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Abstract 
 

 

 
Volunteer Computing is one of the distributed computing paradigms that has gained attention 

in recent years. It is used by a number of scientific researchers to perform scientific projects such as 

climate prediction, search for extraterrestrial live and protein structure prediction. It is an innovative 

approach to high performance computing that relies on volunteers who donate their personal 

computers’ unused resources to a computationally intensive research project, as well as provides 

scientists with the necessary means for performing projects that require huge resources. BOINC 

(Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving 

large-scale computational problems by means of volunteer computing. In contrast to massive parallel 

computing, applications are distributed into a large number of heterogeneous client computers 

connected by the Internet where each computer is assigned individual tasks that can be solved 

independently without the need of communication upon the clients. A BOINC-based project provides 

its own servers. Hosts download application’s executables and data files from servers, carry out tasks 

(by running applications against specific data files) and upload the output files. However various 

problems exist while deploying applications over these heterogeneous machines using BOINC. The 

tasks of each application had to be independent due to the lack of communication between the clients, 

otherwise it is not compatible. Furthermore porting application to BOINC middleware is a very 

complex process. Several server daemons had to be implemented to achieve that. To resolve these 

issues, this thesis proposes a framework based on the Boinc infrastructure, the mCluster software 

framework. MCluster adopts a task-based programming model designed to resolve the existed 

dependencies. Finally, a source to source translator is included in this framework in order to transform 

this application into BOINC compatible tasks, ready to be executed from the available clients by 

implementing all the appropriate daemons that BOINC requires.   
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Chapter 1  
 
 

Introduction 

 
 

  
  Over the past few years, distributed computing has become more and more popular. That 

occurs because the processing power in the computers has greatly increased, as well the internet 

became available to hundreds of millions of users. Distributed computing is an efficient way to solve 

large scale problems that require a lot of processing power. These problems are divided into smaller 

chunks (tasks) which are going to be distributed to machines over the internet. Those remote 

machines will execute them and return the individual results to a central server. Due to the increased 

demands of the researchers, this field of computer science mostly consists of scientific projects. 

Volunteer computing that is going to be analyzed in next sections, so as grid computing are forms of 

distributed computing. 

Grid computing [6,9] is related to volunteer computing, but there are also some distinctions. A 

grid is usually a set of computers or clusters that are owned by universities, companies or 

organizations. Furthermore, users gain access to computing resources even though they don’t know 

where they are located [6]. On the other hand, volunteer computing [2,3] (also known as Public 

Resource Computing) focuses on utilizing the available resources in the personal computers of 

individual volunteers rather than large networks of computers with persistent network connections 

and long uptimes. The increasing number of connected machines over the internet provides more 

computational power and storage than large clusters or grids. Grid computing is more reliable, 

because tasks are usually running in clusters always available for processing, in contrast to volunteer 

computing in which anyone can become a volunteer regardless his location and without giving 

information about his reliability. 

There are several types of volunteer computing frameworks [4,7] but the most popular and 

reliable middleware is the Berkeley Open Infrastructure for Network Computing (BOINC) [24,25,26], 

attached to several scientific projects, where participants can volunteer their available resources. Most 

of these projects [1,23] have hundreds of thousands even millions of participants, so the performance 

of each project is based on the way that data are distributed to them. 

These available resources are mostly personal PCs but the increasing performance of mobile 

devices trends them to a similar performance resource. Nowadays, mobile devices such as 

smartphones and tablets are becoming increasingly powerful and rising quickly in popularity. Mobile 
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devices follow us everywhere, allowing us to work and entertain ourselves at any venue. Thus, they 

are replacing desktops as our personal computers. We already have signs of smartphones becoming 

more popular than traditional desktop computers. A recent survey of users reveals that email, Internet 

access and a digital camera are the three most desirable features in a mobile phone while the 

consumers wanted these features to be as fast as possible. The increasing sales of more powerful 

phones also indicate consumer demand for more efficient mobile devices. 

The mobile devices themselves could be the source of computing power. Recent technological 

advances have greatly improved the performance of smartphones/tablets in terms of CPU/GPU speed, 

memory size and storage space. A smartphone or tablet can provide a considerable amount of 

computing power that may be even comparable to the computing power of a desktop computer. In 

addition, unlike personal computers, mobile devices are rarely powered off, even when the owners are 

sleeping, which translates into hours of unutilized computing resources. There is great potential if we 

can make use of these idle computing resources. 

 

1.1 Motivation 

 

BOINC is based on the client-server architecture suited to most of those scientific projects, 

but its implementation requires project developers to be very familiar with this architecture. An 

application must be divided into two sides, the client’s and the server’s one, which is very difficult 

due to the lack of BOINC tools and documentations. BOINC is a very useful framework mainly for 

scientists because it can endure large scale computational requirements. 

In order for a project to take advantage of volunteer computing, it must be able to be broken 

down into smaller parallel tasks and be compatible with the client-server architecture, where the client 

executes them, and the server gains the individual results. Furthermore, another important 

disadvantage of BOINC is its inability to support dependencies between the tasks of each project. If a 

project has to be divided in tasks that have dependencies among them, it cannot be ported to BOINC 

[25]. 

Considering all above-mentioned, this thesis initial goal is to implement an easy-to-use by the 

developers task based programming model that will resolve any task dependencies an application may 

have.  

As a case study this thesis aims to implement this programming model into the BOINC 

framework in order to resolve any task dependencies that might occur in a project. Finally, a specific 

mechanism has to be designed to convert a simple non BOINC-compatible application, into a ready-

to-be-executed BOINC project. 
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1.2 Contributions 

 

 

The contributions of this thesis are  

 

 

 The design of a task-based programming model targeting distributed systems. 

According to this, programmers via annotations can determine which piece of code 

they want to be executed in parallel. Moreover, any task dependencies will be 

resolved, as well as data hazards in task out-of-order execution. 

 

 

 

 The implementation of the task-based programming model over the BOINC 

infrastructure. Via this model, projects can be divided into client and server side. The 

server side is responsible for creating tasks (workunits), distributing them to the 

clients, which are going to execute them, upload the result to the server which gathers 

and further analyzes them. This requires the implementation of a framework (source 

to source translator) which transforms a sequential application to a BOINC 

compatible project application. To achieve this, BOINC required daemons have to be 

specified and implemented according to application requirements. Likewise, it has to 

initialize all BOINC project configuration parameters.  

 

 

 

 Extension in BOINC architecture in order to support dependencies between different 

project tasks. BOINC does not offer any mechanism that is able to resolve task 

dependencies [15]. Exploiting the properties of the specific programming model in 

combination with structural changes in BOINC architecture, an inter-BOINC 

mechanism will be designed for handling this problem. 
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  1.3 Thesis Outline  

  

 Chapter 2-Background 

This chapter presents related work to distributed computing. It describes how 

computers are organized in a distributed system and how volunteer computing 

became a useful tool for processing large scale problems.  

  

 Chapter 3-The mCluster task based programming model 

In this chapter we present the mCluster task based programming model. We describe 

the application programming interface, its structure and how task dependencies are 

resolved in a way to be capable of recognizing any data hazards that might occur 

between tasks.  

 

 Chapter 4-Implementation of mCluster using the BOINC infrastructure 

This chapter analyzes the most popular and efficient infrastructures used in 

distributed computing BOINC [21] and Hadoop [33] as well as their limitations 

regarding mCluster requirements. Moreover we present the implementation of 

mCluster using the BOINC infrastructure. Initially, a mechanism was designed to 

transform the sequential application to BOINC–compatible. Furthermore, BOINC 

was redesigned according to mCluster features in order to support task dependencies 

between the tasks of a project. 

 

 Chapter 5 Performance evaluation  

This chapter presents the performance evaluation of the mCluster in a specific 

environment. Four separate applications benchmarked in order to gain the available 

information for the evaluation.  

 

  Chapter 6 Conclusions and future work 

 This chapter summarizes our work and provides directions for future work. 
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Chapter 2 
 
 
Background 

 

2.1 Distributed computing  

 

The growing popularity of the internet, the availability of powerful computers, the high-speed 

networks, as low-cost commodity components, are changing the way we do computing. Distributed 

computing has been an essential component of scientific computing for decades. It consists of a set of 

processes that cooperate to achieve a specific common goal. It is widely recognized that Information 

and Communication Technologies (ICTs) have revolutionized our everyday activities. Social 

networks represent a stepping stone in the on-going process of using the internet to enable the social 

manipulation of information and culture. Mostly social network sites are implemented on the concept 

of large distributed computing systems. 

Various definitions of distributed systems have been given in the literature, none of them 

satisfactory and in no agreement with any of the others, so as it is sufficient to give a loose 

characterization [45]: 

 

A distributed system is a collection of independent computers that 

appears to its users as a single coherent system 

 

There are many aspects of this definition. Firstly, the components of a distributed system are 

autonomous in the sense that each of them has its own local memory. Secondly the users think that 

they are participating in a single system. According to the assumptions above, the components of a 

distributed system have to collaborate. The establishment of the collaboration is the main aspect of 

distributed computing. An important reference here is that the way that the components of those 

systems (which may be from a computer or a mobile device to a high performance supercomputer) 

communicate is mostly hidden from users. Likewise, the way they interact is in a uniform way, 

regardless of the time and place the interaction occurs.  
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2.1.1 Goals of distributed computing  

 

Building a distributed system is not always a good idea and may not be so efficient. In order 

to worth the effort, a distributed system should meet some important goals that are going to be 

discussed below. 

  

 Making resources accessible: The main goal of a distributed system is to make it easy for the 

users to access remote resources and share them in a controlled and efficient way. 

 

 Distribution transparency: A distributed system that is able to be presented to its users as a 

unified computing platform is said to be transparent. 

 

 Scalability: Scalability is one of the most important design goals for developers of distributed 

systems and is achieved when components don’t change when the scale of a system increases.   

 

 Openness: An open distributed system is a system that offers services according to standard 

rules that describe the syntax and semantics of those services. 

 

 Fault tolerance: Distributed systems must maintain availability even if a hardware, software 

or network fail occurs. It is usually achieved by recovery, redundancy and replication. 

 

Computers in a distributed system can have different roles. A computer's role depends on the goal of 

the system and the computer's own hardware and software properties. There are two predominant 

ways of organizing computers in a distributed system. The first is the client-server architecture and 

the second is the peer-to-peer architecture. 

 

2.1.2 Client server architecture  

 

The client-server architecture is a way to dispense a service from a central source as shown in 

figure 2.1 (left). The basic idea of this architecture is that clients request job from the central server, in 

order to perform some task whereas the server is responsible for handling those requests and provide 

the appropriate data to them. A server can be determined as a simple unit that provides a service, 

possibly to multiple clients simultaneously and a client is a unit that consumes the service. It is not 

required for the clients to know extensive information about the service that server provides, as well 
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as the server has no obligation knowing in which way the data is going to be processed. 

This architecture is commonly known to consist of different machines but even a single 

machine can have this architecture. For example, signals from input devices on a computer need to be 

generally available to programs running on the computer. The programs are clients, consuming mouse 

and keyboard input data. The operating system's device drivers are the servers, taking in physical 

signals and serving them up as usable input. 

Despite the advantages that this architecture provides, such as the integration of services, 

inter-operation of data, unaware data processing location and the easy maintenance, it also introduces 

some disadvantages. The major drawback of this architecture is that the server is a single point of 

failure. The server is responsible for the job relating to the clients. If this server is down, the whole 

system will be down as well. There is no communication between the clients meaning that a failure of 

the server leads to the loss of all processed data. 

 

2.1.3 Peer to peer architecture 

 

The client-server model is appropriate for service-oriented situations. However, there are 

other computational goals for which a more equal division of labor is a better choice. The term peer-

to-peer [8] is used to describe distributed systems in which labor is divided among all system 

components, illustrated in figure 2.1 (right). Any node can initiate a connection, despite the client 

server-architecture where the connection is always initialized from the client. In peer-to-peer 

architectures, clients behave as both servers and routers, where each node is autonomous, leading to 

the creation of a dynamic network in the sense that nodes enter and leave the network frequently. 

Another important characteristic is that nodes collaborate directly with each other and not through 

servers. 

The most common applications of peer-to-peer systems are data transfer and data storage. For 

data transfer, each computer in the system contributes by sending data over the network. If the 

destination computer is in a particular computer's neighborhood, that computer helps send data along. 

For data storage, the data set may be too large to fit in any single computer, or too valuable to store on 

just a single computer. Each computer stores a small portion of the data, and there may be multiple 

copies of the same data spread over different computers. When a computer fails, its lost data can be 

restored from other copies. Due to the absence of a central point of failure, the major drawback of the 

client server architecture is solved, at the expense of an increased number of active connections. 
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Figure 2.1: Client server architecture in contrast to peer to peer architecture 

 

2.2 Volunteer computing  

 

 Volunteer Computing [2] is a form of distributed computing that allows volunteers to donate 

their computers’ idle CPU cycles to a given application, or project. Recently, there has been a rapidly 

growing interest in volunteer computing. People worldwide can share their available computer 

resources in order to solve large parallel problems. The advantage of volunteer computing is that it is 

easy to use and accessible from anyone. Volunteers are typically members of the general public who 

own internet-connected personal computers. Organizations such as schools and businesses may also 

volunteer the use of their computers. 

  Volunteer computing is very important because a huge number of volunteers can supply more 

processing power that can be used from scientists. Most of these projects require a lot of processing 

power. Setting up supercomputer networks may increase prohibitive costs to research institutions. A 

research project that has limited funding but large public appeal can get huge computing power. In 

contrast, traditional supercomputers are extremely expensive, and are available only for applications 

that can afford them. Furthermore, it attracts more people in the field of science. Nowadays more than 

one billion of personal computers are used in volunteer computing supplying about 10 PetaFLOPS of 

computing power [41]. 

Although volunteer computing is growing fast, it has also to deal with some important issues. 

Volunteers are anonymous, which make them unreliable. The results they return, for some reasons, 
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(overclocking) may be incorrect as they intentionally return incorrect results, or claim excessive credit 

for results. Regarding the participant side, volunteer computing leads to more power consumption. 

Usually they donate their resources when they are idle so they consume more electricity. While the 

computer is in use and in parallel it executes a volunteer application, the usage of CPU, CPU cache 

and local storage increases. As a result the performance of the participant machines is reduced. 

Volunteer computing systems provide mechanisms for resolving those issues, which are mainly 

available in the client software. 

  

 

 

2.3 Related work  

 

2.3.1 Grid computing projects 

 

Condor  

 

Condor [39] is one of the oldest middleware systems used for distributed computing. It is a 

specialized batch system for managing compute-intensive jobs. Additionally, it provides a job 

querying mechanism, task policy, priority scheme, resource monitoring and management. In the past 

years, Condor usually operated in a workstation environment. The system aims to maximize the 

utilization of workstations with as little interference as possible between the job it schedules and the 

activities of people who own workstations. It uses a Condor pool in order to schedule the available 

jobs according to clients’ demands. It is one of the most reliable systems because when an owner of a 

workstation resumes activity at a station, Condor checkpoints the remote job running on the station 

and transfers it to another workstation. 

Nowadays Condor is a very useful tool for volunteer computing because of its excellent 

performance in environments where other systems are weak. In collaboration with its checkpoint 

mechanism, it provides fault tolerance by efficiently utilizing the available resources. Moreover, it can 

use all available resources even if they are not 100% available as a node, which keeps information for 

further computation. In order to achieve this, Condor uses the ClassAd language, a useful framework 

for matching the requests with the offers, migration and check pointing, as well as remote system calls 

(RPC). This process can preserve the local execution environment in order to make data inaccessible 

by remote workstations. 
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XtremWeb 

 

XtremWeb[4] is a P2P project developed at University of Paris-Sud, France. It was originally 

designed to study execution models in the general framework of Global Computing and now there are 

distributions for Linux, Windows and Mac OS. It particularly focuses on multi-parameter 

applications, which need to be executed several times from different machines, in order to gather the 

appropriate information for further analysis. XtremWeb system is based in three entities, the 

coordinator, the workers and the clients. 

 The coordinator is responsible for the task management. It manages the tasks provided by the 

clients, schedules and distributes them to the available workers. According to this, communication is 

always started from workers. A worker can enter or leave the system unpredictably so the coordinator 

is responsible for distributing the tasks in an efficient way. To deal with this, the coordinator keeps 

information (CPU time, memory size operating system, history of worker) each time a worker request 

computation to provide an efficient way for distributing them. 

 Clients are responsible for submitting tasks to the coordinator. They connect to the 

coordinator to submit tasks or to fetch any previous submitted ones. Workers are usually volunteer 

entities like PCs that accept tasks for execution according to their characteristics. During the 

execution, they periodically communicate with the coordinator to update about the computation 

status. That way, if a failure occurs, coordinator knows about the “percentage” of execution that has 

already be done and attaches the task to the worker again from the last checkpoint, to resume task 

execution. When the task is completed, they send the result to the coordinator and then request new 

tasks. 

 

 

2.3.2 Volunteer computing projects  

 

Entropia  

 

 Entropia [40] is a distributed system which aggregates the raw desktop resources into a single 

logical resource. According to this assumption, the logical resource is reliable and predictable 

although any resource can be turned off or rebooted on any time (unreliable) and be heavily used by 

the users, so the available resources are not always the same (unpredictable). Moreover, it can provide 

high performance for applications and can be managed from a single administrative console. The 

Entropia system architecture is composed of three separate layers, the physical node management, the 

resource task and the job management layer as shown in figure 2.2. 

 Physical node management provides basic communication, naming, security, resource 
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management and application control. It is responsible for providing reliability to the system. If a 

computer is disconnected for a long time, when connected again, it has to pass through firewalls so as 

its ip address is changed. These are low-level reliability issues that this layer deals with. Furthermore, 

it monitors each client’s available recourses and reports them to the master node, which are used 

during Resource Task Layer. 

  A distributed computing application often involves large amounts of computation jobs which 

has to break into smaller individual subunits, to be scheduled and run on a client machine. The Job 

Management layer is responsible for this decomposition in order to provide access to the status and 

the results of the generated subunits and results. The Resource Task layer takes the units of 

computation from the job management layer, matches them to the appropriate clients and schedules 

them for execution. The jobs are scheduled to the clients according the information that are gained 

from the Physical Node management layer which may not always be reliable. To deal with this 

problem Entropia supports multiple instances of heterogeneous schedulers. 

 

 

 

 

 

 

Figure 2.2 Entropia architecture  
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Hadoop 

 

Hadoop [33] is a framework that allows distributed processing of large data sets across 

clusters of computers using simple programming models. It is designed to scale up from single servers 

to thousands of machines, each offering local computation and storage. Hadoop is an ideal tool for 

processing large amounts of data through the fault tolerance mechanism, which makes it remarkably 

reliable. The core of Apache Hadoop consists of a storage part (Hadoop Distributed File System 

(HDFS)) and a processing part (MapReduce). The Hadoop distributed file system is designed to have 

fault tolerance in an environment with thousands of nodes in which some of them may fail and has 

high throughput for data accessing. As shown in figure 2.3, according to HDFS [34] metadata and 

application data are stored separately. Similarly to other distributed systems, it stores metadata in a 

separate server named namenode. Application’s data are stored in nodes named datanodes. It is a 

master/slave architecture. A HDFS cluster consists of a namenode and a master server managing the 

namespace of the system and regulates access to files from the clients. In contrast, there are many 

datanodes managing the storage they are connected and run. Hadoop MapReduce is a software 

framework for easily writing applications which process vast amounts of data (multi-terabyte data-

sets) simultaneously on large clusters of commodity hardware in a reliable, fault-tolerant manner. A 

MapReduce job usually splits the input data-set into independent chunks which are processed by the 

map tasks in a completely parallel manner. This framework sorts the outputs of the maps, which are 

then input to the reduce tasks. Typically, both the input and the output of the job are stored in a file-

system. 

 

Figure 2.3: The Hadoop distributed file system architecture 
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BOINC 

 

BOINC [21] is a platform for Volunteer Computing which is developed by the team that 

developed the popular project SETI@home [1]. BOINC follows the client-server paradigm in which 

each project has a server which manages all the communication and work distribution to the clients. 

Clients on the other side, download all of the application files and software, compute the results and 

send the results back to the server. BOINC enables the solution of large scale and complex 

computational problems. It supports diverse applications, including those with large storage or 

communication requirements. The target platforms or devices are not limited. BOINC-based 

applications can be executed on various target devices with different software environments, e.g. 

Windows, Linux, Mac, and mobile devices based on Android or iOS. Applications have to be 

specially made for running BOINC by using the BOINC API. BOINC is going to be further analyzed 

in section 4. 

 

V-BOINC 

 

V-BOINC [37] is the virtualized version of BOINC allowing users to avoid the drawbacks of 

BOINC and take advantage of virtualization. According to this framework virtual machine images are 

distributed to the clients. These, as well the BOINC core client are managed from the V-BOINC 

client, a downloadable package encapsulating a modified BOINC client and a GUI with the purpose 

of communicating with the BOINC and a modified server called V-BOINC. The main difference 

between the other projects that also implemented virtual machines over BOINC is the dependency 

handling. To achieve that, a separate Virtual Disk Image (DepDisk) containing the application’s 

dependencies also is required. This .vdi file is created from the developers and downloaded from the 

clients. If the application is found to have dependencies, V-BOINC client attaches the DepDisk. On 

the other hand, an empty disk is created to mount the executable. DepDisk that contain the 

dependencies had to be in a specific location in the volunteer machine. This way, it is going to be 

forwarded to only one host in order to be executed and not be distributed to many of them because of 

the different configurations that they may have. In order to create the smallest usable virtual machine 

image possible, they used the VirtualBox Fixed Disk Image (FDI) type as opposed to the Dynamic 

Disk Image (DDI). This size had to be as small as possible because that way the transfer time will be 

also reduced. Afterwards, that image as well as an instantiation script is downloaded from the client. 

Via this script, BOINC is incorporated in the V-BOINC client. In conclusion V–BOINC performs 

checkpointing and recovery so as to achieve better performance and reliability in the job processing. 
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2.3.3 Parallel programming models 

 

Openmp [22] is the most popular parallel programming model which focuses on loop-level 

parallelism for shared memory systems. Via its Application programming interface (API), a 

sequential code can easily be parallelized. The directives are added as an indicator to the compiler of 

the presence of a region to be executed in parallel, along with some instruction on how that region is 

to be parallelized. Openmp considers about nested tasks but the programmer is responsible to avoid 

races so as to use barriers for synchronization.  

Wool [43] is a library that supports the nested independent task parallel programming model. 

It aims to obtain low overhead while achieving task-based parallelism. Wool provides synchronization 

and dependencies among different threads via its API and is designed to test the limits of a low 

overhead task management.  

MPI [24] allows the implementation of parallel programs to distributed machines. MPI 

applications are composed of a set of processes with separate address spaces that perform 

computation on their local data and use communication primitives to share data when necessary. 

Achievable performance and portability are two of the most important advantages of this model due to 

the optimized libraries that offers compatible with a wide range of machines despite the lack of fault 

tolerance and the demand of substantial resources such as memory and network.  

Cilk [26] is also based on a task based programming model similar to those referred above. It 

is based on the identification of tasks with the spawn keyword and the sync statement is used to wait 

for spawned tasks. Cilk does not have a mechanism for recognizing data dependencies between tasks, 

so additional synchronization points are required. While Cilk only supports parallel tasks, Cilk++ also 

supports parallel loops. 

ClusterSs [27] is a task based programming model for clusters, based on starSs[42].At 

execution time, the user-selected methods are automatically replaced by runtime calls that create the 

tasks. The runtime analyses data dependencies between tasks, building a task dependency graph. 

Tasks that have no dependencies are immediately scheduled to available resources. These resources 

could be grid, cluster or multiprocessors. ClusterSs uses an Asynchronous Partitioned Global Address 

Space (APGAS) model over starSs to benefit from the performance portability of it. As a result, an 

asynchronous execution model is created based on a master-worker architecture, where nodes can 

either generate tasks or execute them and a data model where data is automatically distributed among 

the nodes according to the computation needs. Workers can exchange data, bypassing the main node 

and multiple replicas of mutable or immutable data can coexist. 
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Chapter 3 
 
 
The mCluster task based programming 

model   

 

 

3.1 Introduction  

 

 According to current trends, the rate of cores in a chip is rapidly increasing. This makes the 

shared memory system sufficient accessible by most developers. Nevertheless, it also means that 

developers must resort to multi-threaded programming to benefit from this type of system. 

 Task based programming models allow developers to take advantage of the computing power 

of each multiprocessor, because it can achieve great parallelism without dealing with many barriers. It 

gives the opportunity to programmers to express and share calculations in tasks and not manually in 

threads. Tasks that are dynamically created, allow the program to execute concurrently like having 

infinite number of processors. It also prevents deadlocks and races between threads. As a result, the 

system is responsible for minimizing the overheads in order to execute the program effectively, 

despite the fact that it may has only a few processors. 

Most programming models so far, are used in systems where they had a shared memory, 

which allow indirect communication and synchronization. According to this, distributed memory 

systems cannot be efficiently used like a cluster of computers. There are architectural differences 

between shared memory systems and distributed memory systems. In a shared memory 

multiprocessor, different processors can access the same variables. This makes reference to data 

stored in memory similar to traditional single-processor programs, but adds the complexity of data. 

The common processors communicate with the shared address space. Its main features are the ease of 

programming and the lower communication overhead. The major disadvantage of the system is the 

synchronization access. This has been enough of a concern that many multiprocessor architects have 

augmented the basic shared-memory communication model with additional synchronization 

mechanisms. 
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3.2 A Task based programming model for distributed systems 

 

 

 

 Our goal is the design of a task based programming model for distributed memory systems 

and especially mobile devices. Large scale problems that needs multiprocessing maybe difficult to be 

executed from a single machine, because of the limitations of the memory space and resources. In 

order to deal with it, we had to split the major problem to smaller units so as to decrease the 

computation requirements. Data available in a server database, are downloaded by clients, executed 

and then sent back to server which will inform the database. The work will be distributed 

appropriately according to the requirements of each user. This way we will benefit from the large 

number of the volunteered resources to execute large scale computations without the restriction of the 

memory space. 

 In order to achieve this, the original problem should be able to be broken into independent 

parts so that each processing element can execute its part of the algorithm simultaneously. Parallel 

programs offer that ability. In this case, we can easily attach the independent tasks to each target 

device instead of attaching them to another source such as a computer core. Basic requirement for our 

assumption is the ability of decomposition of our major problem into smaller chunks. 

 Based on this, our next step is the creation of the appropriate programming model. In that 

way, parallel applications which computation can be divided in tasks will take the advantage of the 

multiple resources that target devices offer, favoring applications with large data volumes. 

 Specifically, according to figure 3.1, a sequential application via specific directives that will 

be given by the programmer, will generate the appropriate tasks that are going to be executed 

simultaneously from the available nodes of the distributed system. The application programming 

interface that will be provided to the programmers could perform the desirable parallelization in the 

application. This way, the suitable tasks are going to be created. Available resources could be related 

to computers or clusters but according to the mCluster model, target resources are mostly mobile 

devices like tablets and smartphones.  

The explosive growth of smartphones over the past couple of years has been unprecedented. 

Almost half the phones now sold to consumers are smartphones. Additionally, these smartphones are 

becoming increasingly more powerful. If multiple mobile devices like smartphones can be linked 

together to perform processing, that would become a very useful tool for applications that have large-

scale requirements.  
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Figure 3.1. Basic idea of the mCluster programming model 

 

  

 

3.3 mCluster Application programming interface (API) 

 

Writing a distributed application often requires the programmers to deal with many kinds of 

complexities. To alleviate these issues, we have designed an API that enables programmability, and 

portability of user applications. In each program must be clearly specified which piece of code may be 

executed separately from a node in the distributed system. 

A source code with directives is a sequential program annotated with pragmas that identify 

functions in the code that are candidates to be executed simultaneously. We call those functions tasks. 

Initially, the user defines what specific inputs and outputs each task has. Each input and output of the 

task necessarily contains the variable name followed by size. Each annotation must always be 

followed by the function call that corresponds to it. The inputs of each task in combination with the 

function implementation are going to be distributed to the clients for processing. The output definition 

of each task is useful for resolving dependencies.  

 For example, if we want to annotate the function of matrix addition, we have to initiate the 

inputs and outputs in the form of the example 1 as follows. Tasks are specified using the #pragma 

mCluster directive followed by its inputs and outputs. After this, the matrix implementation function 

follows, which is equivalent to the task body. This function will be transformed to the executable that 

is going to be distributed to the target devices. 
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Example 1: Pseudocode of the sequential program 

 

int * matrix_addition  (int * table1,int length1,int * table2, int* length2) 

{ 

…. 

} 

Main() 

 { 

.. 

#pragma mCluster input(int * table1,10,int *table2,10) output ( int * table3) 

matrix_addition  ( table1,10,table2,10) 

.. 

} 

 

 In the above example, we define a task that has as inputs two tables, table1 and table 2 with 

10 and 20 elements length respectively. It implements the function matrix addition with table 3 as its 

output. This way, we get all available inputs in order to perform each task. 

 The length of each table in the annotations is necessary, because we can split a big table into 

smaller chunks in order to be executed separately by different nodes and not pass the whole table that 

could cost much computation time to a single node. This makes our program more flexible for further 

processing suitable for distributed memory systems. 

 

3.4 Dependencies between tasks  

 

Task parallelism is a natural model for expressing dependencies. Task parallelism can have a 

different execution path per unit of parallel work. According to this assumption, it does not imply 

uniform workloads because of the amount of work that can be executed simultaneously and the 

dependencies that might exist between them at any given time are irregular. Tasks allow us to express 

dependencies on a higher level. Our motivation is to offer a simple programming model, easily 

programmable by any developer, which with specific annotations will easily express task 

dependencies. 

 Any algorithm that is formalized and expressed in tasks in any programming language may 

contain some kind of dependence between them. Programmers generally pay little attention to the 

dependence. This may have implications during the program execution. On the other hand, in many 

cases reducing the number of dependence, leads to direct reductions in a program’s running time. 

 Parallelism is achieved through hints given by the programmer in form of pragmas that 
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identify the part of the code that operates over a set of parameters. These parts of the code are 

encapsulated in the form of functions. With these hints, we can detect the task calls and their 

dependencies. If a task depends on another, it should not start its execution until the other task finishes 

its execution. So an additional work that should be implemented involves finding the dependencies 

between tasks. A task-graph is dynamically generated and run in parallel from the available resources. 

 As shown below in example 2, we have 7 tasks that have to be executed. Task 1 produces as 

output task1_out. On the other hand, task 2 has as input task1_out. With this restriction, task 2 cannot 

start its execution until task 1 is marked as finished, because if it starts before task 1 is completed, the 

results will be wrong. Similarly, this happens with the other tasks of the example.   

  Example 2 : Pseudocode of the sequential application representing task 

dependencies 

Main() 

{ 

1. #pragma mCluster input(int * table1,10,int *table2,10) output ( int * task1_out ) 

2. matrix mul ( table1,10,table2,10) 

3. #pragma mCluster input(int * task1_out ,int *table1,10) output ( int * task2_out) 

4. matrix add ( task1_out,10,table1,10) 

5. #pragma mCluster input(int * task1_out,10,int *table2,10) output ( int * task3_out) 

6. matrix sub  ( task1_out,10,table2,10) 

7. #pragma mCluster input(int * task3_out,10,int *table3,10) output ( int * task4_out) 

8.  matrix sub  ( task3_out,10,table3,10) 

9. #pragma mCluster input(int * task3_out,10,int *table4,10) output ( int * task5_out) 

10. matrix add (task3_out,10,table4,10) 

11. #pragma mCluster input(int *  task4_out,10,int * task5_out,10) output ( int * task6_out) 

12. matrix mul ( task4_out ,10,  task5_out,10) 

13. #pragma mCluster input(int * task1_out,10,int *task6_out,10) output ( int * task7_out) 

14. matrix add (task1_out,10,task6_out,10) 

} 

 

 

In Order to deal with it as shown in figure 3.2, a graph with task dependencies is created, 

representing dependencies of tasks towards each other. Afterwards a queue of tasks is created 

depending on each task depth in the graph. Tasks are stored in a queue, in the correct order so as when 

the clients are going to request work, the task they select will have no previous dependencies. 
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Figure 3.2: A set of tasks (circles) and their dependencies (arrows). The arrows indicate the direction of the 

dependency, i.e. an arrow from task 1 to task 2 indicates that task 2 depends on task 1. Task 1 has no unsatisfied 

dependencies and can therefore be executed. Once task 3 is completed, tasks 4 and 5 become available, and task 

6 only becomes available once both tasks 4 and 5 have been completed. The right table shows all graph's 

dependencies. 

 

3.5 Data Hazards in task execution 

 

 Out-of-order execution [15] is well-known in the domain of computer architecture for a long 

time, originating in early work by Tomasulo /scoreboard [35]. Its basic idea is to execute a sequential 

instruction stream of a usual architecture in data-flow order, thereby establishing more parallelism and 

better load balancing of available functional units. To this end, the data dependencies between tasks 
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are analyzed and tracked by a couple of data structures. Data hazards are an implicit problem in tasks 

out-of-order execution. 

Traditional out-of-order pipelines provide programmers with a sequential interface, yet 

internally execute instructions in parallel, based on dynamic analysis of data dependencies. According 

to this purpose, out-of-order execution may cause problems in the result each task generates. 

 In example 3, TASK 3 has as input table3 which outcomes from TASK 1 and TASK 2. The 

right value must be obtained from TASK 2. 

 

Example 3: Pseudocode representing data hazards 

 

TASK1  1.#pragma mCluster input(int * table1,10,int *table2,20) output ( int * table3) 

  2. matrix mul ( table1,10,table2,20) 

TASK2  3.#pragma mCluster input(int * table4,10,int *table2,20) output ( int * table3) 

  4. matrix add ( table4,10,table2,20) 

TASK3  5.#pragma mCluster input(int * table3,10,int *table2,20) output ( int * table4) 

  6. matrix mul ( table3,10,table2,20) 

 

 

 

 

Task renaming in mCluster 

     

TASK1  1. matrix mul ( table1,10,table2,20) 

TASK2  2. matrix mul ( table4,10,table2,20) 

TASK3  3. matrix mul ( table3_1,10,table2,20) 

 

 

 

If TASK 1 finishes its execution before TASK 2, the value that is going to be attached to 

TASK 3 is the outcome of TASK 1, which is not the right one. Dealing with this, if more than one 

tasks produces same result, it must be renamed internally. In our example, we rename the output of 

TASK 2 to table3_1 and then set this value as the input of TASK 3. This way, Task 3 will not execute 

until TASK 2 finishes resolving any data dependencies that may occur. 

 

 



22 

3.6 Limitations 

 

If not planned properly, a distributed system can decrease the overall reliability of 

computations. Troubleshooting and diagnosing problems in a distributed system can also become 

more difficult, because the analysis may require connecting to remote nodes or inspecting 

communication between nodes. 

Many types of computation are not well suited for distributed environments, typically owing 

to the amount of network communication or synchronization that would be required between nodes. If 

bandwidth, latency, or communication requirements are too significant, then the benefits of 

distributed computing may be negated and the performance may be worse than a non-distributed 

environment. 
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Chapter 4   

 

mCluster implementation using the 

BOINC infrastructure 

 

4.1 Introduction  

 

As mentioned, many distributed-computing infrastructures are nowadays available. They are 

focused on efficient job distributing using a great variety of scheduling policies, different 

communication protocols and based on different architectures. Nevertheless, BOINC and Hadoop are 

the most popular and widely used programming frameworks. Each of them provides different 

mechanisms for job transmission, having their advantages and drawbacks. In this section we are going 

to choose the most efficient for the mCluster implementation. 

 

4.2 Hadoop limitations 

 

As presented in chapter 2 the basic idea of mCluster was the implementation for a task based 

programming model for distributed systems. Initially, the infrastructure studied for the 

implementation of mCluster was the Hadoop. The most important difference between volunteer 

computing frameworks and other computing frameworks such as Apache Hadoop is the vast diversity 

between resources available to the system. This diversity includes not only the speed, number of 

processors, memory and disk space at each resource, but also the operating system and hardware 

installed on the machine. Furthermore, different resources have different levels of availability and 

reliability, which can change unpredictably over time.  

Hadoop seemed to be the ideal framework for mCluster because of the fault tolerance mechanism 

and its ability to run applications on systems with thousands of nodes involving thousands of 

terabytes. Despite the advantages referred above, Hadoop has also many drawbacks which are not 

consistent with mCluster’s requirements.  
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These drawbacks are:  

 

 

 The MapReduce engine: There are certain cases which MapReduce is not a suitable choice. 

Initially, it is not always easy to implement a program according to this programming model. 

The program has to be divided in the three phases so if the problem cannot be structured in 

that exact way it will not be compatible with Hadoop.  

 

 Not Fit for Small Data: Due to its high capacity design, the Hadoop Distributed File System 

(HDFS) lacks the ability to efficiently support the random reading of small files. Moreover 

since Hadoop is architected to accommodate very large data files by splitting the file into 

small chunks over many worker nodes, it does not perform well if many small files are stored 

in the distributed file system. If only one or two nodes are needed for the file size, there is a 

large overhead of managing the distribution. 

 

 

 Dealing with mobile devices, Hadoop is not suitable because of the disadvantages referred to:   

 

 Resource limitations: Hadoop was built in a way that data have to be always in client storage 

in order to be directly executed and not stored in a central server. It is based on the 

assumption that the available system executes attempts to process a great amount of data 

which is scattered throughout the nodes without the presence of a central node. This 

restriction, as well the fact that we had to deal with devices that may not have the desirable 

resources, like free memory space and computational power certainly enhances our disbelief 

regarding Hadoop’s suitability. If a mobile device is attached as client, its storage is 

automatically going to be used for data processing. The way that the Hadoop File System is 

structured, does not require information about each client characteristics. It distributes the 

data without the knowledge of the available space which is suitable for computers with lots of 

available space and not for mobile devices with restricted memory. 

 

 Network connectivity: Hadoop is structured in order to be mostly used in a local network. 

Each device which will be connected as a client, according to Hadoop requirements, has to be 

represented with a static ip address. Before the HDFS attempts to distribute its data, a list of 

the available clients is created, represented with their ip address. Mobile devices usually 

connect to the internet via Wi-Fi or mobile data. Every time they are reconnected, these 

values are changed so they don’t belong to the previous lists and will be shown as not 
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available, in contrast with our requirements. Summarizing, Hadoop architecture is based to 

deal with static clients and not clients that dynamically attach to the system, in consideration 

of the restrictions that referred above.  

 

 

 

4.3 Berkeley Open Infrastructure for Network Computing (BOINC) 

  

  In our attempt to deal with the drawback of the Hadoop framework, we are going to study 

BOINC, which is currently considered as one of the most popular volunteer computing platforms. It is 

designed to support applications that have large computation requirements, storage requirements or 

both. It is a framework for solving large scale computational problems by splitting them into smaller 

units which will be executed by volunteer computers. It consists of many independent projects in 

which each client can take part by downloading workunits and send the result back to a central server. 

In this way, the computational effort is distributed into many clients having their own computational 

resources. Each computer works on its own workunits independently from each other and sends back 

its result to a project server.  

There are quite a few BOINC-based projects in the world. Installing, configuring and 

maintaining a BOINC based project however is a highly sophisticated task. Scientists and developers 

need a great deal of experience regarding the underlying communication and operating system 

technologies, even if only a handful of BOINC related functions are actually needed for most 

applications. This limits the application of BOINC in scientific computing although there is an ever 

growing need for computational power in this field. In this thesis, we present a new approach for 

model-based development of BOINC projects based on the specification of a high level abstraction 

language as well as a suitable development environment. 

  

 

 4.3.1 BOINC in contrast grid computing 

 

Volunteer computing and Grid computing share the goal of the utilizing existing computing 

resources. Both are forms of distributed computing which try to fully utilize existing resources. 

However, as shown in figure 4.1, they differ in several essential respects. Grid computing involves 

organizationally-owned resources such as supercomputers and clusters. These resources are very 

reliable because they are usually managed from universities and other research institutions using high-

bandwidth network links in order to minimize the probability of system failure. On the other hand, 

volunteer computing is based on individual participants owning computers, tablets, smartphones 
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connected to the internet most of the times using low-bandwidth networks which sometimes may not 

even be free. Furthermore, volunteer computing is based on the “pull” model in which clients 

periodically request for job from a central server despite the “push” model used in grid computing 

where the request for a given transaction is initiated by the publisher or central server. 

 

 

 

 

Figure 4.1 : Differences between BOINC and grid computing systems 

 

  4.3.2 Goals of BOINC  

 

 Reduce the barriers of entry to public-resource computing: BOINC allows scientists to 

create a public resource project, which can be run from a single computer running open 

source software. 

 

 Share resources among autonomous projects: Each BOINC project is independent from the 

others, has its own servers and can be run with no restrictions. In this way any participant can 

join many projects and perform tasks from more than one. That means that any computer, 

when the projects are temporarily down can use its computational resources to the others, in 

order to improve the resource utilization. 
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 Support diverse applications: BOINC support multi language applications 

(C,C++,FORTRAN) and offers various data distributions mechanisms.  

 

 Reward participants: In order to attract participants BOINC offers credits to them who offer 

their computations resources and offers a great variety of graphical representation.   

 

4.3.3 BOINC Features 

 

1) Redundant computing: BOINC supports redundant computing, a mechanism for 

recognizing errors at client’s workunit execution. For each workunit can be specified that N 

results should be created. Once M of these N have been distributed and completed, BOINC 

server daemons are called (transitioner, validator, assimilator, file deleter) to compare the 

results and possibly select a canonical result. If some of the results fail, BOINC creates new 

results for the workunit, and continues this process until either a maximum result count or a 

timeout limit is reached. In figure 4.2, a redundant computing example is presented. 

 

 

 

 

Figure 4.2: Redundant computing example. In this example, result 2 is lost (i.e., there's no reply to the BOINC 

scheduler). When result 3 arrives a consensus is found and the work unit is assimilated. At timestep 13 the 

scheduler 'gives up' on result 2 (this allows it to delete the canonical result's output files, which are needed to 

validate late-arriving results). 
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2) Homogeneous redundancy: Due to differences among the participants (different operating 

system different architecture, compiler), results for a given workunit might depend on them, 

so they may be different. To deal with this and in order to handle divergent applications 

(applications in which small numerical differences lead to unpredictably large differences in 

the final output) BOINC provides this feature. In that way hosts are divided into numerically 

equivalent classes. The BOINC scheduler will send results for a given workunit only to hosts 

in the same class. There is an option that hosts are separated according to the CPU type or the 

operating system. It can be manually enabled or disabled in BOINC configuration file.  

 

3) Security: BOINC offers a mechanism to prevent server and client from various attacks like 

theft of project files, result falsification, malicious executable distribution, intentional abuse 

of participants’ hosts by projects and other malware-type attacks. 

 

4) Fault tolerance and multiple servers: Each BOINC project may have hundreds of 

thousands of participants. If all of them are trying to connect in the same time to a specific 

server will lead to its overload. BOINC has a number of mechanisms to prevent this. All 

client/server communication uses exponential back off in case of failure. According to this, if 

a client server communication fails for some reason the client will not try to connect to the 

project immediately. Instead it will retry to connect with some delay based to the number and 

the cause of failure. 

 

 

5) Local task: Regarding the maximization of the resource usage when each workunit is sent to 

a client, a deadline is used for the execution and when it overcomes the workunit is send to 

another host. In order to minimize each project running time, the BOINC core client decides 

locally when to get work, from what project and what tasks to attach to specific clients. 

 

6) System monitoring tools: BOINC offers a web based system, where any host can obtain 

information about the daemons that are running on each projects. Additional they can be 

informed about the tasks and their deadlines, the available tasks for downloading, the 

complete tasks and the numbers of applications that belongs to the projects or application’s 

specific database tables. 

 

 

7) Participant preferences: Computer owners generally participate in distributed computing   

 projects if only they incur no significant convenience, cost, or risk by doing so. 
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8) Open and extensible architecture: Porting application to BOINC infrastructure is not easy 

but may not need much configuration. BOINC offers a variety of application programming 

interfaces APIs so programmers can implement any application compatible with BOINC. 

 

 

 

4.3.4 BOINC architecture 

 

 

BOINC [32] is based on client-server architecture. The basic idea is that clients are 

continuously requesting for services and the central server provides them. As shown in figure 4.3 the 

server side consists of three individual servers, the task server, the data server and the web interface 

server. The requests are made by clients using remote procedure calls (RPCs). Clients are running 

each BOINC application executable, linked with a specific runtime system which function incudes the 

process control for the workunit.  

A client communicates with the project’s task server. Client gets a set of instructions from the 

project's task server. The instructions depend on the computers that are going to be used. For example, 

the server won't assign them work that requires more than their available space. The instructions may 

include multiple pieces of work. Projects can support several applications and the server may send 

work to the computer from any of them. The request comes in the form of an XML document which 

describes the host’s hardware and other characteristics and a request for a certain amount (expressed 

in terms of CPU time) of additional work. The reply message includes a list of new jobs with each one 

described by an XML element that lists the application, input and output files, including a set of data 

servers from which each file can be downloaded). The client downloads the executable and input files 

from the project's data server. If the project releases new versions of its applications, the executable 

files are downloaded automatically by the client to the computer, which runs the application 

programs, producing output files and then uploads the output files to the data server. Later (up to 

several days later, depending on user preferences) the client reports the completed results to the task 

server, and gets instructions for more work. 

Furthermore, a web interface server is responsible for giving hosts the ability for plenty of 

operations via a web interface. Each project has a server status page where each host can gain 

information about the daemons that are running, the number of tasks that have already executed, the 

number of results that are not valid, as well to have access to a list of project applications with a 

summary of job throughput for each. Moreover, this page contains information related to hosts’ 

personal profile, like the credit that they have been awarded. In addition, gives the ability to them for 
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editing their profile preferences. Each project has also a project management web page, not visible to 

the public, that lets project administrators to handle each project’s properties. They can also create and 

edit application and application versions, cancel workunits, view recent results and analyze them in 

order to have access to the project database to perform the appropriate operations. Finally, as above 

referred the data server is used for downloading input files and their executable and uploading output 

files. The task server and the client side are going to be analyzed in detail in next sections. 

 

 

 

 

Figure 4.3: BOINC client-server architecture 

 

 

 

  4.3.5 BOINC client  

BOINC [35] client shown in figure 4.4 is structured into a number of separate applications. 

These intercommunicate using the BOINC remote procedure call (RPC) mechanism. These 

applications are: 
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Figure 4.4: Client components 

 

 

Core client: The process that actually does the main work. It makes the network communication with 

the servers, executes and monitors applications and enforces preferences. It consists of several 

depended FSMs responsible for network transfers. In addition, it is responsible for managing the way 

that one or more applications are going to be executed. It uses round robin mechanism in the way that 

the client executes them in order to dispatch the available resources evenly. Moreover, each task has 

its own requirements like memory or disk usage. If these requirements are greater than those that the 

client has, the core client aborts that task. 

 

Manager: Provides a graphical interface for the users to able to perform multiple operations related to 

the project. It offers a variety of options to users like detaching/attaching to a project, updating a 

project to get new instructions, suspending computation for a project. Additionally, it informs users 

about the percentage of execution of each task and keeps statistics about the disk usage that each 

application has allocated. 

Screensaver: BOINC display full screen graphics depending on application. 

API: Via client’s API, core client is informed about useable functionalities about the program 

execution.   
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Applications: Large-scale applications relating physics, mathematics and other fields of science. 

 

Runtime library: BOINC runtime system is based on shared memory message passing. The 

bidirectional communication between core client and application is implemented by the core client 

which creates a shared memory in which messages are transmitted telling application what to do, like 

suspend and abort. 

The client embodies two related scheduling policies the task scheduling policy and the work-

fetch policy.  

The goals of these policies are: 

 

1) Tasks should be completed and reported by their deadline (results reported after their deadline 

may not have any value to the project and may not be granted credit). 

2) All processors should be kept busy. 

3) At any given point, the computer should have enough work so that its processors will be busy 

for at least (min buffer) days and not much more than (max buffer) days. 

4) Project resource shares should be honored over the long term. 

5) If a computer is attached to multiple projects, execution should rotate among projects on a 

frequent basis to improve the volunteer experience. 

 

4.3.6 BOINC task server  

 

BOINC task server [25] consists of several individual programs that are running separately in 

order to achieve efficient job scheduling. These programs, called daemons, are presented in figure 4.5 

and are analyzed in this section. BOINC task server is the most important part of the server side 

because it is in charge of most processes that contribute to the BOINC framework. Processes related 

to: 

 

Creation and distribution of workunits. Workunit describes how the experiment must run by the 

clients (the name of the binary, the input/output files and the command line arguments). Among 

workunits, MD5 files are created so as the client can recognize if the workunit has the right format. 

Validation of the received results. Clients’ results that are sent on the server database have to be 

validated first before they are stored.  Different architectures among clients, which are rather common 

due to the vast diversity of devices, usually lead to different results for the same workunit. The server 

has to validate these results and store the valid ones in the database. 
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Figure 4.5: Task server components 

 

 

 

Mysql database: 

The data back-end of a BOINC project is a MySQL database. This database stores all information 

related to BOINC. Also the server may have more databases, where results are stored or have the 

replicas of the workunits if they are created. This database is a collection of tables and indexes that 

hold information about workunit’s, results, applications and all information about specific projects. 

The database schema for BOINC is very complicated and the table above offers a high-level view of 

the table structure. Database table contents are shown in table 4.1. 
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Table 4.1 BOINC database schema 

 

Scheduler: Coordinates the work that is issued to make the best use of the computers available to 

process the work that is ready to use. Each host that is requesting for work is defined by some 

characteristics like number of CPU and CPU frequency. A client request also includes information 

about the completed instances except the work request. According to these, the scheduler dispatches 

the available workunits so as to achieve the most efficient way that will lead to better execution time. 

In order to handle a request scheduler performs multiple database operations such as reading and 

updating the records for each user account instances and workunits. 

 

Feeder: Fills up the ready to send queue with work units ready to be sent. Feeder streamlines the 

scheduler’s database access. For better performance on the workunits access maintains a shared 

memory segments containing workunit relevant information: 

1) Static database tables such as scientific applications, platforms, and application 

versions. 

2) A fixed-size cache of unsent instance/job pairs. The Scheduler finds instances 

that can be sent to a particular client by scanning this memory segment. 

Its runtime can be configured during the execution time. Each workunit can be marked to be sent in 

priority or random order depending on each project requirements. 

 

Transitioner: Handles the state transitions of work units and results. It is responsible for giving each 

workunit a specific state e.g. a client has finished its workunit execution so the state that will be given 

is ready for report. If a workunit result is not valid will be marked as aborted, if cannot be downloaded 

its state will be marked as permanent error. Depending on its state, it will be also marked for 

validation or assimilation.  

 

File deleter: Removes the workunit’s data files and result data files that are no longer needed. This 

daemon helps to keep disks as clean as possible. 
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Validator: A back-end program that performs validation and credit granting. Validation consists of 

two parts. At first it performs a syntax check by verifying which output files are present on the server 

having the correct format. After that, a replication check follows. If the job is replicated, these replicas 

are compared, if a strict majority are found to be equivalent, those replicas are masked as valid and the 

rest as invalid. 

BOINC provides three standard validators: 

1) Sample trivial validator Marks a job as valid if its output files are present. It is usually used if 

all hosts are trusted. 

2) Sample substr validator Marks a job as valid if its error output includes a string specified by the 

“stderr_string “command-line arg. If a specific flag is enabled, the logic is inverted: a job is valid 

if its error does not include the string. 

3) Sample bitwise validator Output files are equivalent if they agree byte for byte through the 

comparison of MD5. This can be used if an application generates exactly matching results (either 

because it does no floating-point arithmetic, or because it uses homogeneous redundancy). Apart 

from those, BOINC offers the ability to project developer to implement his own validator. More 

specifically, in order to create a validator only three functions provided by BOINC had to be 

supplied. In most of scientific projects, building a validator could be very useful because every 

time each scientific application has certain requirements.  

 

Assimilator: Completed jobs that are handled by programs called assimilators. These are generally 

application-specific: If the workunit has a canonical result, the output files from the BOINC upload 

directory are copied to a permanent location, or the output files might be parsed and placed in the 

project master science database for later analysis. On the other hand if an error occurs in the workunit, 

a message is written to a log or an e-mail is sent to the project administrator. It is performed once for 

each workunit. Assimilated workunits are stored in a specific folder, while the others that are written 

in an error file.  

  

Work generator: Creates workunits that are going to be issued to the participants. Each application 

has its own work generator. It is responsible for creating the input files with the right data. It is the 

most important part of the server daemons, because the job that is going to be executed is exported 

from it. The work generator sleeps if the number of unsent instances exceeds a threshold, limiting the 

amount of disk storage needed for input files. Many projects have an essentially infinite supply of 

work. This can be handled by a 'flow-controlled work generator' that tries to maintain a constant 

number of unsent jobs (typically a few hundred or thousand). It does this by periodically querying the 

BOINC database to find the number of unsent jobs. 
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 DB purger: This daemon is responsible for removing jobs and database entries that are old and no 

longer needed which bounds the size of this table in order to manage better performance in database 

operations. 

 

 

4.3.7 BOINC suitable applications  

  

 

BOINC is designed in order to be suitable for applications that require large computational 

power and heavy disc usage. A project may gain access to Teraflops of computation power and 

Terabytes of disk usage. Because of BOINC restrictions applications should have some specific 

properties in order to be used in an efficient way.  

 Application independent task parallelism: Each application’s task must be independent because 

BOINC does not provide a mechanism to deal with this. This is the most important disadvantage of 

BOINC which are going talk about in the next section. 

Low data/compute ratio: Data between server and client are transferred through internet 

connections, which may be expensive and sometimes slow. In that case, an application requires more 

than one gigabyte per day of CPU time, so it would be more efficient to use in-house cluster 

computing rather than BOINC [21].  

Fault tolerance: BOINC provides mechanism to deal with this (redundant computing) but the error 

probability may be not always be equal to zero. 

 

4.3.8 Application porting to BOINC  

 

In order to port an application to BOINC, it has to be split and written in two parts. The server 

side which is responsible for creating the work units and the client side, which consist of the 

executable that is going to be processed from the client. The process to transform applications that are 

running on single machine, to be compatible with BOINC is very difficult and not straight forward. 

Porting application to BOINC may become a very difficult process. BOINC provides various 

APIs for different purposes. As shown in the figure 4.6 the basic APIs that are mostly used for this 

reason in the BOINC API and the DC –API. 

BOINC API is the application programming interface provided with BOINC. Includes a 

diagnostics API used to enable data collection for debugging and a graphics API for allowing the 

application to render graphics to the user’s screen. It consists of a set of C and C++ functions in order 
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to implement 4 separate applications (work generator, assimilator, validator, worker) which makes it a 

very complex porting process. 

In contrast, DC-API (Distributed Computing Application Programming Interface) [44] allows 

easy implementation and deployment of distributed applications on Grid environments. It’s an API 

that supports master–worker programming model, designed to be easy to use and to hide the details of 

BOINC. 

As shown in figure 4.6, in order to implement an application using the BOINC API source 

code had to be written for the client application, the work generator, the validator and the assimilator. 

Each of them consists of specific functions and libraries provided by BOINC API in combination with 

the applications source code. On the other hand, via DC-API must to be written only the master 

application and the validator. The master application includes simplified functions which implement 

WU generator’s and Assimilator’s functionalities.  

 

 

 

 

 

 

Figure 4.6: BOINC application programing interfaces 
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4.4 Aim development of mCluster   

 

BOINC may evolve into a very useful framework, due to the fact that it is developed in a way 

that it solely consumes each client’s free resources. Some of its advantages like the homogeneous 

redundancy, the fault tolerance mechanism and the security that provides as analyzed in section 4.3.3 

make it as a very efficient programming model for distributed computing. On the other hand, the lack 

of resolving dependencies between tasks constitutes an important disadvantage, which makes a large 

scale of applications incompatible with the framework. The main goal of mCluster is to improve 

BOINC features by designing an additional functionality related with this restriction. Furthermore 

porting application to BOINC is a very difficult process and requires building many programs not 

familiar to most programmers because of the difficult-to-understand BOINC application programming 

interface. 

 

4.5 Source to source translator 

 

 The first step is the implementation of the source to source translator, a program which will 

gain the original sequential application and generate code compatible with the runtime system of 

BOINC. The main goal is to create all the available programs BOINC requires for job transition and 

execution according to each application. In order to achieve this, application must be able to be 

broken in units in order to be distributed to the available clients. Programmers according to mCluster 

application interface (mCluster API) must define these units in order to be in the form that source to 

source translator supports. 

 

 

 

Figure 4.7: Representation of source to source translator environment. Source code with directives via source 

to source translator creates application ready to be executed by each distributed node’s runtime system. 
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 As shown in figure 4.7, having a program written in C or C++ programming language, our 

source to source translator will read the relevant directives and the arguments which inserted by the 

user and convert them into function calls that are going to be implemented by BOINC.  

  Finally, if a program executes in a shared memory system, the data will be taken from local 

memory. Now in distributed computing, data must be stored in the appropriate file location where the 

application executable is also placed, in order to be accessible from the available clients to download 

and then start its execution. Source to source translator is responsible to create and place these 

temporary files in the BOINC file system.   

 

 4.6 Source to source translator architecture  

 

The main goal of source to source translator is to fully transform a sequential application to 

ready to be executed tasks by any user via the BOINC framework. As mentioned in section 4.3.8 in 

order to do this, source code had to be written for both client and server side. Source to source 

translator consists of two parts. The server generator and the client generator. BOINC daemons mode 

of operation was analyzed in section 4.3.6 and in section 4.3.8 the two programming interfaces for 

building BOINC daemons was also presented. 

 Combining the requirements extracted from these sections and dealing with mobile devices, 

it is concluded that the suitable API for applications compatible with the mCluster framework is the 

BOINC API. This mainly happens due to the incompatibility of DC-API libraries with the android 

devices. Dealing with BOINC API presupposes the implementation of three BOINC daemons (work 

generator, assimilator and validator) as well as the implementation of the client application. Finally, in 

order to handle dependencies between tasks that are not yet supported from BOINC, the task 

coordinator daemon is also created, which creates the dependency graph and the task Scheduler which 

inserts/updates elements in the queue order, generated from the graph. 

 

4.6.1 Server Generator  

 

The first and most important part of the source to source translator is the creation of the 

daemons that are required for the job processing. As shown in figure 4.8, the assimilator, the validator 

and work generator are created to be compatible with the BOINC API. Task coordinator is the new 

daemon responsible for task dependencies. 
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Figure 4.8: Components of the server generator 

 

Assimilator and validator as analyzed in section 4.3.6 are daemons responsible for handling 

the result of a workunit. Any BOINC project cannot be started until these daemons start running. Task 

coordinator is the new daemon that is created from the server generator in order to handle data 

dependencies.  

At first, server generator creates a table with each task’s characteristics. The task id, name, 

inputs and outputs are stored in this table. In accordance with the inputs and the outputs of each task, 

the task coordinator creates the appropriate graph where dependencies between tasks are represented. 

This graph is going to be transformed from the job scheduler to a FIF0 of tasks. The tasks that have no 

dependencies are inserted with highest priority in a manner of being executed first and the others are 

going to be inserted based on their depth in the graph. 

The work generator, in order to create a workunit, has to be initialized with the appropriate 

values. These values are usually stored in the BOINC file system. This assignment belongs to the 

server generator which reads each tasks inputs and parses them to temporary data files. After that 
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work generator’s source code must be edited in consonance with the task requirements. BOINC API 

is the programming interface which work generator is based on. As show in example 5.1, the code is 

based on a specific template which allows easy modification. 

  

Example5.1 Work generator pseudo code 

 

 main () 

 {  

1. Parse BOINC configuration file to get project characteristics  

2. Parse the template files contain information about the workunits  

3. Make a unique name for the job and its input file  

4. Create workunits 

5. Put it in the wright place in the download directory hierarchy  

6. Fill the job parameters in order to be stored in database  

7. Register the job with BOINC  

8. Wait for the jobs to be transitioned  

9. Terminate BOINC  

} 

 

 

   

In the section of code that the workunits are going to be created, as shown in the example 

above, server generator replaces it with the appropriate values in accordance with the source 

application. Data values are loaded from the temporary files and assigned to the workunits. 

Furthermore it has to create the template files according each application requirements that are going 

to be loaded from the work generator. 

In order for an application to run, its inputs and outputs must be described via xml template 

files. These files must be stored in a specific directory in BOINC project hierarchy. They are two 

template files for each application. The first one is responsible for the input files (workunits) and the 

other one for the output files (results). Input template file usually consists of three variables that had 

to be initialized. These values are referred to the number of input files each workunit has, the name of 

the workunits and flags relating to its requirements. These variables are initialized from server 

generator according to the directives that have been given from the programmer in the application 

source code. 

In the same way, output template variables that had to be initialized are referred to the 

maximum number of bytes that each result must have, the name of the workunit result and flags 

related to validation and deletion of the results. Input and output templates must be placed in a 

specific directory in the BOINC project hierarchy. When a job is created, the name of its output 

template file is stored in the database. The file is read when instances of the job are created, which 

may happen days or weeks later. Thus, editing an output template file can affect existing jobs so a 

new template file had to be created. 
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4.6.2 Client generator  

 

The client generator is responsible for creating a ready to be executed application by any 

BOINC client. According to the annotations that are given by the programmers, client generator 

transforms the appropriate functions in the sequential application to client executable files. An 

executable file contains the code that corresponds to the function implementation in the sequential 

program. The example below represents how the client generator encapsulates the task function in the 

client source code. 

  

Example 5.2 Client’s pseudo code 

   

Main        main () 

{         } 
1. Initialize BOINC                         Initialize BOINC                  

2. Open the input file (resolve logical name first)      Open the input file (resolve logical name first 

3. Get the size of input file         Get the size of input file 

4. See if there’s a valid checkpoint         See if there’s a valid checkpoint 

5. If so seek input file and truncate output file                If so seek input file and truncate output file 

6.  Main loop          Function implementation 

7. Create checkpoint ( If required )       Create checkpoint ( If required ) 

8. Create the output file        Create the output file 

9. Copy there the appropriate results         Copy there the appropriate results 

10. Terminate BOINC           Terminate BOINC    

}          }     

             

        

 

The main goal of the mCluster was the task dependency resolving. As referred above, the 

client generator transforms a function implementation in a sequential application to a BOINC 

executable. Any executable that is downloaded from the clients is processed according to the input 

data files that are also given. The workunits that are created from BOINC are these data files. Dealing 

with BOINC terms an executable corresponds to an application. That means that each task in 

mCluster is a separate application. A project can consist of many applications. In brief, the sequential 

application using BOINC terms is referred to the project and the tasks are the applications which 

compose it. 

  Task dependencies are resolved according to the below manner. Workunits that are the input 

data for an executable are not created until the tasks that have dependence on the corresponding task 

finish their execution. In this way, the appropriate executable which are created and dispatched to the 

clients without having the input data cannot start the processing. Task scheduler, which will be 

thoroughly analyzed in the next section is responsible for handling the completed results and creating 

the appropriate workunits in agreement with the dependencies they have. 
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 4.7 mCluster architecture 

 
In the previous section we referred in detail about BOINC, its features, architecture and the 

mechanisms that are provided. Also identified its’ main disadvantages as well as the kind of 

applications that are suitable with its framework. Applications that have task dependencies cannot be 

resolved because there isn’t any mechanism covered from BOINC for recognizing them so as there is 

no communication between clients during the execution in order to handle the dependencies. Dealing 

with this, the mCluster programming model was implemented on the top of BOINC. 

 According to this programming interface and in order to support dependencies between tasks 

that are not handled from BOINC new components had to be added in its architecture. 

 

 

 

 
  

 

Figure 4.9: mCluster architecture 
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As shown in figure 4.9 the architectural differences between BOINC and mCluster are the 

Task Coordinator, Task scheduler programs that are going to be used for dependency handling. In this 

way, the tasks are going to be stored in the queue in the correct order before they are going to be 

distributed. These daemons are running alongside the others managing the tasks. Specifically: 

 

Task coordinator: This daemon is responsible for creating the dependency graph based on the 

programmer’s annotations. Source to source translator creates the appropriate tables which contain 

information about each task. Afterwards the task coordinator according to these creates the 

appropriate graph representing the task dependencies. Tasks that have no dependencies are the parent 

nodes. Task coordinator only creates that dependency graph, according to which the task scheduler is 

going to create the queue order. 

Task scheduler: It is the daemon responsible for creating the appropriate workunits that belong to 

each task. In order to resolve the generated dependencies, the creation of the workunits is extremely 

important. When a device downloads the executable, it cannot start the execution until the input data 

is arrived. Task scheduler takes advantage of that and creates the workunits only when the results 

from the task that they depend on are finished. It communicates with the assimilator in order to check 

when a result is assimilated in order transfer it to the workunit which depends on. It additionally 

schedules the work generator. Workunits must be created if only the task they belong to has no 

dependencies. Finally, it performs queue operations like insert/delete tasks or update their position in 

the queue order. 

Queue order: The queue order that used to handle task dependencies acts as a temporary buffer 

where tasks are stored. If a client downloads a task, it will not start the execution until the equivalent 

workunit is downloaded. Dealing with no dependencies, work generator creates the workunits with no 

restrictions which are going to be stored in the database. On the other hand, workunits must not be 

created until task scheduler decides to create them according the appropriate task priority. In that way 

workunits are created according to the position of the task in the queue and then are stored in the 

database. 

In figure 5.4 the flowchart represents the life-time of a job in the mCluster framework. Firstly, 

the tasks coordinator creates the appropriate dependency graph according to the annotation that the 

programmers give. Next the task scheduler creates the tasks queue order. Tasks that have no 

dependencies are immediately marked as ready to be created. The workunits of these tasks are created 

and forwarded to the clients so as to execute them. When a result arrives after the validation and the 

assimilation the task scheduler checks if it is dependent on other ones. If not, this task is going to be 

deleted. On the other hand, updates, the queue order according the dependencies that this task has. 

Finally, the task scheduler informs the work generator to create the appropriate workunits that belong 

to tasks that have no more dependencies.  
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Figure 4.10: mCluster work life-time 
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Section 5 

 

Performance evaluation 

 
5.1 Experimental setup 

 
We evaluate the performance of the mCluster by executing four separate applications with 

different level of parallelism. For the evaluation, we used six client devices. Table 5.1 shows each 

device specifications, all running the android operating system. Moreover, for collecting more 

accurate experimental results each device was set to use only one of the available cores. The main 

motivation behind the evaluation of mCluster in a mobile computing system is its ability to achieve 

performance similar to personal computers with less energy consumption. The table below displays 

each device characteristics such as the chipset, the CPU and the internal memory. All the results are 

measured according the log file that BOINC provides. 

Table 5.1 Device specifications  

Device Operating 

system 

Chipset CPU Internal 

memory 

Asus 

Google 

Nexus 7 

Android , v4.3 

(Jelly Bean), 

Qualcomm 

Snapdragon 

S4Pro 

Quad-core 

1.5 GHz 

Krait 

16 GB 

ROM, 2 

GB RAM 

2X   

Asus 

Google 

Nexus 7 

Android , v4.4.2 

(Kitkat), 

Qualcomm 

Snapdragon 

S4Pro 

Quad-core 

1.5 GHz 

Krait 

16 GB 

ROM, 2 

GB RAM 

1X   

Asus 

Google 

Nexus 7 

Android , v5.1.1 

(Lollipop), 

Qualcomm 

Snapdragon 

S4Pro 

Quad-core 

1.5 GHz 

Krait 

16 GB 

ROM, 2 

GB RAM 

2X 

Samsung 

I9505 

Galaxy  

S4 

Android , v5.1.1 

(Lollipop), 

Qualcomm 

APQ8064T 

Snapdragon 

600 

 Quad-core 

1.9 GHz 

Krait 300 

16 GB 

ROM, 2 

GB RAM 
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5.2 Experimental results  

 

Matrix-processing application  

 

Firstly, in order to evaluate the mCluster, an application that consists of seven dependent tasks 

executing vector processing benchmarked. TASK1, TASK3 and TASK4 perform matrix addition, 

while TASK2, TASK5 and TASK6, TASK7 perform matrix subtraction. The dependencies between 

tasks are shown in figure 5.1. 

 

 

Figure 5.1: Task dependency graph 

 

Initially, for the evaluation each matrix consists of 1000 elements. As shown in figure 5.2, the 

time of execution, upload and download processes is equivalent to 1 second. In addition, due to the 

existing dependencies between them, task scheduler lasts 0.10 seconds for each task to create the right 

output that is attached to the next task.     

 

 

       Figure 5.2: Download, upload, execution time of matrices consisting of 1000 elements 
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In the next experiment, the length of the matrices changed to 10000. As shown in figure 5.3, 

the download and upload time remained the same as in figure 5.2, while the execution time doubled. 

Task scheduler time was 0.15 second for each task. That happened due to the increase of data amount 

that had to be processed.   

 

 
Figure 5.3: Download, upload, execution time of matrices consisting of 10000 elements 

 

Summarizing, we had to refer that the download, and upload time for each task depend on the 

internet bandwidth. Moreover, this application takes 2.1 seconds to run on a single machine when the 

matrix consists of 10000 elements and 0.5 sec when the size is 1000 elements. That time is 

considerably smaller compared to the total mCluster’s time. That occurs because in our case we had to 

deal with extra overhead (about 3.5% of the total time ) , related to data transfer time, as the time 

needed for reading and writing to data files. That overhead may be gradually decreased while the 

number of the participant devices increases. As a result, the parallel task execution using an increased 

number of available resources leads to better performance. 

In figures 5.2 and 5.3, we presented the time required for our distributed system to execute, 

download and upload each task. In figure 5.4, we represent the total execution time of the application 

using different number of devices. At first, by executing all the tasks in a single device, we did not 

take the advantage of the parallelization that occurs in this application. As we can see, TASK2 and 

TASK3 as well TASK4 and TASK5 can execute concurrently. Dealing with that, one more device 

used to benefit from the parallelization. As shown in figure 5.4, the total execution time using two 

devices in comparison with one device, regardless the number of elements is about 1.27 times faster. 

In this example, only two tasks could be executed simultaneously so increasing the number of the 

available devices will not speed up the execution time. On the other hand, in applications which have 

more parallelization, increasing the number of the available devices will increase the total 

performance of the system. 
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Figure 5.4: Total execution time using one and two devices. 

 

 

 

 

  The “Inferior-Oliver Application” 
 

 

 

The cerebellum is one of the most complex areas of the brain and plays an important part on 

motor control and learning [46]. It does not initiate movement but influences the motor control region 

of the brain in order to guarantee coordination, accurate timing and precision on the body's activities. 

It also plays an important role in the sensing of rhythm, enabling the understanding of concepts such 

as music or harmony. The Olivocerebellar circuitry is a relatively well-charted region of the brain. 

The model of the system reveals that the brain structure in the area is highly repetitive and basically 

consists of the granule-cell layer (GCL), Purkinje-cell layer (PC), deep-cerebellar-nuclei (DCN), and 

inferior-olive (IO) nuclei. The inferior olivary nucleus provides one of the two main inputs to the 

cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be 

related to timing of motor commands and/or motor learning. The models of this biological circuit as 

shown in figure 5.5 will be used as a proof-of-concept application for the SERFER paradigm and 

specifically an Inferior Olive neuron model [47]. The distributed and massively dataflow nature of 

such models lends itself naturally to the SERFER paradigm.  

Biologically accurate brain simulation, such as the one in this application, is a highly relevant 

topic for neuroscience for a number of reasons [48]. The main goal is accelerated brain research by 

the creation of more advance research platforms. Even though a significant amount of effort is spent 

in understanding brain functionality, the exact mechanisms in most cases are still only hypothesized. 

Fast and real-time simulation platforms can enable the neuroscientific community to more efficiently 
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test these hypotheses. Better understanding of brain functionality could potentially lead to a number of 

critical practical applications: (1) Brain rescue: If brain functions can be simulated accurately enough 

and in real-time, this can lead to robotic prosthetics and implants for restoring lost brain functionality. 

(2) Advanced A.I.: It is believed that greater understanding of biological systems and the richer 

computational dynamics of their models, can lead to more advanced, artificial-intelligence and robotic 

applications. (3) New architectural paradigms: Alternatives to the typical Von-Neumann architectures. 

 

 

 

 

 

Figure 5.5: The Inferior Olive Model Structure. Visible are the I/O of the cell and its internal 

computational stages (Dendrite, Soma and Axon) 

 

 

Figure 5.6 shows the application execution procedure. According to this, the Inferior-Oliver 

application can execute in a particular number of simulation steps (Simsteps). In every simulation step 

each task calculates a cell’s state within the 2-d cell grid with dimensions Dim_x and Dim_y. All the 

internal tasks in each Simstep can be executed concurrently. Furthermore, each Simstep depend on the 

previous one. Dealing with that, all of the previous cells that belong to it had to be finished in order to 

start the next one its execution. 
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Figure 5.6: Inferior-Oliver Application execution procedure 

 

 

 

In the figure 5.7 below, we can see the execution, upload and download time for different grid 

sizes. Each task of the Simstep is executed from any device according to BOINC scheduling policies. 

For each device, we are able to specify the number of the tasks that are going to be sent in order to 

achieve better performance. BOINC provides a variety of customizations depending on each 

application’s requirements in order to dispatch and execute the available tasks in an efficient way. 

 For our example, they undertake maximum 16 tasks per request. This way, all the available devices 

execute the same number of tasks. In Figures 5.7 and 5.8 only one device used for the evaluation in 

order to be used for further analysis. 
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Figure 5.7: Download, upload, execution time for first Simstep for grid size 1X96, 1X192, 1X288, 

1X384, 1X480 using one device  

 

 

 
 

Figure 5.8: Download, upload, execution time for second Simstep for grid size 1X96, 1X192, 1X288, 

1X384, 1X480 using one device  

 

As shown in figure 5.8, in order to start the execution of the second Simstep, the first one 

should have finished. According to this, task scheduler counts the number of the assimilated results in 

the database and transfers the results to this Simstep. The overhead that task scheduler has, is related 

to the time it needs to read and write the right data values from each tasks of the Simstep in order to 

be attached to the next one. Furthermore, we had to point out that task scheduler (server work) time 

increases according to the grid size. 
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Figure 5.9: Download, upload, execution time for second Simstep for grid size 1X96, 1X192, 1X288, 

1X384, 1X480 using 6 devices 

 

As above mentioned, in figures 5.7 and 5.8 only one device is used for the evaluation. On the 

other hand in figure 5.9 used the processing power of both six devices. The total time spent in order to 

execute this Simstep is about 5 times less compared to figure 5.8. According to these, we come to the 

conclusion that the increased number of the available resources in combination with the high level of 

parallelization in the Inferior-Oliver application, leads to better performance. Furthermore we can 

point that the execution time for each task compared to the next one is not exactly the same. That 

happens because each target device’s has different execution time. Several parameters are responsible 

for this result such, as the usage of the CPU and the processes that are simultaneously running in the 

device. Usually in volunteer computing systems, the participant devices have a great variety of CPUs, 

different internal storage size and other characteristics.  

As noticed above, in this application all the tasks in the same Simstep can execute 

concurrently. We can take the advantage of this situation by using more devices for the evaluation. As 

shown in figure 5.10 while the number of the available devices increases, the total execution time of 

the application is decreased. In particular, if dealing with one device, the total the total execution time 

for grid size 1X96 is 10 minutes. On the other hand, by using 96 volunteer devices with each of them 

executing one task, the elapsed time could be reduced even to 2 minutes, time about 5 times faster in 

comparison with executing all tasks in a single device. Similarly, in bigger grid sizes, which have 

higher level of parallelism, more devices lead to better performance. In conclusion, because of the 

most devices nowadays consists of more than one processor the number of devices could be equal to 

the number of processors each of them have. 
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Figure 5.10: Total execution time in for grid sizes 1X96, 1X192, 1X288, 1X384, 1X480 using an 

increasing number of volunteer devices. 

 

  The “Black-Scholes formula” 

 
The Black–Scholes or Black–Scholes–Merton model is a mathematical model of a financial 

market containing derivative investment instruments. From the model, one can deduce the Black–

Scholes formula, which gives a theoretical estimate of the price of European-style options. The 

formula led to a boom in options trading of the Chicago Board Options Exchange and other options 

markets around the world. It is widely used, although in many cases are adjustments and corrections, 

by options market participants. Many empirical tests have shown that the outcome price is "fairly 

close" to the observed prices. 

The Black-Scholes model is used to calculate the theoretical price of European put and call 

options, ignoring any dividends paid during the option's lifetime. While the original model did not 

take into consideration the effects of dividends paid during the life of the option, the model can be 

adapted to account for dividends by determining the ex-dividend date value of the underlying stock. 

The figure 5.11 shows the Black-Scholes pricing formula for put and call options. 
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Figure 5.11: The Black-Scholes pricing formula  

  

The below figure shows the execution, upload, download and scheduler time spent calculating the call 

and put option for different size of input buffers. 

 

 
 

Figure 5.12: Task execution, download, upload and task scheduler time for different input buffer size 

using 2 devices 

 

As we can see in the figure above large input buffer size leads mainly to more download and 

upload time. Specifically when the buffer size expanded into 100000 elements, the download time 

increased approximately 10 times compared to the initial price. Taking the advantage of volunteer 

computing which offers the ability for a large number of volunteer devices we divided the buffer size 

in 100 smaller tasks each of them consists of 100 elements. In the figure below we can see the total 

upload download and execution time when these tasks are dispatched into 1,10,20,50 and 100 devices.  
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This way the transfer time will shared to the available devices which are going to download, execute 

and upload the available tasks simultaneously. As a result the increasing number of the available 

devices outcome less total transfer time. 

 

 
 

Figure 5.13: Download execution and upload time for 100000 elements input buffer size when 

 divided into 100 smaller tasks using an increasing number of volunteer devices. 

 

“Image processing application” 
 

The other application used for the evaluation deal with image processing. Via this application 

the original image is divided into smaller pieces that are afterwards applied the following filters.   

Grayscale: The grayscale filter transforms an RGB image to one in which the only colors are shades 

of gray. 

Gaussian blur: In image processing, a Gaussian blur (also known as Gaussian smoothing) is the 

result of blurring an image by a Gaussian function. It is a widely known effect in graphics software, 

typically used for image noise and detail reduction. 

 Laplacian: The Laplacian is a commonly used filter for edge detection in digital images. It is often 

applied to an image that has first been smoothed with something approximating a Gaussian smoothing 

filter in order to reduce its sensitivity to noise, and hence the two variants will be described together 

here. The operator normally takes a single gray level image as input and produces another gray level 

image as output. 

Threshold: This filter transforms an image into a binary image by converting each pixel according to 

whether it is inside or outside a specified range. 

Initially, this application consists of 4 tasks each of them is attached to one of the below 

filters. In order to reduce the total transfer time for each part of the image we reduced the number of 

tasks by embodying two filters in one task. As shown in the figure 5.14 where the image has divided 

into 16 equivalent pieces, each part of the image consists of two depended tasks. The first one applies 

the grayscale and the Gaussian blur filter and the second one the edge Laplace and the threshold filter.    
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Figure 5.14: Application execution procedure  

 

In order to evaluate the application in our framework, an image of 1024 pixels width and 916 

pixels height is used. The image for our example is divided in 16 pieces of 256 pixels width and 228 

pixels height each. This way, 32 tasks are going to be executed from the clients. The outcome is 

shown in the figure 5.15 below. 

 

 
         

Figure 5.15: Image before and after applying filtering  
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The figure 5.16 shows the upload, download execution and task scheduler time for each of the 

created tasks. The first 16 tasks apply the grayscale and Gaussian blur filter and the rest of them the 

edge Laplace and threshold filter. The input for the tasks 17-32 is the output of tasks 1-16. As we can 

see below in these tasks there is an extra overhead related to the task scheduler which is responsible 

for handling the dependence and create the right input when any of the corresponding tasks finish.  

 

 
 

Figure 5.16: Task scheduler, upload download and execution time for every task using 2 devices 

 

The figure 5.17 below shows the average task execution, download and upload time while 

splitting the image into 4, 16, 32, 64 equal pieces. When the image splits into 4 pieces, the average 

task execution time is about 4 seconds. Increasing the number of the pieces leads to less input data 

size for the task, as well as less execution time, about 2 seconds for 64 pieces. In the same way the 

download and the upload time decrease, as we can see below. To conclude, according to this 

application better performance can be achieved by splitting the initial image into more pieces. 

 

 
 

Figure 5.17: Upload, download and execution time for different task size using 2 devices 
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Section 6 

 
Conclusions and future work  

 

 
6. 1  Conclusion 

 
Volunteer Computing is a new paradigm of distributed computing where the ordinary 

computer owners volunteer their computing power and storage capability to scientific projects. The 

increasing number of Internet-connected PCs allows Volunteer Computing to provide more 

computing power and storage capacity than what can be achieved with supercomputers, clusters and 

grids.    

This thesis presented a task based programming model based on BOINC infrastructure which 

provides the ability to transform a sequential application to ready to be executed tasks from volunteer 

devices, via the appropriate annotations. BOINC is a composite of several distinct applications, some 

of which have been created by the developers and others that are developed separately by each public 

resource computing project. Creating a BOINC project is a very difficult process because of the level 

of comprehension required for the interactions between its components. Dealing with that, a 

mechanism that creates these components according to each application’s properties had to be 

implemented, that can become a very useful tool for the developers. Finally in order to support task 

dependencies that BOINC does not, structural changes on the infrastructure needed.  

In conclusion, mCluster provides solutions to the drawbacks of regular BOINC. Moreover it 

helps application developers by providing an easy–to-use application programming interface. 

Nevertheless the most important contribution of mCluster is that improves BOINC functionalities by 

allowing applications with dependencies to run under it.    

 

6.2  Future work 
 

Currently, client and server scheduling are not well integrated. The server sends jobs to clients 

without having important information related to the services that they can provide. Since the server 

has no information about work queued or in progress on the client, it can send jobs that will cause 

deadlines to be missed. Furthermore, information related to network connection (location, type) are 

also required , as well as by having client record statistics about periods when the host is powered off 

or not connected, would increase the total reliability and performance of the system.  
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