step is selected. If for a current time step all sets of values from all the available trajectories

are violating the qualitative behavior of the reference trajectory (in other words, if they are

violating the qualitave behavior of a proper walking gait), then trajectory synthesis method

steps back to the previous time step and selects a set of values from a different trajectory

with the next highest Point Cost of Transport than previously selected. Then we step ahead

to the next time step where we had the violations, and we let trajectory synthesizer to select

an appropriate set of values from a specific trajectory and the trajectory verifier to check the

eligibility of the selected variables.

Once the abovementioned procedure has been completed and a candidate energy optimal tra-

jectory has been formed, we calculate its COT as COT (i) =
∑N

k=1 PCOT
(i)
k

MtotalgDi
. Then, we turn all

the sectional trajectories to complete ones. Thus is done by adding the set of values from the

missing time steps from the previous trajectories. These newly created complete trajectories do

not need to be verifed for correctness, due to the fact that the majority of the newly added set

of values for the missing time steps (q(i), q̇(i)), are actually taken from the calculated trajectory

of the First Phase, thus there are proper trajectories indeed. Then we calculate their Cost

of Transport and compare our candidate energy optimal trajectory with all the N-1 complete

trajectories in terms of their value of the Cost of Transport. The trajectory with the lowest

possible Cost of Transport is selected as the final energy optimal trajectory.

Once the initial values for the first time step of the next walking step are specified, (they can

be chosen randomly from any trajectory), the stage is set for the First And Second Phases of

the Gait Generation Module for the next walking step, till all the predefined walking steps are

done. Then we proceed to the Trajectory Tracking Control Module.



Chapter 4

Trajectory Tracking Control Module

4.1 Introduction

The main complexity in trajectory tracking for bipedal robot locomotion is the degree of actu-

ation of the biped during the different gait phases. In the underactuated gait phases, the biped

regroups fewer control signals than configuration variables (in contract with the fully actuated

phases), so different control strategies should be implemented based on the degree of actuation

of a specific phase. Moreover, many of the existing controllers in literature require the complete

state measurements, that is position and velocity, is available for feedback. Unfortunately, in

practice this assumption can only partially be fulfilled, because the sensors for velocity mea-

surements are often contaminated with a considerable amount of noise. In addition, when

disturbances exist, this controller can only drive the system output to a neighborhood of the

desired trajectory. A solution of this problem is the design of nonlinear observers to estimate

the missing velocity signal and the disturbances for effective trajectory tracking control.

This chapter deals with the design of a control strategy to effectively track the desired tra-

jectory that was obtained in the Second Phase and must be followed by the biped, under the

assumption of missing velocity signals and disturbances (e.g. Coulomb and viscous actuator

friction).This control strategy combines a nonlinear velocity observer for the estimation of the

unmeasured velocity signals of the robot, a nonlinear disturbance observer for the estimation

84
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of disturbances, and a computed torque controller or partial feedback linearization controller,

based on the nature of actuation of the Gait Phase (e.g. the Gait Phase is either a fully actuated

or underactuated phase). Thereafter, these observers are integrated with the controller.

Regarding to the notation of all the parameters (e.g. states, angular coordinates/velocities/accelerations,

control inputs, constrained forces) in the discretized setting, assuming that a walking step con-

sists of N time steps, then when we see the mathematical representation x
(i)
(1,k) for instance, we

refer to the value of the variable x1 for t = N(i−1)h+(k−1)h sec. Thus, x
(i)
(1,k) = x1(t = N(i−

1)h+(k−1)h sec), x
(i)
k = x(t = N(i−1)h+(k−1)h sec), q

(i)
(1,k) = q1(t = N(i−1)h+(k−1)h sec),

q
(i)
(2,k) = q2(t = N(i − 1)h + (k − 1)h sec), u

(i)
k = u(t = N(i − 1)h + (k − 1)h sec) etc. The

abovemetioned notation is used throughout the current thesis.

In the current chapter, we will follow a specific control design procedure for the biped robot:

• Design of a nonlinear controller for the biped robot to achieve stability and performance spec-

ification for tracking with availability of the velocity signals and with absence of disturbances.

• Integration of a velocity and disturbance observer, by replacing the velocity in the control

law with its estimation from the velocity observer and the disturbance (which we add in the

equations of motion for all gait phases) with its estimation yielded by the disturbance observer

respectively.

4.1.1 Control of Fully Actuated and Underactuated Systems

According to Newton, the dynamics of mechanical systems are second order (F = mα). Their

state is given by a vector of positions, q, and a vector of velocities, q̇, and (possibly) time. The

general form for a second-order controllable dynamical system is:

q̈ = f(q, q̇, u, t),

where u is the control vector. As we will see, the forward dynamics for many of the robots that

we care about turn out to be affine in commanded torque, so let’s consider a slightly constrained
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form:

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u (4.1)

Definition (Fully-Actuated System). A control system described by equation (4.1) is fully-

actuated in configuration (q, q̇, t) if it is able to command an instantaneous acceleration in an

arbitrary direction in q:

rank[f2(q, q̇, t)] = dim[q] (4.2)

Definition (Underactuated System). A control system described by equation (4.1) is fully-

actuated in configuration (q, q̇, t) if it is not able to command an instantaneous acceleration in

an arbitrary direction in q:

rank[f2(q, q̇, t)] < dim[q] (4.3)

Notice that whether or not a control system is underactuated may depend on the state of the

system, although for most systems underactuation is a global property of the system.

In the case of our 4-DOF biped robot, based on the state space representations of the Gait

Phases that were derived in previous Chapters, and the abovementioned definitions of fully-

actuation and underactuation, the Swing and Heel Strike Phases are considered underactuated

phases and the Push-Off Phase is considered fully actuated phase.

Fully actuated systems are easier to control than underactuated systems. The key observation is

that, for fully-actuated systems with known dynamics (e.g. if f1 and f2 are known), it is possible

to use feedback to change a nonlinear control problem into a linear control problem. The field

of linear control theory is incredibly advanced, and there are many well-known solutions for

controlling linear systems.

For fully actuated systems, we are going to to use feedback linearization. When f2 is full row

rank, it is invertible. Consider the nonlinear feedback law:

u = π(q, q̇, t) = f−12 (q, q̇, t)[v − f1(q, q̇, t)],

where v is an additional control input. Applying this feedback controller to equation (4.1)
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results in the linear, decoupled, second-order system:

q̈ = v.

In other words, if f1 and f2 are known and f2 is invertible, then the system is feedback equivalent

to q̈ = v. In the next subchapter we will develop a special case of feedback linearization, called

computed torque control, which will be applied for the fully actuated phases (Push-Off Phase).

Underactuated systems are not feedback linearizable. An interesting property that holds for

the entire class of underactuated mechanical systems is the so-called collocated partial feed-

back linearization. Partial feedback linearization can lead to one of the two possible control

approaches for an underactuated system. Collocated linearization refers to a control that lin-

earizes the equations associated with the actuated degrees of freedom and it will be extensively

developed and used in the current thesis. Noncollocated linearization refers to linearizing the

passive (non-actuated) degrees of freedom and is possible under a special assumption on the

inertia matrix of the robot. It will not be used in the current thesis.

4.1.2 Introduction to Computed Torque Control

In this section, we consider the trajectory tracking control problem for biped robots: given a

desired trajectory, how should the joint torques be chosen so that the biped follows that trajec-

tory. We would like to choose a control strategy which is robust with respect to initial condition

errors, sensor noise, and modeling errors. We ignore the problems of actuator dynamics, and

assume that we can command arbitrary torques which are exerted at the joints (legs).

We are given a description of the dynamics of a general biped robot in the form of the equation

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (4.4)

where q ∈ Rn is the set of configuration variables for the robot and τ ∈ Rn denotes the torques

applied at the joints. We are also given a joint trajectory qd which we wish to track. For
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simplicity, we assume that qd is specified for all time and that it is at least twice differentiable.

If we have a perfect model of the robot and q(0) = qd(0), q̇(0) = q̇d(0) , then we may solve our

problem by choosing

τ = M(qd)q̈d + C(qd, q̇d)q̇d +G(qd).

Since both q and qd satisfy the same differential equation and have the same initial conditions,

it follows from the uniqueness of the solutions of differential equations that q(t) = qd(t) for all

t ≥ 0. This an example of an open-loop control law: the current state of the robot is not used

in choosing the control inputs.

Unfortunately, this strategy is not very robust. If q(0) 6= qd(0) , then the open-loop control

law will never correct for this error. This is clearly undesirable, since we almost never know

the current position of a robot exactly. Furthermore, we have no guarantee that if our starting

configuration is near the desired initial configuration that the trajectory of the robot will stay

near the desired trajectory for all time. For this reason, we introduce feedback into our control

law. This feedback must be chosen such that the actual robot trajectory converges to the

desired trajectory. In particular, if our trajectory is a single setpoint, the closed-loop system

should be asymptotically stable about the desired setpoint. There are several approaches for

designing stable robot control laws. Using the structural properties of robot dynamics, we will

be able to prove stability of these control laws for all robots having those properties.

Consider the following refinement of the open-loop control law presented above: given the

current position and velocity of the biped, cancel all nonlinearities and apply exactly the torque

needed to overcome the inertia of the actuator,

τ = M(q)q̈d + C(q, q̇)q̇ +G(q)

Substituting this control law into the dynamic equations of the biped (4.4), we see that

M(q)q̈ = M(q)q̈d,
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and since M(q) is uniformly positive definite in q, we have

q̈ = q̈d (4.5)

Hence, if the initial position and velocity of the robot matches the desired position and velocity,

the biped will follow the desired trajectory. As before, this control law will not correct for any

initial condition errors which are present.

The tracking properties of the control law can be improved by adding state feedback. The

linearity of equation (4.5) suggests the following control law:

τ = M(q)(q̈d −Kvė−Kpe) + C(q, q̇)q̇ +G(q) (4.6)

where e = q − qd, and Kv and Kp are constant gain matrices. When substituted into equation

(4.4), the error dynamics can be written as:

M(q)(ë+Kvė+Kpe) = 0.

Since M(q) is always positive definite, we have

ë+Kvė+Kpe = 0. (4.7)

This is a linear differential equation which governs the error between the actual and desired

trajectories. Equation (4.6) is called the computed torque control law.

The computed torque control law consists of two components. We can write equation (5.6) as

τ = M(q)q̈d + Cq̇ +G+M(q)(−Kvė−Kpe)

where M(q)q̈d +Cq̇+G is the feedforward component and M(q)(−Kvė−Kpe) is the feedback

component. The feedforward component provides the amount of torque necessary to drive the

system along its nominal path. The feedback component provides correction torques to reduce

any errors in the trajectory of the robot.
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Since the error equation (4.7) is linear, it is easy to choose Kv and Kp so that the overall

system is stable and e→ 0 exponentially as t→∞. Moreover, we can choose Kv and Kp such

that we get independent exponentially stable systems (by choosing Kp and Kv diagonal). The

following proposition gives one set of conditions under which the computed torque control law

(5.6) results in exponential tracking.

Theorem (Stability of the Computed Torque Control). If Kp, Kv ∈ Rn×n are positive

definite, symmetric matrices, then the control law (4.6) applied to the system (4.4) results in

exponential trajectory tracking.

Proof. The error dynamics can be written as a first-order linear system:

d

dt

e
ė

 =

 0 I

−Kp −Kv


e
ė



where

 0 I

−Kp −Kv

 = A.

It suffices to show that each of the eigenvalues of A has negative real part. Let λ ∈ C be an

eigenvalue of A with corresponding eigenvector v = (v1, v2) ∈ C2n, v 6= 0. Then,

λ

v1
v2

 =

 0 I

−Kp −Kv


v1
v2

 =

 v2

−Kpv1 −Kvv2


It follows that if λ = 0 then v = 0, and hence λ = 0 is not an eigenvalue of A. Further, if

λ 6= 0, then v2 = 0 implies that v1 = 0. Thus, v1, v2 6= 0 and we may assume without loss of

generality that ‖v1‖= 1. Using this, we write

λ2 = v∗1λ
2v1 = v∗1λv2

= v∗1(−Kpv1 −Kvv2) = −v∗1Kpv1 − λv∗1Kvv1,

where ∗denotes complex conjugate transpose. Since α = v∗1Kpv1 > 0 and β = v∗1Kvv1 > 0, we

have

λ2 + αλ+ β = 0 α, β > 0
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and hence the real part of λ is negative.

The power of the computed torque control law is that it converts a nonlinear dynamical system

into a linear one, allowing the use of any of a number of linear control synthesis tools. This

is an example of a more general technique known as feedback linearization, where a nonlinear

system is rendered linear via full-state nonlinear feedback. One disadvantage of using feedback

linearization is that it can be demanding (in terms of computation time and input magnitudes)

to use feedback to globally convert a nonlinear system into a single linear system. For biped

robots, unboundedness of the inputs is rarely a problem since the inertia matrix of the system

is bounded and hence the control torques which must be exerted always remain bounded.

In addition, experimental results show that the computed torque controller has very good

performance characteristics and it is becoming increasingly popular.

4.2 Bipedal Robot Control with availability of velocity

signals and absence of disturbances

4.2.1 Partial Feedback Linearization Control of the Swing Phase

Consider the general state space representation of the Swing Phase equations of motion for

the complete 4-DOF biped robot and assume that the vector of configuration (the angular

positions of the legs q
(i)
(1,k), q

(i)
(2,k) and the Cartesian Coordinates of the stance foot q

(i)
(3,k), q

(i)
(4,k))

can be partitioned into the actuated configurations q
(i)
(a,k) = [q

(i)
(1,k), q

(i)
(2,k)]

T and the non-actuated

configurations q
(i)
(na,k) = [q

(i)
(3,k), q

(i)
(4,k)]

T . As we have mentioned before, since the robot in the

Swing Phase is underactuated (the biped has 4 degrees of freedom but only two control inputs

during the Swing Phase), we assume that the vector of the control inputs (applied torques) can

be partitioned as u
(i)
k = [u

(i)
(a,k), 0, 0]T where u

(i)
(a,k) ∈ R2×1. Finally, we assume that the matrices
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M, C, G defining the dynamic model of the biped can be partitioned as follows:

M(q
(i)
k ) =

M11 M12

M21 M22

 ,
C(q

(i)
k , q̇k

(i)) =

C11 C12

C21 C22

 ,
G(q

(i)
k , θ) =

[
G1 G2

]T
,

STconfcon(q
(i)
k , q̇k

(i)) =

[
0 0 F

(i)
(con,k)

]T
where:

M11 =

M [1, 1] M [1, 2]

M [2, 1] M [2, 2]

, M12 =

M [1, 3] M [1, 4]

M [2, 3] M [2, 4]

, M21 =

M [3, 1] M [3, 2]

M [4, 1] M [4, 2]

, M22 =

M [3, 3] M [3, 4]

M [4, 3] M [4, 4]

,

C11 =

C[1, 1] C[1, 2]

C[2, 1] C[2, 2]

, C12 =

C[1, 3] C[1, 4]

C[2, 3] C[2, 4]

, C21 =

C[3, 1] C[3, 2]

C[4, 1] C[4, 2]

, C22 =

C[3, 3] C[3, 4]

C[4, 3] C[4, 4]

,

G1 =

G[1, 1]

G[2, 1]

, G2 =

G[3, 1]

G[4, 1]

,

F
(i)
(con,k) =

f (i)
(fr,k)

f
(i)
(N,k)

.

After partitioning all matrices, the model of the underactuated biped in the Swing Phase

takes the form of:

M11 ¨q(a,k)
(i) +M12 ¨q(na,k)

(i) + C11 ˙q(a,k)
(i) + C12 ˙q(na,k)

(i) +G1 = u
(i)
(a,k)

M21 ¨q(a,k)
(i) +M22 ¨q(na,k)

(i) + C21 ˙q(a,k)
(i) + C22 ˙q(na,k)

(i) +G2 − F (i)
(con,k) = 0

(4.8)

Now we consider the output function

y
(i)
k = q

(i)
(a,k), (4.9)
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where y
(i)
k is called the collocated output with the input u

(i)
(a,k). Furthermore, due to the fact

that det(M22) 6= 0, M22 is invertible, thus we may solve for ¨q(na,k)
(i) in equation (4.8) as:

¨q(na,k)
(i) = −M−1

22 (M21 ¨q(a,k)
(i) + C21 ˙q(a,k)

(i) + C22 ˙q(na,k)
(i) +G2 − F (i)

(con,k)) (4.10)

When substituting (4.10) into (4.8), we get:

Ma ¨q(a,k)
(i) + Ca ˙q(a,k)

(i) + Cna ˙q(na,k)
(i) + Ca ˙q(a,k)

(i) + G̃+ ˜F(con,k)
(i)

= u
(i)
(a,k) (4.11)

where:

Ma = M11− M21M12

M22
, Ca = C11− M12C21

M22
, Cna = C12− M12C22

M22
, G̃ = G1− M12G2

M22
, and

˜
F

(i)
(con,k) =

M12F
(i)
(con,k)

M22

Since the matrix Ma is positive definite, we can linearize the actuated configuration of the

system dynamics. Thus, the feedback linearization controller is defined for (4.11) and is given

by the following relation:

Mav
(i)
(a,k) + Ca ˙q(a,k)

(i) + Cna ˙q(na,k)
(i) + Ca ˙q(a,k)

(i) + G̃+
˜

F
(i)
(con,k) = u

(i)
(a,k) (4.12)

where v
(i)
(a,k) ∈ R2 is an additional control input to be defined later. The closed loop system is

then given by:

¨q(na,k)
(i) = −M−1

22 (M21 ¨q(a,k)
(i) + C21 ˙q(a,k)

(i) + C22 ˙q(na,k)
(i) +G2 − F (i)

(con,k))

¨q(a,k)
(i) = v

(i)
(a,k)

y
(i)
k = q

(i)
(a,k)

(4.13)

Furthermore, it can be seen from (4.13) that the vector of actuated configurations is completely

decoupled from the vector of unactuated configurations and linearized second order. We define

y
(i)
(k,d) = [y

(i)
(1,k,d) y

(i)
(2,k,d)]

T = [q
(i)
(1,k,d) q

(i)
(2,k,d)]

T be the vector of reference trajectories and e
(i)
k =

[e
(i)
(1,k) e

(i)
(2,k)]

T the tracking error vector where each component is given by:

e
(i)
(j,k) = q

(i)
(j,k) − q

(i)
(j,k,d), j = 1, 2 (4.14)
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Now, the additional control input v
(i)
(a,k) ∈ R2 may be chosen by the following relation:

v
(i)
(a,j,k) = ¨y(j,k,d)

(i) −Kpje
(i)
(j,k) −Kvj ˙e(j,k)

(i), j = 1, 2 (4.15)

where coefficients Kpj, Kvj, j = 1, 2 are chosen so that the two polynomials s̈ − Kpjs −

Kvj ṡ, j = 1, 2 are Hurwitz. Then the error system dynamics can be given by:

ëk
(i) = v

(i)
(a,k) − ¨y(k,d)

(i) (4.16)

where each component of (5.16) is given by:

¨e(j,k) = −Kpje
(i)
(j,k) −Kvj ˙e(j,k)

(i) (4.17)

From (4.17), we can clearly see that for a suitable choice of the abovementioned coefficients, the

error tracking vector converges globally exponentially to zero. Let Z1 = e
(i)
k , Z2 = ėk

(i), η1 =

q
(i)
(na,k) = [q

(i)
(3,k) q

(i)
(4,k)], η2 = ˙q(na,k)

(i) = [ ˙q(3,k)
(i) ˙q(4,k)

(i)]. Thus, the complete closed loop system

can be written as :

Ż1 = Z2

Ż2 = −KpZ1 −KdZ2

η̇1 = η2

η̇2 = Ω(Z, η, t(i))

e
(i)
k = y

(i)
k − y

(i)
(k,d) = Zt

(4.18)

where:

Ω(Z, η, t(i)) = −M−1
22 (C21 ˙q(a,k)

(i)+G2−F (i)
(con,k))−M

−1
22 C22η2−M−1

22 M21( ¨y(k,d)
(i)−KpZ1−KvZ2)

(4.19)

where Kp =

Kp1 0

0 Kp2

 and Kv =

Kv1 0

0 Kv2

.
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In matrix form, the system (4.18) can be rewritten as:

Ż = AZ

η̇ = w(Z, η, t(i))

e
(i)
k = CZ

(4.20)

where Z =

Z1

Z2

, η =

η1
η2

, A =

 0 I2×2

−Kp −Kv

, C =

[
I2×2 0

]
and w(Z, η, t(i)) =

 η2

Ω(Z, η, t(i))

.

4.2.2 Computed Torque Control of the Push-Off Phase

Consider the general equations of motion for the Instantaneous Push-Off Phase:

M(q
(i)
k )q̈k

(i) + C(q
(i)
k , q̇k

(i))q̇k
(i) +G(q

(i)
k , θ

(i)) = BPO(q
(i)
k )u

(i)
k + STconf

(i)
(con,k)

⇔

M(q
(i)
N−1) ¨qN−1

(i) + C(q
(i)
N−1, ˙qN−1

(i)) ˙qN−1
(i) +G(q

(i)
N−1, θ

(i)) = u
(i)
N−1 + STconf

(i)
(con,N−1) (4.21)

where BPO(q
(i)
N−1) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, u

(i)
N−1 =



τ
(i)
(1,N−1)

τ
(i)
(2,N−1)

F
(i)
(PO,x,N−1)

F
(i)
(PO,y,N−1)


The suggested control law, as we

have analyzed extensively in the previous subchapter, for the Instantaneous Push-Off Phase is

the following:

u
(i)
N−1 = M(q

(i)
(N−1))( ¨q(N−1,d)

(i)−Kv ˙eN−1
(i)−Kpe

(i)
N−1)+C(q

(i)
N−1, ˙qN−1

(i)) ˙qN−1
(i)+G(q

(i)
N−1, θ

(i))−STconf
(i)
(con,N−1)

(4.22)
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where e
(i)
N−1 = q

(i)
N−1 − q

(i)
(N−1,d), and Kv and Kp are constant gain matrices. When substituted

into equation (4.21), the error dynamics can be written as:

M(q
(i)
N−1)( ¨eN−1

(i) +Kv ˙eN−1
(i) +Kpe

(i)
N−1) = 0.

Since M(qN−1)
(i) is always positive definite, we have

¨eN−1
(i) +Kv ˙eN−1

(i) +Kpe
(i)
N−1 = 0. (4.23)

4.2.3 Partial Feedback Linearization Control of the Heel Strike Phase

Consider the general state space representation of the Heel Strike Phase equations of motion

for the complete 4-DOF biped robot and assume that the vector of configuration (the angular

positions of the legs q
(i)
(1,N), q

(i)
(2,N) and the Cartesian Coordinates of the stance foot q

(i)
(3,N), q

(i)
(4,N))

can be partitioned into the actuated configurations q
(i)
(a,N) = [q

(i)
(1,N), q

(i)
(2,N)]

T and the non-actuated

configurations q
(i)
(na,N) = [q

(i)
(3,N), q

(i)
(4,N)]

T . As we have mentioned before, since the robot in the

Heel Strike Phase is underactuated (the biped has 4 degrees of freedom but only two control

inputs during the Heel Strike Phase), we assume that the vector of the control inputs (applied

torques) can be partitioned as u
(i)
N = [u

(i)
(a,N), 0, 0]T where u

(i)
(a,N) ∈ R2×1. Finally, we assume that

the matrices M, C, G defining the dynamic model of the biped can be partitioned as follows:

M(q
(i)
N ) =

M11 M12

M21 M22

 ,
C(q

(i)
N , ˙qN

(i)) =

C11 C12

C21 C22

 ,
G(q

(i)
N ) =

[
G1 G2

]T
,

STHSf
(i)
HS =

[
0 0 F

(i)
(HS,N)

]T



4.2. Bipedal Robot Control with availability of velocity signals and absence of disturbances97

where:

M11 =

M [1, 1] M [1, 2]

M [2, 1] M [2, 2]

, M12 =

M [1, 3] M [1, 4]

M [2, 3] M [2, 4]

, M21 =

M [3, 1] M [3, 2]

M [4, 1] M [4, 2]

, M22 =

M [3, 3] M [3, 4]

M [4, 3] M [4, 4]

,

C11 =

C[1, 1] C[1, 2]

C[2, 1] C[2, 2]

, C12 =

C[1, 3] C[1, 4]

C[2, 3] C[2, 4]

, C21 =

C[3, 1] C[3, 2]

C[4, 1] C[4, 2]

, C22 =

C[3, 3] C[3, 4]

C[4, 3] C[4, 4]

,

G1 =

G[1, 1]

G[2, 1]

, G2 =

G[3, 1]

G[4, 1]

,

F
(i)
(HS,N) =

f (i)
(HSx,N)

f
(i)
(HSy,N)

.

After partitioning all matrices, the model of the underactuated biped in the Swing Phase

takes the form of:

M11 ¨q(a,N)
(i) +M12 ¨q(na,N)

(i) + C11 ˙q(a,N)
(i) + C12 ˙q(na,N)

(i) +G1 = u
(i)
(a,N)

M21 ¨q(a,N)
(i) +M22 ¨q(na,N)

(i) + C21 ˙q(a,N)
(i) + C22 ˙q(na,N)

(i) +G2 − F (i)
(HS,N) = 0

(4.24)

Now we consider the output function

y
(i)
N = q

(i)
(a,N), (4.25)

where y
(i)
N is called the collocated output with the input u

(i)
(a,N). Furthermore, due to the fact

that det(M22) 6= 0, M22 is invertible, thus we may solve for ¨q(na,N)
(i) in equation (4.24) as:

¨q(na,N)
(i) = −M−1

22 (M21 ¨q(a,N)
(i) + C21 ˙q(a,N)

(i) + C22 ˙q(na,N)
(i) +G2 − F (i)

(HS,N)) (4.26)

When substituting (5.26) into (4.24), we get:

Ma ¨q(a,N)
(i) + Ca ˙q(a,N)

(i) + Cna ˙q(na,N)
(i) + Ca ˙q(a,N)

(i) + G̃+ ˜F(HS,N)
(i)

= u
(i)
(a,N) (4.27)



98 Chapter 4. Trajectory Tracking Control Module

where:

Ma = M11−M21M12

M22
, Ca = C11−M12C21

M22
, Cna = C12−M12C22

M22
, G̃ = G1−M12G2

M22
, and

˜
F

(i)
(HS,N) =

M12F
(i)
(HS,N)

M22

Since the matrix Ma is positive definite, we can linearize the actuated configuration of the

system dynamics. Thus, the feedback linearization controller is defined for (4.27) and is given

by the following relation:

Mav
(i)
(a,N) + Ca ˙q(a,N)

(i) + Cna ˙q(na,N)
(i) + Ca ˙q(a,N)

(i) + G̃+
˜

F
(i)
(HS,N) = u

(i)
(a,N) (4.28)

where v
(i)
(a,N) ∈ R2 is an additional control input to be defined later. The closed loop system is

then given by:

¨q(na,N)
(i) = −M−1

22 (M21 ¨q(a,N)
(i) + C21 ˙q(a,N)

(i) + C22 ˙q(na,N)
(i) +G2 − F (i)

(HS,N))

¨q(a,N)
(i) = v

(i)
(a,N)

y
(i)
N = q

(i)
(a,N)

(4.29)

Furthermore, it can be seen from (4.29) that the vector of actuated configurations is completely

decoupled from the vector of unactuated configurations and linearized second order. We define

y
(i)
(N,d) = [y

(i)
(1,N,d) y

(i)
(2,N,d)]

T = [q
(i)
(1,N,d) q

(i)
(2,N,d)]

T be the vector of reference trajectories and e
(i)
N =

[e
(i)
(1,N) e

(i)
(2,N)]

T the tracking error vector where each component is given by:

e
(i)
(j,N) = q

(i)
(j,N) − q

(i)
(j,N,d), j = 1, 2 (4.30)

Now, the additional control input v
(i)
(a,N) ∈ R2 may be chosen by the following relation:

v
(i)
(a,j,N) = ¨y(j,N,d)

(i) −Kpje
(i)
(j,N) −Kvj ˙e(j,N)

(i), j = 1, 2 (4.31)

where coefficients Kpj, Kvj, j = 1, 2 are chosen so that the two polynomials s̈ − Kpjs −

Kvj ṡ, j = 1, 2 are Hurwitz. Then the error system dynamics can be given by:

ëN
(i) = v

(i)
(a,N) − ¨y(N,d)

(i) (4.32)



4.2. Bipedal Robot Control with availability of velocity signals and absence of disturbances99

where each component of (4.32) is given by:

¨e(j,N) = −Kpje
(i)
(j,N) −Kvj ˙e(j,N)

(i) (4.33)

From (4.33), we can clearly see that for a suitable choice of the abovementioned coefficients, the

error tracking vector converges globally exponentially to zero. Let Z1 = e
(i)
N , Z2 = ˙eN

(i), η1 =

q
(i)
(na,N) = [q

(i)
(3,N) q

(i)
(4,N)], η2 = ˙q(na,N)

(i) = [ ˙q(3,N)
(i) ˙q(4,N)

(i)]. Thus, the complete closed loop

system can be written as :

Ż1 = Z2

Ż2 = −KpZ1 −KdZ2

η̇1 = η2

η̇2 = Ω(Z, η, t(i))

e
(i)
N = y

(i)
N − y

(i)
(N,d) = Zt

(4.34)

where:

Ω(Z, η, t(i)) = −M−1
22 (C21 ˙q(a,N)

(i)+G2−F (i)
(HS,N))−M

−1
22 C22η2−M−1

22 M21( ¨y(N,d)
(i)−KpZ1−KvZ2)

(4.35)

where Kp =

Kp1 0

0 Kp2

 and Kv =

Kv1 0

0 Kv2

.

In matrix form, the system (4.34) can be rewritten as:

Ż = AZ

η̇ = w(Z, η, t(i))

e
(i)
N = CZ

(4.36)

where Z =

Z1

Z2

, η =

η1
η2

, A =

 0 I2×2

−Kp −Kv

, C =

[
I2×2 0

]
and w(Z, η, t(i)) =

 η2

Ω(Z, η, t(i))

.
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4.3 Velocity and Disturbance Observers for Estimation

of Velocity Signals and Disturbances

Up to this point we have assumed that there are no disturbances to the biped and that the

velocity signals are available. The above controllers (Computed Torque Control, Partial Feed-

back Linearization Control) cannot be practically implemented since the velocity is required.

In addition, when uncertainties exist, these controllers can only drive the system output to a

neighborhood of the desired trajectory. However, as we have mentioned earlier, real systems

experience disturbances (e.g. actuator friction, uncertainty in the parameters of the system

model) and the sensors for velocity measurements are often contaminated with a considerable

amount of noise. Now, we will implement velocity and disturbance observers which estimate

the disturbances and reconstruct the missing velocity signals. Thus, in the equations of motion

of the Swing, Instantaneous Push-Off and Heel Strike Phases we add a disturbance quantity

d(q, q̇, t). In addition, in the abovementioned relations of the Computed Torque and Partial

Feedback Linearization controllers, we replace the velocity q̇ with its estimation, ˙̃q and we also

add a component for the estimation of the disturbance, d̃(q, ˙̃q, t):

The Complete Control Law for the Swing Phase (based on Partial Feedback Linearization

Control and the velocity and disturbance observers):

Mav
(i)
(a,k)+Ca

˙̃q
(i)
(a,k)+Cna

˙̃q
(i)
(na,k)+Ca

˙̃q
(i)
(a,k)+G̃+

˜
F

(i)
(con,k)+d̃(q

(i)
(a,k),

˙̃q
(i)
(a,k), t

(i)
k ) = u

(i)
(a,k), k = 1, ..., N−2.

(4.37)

The Complete Control Law for the Push-Off Phase (based on Computed Torque Control and

the velocity and disturbance observers):

u
(i)
N−1 = M(q

(i)
(N−1))( ¨q(N−1,d)

(i)−Kv
˙̃e
(i)
N−1−Kpe

(i)
N−1)+C(q

(i)
N−1,

˙̃q
(i)
N−1)

˙̃q
(i)
N−1+G(q

(i)
N−1, θ

(i))−STconf
(i)
(con,N−1)+

d̃(q
(i)
N−1,

˙̃q
(i)
N−1, t

(i)
N−1), where

˙̃e
(i)
N−1 = ˙̃q

(i)
N−1 − q̇

(i)
N−1,d, (4.38)

The Complete Control Law for the Heel Strike Phase (based on Partial Feedback Linearization
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Control and the velocity and disturbance observers):

Mav
(i)
(a,N) +Ca ˙̃q

(i)
(a,N) +Cna ˙̃q

(i)
(na,N) +Ca ˙̃q

(i)
(a,N) + G̃+

˜
F

(i)
(HS,N) + d̃(q

(i)
(a,N),

˙̃q
(i)
(a,N), t

(i)
N ) = u

(i)
(a,N) (4.39)

The velocity estimation ˙̃q is obtained by the following velocity observer:

˙̃q = z + Lq

ż = q̈d − L ˙̃q +M−1KpE
(4.40)

and the disturbance estimation d̃ is obtained from the following disturbance observer

d̃ = p− Φ ˙̃q

ṗ = Φ(q̈d +KpE)
(4.41)

where ˙̃q represents the estimated velocity, z, p are the velocity and disturbance observer states

respectively, Φ = φIn and L = lIn are the disturbance and velocity observer gain matrices

respectively (diagonal positive definite matrices), where l, φ > 0 and In ∈ Rn×n is an identity

matrix.

To proceed with the development, the following assumptions are required:

1. The disturbance varies slowly relative to the observer dynamics. Thus, it is reasonable to

suppose that ḋ = 0. Since, in general there is no prior information about the derivative of the

disturbance d. Moreover, this assumption is recurrent in the literature on control of robots.

2. The robot velocity is bounded by a known constant V˙m such that ||q̇||≤ Vm, ∀t ∈ R. This

assumption is definitely realistic. In fact, it is reasonable to expect that the joint velocities of

a robot will not exceed certain apriori bounds that come from the mechanic limitations of the

robot and/or from the way the robot operates.

The following theorem can be proved:

Theorem Consider the robot dynamics, and let Assumptions 1 and 2 be satisfied. Apply-

ing the control laws (4.37-4.39), where the velocity estimation ˙̃q is obtained from (4.40), and

the disturbance estimation d̃ is obtained from (4.41). The closed - loop system under the
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nonlinear controllers (CTC,PFL) and the velocity and disturbance observers, is semi-globally

asymptotically stable, in the sense that for an initial state within the region of attraction given

by:

B = {y ∈ R3n‖y‖<
√
qm
qM

(

√
2Kvm(MmLm −KvM)

cm
− 2Vm)} (4.42)

we have

lim
t→∞

E(t) = lim
t→∞

Ė(t) = 0 (4.43)

and

lim
t→∞

˙̃q(t) = 0 (4.44)

and

lim
t→∞

Ed(t) = 0 (4.45)

if the following conditions are satisfied:

Lm > (
9

2

(CmVm)2

Kvm

+KvM)M−1
m ,

Lm > (KvM +
(φM)2

φmin

)M−1
m

where yT = [ĖT q̃T ET (F − Ed)
T ], q̃ = q̇ − qµ is diagonal positive definite matrix, with

Kp > µ.KvM = ‖Kv‖, KpM = ‖Kp‖ and φM = ‖φ‖.Lm, µm, Kvm, Kpm and φmin denote the

minimum eigenvalue of L, µ,Kv, Kp and φ, respectively. qM = λmax(Q) = max{MM , KpM , µM}

and qm = λmin(Q) = min{Mm, Kpm, µm}.F is a vector to be determined.



Chapter 5

Simulation & Results

5.1 Introduction

In the current section we will proceed with the simulation experiments of the two variants

(Direct Collocation & Discrete Mechanics) of the proposed system. We will test our 4-DOF

Biped Robot on different terrains, including flat ground, upward and downward slopes, and

a combination of flat ground with upward and downward stairs, in order to check the energy

efficiency, robustness, and smoothness of gait along various terrain variations. In addition, we

will compare the results of the proposed system with two alternative problem solving methods:

1. Solving the Gait Generation Problem for the complete, 4-DOF Biped Robot directly (One

Phase approach using the two variants). In other words, we will solve the Gait Generation

Problem of the Second Phase directly, without involving a preliminary First Phase. The

initial conditions of the First Phase are also initial condiitions of the Second Phase.

2. Using a commercial high-performance solver, called SNOPT. SNOPT, (for Sparse Non-

linear OPTimizer), is a software package for solving large-scale nonlinear optimization

problems written by Philip Gill, Walter Murray and Michael Saunders. SNOPT is mainly

written in Fortran, but interfaces to C, C++, Python and MATLAB are available. It em-

ploys a sparse sequential quadratic programming (SQP) algorithm with limited-memory

103
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quasi-Newton approximations to the Hessian of Lagrangian. It is especially effective for

nonlinear problems with functions and gradients that are expensive to evaluate. The

functions should be smooth but need not be convex. SNOPT is used in several trajec-

tory optimization software packages, including AeroSpace Trajectory Optimization and

Software (ASTOS), General Mission Analysis Tool, and Optimal Trajectories by Implicit

Simulation (OTIS). It also uses parallel cores for high performance computing.

The list of parameters used throughout the experiments are given below:

Figure 5.1: Simulation Parameters.

Regarding the square root smoothing error parameter ε, two different ε = 1, 0.1 are used for

smoothing (see Chapter 3.6). In fact, decreasing ε by 10 reduces the COT by only about 2.8%
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with small changes in the value, but we have the same qualitative behavior, of gait parameters.

Due to the negligible differences, only those results produced by ε = 0.1 are presented.

Furthermore, as a disturbance we will use the steady state actuator friction model, which is

the sum of Coulomb, static, viscous and Stribeck friction:

D(q̇j
(i)) = Fcj + (Fsj − Fcj)e

−(
q̇j

(i)

vsj
)n

+ fvj q̇j
(i), j = 1, ..., 4

where:

1. D(q̇j
(i)) is the disturbance applied at the j − th generalized coordinate,

2. Fcj is the Coulomb friction at the j − th generalized coordinate. Coulomb friction is

a constant friction force (does not vary with the magnitude of the velocity) and repre-

sents friction associated with mechanical surfaces rubbing together and includes bearing

friction, and so on,

3. Fsj is the static friction at the j − th generalized coordinate. Static friction is observed

immediately before there is a slide of the contacting surfaces,

4. fvj is the viscous friction coefficient at the j− th generalized coordinate. Viscous friction

represents the force required to push hydraulic (viscous) fluid through restrictive passages.

This would include the force required (or used) for leakage or to push fluid through any

small passages that may exist in the actuator. Viscous friction is small at low velocity

and increases linearly with piston velocity,

5. vsj is the Stribeck velocity at the j − th generalized coordinate, and it is related to the

velocity range of the negative resistance regime,

6. n is the exponent that affects the slope of the Stribeck curve, and

7. q̇j
(i) is the angular or linear velocity.
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5.2 Forward Walking Experiment

In the current simulation we let the 4-DOF Biped walk forwards. The related parameters of

the particular experiment are given below:

1. H = 11 walking steps,

2. M = 40kg,

3. m1 = m2 = 20kg,

4. The duration of a walking step : 0.7343 seconds,

5. a = b = 0.5m, l = 1m,

6. D1 = 0.6m, D2 = 0.8m, D3 = 1m, D4 = 1.4m, D5 = 1.7m, D6 = 1.9m, D7 =

1.6m, D8 = 1.3m, D9 = 1.1m, D10 = 0.8m, D11 = 0.6m,

7. Initial conditions: q1 = 0.2187rad, q2 = −0.2187rad, q̇1 = −1.0924rad/s, q̇2 = −0.3774rad/s,

q3 = 0m, q4 = 0m, q̇3 = 0m/s, q̇4 = 0m/s,

8. For the disturbances, we use the following parameter values: Fc1 = Fc2 = 6 Nm, Fc3 =

Fc4 = 5h(i) Ns, fv1 = fv2 = 8 Nm/(rad/s), Fv3 = Fv4 = 6h(i) Ns/(m/s), Fs1 =

Fs2 = 10 Nm, Fs3 = Fs4 = 5h(i) Ns, vs1 = vs2 = 0.19 rad/s, vs3 = vs4 = 0.03 m/s.

In Figure 5.2, we show the overall results of the Forward Walking experiment. More specifically,

we show the Average Cost Of Transport ( 1
H

∑H
i=1COT

(i)) of the H=11 desired trajectories of the

biped, subject to the number of points/time steps (N) that approximate the desired trajectory

of each walking step, for all the abovementioned Gait Generation Problem solving approaches.

The red coloured results indicate the minimum Average Cost Of Transport (lower is better)

achieved by a particular method. We have verified the results by reconducting the expreriment

numerous times, proving the convergence of the results to the values of the Figure.

As we can see, the Decrease & Conquer Approach is extremely effective:
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Figure 5.2: Average Cost of Transport (ACOT) for the Forward Walking Experiment.

1. Regarding the One Phase based Methods, Discrete Mechanics needs at least 140 points

to achieve an ACOT of 0.3698, while Direct Collocation needs at least the same number

of points (140) to achieve an ACOT of 0.3615.

2. Regarding the commercial package SNOPT, it needs at least 180 points to achieve an

ACOT of 0.1875.

3. Regarding the Decrease & Conquer based Methods, Discrete Mechanics need only 100

points to achieve an ACOT of 0.0814, while Direct Collocation needs only 90 points to

achieve an ACOT of 0.0695. Thus, the Decrease & Conquer approach achieves the lowest

possible values of energy consumption (subject to each variant) for the Forward Walking

experiment.
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In Figure 5.3, we show the lower and upper bounds of the Cost of Transport that observed

throughout the abovementioned Forward Walking Expreriment, subject to the various tested

solving methods. This is to prove that, during the experiment and particularly for the proposed

approach, there were not any extremely high values of COT that were averaged with smaller

ones, but the resulted values were in the domain of the minimal possible ACOT for each tested

approach.

Figure 5.3: Lower and Upper Bounds of Cost of Transport (COT) for the Forward Walking
Experiment.

In Figure 5.4, the energy savings of the Decrease & Conquer based Methods, in comparison

with the One-Phase based ones, are shown.

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 15.74% (forN = 20) - 81.78% (for N = 100), in comparison with the One

Phase based related Method, while the Decrease & Conquer based Direct Collocation Method

achieves energy savings between 12.24% (for N = 20) - 85.41% (for N = 90), in comparison

with the One Phase based related Method.

In Figure 5.5, the energy savings of the Decrease & Conquer based Methods, in comparison

with SNOPT, are shown.

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 7.99% (for N = 20) - 80.31% (for N = 100), in comparison with SNOPT, while

the Decrease & Conquer based Direct Collocation Method achieves energy savings between 8.4%

(for N = 20) - 84.26% (for N = 90), in comparison with it.
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Figure 5.4: Energy Savings of Decrease and Conquer Variants in comparison with One Phase
Related Variants, for the Forward Walking Experiment (Percentage).

Now we will show the plots of the 4-DOF biped robot, for N=100, which is the number of points

where the Decrease & Conquer Feedback Control utilizing Direct Collocation Method achieves

the lowest possible ACOT in the Forward Walking Experiment. Due to the fact that the

Decrease & Conquer Feedback Control utilizing Discrete Mechanics Method results in similar

results, only the results of the First Approach will be presented.

Next, the actual plots of the 4-DOF Biped Robot, will be shown, under missing velocity signals

and disturbances. In addition, we assume that Leg 2 initially starts the walking process, thus

it is the swing leg for the first walking step. In Figure 5.6, the plots of desired and actual

angles of the two Legs over time are shown. In addition, in Figures 5.7 and 5.8, the plots of

the position errors over time are depicted.

From Figure 5.6, at each walking step, it can be seen that the angular displacement of the

swing leg gradually increases over time. Some moments before the completion of each walking

step (Heel Strike Moment), the angular displacement of the swing leg reaches the maximum,

and then the swing leg swings back. When human stride reaches the maximum during walking,
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Figure 5.5: Energy Savings of Decrease and Conquer Variants in comparison with SNOPT, for
the Forward Walking Experiment (Percentage).

a swinging back process also occurs, which is consistent with the mechanism of the human

movement. The angular displacement of the stance leg monotonically decreases, and when

t=0.7343 sec (Heel Strike Moment), the swing leg is in collision with the ground and the two

legs switch roles. As the step length increases, the values of the angular displacements increase

and vice versa.

Furthermore, the desired and actual angular displacements of the two legs are nearly the same.

From Figure 5.7 and 5.8, we can see that the position errors are extremely low (≈ 10−4),

showing the effectiveness of the implemented trajectory tracking control.

In Figure 5.9, the plot of real and estimated angular velocities of the two legs over time is

shown. In addition, in Figures 5.10 and 5.11, the plots of the velocity errors over time are

depicted.

Based on Figures 5.9, 5.10 and 5.11, the real and estimated angular velocities of the two legs are

nearly the same. From Figure 5.10 and 5.11, we can see that the velocity errors are extremely

low (≈ 10−4), showing again the effectiveness of the trajectory tracking control. As the step
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Figure 5.6: Desired and actual angles during the Forward Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

Figure 5.7: Position error during the Forward Walking Experiment - Decrease & Conquer
Feedback Control utilizing Direct Collocation.

length increases, the values of the angular velocities increase and vice versa.

In Figure 5.12, the control signals of the swing and stance leg over time during the Forward

Walking Experiment are shown. We can see that at the beginning of each walking step, a

larger torque should be input to the robot to realize dynamic walking, and with the input

of the torque, the kinetic and potential energy are reasonably converted into driving energy;

thereafter. only a small energy input can complete a walking step. The impact of the small

inaccuracies on the estimation of the velocity signals and disturbances is an increase of ACOT

by just 0.5%.

In Figure 5.13, the plot of Ground Reaction Forces (Vertical component: Normal Force, and

horizontal component: Friction force) experienced during the Forward Walking Experiment,
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Figure 5.8: Position error during the Forward Walking Experiment - Decrease & Conquer
Feedback Control utilizing Direct Collocation.

Figure 5.9: Real and estimated angular velocities during the Forward Walking Experiment -
Decrease & Conquer Feedback Control utilizing Direct Collocation.

are shown. In biomechanics, that plot is called butterfly diagram, due to the fact that the two

peaks of the Normal Force look like the wings of a butterfly. As the step length increases, the

values of the Ground Reaction Forces increase and vice versa.

More specifically, in the first moment (time step) of each walking step, the new stance leg, due to

the experienced Heel Strike Forces a moment before, tries to adjust posture to support dynamic

walking, resulting in higher torque and thus leading to the first peak of the Normal Force. From

the next time step till the 25 % of the walking step, the Normal Force is decreasing, due to

the adjusted posture of the stance leg, leading to a smaller required torque to keep balancing.
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Figure 5.10: Angular velocity errors of the Leg 1 during the Forward Walking Experiment -
Decrease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.11: Angular velocity errors of the Leg 2 during the Forward Walking Experiment -
Decrease & Conquer Feedback Control utilizing Direct Collocation.

From that moment till the 50% of the walking step, we have an increase in the Normal Force,

due to the fact that the stance leg becomes more vertical with the ground and at the half of

the walking step the stance leg is completely vertical with it, supporting the whole weight of

the robot, and resulting in the second peak of the Normal Force (this intermediate phase of the

walking step is called midstance phase). From that moment till the end of the walking step, the

Normal Force is decreasing (and it approaches zero), as the stance leg tends to be less vertical

with the ground and the swing leg tends to approach the ground, taking an actual role for the

support of the robot weight, both preparing to switch roles after the effects of the Push-Off

and Heel Strike Phases. The Normal Force, throughout the entire walking step, is positive.
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Figure 5.12: Control Signals τ1, τ2 during the Forward Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

Regarding the values of the Friction Force, from the first time step of a walking step till the

10% of it, the friction force is decreasing and negative (at the 10% of the walking step we have

a negative peak of the Friction force), due to the braking direction of the stance leg, resulting

the Friction Force to act a backward (negative) force. From that moment till the 50% of the

walking step, as we approach the midstance phase, the Friction Force is increasing (at the 50%

of the walking step we have a positive peak of the Friction Force) as the stance leg becomes

more vertical with the ground and tends to move in a more propulsive direction. From the 50%

of the walking step, till the completion of it, the stance leg keeps its propulsive direction, and

waits for the Push-Off and Heel Strike Phases to take effect and switch roles with the swing

leg, thus the friction force tends to zero.

In Figure 5.14, the Instantaneous Push-Off Impulses applied furing the Fowrard Walking exper-

iment, are shown. A Push-Off Impulse, as we have mentioned in previous Chapters, is required

for the stance leg to be detached from the ground, while adding the required energy for the

biped robot to be stabilized after the energy losses of the Heel Strike Phase. As the step length

increases, the values of the Push-Off Impulse increase and vice versa.
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Figure 5.13: Ground Reaction Forces during the Forward Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

5.3 Downward Slope Walking Experiment

In the current simulation we let the 4-DOF Biped walk on a downward slope. The related

parameters of the particular experiment are given below:

1. H = 11 walking steps,

2. M = 60kg,

3. m1 = m2 = 30kg,

4. The duration of a walking step : 0.7343 seconds,

5. a = b = 0.75m, l = 1.5m,

6. θ = −0.677 rad (-38.8 deg)

7. D1 = 2.8m, D2 = 2.6m, D3 = 2.3m, D4 = 2.15m, D5 = 1.95m, D6 = 1.8m, D7 =

1.75m, D8 = 1.35m, D9 = 1.15m, D10 = 1.05m, D11 = 0.6m,

8. Initial conditions: q1 = 0.4330rad, q2 = −0.4330rad, q̇1 = −2.162rad/s, q̇2 = −0.7472rad/s,

q3 = 0m, q4 = 0m, q̇3 = 0m/s, q̇4 = 0m/s,
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Figure 5.14: Push-Off Impulses during the Forward Walking Experiment - Decrease & Conquer
Feedback Control utilizing Direct Collocation.

9. For the disturbances, we use the following parameter values: Fc1 = Fc2 = 7 Nm, Fc3 =

Fc4 = 6h(i) Ns, fv1 = fv2 = 9 Nm/(rad/s), Fv3 = Fv4 = 7h(i) Ns/(m/s), Fs1 =

Fs2 = 11 Nm, Fs3 = Fs4 = 6h(i) Ns, vs1 = vs2 = 0.21 rad/s, vs3 = vs4 = 0.07 m/s.

In Figure 5.15, we show the overall results of the Downward Slope Walking experiment. More

specifically, we show the Average Cost Of Transport ( 1
H

∑H
i=1COT

(i)) of the H=11 desired

trajectories of the biped, subject to the number of points/time steps (N) that approximate the

desired trajectory of each walking step, for all the abovementioned Gait Generation Problem

solving approaches. The red coloured results indicate the minimum Average Cost Of Transport

(lower is better) achieved by a particular method. We have verified the results by reconducting

the expreriment numerous times, proving the convergence of the results to the values of the

Figure.

As we can see, the Decrease & Conquer Approach is extremely effective:

1. Regarding the One Phase based Methods, Discrete Mechanics needs at least 160 points

to achieve an ACOT of 0.1922, while Direct Collocation needs at least the same number

of points (140) to achieve an ACOT of 0.1734.

2. Regarding the commercial package SNOPT, it needs at least 170 points to achieve an
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Figure 5.15: Average Cost of Transport (ACOT) for the Downward Slope Walking Experiment.

ACOT of 0.1024.

3. Regarding the Decrease & Conquer based Methods, Discrete Mechanics need only 90

points to achieve an ACOT of 0.0762, while Direct Collocation needs only 90 points also

to achieve an ACOT of 0.0532. Thus, the Decrease & Conquer approach achieves the

lowest possible values of energy consumption (subject to each variant) for the Downward

Slope Walking experiment.

In Figure 5.16, we show the lower and upper bounds of the Cost of Transport that observed

throughout the abovementioned Downward Slope Walking Expreriment, subject to the various

tested solving methods. This is to prove that, during the experiment and particularly for the

proposed approach, there were not any extremely high values of COT that were averaged with

smaller ones, but the resulted values were in the domain of the minimal possible ACOT for



118 Chapter 5. Simulation & Results

each tested approach.

Figure 5.16: Lower and Upper Bounds of Cost of Transport (COT) for the Downward Slope
Walking Experiment.

In Figure 5.17, the energy savings of the Decrease & Conquer based Methods, in comparison

with the One-Phase based ones, are shown.

Figure 5.17: Energy Savings of Decrease and Conquer Variants in comparison with One Phase
Related Variants, for the Downward Slope Walking Experiment (Percentage).

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 17.58% (forN = 10) - 87.24% (for N = 90), in comparison with the One

Phase based related Method, while the Decrease & Conquer based Direct Collocation Method
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achieves energy savings between 17.26% (for N = 10) - 90.55% (for N = 90), in comparison

with the One Phase based related Method.

In Figure 5.18, the energy savings of the Decrease & Conquer based Methods, in comparison

with SNOPT, are shown.

Figure 5.18: Energy Savings of Decrease and Conquer Variants in comparison with SNOPT,
for the Downward Slope Walking Experiment (Percentage).

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 7.77% (for N = 10) - 85.15% (for N = 90), in comparison with SNOPT, while

the Decrease & Conquer based Direct Collocation Method achieves energy savings between

10.68% (for N = 10) - 89.63% (for N = 90), in comparison with it.

Now we will show the plots of the 4-DOF biped robot, for N=90, which is the number of points

where the Decrease & Conquer Feedback Control utilizing Direct Collocation Method achieves

the lowest possible ACOT in the Downward Slope Walking Experiment. Due to the fact that the

Decrease & Conquer Feedback Control utilizing Discrete Mechanics Method results in similar

results, only the results of the First Approach will be presented. Next, the actual plots of

the 4-DOF Biped Robot, will be shown, under missing velocity signals and disturbances. In
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addition, we assume that Leg 2 initially starts the walking process, thus it is the swing leg for

the first walking step.

In Figure 5.19, the plots of desired and actual angles of the two Legs over time are shown. In

addition, in Figures 5.20 and 5.21, the plots of the position errors over time are depicted.

Figure 5.19: Desired and actual angles during the Downward Slope Walking Experiment - De-
crease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.20: Position error during the Downward Slope Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

From Figure 5.19, at each walking step, it can be seen that the angular displacement of the

swing leg gradually increases over time. Some moments before the completion of each walking

step (Heel Strike Moment), the angular displacement of the swing leg reaches the maximum,

and then the swing leg swings back. When human stride reaches the maximum during walking,

a swinging back process also occurs, which is consistent with the mechanism of the human

movement. The angular displacement of the stance leg monotonically decreases, and when
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Figure 5.21: Position error during the Downward Slope Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

t=0.7343 sec (Heel Strike Moment), thw swing leg is in collision with the ground and the two

legs switch roles. As the step length increases, the values of the angular displacements increase

and vice versa.

Furthermore, the desired and actual angular displacements of the two legs are nearly the same.

From Figure 5.20 and 5.21, we can see that the position errors are extremely low (≈ 10−4),

showing the effectiveness of the implemented trajectory tracking control.

In Figure 5.22, the plot of real and estimated angular velocities of the two legs over time is

shown. In addition, in Figures 5.23 and 5.24, the plots of the velocity errors over time are

depicted.

Based on Figures 5.22, 5.23 and 5.24, the real and estimated angular velocities of the two

legs are nearly the same. From Figure 5.23 and 5.24, we can see that the velocity errors are

extremely low (≈ 10−4), showing again the effectiveness of the trajectory tracking control. As

the step length increases, the values of the angular velocities increase and vice versa.

In Figure 5.25, the control signals of the swing and stance leg over time during the Downward

Slope Walking Experiment are shown. We can see that at the beginning of each walking step,

a larger torque should be input to the robot to realize dynamic walking, and with the input

of the torque, the kinetic and potential energy are reasonably converted into driving energy;

thereafter. only a small energy input can complete a walking step. The impact of the small

inaccuracies on the estimation of the velocity signals and the disturbances is an increase of the
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Figure 5.22: Real and estimated angular velocities during the Downward Slope Walking Exper-
iment - Decrease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.23: Angular velocity errors of the Leg 1 during the Downward Slope Walking Experi-
ment - Decrease & Conquer Feedback Control utilizing Direct Collocation.

ACOT by just 0.6%.

In Figure 5.26, the plot of Ground Reaction Forces (Vertical component: Normal Force, and

horizontal component: Friction force) experienced during the Downward Slope Walking Ex-

periment, are shown. In biomechanics, that plot is called butterfly diagram, due to the fact

that the two peaks of the Normal Force look like the wings of a butterfly. As the step length

increases, the values of the Ground Reaction Forces increase and vice versa.

More specifically, in the first moment (time step) of each walking step, the new stance leg, due to

the experienced Heel Strike Forces a moment before, tries to adjust posture to support dynamic
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Figure 5.24: Angular velocity errors of the Leg 2 during the Downward Slope Walking Experi-
ment - Decrease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.25: Control Signals τ1, τ2 during the Downward Slope Walking Experiment - Decrease
& Conquer Feedback Control utilizing Direct Collocation.

walking, resulting in higher torque and thus leading to the first peak of the Normal Force. From

the next time step till the 25 % of the walking step, the Normal Force is decreasing, due to

the adjusted posture of the stance leg, leading to a smaller required torque to keep balancing.

From that moment till the 50% of the walking step, we have an increase in the Normal Force,

due to the fact that the stance leg becomes more vertical with the ground and at the half of

the walking step the stance leg is completely vertical with it, supporting the whole weight of

the robot, and resulting in the second peak of the Normal Force (this intermediate phase of the

walking step is called midstance phase). From that moment till the end of the walking step, the

Normal Force is decreasing (and it approaches zero), as the stance leg tends to be less vertical

with the ground and the swing leg tends to approach the ground, taking an actual role for the
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support of the robot weight, both preparing to switch roles after the effects of the Push-Off

and Heel Strike Phases. The Normal Force, throughout the entire walking step, is positive.

Regarding the values of the Friction Force, from the first time step of a walking step till the

10% of it, the friction force is decreasing and negative (at the 10% of the walking step we have

a negative peak of the Friction force), due to the braking direction of the stance leg, resulting

the Friction Force to act a backward (negative) force. From that moment till the 50% of the

walking step, as we approach the midstance phase, the Friction Force is increasing (at the 50%

of the walking step we have a positive peak of the Friction Force) as the stance leg becomes

more vertical with the ground and tends to move in a more propulsive direction. From the 50%

of the walking step, till the completion of it, the stance leg keeps its propulsive direction, and

waits for the Push-Off and Heel Strike Phases to take effect and switch roles with the swing

leg, thus the friction force tends to zero.

Figure 5.26: Ground Reaction Forces during the Downward Slope Walking Experiment - De-
crease & Conquer Feedback Control utilizing Direct Collocation.

In Figure 5.27, the Instantaneous Push-Off Impulses applied furing the Downward Slope Walk-

ing experiment, are shown. A Push-Off Impulse, as we have mentioned in previous Chapters,

is required for the stance leg to be detached from the ground, while adding the required energy

for the biped robot to be stabilized after the energy losses of the Heel Strike Phase. As the

step length increases, the values of the Push-Off Impulse increase and vice versa.
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Figure 5.27: Push-Off Impulses during the Downward Slope Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

5.4 Upward Slope Walking Experiment

In the current simulation we let the 4-DOF Biped walk on an upward slope. The related

parameters of the particular experiment are given below:

1. H = 11 walking steps,

2. M = 55kg,

3. m1 = m2 = 27.5kg,

4. The duration of a walking step : 0.7343 seconds,

5. a = b = 0.6m, l = 1.2m,

6. θ = 0.698 rad (40 deg)

7. D1 = 0.7m, D2 = 0.8m, D3 = 1m, D4 = 1.2m, D5 = 1.35m, D6 = 1.45m, D7 =

1.55m, D8 = 1.6m, D9 = 1.85m, D10 = 2.1m, D11 = 2.25m,

8. Initial conditions: q1 = 0.2296rad, q2 = −0.2296rad, q̇1 = −1.1470rad/s, q̇2 = −0.3962rad/s,

q3 = 0m, q4 = 0m, q̇3 = 0m/s, q̇4 = 0m/s,
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9. For the disturbances, we use the following parameter values: Fc1 = Fc2 = 6 Nm, Fc3 =

Fc4 = 6h(i) Ns, fv1 = fv2 = 8.5 Nm/(rad/s), Fv3 = Fv4 = 7.5h(i) Ns/(m/s), Fs1 =

Fs2 = 12 Nm, Fs3 = Fs4 = 7h(i) Ns, vs1 = vs2 = 0.25 rad/s, vs3 = vs4 = 0.08 m/s.

In Figure 5.28, we show the overall results of the Upward Slope Walking experiment. More

specifically, we show the Average Cost Of Transport ( 1
H

∑H
i=1COT

(i)) of the H=11 desired

trajectories of the biped, subject to the number of points/time steps (N) that approximate the

desired trajectory of each walking step, for all the abovementioned Gait Generation Problem

solving approaches. The red coloured results indicate the minimum Average Cost Of Transport

(lower is better) achieved by a particular method. We have verified the results by reconducting

the expreriment numerous times, proving the convergence of the results to the values of the

Figure.

Figure 5.28: Average Cost of Transport (ACOT) for the Upward Slope Walking Experiment.
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As we can see, the Decrease & Conquer Approach is extremely effective:

1. Regarding the One Phase based Methods, Discrete Mechanics needs at least 180 points

to achieve an ACOT of 0.142, while Direct Collocation needs at least the same number

of points (140) to achieve an ACOT of 0.1258.

2. Regarding the commercial package SNOPT, it needs at least 190 points to achieve an

ACOT of 0.1141.

3. Regarding the Decrease & Conquer based Methods, Discrete Mechanics need only 100

points to achieve an ACOT of 0.081, while Direct Collocation needs only 90 points also

to achieve an ACOT of 0.0561. Thus, the Decrease & Conquer approach achieves the

lowest possible values of energy consumption (subject to each variant) for the Upward

Slope Walking experiment.

In Figure 5.29, we show the lower and upper bounds of the Cost of Transport that observed

throughout the abovementioned Upward Slope Walking Expreriment, subject to the various

tested solving methods. This is to prove that, during the experiment and particularly for the

proposed approach, there were not any extremely high values of COT that were averaged with

smaller ones, but the resulted values were in the domain of the minimal possible ACOT for

each tested approach.

Figure 5.29: Lower and Upper Bounds of Cost of Transport (COT) for the Upward Slope
Walking Experiment.

In Figure 5.30, the energy savings of the Decrease & Conquer based Methods, in comparison

with the One-Phase based ones, are shown.
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Figure 5.30: Energy Savings of Decrease and Conquer Variants in comparison with One Phase
Related Variants, for the Upward Slope Walking Experiment (Percentage).

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 10.72% (forN = 10) - 87.19% (for N = 100), in comparison with the One

Phase based related Method, while the Decrease & Conquer based Direct Collocation Method

achieves energy savings between 12.7% (for N = 10) - 89.73% (for N = 100), in comparison

with the One Phase based related Method.

In Figure 5.31, the energy savings of the Decrease & Conquer based Methods, in comparison

with SNOPT, are shown.

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 3.5% (for N = 10) - 83% (for N = 100), in comparison with SNOPT, while

the Decrease & Conquer based Direct Collocation Method achieves energy savings between

11.14% (for N = 10) - 88.23% (for N = 100), in comparison with it.

Now we will show the plots of the 4-DOF biped robot, for N=100, which is the number of

points where the Decrease & Conquer Feedback Control utilizing Direct Collocation Method
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Figure 5.31: Energy Savings of Decrease and Conquer Variants in comparison with SNOPT,
for the Upward Slope Walking Experiment (Percentage).

achieves the lowest possible ACOT in the Upward Slope Walking Experiment. Due to the fact

that the Decrease & Conquer Feedback Control utilizing Discrete Mechanics Method results in

similar results, only the results of the First Approach will be presented. Next, the actual plots

of the 4-DOF Biped Robot, will be shown, under missing velocity signals and disturbances. In

addition, we assume that Leg 2 initially starts the walking process, thus it is the swing leg for

the first walking step.

In Figure 5.32, the plots of desired and actual angles of the two Legs over time are shown. In

addition, in Figures 5.33 and 5.34, the plots of the position errors over time are depicted.

From Figure 5.32, at each walking step, it can be seen that the angular displacement of the

swing leg gradually increases over time. Some moments before the completion of each walking

step (Heel Strike Moment), the angular displacement of the swing leg reaches the maximum,

and then the swing leg swings back. When human stride reaches the maximum during walking,

a swinging back process also occurs, which is consistent with the mechanism of the human
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Figure 5.32: Desired and actual angles during the Upward Slope Walking Experiment - Decrease
& Conquer Feedback Control utilizing Direct Collocation.

Figure 5.33: Position error during the Upward Slope Walking Experiment - Decrease & Conquer
Feedback Control utilizing Direct Collocation.

movement. The angular displacement of the stance leg monotonically decreases, and when

t=0.7343 sec (Heel Strike Moment), thw swing leg is in collision with the ground and the two

legs switch roles. As the step length increases, the values of the angular displacements increase

and vice versa.

Furthermore, the desired and actual angular displacements of the two legs are nearly the same.

From Figure 5.33 and 5.34, we can see that the position errors are extremely low (≈ 10−4),

showing the effectiveness of the implemented trajectory tracking control.

In Figure 5.35, the plot of real and estimated angular velocities of the two legs over time is

shown. In addition, in Figures 5.36 and 5.37, the plots of the velocity errors over time are

depicted.
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Figure 5.34: Position error during the Upward Slope Walking Experiment - Decrease & Conquer
Feedback Control utilizing Direct Collocation.

Figure 5.35: Real and estimated angular velocities during the Upward Slope Walking Experiment
- Decrease & Conquer Feedback Control utilizing Direct Collocation.

Based on Figures 5.35, 5.36 and 5.37, the real and estimated angular velocities of the two

legs are nearly the same. From Figure 5.36 and 5.37, we can see that the velocity errors are

extremely low (≈ 10−4), showing again the effectiveness of the trajectory tracking control. As

the step length increases, the values of the angular velocities increase and vice versa.

In Figure 5.38, the control signals of the swing and stance leg over time during the Upward

Slope Walking Experiment are shown. We can see that at the beginning of each walking step,

a larger torque should be input to the robot to realize dynamic walking, and with the input

of the torque, the kinetic and potential energy are reasonably converted into driving energy;

thereafter. only a small energy input can complete a walking step. The impact of the small
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Figure 5.36: Angular velocity errors of the Leg 1 during the Upward Slope Walking Experiment
- Decrease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.37: Angular velocity errors of the Leg 2 during the Upward Slope Walking Experiment
- Decrease & Conquer Feedback Control utilizing Direct Collocation.

inaccuracies on the estimation of the velocity signals and the disturbances is an increase of the

ACOT by just 0.7%.

In Figure 5.39, the plot of Ground Reaction Forces (Vertical component: Normal Force, and

horizontal component: Friction force) experienced during the Upward Slope Walking Experi-

ment, are shown. In biomechanics, that plot is called butterfly diagram, due to the fact that the

two peaks of the Normal Force look like the wings of a butterfly. As the step length increases,

the values of the Ground Reaction Forces increase and vice versa.

More specifically, in the first moment (time step) of each walking step, the new stance leg, due to

the experienced Heel Strike Forces a moment before, tries to adjust posture to support dynamic

walking, resulting in higher torque and thus leading to the first peak of the Normal Force. From
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Figure 5.38: Control Signals τ1, τ2 during the Downward Slope Walking Experiment - Decrease
& Conquer Feedback Control utilizing Direct Collocation.

the next time step till the 25 % of the walking step, the Normal Force is decreasing, due to

the adjusted posture of the stance leg, leading to a smaller required torque to keep balancing.

From that moment till the 50% of the walking step, we have an increase in the Normal Force,

due to the fact that the stance leg becomes more vertical with the ground and at the half of

the walking step the stance leg is completely vertical with it, supporting the whole weight of

the robot, and resulting in the second peak of the Normal Force (this intermediate phase of the

walking step is called midstance phase). From that moment till the end of the walking step, the

Normal Force is decreasing (and it approaches zero), as the stance leg tends to be less vertical

with the ground and the swing leg tends to approach the ground, taking an actual role for the

support of the robot weight, both preparing to switch roles after the effects of the Push-Off

and Heel Strike Phases. The Normal Force, throughout the entire walking step, is positive.

Regarding the values of the Friction Force, from the first time step of a walking step till the

10% of it, the friction force is decreasing and negative (at the 10% of the walking step we have

a negative peak of the Friction force), due to the braking direction of the stance leg, resulting

the Friction Force to act a backward (negative) force. From that moment till the 50% of the

walking step, as we approach the midstance phase, the Friction Force is increasing (at the 50%

of the walking step we have a positive peak of the Friction Force) as the stance leg becomes

more vertical with the ground and tends to move in a more propulsive direction. From the 50%

of the walking step, till the completion of it, the stance leg keeps its propulsive direction, and
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waits for the Push-Off and Heel Strike Phases to take effect and switch roles with the swing

leg, thus the friction force tends to zero.

Figure 5.39: Ground Reaction Forces during the Upward Slope Walking Experiment - Decrease
& Conquer Feedback Control utilizing Direct Collocation.

In Figure 5.40, the Instantaneous Push-Off Impulses applied furing the Upward Slope Walking

experiment, are shown. A Push-Off Impulse, as we have mentioned in previous Chapters, is

required for the stance leg to be detached from the ground, while adding the required energy

for the biped robot to be stabilized after the energy losses of the Heel Strike Phase. As the

step length increases, the values of the Push-Off Impulse increase and vice versa.

Figure 5.40: Push-Off Impulses during the Upward Slope Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.
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5.5 Down/Up Stairs Walking Experiment

In the current simulation we let the 4-DOF Biped walk down/up stairs. The related parameters

of the particular experiment are given below:

1. H = 11 walking steps,

2. M = 70kg,

3. m1 = m2 = 35kg,

4. The duration of a walking step : 0.7343 seconds,

5. a = b = 0.5m, l = 1m,

6. (L1 = 1m, H1 = 0.6m ⇔ D1 = 1.166m, θ1 = 52.96 deg), (L2 = 1.4m, H2 = 0.6m ⇔

D2 = 1.56m, θ2 = 26.18 deg), (L3 = 1.5m, H3 = 0.8m⇔ D3 = 1.7m, θ3 = 28.07 deg), (L4 =

1.2m, H4 = 0.4m ⇔ D4 = 1.2649m, θ4 = 18.43 deg), (L5 = 1.1m, H5 = 0.5m ⇔

D5 = 1.208m, θ5 = 24.41 deg), (L6 = 0.9m, H6 = −0.8m ⇔ D6 = 1.204m, θ6 =

−41.63 deg), (L7 = 0.8m, H7 = −1m ⇔ D7 = 1.28m, θ7 = −51.32 deg), (L8 =

0.75m, H8 = −0.7m ⇔ D8 = 1.029m, θ8 = −43.21 deg), (L9 = 0.6m, H9 = −0.6m ⇔

D9 = 0.84m, θ9 = −44.42 deg), (L10 = 0.5m, H10 = −0.6m ⇔ D10 = 0.781m, θ10 =

−50.19 deg), (L11 = 0.2m, H11 = −0.4m⇔ D11 = 0.44m, θ11 = −62.96 deg)

7. Initial conditions: q1 = 0.2843rad, q2 = −0.2893rad, q̇1 = −1.4201rad/s, q̇2 = −0.4906rad/s,

q3 = 0m, q4 = 0m, q̇3 = 0m/s, q̇4 = 0m/s,

8. For the disturbances, we use the following parameter values: Fc1 = Fc2 = 7 Nm, Fc3 =

Fc4 = 6.5h(i) Ns, fv1 = fv2 = 8.5 Nm/(rad/s), Fv3 = Fv4 = 7h(i) Ns/(m/s), Fs1 =

Fs2 = 10.5 Nm, Fs3 = Fs4 = 6h(i) Ns, vs1 = vs2 = 0.21 rad/s, vs3 = vs4 = 0.06 m/s.

In Figure 5.41, we show the overall results of the Down/Up Stairs Walking experiment. More

specifically, we show the Average Cost Of Transport ( 1
H

∑H
i=1COT

(i)) of the H=11 desired

trajectories of the biped, subject to the number of points/time steps (N) that approximate the
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desired trajectory of each walking step, for all the abovementioned Gait Generation Problem

solving approaches. The red coloured results indicate the minimum Average Cost Of Transport

(lower is better) achieved by a particular method. We have verified the results by reconducting

the expreriment numerous times, proving the convergence of the results to the values of the

Figure.

Figure 5.41: Average Cost of Transport (ACOT) for the Down/Up Stairs Walking Experiment.

As we can see, the Decrease & Conquer Approach is extremely effective:

1. Regarding the One Phase based Methods, Discrete Mechanics needs at least 180 points

to achieve an ACOT of 0.1484, while Direct Collocation needs at least the same number

of points (140) to achieve an ACOT of 0.1285.

2. Regarding the commercial package SNOPT, it needs at least 200 points to achieve an



5.5. Down/Up Stairs Walking Experiment 137

ACOT of 0.099.

3. Regarding the Decrease & Conquer based Methods, Discrete Mechanics need only 110

points to achieve an ACOT of 0.0632, while Direct Collocation needs only 110 points

also to achieve an ACOT of 0.039. Thus, the Decrease & Conquer approach achieves the

lowest possible values of energy consumption (subject to each variant) for the Down/Up

Stairs Walking experiment.

In Figure 5.42, we show the lower and upper bounds of the Cost of Transport that observed

throughout the abovementioned Down/Up Stairs Walking Expreriment, subject to the various

tested solving methods. This is to prove that, during the experiment and particularly for the

proposed approach, there were not any extremely high values of COT that were averaged with

smaller ones, but the resulted values were in the domain of the minimal possible ACOT for

each tested approach.

Figure 5.42: Lower and Upper Bounds of Cost of Transport (COT) for the Down/Up Stairs
Walking Experiment.

In Figure 5.43, the energy savings of the Decrease & Conquer based Methods, in comparison

with the One-Phase based ones, are shown.

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 10.29% (forN = 20) - 84.21% (for N = 110), in comparison with the One

Phase based related Method, while the Decrease & Conquer based Direct Collocation Method

achieves energy savings between 13.77% (for N = 10) - 89.96% (for N = 110), in comparison

with the One Phase based related Method.
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Figure 5.43: Energy Savings of Decrease and Conquer Variants in comparison with One Phase
Related Variants, for the Down/Up Stairs Walking Experiment (Percentage).

In Figure 5.44, the energy savings of the Decrease & Conquer based Methods, in comparison

with SNOPT, are shown.

As we can see, the Decrease & Conquer based Discrete Mechanics Method achieves energy

savings between 4.58% (for N = 10) - 82.26% (for N = 110), in comparison with SNOPT, while

the Decrease & Conquer based Direct Collocation Method achieves energy savings between 10%

(for N = 30) - 89.05% (for N = 110), in comparison with it.

Now we will show the plots of the 4-DOF biped robot, for N=110, which is the number of

points where the Decrease & Conquer Feedback Control utilizing Direct Collocation Method

achieves the lowest possible ACOT in the Down/Up Stairs Walking Experiment. Due to the fact

that the Decrease & Conquer Feedback Control utilizing Discrete Mechanics Method results in

similar results, only the results of the First Approach will be presented. Next, the actual plots

of the 4-DOF Biped Robot, will be shown, under missing velocity signals and disturbances. In
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Figure 5.44: Energy Savings of Decrease and Conquer Variants in comparison with SNOPT,
for the Down/Up Stairs Walking Experiment (Percentage).

addition, we assume that Leg 2 initially starts the walking process, thus it is the swing leg for

the first walking step.

In Figure 5.45, the plots of desired and actual angles of the two Legs over time are shown. In

addition, in Figures 5.46 and 5.47, the plots of the position errors over time are depicted.

From Figure 5.45, at each walking step, it can be seen that the angular displacement of the

swing leg gradually increases over time. Some moments before the completion of each walking

step (Heel Strike Moment), the angular displacement of the swing leg reaches the maximum,

and then the swing leg swings back. When human stride reaches the maximum during walking,

a swinging back process also occurs, which is consistent with the mechanism of the human

movement. The angular displacement of the stance leg monotonically decreases, and when

t=0.7343 sec (Heel Strike Moment), thw swing leg is in collision with the ground and the two

legs switch roles. As the step length increases, the values of the angular displacements increase

and vice versa.
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Figure 5.45: Desired and actual angles during the Down/Up Stairs Walking Experiment - De-
crease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.46: Position error during the Down/Up Stairs Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

Furthermore, the desired and actual angular displacements of the two legs are nearly the same.

From Figure 5.46 and 5.47, we can see that the position errors are extremely low (≈ 10−4),

showing the effectiveness of the implemented trajectory tracking control.

In Figure 5.48, the plot of real and estimated angular velocities of the two legs over time is

shown. In addition, in Figures 5.49 and 5.50, the plots of the velocity errors over time are

depicted.

Based on Figures 5.48, 5.49 and 5.50, the real and estimated angular velocities of the two legs are

nearly the same. From Figure 5.49 and 5.50, we can see that the velocity errors are extremely

low (≈ 10−3 − 10−4), showing again the effectiveness of the trajectory tracking control. As the

step length increases, the values of the angular velocities increase and vice versa.
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Figure 5.47: Position error during the Down/Up Stairs Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.

Figure 5.48: Real and estimated angular velocities during the Upward Slope Walking Experiment
- Decrease & Conquer Feedback Control utilizing Direct Collocation.

In Figure 5.51, the control signals of the swing and stance leg over time during the Down/Up

Stairs Walking Experiment are shown. We can see that at the beginning of each walking step,

a larger torque should be input to the robot to realize dynamic walking, and with the input

of the torque, the kinetic and potential energy are reasonably converted into driving energy;

thereafter. only a small energy input can complete a walking step. The impact of the small

inaccuracies on the estimation of the velocity signals and disturbances is an increase of the

ACOT by just 1.2%.
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Figure 5.49: Angular velocity errors of the Leg 1 during the Upward Slope Walking Experiment
- Decrease & Conquer Feedback Control utilizing Direct Collocation.

Figure 5.50: Angular velocity errors of the Leg 2 during the Upward Slope Walking Experiment
- Decrease & Conquer Feedback Control utilizing Direct Collocation.

In Figure 5.52, the plot of Ground Reaction Forces (Vertical component: Normal Force, and

horizontal component: Friction force) experienced during the Down/Up Stairs Walking Ex-

periment, are shown. In biomechanics, that plot is called butterfly diagram, due to the fact

that the two peaks of the Normal Force look like the wings of a butterfly. As the step length

increases, the values of the Ground Reaction Forces increase and vice versa.

More specifically, in the first moment (time step) of each walking step, the new stance leg, due to

the experienced Heel Strike Forces a moment before, tries to adjust posture to support dynamic

walking, resulting in higher torque and thus leading to the first peak of the Normal Force. From

the next time step till the 25 % of the walking step, the Normal Force is decreasing, due to

the adjusted posture of the stance leg, leading to a smaller required torque to keep balancing.
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Figure 5.51: Control Signals τ1, τ2 during the Down/Up Stairs Walking Experiment - Decrease
& Conquer Feedback Control utilizing Direct Collocation.

From that moment till the 50% of the walking step, we have an increase in the Normal Force,

due to the fact that the stance leg becomes more vertical with the ground and at the half of

the walking step the stance leg is completely vertical with it, supporting the whole weight of

the robot, and resulting in the second peak of the Normal Force (this intermediate phase of the

walking step is called midstance phase). From that moment till the end of the walking step, the

Normal Force is decreasing (and it approaches zero), as the stance leg tends to be less vertical

with the ground and the swing leg tends to approach the ground, taking an actual role for the

support of the robot weight, both preparing to switch roles after the effects of the Push-Off

and Heel Strike Phases. The Normal Force, throughout the entire walking step, is positive.

Regarding the values of the Friction Force, from the first time step of a walking step till the

10% of it, the friction force is decreasing and negative (at the 10% of the walking step we have

a negative peak of the Friction force), due to the braking direction of the stance leg, resulting

the Friction Force to act a backward (negative) force. From that moment till the 50% of the

walking step, as we approach the midstance phase, the Friction Force is increasing (at the 50%

of the walking step we have a positive peak of the Friction Force) as the stance leg becomes

more vertical with the ground and tends to move in a more propulsive direction. From the 50%

of the walking step, till the completion of it, the stance leg keeps its propulsive direction, and

waits for the Push-Off and Heel Strike Phases to take effect and switch roles with the swing

leg, thus the friction force tends to zero.
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Figure 5.52: Ground Reaction Forces during the Down/Up Stairs Walking Experiment - De-
crease & Conquer Feedback Control utilizing Direct Collocation.

In Figure 5.53, the Instantaneous Push-Off Impulses applied furing the Down/Up Stairs Walk-

ing experiment, are shown. A Push-Off Impulse, as we have mentioned in previous Chapters,

is required for the stance leg to be detached from the ground, while adding the required energy

for the biped robot to be stabilized after the energy losses of the Heel Strike Phase. As the

step length increases, the values of the Push-Off Impulse increase and vice versa.

Figure 5.53: Push-Off Impulses during the Down/Up Stairs Walking Experiment - Decrease &
Conquer Feedback Control utilizing Direct Collocation.
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5.6 Energetics of Bipedal Robot Locomotion

Walking robots with different mechanical parameters, such as mass and length distribution,

have different walking performance. This leads us to believe that for designing energy-optimal

bipedal robot locomotion, the study and optimization of mechanical parameters is also an

important issue as the study of walking gait features.

Thus, in the current subchapter we will investigate the effect of the mechanical parameters

(mass and length distribution) on the energy efficiency of walking. In addition, we will study

the energetic walking gait features with the combinations of walking speed (Vi) and step length

(Di). Such an interesting simulation study can lead to very important insights regarding the

dynamics of walking and its related energetic gait features.

The non-dimensional parameters of the mass and length distribution are defined as:


Rm = m(leg)/M,

Rl = b/l

(5.1)

where the mass distribution parameter Rm is the ratio of the mass of a leg and the mass of the

hip, and the length distribution parameter Rl is the ratio of the distance between the center of

mass of a leg and the hip, and the leg length. The Cost of Transport, which is subjected to the

constraints Di and Vi, is calculated by varying one of the two distribution parameters, while

another is fixed. In the following figure, the range of parameters used in the current study

(in addition with the parameters for the experiments of the previous subchapters) are shown,

taking into account biological parameter features.

All the current simulations are done for N=110, which is the largest value of N for which the

Decrease & Conquer Feedback Control utilizing Direct Collocation achieves the least possible

value of Cost of Transport for each carried experiment. Due to the fact that the Decrease &

Conquer Feedback Control utilizing Discrete Mechanics Method results in similar results, only

the results of the First Approach will be presented. Based on Figure 5.54, the parameters for

the following simulations are non-dimensionalized.
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Figure 5.54: Parameters for the current study and experiments.

In particular, we have initialized over 8000 biped robots with a variety of parameters. Then

we let each one walk in the four types of terrain similar to the experiments in the previous

subchapters. For Forward Walking, each biped runs 15 simulations of 80 walking steps of

different step lengths and average walking speeds. For Walking on a Upward/Downward Slope

and Stairs, each biped runs 15 simulations in a variety of step lengths, average walking speeds,

step heights and slope/stair angles. The effect of a particular step height, Hi, for the Down/Up

Stairs Experiments, is similar with the effects of the slope angle, while the effect of Hi is on;y

0.1− 0.45% greater in comparison with the effect of the related slope angles and step lengths.

Thus, it is not considered a biomechanical parameter in the current study.

For studying the effects of the mass distribution parameter Rm on the Cost of Transport

(COT), we choose two representative fixed values in the range of length distribution parameter

Rl. These values are Rl = 0.3 and 0.6.

Figure 5.55 shows the COT as a function of Rm with various step lengths and a fixed walking

speed of V=0.4 and Rl = 0.3, while Figure 5.56 shows a sectional plot of the COT subject to

Rm with fixed step length D, and Figure 5.57 shows the effect of the slope angle θ in the COT

of Figure 5.55 and 5.56.

Furthermore, Figure 5.58 shows the COT as a function of Rm with various step lengths and

a fixed walking speed of V=0.6 and Rl = 0.3, while Figure 5.59 shows a sectional plot of the

COT subject to Rm with fixed step length D, and Figure 6.60 shows the effect of the slope
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Figure 5.55: The effects of Rm on COT with fixed Rl=0.3 and V=0.4.

angle θ in the COT of Figure 5.58 and 5.59.

Based on Figures 5.55, 5.56, 5.58 and 5.59, we can see that the COT increases with the increase

of Rm when Rl, V and D are fixed. For a certain set of Rl and V , there will be a corresponding

range of D, in which the COT is nearly minimal and Rm has little effect on the value of COT.

As the step length D increases, the effect of Rm on COT becomes larger and more obvious.

Figures 5.57 and 5.60 show that for a negative slope angle (θ < 0) we have a decrease on the

values of COT in the abovementioned Figures, from 0.9 to 26.8% for the first case and from

0.3 to 28.7% for the second case. In addition, for a positive slope angle (θ > 0), we have an

increase on the values of COT in the abovementioned Figures, from 1.2 to 27.8% for the first

case and from 1.9 to 30.3% for the second case.

Figure 5.61 shows the COT as a function of Rm with various step lengths and a fixed walking

speed of V=0.4 and Rl = 0.6, while Figure 5.62 shows a sectional plot of the COT subject to

Rm with fixed step length D, and Figure 5.63 shows the effect of the slope angle θ in the COT

of Figure 5.61 and 5.62.

Figure 6.64 shows the COT as a function of Rm with various step lengths and a fixed walking
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Figure 5.56: The effects of Rm on COT with fixed Rl=0.3 and V=0.4 (Sectional Plot).

speed of V=0.6 and Rl = 0.6, while Figure 5.65 shows a sectional plot of the COT subject to

Rm with fixed step length D, and Figure 5.66 shows the effect of the slope angle θ in the COT

of Figure 5.64 and 5.65.

The values of COT in Figures 5.61, 5.62 and 5.63 follow a similar behaviour as in the Figures

5.55-5.60, with a small difference on the fact that, for very small values of D (e.g. D=0.2 in

Figure 6.62), we have a larger value of COT in comparison with middle-sized step lengths (e.g.

D=0.8 in Figure 6.62). Figure 5.63 shows that for a negative slope angle (θ < 0) we have

a decrease on the values of COT, from 0.73 to 14.7% In addition, for a positive slope angle

(θ > 0), we have an increase on the values of COT, from 4.9 to 20.6%.

Based on Figures 5.64 and 5.65 show clearly that the COT is bigger with short step length

than long step length, which is different at all scales from the abovementioned analyzed figures.

This is becuase the rotational actuator in the swing leg consumes more energy for the provided

torque, under the situation of fast walking speed and short step length. Figure 5.66 shows

that for a negative slope angle (θ < 0) we have a decrease on the values of COT in the

abovementioned Figures, from 0.9 to 9.13%. In addition, for a positive slope angle (θ > 0), we

have an increase on the values of COT, from 0.1 to 10.9%.
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Figure 5.57: Effect of slope angle theta in the COT of Figures 5.55 and 5.56.

Figure 5.67 shows the COT as a function of Rl with various step lengths and a fixed walking

speed of V=0.4 and Rm = 0.3, while Figure 5.68 shows a sectional plot of the COT subject to

Rm with fixed step length D, and Figure 5.69 shows the effect of the slope angle θ in the COT

of Figures 5.67 and 5.68.

Figure 5.70 shows the COT as a function of Rl with various step lengths and a fixed walking

speed of V=0.6 and Rm = 0.3, while Figure 6.71 shows a sectional plot of the COT subject to

Rm with fixed step length D, and Figure 5.72 shows the effect of the slope angle θ in the COT

of Figure 5.70 and 5.71.

In these figures (5.68-5.72) we can see that when the step length D is short, the COT increases

with the increase in Rl. In addition, as Rl increases, the COT in cases of small step length

may become greater than of the COT in cases of middle-valued step lengths (as it can be seen

clearly on Figured 5.70, 5.72). With the increase in D, the curve of the COT versus Rl gets

flat, which indicates that for a certain set of Rm and V , the effect of Rl on COT is also not

so obvious within a range of step length D (as we can see on Figures 5.70, 5.72). In addition,

we can see that, for long step length, the COT gradually increases and then decreases with the

increase in Rl.
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Figure 5.58: The effects of Rm on COT with fixed Rl=0.3 and V=0.6.

In Figure 5.70, we can see that for a negative slope angle (θ < 0) we have a decrease on the

values of COT in the related Figures, from 0.1 to 18.4%. In addition, for a positive slope angle

(θ > 0), we have an increase on the values of COT, from 2.4 to 19.8%.

In Figure 5.72, we can see that for a negative slope angle (θ < 0) we have a decrease on the

values of COT in the related Figures, from 1.1 to 21.4%. In addition, for a positive slope angle

(θ > 0), we have an increase on the values of COT, from 3.4 to 24.55%.

Finally, Figure 5.73 shows the COT as a function of Rl with various step lengths and a fixed

walking speed of V=0.4and Rm = 0.5, while Figure 5.74 shows a sectional plot of the COT

subject to Rm with fixed step length D, and Figure 5.75 shows the effect of the slope angle θ

in the COT of Figure 5.73 and 5.74. In addition, Figure 5.76 shows the COT as a function of

Rl with various step lengths and a fixed walking speed of V=0.6 and Rm = 0.5, while Figure

5.77 shows a sectional plot of the COT subject to Rm with fixed step length D, and Figure

5.78 shows the effect of the slope angle θ in the COT of Figure 5.76 and 5.77.
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Figure 5.59: The effects of Rm on COT with fixed Rl=0.3 and V=0.6 (Sectional Plot).

Figure 5.60: Effect of slope angle theta in the COT of Figures 5.58 and 5.59.
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Figure 5.61: The effects of Rm on COT with fixed Rl=0.6 and V=0.4.

Figure 5.62: The effects of Rm on COT with fixed Rl=0.6 and V=0.4(Sectional Plot).
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Figure 5.63: Effect of slope angle theta in the COT of Figures 5.61 and 5.62.

Figure 5.64: The effects of Rm on COT with fixed Rl=0.6 and V=0.6.
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Figure 5.65: The effects of Rm on COT with fixed Rl=0.6 and V=0.6 (Sectional Plot).

Figure 5.66: Effect of slope angle theta in the COT of Figures 5.64 and 5.65.
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Figure 5.67: The effects of Rl on COT with fixed Rm=0.3 and V=0.4.

Figure 5.68: The effects of Rm on COT with fixed Rm=0.3 and V=0.4 (Sectional Plot).
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Figure 5.69: Effect of slope angle theta in the COT of Figures 5.67 and 5.68.

Figure 5.70: The effects of Rl on COT with fixed Rm=0.3 and V=0.6.
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Figure 5.71: The effects of Rm on COT with fixed Rm=0.3 and V=0.6 (Sectional Plot).

Figure 5.72: Effect of slope angle theta in the COT of Figures 5.70 and 5.71.
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Figure 5.73: The effects of Rl on COT with fixed Rm=0.5 and V=0.4.

Figure 5.74: The effects of Rm on COT with fixed Rm=0.5 and V=0.4 (Sectional Plot).
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Figure 5.75: Effect of slope angle theta in the COT of Figures 5.73 and 5.74.
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Figure 5.76: The effects of Rl on COT with fixed Rm=0.5 and V=0.6.

Figure 5.77: The effects of Rm on COT with fixed Rm=0.5 and V=0.6 (Sectional Plot).

As we can see, these Figures behave in a similar way with Figures 5.68-5.72, having only a

greater influence of the Rl on the values of COT, thus larger values of COT.
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Figure 5.78: Effect of slope angle theta in the COT of Figures 5.76 and 5.77.



Chapter 6

Conclusion and Future Work

In the current thesis we proposed a novel approach for calculation of energy-optimal trajec-

tories and effective trajectory tracking control for bipedal robot locomotion, called Decrease

and Conquer Feedback Control. The proposed system consists of the Gait Generation and

Trajectory Tracking Control Modules. We also developed two variants of the proposed system,

based on two discretization mehods: Direct Collocation and Discrete Mechanics.

The Decrease and Conquer Gait Generation Module (Direct Collocation/Discrete Mechanics)

turns out to calculate the most energy efficient trajectories for the complete 4-DOF biped robot,

in comparison with the related One Phase methods and the high performance commercial solver

SNOPT. In particular, in the majority of the experiments, the Decrease and Conquer Approach

requires less than half of the grid points to calculate energy-optimal trajectories. The other

methods need at least twice as many grid points to calculate a suboptimal trajectory. The

Direct Collocation method calculates always the most energy efficient trajectories.

The Trajectory Tracking Control Module turns out to apply a very effective tracking control

scheme, under missing velocity signals and disturbances. As we have seen on Chapter 4, the

small inaccuracies in the estimation of the velocities and disturbances (error of ≈ 10−3− 10−4)

have minimal impact on the final energy consumption of the walking step (≤ 1.2%).

There are several directions in which we would like to extend our work. The main ones are
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presented below:

1. The use and evaluation of a different robot model in the proposed system architecture,

e.g. of a 5-link (7-DOF) biped robot model etc.

2. Implementation of a Decrease and Conquer approach utilizing other discretization meth-

ods (single/multiple shooting, adjoint methods etc.)

3. Utilization of code parallelism for the solution of the Gait Generation problems of the

Second Phase.

4. Evaluation of the proposed system in more complex environments.

5. Real-time implementation of the proposed system.

6. Application of a Decrease and Conquer Approach for Gait Generation problems in other

domains.
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Chapter 8

Appendix A: Modeling & Control of

Lagrangian Mechanical Systems

8.1 Analytical Mechanics / Lagrangian mechanics

8.1.1 Introduction

Lagrangian mechanics is a reformulation of classical mechanics. In Lagrangian mechanics, the

trajectory of a system of particles is derived by solving the Lagrange equations in one of two

forms, either the Lagrange equations of the first kind, which treat constraints explicitly as

extra equations, often using Lagrange multipliers; or the Lagrange equations of the second

kind, which incorporate the constraints directly by judicious choice of generalized coordinates.

In each case, a mathematical function called the Lagrangian is a function of the generalized

coordinates, their time derivatives, and time, and contains the information about the dynamics

of the system.

In Newtonian Mechanics, Newton’s laws can include non-conservative forces like friction, how-

ever they must include constraint forces explicitly and are best suited to Cartesian coordinates.

Lagrangian mechanics is ideal for systems with conservative forces and for bypassing constraint

forces in any coordinate system. Dissipative and driven forces can be accounted for by splitting

169
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the external forces into a sum of potential and non-potential forces, leading to a set of modified

Euler-Lagrange (EL) equations. Generalized coordinates can be chosen by convenience, to ex-

ploit symmetries in the system or the geometry of the constraints, which may simplify solving

for the motion of the system. Lagrangian mechanics also reveals conserved quantities and their

symmetries in a direct way, as a special case of Noether’s theorem.

8.1.2 Holonomic constraints and degrees of freedom

Consider a system of N particles in two dimensional space, each with position vector r(t) for

i = 1, . . . , N . Note that each ri(t) ∈ R2 is a 2-vector. We thus need 2N coordinates to specify

the system, this is the configuration space. Newton’s second law tells us that the equation of

motion for the i− th particle is:

ṗi = F ext
i + F con

i (8.1)

for i = 1, . . . , N . Here pi = mivi is the linear momentum of the ith particle and vi = ṙi is its

velocity. We decompose the total force on the ith particle into an external force F ext
i and a

constraint force F con
i . By external forces we imagine forces due to gravitational attraction or

an electromagnetic field, and so forth.

By a constraint on a particles we imagine that the particle’s motion is limited in some rigid

way. For example the particle/bead may be constrained to move along a wire or its motion is

constrained to a given surface. If the system of N particles constitute a rigid body, then the

distances between all the particles are rigidly fixed and we have the constraint

|ri(t)− rj(t)|= cij, (8.2)

for some constants cij, for all i, j = 1, . . . , N . All of these are examples of holonomic constraints.

Definition 1 (Holonomic constraints). For a system of particles with positions given by

r(t) for i = 1, . . . , N , constraints that can be expressed in the form:

g(r1, . . . , rN , t) = 0 (8.3)
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are said to be holonomic. Note they only involve the configuration coordinates.

We will only consider systems for which the constraints are holonomic. Systems with constraints

that are non-holonomic are: gas molecules in a container (the constraint is only expressible as

an inequality); or a sphere rolling on a rough surface without slipping (the constraint condition

is one of matched velocities).

Let us suppose that for the N particles there are m holonomic constraints given by:

gk(r1, . . . , rN , t) = 0 (8.4)

for k = 1, . . . ,m. The positions ri(t) of all N particles are determined by 2N coordinates.

However due to the constraints, the positions ri(t) are not all independent. In principle, we can

use the m holonomic constraints to eliminate m of the 2N coordinates and we would be left

with 2N −m independent coordinates, i.e. the dimension of the configuration space is actually

2N −m.

Definition 2 (Degrees of freedom). The dimension of the configuration space is called the

number of degrees of freedom.

Thus we can transform from the previous coordinates r1, . . . , rN to new generalized coordinates

q1, . . . , qn where n = 2N −m:

r1 = r1(q1, . . . , qn, t) ,

.

.

.

rN = rN(q1, . . . , qn, t) .

(8.5)
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8.1.3 D’Alembert’s principle

We will firstly restrict ourselves to systems for which the net work of the constraint forces is

zero, i.e. we suppose:
N∑
i=1

F con
i · dri = 0, (8.6)

for every small change dri of the configuration of the system (for t fixed). Recall that the work

done by a particle is given by the force acting on the particle times the distance travelled in

the direction of the force. So here for the ith particle, the constraint force applied is F con
i and

suppose it undergoes a small displacement given by the vector dri. Since the dot product of

two vectors gives the projection of one vector in the direction of the other, the dot product

F con
i · dri gives the work done by F con

i in the direction of the displacement dri.

If we combine the assumption that the net work of the constraint forces is zero with Newton’s

2nd law :

ṗi = F ext
i + F con

i (8.7)

from the last section we find:

∑N
i=1 ṗi · dri =

∑N
i=1(F

ext
i + F con

i ) · dri

⇔
∑N

i=1 ṗi · dri =
∑N

i=1 F
ext
i · dri +

∑N
i=1 F

con
i · dri

⇔
∑N

i=1 ṗi. dri =
∑N

i=1 F
ext
i · dri.

(8.8)

In other words we have
N∑
i=1

(ṗi − F ext
i ) · dri = 0, (8.9)

for every small change dri. This represents D’Alembert’s principle. Note in particular that for

now, no forces of constraint are present.

Remark 1. The assumption that the constraint force does no net work is quite general. It

is true in particular for holonomic constraints. For example, for the case of a rigid body, the

internal forces of constraint do no work as the distances |ri−rj| between particles is fixed, then

d(ri− rj) is perpendicular to ri− rj and hence perpendicular to the force between them which
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is parallel to ri−rj. Similarly for the case of the bead on a wire or particle constrained to move

on a surface–the normal reaction forces are perpendicular to dri.

In his Mécanique Analytique [1788], Lagrange sought a coordinate invariant expression for mass

times acceleration. This lead to Lagrange’s equations of motion. Consider the transformation

to generalized coordinates

ri = ri(q1, . . . , qn, t) (8.10)

for i = 1, . . . , N . If we consider a small increment in the displacements dri then the corre-

sponding increment in the work done by the external forces is

N∑
i=1

F ext
i · dri =

N,n∑
i,j=1

F ext
i ·

∂ri
∂qj

dqj =
n∑
j=1

Qjdqj (8.11)

Here we have used the chain rule

dri =
n∑
j=1

∂ri
∂qj

dqj (8.12)

and we set for j = 1, . . . , n,

Qj =
N∑
i=1

F ext
i ·

∂ri
∂qj

(8.13)

We think of the Qj as generalized forces. We now assume the work done by these forces depends

on the initial and final configurations only and not on the path between them. In other words

we assume there exists a potential function V = V (q1, . . . , qn) such that

Qj = −∂V
∂qj

(8.14)

for j = 1, . . . , n. Such forces are said to be conservative. We define the total kinetic energy to

be

T :=
N∑
i=1

1

2
mi|vi|2 (8.15)

and the Lagrange function or Lagrangian to be

L := T − V. (8.16)
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Theorem 1 (Lagrange’s equations). D’Alembert’s principle is equivalent to the system of

ordinary differential equations

d

dt
(
∂L

∂q̇j
)− ∂L

∂qj
= 0 (8.17)

for j = 1, . . . , n. These are known as Lagrange’s equations of motion.

Proof. The change in kinetic energy mediated through the momentum–the first term in

D’Alembert’s principle–due to the increment in the displace- ments dri is given by

N∑
i=1

ṗi. dri =
N∑
i=1

miv̇i · dri =

N,n∑
i,j=1

miv̇i ·
∂ri
∂qj

dqj (8.18)

From the product rule we know that

d

dt
(vi ·

∂ri
∂qj

) ≡ v̇i ·
∂ri
∂qj

+ vi ·
d

dt
(
∂ri
∂qj

) ≡ v̇i ·
∂ri
∂qj

+ vi ·
∂vi
∂qj

(8.19)

Also, by differentiating the transformation to generalized coordinates we see:

vi ≡
n∑
j=1

∂ri
∂qj

q̇j

∂vi
∂q̇j
≡ ∂ri
∂qj

(8.20)

Using these last two identities we see that

N∑
i=1

ṗi.dri =
∑n

j=1(
∑N

i=1miVi · ∂ri∂qj
)dqj

=
∑n

j=1(
∑N

i=1(
d
dt

(mivi · ∂ri∂qj
)−mivi · ∂vi∂qj

))dqj

=
∑n

j=1(
∑N

i=1(
d
dt

(mivi · ∂vi∂q̇j
)−mivi · ∂vi∂qj

))dqj

=
∑n

j=1(
d
dt

( ∂
∂q̇j

(
∑N

i=1
1
2
mi|vi|2))− ∂

∂qj
(
∑N

i=1
1
2
mi|vi|2))dqj

(8.21)

Hence we see that D’Alembert’s principle is equivalent to

n∑
j=1

(
d

dt
(
∂T

∂q̇j
)− ∂T

∂qj
−Qj)dqj = 0 (8.22)
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Since the qj for j = 1, . . . , n, where n = 2N −m, are all independent, we have

d

dt
(
∂T

∂q̇j
)− ∂T

∂qj
−Qj = 0 (8.23)

for j = 1, . . . , n. Using the definition for the generalized forces Qj in terms of the potential

function V gives the result.

Remark 2 (Configuration space). As already noted, the n-dimensional subsurface of 2N -

dimensional space on which the solutions to Lagrange’s equations lie is called the configuration

space. It is parameterized by the n generalized coordinates q1, . . . , qn.

Remark 3 (Non-conservative forces). If the system has forces that are not conservative it may

still be possible to find a generalized potential function V such that

Qj = −∂V
∂qj

+
d

dt
(
∂V

∂q̇j
) (8.24)

for j = 1, . . . , n. From such potentials we can still deduce Lagrange’s equations of motion. Ex-

amples of such generalized potentials are velocity dependent potentials due to electromagnetic

fields, for example the Lorentz force on a charged particle.

8.1.4 Hamilton’s Principle

We consider mechanical systems with holonomic constraints and all other forces conservative.

Recall, we define the Lagrange function or Lagrangian to be

L = T − V (8.25)

where

T =
N∑
i=1

1

2
mi|vi|2 (8.26)

is the total kinetic energy for the system, and V is its potential energy.

Definition 3 (Action). If the Lagrangian L is the difference of the kinetic and potential
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energies for a system, i.e. L = T − V , we define the action A = A(q) from time t1 to t2, where

q = (q1, . . . , qn)T, to be the functional

A(q) :=

∫ t2

t1

L(q, q̇, t)dt (8.27)

Hamilton [1834] realized that Lagrange’s equations of motion were equivalent to a variational

principle.

Theorem 2 (Hamilton’s principle of least action). The correct path of motion of a

mechanical system with holonomic constraints and conservative external forces, from time t1

to t2, is a stationary solution of the action. Indeed, the correct path of motion q = q(t) , with

q = (q1, . . . , qn)T , necessarily and sufficiently satisfies Lagrange’s equations of motion for

j = 1, . . . , n:

d

dt
(
∂L

∂q̇j
)− ∂L

∂qj
= 0 (8.28)

The abovementioned relation is Hamilton’s form of the principle of least action, because in

many cases the action of q = q(t) is not only an extremal but also a minimum value of the

action functional.

Remark 4 (Non-uniqueness of the Lagrangian). Two Lagrangian’s L1 and L2 that differ by

the total time derivative of any function of q = (q1, . . . , qn)T and t generate the same equations

of motion. In fact if

L2(q, q̇, t) = L1(q, q̇, t) +
d

dt
(f(q, t)) (8.29)

then for j = 1, . . . , n direct calculation reveals that:

d

dt
(
∂L2

∂q̇j
)− ∂L2

∂qj
=

d

dt
(
∂L1

∂q̇j
)− ∂L1

∂qj
. (8.30)

8.1.5 Lagrangian Mechanical Systems with Forcing and Control

Our aim is to optimally control Lagrangian systems. For the description of their dynamics, we

introduce a variational framework including external forcing resulting from dissipation, friction,
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loading and in particular control forces.

Consider an n-dimensional configuration manifold Q with local coordinates q = (q1, . . . , qn)

, the associated state space given by the tangent bundle TQ and a Ck Lagrangian L : TQ →

R, k ≥ 2. Given a time interval [0, T], we consider curves q in the path space C1,1([0, T], Q)4

and the action map G : C1,1([0, T], Q)→ R,

G(q) =

∫ T

0

L(q(t), q̇(t))dt (8.31)

To define control forces for Lagrangian systems, we introduce a control manifold U ⊂ Rm and

define the control path space L∞([O, T], U) with u(t) ∈ U also called the control parameter.

With this notation we define a Lagrangian control force as a map fL : TQ×U → T ∗Q, which is

given in coordinates as fL : (q, q̇, u) 7→ (q, fL(q, q̇, u)) where we assume that the control forces

can also include configuration and velocity dependent forces resulting e.g. from dissipation

and friction. We interpret a Lagrangian control force as a family of Lagrangian forces that

are fiber-preserving maps fuL : TQ → T ∗Q over the identity idQ, i.e. in coordinates fuL :

(q, q̇) 7→ (q, fuL(q, q̇)). Whenever we denote fL(q, q̇, u) as a one-form on TQ, we mean the

family of horizontal one-forms fuL(q, q̇) on TQ induced by the family of fiber-preserving maps

fuL. Given a control path u ∈ L∞([O, T], U) , the Lagrange-d’Alembert principle seeks curves

q ∈ C1,1([0, T], Q) satisfying

δ

∫ T

0

L(q(t), q̇(t))dt+

∫ T

0

fL(q(t), q̇(t), u(t)) · δq(t)dt = 0 (8.32)

where δ represents variations vanishing at the endpoints. The second integral in (2.32) is the

virtual work acting on the mechanical system via the force fL. Integration by parts shows that

this is equivalent to the forced Euler-Lagrange equations

∂L

∂q
(q, q̇)− d

dt
(
∂L

∂q̇
(q, q̇))− fL(q, q̇, u) = 0 (8.33)

These equations implicitly define a family of forced Lagrangian vector fields Xu
L : TQ× [0, T]→

T (TQ) and associated forced Lagrangian flows F u
L : TQ × [O, T] → TQ(u ∈ L∞([O, T], U)
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fixed) .

We distinguish between two notations: When we fix u ∈ U we always consider a family of

Lagrangian control forces fuL. As soon as we consider evolutions given by differential equations

or integrals, instead of fixing only one u ∈ U , we fix an entire curve u ∈ L∞([0, T], U) ,

such that for each time t we use the force fL that corresponds to fL(q(t), q(t), u(t)) . In

particular, by fixing a control path u ∈ L∞([O, T], U) we obtain a non-autonomous system

whose evolution is also dependent on the initial time t0, such that the flow F u
L would be defined

on TQ × [0, T]2 rather than on TQ × [0, T]. In the following we will fix the initial time to

be t0 = 0 so that we do not need to keep track on the initial time in the notation. This is no

restriction since we consider all possible control paths u ∈ L∞([0, T], U) .

The one-form ΘL on TQ given in coordinates by ΘL =
∂L

∂q̇i
dqi is called the Lagrangian one-

form, and the Lagrangian symplectic form ΩL = dΘL is given in coordinates by ΩL(q, q) =

∂2L

∂qi∂q̇j
dqi∧dqj+

∂2L

∂q̇i∂q̇j
dqi∧dqj. Recall that in the absence of forces, the Lagrangian symplectic

form is preserved under the Lagrangian flow.

The Legendre Transform with Forces. Given a Lagrangian L, we can take the standard

Legendre Transform FL : TQ→ T ∗Q defined by

FL(vq) · wq =
d

dε

∣∣∣∣
ε=0

L(vq + εwq) (8.34)

where vq, wq ∈ TqQ, and which has coordinate form FL : (q, q̇) 7→ (q, p) = (q, ∂L/∂q(q, q

and relate Hamiltonian and Lagrangian control forces by fuL = fuH ◦ FL. If we also have a

Hamiltonian H related to L by the Legendre transform as H(q, p) = FL(q, q̇) · q−L(q, q̇) , then

the forced Euler-Lagrange equations and the forced Hamilton’s equations are equivalent. That

is, if Xu
L and Xu

H are the forced Lagrangian and Hamiltonian vector fields, respectively, then

(FL)∗(Xu
H) = Xu

L, cf.

Noether’s theorem with forcing. A key property of Lagrangian flows is their behavior with

respect to group actions. Assume a Lie group G with Lie algebra g acts on Q by the (left

or right) action φ : G × Q → Q. Consider the tangent lift of this action to φTQ : G × TQ
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given by φTQg (vq) = T (φg) · vq. For ξ ∈ g the infinitesimal generators ξQ : Q → TQ and ξTQ

: TQ → T (TQ) are defined by ξQ(q) =
d

dg
(φg(q)) · ξ and ξTQ(vq) =

d

dg
(φTQg (vq)) · ξ, and the

Lagrangian momentum map JL : TQ → g∗ is defined to be JL(vq) · ξ = ΘL · ξTQ(vq) . If the

Lagrangian is invariant under the lift of the action, that is we have L ◦ φTQg = L for all g ∈ G

(we also say, the group action is a symmetry of the Lagrangian), the Lagrangian momentum

map is preserved of the Lagrangian flow in the absence of external forces. We now consider

the effect of forcing on the evolution of momentum maps that arise from symmetries of the

Lagrangian. In [64] it is shown that the evolution of the momentum map from time 0 to time

T is given by the relation

[(JL ◦ (F u
L)T )(q(0), q̇(0))− JL(q(0), q̇(0))] · ξ =

∫ T

0

fuL(q(t), q̇(t)) · ξQ(q(t))dt (8.35)

Equation (2.35) shows, that forcing will generally alter the momentum map. However, in the

special case that the forcing is orthogonal to the group action, the above relation shows that

Noether’s theorem will still hold.

Theorem(forced Noether’s theorem). Consider a Lagrangian system L : TQ → R with

control forcing fL : TQ× U → T ∗Q such that the Lagrangian is invariant under the lift of the

(left or right) action φ : G × Q → Q and {fuL(q, q̇), ξQ(q)〉 = 0 for all (q, q̇) ∈ TQ, u ∈ U and

all ξ ∈ g. Then the Lagrangian momentum map JL : TQ → g∗ will be preserved by the flow,

such that JL ◦ (F u
L)t = JL for all t.

8.1.6 Standard Form of the Euler-Lagrange Equations in a kine-

matic chain

In a kinematic chain, such as a biped robot, each link of the mechanical system can be approx-

imated as a particle with mass mi located at the center of mass of the link. Each particle is

then connected using holonomic constraints on the form hi(q1, . . . , qn) = 0 where q1, . . . , qn

are generalized coordinates measuring the orientation of each link. One possible choice of gen-

eralized coordinates is the absolute angle of each link measured from an axis defined in the
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inertial frame.

Once the appropriate generalized coordinates have been assigned to the system, the holonomic

constraints on the form (2.4) become trivial. The kinetic K(q, q) and potential P(q) energy of

the robot can then easily be derived using the expressions for the generalized coordinates. The

Lagrangian of the mechanical system is then formed as

L(q, q̇) = K(q, q̇)− P(q) (8.36)

where K(q, q) =
1

2
qTM(q)q. Here q ∈ Rn and q̇ ∈ Rn are the vectors of generalized coordinates

and velocities and M(q) ∈ Rn×n is the inertia matrix of the system. The Lagrangian can be

used to obtain a set of differential equations that describe the time evolution of the system by

substituting it into the expression

d

dt
[
∂L(q, q̇)

∂q̇
]− ∂L(q, q̇)

∂q
= B(q)u (8.37)

where B(q) is the applied forces selection matrix, u ∈ Rm is a vector of independent control

inputs. Assuming that the matrix M(q) is symmetric and positive definite for each q ∈ Rn and

that P = P(q) is independent of q, relation (2.38) can be written in a compact matrix form

known as the robot equations of motion

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u (8.38)

where C(q, q) ∈ Rn×n is a matrix of centrifugal and Coriolis terms and G(q) ∈ Rn is the

gravity vector. Using the previously stated assumptions about the Lagrangian, the elements of

the matrices on the left-hand side of (2.8) can be computed as

mkj(q) =
d

dq̇k
[

d

dq̇j
K(q, q̇)] (8.39)

ckj(q, q̇) =
1

2

n∑
i=1

(
∂mkj

∂qi
+
∂mki

∂qj
+
∂mij

∂qk
)q̇i (8.40)
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gk(q) =
∂P(q)

∂qk
(8.41)

where the subscript k is the row and j is the column of the appropriate matrix, and qi, qj

and qk are the appropriate elements of the generalized coordinate vector q. When (2.8) is used

for simulating the dynamics of the mechanical system the equations of motion are usually

reformulated as a state space model with the 2n- dimensional state vector x = [q, q̇]T . The

system can then be stated as system of 2n first order differential equations

ẋ = f(x) + g(x)u

y = h(x)
(8.42)

where y is the measured output.

8.2 Discrete Mechanics

The discrete Lagrangian. Again we consider a configuration manifold Q, and define the

(discrete) state space to be Q × Q. Rather than considering a configuration q and velocity q̇

(or momentum p), we now consider two configurations q0 and q1, which should be thought of

as two points on a curve q which are a time step h > 0 apart, i.e. q0 ≈ q(0) and q1 ≈ q(h) or

generally the points qk and qk+1, where k 7→ k · h and k + 1 7→ k + (1 · h). It can be confirmed

that:

q ≈ (1− α)qk + αqk+1, q̇ ≈ qk+1 − qk
h

(8.43)

where α is an internal division ratio (0 < α < 1) in discrete mechanics.

The manifold Q×Q is locally isomorphic to TQ and thus contains the same amount of informa-

tion. A discrete Lagrangian is a function Ld : Q×Q→ R, which we think of as approximating

the action integral along the exact solution curve segment q between qk and qk+1:

Ld(qk, qk+1) ≈
∫ h

0

L(q(t), q̇(t))dt := hL((1− α)qk + αqk+1,
qk+1 − qk

h
) (8.44)
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We consider the grid {tk = kh|k = 0, . . . , N}, Nh = T , and define the discrete path space

Pd(Q) = {qd : {tk}Nk=0 → Q}. We will identify a discrete trajectory qd ∈ Pd(Q) with its

image qd = {qk}Nk=0, where qk = qd(tk) . The discrete action map Gd : Pd(Q) → R along this

sequence is calculated by summing the discrete Lagrangian on each adjacent pair and defined

by Gd(qd) =
N−1∑
k=0

Ld(qk, qk+1) . As the discrete path space Pd is isomorphic to Q × . . . × Q (

N + 1 copies), it can be given a smooth product manifold structure. The discrete action Gd

inherits the smoothness of the discrete Lagrangian Ld. The tangent space TqdPd(Q) to Pd(Q)

at qd is the set of maps vqd : {tk}Nk=0 → TQ such that τqovqd = qd, which we will denote by

vqd = {(qk, vk)}Nk=0. To complete the discrete setting for forced mechanical systems, we present

a discrete formulation of the control forces introduced in the previous section. Since the control

path u: [0, T] → U has no geometric interpretation, we have to find an appropriate discrete

formulation to identify a discrete structure for the Lagrangian control force.

Discrete Lagrangian control forces. Analogous to the replacement of the path space by

a discrete path space, we replace the control path space by a discrete one. To this end we

consider a refined grid ∆t̃, generated via a set of control points 0 ≤ c1 < . . . < cs ≤ 1 as

4t̃ = {tk` = tk + c`h|k = 0, . . . , N − 1, ` = 1, . . . , s}. With this notation the discrete control

path space is defined to be Pd(U) = {ud : ∆t̃→ U}. We define the intermediate control samples

uk on [tk, tk+1] as uk = (uk1, . . . , uks) ∈ U s to be the values of the control parameters guiding

the system from qk = q(t) to qk+1 = qd(tk+1) , where ukl = u(tkl) for l ∈ {1, . . . , s}. With

this definition of the discrete control path space, we take two discrete Lagrangian control forces

f+
d , f

−
d : Q×Q× U s → T ∗Q, given in coordinates as:

f+
d (qk, qk+1, uk) = (qk+1, f

+
d (qk, qk+1, uk)) , f

−
d (qk, qk+1, uk) = (qk, f

−
d (qk, qk+1, uk)) (8.45)

also called left and right discrete forces. It can be confirmed that:

f+
d (qk, qk+1, vk) = f+

d (α, qk, qk+1, vk) = (1− α)hfL((1− α)qk + αqk+1,
qk+1−qk

h
, uk)

f−d (qk, qk+1, vk) = f−d (α, qk, qk+1, vk) = αhfL((1− α)qk + αqk+1,
qk+1−qk

h
, uk)

(8.46)

where α is an internal variable called internal division ratio.
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Analogously to the continuous case, we interpret the two discrete Lagrangian control forces as

two families of discrete fiber-preserving Lagrangian forces fuk,±d : Q × Q → T ∗Q in the sense

that πQ ◦ fuk,±d = π±Q with fixed uk ∈ U s and with the projection operators π+
Q : Q × Q →

Q, (qk, qk+1) 7→ qk+1 and πQ : Q × Q → Q, (qk, qk+1) 7→ qk. We combine the two discrete

control forces to give a single one-form fukd : Q×Q→ T ∗(Q×Q) defined by

fukd (qk, qk+1) · (δqk, δqk+1) = fuk,+d (qk, qk+1) · δqk+1 + fuk,−d (qk, qk+1) · δqk (8.47)

where fd(qk, qk+1, uk) denotes the family of all one-forms fukd (qk, qk+1) with fixed uk ∈ U s. To

simplify the notation we denote the left and right discrete forces by f±k := f±d (qk, qk+1, uk) ,

respectively, and the pair consisting of both by fk := fd(qk, qk+1, uk) . We interpret the left

discrete force f+
k−1 (and right discrete force f−k , respectively) as the force resulting from the

continuous control force acting during the time span [tk−1, tk](during the time span [tk, tk+1],

respectively) on the configuration node qk.

The discrete Lagrange-d’Alembert principle. As with discrete Lagrangians, the discrete

control forces also depend on the time step h, which is important when relating discrete and

continuous mechanics. Given such forces, we modify the discrete Hamilton’s principle, to the

discrete Lagrange-d’Alembert principle, which seeks discrete curves {qk}Nk=0 that satisfy

δ
N−1∑
k=0

Ld(qk, qk+1) +
N−1∑
k=0

[f−d (qk, qk+1, uk) · δqk + f+
d (qk, qk+1, uk) · δqk+1] = 0 (8.48)

for all variations {δqk}Nk=0 vanishing at the endpoints. This is equivalent to the forced discrete

Euler-Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)− f+
d (qk−1, qk, uk−1)− f−d (qk, qk+1, uk) = 0, k = 1, . . . , N − 1

(8.49)

These equations implicitly define the forced discrete Lagrangian map F
uk−1,uk
Ld

: Q×Q→ Q×Q

for fixed controls uk−1, uk ∈ U s, mapping (qk−1, qk) to (qk, qk+1) . The discrete Lagrangian

one-forms Θ+
Ld

and Θ−Ld
are in coordinates Θ+

Ld
(q0, q1) = D2Ld(q0, q1)dq1 and Θ−Ld

(q0, q1) =

−D1Ld(q0, q1)dq0. In the absence of external forces, the discrete Lagrangian maps inherit
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the properties of symplectic preservation from the continuous Lagrangian flows. That means

the discrete Lagrangian symplectic form ΩLd
= dΘ+

Ld
= dΘ−Ld

is preserved under the discrete

Lagrangian map as (FLd
)∗(ΩLd

) = ΩLd
, if no external forcing is present.

The discrete Legendre transforms with forces. Although in the continuous case we used

the standard Legendre transform for systems with forcing, in the discrete case it is necessary

to take the forced discrete Legendre transforms

Ff+Ld : (q0, q1, u0) 7→ (q1, p1) = (q1, D2Ld(q0, q1) + f+
d (q0, q1, u0))

Ff−Ld : (q0, q1, u0) 7→ (q0, p0) = (q0, −D1Ld(q0, q1)− f−d (q0, q1, u0))
(8.50)

Again, we denote with Ff±Lu0d the forced discrete Legendre transforms for fixed controls u0 ∈

U s. Using these definitions and the forced discrete Euler-Lagrange equations (2.46), we can see

that the corresponding forced discrete Hamiltonian map F̃ u0
Ld

= Ff±Lu1d ◦ F
u0,u1
Ld

◦ (Ff±Lu0d )−1 is

given by the map F̃ u0
Ld

: (q0, p0) 7→ (q1, p1) , where

p0 = −D1Ld(q0, q1)− fu0,−d (q0, q1) , p1 = D2Ld(q0, q1) + fu0,+d (q0, q1) (8.51)

which is the same as the standard discrete Hamiltonian map with the discrete forces added.

One can show that the following two definitions of the forced discrete Hamiltonian map

F̃ u0
Ld

= Ff±Lu1d oF u0,u1
Ld

o(Ff±Lu0d )−1, F̃ u0
Ld

= Ff+Lu0d o(Ff−Lu0d )−1 (8.52)

are equivalent with coordinate expression (2.48). Thus from the second expression in (2.49) it

becomes clear, that the forced discrete Hamiltonian map that maps (q0, p0) to (q1, p1) depends

on u0 only.

The discrete Noether theorem with forcing. As in the unforced case, we can formulate a

discrete version of the forced Noether’s theorem. To this end, the discrete momentum map in

presence of forcing is defined as

Jf+Ld
(q0, q1) · ξ = {Ff+Lu0d (q0, q1), ξQ(q1)}, Jf−Ld

(q0, q1) · ξ = {Ff−Lu0d (q0, q1), ξQ(q0)} (8.53)
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The evolution of the discrete momentum map is described by

[Jf+Ld
◦ (F ud

Ld
)N−1 − Jf−Ld

](q0, q1) · ξ =
N−1∑
k=0

fukd (qk, qk+1) · ξQ×Q(qk, qk+1) (8.54)

Again, in the case that the forcing is orthogonal to the group action we have the unique

momentum map JfLd
: Q×Q→ }∗ and it holds:

Forced discrete Noether’s theorem. Consider a discrete Lagrangian system Ld: Q×Q→ R

with discrete control forces f+
d , f

−
d : Q × Q × U s → T ∗Q such that the discrete Lagrangian is

invariant under the lift of the (left or right) action φ : G × Q → Q and {fukd , ξQ×Q} = 0

for all ξ ∈ g and uk ∈ U s, k ∈ {0, . . . , N − 1}. Then the discrete Lagrangian momentum

map JfLd
: Q × Q → g∗ will be preserved by the discrete Lagrangian evolution map, such that

JfLd
◦ F uk,uk+1

Ld
= JfLd

.

8.3 Geometric Optimal Control of Lagrangian Mechan-

ical Systems

8.3.1 The Continuous Case

On the configuration space Q we consider a mechanical system described by a regular La-

grangian L : TQ→ R. Additionally, assume that a Lagrangian control force acts on the system

and is defined by a map fL : TQ × U → T ∗Q with fL : (q, q̇, u) 7→ (q, fL(q, q̇, u)) and u:

[0, T] → U , the time-dependent control parameter. Note that the Lagrangian control force

may include both dissipative forces within the mechanical system and external control forces

resulting from actuators steering the system.

The Lagrangian optimal control problem. We now consider the following optimal control

problem: During the time interval [0, T ], the mechanical system described by the Lagrangian

L is to be moved on a curve q from an initial state (q(0), q̇(0)) = (q0, q̇0) ∈ TQ to a final state.

The motion is influenced via a Lagrangian control force fL with control parameter u such that
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a given objective functional

J(q, u) =

∫ T

0

C(q(t), q̇(t), u(t))dt+ Φ(q(T), q̇(T)) (8.55)

is minimized. Here C : TQ × U → R and Φ : TQ → R (Mayer term) are continuously

differentiable cost functions. The final state (q(T), q̇(T)) is required to fulfil a constraint

r(q(T), q̇(T), qT, q̇T) = 0 with r : TQ × TQ → Rnr and (qT, q̇T) ∈ TQ given. The motion

of the system is to satisfy the Lagrange-d’Alembert principle, which requires that:

δ

∫ T

0

L(q(t), q̇(t))dt+

∫ T

0

fL(q(t), q̇(t), u(t)) · δq(t)dt = 0 (8.56)

for all variations δq with δq(0) = δq(T) = 0. In many cases, one encounters additional con-

straints on the states and controls given by h(q(t), q̇(t), u(t)) ≥ 0 with h : TQ × U → Rnh ,

where V ≥ 0 for vectors V ∈ Rn holds componentwise. To summarize, we are faced with the

following Lagrangian Optimal Control Problem:

min
q∈C1,1([0,T],Q),u∈L∞([0,T],U)

J(q, u)

s.t.

δ

∫ T

0

L(q(t), q(t))dt+

∫ T

0

fL(q(t), q(t), u(t)) · δq(t)dt = 0

(q(0), q̇(0)) = (q0, q̇0)

h(q(t), q̇(t), u(t)) ≥ 0, t ∈ [0, T]

r(q(T), q̇(T), qT, q̇T) = 0

(8.57)

The interval length T may either be fixed, or appear as degree of freedom in the optimization

problem.

A curve (q, u) ∈ C1,1([0, T], Q)×L∞([O, T], U) is feasible, if it fulfills the constraints (2.54).

The set of all feasible curves is the feasible set of (2.54). A feasible curve (q∗, u∗) is an optimal

solution of (2.54), if J(q∗, u∗) ≤ J(q, u) for all feasible curves (q, u) . An feasible curve (q∗, u∗)

is a local optimal solution, if J(q∗, u∗) ≤ J(q, u) in a neighborhood of (q∗, u∗) . The function

q∗ is called (locally) optimal trajectory, and u∗ is the (locally) optimal control.
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8.3.2 The discrete case

For the discrete solution we need a discretized version of (2.54). To this end we formulate an

optimal control problem for the discrete mechanical system described by discrete variational

mechanics introduced in subchapter 2.2. To obtain a discrete formulation, we replace each

expression in (2.54) by its discrete counterpart in terms of discrete variational mechanics. As

described in Section 1.2, we replace the state space TQ of the system by Q × Q and apath

q : [0, T] → Q by adiscrete path qd : {0, h, 2h, . . . , Nh = T} → Q with qk = qd(kh) .

Analogously, the continuous control path u : [0, T]→ U is replaced by a discrete control path

ud : ∆t̃→ U(writing uk = (ud(kh+ c`h))s`=1 ∈ U s) .

The discrete Lagrange-d’Alembert principle. Based on this discretization, the action

integral in (2.2) is approximated on a time slice [kh, (k + 1)h] by the discrete Lagrangian Ld

: Q × Q → R, Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L(q(t), q̇(t))dt, and likewise the virtual work by the

left and right discrete forces, f−k · δqk + f+
k · δqk+1 ≈

∫ (k+1)h

kh

fL(q(t), q̇(t), u(t)) · δq(t)dt, where

f−k , f
+
k ∈ T ∗Q. As introduced in equation (1.8), the discrete version of the Lagrange-d’Alembert

principle (2.2) requires one to find discrete paths {qk}Nk=0 such that for all variations {δqk}Nk=0

with δq0 = δqN = 0, one has the discrete Lagrange-d’Alembert principle (1.8), or, equivalently,

the forced discrete Euler-Lagrange equations (1.9).

Boundary conditions. In the next step, we need to incorporate the boundary conditions

q(0) = q0, q̇(0) = q̇0 and r(q(T), q̇(T), qT, q̇T) = 0 into the discrete description. Those on the

configuration level can be used as constraints in a straightforward way as q0 = q0. However,

since in the present formulation velocities are approximated in a time interval [tk, tk+1] (as

opposed to an approximation at the time nodes), the velocity conditions have to be transformed

to conditions on the conjugate momenta. These are defined at each time node using the

discrete Legendre transform. The presence of forces at the time nodes has to be incorporated

into that transformation leading to the forced discrete Legendre transforms Ff
−
Ld and Ff+Ld

defined in (1.10). Using the standard Legendre transform FL : TQ → T ∗Q, (q, q̇) 7→ (q, p) =
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(q, D2L(q, q̇)) leads to the discrete initial constraint on the conjugate momentum

D2L(q0, q̇0) +D1Ld(q0, q1)− f−d (q0, q1, u0) = 0 (8.58)

As shown in the previous section, we can transform the boundary condition from a formulation

with configuration and velocity to a formulation with configuration and conjugate momentum.

Thus, instead of considering a discrete version of the final time constraint r on TQ we use a

discrete version of the final time constraint r on T ∗Q. We define the discrete boundary condition

on the configuration level to be rd: Q×Q× U s × TQ→ Rnr ,

rd(qN−1, qN , uN−1, q
T, q̇T) = r(Ff+Ld(qN−1, qN , uN−1), FL(qT, q̇T)) (8.59)

i.e. we used (qN , pN) = Ff+Ld(qN−1, qN , uN−1) and (qT, pT) = FL(qT, q̇T) , that is pN =

D2Ld(qN−1, qN) +f+
d (qN−1, qN , uN−1) and pT = D2L(qT, q̇T) . Notice that for the simple final

velocity constraint q̇(T)− q̇T = 0, we obtain for the transformed condition on the momentum

level r(q(T), p(T), qT, pT) = p(T)− pT the discrete constraint:

−D2L(qT, q̇T) +D2Ld(qN−1, qN)− f+
d (qN−1, qN , uN−1) = 0 (8.60)

which together with equation (2.8) constitute the boundary constraints on momentum level.

Discrete path constraints. Opposed to the final time constraint we approximate the path

constraint in (2.3d) on each time interval [tk, tk+1] rather than at each time node. Thus,

we maintain the formulation on the velocity level and replace the continuous path constraint

h(q(t), q̇(t), u(t)) ≥ 0 by a discrete path constraint hd : Q × Q × U s → Rsnh which suitably

approximate the continuous constraint pointwise (see Sect. 2.4) with hd(qk, qk+1, uk) ≥ 0, k =

0, . . . , N − 1.

Discrete objective function. Similar to the Lagrangian we approximate the objective func-

tional in (2.1) on the time slice [kh, (k+1)] by Cd(qk, qk+1, uk) ≈
∫ (k+1)h

kh

C(q(t), q̇(t), u(t))dt.

Analogously to the final time constraint, we approximate the final condition via a discrete ver-
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sion Φd : Q×Q× U s → R yielding the discrete objective function

Jd(qd, ud) =
N−1∑
k=0

Cd(qk, qk+1, uk) + Φd(qN−1, qN , uN−1) (8.61)

The discrete optimal control problem. In summary, after performing the above discretiza-

tion steps, one is faced with the following discrete optimal control problem.

min
(qd,ud)∈Pd (Q)×7Pd (U)

Jd(qd, ud)

s.t.

q0 = q0

D2L(q0, q̇0) +D1Ld(q0, q1)− f−0 = 0

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)− f−k − f
+
k = 0, k = 1, . . . , N − 1

hd(qk, qk+1, uk) ≥ 0, k = 0, . . . , N − 1

rd(qN−1, qN , uN−1, q
T, qT) = 0

(8.62)

8.3.3 Numerical Optimization Methods for Trajectory Generation

One of the most important issues of biped locomotion is the generation of trajectories(gaits)

that ensure ultimate stability with specific constraints, e.g. extremely low energy consumption.

Optimization based methods for Gait Generation utilize optimal control theory. In general,

the optimal control can be classified as: dynamic programming, indirect methods and direct

methods.

Although the dynamic programming is less sensitive to the initial guess of the design parameters,

it suffers from the curse of dimensionality. The indirect approach represented by Pontryagin

Maximum Principle demands necessary conditions for optimality, which results in nonlinear,

two-boundary value problem. However, the computational solution may lead to highly nonlinear

ODEs. Obtaining necessary conditions of optimality can be intricate for complex dynamic

systems such as biped robot. In addition, the direct and indirect methods are very sensitive to

the initial guess of the costate equations.
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An important step is to the above direction is to find more flexible methods for optimal control

problems, represented by the direct methods, by transcribing the infinite dimension problem

into finite-dimensional nonlinear programming(static or parameter optimization). This can be

implemented by discretization of the controls or the states or both of them, depending on the se-

lected discretization approach, and solving the problem using one of the nonlinear programming

algorithms such as sequential quadratic programming (SQP), interior point methods, genetic

algorithm (GA) etc. Although robustness, this method can only give suboptimal/approximate

solution. The 2-Phases Gait Generation Module developed in the current thesis solves the

abovementioned problem, giving stable, optimal, energy efficient gaits.

8.3.4 Forward-Dynamics Based Optimization

The formulation of the original optimal control problem can be described as follows:

Minimize:

J = c0(x, t) +

∫ tf

t1

L(x(t), u(t), t)dt (8.63)

Subject to:

ẋ = f(x(t), u(t), t) (8.64)

a1(x(t0), u(t0), t0) ≤ 0

a2(x(t0), u(t0), t0) = 0
(8.65)

b1(x(tf ), u(tf ), tf ) ≤ 0

b2(x(tf ), u(tf ), tf ) = 0
(8.66)

c1(x(t), u(t), t) ≤ 0

c2(x(t), u(t), t) = 0
(8.67)

ul ≤ u(t) ≤ uu

xl ≤ x(t) ≤ xu

(8.68)

where u ∈ Rn is the input control vector, c0 and L are scalar functions of the indicated

arguments, J is a scalar performance index, x ∈ Rn is the state vector, t, t1 and tf are the
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time, initial and final time respectively, a1 and a2 are the initial constraints, b1 and b2 are the

final constraints, c1 and c2 are the path constraints and (2.68) refer to the bound constraints

of the input control and the states.

The formulation of discretized optimal control problem can be described as a nonlinear pro-

gramming as follows:

Minimize:

J = c0(x(tN)) +
N∑
k=1

lk(x(tk), u(tk), tk)∆t (8.69)

where N is the number of the time steps, N − 1 is the number of time intervals and ∆t =

(tf − t1)/(N − 1). Equation (2.69) can be solved by a numerical integration approach such as

trapezoidal or composite Simpson’s rule etc.

Subject to:

Z(Y) = 0

Cl ≤ C(Y) ≤ Cu

Yl ≤ Y ≤ Yu

(8.70)

Direct Collocation

A discretization of the time interval

t1 < t2 < ... < tN = tf (8.71)

is chosen. The parameters Y of the nonlinear program are the values of control and state

variables at the grid points tj, j = 1, . . . , N , and the final time tf

Y = (u(t1), . . . , u(tN), x(t1), . . . , x(tN), tN) ∈ IRN(l+n)+1 (8.72)

The controls are chosen as piecewise linear interpolating functions between u(tk) and u(tk+1)

for tk ≤ t < tk+1

uapprox(t) = u(tk) +
t− tk

tk+1 − tk
(u(tk+1)− u(tk)) (8.73)

The states are chosen as continuously differentiable functions and piecewise dened as cubic
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polynomials between x(tk) and x(tk+1) with ẋapprox(s) := f(x(s), u(s), s) at s = tk, tk+1,

xapprox(t) =
3∑
j=0

ckj (
t− tk
hk

)j, tk ≤ t < tk+1, k = 1, . . . , N − 1 (8.74)

ck0 = x(tk) (8.75)

ck1 = hkfk (8.76)

ck2 = −3x(tk)− 2hkfk + 3x(tk+1)− hkfk+1 (8.77)

ck3 = 2x(tk) + hkfk − 2x(tk+1) + hkfk+1 (8.78)

where fk := f(x(tk), u(tk), tk) , hk := tk+1 − tk.

The approximating functions of the states have to satisfy the state space model of the equations

of motion at the grid points tk, k = 1, . . . , N , and at the centers tc,k := tk+1/2 := (tk+tk+1)/2, k =

1, . . . , N − 1, of the discretization intervals. This scheme is also known as cubic collocation at

Lobatto points. The chosen approximation (2.74)-(2.78) of x(t) already fulfills these constraints

at tk. Therefore, the only remaining constraints in the nonlinear programming problem are

• the collocation constraints at tc,k

f(xapprox(tc,k), uapprox(tc,k), tc,k)− ẋapprox(tc,k) = 0, k = 1, . . . , N − 1, (8.79)

• the inequality constraints at the grid points tj

g(xapprox(tk), uapprox(tk), tk) ≥ 0, k = 1, . . . , N, (8.80)

• and the initial and end point constraints at t1 and tN

r(xapprox(t1), xapprox(tN), tN) = 0 (8.81)

In the equations above,the index approx for approximation is being used.
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By this scheme the number of four free parameters for each cubic polynomial is reduced to two

and the number of three collocation constraints per subinterval is reduced to one. Compared

with other collocation schemes we have a reduced number of constraints to be fulfilled and a

reduced number of free parameters to be determined by the numerical procedure. This results

in a better performance of an implementation of this method in terms of convergence, reliability,

and efficiency compared with other schemes.

Overall, the final discretized optimal control problem with direct collocation method is:

Minimize:

J = c0(x(tN)) +
N∑
k=1

lk(x(tk), u(tk), tk)∆t (8.82)

Subject to:

f(xapprox(tc,k), uapprox(tc,k), tc,k)− xapprox(tc,k) = 0, k = 1, . . . , N − 1 (8.83)

a1(xapprox(t0), uapprox(t0), t0) ≤ 0 (8.84)

a2(xapprox(t0), uapprox(t0), t0) = 0 (8.85)

b1(xapprox(tN), uapprox(tN), tN) ≤ 0 (8.86)

b2(xapprox(tN), uapprox(tN), tN) = 0 (8.87)

c1(xapprox(tk), uapprox(tk), tk) ≤ 0, k = 1, . . . , N (8.88)

c2(xapprox(tk), uapprox(tk), tk) = 0, k = 1, . . . , N (8.89)

ul ≤ u(tk) ≤ uu, k = 1, . . . , N (8.90)

xl ≤ x(tk) ≤ xu, k = 1, . . . , N (8.91)

where

tc,k = (tk + tk+1)/2, k = 1, .., N − 1 (8.92)

xapprox(t) =
3∑
j=0

ckj (
t− tk
hk

)j, tk ≤ t ≤ tk+1, k = 1, .., N − 1 (8.93)
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uapprox(t) = u(tk) +
t− tk
hk

(u(tk+1)− u(tk)), tk ≤ t ≤ tk+1, k = 1, .., N − 1 (8.94)

The advantages of the direct collocation method:

• The resulting solution is large scale system with sparse NLP.

• It can use the knowledge ofthe state vector in the initialization.

• It can cope with unstable system and different constraints reliably.

The disadvantages of the direct collocation method:

• It needs more computational time than single-shooting approach, due to large design param-

eters used.

When applying the forward-dynamics based optimization on the multi-body dynamics (robotic

system), the following issues should be noticed:

• Equation (2.64) needs calculation of the inverse mass matrix of the robotic system which may

result in computational difficulty.

• If the multibody dynamic systems move with constrained motion, the equality and inequality

constraints may not have explicit expressions for the input control variables. Consequently,

these constraints must be derived many times until the input control vector appears.

• To solve the NLP, it is necessary to choose feasible initial guess for the design variables.

Consequently, it is not easy to get a good initial guess for the control variables at the forward-

dynamics based methods.

8.3.5 Inverse-Dynamics Based Approach - The Discrete Mechanics

Approach

The difference between the inverse-dynamics and forward-dynamics based optimization appears

in the formulation of (2.64), such that the dynamics equation for the target system of the inverse-
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dynamics approach is not written in the state space form. Therefore, the Discrete Mechanics

based approach has three distinctive features:

• It does not need the inverse mass matrix.

• The ability to convert the original optimal control into algebraic equations which are easy to

deal with.

For a multibody system (robotic system), the dynamics equation, as we have already seen in

previous chapters, can be written in a standard Lagrangian equation as follows:

Mq̈ + Cq̇ +G = Bu (8.95)

where M ∈ Rn×n is the inertia matrix, n denotes the DOF of the target robot, q, q̇ and q̈ ∈ Rn,

are the absolute angular displacement, velocity and acceleration of the robot links, C ∈ Rn×n

represents the Coriolis robot matrix, G ∈ Rn is the gravity vector, B ∈ Rn×n is a mapping

matrix derived by the principle of the virtual work and u ∈ Rn is the control input vector. This

equation is valid for open-chain robotic system. For closed-chain mechanism, the Lagrangian

multipliers should appear to right side of (2.95).

In Discrete Mechanics, the velocity and acceleration of the dynamic system can be approximated

directly using finite differences:

• For the first derivative:

Forward Difference:

q̇(tk) ≈
(q(tk+1)− q(tk))

hk
, k = 0...N − 1 (with truncation error O(hk)) (8.96)

Backward Difference:

q̇(tk) ≈
(q(tk)− q(tk))

hk
, k = 0...N − 1 (with truncation error O(hk)) (8.97)

and for the second derivative:
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Central difference:

q̈(tk) ≈
q(tk+1)− 2q(tk) + q(tk−1)

h2k
, k = 0...N − 1 (with truncation error O(h2k)) (8.98)
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Appendix B: First Phase of the Gait

Generation Module

9.1 Analytical Expressions for the Swing Phase using

Discrete Mechanics (Leg1=Stance, Leg2=Swing)

The analytical expression of (2.36) is:
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The analytical expression of (2.37) is:
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The analytical expression of (2.41) is:
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9.2 Swing Phase for the Direct Collocation Method (Leg1

= Swing, Leg2=Stance)

9.2.1 Derivation of the Euler-Lagrange Equations of Motion

The first step to deriving the Lagrangian of the biped is to define the homogeneous transfer

matrices that describe the orientation and position of each link of the robot. One natural

placement of local coordinate frames is indicated in Figure 9.1, where each frame is rigidly

attached to the appropriate mass. The origins of each of these frames describe the following

important points on the planar biped:

1. o0 - Global coordinate frame fixed to the ground.

2. o1 - Coordinate frame fixed to the center of mass for the swing leg(Leg 1).

3. oM - Coordinate frame fixed to the center of mass of the hip joint.

4. o2 - Coordinate frame fixed to the center of mass for the stance leg(Leg 2).

These coordinate frames are used to form homogeneous transformation matrices on the form

H i
j =

 Ri
j pij

01×3 1

 (9.7)

where Ri
j ∈ R3×3 is the rotation matrix from frame j to frame i and pij ∈ R3 is the distance

between the origins of the respective frames expressed in frame i. Finding rotation matrices

is complicated, requiring a parametrization of the total rotation of each frame in suitable

coordinates. This process is greatly simplified by the fact that the planar biped only experiences
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Figure 9.1: Assignment of origins for the coordinate frames of the biped.

motion in a 2-D plane. The transformation matrices can then be found by trigonometry and

are stated for verification below:
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(i)
2 )

−sin(q
(i)
2 ) cos(q

(i)
2 ) 0 acos(q

(i)
2 )

0 0 1 0

0 0 0 1



H2
M =



1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1


H0
M = H0

1H
2
M

H0
1 =



cos(q
(i)
1 ) −sin(q

(i)
1 ) 0 lsin(q

(i)
2 ) + bsin(q

(i)
1 )

sin(q
(i)
1 ) cos(q

(i)
1 ) 0 lcos(q

(i)
2 )− bcos(q(i)1 )

0 0 1 0

0 0 0 1



(9.8)

The matrices (9.8) can now be employed to determine the position p(0) and velocity v(0) of the
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center of mass of each mass in xy coordinates in the global frame o0 as

p
(0)
1 = [I2×2 02×2] ·H0

1 ·

03×1

1

 , v(0)1 = d
dt
p
(0)
1

p
(0)
M = [I2×2 02×2] ·H0

M ·

03×1

1

 , v(0)M =
d

dt
p
(0)
M

p
(0)
2 = [I2×2 02×2] ·H0

2 ·

03×1

1

 , v(0)2 = d
dt
p
(0)
2

(9.9)

where I2×2 is the identity matrix and p(0), v(0) ∈ R2.

In order to form the Lagrangian of the system and compute the Euler-Lagrange equations, the

kinetic and potential energy of the system must be determined. The potential energy is the

sum of the potential energy at the center of mass for each mass and can be expressed as

P = (m1h
(0)
1 +Mh

(0)
M +m2h

(0)
2 )g (9.10)

where g = (sin(θi) + cos(θi))gconst, with gconst = 9.81m/s2 and θi defining the slope of the next

walking step to be achieved, is the gravitational acceleration quantity in the horizontal and

vertical axes and h(0) = p(0)[01] is the height of the respective centers of mass expressed in the

global frame o0. The total kinetic energy is the sum of the body’s centers-of-mass translational

kinetic energy and the energy of rotation around the centers of mass (rotational energy), and

can be expressed as

K =
1

2
(m1v

T
1 v1 +MvTMvM +m2v

T
2 v2) +

1

2
(I1(

˙
q
(i)
1 )2 + I2(

˙
q
(i)
2 )2) (9.11)

Using the expressions (9.10) and (9.11) for the potential and kinetic energy, the Euler-Lagrange

equations of motion can be calculated

d

dt
(
∂L
∂q̇j(i)

)− ∂L
∂qj(i)

= Ba

τ (i)1

τ
(i)
2

 , j ∈ [1, 2] (9.12)
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where L is the Lagrangian of the system derived from (9.10) and (9.11) as

L = K − P

that extends to:

L(q
(i)
1 , q

(i)
2 ,

˙
q
(i)
1 ,

˙
q
(i)
2 ) =

1

2
(I2 +m1a

2 +m2l
2 +Ml2)

˙
q
(i)
2

2

+
1

2
(I1 +m2b

2)
˙
q
(i)
1

2

−m2blcos(q
(i)
2 − q

(i)
1 )

˙
q
(i)
1

˙
q
(i)
2 − (m1a+m2g +Ml)gcos(q

(i)
1 ) +m2gbcos(q

(i)
1 ), (9.13)

Ba is the applied forces selection matrix (it maps the applied forces and/or torques to the

related generalized coordinates). Here, Ba =

1 0

0 1

 (thus, here Ba is a full row rank matrix)

assuming that, due to the use of the two hip actuators, the torques τ
(i)
1 , τ

(i)
2 to the hip can be

controlled. Using the expressions (8.39) − (8.41) for the elements of the respective matrices,

the equations of motion for the biped can be formulated as

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) = Ba

τ (i)1

τ
(i)
2

 (9.14)

⇔

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) =

τ (i)1

τ
(i)
2


where

M(q(i)) =

 p3 + I1 −p2cos(q(i)2 − q
(i)
1 )

−p2cos(q(i)2 − q
(i)
1 ) p1 + I2

 (9.15)

C(q(i), ˙q(i)) =

p2 ˙
q
(i)
2 sin(q

(i)
2 − q

(i)
1 ) 0

0 −p2
˙
q
(i)
1 sin(q

(i)
2 − q

(i)
1 )

 (9.16)

G(q(i), θi) =

 p5sin(q
(i)
1 )

−p4sin(q
(i)
2 )

 (9.17)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,
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respectively, and with the constant parameters p1 = Ml2 +m1a
2 +m2l

2, p2 = m2lb, p3 = m2b
2,

p4 = (m1a + m2l + Ml)g, p5 = m2bg. The equations of motion (9.14) describe the continuous

dynamics of the biped during the gait and is independent of the walking surface. In order

to describe what happens to the robot during the impact phase, an impact map must be

formulated to prevent trespassing of the surface during motion.

•Initial discretization of the Swing Phase for the Direct Collocation Method (Leg1

= Swing, Leg2 = Stance)

Now we will proceed with the initial discretization (without applying the Direct Collocation

Conditions) of the Swing Phase of the 2-DOF Biped Robot for the case where the Leg 1 is the

swing leg and the Leg 2 is the stance leg. Let k = 1, ..., N the time steps of a walking step. In

addition, let i = 1, ...H the number and the order of the total walking steps. So, when we refer

to a generalized angle q
(i)
(x,k), where x = 1, 2, k = 1, ..., N and i = 1, ..., H we will actually mean

the angle qx of the k − th time step of the i − th walking step. A discretization of the time

interval for a walking step

t0 = t1 < t2 < ... < tN = tf

is chosen. Without implementing the complete discretization process (it will be later explained

in the current chapter), the Swing Phase becomes:

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) = Ba

τ (i)(1,k)

τ
(i)
(2,k)

 , k = 1, ..., N (9.18)

⇔

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) =

τ (i)(1,k)

τ
(i)
(2,k)

 , k = 1, ..., N

where

M(q
(i)
k ) =

 p3 + I1 −p2cos(q(i)(2,k) − q
(i)
(1,k))

−p2cos(q(i)(2,k) − q
(i)
(1,k)) p1 + I2

 , k = 1, ..., N (9.19)



9.2. Swing Phase for the Direct Collocation Method (Leg1 = Swing, Leg2=Stance) 205

C(q
(i)
k ,

˙
q
(i)
k ) =

p2 ˙
q
(i)
(2,k)sin(q

(i)
(2,k) − q

(i)
(1,k)) 0

0 −p2
˙

q
(i)
(1,k)sin(q

(i)
(2,k) − q

(i)
(1,k))

 , k = 1, ..., N (9.20)

G(q
(i)
k , θi) =

 p5sin(q
(i)
(1,k))

−p4sin(q
(i)
(2,k))

 , k = 1, ..., N (9.21)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, and with the constant parameters p1 = Ml2 +m1a
2 +m2l

2, p2 = m2lb, p3 = m2b
2,

p4 = (m1a+m2l +Ml)g, p5 = m2bg.

•State Space Equations of the Swing Phase for the Direct Collocation Method (Leg

1 = Swing, Leg 2 =Stance)

As we extensively developed the state space equations for the first case, we will now derive the

state space equations for the case where Leg 1 is the Swing Leg and Leg 2 is the Stance Leg,

and apply the Direct Collocation Conditions. The choice of state variables is the vector:

x(i)(1,k)

x
(i)
(2,k)

 =

 q(i)k
q̇k

(i)



where x
(i)
(1,k) = q

(i)
k =

q(i)(1,k)

q
(i)
(2,k)

 and x
(i)
(2,k) = q̇k

(i) =

 ˙q(1,k)
(i)

˙q(2,k)
(i)



The state equations are:

 ˙x(1,k)
(i)

˙x(2,k)
(i)

 =

 x
(i)
(2,k)

−M−1(x
(i)
(1,k))(C(x

(i)
(1,k), x

(i)
(2,k))x

(i)
(2,k) +G(x

(i)
(1,k), θi))

+

 02×2

M−1(x
(i)
(1,k))Ba

u(i)k
⇔

 ˙x(1,k)
(i)

˙x(2,k)
(i)

 =
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
x
(i)
(2,k)

(I1+p3)(p4sin(q
(i)
(2,k)

)− ˙q(1,k)
(i) ˙q(2,k)

(i)p2sin(q
(i)
(1,k)
−q(i)

(2,k)
))−p2cos(q(i)(1,k)

−q(i)
(2,k)

)(p5sin(q
(i)
(1,k)

)− ˙q(1,k)
(i) ˙q(2,k)

(i)p2sin(q
(i)
(1,k)
−q(i)

(2,k)
))

I2p1+I1p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I21

p2cos(q
(i)
(1,k)
−q(i)

(2,k)
)(p4sin(q

(i)
(2,k)

)− ˙q(1,k)
(i) ˙q(2,k)

(i)p2sin(q
(i)
(1,k)
−q(i)

(2,k)
))−(I2+p1)(p5sin(q(i)(1,k)

)− ˙q(1,k)
(i) ˙q(2,k)

(i)p2sin(q
(i)
(1,k)
−q(i)

(2,k)
))

I2p1+I1p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I21



+



0 0

0 0

p2cos(q
(i)
(1,k)
−q(i)

(2,k)
)

I2p1+I1p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I21

(I1+p3)

I2p1+I1p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I21

(I2+p1)

I2p1+I1p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I21

p2cos(q
(i)
(1,k)
−q(i)

(2,k)
)

I2p1+I1p3+p1p3−p22cos(q
(i)
(1,k)
−q(i)

(2,k)
)2+I21


u
(i)
k (9.22)

with the applied forces vector τ
(i)
k =

τ (i)(1,k)

τ
(i)
(2,k)

 now denoted by u
(i)
k =

u(i)(1,k)

u
(i)
(2,k)


The output function is:

y
(i)
k = x

(i)
(1,k)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let x
(i)
approx(t) =

x(i)(1,approx)(t)

x
(i)
(2,approx)(t)

, where x
(i)
(1,approx)(t), x

(i)
(2,approx)(t) are the cubic approxi-

mations of the generalized coordinates q
(i)
1 , q

(i)
2 as well as of their first and second derivatives,

in the specified discretized time interval of the i− th walking step (relations 8.74-8.78). In ad-

dition, let τ
(i)
approx(t) =

τ (i)(1,approx)(t)

τ
(i)
(2,approx)(t)

, where τ
(i)
(1,approx)(t), τ

(i)
(2,approx)(t) are the approximations

of the control inputs (torques) τ
(i)
1 , τ

(i)
2 in the specified discretized time interval of the i − th

walking step (relation 8.73). Thus, the state space equations of the Swing Phase for the case

where Leg 1 is the Stance Leg and Leg 2 is the Swing Leg are (relations 8.79, 8.92):

 ˙x(1,approx)
(i)(tck)

˙x(2,approx)
(i)(tck)

 =

 x
(i)
(2,approx)(tck)

−M−1(x
(i)
(1,approx)(tck))(C(x

(i)
(1,approx)(tck), x

(i)
(2,approx)(tck))x

(i)
(2,approx)(tck) +G(x

(i)
(1,approx)(tck), θi))


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+

 02×2

M−1(x
(i)
(1,approx)(tck))Ba

u(i)(approx(tck) (9.23)

which can be rewritten to the relation (9.22), having applied the collocation conditions. The

output function is:

y(i)approx(tck) = x
(i)
(1,approx)(tck)

9.2.2 Formulation of the Impact Map

When the swing foot impacts the surface of the ground, an update of the angular velocities

˙
q
(i)
1 ,

˙
q
(i)
2 should occur to prevent the biped from falling through the floor. This update can be

formulated as a mapping between the velocities just before and just after the collision with the

ground on the form  ˙
q
(i,+)
1

˙
q
(i,+)
2

 = 4(q(i)) ·

 ˙
q
(i,−)
1

˙
q
(i,−)
2

 (9.24)

where −, + denote the time instant right before and right after impact,respectively, so that

specific time interval is consided extremely small. An important property of this impact map-

ping is the assumption that the configuration of the biped, the generalized coordinates q
(i)
1 , q

(i)
2 ,

remains unchanged during ground impact (which occurs in the abovementioned time interval).

This is due to the fact that the impact forces F the biped experiences during impact are im-

pulsive in nature. There are multiple ways of calculating the velocity updates of the biped.

Presented below is a method that exploits properties of the impact to derive an impact map

for the collision on the form (9.24).

9.2.3 Conservation of the angular momentum

Since the impact forces F are the only external forces affecting the biped (we assume that

the torques applies to the biped during the impact are zero), the angular momentum about

the impacting foot is conserved before and after the collision for the system. The angular



208 Chapter 9. Appendix B: First Phase of the Gait Generation Module

momentum L of a mass can be stated as

L = r ×mv + I
˙

q
(i)
COM (9.25)

where r is the position of the mass relative to a given reference point, m is the mass, v is the

velocity of the mass, I is the moment of inertia around the particular center of mass and
˙

q
(i)
COM

is the angular velocity of the particular leg where the center of mass is located. Given that the

biped is a system of masses, the angular momentum of the robot about the impacting foot is

given by:

L
(0)
Biped =

∑
i

r
(0)
i ×miv

+
i + I1

˙
q
(i,+)
1 + I2

˙
q
(i,+)
2 =

∑
i

r
(0)
i ×miv

−
i + I1

˙
q
(i,−)
1 + I2

˙
q
(i,−)
2 , i ∈ {1, 2, M}

(9.26)

where the reference point is the origin o0, and the position vectors r
(0)
i relative to this point is

given by

r
(0)
1 =


−asin(q

(i,−)
1 )

acos(q
(i,−)
1 )

0



r
(0)
M =


−lsin(q

(i,−)
1 )

lcos(q
(i,−)
1 )

0



r
(0)
2 = r

(0)
M +


−bsin(q

(i,−)
2 )

−bcos(q(i,−)2 )

0



(9.27)
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The translational velocities v±i are independent of the reference point and can be expressed

using the angular velocities q̇± as

v−M =


0

0

˙
q
(i,−)
2

×

lsin(q

(i,−)
2 )

lcos(q
(i,−)
2 )

0

 , v+M =


0

0

˙
q
(i,+)
1

×

−lsin(q

(i,−)
1 )

lcos(q
(i,−)
1 )

0



v−2 =


0

0

˙
q
(i,−)
2

×

asin(q

(i,−)
2 )

acos(q
(i,−)
2 )

0

 , v+2 = v+M +


0

0

˙
q
(i,+)
2

×

−bsin(q

(i,−)
2 )

−bcos(q(i,−)2 )

0



v−1 = v−M +


0

0

˙
q
(i,−)
1

×

bsin(q

(i,−)
1 )

−bcos(q(i,−)1 )

0

 , v+1 =


0

0

˙
q
(i,+)
1

×

−asin(q

(i,−)
1 )

acos(q
(i,−)
1 )

0



(9.28)

Substituting (9.27) and (9.28) into (9.26) and computing the crossproducts, yields one equation

for the two unknown velocities
˙

q
(i,+)
1 ,

˙
q
(i,+)
2 . This means that another equation is needed to solve

the system.

The only forces that the pre-impact swing leg experiences during the collision is the constraint

force acting on it from the hip joint. This means that the angular momentum of this leg about

the hip is conserved through the impact, yielding another equation for the updated velocities

on the form:

L
(M)
Swing = r

(M)
1 ×m1v

+
1 + I1

˙
q
(i,+)
1 = r

(M)
1 ×m1v

−
1 + I1

˙
q
(i,−)
1

r
(M)
1 =


−bsin(q

(i,−)
1 )

−bcos(q(i,−)1 )

0


(9.29)

where the reference point is the origin oM and the velocities v±2 is given in (9.28). Equations
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(9.26) and (9.29) combined results in the linear system:

L(0)
Biped

L
(M)
Swing

 = Q+q̇
(i,+) = Q−q̇(i,−)L(0)

Biped

L
(M)
Swing

 =

 p8 + I1 −p7c21

p8 − p7c21 + I1 −p7c21 + p6 + I2


q̇1(i,+)

q̇2
(i,+)

 =

 −p9 + I1 0

p10c21 + I1 −p11 + I2


q̇1(i,−)
q̇2

(i,−)


(9.30)

where c21 = cos(q
(i,−)
2 −q(i,−)1 ) and the parameters p6 = m1l

2+Ml2+m2a
2, p7 = m1bl, p8 = m1b

2,

p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

•Discretization of the Impact Phase for both Methods (Leg1 = Swing, Leg2 =

Stance)

Based on the extensive analysis of the impact phase above, we will now proceed with the

discretization of the impact phase for the case where Leg1 is the swing leg and Leg2 is the

stance leg. Let k = 1, ..., N the time steps of a walking step. In addition, let i = 1, ...H the

number and the order of the total walking steps. So, when we refer to a generalized angle q
(i)
(x,k),

where x = 1, 2, k = 1, ..., N and i = 1, ..., H we will actually mean the angle qx of the k − th

time step of the i− th walking step. Each walking step has of course its own swing and impact

phase.

We now define that the time instant before the impact of the swing leg at the ground (pre-

impact phase) is the time step N of a walking step, and the time instant after the impact of

the swing leg at the ground (post-impact phase) that also completes the current walking step

is the time step 1 of the next walking step.

But at the time step N of a walking step the swing leg becomes the new stance leg and the

stance leg becomes the new swing leg for the next walking step (both legs switch roles), so it

is actually the first time step of the next walking step.

Hence:

• q̇1(i,+) = ˙q(1,1)
(i+1),
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• q̇2(i,+) = ˙q(2,1)
(i+1),

• q̇1(i,−) = ˙q(1,N)
(i),

• q̇2(i,−) = ˙q(2,N)
(i).

Finally, (9.30) becomes:

 p8 + I1 −p7c21

p8 − p7c21 + I1 −p7c21 + p6 + I2


 ˙q(1,1)

(i+1)

˙q(2,1)
(i+1)

 =

 −p9 + I1 0

p10c21 + I1 −p11 + I2


 ˙q(1,N)

(i)

˙q(2,N)
(i)


(9.31)

where c21 = cos(q
(i)
(2,N) − q

(i)
(1,N)) and the parameters p6 = m1l

2 + Ml2 + m2a
2, p7 = m1bl,

p8 = m1b
2, p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

Solving the system for q̇(i,+) by inverting the matrix Q+ gives and impact map on the form

(9.24)

q̇(i+1) = [Q−1+ . Q−]q̇(i) (9.32)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let q
(i)
approx(t) =

q(i)(1,approx)(t)

q
(i)
(2,approx)(t)

, where q
(i)
(1,approx)(t), q

(i)
(2,approx)(t) are the cubic approx-

imations of the generalized coordinates q
(i)
1 , q

(i)
2 , in the specified discretized time interval of

the i− th walking step (relations 8.74-8.78). Thus, the Impact Phase for the case Leg 1 is the

Stance Leg and Leg 2 is the Swing Leg are:

 p8 + I1 −p7c21

p8 − p7c21 + I1 −p7c21 + p6 + I2


 ˙q(1,approx)

(i+1)(t1)

˙q(2,approx)
(i+1)(t1)


=

 −p9 + I1 0

p10c21 + I1 −p11 + I2


 ˙q(1,approx)

(i)(tN)

˙q(2,approx)
(i)(tN)


(9.33)

where c21 = cos(q
(i)
(2,approx)(tN) − q(i)(1,approx)(tN)) and the parameters p6 = m1l

2 + Ml2 + m2b
2,

p7 = m1bl, p8 = m1b
2, p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

Solving the system for ˙qapprox
(i,+) by inverting the matrix Q+ gives and impact map on the
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form (9.24)

˙qapprox
(i+1) = [Q−1+ . Q−] ˙qapprox

(i) (9.34)

9.2.4 Definition of Impact Surface

The abovementioned impact map calculated the change in angular velocities that occur when

the biped robot impacts with the ground. In order for this update to correctly be applied when

the swing foot strikes the ground, the configurations of the robot that results in an impact must

be determined. These configurations correspond to the hypersurface S known as the impact

surface or switching surface. A configuration of the biped that leads to impact with the ground

during the i− th walking step (it may be a downward or upward slope, a general rough terrain

or just simply a flat ground) must satisfy the relation:

Figure 9.2: Different quantities used for the definition of the impact surface of the robot.

H(q
(i)
(1,N), q

(i)
(2,N), θi) = h2(q

(i)
(2,N)) + hθ(θi)− h1(q(i)(1,N)) = 0 (9.35)

where

h1(q
(i)
(1,N)) = l cos(q

(i)
(1,N))

h2(q
(i)
(2,N)) = l cos(q

(i)
(2,N))

hθ(θi) = L tan(θi)

L = l sin(q
(i)
(1,N)) + l sin(q

(i)
(2,N))

(9.36)
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are found by trigonometry. Substituting these expressions and simplifying using trigonometric

identities leads to the following derivation

H(q
(i)
(1,N), q

(i)
(2,N), θi) = l cos(q

(i)
(2,N)) + [l sin(q

(i)
(1,N)) + l sin(q

(i)
(2,N))]

sin(θi)

cos(θi)
− l cos(q

(i)
(1,N)) = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = cos(q

(i)
(2,N))cos(θi) + sin(q

(i)
(1,N))sin(θi)− cos(q(i)(1,N))cos(θi)+

sin(q
(i)
(2,N))sin(θi) = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = cos(−q(i)(2,N))cos(θi)− sin(−q(i)(1,N))sin(θi)− cos(q(i)(1,N))cos(θi)+

sin(q
(i)
(2,N))sin(θi) = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = [cos(−q(i)(2,N))cos(θi)− sin(−q(i)(1,N))sin(θi)]− [cos(q

(i)
(1,N))cos(θi)−

sin(q
(i)
(2,N))sin(θi)] = 0

H(q
(i)
(1,N), q

(i)
(2,N), θi) = cos(−q(i)(2,N) + θi)− cos(q(i)(1,N) + θi) = 0

(9.37)

Furthermore, the configuration of the biped remains unchanged during ground impact, in the

time interval between the Nth time step of the ith walking step and the first time step of the

i+ 1th walking step, [t
(i)
N , t

(i+1)
1 ]. Thus, the switching surface S is defined as all configurations q

of the biped that satisfies the above relations and conditions and can be stated in set notation

as:

S = {q(i)(1,N), q
(i)
(2,N), q

(i+1)
(1,1) , q

(i+1)
(2,1) , θi ∈ R : H(q

(i)
(1,N), q

(i)
(2,N), θi) = cos(−q(i)(2,N)+θi)−cos(q

(i)
(1,N)+θi) = 0,

H(q
(i+1)
(1,1) , q

(i+1)
(2,1) , θi) = cos(−q(i+1)

(2,1) + θi)− cos(q(i+1)
(1,1) + θi) = 0} (9.38)

For the Direct Collocation Method, based on subchapter 8.3.4, we proceed with the formulation

below. Let q
(i)
approx(t) =

q(i)(1,approx)(t)

q
(i)
(2,approx)(t)

, where q
(i)
(1,approx)(t), q

(i)
(2,approx)(t) are the cubic approxi-

mations of the generalized coordinates q
(i)
1 , q

(i)
2 , in the specified discretized time interval of the

i−th walking step (relations 8.74-8.78). Thus, with a similar prrof as above (having applied the

Direct Colloction Conditions), the switching surface S is defined as all configurations qapprox of

the biped that satisfies the above relation and can be stated in set notation as:

S = {q(i)(1,approx)(tN), q
(i)
(2,approx)(tN), q

(i+1)
(1,approx)(t1), q

(i+1)
(2,approx)(t1), θi ∈ R : H(q

(i)
(1,approx)(tN), q

(i)
(2,approx)(tN), θi)
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= cos(−q(i)(2,approx)(tN) + θi)− cos(q(i)(1,approx)(tN) + θi) = 0} (9.39)

9.3 Swing Phase using Discrete Mechanics (Leg1=Swing,

Leg2=Stance)

We now develop the discretized Swing Phase of our 2-DOF biped robot via the use of the

Discrete Mechanics Theory. We define some important notations. Let h(i) be the sampling

time for the ith walking step, r a division ratio quantity in discrete mechanics, k = 1, ..N the

number of time steps, H the total number of walking steps, i = 1, 2, ..., H the walking step

index, q
(i)
(1,k), q

(i)
(2,k) the angles of Leg 1 and Leg 2 at the k − th time step in the i − th walking

step respectively and τ
(i)
(1,k), τ

(i)
(2,k) the control inputs (torques) at the k − th time step in the

i− th walking step for the swing and stance leg respectively.

We now derive the discretized swing phase and impact phase for the 2-DOF biped robot where

Leg 1 is the swing leg and Leg 2 is the stance leg. We firstly calculate the Discrete Lagrangian

Ldr(q
(i)
(1,k), q

(i+1)
(1,k) , q

(i)
(2,k), q

(i+1)
(2,k) ) from (8.44), (9.13) as:

Ldr(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1)) =

1

2
(I2 +m1a

2 +m2l
2 +Ml2)(

q
(i)
(2,k+1) − q

(i)
(2,k)

h(i)
)2+

1

2
(I1 +m2b

2)(
q
(i)
(1,k+1) − q

(i)
(1,k)

h(i)
)2 −m2blcos((1− a)q

(i)
(2,k) + aq

(i)
(2,k+1) − (1− a)q

(i)
(1,k) − aq

(i)
(1,k+1))

(
q
(i)
(2,k+1) − q

(i)
(2,k)

h(i)
)(
q
(i)
(1,k+1) − q

(i)
(1,k)

h(i)
)− (m1a+m2g +Ml)gcos((1− a)q

(i)
(1,k) + aq

(i)
(1,k+1))+

m2gbcos((1− a)q
(i)
(1,k) + aq

(i)
(1,k+1)) (9.40)

Due to the fact that the left and right discrete forces (8.46) satisfy f+
d (qk, qk+1, τk) = f−d (qk, qk+1, τk)

for r = 1
2
, we set a type of control inputs (the torques for Leg1 and 2) that consists only of the

left discrete external force f−d as:

τ
(i)
k := f−d (qk, qk+1, τk), k = 1, ..., N (9.41)
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Substituting (9.40) into the discrete Euler-Lagrange Equations (8.49) while also deriving the

boundary conditions (8.58, 8.60), and using the discrete control inputs (9.41), we develop the

discretized Swing Phase of the biped:

D2L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k))+D1L

d(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1))−τ

(i)
(1,k) = 0, (k = 1, . . . , N)

(9.42)

D4L
d(q

(i)
(1,k−1), q

(i)
(1,k), q

(i)
(2,k−1), q

(i)
(2,k))+D3L

d(q
(i)
(1,k), q

(i)
(1,k+1), q

(i)
(2,k), q

(i)
(2,k+1))−τ

(i)
(2,k) = 0, (k = 1, . . . , N)

(9.43)

The boundary conditions are given from the following equations:

D2L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i)) +D1L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2))− τ

(i)
(1,1) = 0 (9.44)

D4L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i)) +D3L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2))− τ

(i)
(2,1) = 0 (9.45)

−D2L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i)) +D1L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N))− τ

(i)
(1,N) = 0 (9.46)

−D4L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i)) +D3L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N))− τ

(i)
(2,N) = 0 (9.47)

Regarding some specific cases of values for the time step k for which the abovementioned

equations are valid:

• For i = 1 and k = 1, q
(i)
(1,k−1) = q

(1)
(1,0) = 0, q

(i)
(2,k−1) = q

(1)
(2,0) = 0, τ

(i)
(1,k−1) = τ

(1)
(1,0) = 0 and

τ
(i)
(2,k−1) = τ

(1)
(2,0) = 0 (due to the fact that k = [1, ..., N ]),

• For i > 1 and k = 1, q
(i)
(1,k−1) = q

(i−1)
(1,N), q

(i)
(2,k−1) = q

(i−1)
(2,N), τ

(i)
(1,k−1) = τ

(i−1)
(1,N) and τ

(i)
(2,k−1) = τ

(i−1)
(2,N) ,

• For k = N , q
(i)
(1,k+1) = q

(i+1)
(1,1) and q

(i)
(2,k+1) = q

(i+1)
(2,1) .

The analytical expression of (9.42) is:

g sin

(
q
(i)
(1,k)

2
+

q
(i)
(1,k−1)

2

)
(m1a+M l + g m2)

2
+

g sin

(
q
(i)
(1,k)

2
+

q
(i)
(1,k+1)

2

)
(m1a+M l + g m2)

2

+

(
2 q

(i)
(1,k) − 2 q

(i)
(1,k−1)

) (
m2 b2

2
+ I1

2

)
(h(i))2

+

(
2 q

(i)
(1,k) − 2 q

(i)
(1,k+1)

) (
m2 b2

2
+ I1

2

)
(h(i))2

−
b g m2 sin

(
q
(i)
(1,k)

2
+

q
(i)
(1,k−1)

2

)
2
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−
b g m2 sin

(
q
(i)
(1,k)

2
+

q
(i)
(1,k+1)

2

)
2

−
b l m2 cos

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k−1)

2
−

q
(i)
(1,k−1)

2

) (
q
(i)
(2,k) − q

(i)
(2,k−1)

)
(h(i))2

−
b l m2 cos

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k+1)

2
−

q
(i)
(1,k+1)

2

) (
q
(i)
(2,k) − q

(i)
(2,k+1)

)
(h(i))2

−
b l m2 sin

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k−1)

2
−

q
(i)
(1,k−1)

2

) (
q
(i)
(2,k) − q

(i)
(2,k−1)

) (
q
(i)
(1,k) − q

(i)
(1,k−1)

)
2 (h(i))2

−
b l m2 sin

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k+1)

2
−

q
(i)
(1,k+1)

2

) (
q
(i)
(2,k) − q

(i)
(2,k+1)

) (
q
(i)
(1,k) − q

(i)
(1,k+1)

)
2 (h(i))2

− τ (i)(1,k) = 0, (k = 1, . . . , N) (9.48)

The analytical expression of (9.43) is:

(
2 q

(i)
(2,k) − 2 q

(i)
(2,k−1)

) (
I2
2

+ m1a2

2
+ M l2

2
+ l2m2

2

)
(h(i))2

+

(
2 q

(i)
(2,k) − 2 q

(i)
(2,k+1)

) (
I2
2

+ m1a2

2
+ M l2

2
+ l2m2

2

)
(h(i))2

−
b l m2 cos

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k−1)

2
−

q
(i)
(1,k−1)

2

) (
q
(i)
(1,k) − q

(i)
(1,k−1)

)
(h(i))2

−
b l m2 cos

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k+1)

2
−

q
(i)
(1,k+1)

2

) (
q
(i)
(1,k) − q

(i)
(1,k+1)

)
(h(i))2

+

b l m2 sin

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k−1)

2
−

q
(i)
(1,k−1)

2

) (
q
(i)
(2,k) − q

(i)
(2,k−1)

) (
q
(i)
(1,k) − q

(i)
(1,k−1)

)
2 (h(i))2

+

b l m2 sin

(
q
(i)
(2,k)

2
−

q
(i)
(1,k)

2
+

q
(i)
(2,k+1)

2
−

q
(i)
(1,k+1)

2

) (
q
(i)
(2,k) − q

(i)
(2,k+1)

) (
q
(i)
(1,k) − q

(i)
(1,k+1)

)
2 (h(i))2

− τ (i)(2,k) = 0, (k = 1, . . . , N) (9.49)

The above set of equations, can be rewritten to a similar form of the model (9.14):

M(q
(i)
k ) · (

q
(i)
k+1 − 2q

(i)
k + q

(i)
k−1

(h(i))2
) + C(q

(i)
k ,

q
(i)
k+1 − q

(i)
k

h(i)
) · (

q
(i)
k+1 − q

(i)
k

h(i)
) +G(q

(i)
k , θi) = Ba

τ (i)(1,k)

τ
(i)
(2,k)


(9.50)
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⇔

M(q
(i)
k ) · (

q
(i)
k+1 − 2q

(i)
k + q

(i)
k−1

(h(i))2
) + C(q

(i)
k ,

q
(i)
k+1 − q

(i)
k

h(i)
) · (

q
(i)
k+1 − q

(i)
k

h(i)
) +G(q

(i)
k , θi) =

τ (i)(1,k)

τ
(i)
(2,k)


⇔

 p3 + I1 −p2cos(q(i)(2,k) − q
(i)
(1,k))

−p2cos(q(i)(2,k) − q
(i)
(1,k)) p1 + I2


 q

(i)
(1,k+1)

−2q(i)
(1,k)

+q
(i)
(1,k−1)

(h(i))2

q
(i)
(2,k+1)

−2q(i)
(2,k)

+q
(i)
(2,k−1)

(h(i))2

+

p2( q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)sin(q

(i)
(2,k) − q

(i)
(1,k)) 0

0 −p2(
q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)sin(q

(i)
(2,k) − q

(i)
(1,k))


 q

(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

+

 p5sin(q
(i)
(1,k))

−p4sin(q
(i)
(2,k))

 =

τ (i)(1,k)

τ
(i)
(2,k)

 (9.51)

where k = 1, ..., N , I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers

of mass, respectively, and with the constant parameters p1 = Ml2 + m1a
2 + m2l

2, p2 = m2lb,

p3 = m2b
2, p4 = (m1a+m2l +Ml)g, p5 = m2bg.

The analytical expression of (9.44) is:

2 ˙q(1,1)
(i)

(
m2 b

2

2
+
I1
2

)
+

g sin

(
q
(i)
(1,1)

2
+

q
(i)
(1,2)

2

)
(m1a+M l + g m2)

2
+

(
2 q

(i)
(1,1) − 2 q

(i)
(1,2)

) (
m2 b2

2
+ I1

2

)
(h(i))2

−
b g m2 sin

(
q
(i)
(1,1)

2
+

q
(i)
(1,2)

2

)
2

− b l m2 q
(i)
(1,1) cos

(
˙q(2,1)

(i) − q
(i)
(2,1)

)

−
b l m2 cos

(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
−

q
(i)
(1,1)

2
−

q
(i)
(1,2)

2

) (
q
(i)
(2,1) − q

(i)
(2,2)

)
(h(i))2

−
b l m2 sin

(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
−

q
(i)
(1,1)

2
−

q
(i)
(1,2)

2

) (
q
(i)
(2,1) − q

(i)
(2,2)

) (
q
(i)
(1,1) − q

(i)
(1,2)

)
2 (h(i))2

− τ (i)(1,1) = 0 (9.52)
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The analytical expression of (9.45) is:

(
2 q

(i)
(2,1) − 2 q

(i)
(2,2)

) (
I2
2

+ m1a2

2
+ M l2

2
+ l2m2

2

)
(h(i))2

+g sin
(

˙q(2,1)
(i)
)

(m1a+M l + g m2)−b g m2 sin
(

˙q(2,1)
(i)
)

−
b l m2 cos

(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
−

q
(i)
(1,1)

2
−

q
(i)
(1,2)

2

) (
q
(i)
(1,1) − q

(i)
(1,2)

)
(h(i))2

+b ˙q(1,1)
(i) l m2 q

(i)
(1,1) sin

(
˙q(2,1)

(i) − q
(i)
(2,1)

)

+

b l m2 sin

(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
−

q
(i)
(1,1)

2
−

q
(i)
(1,2)

2

) (
q
(i)
(2,1) − q

(i)
(2,2)

) (
q
(i)
(1,1) − q

(i)
(1,2)

)
2 (h(i))2

− τ (i)(2,1) = 0 (9.53)

The analytical expression of (9.46) is:

g sin

(
q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2

)
(m1a+M l + g m2)

2
− 2 ˙q(1,N)

(i)

(
m2 b

2

2
+
I1
2

)

−

(
2 q

(i)
(1,N) − 2 q

(i)
(1,N−1)

) (
m2 b2

2
+ I1

2

)
(h(i))2

−
b g m2 sin

(
q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2

)
2

+ b l m2 q
(i)
(1,N) cos

(
˙q(2,N)

(i) − q
(i)
(2,N)

)

+

b l m2 cos

(
q
(i)
(2,N)

2
−

q
(i)
(1,N)

2
+

q
(i)
(2,N−1)

2
−

q
(i)
(1,N−1)

2

) (
q
(i)
(2,N) − q

(i)
(2,N−1)

)
(h(i))2

−
b l m2 sin

(
q
(i)
(2,N)

2
−

q
(i)
(1,N)

2
+

q
(i)
(2,N−1)

2
−

q
(i)
(1,N−1)

2

) (
q
(i)
(2,N) − q

(i)
(2,N−1)

) (
q
(i)
(1,N) − q

(i)
(1,N−1)

)
2 (h(i))2

− τ (i)(1,N) = 0 (9.54)

The analytical expression of (9.47) is:

b g m2 sin
(

˙q(2,N)
(i)
)
− g sin

(
˙q(2,N)

(i)
)

(m1a+M l + g m2)

−

(
2 q

(i)
(2,N) − 2 q

(i)
(2,N−1)

) (
I2
2

+ m1a2

2
+ M l2

2
+ l2m2

2

)
(h(i))2

+

b l m2 cos

(
q
(i)
(2,N)

2
−

q
(i)
(1,N)

2
+

q
(i)
(2,N−1)

2
−

q
(i)
(1,N−1)

2

) (
q
(i)
(1,N) − q

(i)
(1,N−1)

)
(h(i))2

− b ˙q(1,N)
(i) l m2 q

(i)
(1,N)
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sin
(

˙q(2,N)
(i) − q

(i)
(2,N)

)
+

b l m2 sin

(
q
(i)
(2,N)

2
−

q
(i)
(1,N)

2
+

q
(i)
(2,N−1)

2
−

q
(i)
(1,N−1)

2

) (
q
(i)
(2,N) − q

(i)
(2,N−1)

) (
q
(i)
(1,N) − q

(i)
(1,N−1)

)
2 (h(i))2

− τ (i)(2,N) = 0 (9.55)

Hence, the discretized swing phase of the 2-DOF biped robot is described by the set of equations

(9.42)-(9.47).

Now for the Impact Phase of the discretized biped robot, due to the fact that the impact phase

is considered an instantaneous event, the Discrete Mechanics based model is the same as the one

that was derived previously. So the Impact Phase of the biped robot using Discrete Mechanics

is : p8 + I1 −p7c21

p8 − p7c21 + I1 −p7c21 + p6 + I2


 q

(i+1)
(1,1)

−q(i)
(1,N)

h(i)

q
(i+1)
(2,1)

−q(i)
(2,N)

h(i)

 =

 −p9 + I1 0

p10c21 + I1 −p11 + I2


 q

(i)
(1,N)

−q(i)
(1,N−1)

h(i)

q
(i)
(2,N)

−q(i)
(2,N−1)

h(i)


(9.56)

where c21 = cos(q
(i)
(2,N) − q

(i)
(1,N)) and the parameters p6 = m1l

2 + Ml2 + m2a
2, p7 = m1bl,

p8 = m1b
2, p9 = m1ab, p10 = m2la+Ml2 +m1la, p11 = m2ab.

Solving the system for q̇(i,+) by inverting the matrix Q+ gives and impact map on the form

(3.62)

q̇(i+1) = [Q−1+ . Q−]q̇(i) (9.57)



Chapter 10

Appendix C: Second Phase of the Gait

Generation Module

10.1 Swing Phase for the Direct Collocation Method

(Leg1 = Swing, Leg2 = Stance)

Following the same methodology as for the case where Leg 1 is the Stance Leg and Leg 2 is the

Swing Leg, we calculate the Lagrangian of the biped robot for the case where the Leg 1 is the

Swing Leg and the Leg 2 is the Stance Leg:

L(q
(i)
1 , q

(i)
2 , q

(i)
3 , q

(i)
4 ,

˙
q
(i)
1 ,

˙
q
(i)
2 ,

˙
q
(i)
3 ,

˙
q
(i)
4 ) =

m2

(
˙
q
(i)
4 + b

˙
q
(i)
1 sin

(
q
(i)
1

)
− ˙
q
(i)
2 l sin

(
q
(i)
2

))2
2

+
M
(
a

˙
q
(i)
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(
q
(i)
2

)
− ˙
q
(i)
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˙
q
(i)
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(
q
(i)
2

))2
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+
M
(
a

˙
q
(i)
2 sin

(
q
(i)
2
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− ˙
q
(i)
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˙
q
(i)
2 sin

(
q
(i)
2

))2
2

+
m1

(
˙
q
(i)
3 − a

˙
q
(i)
2 cos

(
q
(i)
2

))2
2

+
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(
˙
q
(i)
3 +

˙
q
(i)
1 l cos

(
q
(i)
1

)
+ b

˙
q
(i)
1 cos

(
q
(i)
1

))2
2

+
m1

(
˙
q
(i)
4 − a

˙
q
(i)
2 sin

(
q
(i)
2

))2
2

− gM
(
q
(i)
4 + a cos

(
q
(i)
2

)
+ b cos

(
q
(i)
2

))
− g m2

(
q
(i)
4 − b cos

(
q
(i)
1

)
+ l cos

(
q
(i)
2

))
− g m1

(
q
(i)
4 + a cos

(
q
(i)
2

))
+

1

2
(I2(q̇2

(i))2 + I1(q̇1
(i))2) (10.1)
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and the Swing Phase is described by the following equations of motion:

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) = Ba(q
(i))



τ
(i)
1

τ
(i)
2

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STcon

f (i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))

 (10.2)

⇔

M(q(i)) ¨q(i) + C(q(i), ˙q(i)) ˙q(i) +G(q(i), θi) =



τ
(i)
1

τ
(i)
2

0

0


+



0

0

f
(i)
fr (q(i), q̇(i))

f
(i)
N (q(i), q̇(i))


where

M(q(i)) =



p14 + I1 −p13cos(q(i)2 ) −p16cos(q(i)2 ) −p16sin(q
(i)
2 )

−p13cos(q(i)2 ) p12 + I2 p15cos(q
(i)
1 ) p15sin(q

(i)
1 )

−p16cos(q(i)2 ) p15cos(q
(i)
1 ) p17 0

−p16sin(q
(i)
2 ) p15sin(q

(i)
1 ) 0 p17


(10.3)

C(q(i), ˙q(i))⇒ C(:, 1) =



p13sin(q
(i)
2 − q

(i)
1 )(q̇2

(i) − q̇1(i))

p13sin(q
(i)
2 − q

(i)
1 )q̇1

(i) + p16(sin(q
(i)
2 )q̇3

(i) − cos(q(i)2 ))q̇4
(i)

p16sin(q
(i)
2 )q̇2

(i)

−p16cos(q(i)2 )q̇2
(i)



C(:, 2) =



p13sin(q
(i)
2 − q

(i)
1 )q̇2

(i) − p15sin(q
(i)
1 )q̇3

(i) + p15cos(q
(i)
1 )q̇4

(i)

p13sin(q
(i)
2 − q

(i)
1 )(q̇2

(i) − q̇1(i))

−p15sin(q
(i)
1 )q̇1

(i)

p15cos(q
(i)
1 )q̇1

(i)


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C(:, 3) =



−p15sin(q
(i)
1 )q̇1

(i)

p16sin(q
(i)
2 )q̇2

(i)

0

0



C(:, 4) =



p15cos(q
(i)
1 )q̇1

(i)

−p16cos(q(i)2 )q̇2
(i)

0

0


(10.4)

G(q(i), θi) =



bgm2sin(q
(i)
1 )

−gM(asin(q
(i)
2 ) + bsin(q

(i)
2 ))− agm1sin(q

(i)
2 )− glm2sin(q

(i)
2 )

0

gm1 + gm2 + gM


(10.5)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, p12 = Ml2+m1a
2+m2l

2,p13 = m2bl, p14 = m2b
2, p15 = m2b, p16 = Ml+m1a+m2l,

p17 = m1 +m2 +M .

•Initial Discretization of the Swing Phase for the Direct Collocation Method (Leg1

= Swing, Leg2 = Stance)

Using the same procedure as for the case where Leg 1 is the Stance Leg and Leg 2 is the

Swing Leg, we proceed with the initial discretization (without applying the Direct Collocation

Conditions) of the Swing Phase for the case where the Leg 1 is the Swing Leg and the Leg 2 is
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the Stance Leg leads to the following equations of motion:

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) = Ba(q

(i)
k )



τ
(i)
(1,k)

τ
(i)
(2,k)

F
(i)
(PO,x)

F
(i)
(PO,y)


+ STconf

(i)
(con,k), k = 1, ..., N − 2

(10.6)

⇔

M(q
(i)
k )

¨
q
(i)
k + C(q

(i)
k ,

˙
q
(i)
k )

˙
q
(i)
k +G(q

(i)
k , θi) =



τ
(i)
(1,k)

τ
(i)
(2,k)

0

0


+



0

0

f
(i)
(fr,k)

f
(i)
(N,k)


, k = 1, ..., N − 2
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(i)
(con,k) =

f (i)
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f
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f (i)
fr (q

(i)
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f
(i)
N (q

(i)
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(i))

, k = 1, ..., N − 2,

M(q
(i)
k ) =


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(i)
(1,k)) p17 0

−p16sin(q
(i)
(2,k)) p15sin(q

(i)
(1,k)) 0 p17


, k = 1, ..., N − 2

(10.7)

C(q
(i)
k ,

˙
q
(i)
k )⇒ C(:, 1) =


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(2,k)) ˙q(3,k)

(i) − cos(q(i)(2,k))) ˙q(4,k)
(i)

p16sin(q
(i)
(2,k)) ˙q(2,k)
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C(:, 2) =


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(i)
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(i)



C(:, 3) =



−p15sin(q
(i)
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(i)

p16sin(q
(i)
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0

0


, k = 1, ..., N − 2

C(:, 4) =



p15cos(q
(i)
(1,k)) ˙q(1,k)

(i)

−p16cos(q(i)(2,k)) ˙q(2,k)
(i)

0

0


(10.8)

G(q(i), θi) =



bgm2sin(q
(i)
(1,k))

−gM(asin(q
(i)
(2,k)) + bsin(q

(i)
(2,k)))− agm1sin(q

(i)
(2,k))− glm2sin(q

(i)
(2,k))

0

gm1 + gm2 + gM


, k = 1, ..., N − 2

(10.9)

where p12 = Ml2 + m1a
2 + m2l

2,p13 = m2bl, p14 = m2b
2, p15 = m2b, p16 = Ml + m1a + m2l,

p17 = m1 +m2 +M .

•State Space Equations of the Swing Phase for the Direct Collocation Method

(Leg1 = Swing, Leg2 = Stance)

For the case where the Leg 1 is the Swing Leg and the Leg 2 is the Stance Leg, we derive

the state space equations similar to (3.16), where the matrices M, C, G are given from the



10.2. Analytical Expressions of Swing Phase using Discrete Mechanics(Leg 1= Stance, Leg 2 =Swing)225

relations (10.7-10.9).

10.2 Analytical Expressions of Swing Phase using Dis-

crete Mechanics(Leg 1= Stance, Leg 2 =Swing)

The discrete Lagrangian is given by the following relation:
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The analytical expression of (3.19) is:
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The analytical expression of (3.20) is:
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The analytical expression of (3.21) is:
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The analytical expression of (3.22) is:

−h(i) (
M g

2
+
gm1

2
+
gm2

2
−

m1 (
q
(i)
(4,k)
−q(i)

(4,k+1)

h(i)
−

a sin(
q
(i)
(1,k)
2

+
q
(i)
(1,k+1)

2
) (q

(i)
(1,k)
−q(i)

(1,k+1)
)

h(i)
)

h(i)
−
I2 (2 q

(i)
(2,k) − 2 q

(i)
(2,k+1))

2 (h(i))2
+

M (
a sin(

q
(i)
(1,k)
2

+
q
(i)
(1,k+1)

2
) (q

(i)
(1,k)
−q(i)

(1,k+1)
)

h(i)
−

q
(i)
(4,k)
−q(i)

(4,k+1)

h(i)
+

b sin(
q
(i)
(1,k)
2

+
q
(i)
(1,k+1)

2
) (q

(i)
(1,k)
−q(i)

(1,k+1)
)

h(i)
)

h(i)
−

m2 (
q
(i)
(4,k)
−q(i)

(4,k+1)

h(i)
+

b sin(
q
(i)
(2,k)
2

+
q
(i)
(2,k+1)

2
) (q

(i)
(2,k)
−q(i)

(2,k+1)
)

h(i)
−

l sin(
q
(i)
(1,k)
2

+
q
(i)
(1,k+1)

2
) (q

(i)
(1,k)
−q(i)

(1,k+1)
)

h(i)
)

h(i)
)−h(i) (

M g

2
+
gm1

2
+



10.2. Analytical Expressions of Swing Phase using Discrete Mechanics(Leg 1= Stance, Leg 2 =Swing)229

gm2

2
−

m1 (
q
(i)
(4,k)
−q(i)

(4,k−1)

h(i)
−

a sin(
q
(i)
(1,k)
2

+
q
(i)
(1,k−1)

2
) (q

(i)
(1,k)
−q(i)

(1,k−1)
)

h(i)
)

h(i)
−
I2 (2 q

(i)
(2,k) − 2 q

(i)
(2,k−1))

2 (h(i))2
+

M (
a sin(

q
(i)
(1,k)
2

+
q
(i)
(1,k−1)

2
) (q

(i)
(1,k)
−q(i)

(1,k−1)
)

h(i)
−

q
(i)
(4,k)
−q(i)

(4,k−1)

h(i)
+

b sin(
q
(i)
(1,k)
2

+
q
(i)
(1,k−1)

2
) (q

(i)
(1,k)
−q(i)

(1,k−1)
)

h(i)
)

h(i)
−

m2 (
q
(i)
(4,k)
−q(i)

(4,k−1)

h(i)
+

b sin(
q
(i)
(2,k)
2

+
q
(i)
(2,k−1)

2
) (q

(i)
(2,k)
−q(i)

(2,k−1)
)

h(i)
−

l sin(
q
(i)
(1,k)
2

+
q
(i)
(1,k−1)

2
) (q

(i)
(1,k)
−q(i)

(1,k−1)
)

h(i)
)

h(i)
)−f (i)

(N,k) = 0

(10.14)

The analytical expression of (3.23) is:
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˙q(1,1)
(i) l sin(q

(i)
(1,1)))− τ

(i)
(1,1) = 0 (10.15)
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The analytical expression of (3.25) is:
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The analytical expression of (3.27) is:
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(1,N)) ( ˙q(4,N)

(i)−a ˙q(1,N)
(i)

sin(q
(i)
(1,N))) + lm2 sin(q

(i)
(1,N)) ( ˙q(4,N)
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(10.19)

The analytical expression of (3.28) is:
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+
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The analytical expression of (3.29) is:
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The analytical expression of (3.30) is:
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10.3 Swing Phase using Discrete Mechanics (Leg 1= Swing,

Leg 2 =Stance)

Following the same methodology as for the first case where Leg 1 is the Stance Leg and Leg 2

is the Swing Leg, we calculate the Discrete Lagrangian of the biped robot for the case where

the Leg 1 is the Swing Leg and the Leg 2 is the Stance Leg:
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The discretized equations of the Swing Phase are:
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⇔
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) + p16(sin(q

(i)
(2,k))(

q
(i)
(3,k+1)

−q(i)
(3,k)

h(i)
)− cos(q(i)(2,k)))(

q
(i)
(4,k+1)

−q(i)
(4,k)

h(i)
)

p16sin(q
(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

−p16cos(q(i)(2,k))(
q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)



C(:, 2) =



p13sin(q
(i)
(2,k) − q

(i)
(1,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)− p15sin(q

(i)
(1,k))(

q
(i)
(3,k+1)

−q(i)
(3,k)

h(i)
) + p15cos(q

(i)
(1,k))(

q
(i)
(4,k+1)

−q(i)
(4,k)

h(i)
)

p13sin(q
(i)
(2,k) − q

(i)
(1,k))((

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)− (

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
))

−p15sin(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

p15cos(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)


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C(:, 3) =



−p15sin(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

p16sin(q
(i)
(2,k))(

q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

0

0


, k = 1, ..., N − 2

C(:, 4) =



p15cos(q
(i)
(1,k))(

q
(i)
(1,k+1)

−q(i)
(1,k)

h(i)
)

−p16cos(q(i)(2,k))(
q
(i)
(2,k+1)

−q(i)
(2,k)

h(i)
)

0

0


(10.26)

G(q(i), θi) =



bgm2sin(q
(i)
(1,k))

−gM(asin(q
(i)
(2,k)) + bsin(q

(i)
(2,k)))− agm1sin(q

(i)
(2,k))− glm2sin(q

(i)
(2,k))

0

gm1 + gm2 + gM


, k = 1, ..., N − 2

(10.27)

where I1, I2 are the moments of inertia of the Legs 1 and 2 about their centers of mass,

respectively, p12 = Ml2+m1a
2+m2l

2,p13 = m2bl, p14 = m2b
2, p15 = m2b, p16 = Ml+m1a+m2l,

p17 = m1 +m2 +M .

The initial and terminal conditions for the second case are:

D2L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D1L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− τ

(i)
(1,1) = 0 (10.28)

D4L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D3L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− τ

(i)
(2,1) = 0 (10.29)
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D6L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D5L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− f

(i)
(fr,1) = 0 (10.30)

D8L
c(q

(i)
(1,1), ˙q(1,1)

(i), q
(i)
(2,1), ˙q(2,1)

(i), q
(i)
(3,1), ˙q(3,1)

(i), q
(i)
(4,1), ˙q(4,1)

(i))+

D7L
d(q

(i)
(1,1), q

(i)
(1,2), q

(i)
(2,1), q

(i)
(2,2), q

(i)
(3,1), q

(i)
(3,2), q

(i)
(4,1), q

(i)
(4,2))− f

(i)
(N,1) = 0 (10.31)

The following terminal conditions, despite the fact that they are valid during the Heel Strike

Phase, are given here for simplicity. Some undefined terms in the following equations (e.g.

f
(i)
HSx,N , f

(i)
HSy,N) will be clarified in the Chapter 3.5.

−D2L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D1L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− τ

(i)
(1,N) = 0 (10.32)

−D4L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D3L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− τ

(i)
(2,N) = 0 (10.33)

−D6L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D5L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− f

(i)
HSx,N = 0 (10.34)

−D8L
c(q

(i)
(1,N), ˙q(1,N)

(i), q
(i)
(2,N), ˙q(2,N)

(i), q
(i)
(3,N), ˙q(3,N)

(i), q
(i)
(4,N), ˙q(4,N)

(i))+

D7L
d(q

(i)
(1,N−1), q

(i)
(1,N), q

(i)
(2,N−1), q

(i)
(2,N), q

(i)
(3,N−1), q

(i)
(3,N), q

(i)
(4,N−1), q

(i)
(4,N))− f

(i)
HSy,N = 0 (10.35)

The analytical expression of (10.28):

h(i) (m2 (
b sin(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
)

h(i)
+
b cos(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

2h(i)
) (

q
(i)
(4,1) − q

(i)
(4,2)

h(i)
+
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b sin(
q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

h(i)
−
l sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
) + m2 (

q
(i)
(3,1) − q

(i)
(3,2)

h(i)
+

b cos(
q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

h(i)
+
l cos(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

h(i)
) (
b cos(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
)

h(i)
+

l cos(
q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
)

h(i)
−
b sin(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

2h(i)
−
l sin(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

2h(i)
)−

b gm2 sin(
q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
)

2
)+m2 (b cos(q

(i)
(1,1))+l cos(q

(i)
(1,1))) ( ˙q(3,1)

(i)+ ˙q(1,1)
(i) l cos(q

(i)
(1,1))+b ˙q(1,1)

(i) cos(q
(i)
(1,1)))+

bm2 sin(q
(i)
(1,1)) ( ˙q(4,1)

(i) + b ˙q(1,1)
(i) sin(q

(i)
(1,1))− ˙q(2,1)

(i) l sin(q
(i)
(2,1)))− τ

(i)
(1,1) = 0 (10.36)

The analytical expression of (10.29):

h(i) (M (
a cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
−

q
(i)
(3,1) − q

(i)
(3,2)

h(i)
+
b cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
)

(
a cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
+
b cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
−
a sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
−

b sin(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
)−m2 (

l sin(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
+
l cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
)

(
q
(i)
(4,1) − q

(i)
(4,2)

h(i)
+
b sin(

q
(i)
(1,1)

2
+

q
(i)
(1,2)

2
) (q

(i)
(1,1) − q

(i)
(1,2))

h(i)
−
l sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
)−

m1 (
q
(i)
(3,1) − q

(i)
(3,2)

h(i)
−
a cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
) (
a cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
−

a sin(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
)−m1 (

q
(i)
(4,1) − q

(i)
(4,2)

h(i)
−
a sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
)

(
a sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
+
a cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
)+M (

a sin(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
−

q
(i)
(4,1) − q

(i)
(4,2)

h(i)
+
b sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

h(i)
) (
a sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
+
b sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

h(i)
+

a cos(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
+
b cos(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
) (q

(i)
(2,1) − q

(i)
(2,2))

2h(i)
)+M g (

a sin(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

2
+

b sin(
q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

2
)+
a gm1 sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

2
+
g lm2 sin(

q
(i)
(2,1)

2
+

q
(i)
(2,2)

2
)

2
)+M (a cos(q

(i)
(2,1))+b cos(q

(i)
(2,1)))

(a ˙q(2,1)
(i) cos(q

(i)
(2,1))− ˙q(3,1)

(i) + b ˙q(2,1)
(i) cos(q

(i)
(2,1))) +M (a sin(q

(i)
(2,1)) + b sin(q

(i)
(2,1)))

(a ˙q(2,1)
(i) sin(q

(i)
(2,1))− ˙q(4,1)

(i)+b ˙q(2,1)
(i) sin(q

(i)
(2,1)))−am1 cos(q

(i)
(2,1)) ( ˙q(3,1)

(i)−a ˙q(2,1)
(i) cos(q

(i)
(2,1)))−
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am1 sin(q
(i)
(2,1)) ( ˙q(4,1)

(i) − a ˙q(2,1)
(i) sin(q

(i)
(2,1)))− lm2 sin(q

(i)
(2,1)) ( ˙q(4,1)

(i) + b ˙q(1,1)
(i) sin(q

(i)
(1,1))−

˙q(2,1)
(i) l sin(q

(i)
(2,1)))− τ

(i)
(2,1) = 0 (10.37)

The analytical expression of (10.30):

I2 ˙q(2,1)
(i)+

m2 (2 ˙q(4,1)
(i) + 2 b ˙q(1,1)

(i) sin(q
(i)
(1,1))− 2 ˙q(2,1)

(i) l sin(q
(i)
(2,1)))

2
−h(i) (

M g

2
+
gm1

2
+
gm2

2
−

m1 (
q
(i)
(4,1)
−q(i)

(4,2)

h(i)
−

a sin(
q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
)

h(i)
−
I2 (2 q

(i)
(2,1) − 2 q

(i)
(2,2))

2 (h(i))2
+

M (
a sin(

q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
−

q
(i)
(4,1)
−q(i)

(4,2)

h(i)
+

b sin(
q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
)

h(i)
−

m2 (
q
(i)
(4,1)
−q(i)

(4,2)

h(i)
+

b sin(
q
(i)
(1,1)
2

+
q
(i)
(1,2)
2

) (q
(i)
(1,1)
−q(i)

(1,2)
)

h(i)
−

l sin(
q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
)

h(i)
)−

M (2 a ˙q(2,1)
(i) sin(q

(i)
(2,1))− 2 ˙q(4,1)

(i) + 2 b ˙q(2,1)
(i) sin(q

(i)
(2,1)))

2
+

m1 (2 ˙q(4,1)
(i) − 2 a ˙q(2,1)

(i) sin(q
(i)
(2,1)))

2

− f (i)
(fr,1) = 0 (10.38)

The analytical expression of (10.31):

I1 ˙q(1,1)
(i) + h(i) (

m1 (
q
(i)
(3,1)
−q(i)

(3,2)

h(i)
−

a cos(
q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
)

h(i)
+
I1 (2 q

(i)
(1,1) − 2 q

(i)
(1,2))

2 (h(i))2
−

M (
a cos(

q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
−

q
(i)
(3,1)
−q(i)

(3,2)

h(i)
+

b cos(
q
(i)
(2,1)
2

+
q
(i)
(2,2)
2

) (q
(i)
(2,1)
−q(i)

(2,2)
)

h(i)
)

h(i)
+

m2 (
q
(i)
(3,1)
−q(i)

(3,2)

h(i)
+

b cos(
q
(i)
(1,1)
2

+
q
(i)
(1,2)
2

) (q
(i)
(1,1)
−q(i)

(1,2)
)

h(i)
+

l cos(
q
(i)
(1,1)
2

+
q
(i)
(1,2)
2

) (q
(i)
(1,1)
−q(i)

(1,2)
)

h(i)
)

h(i)
)−

M (2 a ˙q(2,1)
(i) cos(q

(i)
(2,1))− 2 ˙q(3,1)

(i) + 2 b ˙q(2,1)
(i) cos(q

(i)
(2,1)))

2
+

m1 (2 ˙q(3,1)
(i) − 2 a ˙q(2,1)
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The analytical expression of (10.32):
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+
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+

q
(i)
(2,N−1)

2
) (q

(i)
(2,N) − q

(i)
(2,N−1))

h(i)
)+m2 (

q
(i)
(3,N) − q

(i)
(3,N−1)

h(i)
+

b cos(
q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2
) (q

(i)
(1,N) − q

(i)
(1,N−1))

h(i)
+
l cos(

q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2
) (q

(i)
(1,N) − q

(i)
(1,N−1))

h(i)
) (
b cos(

q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2
)

h(i)
+

l cos(
q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2
)

h(i)
−
b sin(

q
(i)
(1,N)

2
+

q
(i)
(1,N−1)

2
) (q

(i)
(1,N) − q

(i)
(1,N−1))

2h(i)
−
l sin(

q
(i)
(1,N)

2
+
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+
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(10.40)

The analytical expression of (10.33):
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(10.41)

The analytical expression of (10.34):
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The analytical expression of (10.35):
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Hence, the discretized Swing Phase of the 4-DOF biped robot is described by the set of equations

(10.24, 10.28-10.31).

10.4 Modeling of Constraint Forces at Stance Foot

10.4.1 Constraint Forces at Stance Foot during the Swing Phase

(Leg1 = Swing, Leg2 = Stance)

For the case where the Leg 1 is the Swing Leg and the Leg 2 is the Stance Leg, using the related

equations of motion for the Swing Phase and equation (3.35), the constraint force at stance

foot becomes:
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 (10.44)

By proceeding with the initial discretization and applying the Direct Collocation Conditions,

the relation above becomes:

f
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and using the Discrete Mechanics Approach, it becomes:
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10.4.2 Constraint Forces at Stance Foot during the Push-Off Phase

(Leg1 = Swing, Leg2 = Stance)

For the case where the Leg 1 is the Swing Leg and the Leg 2 is the Stance Leg, using the related

equations of motion for the Push-Off Phase and equation (3.35), the constraint force at stance

foot becomes:
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By proceeding with the initial discretization and applying the Direct Collocation Conditions,

the relation above becomes:
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(10.48)

and using the Discrete Mechanics Approach, it becomes:
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10.5 The Impact Phase Redefined: Derivation of the

Heel Strike and Push-Off Phases of Walking

10.5.1 The Heel Strike Phase of Walking (Leg1 = Swing, Leg2 =

Stance)

Based on the same methodology as for the case where Leg1 is the Stance Leg and Leg2 is the

Swing Leg, we derive similar equations for the Heel Strike Phase of the biped (3.48-3.63) for

the case where Leg 1 is the Swing Leg and Leg 2 is the Stance Leg. We must take into account

that the matrices M, C, G are taken from the relations (10.3-10.5). In addition, the contact

point of the swing leg with the ground surface has the Cartesian Coordinates:

For the Direct Collocation Method:

Y =

q(i)(3,appr)(tN) + lsin(q
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For Discrete Mechanics:
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(2,N))− lcos(q

(i)
(1,N))

 (10.51)

In addition the following relation is valid:

For the Direct Collocation Method:

E =
∂Y

∂q
(i)
(x,appr)(tN)

=

lcos(q(i)(1,appr)(tN)) lcos(q
(i)
(2,appr)(tN)) 1 0

lsin(q
(i)
(1,appr)(tN)) −lsin(q

(i)
(1,appr)(tN)) 0 1

 . (10.52)

For Discrete Mechanics:

E =
∂Y

∂q
(i)
(x,N)

=

lcos(q(i)(1,N)) lcos(q
(i)
(2,N)) 1 0

lsin(q
(i)
(1,N)) −lsin(q

(i)
(1,N)) 0 1

 (10.53)
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With these modifications, we derive relations similar to (3.61, 3.63).

10.5.2 The Push-Off Phase of Walking (Leg 1 = Swing, Leg 2 =

Stance)

Based on the same methodology as for the case where Leg1 is the Stance Leg and Leg2 is

the Swing Leg, we derive similar equations for the Push-Off Phase of the biped (3.64 -3.72)

for the case where Leg 1 is the Swing Leg and Leg 2 is the Stance Leg. We must take into

account that the matrices M, C, G are taken from the relations (10.3-10.5). In addition,

JPO =

[
0 0 −sin(q

(i)
(2,N)) cos(q

(i)
(2,N))

]
(due to the fact that now the stance leg is the Leg 2).

With these modifications, we derive relations similar to (3.71, 3.72).



Chapter 11

Appendix D: Implemented

Optimization Algorithms for the Gait

Generation Problems

11.1 Introduction

In this section we will mention the optimization algorithms that we used and implemented for

solving the gait generation problems utilizing Discrete Mechanics and Direct Collocation based

discretization. More specifically, for the Discrete Mechanics based optimization problems we

are going to implement a Feasible sequential quadratic programming algorithm (FSQP) to solve

them [14]. In addition, for the related Direct Collocation based optimization problems, we are

going to implement Nonlinear Interior Point Methods [15].

246
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11.2 A FSQP Algorithm for the Discrete Mechanics based

Gait Generation Problems

Feasible sequential quadratic programming algorithms (FSQP) are methods for solving non-

linearly constrained optimization problems or nonlinear programming problems. As the name

suggests, feasible SQP methods constrain all of the iterates to be feasible. As a result, they

are more expensive than standard SQP algorithms, but they are useful when the objective

function f is difficult or impossible to calculate outside the feasible set or when termination of

the algorithm at an infeasible point is undesirable.

These algorithms seem to fit best for our proposed system, since that, at any case (e.g. providing

a random initial vector of values instead of guessing ”good” initial values for the algorithms),

those algorithms will not lead to undesiring termination and as a result, to ”corrupted” trajec-

tories.

FSQP algorithms solve problems of the form:

minimize f(x)

s.t. gj(x) <= 0, j = 1, 2, . . . ,m,

gj(x) <= 0, j = m+ 1, . . . ,m+ l,

(11.1)

where f, gj(j = 1, 2, . . . , m+ l) : Rn → R are smooth functions.

In these algorithms, the step is defined as a combination of the SQP direction, a strictly

feasible direction (which points into the interior of the feasible set) and, possibly, a second-

order correction direction. This mix of directions is adjusted to ensure feasibility while retaining

fast local convergence properties. Feasible algorithms have the additional advantage that the

objective function f can be used as a merit function, since, by definition, the constraints are

always satisfied. FSQP also solves problems in which f is not itself smooth but instead is the

maximum of a finite set of smooth functions:

fi : Rn → R (11.2)
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SQP algorithms generate iteratively the main search direction d0 of the problem above by

solving a QP subproblem:

minimize ∇f(x)Td+
1

2
dTHd

s.t. gj(x) +∇gj(x)Td ≤ 0, j = 1, . . . ,m

gj(x) +∇gj(x)Td = 0, j = m+ 1, . . . ,m+ l,

(11.3)

where H ∈ Rn×n is a symmetric positive definite matrix.

However, there is a serious drawback that SQP methods require a solution of the QP above at

each iteration.

We denote:

X = {x ∈ Rn| gj(x) ≤ 0, j = 1, . . . ,m, gj(x) = 0, j = m+ 1, . . . ,m+ l}, I = {1, 2, . . . ,m},

E = {m+ 1, . . . ,m+ l}, L = I ∪ E, I(x) = {j ∈ I| gj(x) = 0}, L(x) = I(x) ∪ E

Given a parameter c>0, construct the corresponding auxiliary programming with (3.93):

minimize Fc(x)

s.t. gj(x) ≤ 0, j ∈ L = I ∪ E.
(11.4)

where

Fc(x) = f(x)− c
∑
j∈E

gj(x). (11.5)

Denote the feasible set of the problem (3.96) as follows:

X+ = {x ∈ Rn| gj(x) ≤ 0, j ∈ L = I ∪ E}

The following general assumptions are true for the use of the specific algorithm:

• Feasible sets of (3.93) and (3.96) are nonempty, i.e.,X 6= ∅, X+ 6= ∅.
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• The functions f(x), gj(x) (j ∈ L) are two-times continuously differentiable.

• For all x ∈ X+, the vectors {∇gj(x), j ∈ L(x)} are linearly independent.

Given a point x ∈ X, the following matrices are defined:

D(x) = diag(Dj(x), j ∈ L), Dj(x) =


g2j (x), j ∈ I,

0, j ∈ E,

N(x) = (∇gj(x), j ∈ L), Q(x) = (N(x)TN(x) +D(x))−1N(x)T .

(11.6)

•Algorithm

Parameters: α ∈ (0, 1
2
), v > 2, δ ∈ (2, v), τ ∈ (2, 3), ε0 > 0, ε > 0, ρ > 0, θ, β ∈ (0, 1).

Data: x0 ∈ X+, H0 ∈ Rn×n, c0 = ρ.

Step 0. Initialization, and set k = 0.

Step 1. Computation of the approximate active set Jk:

(1.1). Set i = 0, εk,i = ε0.

(1.2). Compute:

J̃k,i = {j ∈ I|−εk,i ≤ gj(x
k) ≤ 0}, Jk,i = J̃k,i ∪ E, Ak,i = (∇gk(xk), j ∈ Jk,i). (11.7)

If Ak,i is of full rank, let:

J̃k = J̃k,i, Jk = Jk,i, Ak = Ak,i, ik = i,

and go to step 2.

(1.3). Set i = i+ 1, εk,i = 1
2
εk,i−1, and go to 1.2.

Step 2. Updating of parameter ck:

According to (3.98) and the equation:

π(x) = −(N(x)TN(x) +D(x))−1N(x)T∇f(x) = −Q(x)∇f(x) (11.8)
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compute Qk = Q(xk), πk = π(xk), and set

sk = max{|πkj |, j ∈ E}, ck =


max{sk + c0, ck−1+ε}, ck−1 < sk + c0,

ck−1, ck−1 ≥ sk + c0.

(11.9)

Step 3. Computation of the search direction:

(3.1). Computation of the descent dk0:

Solve the following equality constrained QP subproblem at xk:

minimize ∇Fck(xk)Td+
1

2
dTHkd

s.t. αkj +∇gj(xk)Td = 0, j ∈ Jk \ E,

gj(x
k) +∇gj(xk)Tdk = 0, j ∈ E.

(11.10)

where

αkj =


gj(x

k), j ∈ Jk \ E, πkj ≥ 0,

−πkj , j ∈ Jk \ E, πkj < 0.

(11.11)

Let (dk0, ũ
k) be the KKT point pair. If dk0 = 0, STOP.

(3.2) Computation of the feasible descent direction dk:

(3.2.1). Solve the second equality constraint QP as follows:

minimize ∇Fck(xk)Td+
1

2
dTHkd

s.t. gj(x
k) +∇gj(xk)Td = −||dk0||v, j ∈ Jk

(11.12)

Let (dk1, λ
k) be the KKT point pair. If

∇Fck(xk)Tdk1 ≤ ξ||dk1||δ, (11.13)

let dk = dk1, go to step 3.3.
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(3.2.2). Solve the following system of linear equations:

Hk Ak

ATk Gk


d
λ

 = −

∇Fck(xk)

0

 , (11.14)

where

Gk = diag(gj(x
k), j ∈ Jk).

Let (dk2, π̃
k) be the solution.

(3.2.3). Solve the following system of linear equations:

Hk Ak

ATk Gk


d
λ

 = −

∇Fck(xk)

V k

 , (11.15)

where

V j
k =


−π̃kj , π̃kj ≤ 0, j ∈ Jk,

0, π̃kj > 0, j ∈ Jk.
(11.16)

Let (dk3, ṽ
k) be the solution.

(3.2.4). Denote τk = −∇Fck(xk)Tdk3. Establish a convex combination of dk1 and dk3 as follows:

dk = τk((1− ρk)dk3 + ρkd
k
1), ρk =


1, ∇Fck(xk)dk1 ≤ θ∇Fck(xk)Tdk3

(1−θ)∇Fck
(xk)T dk3

∇Fck
(xk)T (dk3−dk1)

, ∇Fck(xk)dk1 > θ∇Fck(xk)Tdk3

(11.17)

(3.3). Computation of the high-order corrected direction d̃k:

Solve the third equality constrained QP as follows:

minimize ∇Fck(xk)Td+
1

2
(dk + d)THk(d

k + d)

s.t. gj(x
k + dk) +∇gj(xk)Td = −||dk||τ , j ∈ Jk.

(11.18)

Let (d̃k, λ̃k) be the KKT point pair. If ||δ̃k||> ||δk||, set δ̃k=0.

Step 4. The line search: Compute tk, the first number t in the sequence {1, β, β2, β3, . . .}
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satisfying:

Fck(xk + tdk + td̃k) ≤ Fck(xk) + αt∇Fck(xk)Tdk, (11.19)

gj(x
k + tdk + t2d̃k) ≤ 0, j ∈ L. (11.20)

Step 5. Update:

Obtain Hk+1 by updating the positive definite matrix Hk using the Broyden-Fletcher-Goldfarb-

Shanno formulas, namely:

Hk+1 = Hk +
ykykT

ykT sk
− Hks

kskTHk

skTHksk
, (11.21)

where yk = ∇Fck(xk+1)−∇Fck(xk) and sk = xk+1 − xk. Set xk+1 = xk + tkd
k + t2kd̃

k.

Go to step 1.

• Global Convergence of the FSQP Algorithm

In this section, it is shown that the abovementioned algorithm is correctly stated. Some as-

sumptions are made and let they hold for the algorithm.

• The sequence {xk}, which is generated by the algorithm, is bounded.

• There exist two constants b ≥ a > 0, such that

α||y||2≤ yTHky ≤ b||y||2, for all k and for all y ∈ Rn.

(Lemma 1). For any iteration k, there is no infinite cycle in step 1. Moreover, if {xk}k∈K → x∗,

then there is a constant ε̃ > 0, such that εk,ik ≥ ε̃, for k ∈ K, k large enough.

(Lemma 2). Let (dk0, ũ) be the solution of (3.102). If dk0 = 0, then xk is a KKT point of (3.93),

otherwise, the direction dk computed in step 3.2 is a feasible descent direction of (3.96) at xk.

(Lemma 3). The line search in step 4 yields a stepsize tk = βj for some finite j = j(k).

(Lemma 4). There exists a positive integer k0, such that

ck ≡ ck0 = c, for all k ≥ k0.
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(Lemma 5). Under above assumptions, dk0 → 0, k ∈ K.

(Theorem 1). The algorithm either stops at the KKT point xk of the problem (3.93) in finite

iteration, or generates an infinite sequence {xk} whose any accumulation point x∗ is a KKT

point of (3.93).

• Rate of Convergence of the FSQP Algorithm

Some furthers lemmas and theorems follows, regarding the rate of convergence of the imple-

mented algorithm. For that reason, some stronger regularity assumptions are added:

• Hk → H∗, k →∞.

• The second-order sufficiency conditions with strict complementary slackness are satisfied at

the KKT point x∗ and the corresponding multiplier vector u∗.

(Lemma 6). Under above conditions, the entire sequence {xk} converges to x∗, i.e., xk →

x∗, k →∞.

(Lemma 7). For k large enough, it holds that Jk ≡ L(x∗) = I(x∗) ∪ E, and

dk0 → 0, πk → u∗, ũkj → u∗j , j ∈ I(x∗), ũkj → u∗j + c > 0, j ∈ E, k →∞.

(Lemma 8). For k large enough, (dk, λk) obtained in step 3.2 and d̃k obtained by (3.110)

satisfy that

dk = dk1, ||dk||∼ ||dk0||, ||d̃k||= O(||dk||2), λk → u∗, j ∈ I(x∗), λk → u∗ + c, j ∈ E, k →∞,

and it holds that

∇Fc(xk) +Hkd
k + Akλ

k = 0,

gj(x
k) +∇gj(xk)Tdk = o(||dk||2), j ∈ L(x∗).

(11.22)

(Lemma 9). Denote:

G(xk) = (gj(x
k), j ∈ I(x∗) ∪ E), Pk = En − Ak(ATkAk)−1ATk , dk = Pkd

k + d
k
,
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then, we have:

||dk||= O(||dk||) = O(||G(xk||) + o(||dk||2).

(Lemma 10). For k large enough, the full step of one is always accepted, i.e.,

tk ≡ 1, xk+1 = xk + dk + d̃k.

(Theorem 2). Under all stated assumptions, the algorithm is superlinearly convergent, i.e.,

the sequence {xk} generated by the algorithm satisfies ||xk+1 − x∗||= o(||xk − x ∗ g||).

11.3 A Nonlinear Interior-Point Algorithm for the Di-

rect Collocation based Gait Generation Problems

Interior-point methods for nonlinear programming, also called barrier methods, rose from the

need for effective solving of large-scale optimization problems. In particular, for NLP problems

with large numbers of inequality constraints, these methods offer a serious alternative to active-

set strategies. Within the last fifteen years researchers has led to a better understanding

of the convergence of interior-point methods and has also developed effective computational

algorithms with desirable global and local convergence properties. The term interior-point

method was used for the first time by Fiacco and McCormick in 1968 in the book (Fiacco and

McCormick, 1968), for any algorithm that was designed for the calculation of a local minimum

of an NLP problem by the solution of a determined sequence of unconstrained minimization

problems. Such a definition evolved to the form, in which as of the IP method we think of

any algorithm for solving a set of optimization problems associated with a decreasing value of

the µ multiplier, to find local solutions lying in the interior of the feasibility set determined by

nonlinear constraints of the NLP problem.

To allow convergence from ”bad” starting points for interior-point methods in both trust re-

gion and line- search versions, researchers developed exact penalty merit functions that ensure

progress toward the solution (Byrd et al., 2000; Tits et al., 2002). On the other hand, Fletcher
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and Leyffer (Fletcher and Leyffer, 2002; Fletcher et al., 2006) proposed recently filter methods,

as an alternative to merit functions which guarantee the global convergence for nonlinear pro-

gramming algorithms. They are based on the idea of the approval of trial points generated by

the optimization algorithm in the case when they improve the value of the objective function

or improve the value of a constraint violation, instead of a combination of those two measures

defined by a merit function.

More recently, this filter technique has been adapted to barrier methods. In (Ulbrich et al.,

2004), the authors consider a trust-region filter method, in which the conse- quent iterations of

the solution are accepted on the basis of the norm of optimality conditions. Also, in (Benson

et al., 2001), the authors proposed several heuristics based on the concept of filter methods, for

which the efficiency improvement was obtained as compared with their previ- ous experience

with merit functions. Finally, in (Wachter and Biegler, 2005), global convergence analysis of

an interior-point algorithm with a filter line-search was provided.

• Algorithm

In this section we describe a primal-dual interior-point algorithm with line-search min- imization

based on the filter method. The authors of the algorithm assumed the following formulation of

the original NLP problem:

(P ) min
y∈Rmy

{J(y) h(y) = 0, y ≥ 0}, (11.23)

where the objective function J : Rmy → R and the equality constraints h : Rmy → Rmh with

mh < my are assumed to be twice continuously differentiable. NLP problems with general

inequality constraints g(y) ≥ 0 can be reformulated to the above form by introducing slack

variables, i.e., s, where g(y)− s = 0, s ≥ 0.

The barrier algorithm is based on the replacement of the sign constraints on decision variables,

y ≥ 0, with an additional component in the objective function-the logarithmic barrier:

(P ) min
y∈Rmy

Jµ(y) = J(y)− µ
my∑
j=1

ln(yj)|h(y) = 0, (11.24)
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where µ > 0 is the barrier parameter and yj is the j-th element of the vector y. Since the

objective function for Problem (P) may attain arbitrarily large values when yj reaches one

of its bounds, the local solution y?(µ) to that problem is located in the interior of the set

determined by the constraints y?(µ) > 0. The scale of the barrier influence is determined by

the size of the µ parameter and on certain assumptions, as µ→ 0, the solution y?(µ) converges

to a local solution y? of the original problem (P). As a result, the algorithm to determine a

solution to the original problem (P) is based on solving a sequence of barrier problems (Pµ)

with decreasing values of the parameter µl, {µl} → 0.

The interior-point algorithm finds a solution for primal-dual stationarity conditions for the

problem (Pµ) , formulated as the following nonlinear system of equations:

∇yJ(y) +∇yh(y)λ− z = 0

h(y) = 0,

Y Z − µey = 0,

(11.25)

where Y and Z are diagonal matrices with elements y and z, respectively, ey is the vector of

ones of dimension my, λ ∈ Rmh is the vector of Lagrange multipliers for equality constraints of

the problem (P), and z ∈ Rmy corresponds to the vector of Lagrange multipliers for the sign

constraints of the problem (P), in the limit, as µ→ 0. Note that the system of equalities (3.117)

for µ = 0, together with the additional condition y, z ≥ 0, is equivalent to KKT optimality

conditions for the original problem (P). For the solution of the system of equalities (3.117) for

a fixed value of the parameter µ, the iterative Newton method is being applied, based on the

solution of the following system of linear equations:


Wk ∇yh(yk) −I

∇yh(yk)
T 0 0

Zk 0 Yk



dyk

dλk

dzk

 = −


∇yJ(yk) +∇yh(yk)λk − zk

h(yk)

YkZk − µey

 (11.26)

where Wk denotes the exact Hessian matrix for the Lagrange function of the original problem
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(P):

Wk = ∇yyJ(yk) +

mh∑
i=1

λik∇yyh
i(yk), (11.27)

or some approximation of it. The Lagrange function has the form

L(y, λ, z) := J(y) + h(y)Tλ− z. (11.28)

Here, the index k denotes the counter of inner iterations of Newton’s method, the vector

(yk, λk, zk) is the current iterate, and (dyk, d
λ
k , d

z
k) is the obtained new search direction.

Instead of solving the nonsymmetric system of linear equalities (3.118) directly, the the equiv-

alent solution is obtained by first solving the symmetric linear system of a smaller dimension:

Wk +
∑

k ∇yh(yk)

∇yh(yk)
T 0


dyk
λ+k

 = −

Jµ(yk)∇y

h(yk)

 (11.29)

where Σk := Y −1k Zk. The equations for the system D34 are derived from those of the system

(3.118) by eliminating the last block row. And then, the direction dλk is computed from

dλk = λ+k − λk (11.30)

and the direction dzk from

dzk = µY −1k ey − zk − Σkd
y
k (11.31)

After computing new search directions from (3.126-3.128) we calculate the next iterate as

follows:

(yk+1, λk+1, zk+1) := (yk, λk, zk) + (αkd
y
k, αkd

λ
k , α

z
kd

z
k), (11.32)

where α, αzk ∈ (0, 1] are the stepsizes. Note that for z variables it is allowed to take a different

stepsize than for the other variables.

Since we know that the variables y and z are positive at an optimal solution of the barrier

problem (Pµ) , the interior-point algorithm maintains this property for all iterates. As a result,
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the following rule of the step length selection is applied:

αk := max{α ∈ (0, 1] : yk + αdyk ≥ (1− τ)yk},

αzk := max{α ∈ (0, 1] : zk + αdzk ≥ (1− τ)zk},
(11.33)

for the parameter τ ∈ (0, 1) , usually close to 1 (e.g., τ = 0.995) . For the z variables the

step length is cho- sen as αzk := αzk, while the step length αk ∈ (0, αk] for the remaining

variables is determined by a backtrack- ing line-search procedure using a decreasing sequence

of trial stepsizes, αk,l = 2−lαk, with l = 0, 1, 2, . . . -here a variant of Fletcher and Leyffer’s

filter method (Fletcher and Leyffer, 2002) is used, which guarantees global convergence of the

interior-point algorithm to the solution of the problem (Pµ) .

Filter minimization methods are based on the idea of two-criteria optimization in which, apart

from minimiz- ing the barrier objective function Jµ(y) , we want to minimize the constraint vio-

lation θ(y) := ‖h(y)‖ in order to assure the convergence to a feasible point. In the interior-point

algorithm, the following safeguards have been added by the authors to this simple procedure

of next iterate acceptance:

• In the case when the current iterate is (almost) feasi- ble but not sufficiently optimal, the

above condition of a sufficient decrease in one of two measures for yk is replaced by the condition

of a sufficient decrease in the barrier function value Jµ.

• In order to prevent cycling, the (θ, Jµ) pairs corresponding to previous iterate that create

a certain envelope (in our example these are yl1 and yl2 iterates) are added to a filter; a trial

point is only accepted if it guarantees a sufficient decrease in one of two mea- sures relative to

all those points.

• It may happen that there is no trial stepsize αk,l that generates an acceptable point. After

detecting such a situation, the algorithm switches to a feasibility restoration phase in which

the minimization of infeasibility is carried out (ignoring the objective func- tion) until either a

new acceptable iterate is found or it is no longer possible to reduce the infeasibility, e.g., if the

problem P is (locally) infeasible.



11.3. A Nonlinear Interior-Point Algorithm for the Direct Collocation based Gait Generation Problems259

In comparison with traditional line-search algorithms, such as a single merit function technique,

the filter method is usually less conservative and makes it posible to take larger stepsizes. More-

over, the protection in the form of a restoration phase makes the filter algorithm resistant to

unnecessary errors, such as those presented in (Wachter and Biegler, 2000). The computation-

ally most expensive part of the optimization algorithm implemented in the nonlinear interior

point algorithm (not including computations of the objective function, constraints and their

derivatives) is the solution of the linear system of equations (3.121), which is most often of high

order and has a sparse structure, e.g., for dynamic optimization problems it is very sparse. For

its factorization and solution, the nonlinear interior-point algorithm uses external sparse direct

linear solvers.


