
i

Technical University of Crete

School of Electronic and Computer Engineering

A dependency-aware task distribution

 extension to the BOINC framework for

volunteer computing

Pissadakis Emmanouil

 ADVISOR: Prof. Dionisios Pnevmatikatos

 COMMITTEE: Assist. Prof. Vasilis Samoladas

 Dr. Dimitris Theodoropoulos

ii

Acknowledgments

Many people helped and inspired me in order to complete this thesis. Firstly, I would

like to thank my professor Dionisios Pnevmatikatos for giving me the opportunity to work in

the field that I am interested in. Secondly, special thanks to Dimitris Theodoropoulos for the

cooperation and his constant technical support during this thesis, as well as to Gregorios

Chrisos, Iosif Koidis and George Charitopoulos for their helpful advices. Additional thanks to

my friends Manos, Spyros and Antonis for their vital help. Finally, I am indebted to my

family for their mental support during my studies.

iii

Abstract

Volunteer Computing is one of the distributed computing paradigms that has gained attention

in recent years. It is used by a number of scientific researchers to perform scientific projects such as

climate prediction, search for extraterrestrial live and protein structure prediction. It is an innovative

approach to high performance computing that relies on volunteers who donate their personal

computers’ unused resources to a computationally intensive research project, as well as provides

scientists with the necessary means for performing projects that require huge resources. BOINC

(Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving

large-scale computational problems by means of volunteer computing. In contrast to massive parallel

computing, applications are distributed into a large number of heterogeneous client computers

connected by the Internet where each computer is assigned individual tasks that can be solved

independently without the need of communication upon the clients. A BOINC-based project provides

its own servers. Hosts download application’s executables and data files from servers, carry out tasks

(by running applications against specific data files) and upload the output files. However various

problems exist while deploying applications over these heterogeneous machines using BOINC. The

tasks of each application had to be independent due to the lack of communication between the clients,

otherwise it is not compatible. Furthermore porting application to BOINC middleware is a very

complex process. Several server daemons had to be implemented to achieve that. To resolve these

issues, this thesis proposes a framework based on the Boinc infrastructure, the mCluster software

framework. MCluster adopts a task-based programming model designed to resolve the existed

dependencies. Finally, a source to source translator is included in this framework in order to transform

this application into BOINC compatible tasks, ready to be executed from the available clients by

implementing all the appropriate daemons that BOINC requires.

Keywords: Volunteer Computing, BOINC middleware, task based programming model

iv

Table of contents

1) Introduction

1.1 Motivation ... 2

1.2 Contributions ... 2

1.3 Thesis outline .. 3

2) Background

2.1 Distributed computing .. 5

2.1.1 Goals of distributed computing ... 6

2.1.2 Client server architecture ... 6

2.1.3 Peer to peer architecture .. 7

2.2 Volunteer computing .. 8

2.3 Related work ... 9

2.3.1 Grid computing projects .. 9

2.3.2 Volunteer computing projects ... 10

2.3.3 Parallel programming models .. 14

3) The mCluster task based programming model

3.1 Introduction ... 15

3.2 A Task based programming models for distributed systems 16

3.3 mCluster Application programming interface (API) .. 17

3.4 Dependencies between tasks .. 18

3.5 Data hazards in task execution .. 20

3.6 Limitations ... 22

v

4) mCluster implementation using the BOINC infrastructure

4.1 Introduction ... 23

4.2 Hadoop limitations .. 23

4.3 BOINC .. 25

4.3.1 BOINC in contrast to Grid computing .. 25

4.3.2 Goals .. 26

4.3.3 Features ... 27

4.3.4 BOINC architecture .. 29

4.3.5 BOINC client ... 30

4.3.6 BOINC task server .. 32

4.3.7 Suitable applications .. 36

4.3.8 Application porting .. 36

4.4 Aim of development .. 38

4.5 Source to source translator ... 38

4.6 Source to source translator architecture .. 39

4.6.1 Server generator .. 39

4.6.2 Client generator ... 42

4.7 mCluster architecture .. 43

5) Performance evaluation

5.1 Experimental setup ... 46

5.2 Experimental results .. 47

6) Conclusions and future work

6.1 Conclusion ... 59

6.2 Future work ... 59

vi

List of Figures

Figure 2.1: Client server architecture in contrast to peer to peer architecture 8

Figure 2.2: Entropia architecture ... 11

Figure 2.3: The Hadoop distributed file system architecture .. 12

Figure 3.1: Basic idea of the mCluster programming model ... 17

Figure 3.2: A set of tasks (circles) and their dependencies (arrows) 20

Figure 4.1: Differences between BOINC and grid computing systems 26

Figure 4.2: Redundant computing example ... 27

Figure 4.3: BOINC client-server architecture ... 30

Figure 4.4: Client components ... 31

Figure 4.5: Task server components .. 33

Figure 4.6: BOINC application programing interface ... 37

Figure 4.7: Representation of source to source translator environment 38

Figure 4.8: Components of the server generator .. 40

Figure 4.9: mCluster architecture .. 43

Figure 4.10: mCluster work life-time ... 45

Figure 5.1: Task dependency graph ... 47

Figure 5.2: Download, upload, execution time of matrices consisting of 1000
elements ... 47

Figure 5.3: Download, upload and execution time of matrices consisting of 10000
 elements .. 48

Figure 5.4: Total execution time using one or two devices ... 49

Figure 5.5: The Inferior Olive Model Structure. Visible are the I/O of the cell and its
internal computational stages (Dendrite, Soma and Axon) ... 50

Figure 5.6: Inferior-Oliver Application execution procedure ... 51

Figure 5.7: Download, upload, execution time for first Simstep
for grid size 1X96, 1X192,1X288,1X384,1X4 using one device ... 52

vii

Figure 5.8: Download, upload, execution time for second Simstep
 for grid size 1X96, 1X192,1X288,1X384,1X480 using one device 52

Figure 5.9: Download, upload, execution time for second Simstep
for grid size 1X96, 1X192,1X288,1X384,1X480 using 6 devices ... 53

Figure 5.10: Total execution time in for grid size 1X96, 1X192, 1X288, 1X384, 1X480
using different number of volunteer devices .. 54

Figure 5.11: The Black-Scholes pricing formula ... 55

Figure 5.12: Task execution, download, upload and task scheduler time for different
input buffer size using 2 devices .. 55

Figure 5.13: Download execution and upload time for 100000 elements input buffer size
when divided into 100 smaller tasks using an increasing number of volunteer devices... 56

Figure 5.14: Application execution procedure .. 57

Figure 5.15: Image before and after applying filtering .. 57

Figure 5.16: Task scheduler, upload download and execution time for every task using
two devices .. 58

Figure 5.17: Upload, download and execution time for different task size
using two devices ... 58

viii

List of Tables

Table 4.1: BOINC database schema ... 34

Table 4.2: Device specification .. 46

1

Chapter 1

Introduction

 Over the past few years, distributed computing has become more and more popular. That

occurs because the processing power in the computers has greatly increased, as well the internet

became available to hundreds of millions of users. Distributed computing is an efficient way to solve

large scale problems that require a lot of processing power. These problems are divided into smaller

chunks (tasks) which are going to be distributed to machines over the internet. Those remote

machines will execute them and return the individual results to a central server. Due to the increased

demands of the researchers, this field of computer science mostly consists of scientific projects.

Volunteer computing that is going to be analyzed in next sections, so as grid computing are forms of

distributed computing.

Grid computing [6,9] is related to volunteer computing, but there are also some distinctions. A

grid is usually a set of computers or clusters that are owned by universities, companies or

organizations. Furthermore, users gain access to computing resources even though they don’t know

where they are located [6]. On the other hand, volunteer computing [2,3] (also known as Public

Resource Computing) focuses on utilizing the available resources in the personal computers of

individual volunteers rather than large networks of computers with persistent network connections

and long uptimes. The increasing number of connected machines over the internet provides more

computational power and storage than large clusters or grids. Grid computing is more reliable,

because tasks are usually running in clusters always available for processing, in contrast to volunteer

computing in which anyone can become a volunteer regardless his location and without giving

information about his reliability.

There are several types of volunteer computing frameworks [4,7] but the most popular and

reliable middleware is the Berkeley Open Infrastructure for Network Computing (BOINC) [24,25,26],

attached to several scientific projects, where participants can volunteer their available resources. Most

of these projects [1,23] have hundreds of thousands even millions of participants, so the performance

of each project is based on the way that data are distributed to them.

These available resources are mostly personal PCs but the increasing performance of mobile

devices trends them to a similar performance resource. Nowadays, mobile devices such as

smartphones and tablets are becoming increasingly powerful and rising quickly in popularity. Mobile

2

devices follow us everywhere, allowing us to work and entertain ourselves at any venue. Thus, they

are replacing desktops as our personal computers. We already have signs of smartphones becoming

more popular than traditional desktop computers. A recent survey of users reveals that email, Internet

access and a digital camera are the three most desirable features in a mobile phone while the

consumers wanted these features to be as fast as possible. The increasing sales of more powerful

phones also indicate consumer demand for more efficient mobile devices.

The mobile devices themselves could be the source of computing power. Recent technological

advances have greatly improved the performance of smartphones/tablets in terms of CPU/GPU speed,

memory size and storage space. A smartphone or tablet can provide a considerable amount of

computing power that may be even comparable to the computing power of a desktop computer. In

addition, unlike personal computers, mobile devices are rarely powered off, even when the owners are

sleeping, which translates into hours of unutilized computing resources. There is great potential if we

can make use of these idle computing resources.

1.1 Motivation

BOINC is based on the client-server architecture suited to most of those scientific projects,

but its implementation requires project developers to be very familiar with this architecture. An

application must be divided into two sides, the client’s and the server’s one, which is very difficult

due to the lack of BOINC tools and documentations. BOINC is a very useful framework mainly for

scientists because it can endure large scale computational requirements.

In order for a project to take advantage of volunteer computing, it must be able to be broken

down into smaller parallel tasks and be compatible with the client-server architecture, where the client

executes them, and the server gains the individual results. Furthermore, another important

disadvantage of BOINC is its inability to support dependencies between the tasks of each project. If a

project has to be divided in tasks that have dependencies among them, it cannot be ported to BOINC

[25].

Considering all above-mentioned, this thesis initial goal is to implement an easy-to-use by the

developers task based programming model that will resolve any task dependencies an application may

have.

As a case study this thesis aims to implement this programming model into the BOINC

framework in order to resolve any task dependencies that might occur in a project. Finally, a specific

mechanism has to be designed to convert a simple non BOINC-compatible application, into a ready-

to-be-executed BOINC project.

3

1.2 Contributions

The contributions of this thesis are

 The design of a task-based programming model targeting distributed systems.

According to this, programmers via annotations can determine which piece of code

they want to be executed in parallel. Moreover, any task dependencies will be

resolved, as well as data hazards in task out-of-order execution.

 The implementation of the task-based programming model over the BOINC

infrastructure. Via this model, projects can be divided into client and server side. The

server side is responsible for creating tasks (workunits), distributing them to the

clients, which are going to execute them, upload the result to the server which gathers

and further analyzes them. This requires the implementation of a framework (source

to source translator) which transforms a sequential application to a BOINC

compatible project application. To achieve this, BOINC required daemons have to be

specified and implemented according to application requirements. Likewise, it has to

initialize all BOINC project configuration parameters.

 Extension in BOINC architecture in order to support dependencies between different

project tasks. BOINC does not offer any mechanism that is able to resolve task

dependencies [15]. Exploiting the properties of the specific programming model in

combination with structural changes in BOINC architecture, an inter-BOINC

mechanism will be designed for handling this problem.

4

 1.3 Thesis Outline

 Chapter 2-Background

This chapter presents related work to distributed computing. It describes how

computers are organized in a distributed system and how volunteer computing

became a useful tool for processing large scale problems.

 Chapter 3-The mCluster task based programming model

In this chapter we present the mCluster task based programming model. We describe

the application programming interface, its structure and how task dependencies are

resolved in a way to be capable of recognizing any data hazards that might occur

between tasks.

 Chapter 4-Implementation of mCluster using the BOINC infrastructure

This chapter analyzes the most popular and efficient infrastructures used in

distributed computing BOINC [21] and Hadoop [33] as well as their limitations

regarding mCluster requirements. Moreover we present the implementation of

mCluster using the BOINC infrastructure. Initially, a mechanism was designed to

transform the sequential application to BOINC–compatible. Furthermore, BOINC

was redesigned according to mCluster features in order to support task dependencies

between the tasks of a project.

 Chapter 5 Performance evaluation

This chapter presents the performance evaluation of the mCluster in a specific

environment. Four separate applications benchmarked in order to gain the available

information for the evaluation.

 Chapter 6 Conclusions and future work

 This chapter summarizes our work and provides directions for future work.

5

Chapter 2

Background

2.1 Distributed computing

The growing popularity of the internet, the availability of powerful computers, the high-speed

networks, as low-cost commodity components, are changing the way we do computing. Distributed

computing has been an essential component of scientific computing for decades. It consists of a set of

processes that cooperate to achieve a specific common goal. It is widely recognized that Information

and Communication Technologies (ICTs) have revolutionized our everyday activities. Social

networks represent a stepping stone in the on-going process of using the internet to enable the social

manipulation of information and culture. Mostly social network sites are implemented on the concept

of large distributed computing systems.

Various definitions of distributed systems have been given in the literature, none of them

satisfactory and in no agreement with any of the others, so as it is sufficient to give a loose

characterization [45]:

A distributed system is a collection of independent computers that

appears to its users as a single coherent system

There are many aspects of this definition. Firstly, the components of a distributed system are

autonomous in the sense that each of them has its own local memory. Secondly the users think that

they are participating in a single system. According to the assumptions above, the components of a

distributed system have to collaborate. The establishment of the collaboration is the main aspect of

distributed computing. An important reference here is that the way that the components of those

systems (which may be from a computer or a mobile device to a high performance supercomputer)

communicate is mostly hidden from users. Likewise, the way they interact is in a uniform way,

regardless of the time and place the interaction occurs.

6

2.1.1 Goals of distributed computing

Building a distributed system is not always a good idea and may not be so efficient. In order

to worth the effort, a distributed system should meet some important goals that are going to be

discussed below.

 Making resources accessible: The main goal of a distributed system is to make it easy for the

users to access remote resources and share them in a controlled and efficient way.

 Distribution transparency: A distributed system that is able to be presented to its users as a

unified computing platform is said to be transparent.

 Scalability: Scalability is one of the most important design goals for developers of distributed

systems and is achieved when components don’t change when the scale of a system increases.

 Openness: An open distributed system is a system that offers services according to standard

rules that describe the syntax and semantics of those services.

 Fault tolerance: Distributed systems must maintain availability even if a hardware, software

or network fail occurs. It is usually achieved by recovery, redundancy and replication.

Computers in a distributed system can have different roles. A computer's role depends on the goal of

the system and the computer's own hardware and software properties. There are two predominant

ways of organizing computers in a distributed system. The first is the client-server architecture and

the second is the peer-to-peer architecture.

2.1.2 Client server architecture

The client-server architecture is a way to dispense a service from a central source as shown in

figure 2.1 (left). The basic idea of this architecture is that clients request job from the central server, in

order to perform some task whereas the server is responsible for handling those requests and provide

the appropriate data to them. A server can be determined as a simple unit that provides a service,

possibly to multiple clients simultaneously and a client is a unit that consumes the service. It is not

required for the clients to know extensive information about the service that server provides, as well

7

as the server has no obligation knowing in which way the data is going to be processed.

This architecture is commonly known to consist of different machines but even a single

machine can have this architecture. For example, signals from input devices on a computer need to be

generally available to programs running on the computer. The programs are clients, consuming mouse

and keyboard input data. The operating system's device drivers are the servers, taking in physical

signals and serving them up as usable input.

Despite the advantages that this architecture provides, such as the integration of services,

inter-operation of data, unaware data processing location and the easy maintenance, it also introduces

some disadvantages. The major drawback of this architecture is that the server is a single point of

failure. The server is responsible for the job relating to the clients. If this server is down, the whole

system will be down as well. There is no communication between the clients meaning that a failure of

the server leads to the loss of all processed data.

2.1.3 Peer to peer architecture

The client-server model is appropriate for service-oriented situations. However, there are

other computational goals for which a more equal division of labor is a better choice. The term peer-

to-peer [8] is used to describe distributed systems in which labor is divided among all system

components, illustrated in figure 2.1 (right). Any node can initiate a connection, despite the client

server-architecture where the connection is always initialized from the client. In peer-to-peer

architectures, clients behave as both servers and routers, where each node is autonomous, leading to

the creation of a dynamic network in the sense that nodes enter and leave the network frequently.

Another important characteristic is that nodes collaborate directly with each other and not through

servers.

The most common applications of peer-to-peer systems are data transfer and data storage. For

data transfer, each computer in the system contributes by sending data over the network. If the

destination computer is in a particular computer's neighborhood, that computer helps send data along.

For data storage, the data set may be too large to fit in any single computer, or too valuable to store on

just a single computer. Each computer stores a small portion of the data, and there may be multiple

copies of the same data spread over different computers. When a computer fails, its lost data can be

restored from other copies. Due to the absence of a central point of failure, the major drawback of the

client server architecture is solved, at the expense of an increased number of active connections.

8

Figure 2.1: Client server architecture in contrast to peer to peer architecture

2.2 Volunteer computing

 Volunteer Computing [2] is a form of distributed computing that allows volunteers to donate

their computers’ idle CPU cycles to a given application, or project. Recently, there has been a rapidly

growing interest in volunteer computing. People worldwide can share their available computer

resources in order to solve large parallel problems. The advantage of volunteer computing is that it is

easy to use and accessible from anyone. Volunteers are typically members of the general public who

own internet-connected personal computers. Organizations such as schools and businesses may also

volunteer the use of their computers.

 Volunteer computing is very important because a huge number of volunteers can supply more

processing power that can be used from scientists. Most of these projects require a lot of processing

power. Setting up supercomputer networks may increase prohibitive costs to research institutions. A

research project that has limited funding but large public appeal can get huge computing power. In

contrast, traditional supercomputers are extremely expensive, and are available only for applications

that can afford them. Furthermore, it attracts more people in the field of science. Nowadays more than

one billion of personal computers are used in volunteer computing supplying about 10 PetaFLOPS of

computing power [41].

Although volunteer computing is growing fast, it has also to deal with some important issues.

Volunteers are anonymous, which make them unreliable. The results they return, for some reasons,

9

(overclocking) may be incorrect as they intentionally return incorrect results, or claim excessive credit

for results. Regarding the participant side, volunteer computing leads to more power consumption.

Usually they donate their resources when they are idle so they consume more electricity. While the

computer is in use and in parallel it executes a volunteer application, the usage of CPU, CPU cache

and local storage increases. As a result the performance of the participant machines is reduced.

Volunteer computing systems provide mechanisms for resolving those issues, which are mainly

available in the client software.

2.3 Related work

2.3.1 Grid computing projects

Condor

Condor [39] is one of the oldest middleware systems used for distributed computing. It is a

specialized batch system for managing compute-intensive jobs. Additionally, it provides a job

querying mechanism, task policy, priority scheme, resource monitoring and management. In the past

years, Condor usually operated in a workstation environment. The system aims to maximize the

utilization of workstations with as little interference as possible between the job it schedules and the

activities of people who own workstations. It uses a Condor pool in order to schedule the available

jobs according to clients’ demands. It is one of the most reliable systems because when an owner of a

workstation resumes activity at a station, Condor checkpoints the remote job running on the station

and transfers it to another workstation.

Nowadays Condor is a very useful tool for volunteer computing because of its excellent

performance in environments where other systems are weak. In collaboration with its checkpoint

mechanism, it provides fault tolerance by efficiently utilizing the available resources. Moreover, it can

use all available resources even if they are not 100% available as a node, which keeps information for

further computation. In order to achieve this, Condor uses the ClassAd language, a useful framework

for matching the requests with the offers, migration and check pointing, as well as remote system calls

(RPC). This process can preserve the local execution environment in order to make data inaccessible

by remote workstations.

10

XtremWeb

XtremWeb[4] is a P2P project developed at University of Paris-Sud, France. It was originally

designed to study execution models in the general framework of Global Computing and now there are

distributions for Linux, Windows and Mac OS. It particularly focuses on multi-parameter

applications, which need to be executed several times from different machines, in order to gather the

appropriate information for further analysis. XtremWeb system is based in three entities, the

coordinator, the workers and the clients.

 The coordinator is responsible for the task management. It manages the tasks provided by the

clients, schedules and distributes them to the available workers. According to this, communication is

always started from workers. A worker can enter or leave the system unpredictably so the coordinator

is responsible for distributing the tasks in an efficient way. To deal with this, the coordinator keeps

information (CPU time, memory size operating system, history of worker) each time a worker request

computation to provide an efficient way for distributing them.

 Clients are responsible for submitting tasks to the coordinator. They connect to the

coordinator to submit tasks or to fetch any previous submitted ones. Workers are usually volunteer

entities like PCs that accept tasks for execution according to their characteristics. During the

execution, they periodically communicate with the coordinator to update about the computation

status. That way, if a failure occurs, coordinator knows about the “percentage” of execution that has

already be done and attaches the task to the worker again from the last checkpoint, to resume task

execution. When the task is completed, they send the result to the coordinator and then request new

tasks.

2.3.2 Volunteer computing projects

Entropia

 Entropia [40] is a distributed system which aggregates the raw desktop resources into a single

logical resource. According to this assumption, the logical resource is reliable and predictable

although any resource can be turned off or rebooted on any time (unreliable) and be heavily used by

the users, so the available resources are not always the same (unpredictable). Moreover, it can provide

high performance for applications and can be managed from a single administrative console. The

Entropia system architecture is composed of three separate layers, the physical node management, the

resource task and the job management layer as shown in figure 2.2.

 Physical node management provides basic communication, naming, security, resource

11

management and application control. It is responsible for providing reliability to the system. If a

computer is disconnected for a long time, when connected again, it has to pass through firewalls so as

its ip address is changed. These are low-level reliability issues that this layer deals with. Furthermore,

it monitors each client’s available recourses and reports them to the master node, which are used

during Resource Task Layer.

 A distributed computing application often involves large amounts of computation jobs which

has to break into smaller individual subunits, to be scheduled and run on a client machine. The Job

Management layer is responsible for this decomposition in order to provide access to the status and

the results of the generated subunits and results. The Resource Task layer takes the units of

computation from the job management layer, matches them to the appropriate clients and schedules

them for execution. The jobs are scheduled to the clients according the information that are gained

from the Physical Node management layer which may not always be reliable. To deal with this

problem Entropia supports multiple instances of heterogeneous schedulers.

Figure 2.2 Entropia architecture

12

Hadoop

Hadoop [33] is a framework that allows distributed processing of large data sets across

clusters of computers using simple programming models. It is designed to scale up from single servers

to thousands of machines, each offering local computation and storage. Hadoop is an ideal tool for

processing large amounts of data through the fault tolerance mechanism, which makes it remarkably

reliable. The core of Apache Hadoop consists of a storage part (Hadoop Distributed File System

(HDFS)) and a processing part (MapReduce). The Hadoop distributed file system is designed to have

fault tolerance in an environment with thousands of nodes in which some of them may fail and has

high throughput for data accessing. As shown in figure 2.3, according to HDFS [34] metadata and

application data are stored separately. Similarly to other distributed systems, it stores metadata in a

separate server named namenode. Application’s data are stored in nodes named datanodes. It is a

master/slave architecture. A HDFS cluster consists of a namenode and a master server managing the

namespace of the system and regulates access to files from the clients. In contrast, there are many

datanodes managing the storage they are connected and run. Hadoop MapReduce is a software

framework for easily writing applications which process vast amounts of data (multi-terabyte data-

sets) simultaneously on large clusters of commodity hardware in a reliable, fault-tolerant manner. A

MapReduce job usually splits the input data-set into independent chunks which are processed by the

map tasks in a completely parallel manner. This framework sorts the outputs of the maps, which are

then input to the reduce tasks. Typically, both the input and the output of the job are stored in a file-

system.

Figure 2.3: The Hadoop distributed file system architecture

13

BOINC

BOINC [21] is a platform for Volunteer Computing which is developed by the team that

developed the popular project SETI@home [1]. BOINC follows the client-server paradigm in which

each project has a server which manages all the communication and work distribution to the clients.

Clients on the other side, download all of the application files and software, compute the results and

send the results back to the server. BOINC enables the solution of large scale and complex

computational problems. It supports diverse applications, including those with large storage or

communication requirements. The target platforms or devices are not limited. BOINC-based

applications can be executed on various target devices with different software environments, e.g.

Windows, Linux, Mac, and mobile devices based on Android or iOS. Applications have to be

specially made for running BOINC by using the BOINC API. BOINC is going to be further analyzed

in section 4.

V-BOINC

V-BOINC [37] is the virtualized version of BOINC allowing users to avoid the drawbacks of

BOINC and take advantage of virtualization. According to this framework virtual machine images are

distributed to the clients. These, as well the BOINC core client are managed from the V-BOINC

client, a downloadable package encapsulating a modified BOINC client and a GUI with the purpose

of communicating with the BOINC and a modified server called V-BOINC. The main difference

between the other projects that also implemented virtual machines over BOINC is the dependency

handling. To achieve that, a separate Virtual Disk Image (DepDisk) containing the application’s

dependencies also is required. This .vdi file is created from the developers and downloaded from the

clients. If the application is found to have dependencies, V-BOINC client attaches the DepDisk. On

the other hand, an empty disk is created to mount the executable. DepDisk that contain the

dependencies had to be in a specific location in the volunteer machine. This way, it is going to be

forwarded to only one host in order to be executed and not be distributed to many of them because of

the different configurations that they may have. In order to create the smallest usable virtual machine

image possible, they used the VirtualBox Fixed Disk Image (FDI) type as opposed to the Dynamic

Disk Image (DDI). This size had to be as small as possible because that way the transfer time will be

also reduced. Afterwards, that image as well as an instantiation script is downloaded from the client.

Via this script, BOINC is incorporated in the V-BOINC client. In conclusion V–BOINC performs

checkpointing and recovery so as to achieve better performance and reliability in the job processing.

14

2.3.3 Parallel programming models

Openmp [22] is the most popular parallel programming model which focuses on loop-level

parallelism for shared memory systems. Via its Application programming interface (API), a

sequential code can easily be parallelized. The directives are added as an indicator to the compiler of

the presence of a region to be executed in parallel, along with some instruction on how that region is

to be parallelized. Openmp considers about nested tasks but the programmer is responsible to avoid

races so as to use barriers for synchronization.

Wool [43] is a library that supports the nested independent task parallel programming model.

It aims to obtain low overhead while achieving task-based parallelism. Wool provides synchronization

and dependencies among different threads via its API and is designed to test the limits of a low

overhead task management.

MPI [24] allows the implementation of parallel programs to distributed machines. MPI

applications are composed of a set of processes with separate address spaces that perform

computation on their local data and use communication primitives to share data when necessary.

Achievable performance and portability are two of the most important advantages of this model due to

the optimized libraries that offers compatible with a wide range of machines despite the lack of fault

tolerance and the demand of substantial resources such as memory and network.

Cilk [26] is also based on a task based programming model similar to those referred above. It

is based on the identification of tasks with the spawn keyword and the sync statement is used to wait

for spawned tasks. Cilk does not have a mechanism for recognizing data dependencies between tasks,

so additional synchronization points are required. While Cilk only supports parallel tasks, Cilk++ also

supports parallel loops.

ClusterSs [27] is a task based programming model for clusters, based on starSs[42].At

execution time, the user-selected methods are automatically replaced by runtime calls that create the

tasks. The runtime analyses data dependencies between tasks, building a task dependency graph.

Tasks that have no dependencies are immediately scheduled to available resources. These resources

could be grid, cluster or multiprocessors. ClusterSs uses an Asynchronous Partitioned Global Address

Space (APGAS) model over starSs to benefit from the performance portability of it. As a result, an

asynchronous execution model is created based on a master-worker architecture, where nodes can

either generate tasks or execute them and a data model where data is automatically distributed among

the nodes according to the computation needs. Workers can exchange data, bypassing the main node

and multiple replicas of mutable or immutable data can coexist.

15

Chapter 3

The mCluster task based programming

model

3.1 Introduction

 According to current trends, the rate of cores in a chip is rapidly increasing. This makes the

shared memory system sufficient accessible by most developers. Nevertheless, it also means that

developers must resort to multi-threaded programming to benefit from this type of system.

 Task based programming models allow developers to take advantage of the computing power

of each multiprocessor, because it can achieve great parallelism without dealing with many barriers. It

gives the opportunity to programmers to express and share calculations in tasks and not manually in

threads. Tasks that are dynamically created, allow the program to execute concurrently like having

infinite number of processors. It also prevents deadlocks and races between threads. As a result, the

system is responsible for minimizing the overheads in order to execute the program effectively,

despite the fact that it may has only a few processors.

Most programming models so far, are used in systems where they had a shared memory,

which allow indirect communication and synchronization. According to this, distributed memory

systems cannot be efficiently used like a cluster of computers. There are architectural differences

between shared memory systems and distributed memory systems. In a shared memory

multiprocessor, different processors can access the same variables. This makes reference to data

stored in memory similar to traditional single-processor programs, but adds the complexity of data.

The common processors communicate with the shared address space. Its main features are the ease of

programming and the lower communication overhead. The major disadvantage of the system is the

synchronization access. This has been enough of a concern that many multiprocessor architects have

augmented the basic shared-memory communication model with additional synchronization

mechanisms.

16

3.2 A Task based programming model for distributed systems

 Our goal is the design of a task based programming model for distributed memory systems

and especially mobile devices. Large scale problems that needs multiprocessing maybe difficult to be

executed from a single machine, because of the limitations of the memory space and resources. In

order to deal with it, we had to split the major problem to smaller units so as to decrease the

computation requirements. Data available in a server database, are downloaded by clients, executed

and then sent back to server which will inform the database. The work will be distributed

appropriately according to the requirements of each user. This way we will benefit from the large

number of the volunteered resources to execute large scale computations without the restriction of the

memory space.

 In order to achieve this, the original problem should be able to be broken into independent

parts so that each processing element can execute its part of the algorithm simultaneously. Parallel

programs offer that ability. In this case, we can easily attach the independent tasks to each target

device instead of attaching them to another source such as a computer core. Basic requirement for our

assumption is the ability of decomposition of our major problem into smaller chunks.

 Based on this, our next step is the creation of the appropriate programming model. In that

way, parallel applications which computation can be divided in tasks will take the advantage of the

multiple resources that target devices offer, favoring applications with large data volumes.

 Specifically, according to figure 3.1, a sequential application via specific directives that will

be given by the programmer, will generate the appropriate tasks that are going to be executed

simultaneously from the available nodes of the distributed system. The application programming

interface that will be provided to the programmers could perform the desirable parallelization in the

application. This way, the suitable tasks are going to be created. Available resources could be related

to computers or clusters but according to the mCluster model, target resources are mostly mobile

devices like tablets and smartphones.

The explosive growth of smartphones over the past couple of years has been unprecedented.

Almost half the phones now sold to consumers are smartphones. Additionally, these smartphones are

becoming increasingly more powerful. If multiple mobile devices like smartphones can be linked

together to perform processing, that would become a very useful tool for applications that have large-

scale requirements.

17

Figure 3.1. Basic idea of the mCluster programming model

3.3 mCluster Application programming interface (API)

Writing a distributed application often requires the programmers to deal with many kinds of

complexities. To alleviate these issues, we have designed an API that enables programmability, and

portability of user applications. In each program must be clearly specified which piece of code may be

executed separately from a node in the distributed system.

A source code with directives is a sequential program annotated with pragmas that identify

functions in the code that are candidates to be executed simultaneously. We call those functions tasks.

Initially, the user defines what specific inputs and outputs each task has. Each input and output of the

task necessarily contains the variable name followed by size. Each annotation must always be

followed by the function call that corresponds to it. The inputs of each task in combination with the

function implementation are going to be distributed to the clients for processing. The output definition

of each task is useful for resolving dependencies.

 For example, if we want to annotate the function of matrix addition, we have to initiate the

inputs and outputs in the form of the example 1 as follows. Tasks are specified using the #pragma

mCluster directive followed by its inputs and outputs. After this, the matrix implementation function

follows, which is equivalent to the task body. This function will be transformed to the executable that

is going to be distributed to the target devices.

18

Example 1: Pseudocode of the sequential program

int * matrix_addition (int * table1,int length1,int * table2, int* length2)

{

….

}

Main()

 {

..

#pragma mCluster input(int * table1,10,int *table2,10) output (int * table3)

matrix_addition (table1,10,table2,10)

..

}

 In the above example, we define a task that has as inputs two tables, table1 and table 2 with

10 and 20 elements length respectively. It implements the function matrix addition with table 3 as its

output. This way, we get all available inputs in order to perform each task.

 The length of each table in the annotations is necessary, because we can split a big table into

smaller chunks in order to be executed separately by different nodes and not pass the whole table that

could cost much computation time to a single node. This makes our program more flexible for further

processing suitable for distributed memory systems.

3.4 Dependencies between tasks

Task parallelism is a natural model for expressing dependencies. Task parallelism can have a

different execution path per unit of parallel work. According to this assumption, it does not imply

uniform workloads because of the amount of work that can be executed simultaneously and the

dependencies that might exist between them at any given time are irregular. Tasks allow us to express

dependencies on a higher level. Our motivation is to offer a simple programming model, easily

programmable by any developer, which with specific annotations will easily express task

dependencies.

 Any algorithm that is formalized and expressed in tasks in any programming language may

contain some kind of dependence between them. Programmers generally pay little attention to the

dependence. This may have implications during the program execution. On the other hand, in many

cases reducing the number of dependence, leads to direct reductions in a program’s running time.

 Parallelism is achieved through hints given by the programmer in form of pragmas that

19

identify the part of the code that operates over a set of parameters. These parts of the code are

encapsulated in the form of functions. With these hints, we can detect the task calls and their

dependencies. If a task depends on another, it should not start its execution until the other task finishes

its execution. So an additional work that should be implemented involves finding the dependencies

between tasks. A task-graph is dynamically generated and run in parallel from the available resources.

 As shown below in example 2, we have 7 tasks that have to be executed. Task 1 produces as

output task1_out. On the other hand, task 2 has as input task1_out. With this restriction, task 2 cannot

start its execution until task 1 is marked as finished, because if it starts before task 1 is completed, the

results will be wrong. Similarly, this happens with the other tasks of the example.

 Example 2 : Pseudocode of the sequential application representing task

dependencies

Main()

{

1. #pragma mCluster input(int * table1,10,int *table2,10) output (int * task1_out)

2. matrix mul (table1,10,table2,10)

3. #pragma mCluster input(int * task1_out ,int *table1,10) output (int * task2_out)

4. matrix add (task1_out,10,table1,10)

5. #pragma mCluster input(int * task1_out,10,int *table2,10) output (int * task3_out)

6. matrix sub (task1_out,10,table2,10)

7. #pragma mCluster input(int * task3_out,10,int *table3,10) output (int * task4_out)

8. matrix sub (task3_out,10,table3,10)

9. #pragma mCluster input(int * task3_out,10,int *table4,10) output (int * task5_out)

10. matrix add (task3_out,10,table4,10)

11. #pragma mCluster input(int * task4_out,10,int * task5_out,10) output (int * task6_out)

12. matrix mul (task4_out ,10, task5_out,10)

13. #pragma mCluster input(int * task1_out,10,int *task6_out,10) output (int * task7_out)

14. matrix add (task1_out,10,task6_out,10)

}

In Order to deal with it as shown in figure 3.2, a graph with task dependencies is created,

representing dependencies of tasks towards each other. Afterwards a queue of tasks is created

depending on each task depth in the graph. Tasks are stored in a queue, in the correct order so as when

the clients are going to request work, the task they select will have no previous dependencies.

20

Figure 3.2: A set of tasks (circles) and their dependencies (arrows). The arrows indicate the direction of the

dependency, i.e. an arrow from task 1 to task 2 indicates that task 2 depends on task 1. Task 1 has no unsatisfied

dependencies and can therefore be executed. Once task 3 is completed, tasks 4 and 5 become available, and task

6 only becomes available once both tasks 4 and 5 have been completed. The right table shows all graph's

dependencies.

3.5 Data Hazards in task execution

 Out-of-order execution [15] is well-known in the domain of computer architecture for a long

time, originating in early work by Tomasulo /scoreboard [35]. Its basic idea is to execute a sequential

instruction stream of a usual architecture in data-flow order, thereby establishing more parallelism and

better load balancing of available functional units. To this end, the data dependencies between tasks

21

are analyzed and tracked by a couple of data structures. Data hazards are an implicit problem in tasks

out-of-order execution.

Traditional out-of-order pipelines provide programmers with a sequential interface, yet

internally execute instructions in parallel, based on dynamic analysis of data dependencies. According

to this purpose, out-of-order execution may cause problems in the result each task generates.

 In example 3, TASK 3 has as input table3 which outcomes from TASK 1 and TASK 2. The

right value must be obtained from TASK 2.

Example 3: Pseudocode representing data hazards

TASK1 1.#pragma mCluster input(int * table1,10,int *table2,20) output (int * table3)

 2. matrix mul (table1,10,table2,20)

TASK2 3.#pragma mCluster input(int * table4,10,int *table2,20) output (int * table3)

 4. matrix add (table4,10,table2,20)

TASK3 5.#pragma mCluster input(int * table3,10,int *table2,20) output (int * table4)

 6. matrix mul (table3,10,table2,20)

Task renaming in mCluster

TASK1 1. matrix mul (table1,10,table2,20)

TASK2 2. matrix mul (table4,10,table2,20)

TASK3 3. matrix mul (table3_1,10,table2,20)

If TASK 1 finishes its execution before TASK 2, the value that is going to be attached to

TASK 3 is the outcome of TASK 1, which is not the right one. Dealing with this, if more than one

tasks produces same result, it must be renamed internally. In our example, we rename the output of

TASK 2 to table3_1 and then set this value as the input of TASK 3. This way, Task 3 will not execute

until TASK 2 finishes resolving any data dependencies that may occur.

22

3.6 Limitations

If not planned properly, a distributed system can decrease the overall reliability of

computations. Troubleshooting and diagnosing problems in a distributed system can also become

more difficult, because the analysis may require connecting to remote nodes or inspecting

communication between nodes.

Many types of computation are not well suited for distributed environments, typically owing

to the amount of network communication or synchronization that would be required between nodes. If

bandwidth, latency, or communication requirements are too significant, then the benefits of

distributed computing may be negated and the performance may be worse than a non-distributed

environment.

23

Chapter 4

mCluster implementation using the

BOINC infrastructure

4.1 Introduction

As mentioned, many distributed-computing infrastructures are nowadays available. They are

focused on efficient job distributing using a great variety of scheduling policies, different

communication protocols and based on different architectures. Nevertheless, BOINC and Hadoop are

the most popular and widely used programming frameworks. Each of them provides different

mechanisms for job transmission, having their advantages and drawbacks. In this section we are going

to choose the most efficient for the mCluster implementation.

4.2 Hadoop limitations

As presented in chapter 2 the basic idea of mCluster was the implementation for a task based

programming model for distributed systems. Initially, the infrastructure studied for the

implementation of mCluster was the Hadoop. The most important difference between volunteer

computing frameworks and other computing frameworks such as Apache Hadoop is the vast diversity

between resources available to the system. This diversity includes not only the speed, number of

processors, memory and disk space at each resource, but also the operating system and hardware

installed on the machine. Furthermore, different resources have different levels of availability and

reliability, which can change unpredictably over time.

Hadoop seemed to be the ideal framework for mCluster because of the fault tolerance mechanism

and its ability to run applications on systems with thousands of nodes involving thousands of

terabytes. Despite the advantages referred above, Hadoop has also many drawbacks which are not

consistent with mCluster’s requirements.

24

These drawbacks are:

 The MapReduce engine: There are certain cases which MapReduce is not a suitable choice.

Initially, it is not always easy to implement a program according to this programming model.

The program has to be divided in the three phases so if the problem cannot be structured in

that exact way it will not be compatible with Hadoop.

 Not Fit for Small Data: Due to its high capacity design, the Hadoop Distributed File System

(HDFS) lacks the ability to efficiently support the random reading of small files. Moreover

since Hadoop is architected to accommodate very large data files by splitting the file into

small chunks over many worker nodes, it does not perform well if many small files are stored

in the distributed file system. If only one or two nodes are needed for the file size, there is a

large overhead of managing the distribution.

 Dealing with mobile devices, Hadoop is not suitable because of the disadvantages referred to:

 Resource limitations: Hadoop was built in a way that data have to be always in client storage

in order to be directly executed and not stored in a central server. It is based on the

assumption that the available system executes attempts to process a great amount of data

which is scattered throughout the nodes without the presence of a central node. This

restriction, as well the fact that we had to deal with devices that may not have the desirable

resources, like free memory space and computational power certainly enhances our disbelief

regarding Hadoop’s suitability. If a mobile device is attached as client, its storage is

automatically going to be used for data processing. The way that the Hadoop File System is

structured, does not require information about each client characteristics. It distributes the

data without the knowledge of the available space which is suitable for computers with lots of

available space and not for mobile devices with restricted memory.

 Network connectivity: Hadoop is structured in order to be mostly used in a local network.

Each device which will be connected as a client, according to Hadoop requirements, has to be

represented with a static ip address. Before the HDFS attempts to distribute its data, a list of

the available clients is created, represented with their ip address. Mobile devices usually

connect to the internet via Wi-Fi or mobile data. Every time they are reconnected, these

values are changed so they don’t belong to the previous lists and will be shown as not

25

available, in contrast with our requirements. Summarizing, Hadoop architecture is based to

deal with static clients and not clients that dynamically attach to the system, in consideration

of the restrictions that referred above.

4.3 Berkeley Open Infrastructure for Network Computing (BOINC)

 In our attempt to deal with the drawback of the Hadoop framework, we are going to study

BOINC, which is currently considered as one of the most popular volunteer computing platforms. It is

designed to support applications that have large computation requirements, storage requirements or

both. It is a framework for solving large scale computational problems by splitting them into smaller

units which will be executed by volunteer computers. It consists of many independent projects in

which each client can take part by downloading workunits and send the result back to a central server.

In this way, the computational effort is distributed into many clients having their own computational

resources. Each computer works on its own workunits independently from each other and sends back

its result to a project server.

There are quite a few BOINC-based projects in the world. Installing, configuring and

maintaining a BOINC based project however is a highly sophisticated task. Scientists and developers

need a great deal of experience regarding the underlying communication and operating system

technologies, even if only a handful of BOINC related functions are actually needed for most

applications. This limits the application of BOINC in scientific computing although there is an ever

growing need for computational power in this field. In this thesis, we present a new approach for

model-based development of BOINC projects based on the specification of a high level abstraction

language as well as a suitable development environment.

 4.3.1 BOINC in contrast grid computing

Volunteer computing and Grid computing share the goal of the utilizing existing computing

resources. Both are forms of distributed computing which try to fully utilize existing resources.

However, as shown in figure 4.1, they differ in several essential respects. Grid computing involves

organizationally-owned resources such as supercomputers and clusters. These resources are very

reliable because they are usually managed from universities and other research institutions using high-

bandwidth network links in order to minimize the probability of system failure. On the other hand,

volunteer computing is based on individual participants owning computers, tablets, smartphones

26

connected to the internet most of the times using low-bandwidth networks which sometimes may not

even be free. Furthermore, volunteer computing is based on the “pull” model in which clients

periodically request for job from a central server despite the “push” model used in grid computing

where the request for a given transaction is initiated by the publisher or central server.

Figure 4.1 : Differences between BOINC and grid computing systems

 4.3.2 Goals of BOINC

 Reduce the barriers of entry to public-resource computing: BOINC allows scientists to

create a public resource project, which can be run from a single computer running open

source software.

 Share resources among autonomous projects: Each BOINC project is independent from the

others, has its own servers and can be run with no restrictions. In this way any participant can

join many projects and perform tasks from more than one. That means that any computer,

when the projects are temporarily down can use its computational resources to the others, in

order to improve the resource utilization.

27

 Support diverse applications: BOINC support multi language applications

(C,C++,FORTRAN) and offers various data distributions mechanisms.

 Reward participants: In order to attract participants BOINC offers credits to them who offer

their computations resources and offers a great variety of graphical representation.

4.3.3 BOINC Features

1) Redundant computing: BOINC supports redundant computing, a mechanism for

recognizing errors at client’s workunit execution. For each workunit can be specified that N

results should be created. Once M of these N have been distributed and completed, BOINC

server daemons are called (transitioner, validator, assimilator, file deleter) to compare the

results and possibly select a canonical result. If some of the results fail, BOINC creates new

results for the workunit, and continues this process until either a maximum result count or a

timeout limit is reached. In figure 4.2, a redundant computing example is presented.

Figure 4.2: Redundant computing example. In this example, result 2 is lost (i.e., there's no reply to the BOINC

scheduler). When result 3 arrives a consensus is found and the work unit is assimilated. At timestep 13 the

scheduler 'gives up' on result 2 (this allows it to delete the canonical result's output files, which are needed to

validate late-arriving results).

28

2) Homogeneous redundancy: Due to differences among the participants (different operating

system different architecture, compiler), results for a given workunit might depend on them,

so they may be different. To deal with this and in order to handle divergent applications

(applications in which small numerical differences lead to unpredictably large differences in

the final output) BOINC provides this feature. In that way hosts are divided into numerically

equivalent classes. The BOINC scheduler will send results for a given workunit only to hosts

in the same class. There is an option that hosts are separated according to the CPU type or the

operating system. It can be manually enabled or disabled in BOINC configuration file.

3) Security: BOINC offers a mechanism to prevent server and client from various attacks like

theft of project files, result falsification, malicious executable distribution, intentional abuse

of participants’ hosts by projects and other malware-type attacks.

4) Fault tolerance and multiple servers: Each BOINC project may have hundreds of

thousands of participants. If all of them are trying to connect in the same time to a specific

server will lead to its overload. BOINC has a number of mechanisms to prevent this. All

client/server communication uses exponential back off in case of failure. According to this, if

a client server communication fails for some reason the client will not try to connect to the

project immediately. Instead it will retry to connect with some delay based to the number and

the cause of failure.

5) Local task: Regarding the maximization of the resource usage when each workunit is sent to

a client, a deadline is used for the execution and when it overcomes the workunit is send to

another host. In order to minimize each project running time, the BOINC core client decides

locally when to get work, from what project and what tasks to attach to specific clients.

6) System monitoring tools: BOINC offers a web based system, where any host can obtain

information about the daemons that are running on each projects. Additional they can be

informed about the tasks and their deadlines, the available tasks for downloading, the

complete tasks and the numbers of applications that belongs to the projects or application’s

specific database tables.

7) Participant preferences: Computer owners generally participate in distributed computing

 projects if only they incur no significant convenience, cost, or risk by doing so.

29

8) Open and extensible architecture: Porting application to BOINC infrastructure is not easy

but may not need much configuration. BOINC offers a variety of application programming

interfaces APIs so programmers can implement any application compatible with BOINC.

4.3.4 BOINC architecture

BOINC [32] is based on client-server architecture. The basic idea is that clients are

continuously requesting for services and the central server provides them. As shown in figure 4.3 the

server side consists of three individual servers, the task server, the data server and the web interface

server. The requests are made by clients using remote procedure calls (RPCs). Clients are running

each BOINC application executable, linked with a specific runtime system which function incudes the

process control for the workunit.

A client communicates with the project’s task server. Client gets a set of instructions from the

project's task server. The instructions depend on the computers that are going to be used. For example,

the server won't assign them work that requires more than their available space. The instructions may

include multiple pieces of work. Projects can support several applications and the server may send

work to the computer from any of them. The request comes in the form of an XML document which

describes the host’s hardware and other characteristics and a request for a certain amount (expressed

in terms of CPU time) of additional work. The reply message includes a list of new jobs with each one

described by an XML element that lists the application, input and output files, including a set of data

servers from which each file can be downloaded). The client downloads the executable and input files

from the project's data server. If the project releases new versions of its applications, the executable

files are downloaded automatically by the client to the computer, which runs the application

programs, producing output files and then uploads the output files to the data server. Later (up to

several days later, depending on user preferences) the client reports the completed results to the task

server, and gets instructions for more work.

Furthermore, a web interface server is responsible for giving hosts the ability for plenty of

operations via a web interface. Each project has a server status page where each host can gain

information about the daemons that are running, the number of tasks that have already executed, the

number of results that are not valid, as well to have access to a list of project applications with a

summary of job throughput for each. Moreover, this page contains information related to hosts’

personal profile, like the credit that they have been awarded. In addition, gives the ability to them for

30

editing their profile preferences. Each project has also a project management web page, not visible to

the public, that lets project administrators to handle each project’s properties. They can also create and

edit application and application versions, cancel workunits, view recent results and analyze them in

order to have access to the project database to perform the appropriate operations. Finally, as above

referred the data server is used for downloading input files and their executable and uploading output

files. The task server and the client side are going to be analyzed in detail in next sections.

Figure 4.3: BOINC client-server architecture

 4.3.5 BOINC client

BOINC [35] client shown in figure 4.4 is structured into a number of separate applications.

These intercommunicate using the BOINC remote procedure call (RPC) mechanism. These

applications are:

31

Figure 4.4: Client components

Core client: The process that actually does the main work. It makes the network communication with

the servers, executes and monitors applications and enforces preferences. It consists of several

depended FSMs responsible for network transfers. In addition, it is responsible for managing the way

that one or more applications are going to be executed. It uses round robin mechanism in the way that

the client executes them in order to dispatch the available resources evenly. Moreover, each task has

its own requirements like memory or disk usage. If these requirements are greater than those that the

client has, the core client aborts that task.

Manager: Provides a graphical interface for the users to able to perform multiple operations related to

the project. It offers a variety of options to users like detaching/attaching to a project, updating a

project to get new instructions, suspending computation for a project. Additionally, it informs users

about the percentage of execution of each task and keeps statistics about the disk usage that each

application has allocated.

Screensaver: BOINC display full screen graphics depending on application.

API: Via client’s API, core client is informed about useable functionalities about the program

execution.

32

Applications: Large-scale applications relating physics, mathematics and other fields of science.

Runtime library: BOINC runtime system is based on shared memory message passing. The

bidirectional communication between core client and application is implemented by the core client

which creates a shared memory in which messages are transmitted telling application what to do, like

suspend and abort.

The client embodies two related scheduling policies the task scheduling policy and the work-

fetch policy.

The goals of these policies are:

1) Tasks should be completed and reported by their deadline (results reported after their deadline

may not have any value to the project and may not be granted credit).

2) All processors should be kept busy.

3) At any given point, the computer should have enough work so that its processors will be busy

for at least (min buffer) days and not much more than (max buffer) days.

4) Project resource shares should be honored over the long term.

5) If a computer is attached to multiple projects, execution should rotate among projects on a

frequent basis to improve the volunteer experience.

4.3.6 BOINC task server

BOINC task server [25] consists of several individual programs that are running separately in

order to achieve efficient job scheduling. These programs, called daemons, are presented in figure 4.5

and are analyzed in this section. BOINC task server is the most important part of the server side

because it is in charge of most processes that contribute to the BOINC framework. Processes related

to:

Creation and distribution of workunits. Workunit describes how the experiment must run by the

clients (the name of the binary, the input/output files and the command line arguments). Among

workunits, MD5 files are created so as the client can recognize if the workunit has the right format.

Validation of the received results. Clients’ results that are sent on the server database have to be

validated first before they are stored. Different architectures among clients, which are rather common

due to the vast diversity of devices, usually lead to different results for the same workunit. The server

has to validate these results and store the valid ones in the database.

33

Figure 4.5: Task server components

Mysql database:

The data back-end of a BOINC project is a MySQL database. This database stores all information

related to BOINC. Also the server may have more databases, where results are stored or have the

replicas of the workunits if they are created. This database is a collection of tables and indexes that

hold information about workunit’s, results, applications and all information about specific projects.

The database schema for BOINC is very complicated and the table above offers a high-level view of

the table structure. Database table contents are shown in table 4.1.

34

Table 4.1 BOINC database schema

Scheduler: Coordinates the work that is issued to make the best use of the computers available to

process the work that is ready to use. Each host that is requesting for work is defined by some

characteristics like number of CPU and CPU frequency. A client request also includes information

about the completed instances except the work request. According to these, the scheduler dispatches

the available workunits so as to achieve the most efficient way that will lead to better execution time.

In order to handle a request scheduler performs multiple database operations such as reading and

updating the records for each user account instances and workunits.

Feeder: Fills up the ready to send queue with work units ready to be sent. Feeder streamlines the

scheduler’s database access. For better performance on the workunits access maintains a shared

memory segments containing workunit relevant information:

1) Static database tables such as scientific applications, platforms, and application

versions.

2) A fixed-size cache of unsent instance/job pairs. The Scheduler finds instances

that can be sent to a particular client by scanning this memory segment.

Its runtime can be configured during the execution time. Each workunit can be marked to be sent in

priority or random order depending on each project requirements.

Transitioner: Handles the state transitions of work units and results. It is responsible for giving each

workunit a specific state e.g. a client has finished its workunit execution so the state that will be given

is ready for report. If a workunit result is not valid will be marked as aborted, if cannot be downloaded

its state will be marked as permanent error. Depending on its state, it will be also marked for

validation or assimilation.

File deleter: Removes the workunit’s data files and result data files that are no longer needed. This

daemon helps to keep disks as clean as possible.

35

Validator: A back-end program that performs validation and credit granting. Validation consists of

two parts. At first it performs a syntax check by verifying which output files are present on the server

having the correct format. After that, a replication check follows. If the job is replicated, these replicas

are compared, if a strict majority are found to be equivalent, those replicas are masked as valid and the

rest as invalid.

BOINC provides three standard validators:

1) Sample trivial validator Marks a job as valid if its output files are present. It is usually used if

all hosts are trusted.

2) Sample substr validator Marks a job as valid if its error output includes a string specified by the

“stderr_string “command-line arg. If a specific flag is enabled, the logic is inverted: a job is valid

if its error does not include the string.

3) Sample bitwise validator Output files are equivalent if they agree byte for byte through the

comparison of MD5. This can be used if an application generates exactly matching results (either

because it does no floating-point arithmetic, or because it uses homogeneous redundancy). Apart

from those, BOINC offers the ability to project developer to implement his own validator. More

specifically, in order to create a validator only three functions provided by BOINC had to be

supplied. In most of scientific projects, building a validator could be very useful because every

time each scientific application has certain requirements.

Assimilator: Completed jobs that are handled by programs called assimilators. These are generally

application-specific: If the workunit has a canonical result, the output files from the BOINC upload

directory are copied to a permanent location, or the output files might be parsed and placed in the

project master science database for later analysis. On the other hand if an error occurs in the workunit,

a message is written to a log or an e-mail is sent to the project administrator. It is performed once for

each workunit. Assimilated workunits are stored in a specific folder, while the others that are written

in an error file.

Work generator: Creates workunits that are going to be issued to the participants. Each application

has its own work generator. It is responsible for creating the input files with the right data. It is the

most important part of the server daemons, because the job that is going to be executed is exported

from it. The work generator sleeps if the number of unsent instances exceeds a threshold, limiting the

amount of disk storage needed for input files. Many projects have an essentially infinite supply of

work. This can be handled by a 'flow-controlled work generator' that tries to maintain a constant

number of unsent jobs (typically a few hundred or thousand). It does this by periodically querying the

BOINC database to find the number of unsent jobs.

36

 DB purger: This daemon is responsible for removing jobs and database entries that are old and no

longer needed which bounds the size of this table in order to manage better performance in database

operations.

4.3.7 BOINC suitable applications

BOINC is designed in order to be suitable for applications that require large computational

power and heavy disc usage. A project may gain access to Teraflops of computation power and

Terabytes of disk usage. Because of BOINC restrictions applications should have some specific

properties in order to be used in an efficient way.

 Application independent task parallelism: Each application’s task must be independent because

BOINC does not provide a mechanism to deal with this. This is the most important disadvantage of

BOINC which are going talk about in the next section.

Low data/compute ratio: Data between server and client are transferred through internet

connections, which may be expensive and sometimes slow. In that case, an application requires more

than one gigabyte per day of CPU time, so it would be more efficient to use in-house cluster

computing rather than BOINC [21].

Fault tolerance: BOINC provides mechanism to deal with this (redundant computing) but the error

probability may be not always be equal to zero.

4.3.8 Application porting to BOINC

In order to port an application to BOINC, it has to be split and written in two parts. The server

side which is responsible for creating the work units and the client side, which consist of the

executable that is going to be processed from the client. The process to transform applications that are

running on single machine, to be compatible with BOINC is very difficult and not straight forward.

Porting application to BOINC may become a very difficult process. BOINC provides various

APIs for different purposes. As shown in the figure 4.6 the basic APIs that are mostly used for this

reason in the BOINC API and the DC –API.

BOINC API is the application programming interface provided with BOINC. Includes a

diagnostics API used to enable data collection for debugging and a graphics API for allowing the

application to render graphics to the user’s screen. It consists of a set of C and C++ functions in order

37

to implement 4 separate applications (work generator, assimilator, validator, worker) which makes it a

very complex porting process.

In contrast, DC-API (Distributed Computing Application Programming Interface) [44] allows

easy implementation and deployment of distributed applications on Grid environments. It’s an API

that supports master–worker programming model, designed to be easy to use and to hide the details of

BOINC.

As shown in figure 4.6, in order to implement an application using the BOINC API source

code had to be written for the client application, the work generator, the validator and the assimilator.

Each of them consists of specific functions and libraries provided by BOINC API in combination with

the applications source code. On the other hand, via DC-API must to be written only the master

application and the validator. The master application includes simplified functions which implement

WU generator’s and Assimilator’s functionalities.

Figure 4.6: BOINC application programing interfaces

38

4.4 Aim development of mCluster

BOINC may evolve into a very useful framework, due to the fact that it is developed in a way

that it solely consumes each client’s free resources. Some of its advantages like the homogeneous

redundancy, the fault tolerance mechanism and the security that provides as analyzed in section 4.3.3

make it as a very efficient programming model for distributed computing. On the other hand, the lack

of resolving dependencies between tasks constitutes an important disadvantage, which makes a large

scale of applications incompatible with the framework. The main goal of mCluster is to improve

BOINC features by designing an additional functionality related with this restriction. Furthermore

porting application to BOINC is a very difficult process and requires building many programs not

familiar to most programmers because of the difficult-to-understand BOINC application programming

interface.

4.5 Source to source translator

 The first step is the implementation of the source to source translator, a program which will

gain the original sequential application and generate code compatible with the runtime system of

BOINC. The main goal is to create all the available programs BOINC requires for job transition and

execution according to each application. In order to achieve this, application must be able to be

broken in units in order to be distributed to the available clients. Programmers according to mCluster

application interface (mCluster API) must define these units in order to be in the form that source to

source translator supports.

Figure 4.7: Representation of source to source translator environment. Source code with directives via source

to source translator creates application ready to be executed by each distributed node’s runtime system.

39

 As shown in figure 4.7, having a program written in C or C++ programming language, our

source to source translator will read the relevant directives and the arguments which inserted by the

user and convert them into function calls that are going to be implemented by BOINC.

 Finally, if a program executes in a shared memory system, the data will be taken from local

memory. Now in distributed computing, data must be stored in the appropriate file location where the

application executable is also placed, in order to be accessible from the available clients to download

and then start its execution. Source to source translator is responsible to create and place these

temporary files in the BOINC file system.

 4.6 Source to source translator architecture

The main goal of source to source translator is to fully transform a sequential application to

ready to be executed tasks by any user via the BOINC framework. As mentioned in section 4.3.8 in

order to do this, source code had to be written for both client and server side. Source to source

translator consists of two parts. The server generator and the client generator. BOINC daemons mode

of operation was analyzed in section 4.3.6 and in section 4.3.8 the two programming interfaces for

building BOINC daemons was also presented.

 Combining the requirements extracted from these sections and dealing with mobile devices,

it is concluded that the suitable API for applications compatible with the mCluster framework is the

BOINC API. This mainly happens due to the incompatibility of DC-API libraries with the android

devices. Dealing with BOINC API presupposes the implementation of three BOINC daemons (work

generator, assimilator and validator) as well as the implementation of the client application. Finally, in

order to handle dependencies between tasks that are not yet supported from BOINC, the task

coordinator daemon is also created, which creates the dependency graph and the task Scheduler which

inserts/updates elements in the queue order, generated from the graph.

4.6.1 Server Generator

The first and most important part of the source to source translator is the creation of the

daemons that are required for the job processing. As shown in figure 4.8, the assimilator, the validator

and work generator are created to be compatible with the BOINC API. Task coordinator is the new

daemon responsible for task dependencies.

40

Figure 4.8: Components of the server generator

Assimilator and validator as analyzed in section 4.3.6 are daemons responsible for handling

the result of a workunit. Any BOINC project cannot be started until these daemons start running. Task

coordinator is the new daemon that is created from the server generator in order to handle data

dependencies.

At first, server generator creates a table with each task’s characteristics. The task id, name,

inputs and outputs are stored in this table. In accordance with the inputs and the outputs of each task,

the task coordinator creates the appropriate graph where dependencies between tasks are represented.

This graph is going to be transformed from the job scheduler to a FIF0 of tasks. The tasks that have no

dependencies are inserted with highest priority in a manner of being executed first and the others are

going to be inserted based on their depth in the graph.

The work generator, in order to create a workunit, has to be initialized with the appropriate

values. These values are usually stored in the BOINC file system. This assignment belongs to the

server generator which reads each tasks inputs and parses them to temporary data files. After that

41

work generator’s source code must be edited in consonance with the task requirements. BOINC API

is the programming interface which work generator is based on. As show in example 5.1, the code is

based on a specific template which allows easy modification.

Example5.1 Work generator pseudo code

 main ()

 {

1. Parse BOINC configuration file to get project characteristics

2. Parse the template files contain information about the workunits

3. Make a unique name for the job and its input file

4. Create workunits

5. Put it in the wright place in the download directory hierarchy

6. Fill the job parameters in order to be stored in database

7. Register the job with BOINC

8. Wait for the jobs to be transitioned

9. Terminate BOINC

}

In the section of code that the workunits are going to be created, as shown in the example

above, server generator replaces it with the appropriate values in accordance with the source

application. Data values are loaded from the temporary files and assigned to the workunits.

Furthermore it has to create the template files according each application requirements that are going

to be loaded from the work generator.

In order for an application to run, its inputs and outputs must be described via xml template

files. These files must be stored in a specific directory in BOINC project hierarchy. They are two

template files for each application. The first one is responsible for the input files (workunits) and the

other one for the output files (results). Input template file usually consists of three variables that had

to be initialized. These values are referred to the number of input files each workunit has, the name of

the workunits and flags relating to its requirements. These variables are initialized from server

generator according to the directives that have been given from the programmer in the application

source code.

In the same way, output template variables that had to be initialized are referred to the

maximum number of bytes that each result must have, the name of the workunit result and flags

related to validation and deletion of the results. Input and output templates must be placed in a

specific directory in the BOINC project hierarchy. When a job is created, the name of its output

template file is stored in the database. The file is read when instances of the job are created, which

may happen days or weeks later. Thus, editing an output template file can affect existing jobs so a

new template file had to be created.

42

4.6.2 Client generator

The client generator is responsible for creating a ready to be executed application by any

BOINC client. According to the annotations that are given by the programmers, client generator

transforms the appropriate functions in the sequential application to client executable files. An

executable file contains the code that corresponds to the function implementation in the sequential

program. The example below represents how the client generator encapsulates the task function in the

client source code.

Example 5.2 Client’s pseudo code

Main main ()

{ }
1. Initialize BOINC Initialize BOINC

2. Open the input file (resolve logical name first) Open the input file (resolve logical name first

3. Get the size of input file Get the size of input file

4. See if there’s a valid checkpoint See if there’s a valid checkpoint

5. If so seek input file and truncate output file If so seek input file and truncate output file

6. Main loop Function implementation

7. Create checkpoint (If required) Create checkpoint (If required)

8. Create the output file Create the output file

9. Copy there the appropriate results Copy there the appropriate results

10. Terminate BOINC Terminate BOINC

} }

The main goal of the mCluster was the task dependency resolving. As referred above, the

client generator transforms a function implementation in a sequential application to a BOINC

executable. Any executable that is downloaded from the clients is processed according to the input

data files that are also given. The workunits that are created from BOINC are these data files. Dealing

with BOINC terms an executable corresponds to an application. That means that each task in

mCluster is a separate application. A project can consist of many applications. In brief, the sequential

application using BOINC terms is referred to the project and the tasks are the applications which

compose it.

 Task dependencies are resolved according to the below manner. Workunits that are the input

data for an executable are not created until the tasks that have dependence on the corresponding task

finish their execution. In this way, the appropriate executable which are created and dispatched to the

clients without having the input data cannot start the processing. Task scheduler, which will be

thoroughly analyzed in the next section is responsible for handling the completed results and creating

the appropriate workunits in agreement with the dependencies they have.

43

 4.7 mCluster architecture

In the previous section we referred in detail about BOINC, its features, architecture and the

mechanisms that are provided. Also identified its’ main disadvantages as well as the kind of

applications that are suitable with its framework. Applications that have task dependencies cannot be

resolved because there isn’t any mechanism covered from BOINC for recognizing them so as there is

no communication between clients during the execution in order to handle the dependencies. Dealing

with this, the mCluster programming model was implemented on the top of BOINC.

 According to this programming interface and in order to support dependencies between tasks

that are not handled from BOINC new components had to be added in its architecture.

Figure 4.9: mCluster architecture

44

As shown in figure 4.9 the architectural differences between BOINC and mCluster are the

Task Coordinator, Task scheduler programs that are going to be used for dependency handling. In this

way, the tasks are going to be stored in the queue in the correct order before they are going to be

distributed. These daemons are running alongside the others managing the tasks. Specifically:

Task coordinator: This daemon is responsible for creating the dependency graph based on the

programmer’s annotations. Source to source translator creates the appropriate tables which contain

information about each task. Afterwards the task coordinator according to these creates the

appropriate graph representing the task dependencies. Tasks that have no dependencies are the parent

nodes. Task coordinator only creates that dependency graph, according to which the task scheduler is

going to create the queue order.

Task scheduler: It is the daemon responsible for creating the appropriate workunits that belong to

each task. In order to resolve the generated dependencies, the creation of the workunits is extremely

important. When a device downloads the executable, it cannot start the execution until the input data

is arrived. Task scheduler takes advantage of that and creates the workunits only when the results

from the task that they depend on are finished. It communicates with the assimilator in order to check

when a result is assimilated in order transfer it to the workunit which depends on. It additionally

schedules the work generator. Workunits must be created if only the task they belong to has no

dependencies. Finally, it performs queue operations like insert/delete tasks or update their position in

the queue order.

Queue order: The queue order that used to handle task dependencies acts as a temporary buffer

where tasks are stored. If a client downloads a task, it will not start the execution until the equivalent

workunit is downloaded. Dealing with no dependencies, work generator creates the workunits with no

restrictions which are going to be stored in the database. On the other hand, workunits must not be

created until task scheduler decides to create them according the appropriate task priority. In that way

workunits are created according to the position of the task in the queue and then are stored in the

database.

In figure 5.4 the flowchart represents the life-time of a job in the mCluster framework. Firstly,

the tasks coordinator creates the appropriate dependency graph according to the annotation that the

programmers give. Next the task scheduler creates the tasks queue order. Tasks that have no

dependencies are immediately marked as ready to be created. The workunits of these tasks are created

and forwarded to the clients so as to execute them. When a result arrives after the validation and the

assimilation the task scheduler checks if it is dependent on other ones. If not, this task is going to be

deleted. On the other hand, updates, the queue order according the dependencies that this task has.

Finally, the task scheduler informs the work generator to create the appropriate workunits that belong

to tasks that have no more dependencies.

45

Figure 4.10: mCluster work life-time

46

Section 5

Performance evaluation

5.1 Experimental setup

We evaluate the performance of the mCluster by executing four separate applications with

different level of parallelism. For the evaluation, we used six client devices. Table 5.1 shows each

device specifications, all running the android operating system. Moreover, for collecting more

accurate experimental results each device was set to use only one of the available cores. The main

motivation behind the evaluation of mCluster in a mobile computing system is its ability to achieve

performance similar to personal computers with less energy consumption. The table below displays

each device characteristics such as the chipset, the CPU and the internal memory. All the results are

measured according the log file that BOINC provides.

Table 5.1 Device specifications

Device Operating

system

Chipset CPU Internal

memory

Asus

Google

Nexus 7

Android , v4.3

(Jelly Bean),

Qualcomm

Snapdragon

S4Pro

Quad-core

1.5 GHz

Krait

16 GB

ROM, 2

GB RAM

2X

Asus

Google

Nexus 7

Android , v4.4.2

(Kitkat),

Qualcomm

Snapdragon

S4Pro

Quad-core

1.5 GHz

Krait

16 GB

ROM, 2

GB RAM

1X

Asus

Google

Nexus 7

Android , v5.1.1

(Lollipop),

Qualcomm

Snapdragon

S4Pro

Quad-core

1.5 GHz

Krait

16 GB

ROM, 2

GB RAM

2X

Samsung

I9505

Galaxy

S4

Android , v5.1.1

(Lollipop),

Qualcomm

APQ8064T

Snapdragon

600

 Quad-core

1.9 GHz

Krait 300

16 GB

ROM, 2

GB RAM

47

5.2 Experimental results

Matrix-processing application

Firstly, in order to evaluate the mCluster, an application that consists of seven dependent tasks

executing vector processing benchmarked. TASK1, TASK3 and TASK4 perform matrix addition,

while TASK2, TASK5 and TASK6, TASK7 perform matrix subtraction. The dependencies between

tasks are shown in figure 5.1.

Figure 5.1: Task dependency graph

Initially, for the evaluation each matrix consists of 1000 elements. As shown in figure 5.2, the

time of execution, upload and download processes is equivalent to 1 second. In addition, due to the

existing dependencies between them, task scheduler lasts 0.10 seconds for each task to create the right

output that is attached to the next task.

 Figure 5.2: Download, upload, execution time of matrices consisting of 1000 elements

0

0.5

1

1.5

2

2.5

3

3.5

TASK1 TASK2 TASK3 TASK4 TASK5 TASK6 TASK7

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

Task Scheduler

Execution Time

Upload Time

Download Time

48

In the next experiment, the length of the matrices changed to 10000. As shown in figure 5.3,

the download and upload time remained the same as in figure 5.2, while the execution time doubled.

Task scheduler time was 0.15 second for each task. That happened due to the increase of data amount

that had to be processed.

Figure 5.3: Download, upload, execution time of matrices consisting of 10000 elements

Summarizing, we had to refer that the download, and upload time for each task depend on the

internet bandwidth. Moreover, this application takes 2.1 seconds to run on a single machine when the

matrix consists of 10000 elements and 0.5 sec when the size is 1000 elements. That time is

considerably smaller compared to the total mCluster’s time. That occurs because in our case we had to

deal with extra overhead (about 3.5% of the total time) , related to data transfer time, as the time

needed for reading and writing to data files. That overhead may be gradually decreased while the

number of the participant devices increases. As a result, the parallel task execution using an increased

number of available resources leads to better performance.

In figures 5.2 and 5.3, we presented the time required for our distributed system to execute,

download and upload each task. In figure 5.4, we represent the total execution time of the application

using different number of devices. At first, by executing all the tasks in a single device, we did not

take the advantage of the parallelization that occurs in this application. As we can see, TASK2 and

TASK3 as well TASK4 and TASK5 can execute concurrently. Dealing with that, one more device

used to benefit from the parallelization. As shown in figure 5.4, the total execution time using two

devices in comparison with one device, regardless the number of elements is about 1.27 times faster.

In this example, only two tasks could be executed simultaneously so increasing the number of the

available devices will not speed up the execution time. On the other hand, in applications which have

more parallelization, increasing the number of the available devices will increase the total

performance of the system.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TASK1 TASK2 TASK3 TASK4 TASK5 TASK6 TASK7

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

Task Scheduler

Execution Time

Upload Time

Download Time

49

Figure 5.4: Total execution time using one and two devices.

 The “Inferior-Oliver Application”

The cerebellum is one of the most complex areas of the brain and plays an important part on

motor control and learning [46]. It does not initiate movement but influences the motor control region

of the brain in order to guarantee coordination, accurate timing and precision on the body's activities.

It also plays an important role in the sensing of rhythm, enabling the understanding of concepts such

as music or harmony. The Olivocerebellar circuitry is a relatively well-charted region of the brain.

The model of the system reveals that the brain structure in the area is highly repetitive and basically

consists of the granule-cell layer (GCL), Purkinje-cell layer (PC), deep-cerebellar-nuclei (DCN), and

inferior-olive (IO) nuclei. The inferior olivary nucleus provides one of the two main inputs to the

cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be

related to timing of motor commands and/or motor learning. The models of this biological circuit as

shown in figure 5.5 will be used as a proof-of-concept application for the SERFER paradigm and

specifically an Inferior Olive neuron model [47]. The distributed and massively dataflow nature of

such models lends itself naturally to the SERFER paradigm.

Biologically accurate brain simulation, such as the one in this application, is a highly relevant

topic for neuroscience for a number of reasons [48]. The main goal is accelerated brain research by

the creation of more advance research platforms. Even though a significant amount of effort is spent

in understanding brain functionality, the exact mechanisms in most cases are still only hypothesized.

Fast and real-time simulation platforms can enable the neuroscientific community to more efficiently

0

5

10

15

20

25

30

35

NUM OF DEVICES = 1 NUM OF DEVICES = 2

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

TOTAL EXECUTION TIME
1000 ELEMENTS

TOTAL EXECUTION TIME
10000 ELEMENTS

50

test these hypotheses. Better understanding of brain functionality could potentially lead to a number of

critical practical applications: (1) Brain rescue: If brain functions can be simulated accurately enough

and in real-time, this can lead to robotic prosthetics and implants for restoring lost brain functionality.

(2) Advanced A.I.: It is believed that greater understanding of biological systems and the richer

computational dynamics of their models, can lead to more advanced, artificial-intelligence and robotic

applications. (3) New architectural paradigms: Alternatives to the typical Von-Neumann architectures.

Figure 5.5: The Inferior Olive Model Structure. Visible are the I/O of the cell and its internal

computational stages (Dendrite, Soma and Axon)

Figure 5.6 shows the application execution procedure. According to this, the Inferior-Oliver

application can execute in a particular number of simulation steps (Simsteps). In every simulation step

each task calculates a cell’s state within the 2-d cell grid with dimensions Dim_x and Dim_y. All the

internal tasks in each Simstep can be executed concurrently. Furthermore, each Simstep depend on the

previous one. Dealing with that, all of the previous cells that belong to it had to be finished in order to

start the next one its execution.

51

Figure 5.6: Inferior-Oliver Application execution procedure

In the figure 5.7 below, we can see the execution, upload and download time for different grid

sizes. Each task of the Simstep is executed from any device according to BOINC scheduling policies.

For each device, we are able to specify the number of the tasks that are going to be sent in order to

achieve better performance. BOINC provides a variety of customizations depending on each

application’s requirements in order to dispatch and execute the available tasks in an efficient way.

 For our example, they undertake maximum 16 tasks per request. This way, all the available devices

execute the same number of tasks. In Figures 5.7 and 5.8 only one device used for the evaluation in

order to be used for further analysis.

52

Figure 5.7: Download, upload, execution time for first Simstep for grid size 1X96, 1X192, 1X288,

1X384, 1X480 using one device

Figure 5.8: Download, upload, execution time for second Simstep for grid size 1X96, 1X192, 1X288,

1X384, 1X480 using one device

As shown in figure 5.8, in order to start the execution of the second Simstep, the first one

should have finished. According to this, task scheduler counts the number of the assimilated results in

the database and transfers the results to this Simstep. The overhead that task scheduler has, is related

to the time it needs to read and write the right data values from each tasks of the Simstep in order to

be attached to the next one. Furthermore, we had to point out that task scheduler (server work) time

increases according to the grid size.

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

1X96 1X192 1X288 1X384 1X480

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

Grid size

UPLOAD

EXECUTION

DOWNLOAD

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

1:12:00

1X96 1X192 1X288 1X384 1X480

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

Grid size

TASK SCHEDULER

UPLOAD

EXECUTION

DOWNLOAD

53

Figure 5.9: Download, upload, execution time for second Simstep for grid size 1X96, 1X192, 1X288,

1X384, 1X480 using 6 devices

As above mentioned, in figures 5.7 and 5.8 only one device is used for the evaluation. On the

other hand in figure 5.9 used the processing power of both six devices. The total time spent in order to

execute this Simstep is about 5 times less compared to figure 5.8. According to these, we come to the

conclusion that the increased number of the available resources in combination with the high level of

parallelization in the Inferior-Oliver application, leads to better performance. Furthermore we can

point that the execution time for each task compared to the next one is not exactly the same. That

happens because each target device’s has different execution time. Several parameters are responsible

for this result such, as the usage of the CPU and the processes that are simultaneously running in the

device. Usually in volunteer computing systems, the participant devices have a great variety of CPUs,

different internal storage size and other characteristics.

As noticed above, in this application all the tasks in the same Simstep can execute

concurrently. We can take the advantage of this situation by using more devices for the evaluation. As

shown in figure 5.10 while the number of the available devices increases, the total execution time of

the application is decreased. In particular, if dealing with one device, the total the total execution time

for grid size 1X96 is 10 minutes. On the other hand, by using 96 volunteer devices with each of them

executing one task, the elapsed time could be reduced even to 2 minutes, time about 5 times faster in

comparison with executing all tasks in a single device. Similarly, in bigger grid sizes, which have

higher level of parallelism, more devices lead to better performance. In conclusion, because of the

most devices nowadays consists of more than one processor the number of devices could be equal to

the number of processors each of them have.

0:00:00

0:02:53

0:05:46

0:08:38

0:11:31

0:14:24

0:17:17

1X96 1X192 1X288 1X384 1X480

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

Grid size

TASK SCHEDULER

UPLOAD

EXECUTION

DOWNLOAD

54

Figure 5.10: Total execution time in for grid sizes 1X96, 1X192, 1X288, 1X384, 1X480 using an

increasing number of volunteer devices.

 The “Black-Scholes formula”

The Black–Scholes or Black–Scholes–Merton model is a mathematical model of a financial

market containing derivative investment instruments. From the model, one can deduce the Black–

Scholes formula, which gives a theoretical estimate of the price of European-style options. The

formula led to a boom in options trading of the Chicago Board Options Exchange and other options

markets around the world. It is widely used, although in many cases are adjustments and corrections,

by options market participants. Many empirical tests have shown that the outcome price is "fairly

close" to the observed prices.

The Black-Scholes model is used to calculate the theoretical price of European put and call

options, ignoring any dividends paid during the option's lifetime. While the original model did not

take into consideration the effects of dividends paid during the life of the option, the model can be

adapted to account for dividends by determining the ex-dividend date value of the underlying stock.

The figure 5.11 shows the Black-Scholes pricing formula for put and call options.

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

execution time Grid size 1X96

execution time Grid size 1X192

execution time Grid size 1X288

execution time Grid size 1X384

execution time Grid size 1X480

55

Figure 5.11: The Black-Scholes pricing formula

The below figure shows the execution, upload, download and scheduler time spent calculating the call

and put option for different size of input buffers.

Figure 5.12: Task execution, download, upload and task scheduler time for different input buffer size

using 2 devices

As we can see in the figure above large input buffer size leads mainly to more download and

upload time. Specifically when the buffer size expanded into 100000 elements, the download time

increased approximately 10 times compared to the initial price. Taking the advantage of volunteer

computing which offers the ability for a large number of volunteer devices we divided the buffer size

in 100 smaller tasks each of them consists of 100 elements. In the figure below we can see the total

upload download and execution time when these tasks are dispatched into 1,10,20,50 and 100 devices.

0

5

10

15

20

25

30

10 100 1000 10000 100000

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

input buffer size (elements)

TASK SCHEDULER

UPLOAD

EXECUTION

DOWNLOAD

56

This way the transfer time will shared to the available devices which are going to download, execute

and upload the available tasks simultaneously. As a result the increasing number of the available

devices outcome less total transfer time.

Figure 5.13: Download execution and upload time for 100000 elements input buffer size when

 divided into 100 smaller tasks using an increasing number of volunteer devices.

“Image processing application”

The other application used for the evaluation deal with image processing. Via this application

the original image is divided into smaller pieces that are afterwards applied the following filters.

Grayscale: The grayscale filter transforms an RGB image to one in which the only colors are shades

of gray.

Gaussian blur: In image processing, a Gaussian blur (also known as Gaussian smoothing) is the

result of blurring an image by a Gaussian function. It is a widely known effect in graphics software,

typically used for image noise and detail reduction.

 Laplacian: The Laplacian is a commonly used filter for edge detection in digital images. It is often

applied to an image that has first been smoothed with something approximating a Gaussian smoothing

filter in order to reduce its sensitivity to noise, and hence the two variants will be described together

here. The operator normally takes a single gray level image as input and produces another gray level

image as output.

Threshold: This filter transforms an image into a binary image by converting each pixel according to

whether it is inside or outside a specified range.

Initially, this application consists of 4 tasks each of them is attached to one of the below

filters. In order to reduce the total transfer time for each part of the image we reduced the number of

tasks by embodying two filters in one task. As shown in the figure 5.14 where the image has divided

into 16 equivalent pieces, each part of the image consists of two depended tasks. The first one applies

the grayscale and the Gaussian blur filter and the second one the edge Laplace and the threshold filter.

0

2

4

6

8

10

12

14

1 10 20 50 100

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

Number of devices

DOWNLOAD

UPLOAD

EXECUTION

57

Figure 5.14: Application execution procedure

In order to evaluate the application in our framework, an image of 1024 pixels width and 916

pixels height is used. The image for our example is divided in 16 pieces of 256 pixels width and 228

pixels height each. This way, 32 tasks are going to be executed from the clients. The outcome is

shown in the figure 5.15 below.

Figure 5.15: Image before and after applying filtering

58

The figure 5.16 shows the upload, download execution and task scheduler time for each of the

created tasks. The first 16 tasks apply the grayscale and Gaussian blur filter and the rest of them the

edge Laplace and threshold filter. The input for the tasks 17-32 is the output of tasks 1-16. As we can

see below in these tasks there is an extra overhead related to the task scheduler which is responsible

for handling the dependence and create the right input when any of the corresponding tasks finish.

Figure 5.16: Task scheduler, upload download and execution time for every task using 2 devices

The figure 5.17 below shows the average task execution, download and upload time while

splitting the image into 4, 16, 32, 64 equal pieces. When the image splits into 4 pieces, the average

task execution time is about 4 seconds. Increasing the number of the pieces leads to less input data

size for the task, as well as less execution time, about 2 seconds for 64 pieces. In the same way the

download and the upload time decrease, as we can see below. To conclude, according to this

application better performance can be achieved by splitting the initial image into more pieces.

Figure 5.17: Upload, download and execution time for different task size using 2 devices

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

ex
ec

u
ti

o
n

 t
im

e
 (

se
c)

number of tasks

Task_scheduler

Execution Time

Upload Time

Download Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 16 32 64

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

number of pieces

Download Time

Upload Time

Execution Time

59

Section 6

Conclusions and future work

6. 1 Conclusion

Volunteer Computing is a new paradigm of distributed computing where the ordinary

computer owners volunteer their computing power and storage capability to scientific projects. The

increasing number of Internet-connected PCs allows Volunteer Computing to provide more

computing power and storage capacity than what can be achieved with supercomputers, clusters and

grids.

This thesis presented a task based programming model based on BOINC infrastructure which

provides the ability to transform a sequential application to ready to be executed tasks from volunteer

devices, via the appropriate annotations. BOINC is a composite of several distinct applications, some

of which have been created by the developers and others that are developed separately by each public

resource computing project. Creating a BOINC project is a very difficult process because of the level

of comprehension required for the interactions between its components. Dealing with that, a

mechanism that creates these components according to each application’s properties had to be

implemented, that can become a very useful tool for the developers. Finally in order to support task

dependencies that BOINC does not, structural changes on the infrastructure needed.

In conclusion, mCluster provides solutions to the drawbacks of regular BOINC. Moreover it

helps application developers by providing an easy–to-use application programming interface.

Nevertheless the most important contribution of mCluster is that improves BOINC functionalities by

allowing applications with dependencies to run under it.

6.2 Future work

Currently, client and server scheduling are not well integrated. The server sends jobs to clients

without having important information related to the services that they can provide. Since the server

has no information about work queued or in progress on the client, it can send jobs that will cause

deadlines to be missed. Furthermore, information related to network connection (location, type) are

also required , as well as by having client record statistics about periods when the host is powered off

or not connected, would increase the total reliability and performance of the system.

60

BIBLIOGRAPHY

[1] David P. Anderson, Jeff Cobb,Eric Korpela, Matt Lebofsky and Dan Werthimer.SETI@home.An

Experiment in Public-Resource Computing.

[2] David P. Anderson and Gilles Fedak.The Computational and Storage Potential of Volunteer

Computing.

[3] Derrick Kondo David P. Anderson and John McLeod VII.Performance Evaluation of Scheduling

Policies for Volunteer Computing.

 [4] Franck Cappello,Samir Djilali,Gilles Fedak,Thomas Herault,Frédéric Magniette,Vincent Néri and

Oleg Lodygensky. Computing on large-scale distributed systems: XtremWeb architecture,

programming models, security,tests and convergence with grid.

[5] Samir Djilali. P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems with

Remote Procedure Call.

[6] Ian Foster,Carl Kesselman and Steven Tuecke.The Anatomy of the Grid.Enabling Scalable Virtual

Organizations.

7] O. Lodygensky,G. Fedak,F. Cappello,V. Neri,M. Livny and D. Thain. XtremWeb & Condor :

sharing resources between Internet connected Condor pools.

[8] Dejan S. Milojicic,Vana Kalogeraki,Rajan Lukose,Kiran Nagaraja,Jim Pruyne,Bruno

Richard,Sami Rollins and Zhichen Xu.Peer-to-Peer Computing.

[9] Christian Ulrik Søttrup and Jakob Gregor Pedersen. Developing Distributed Computing

Solutions,Combining Grid Computing and Public Computing.

[10] Nagarajan Kanna,Jaspal Subhlok,Edgar Gabriel,Eshwar Rohit and David Anderson.A

Communication Framework for Fault-tolerant Parallel Execution.

[11] Derrick Kondo,Bahman Javadi,Paul Malecot,Franck Cappelloand David P. Anderson.Cost-

Benefit Analysis of Cloud Computing versus Desktop Grids.

mailto:SETI@home

61

[12] Ian Foster,Yong Zhao,Ioan Raicu and Shiyong Lu.Cloud Computing and Grid Computing 360-

Degree Compared.

[13] Dimitris Theodoropoulos,Polyvios Pratikakis and Dionisios Pnevmatikatos. Efficient Runtime

Support for Embedded MPSoCs.

[14] Hans Vandierendonck,Polyvios Pratikakis and Dimitrios S. Nikolopoulos.Parallel Programming

of General-Purpose Programs Using Task-Based Programming Models.

[15] Yoav Etsion,Felipe Cabarcas,Eduard Ayguade,Alejandro Rico,Jesus Labarta,Alex Ramirez,Rosa

M. Badia and Mateo Valero.Task Superscalar: An Out-of-Order Task Pipeline.

[16] Josep M. Perez,Rosa M. Badia and Jesus Labarta.A Dependency-Aware Task-Based

Programming Environment for Multi-Core Architectures.

[17] Bradley Charles Goldsmith.DISTRIBUTED COMPUTING AND COMMUNICATION IN

PEER-TO-PEER NETWORKS.

 [18] Sangho Y, Emmanuel Jeannot,Derrick Kondo and David P. Anderson.Towards Real-

Time,Volunteer Distributed Computing.

[19] Daniel Lombra˜na Gonz´alez,Francisco Fern´andez de Vega,Leonardo Trujillo,Gustavo

Olague,Lourdes Araujo,Pedro Castillo,Juan Juli´an Merelo and Ken Sharman.Increasing GP

Computing Power for Free via Desktop GRID Computing and Virtualization.

[20] M. Taufer,D. Anderson,P. Cicotti and C.L. Brooks.Homogeneous Redundancy: a Technique to

Ensure Integrity of Molecular Simulation Results Using Public Computing.

[21] Linda Ponta.An overview on public resources computers:BOINC.

[22] Ayon Basumallik, Seung-Jai Min, Rudolf Eigenmann. Programming Distributed Memory Sytems

Using OpenMP

[23] Ant´onio Amorim,Jaime Villatey and Pedro Andradez.HEP@HOME - A distributed computing

system based on BOINC.

62

[24] William Gropp, Ewing Lusk, Nathan Doss and Anthony Skjellum. Hhigh-performance, portable

implementation of the MPI message passing interface standard

[25] David P. Anderson. BOINC: A System for Public-Resource Computing and Storage.

[26] Robert D. Blumofe ,Christopher F. Joerg ,Bradley C. Kuszmaul, Charles E. Leiserson ,Keith H.

Randall and Yuli Zhou.Cilk: An Efficient Multithreaded Runtime System

[27] Enric Tejedor ,Montse Farreras,David Grove, Rosa M. Badia, Gheorghe Almasi and Jesus

Labarta.ClusterSs: A Task-Based Programming Model for Clusters

[28] David P. Anderson,Eric Korpela and Rom Walton.High-Performance Task Distribution for

Volunteer Computing.

[29] David P. Anderson,Carl Christensen and Bruce Allen.Designing a Runtime System for Volunteer

Computing.

[30] J. Dean and S. Ghemawat.MapReduce: Simplified Data Processing on Large Clusters.

[31] Pieter Bellens,Josep M. Perez,Rosa M. Badia and Jesus Labarta.CellSs: a Programming Model

for the Cell BE Architecture.

[32] Christian Benjamin Ries. UML for BOINC: A Modelling Language Approach for the

Development of Distributed Applications based on the Berkeley Open Infrastructure for Network

Computing.

[33] Apache Hadoop. http://hadoop.apache.org/

[34] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,and Robert Chansler. The Hadoop

Distributed File System.

[35] https://en.wikipedia.org/wiki/Tomasulo_algorithm

[36] Trilce Estrada,Michela Taufer and David P. Anderson.Performance Prediction and Analysis of

BOINC Projects:An Empirical Study with EmBOINC.

63

[37] Gary A. McGilvar, Adam Barker, Ashley Lloyd and Malcolm Atkinson.V-BOINC: The

Virtualization of BOINC

[38] Gilles Fedak,C´ecile Germain,Vincent N´eri and Franck Cappello.XtremWeb : A Generic Global

Computing System.

[39]Michael J.Litzkow,Miron Livny and Matt W. Mutka. Condor –A Hunter of Idle Worksatatios

[40] Andrew A. Chien.Architecture of a Commercial Enterprise Desktop Grid: The

Entropia System

[41] David P. Anderson Space Sciences Laborator. Volunteer computing: the ultimate cloud.

[42] Rosa M. Badia.Easy Programming Heterogeneous systems

[43] https://www.sics.se/~kff/wool/

[44] http://www.desktopgrid.hu/index.php?page=24

[45] Andrew S. Tanenbaum, Maarten van Steen. DISTRIBUTED SYSTEMS : Principles and

Paradigms

[46] Zhenyu Gao, Boeke J. van Beugen & Chris I. De Zeeuw, Distributed synergistic plasticity and

cerebellar learning, Nature Reviews Neuroscience 13, 619-635 (September 2012)

[47] P. Bazzigaluppi, J. R. De Gruijl, R. S. Van Der Giessen, S. Khosrovani, C. I. De Zeeuw, and M.

T. G. De Jeu. Olivary subthreshold oscillations and burst activity revisited. Frontiers in Neural

Circuits, 6(91), 2012.

[48] National Academy of Engineering Grand Challenges for Engineering, 2010.

	Abstract
	Listoffigures
	Listoftables
	Introduction
	Motivation

