

1

Neuroscientific fidelity metrics for

interactive computer graphics

scenes

Mavromichelaki Evangelia

Committee

Katerina Mania (Supervisor)

Michail Lagoudakis

Antonios Deligiannakis

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in

Electrical and Computer Engineering.

School of Electrical and Computer Engineering

Laboratory of Distributed Multimedia Information Systems and Applications – TUC/MUSIC

CHANIA 2016

2

Abstract

This work presents a 3D interactive gaming paradigm called, Cyberball3D+, for the

secluded space of an fMRI scanner. The Cyberball3D+ game is a virtual ball-toss game,

where the participant is either excluded or not from ball tossing played by three virtual

players and the subject in the scanner. It has been used in simple sketch mode by

neuroscientists for research on ostracism, social exclusion or rejection as well as

discrimination and prejudice.

The game proposed was designed to render an interactive Virtual Environment (VE)

on an fMRI display, enabling the conduct of formal neuroscientific experiments and

investigating the effects of social exclusion, empathy and different levels of

anthropomorphism on human brain activity. Although this work focused on the technical

implementation of the system, the goal was to use this system to explore whether the pain

felt by someone when socially excluded is the same when observing other people get

socially excluded. Moreover, for the first time, we proposed a validated neuroscientific

measure of character believability and emotional engagement.

The system was developed in close collaboration between the Technical University

of Crete, where the technical implementation took place and the Brighton and Sussex

Medical School, where the initial fMRI experiments were conducted using the system

proposed.

Ten healthy adult volunteers (8 female, 2 male) underwent fMRI at Brighton and

Sussex Medical School. In a block design they participated in several rounds of the

Cyberball3D+ task, which included from combinations of low and high anthropomorphism,

inclusion of all avatars or exclusion of self and exclusion of other, simulating social exclusion

or empathy for social exclusion. Each round was 75 seconds long. Two buttons from a 4-

button interface were used to throw the ball left or right. User interactions were

synchronized to the fMRI scanner by using trigger information. A frequency modulated

audio signal was generated at prescribed times within the experimental phase. The audio

signal was fed into a biometric recorder, which also recorded heartbeat, scanning

synchronization etc. A log was generated marking the exact time the sync pulses were sent

to the biometric recorder as well as logs for user interactions. Neuroscientists used a

dedicated user interface to select the level of anthropomorphism of all avatars, the gender

of each avatar and the fairness of each round.

3

The results demonstrated that participating in a high anthropomorphism

environment rather than a low anthropomorphism environment activated both frontal

cortex and superior temporal gyrus. This suggests that compared to more human like

avatars, playing the non-anthropomorphic avatars is less subjectively rewarding and

potentially anxiogenic. In addition, the results indicated that when studying complex

emotional responses, a high level of anthropomorphism of synthetic characters engages

neuroscientific patterns of brain activation similar to real-world circumstances.

A broader aim of this work was to assess whether such powerful social-psychological

studies could be usefully carried out within VEs advancing cognitive neuroscience and

computer graphics as well as serious gaming research.

4

Declaration

The work in this thesis is original and no portion of the work referred to here has been

submitted in support of an application for another degree or qualification of this or any

other university or institution of learning.

Signed: Date:

Mavromichelaki Evangelia

5

Acknowledgements

Σε αυτή την ενότητα θα χρησιμοποιήσω την ελληνική γλώσσα σε αντίθεση με το

υπόλοιπο κείμενο για να μην αλλάξω το μοτίβο των προκάτοχών μου.. :-P

Αρχικά οφείλω ένα μεγάλο ευχαριστώ στην επιβλέπουσα καθηγήτριά μου την κ.

Κατερίνα Μανιά για την ευκαιρία που μου έδωσε να ασχοληθώ με ένα τόσο ενδιαφέρον και

πρωτότυπο θέμα, για την συνεχή καθοδήγηση, επίβλεψη και την άψογη συνεργασία. Η

εργασία αυτή μου έδωσε τη δυνατότητα να ασχοληθώ με ένα θέμα που με προβληματίζει

ιδιαίτερα και το συναντάω καθημερινά στη ζωή μου. Σαν ευαίσθητος άνθρωπος βιώνω

έντονα την απόρριψη του συναθρώπου μου αλλά και του ίδιου μου του εαυτού μου από

διάφορες κοινωνικές ομάδες. Όλοι οι άνθρωποι δυστυχώς έχουν βιώσει στη ζωή τους τον

κοινωνικό αποκλεισμό από οποιαδήποτε κοινωνική ομάδα. Όνειρο μου σαν

προγραμματίστρια των Η/Υ είναι να ασχολούμε με την ανάπτυξη προτζεκτ που αφορούν

τον άνθρωπο γενικά και ειδικά στην βελτίωση της σωματικής και ψυχικής του υγείας και

είναι μεγάλη μου χαρά που αυτή η εργασία μου έδωσε αυτήν την δυνατότητα.

Επίσης ένα μεγάλο ευχαριστώ χρωστάω στον καθηγητή των προπτυχιακών μου

σπουδών τον κ. Νικόλαο Παπαδάκη για την σύσταση του στην κ. Μανιά και την ενημέρωση

του ότι υπάρχει μια θέση στο μεταπτυχιακό πρόγραμμα με την δυνατότητα χορήγησης

υποτροφίας.

Θα ήθελα επίσης να ευχαριστήσω και τους συνεργάτες μας στην Αγγλία, τον Prof.

Hugo Critchley, τον Dr. Neil Harrison και, την Dr. Jessica Eccles για την πολύτιμη βοήθειά

τους και την διεξαγωγή των πειραμάτων. Αν και έχω ένα μικρό παράπονο ότι δεν μας

έδωσαν αρκετά αποτελέσματα.

Επιπλέον, θέλω να ευχαριστήσω τους κυρίους Λαγουδάκη και Δεληγιαννάκη για το

χρόνο που θα αφιερώσουν στην ανάγνωση αυτής της εργασίας (κάθε σχόλιο και διόρθωση

είναι καλοδεχούμενη). Επίσης δεν μπορώ να μην ευχαριστήσω τον συνάδελφο και φίλο

Κουλιέρη Γιώργο για την βοήθεια του όποτε την χρειάστηκα, τις συμβουλές του και την

συμπαράστασή του καθώς και για τις ατέλειωτες ώρες που περάσαμε μαζί στα γραφεία του

MUSIC. Εκτός από τον Γιώργο, ευχαριστώ και όλα τα παιδιά του εργαστηρίου του MUSIC και

ιδιαίτερα τους Γιώργο, Μάριο και Ανδρέα που ήταν στο διπλανό γραφείο και γελάγαμε και

φιλοσοφούσαμε στα διαλείμματά μας καθώς και τη συμπαράσταση που μου έδειχναν τα

πρωινά που ερχόντουσαν στο γραφείο και εγώ βρισκόμουν ήδη εκεί από το προηγούμενο

βράδυ σχεδιάζοντας το παιχνίδι.

6

Ταυτόχρονα ευχαριστώ θερμά όλους τους φίλους μου που ήταν δίπλα μου καθόλη την

διάρκεια των μεταπτυχιακών σπουδών μου και μου έδιναν δύναμη κάθε φορά που

αγχωνόμουν και απελπιζόμουν ότι κάτι δε θα πάει καλά. Επίσης, ευχαριστώ όλα τα παιδιά

που συμμετείχαν στον 2ο γύρο των πειραμάτων, Γιώργος, Γιώργος, Μάριος, Γρηγόρης,

Νίκος, Βαγγέλης, Ελένη, Μπάμπης, Κώστας, Άννα, Χρυσή και Χρυσόστομος, χωρίς αυτούς

δε θα μπορούσα να είχα βγάλει τα επιπλέον αποτελέσματα που χρειαζόμουν.

Για το τέλος κράτησα τους γονείς μου, Θανάση και Μαρία, που μου έδωσαν τα εφόδια

και οικονομικά και ψυχικά να παλεύω και να μην το βάζω κάτω στις δύσκολες στιγμές.

Παρά τις οικονομικές δυσκολίες και χωρίς φροντιστήρια κατάφερα να περάσω στη σχολή

της 1ης μου επιλογής <<Τμήμα Επιστήμη Υπολογιστών Ηρακλείου>> (ήθελα να ζήσω

φοιτητική ζωή μακριά από τα Χανιά γι’αυτό και δήλωσα ως 2η επιλογή το Πολυτεχνείο

παρότι πέρναγα) και να συνεχίσω μετά τις μεταπτυχιακές μου σπουδές στο Πολυτεχνείο

Κρήτης. Οι γονείς μου έδωσαν από το υστέρημα τους για να καταφέρω εγώ σήμερα να

υπάρχω ως επιστήμονας, όσο μπορώ δηλαδή να λέγομαι, και να παραδίδω την

μεταπτυχιακή μου εργασία και για αυτό τους την αφιερώνω και τους ευχαριστώ μέσα από

την καρδιά μου!! Αφιερωμένο στους ΓΟΝΕΙΣ μου λοιπόν….

7

Publications

 Mavromihelaki, E., Eccles, J., Harrison, N., Critchley, H., & Mania, K. (2014,

July). Cyberball3D+ for fMRI: implementing neuroscientific gaming. In ACM

SIGGRAPH 2014 Posters (p. 29). ACM.

 Mavromihelaki, E., Eccles, J., Harrison, N., Grice-Jackson, T., Ward, J.,

Critchley, H., & Mania, K. (2014, September). Cyberball3D+: A 3D Serious

Game for fMRI Investigating Social Exclusion and Empathy. In Games and

Virtual Worlds for Serious Applications (VS-GAMES), 2014 6th International

Conference on (pp. 1-8). IEEE.

8

Table of Contents

Abstract ... 2

Declaration .. 4

Acknowledgements.. 5

Publications ... 7

List of Figures ... 11

List of Tables .. 14

1 Chapter 1 – Introduction ... 15

1.1 Contributions .. 18

1.2 Thesis Outline ... 20

2 Chapter 2 – Technical Background ... 21

2.1 Humanoid Avatars in VEs.. 22

2.1.1 Scale of Anthropomorphism and Uncanny Valley.. 23

2.1.2 Animations and Facial Expressions .. 26

2.1.3 Method for Rendering Real - Time Animated Crowds in VEs ... 27

2.2 Modeling and Animating 3D Avatars for VE and Games ... 27

2.2.1 Methods for Modeling a 3D Avatar .. 28

2.2.2 Methods for Animating a 3D Avatar .. 31

2.3 Using VEs and Games for Neuroscientific Research... 33

2.4 The Examination of Social Exclusion and Empathy .. 36

2.4.1 The Investigation of the Social Exclusion on Human's Life .. 37

2.4.2 The Investigation of the Empathy Feeling on the Human's Relationships 39

2.4.3 The Reinforcement Learning Method .. 41

2.4.4 The Variants of the Cyberball Game for the Investigation of the Social Exclusion 44

2.5 Summary .. 47

3 Chapter 3 – Software Architecture and Development Framework 48

3.1 Virtual Reality Technology and Game Engines .. 48

3.1.1 Unity 3D.. 48

3.1.2 Torque 3D ... 49

3.1.3 Unreal Engine 3 – Unreal Development Kit (UDK) ... 49

3.2 Tools of Unreal Development Kit (UDK) .. 50

3.2.1 Unreal Editor .. 50

3.2.2 Material Editor ... 53

3.2.3 Unreal Kismet ... 54

3.2.4 Unreal Matinee .. 55

9

3.2.5 Sound Engine .. 56

3.2.6 Configuration files .. 57

3.2.7 Input Manager.. 58

3.2.8 DLL Files .. 59

3.2.9 Lighting and Rendering Engine ... 60

3.2.10 Unreal Lightmass.. 61

3.3 UnrealScript .. 62

3.3.1 The Unreal Virtual Machine ... 63

3.3.2 Object Hierarchy .. 64

3.3.3 Timers ... 65

3.3.4 States .. 66

3.3.5 Interfaces ... 67

3.3.6 Delegates .. 67

3.3.7 Unreal Script Compiler ... 67

3.3.8 Unrealscript Programming Strategy ... 67

3.4 Flash Applications as User Interfaces .. 68

3.4.1 Authoring Environment .. 69

3.4.2 ActionScript 2.0 .. 70

3.4.3 Connection between User Interface and Application .. 71

3.5 Summary .. 72

4 Chapter 4 – Implementation ... 73

4.1 Scenarios .. 73

4.1.1 Five Basic Scenes .. 74

4.1.2 Scenarios Based on Probabilities ... 77

4.1.3 Reinforcement Learning in Cyberball3D+ .. 78

4.2 Creating the 3D Virtual Scenes .. 81

4.2.1 Creating Visual Content.. 82

4.2.2 Setting up the Scene in UDK ... 97

4.3 Unrealscript Classes .. 102

4.4 Handling User Input .. 104

4.5 Logging of Player’s Actions ... 106

4.6 Time Limits Control ... 110

4.7 Time Synchronization with fMRI Scanner .. 111

4.8 Summary .. 112

5 Chapter 5 – UI Implementation .. 113

5.1 Application Menus as Flash UIs .. 114

10

5.1.1 Initial Menu .. 114

5.1.2 Return Menu .. 117

5.1.3 Score Menu .. 117

5.2 DLL Files for saving and loading UIs Parameters ... 118

5.3 Creating UIs using both of Unrealscript and Actionscript .. 122

5.4 Summary .. 126

6 Chapter 6 – Experiments.. 127

6.1 Materials .. 127

6.1.1 Participants .. 127

6.1.2 Apparatus ... 127

6.1.3 Visual Content .. 128

6.2 Experimental Procedure ... 129

6.2.1 Five Basic Scenes .. 129

6.2.2 Five Basic Scenes and Reinforcement Learning ... 130

6.3 Experimental Setup... 132

6.3.1 Five Basic Scenes .. 132

6.3.2 Five Basic Scenes and Reinforcement Learning ... 134

6.4 Data Analysis .. 135

6.4.1 Five Basic Scenes .. 135

6.4.2 Five Basic Scenes and Reinforcement Learning ... 136

6.5 Results .. 137

6.5.1 Five Basic Scenes .. 137

6.5.2 Five Basic Scenes and Reinforcement Learning ... 142

7 Chapter 7 – Conclusions and Future Work .. 149

7.1 Main contributions ... 150

7.2 Implications for Future Work .. 151

8 References – Bibliography ... 152

11

List of Figures

Figure 1: Immersive virtual environment technology as a tool for social psychology. The

source of the image is from the Hank Virtual Environments Lab. .. 21

Figure 2: The relation between human likeness and perceived familiarity based on the

hypothesis of Mori (Mori 1970). ... 25

Figure 3: Screenshots from three different levels of anthropomorphism. The source of the

first image is from a virtual-storytelling experiment. ... 26

Figure 4: Examples of facial expressions retargeted from Motion Capture onto a morphable

3D face model (Curio et al. 2008). ... 27

Figure 5: The use of the creation, extrusion and cutting operations for the modeling of a 3D

object (Igarashi et al. 1999). .. 30

Figure 6: The use of the Fastmocap technology with markerless 3D motion capture with

Microsoft kinect sensor for the creation of the animations of a 3D avatar. 33

Figure 7: The original version of the cyberball game (left). The version of the cyberball game

of this work in three - dimensional form (right). ... 47

Figure 8: Screenshot from the Unreal Editor. ... 51

Figure 9: A paradigm of Unreal AnimSet Editor depicting a 3d human. 52

Figure 10: A paradigm of SkeletalMeshActor, depicting the properties of a 3D human

instance. .. 52

Figure 11: Screenshot from the Material Editor depicting the overall material that was used

for a 3d human. ... 54

Figure 12: Unreal Script events are generated for the requirements of the game. 55

Figure 13: An example shows the creation of a ball animation. ... 56

Figure 14: Depicts a SoundCue. ... 57

Figure 15: The class hierarchy for the three most important classes that control the

application flow. .. 65

Figure 16: The Flash authoring environment is presented with a completed Flash User

Interface. ... 69

Figure 17: The actions Open GFx Movie and Close GFx Movie. .. 72

Figure 18: A 3d representation from the process of the low level character modeling. 84

Figure 19: A 3d representation from the process of the modeling of the head of the low level

character.. 84

Figure 20: A 3d representation from the process of the modeling of the hand of the low level

character.. 85

Figure 21: The left image represents the low level character without UVW modifing, while

the right image shows a snapshot during the application of the Unwrap UVW modifier to the

sub-object selections of the character. ... 85

Figure 22: The left image represents the result of the UVW modifier. The right image shows

the 3d object that finaly were used for the head of the low level character. 86

Figure 23: The screenshot represents the final 3D model of the low level 3D character. 86

Figure 24: The representation of the applying of the Skin Modifier and the capsule-shaped

envelope that was created around of a thigh bone. ... 87

Figure 25: The screenshots represent a paradigm of the modeling of an animation. 88

12

Figure 26: The screenshots depict the loading of a .bip file.. 89

Figure 27: The screenshots depict the exporting of a low level character as well as an unique

animation. ... 89

Figure 28: 3D representation of the character of the “low level” anthropomorphism. 90

Figure 29: Screenshots that represent the process of generate a 3d model using the 3D

model’s repositories. ... 90

Figure 30: These images decpict two paradigms of loading two different animations using

the .bip files. .. 91

Figure 31: The six images above represent the 3d characters of the medium level of

anthropomorphism that were used in the game. ... 92

Figure 32: Screenshots that represent the process of generate a 3d model using the 3D

model’s repositories. ... 93

Figure 33: These images decpict two paradigms of loading two different animations using

the .bip files. .. 93

Figure 34: The six images above represent the 3d characters of the high level of

anthropomorphism that were used in the game. ... 94

Figure 35: 3d representation of the modeling of the ball inside the 3ds Max. 95

Figure 36: The images depict all Matinee events that created for each animation of the ball.

 ... 95

Figure 37: An example of creating a ball animation using the Unreal Matinee Editor. 96

Figure 38: 3d representation of a ball animation inside the scene of the Unreal Editor. 97

Figure 39: The Content Browser. ... 98

Figure 40: The importing option inside the Content Browser. ... 98

Figure 41: The importing option of a fbx animation inside the AnimSet Editor. 99

Figure 42: Material Editor depicting the overall material that was used for a 3d model. 99

Figure 43: One Sound node inside the Sound Cue Editor. .. 100

Figure 44: The final scene of the game inside the Unreal Editor. ... 100

Figure 45: Cyberball3D+ game of low level of anthropomorphism. 101

Figure 46: Cyberball3D+ game of medium level of anthropomorphism............................... 101

Figure 47: Cyberball3D+ game of high level of anthropomorphism. 102

Figure 48: A Flash UI menu being displayed on top of the currently rendered virtual scene.

 ... 113

Figure 49: The selection of the level of anthropomorphism of all avatars. 115

Figure 50: The selection of the gender of the player 1. .. 115

Figure 51: Two examples show the selection of the scenario from the five basic scenarios

version of the game. .. 115

Figure 52: The filling of the probabilities in the second version of the game. 116

Figure 53: the selection of the third version of the game. .. 116

Figure 54: The left screenshot depicts the filling of two parameters of the game, while the

right screenshot displays an error message. ... 117

Figure 55: The return menu that was depicted on the screen at the end of the game. 117

Figure 56: A screenshot shows the scores of the players during the game. 118

Figure 57: The loading of the parameters of the game by selecting the name of a file. 121

Figure 58: The saving of the parameters of the game by pressing the ‘save’ button. 121

Figure 59: Photo of the Current Designs 932 response pad used in the experiments. 128

13

Figure 60: The experimental setup.. 132

Figure 61: The brain activity in a peak, cluster and set level based on contrast between high

and low level of anthropomorphism. .. 140

Figure 62: The brain activity in a peak, cluster and set level based on contrast between

exclusion of other and inclusion of self. .. 141

Figure 63: The screenshots show the percentages of throwing tosses from players 1 and 2 to

the other players, respectively. ... 142

Figure 64: The percentages of throwing tosses of each participant of the Group1 to players 1

and 2. ... 143

Figure 65: The percentages of receiving/throwing tosses From/To the virtual players

To/From the Participants of the Group1 as well as the scores of each participant. 144

Figure 66: The percentages of receiving/throwing tosses From/To the virtual players

To/From the Participants of the Group2 as well as the scores of each participant. 145

Figure 67: The percentages of throwing tosses of each participant of the Group2 to players 1

and 2. ... 146

Figure68: The average scores of all participants of the group1 on intervals of time. 147

Figure 69: The average scores of all participants of the group2 in relation to time. 148

Figure 70: Screenshots depict the scores of two virtual players over intervals of time. 148

14

List of Tables

TABLE I: The states of the environment in the Reinforcement learning version of the game.79

TABLE II: Activations in the brain based on the contrast between the high and low

anthropomorphism level. .. 138

TABLE III: Activations in the brain based on the contrast between the exclusion of other and

inclusion of self. ... 139

15

1 Chapter 1 – Introduction

Immersive Virtual Environments are virtual environments that present rich layers of

synthesized sensory cues to the user so that the user feels enveloped by the mediated

environment and is willing to believe that the environment is real (Witmer and Singer 1998).

The immersive virtual environments (IVEs) were first introduced as a research tool in the late

1980s by psychologists conducting studies on perception and spatial cognition. Particularly,

social psychologists explored the incorporation of virtual humans within IVEs to examine the

possibility of using virtual reality technology as a research tool to answer social scientific

questions (Loomis, Blascovich and Beall 1999). Immersive Virtual Environments allow the

researcher to create experimental situations of ‘mundane’ realism compared to the rigidly

controlled laboratory settings, eliciting genuine participant reactions to the stimuli.

3D characters are used in IVEs but it is still undetermined how design, stylization and

behavioral factors interweave to make a character believable. When using synthetic

characters in neuroscientific experiments, the aim is that people emotionally respond to

them in a similar manner to humans. Although research has shown that users show

empathy for 3D characters, it is challenging to identify at which level of anthropomorphism

such emotional experiences occur. Also, it has been shown that people tend to respond

realistically to events within synthetic environments and even to virtual humans in spite of

their relatively low fidelity compared to reality (Mania et al. 2010). For example, VEs have

been used in studies of social anxiety and behavioural problems and individuals with

paranoid tendencies have been shown to experience paranoid thoughts in the company of

virtual characters (Freeman et al. 2008). These provide specific examples of ‘presence’ – the

tendency of participants to respond to virtual events and situations as if they were real.

One recent study suggests that people interact with virtual characters in a realistic

and emotionally engaged way (Slater et al. 2006). This study reported a scenario where

experimental participants took part in a virtual version of the Milgram experiment, in which

people were asked to administer increasingly severe punishments to virtual characters

performing a memory task (Milgram 1963). Participants showed autonomic responses which

were consistent with states of intense emotional arousal, as would be expected if the

experiment had used real participants. Thus, it is evident that people are able to

emotionally engage with synthetic spaces and virtual characters as if they were real.

Previous research evaluating whether virtual characters fulfill their role employs ratings of

pleasantness through self-report after the viewing experience has occurred (McDonnell,

16

Breidt and Bülthoff 2012). It would be valuable to understand the cognitive processes

involved while interacting with 3D characters in a gaming scenario. 3D characters could be

employed to simulate experimental scenarios as part of neuroscientific protocols in the

fMRI.

An economic game combined with Milgram’s original experimental scenario has

been implemented which, could be interactively played in an fMRI scanner (Rivera et al.

2010). A lighting system has been designed to render an interactive VE on an fMRI display,

enabling the conduct of formal neuroscientific experiments and investigating the effects of

visual fidelity as well as varied lighting configurations of an indoors/outdoors space on

feelings of presence, ‘reality’ and comfort (Christodoulou et al. 2012). A 3D virtual system

for fMRI has been designed investigating the influence of two prominent VR parameters, e.g.

3D-motion and interactivity, while brain activity is measured for a mental rotation task

(Sjölie et al 2010). The subjects perform a variation of the mental rotation task in a simple

VE and the brain activity was recorded during three conditions of varied 3D-motion and

interactivity. Also, an interactive digital game based on the Re-Mission video game has been

designed for cancer patients in the fMRI in order to determine whether mesolimbic neural

circuits associated with incentive motivation are activated, and if so, whether such effects

stem from the participatory aspects of interactive gameplay, or from the complex

sensory/perceptual engagement generated by its dynamic event-stream (Cole, Yoo and

Knutson 2012).

However, acquiring user input and the reacting to it in real-time while the user

immersed in the constrained environment of an fMRI scanner is challenging, even more if 3D

characters are included as part of the neuroscientific protocol. fMRI experiments usually

employ simple display material, for example using photographs, video clips or simple

computerized stimuli (S. Lee, G.J. Kim and J. Lee 2004). It is argued that the precise

presentation and control of dynamic perceptual stimuli (visual, auditory, olfactory,

gustatory, ambulatory, and haptic conditions) in the VE allows neuropsychologists the

opportunity to develop statistically and clinically significant tasks within a virtual world

(Parsons 2011). Using VEs and 3D characters in fMRI has the advantage that it is possible to

involve participants in interactive animated environments which more realistically reflect

social and emotional situations.

This work presents an interactive 3D gaming framework for fMRI experiments

exploring whether artificial characters of varied anthropomorphism recruit brain activation

associated with empathy and social pain (Meyer et al. 2012). Such input is non-obtrusive

17

derived at the same time as the experience occurs. The 3D interactive gaming paradigm

presented here, named Cyberball3D+, is based on the original Cyberball game, however, it is

implemented for the secluded space of an fMRI scanner. The Cyberball game is a virtual ball-

toss game where participant is either excluded or not from ball tossing played by three

virtual players and the subject. It has been used in simple sketch mode by neuroscientists for

research on ostracism, social exclusion or rejection as well as discrimination and prejudice.

The empathy feeling is a crucial component of human emotional experience and

social interaction. The ability to share the affective states of our closest ones and complete

strangers allows us to predict and understand their feelings, motivations, and actions.

Empathy allows humans to understand and share one another’s emotional experiences and

it is important for successful social interactions (Eisenberg and Miller 1987). Empathy refers

to experiencing an affective response that is more consistent with another person’s situation

than one’s own situation which suggests that vicarious emotions are pivotal to empathy

(Hoffman 2001).

During the first Cyberball experiments, participants were recruited to log on to an

online experiment where they played a virtual ball-tossing game with two other participants

who had logged on from somewhere else in the world (Williams, Cheung and Choi 2000).

Before the experiment, the participants were informed that Cyberball was a means to an

end, and was, by itself, unimportant for the experiment. It was portrayed as merely a task

that helped participants exercise their mental visualization skills, which they would

purportedly use in the subsequent experimental task. After reading the instructions, they

would view a game where the players were represented on the screen by animated icons.

They would then play the Cyberball for about 5 min. The results showed that if participants

were over-included (getting the ball for half the throws) or included (getting the ball for one

third of the throws), they felt better than if they received the ball for only one sixth of the

throws. Still, getting the ball for a sixth of the time was significantly better than not getting it

at all. Fully ostracized participants answered a post-experimental questionnaire indicating

lower levels of belonging, self-esteem, control, and meaningful existence (Williams and

Jarvis 2006).

Brain imaging studies demonstrate that physical pain sensations are processed

across a network of connected brain regions, which together are proposed to form the ‘pain

matrix’. Most of the pain matrix is also activated if we observe empathically someone else in

physical pain (Eisenberger 2012). Interestingly, experiencing the ‘pain of social exclusion’

also engages these same regions during brain imaging studies of the original Cyberball task,

18

consistent with the notion of social pain. There is early work suggesting that a similar brain

activation pattern is present when one sees and empathizes with someone else being

ostracized (Eisenberger 2012). The motivation behind our novel experiment was to assess

how rendering this game in a computer generated VE displayed in fMRI would alter the

experience of the game. Furthermore, the game was designed with both low and high

anthropomorphism avatars in order to investigate the relationship between avatar fidelity

and character believability.

1.1 Contributions

The general aim of this work was to create a 3D interactive gaming paradigm for the

secluded space of an fMRI scanner. The goal was to experimentally explore changes in

regional brain activity associated with the pain of social exclusion as well as with feelings

such as the empathy felt when people observe other people get socially excluded and

whether there are differences in relation to empathy for friends and strangers. The term

social exclusion involves the lack of resources, rights, goods and services, and the inability to

participate in the normal relationships and activities, available to the majority of people in a

society. Many people face social exclusion in their daily life as well as other people

empathizing with excluded people (Levitas et al 2007).

In addition, this research investigated whether the level of anthropomorphism of

the avatars may affect game playing as well as fMRI data acquired at the same time the

game playing occurs. The goal was to discover the neural circuitry that supports such

feelings as well as, for the first time, devised behavioral fidelity metrics of character

believability and emotional engagement based on neural activity.

The Cyberball3D+ game presented here involved four players represented by 3D

characters of different levels of anthropomorphism. The main player played the game while

immersed in the fMRI scanner interacting with three 3D virtual characters for which their

player behavior was programmed. The scenarios evaluated were either fair or unfair to the

players simulating social exclusion. The system monitored the main player’s reaction to the

occluded players, e.g. players not receiving the ball in the game, by potentially throwing

more balls to them because of empathy for social exclusion. The neuroscientists defined the

fMRI gaming scenarios using a dedicated user interface in order to select the level of

anthropomorphism applied to all characters, the gender of each character and the fairness

of the game.

19

The contributions of this thesis are:

1. For the first time, the Cyberball game was implemented in three -

dimensional form as well as it included three levels of anthropomorphism.

2. The neuroscientists were able to simulate any situation of the fairness of the

game they wanted by filling in the percentages of the tosses that each

player would throw to each one of the other players.

3. The innovative application designed to render an interactive Virtual

Environment (VE) on an fMRI display, enabling the conduct of formal

neuroscientific experiments and investigating the effects of social exclusion,

empathy and different level of anthropomorphism on human brain activity.

4. For the first time, we got a validated neuroscientific measure of character

believability and emotional engagement at the same time the experience

was taking place.

Moreover, it is not straightforward to provide interactive synthetic stimuli to be

displayed in fMRI displays due to the infrastructural and technical demands. fMRI

experiments of this type usually employ simple display material, for example using

photographs, video clips or simple computerized stimuli which are non-stereoscopic. Using

VEs in fMRI has the advantage that it is possible to involve participants in interactive

animated environments which more realistically reflect social and emotional situations. This

seamless naturalism and interactivity is impossible to achieve with video clips. In addition,

some experiments could be only conducted using synthetic stimuli for ethical reasons.

A broader aim of this work is to assess whether such powerful social-psychological

studies could be usefully carried out within VEs advancing both cognitive neuroscience and

computer graphics research.

20

1.2 Thesis Outline

This thesis is divided into a number of chapters, which will be outlined below.

 Chapter 2 – Technical Background: This chapter analyzes the levels of

anthropomorphism in computer graphics, the effect of the Uncanny Valley and the

responses of participants that were elicited from the body motions and the facial

expressions of the avatars. In addition, describes methods that were used by researchers in

order to model and animate a 3d avatar as well as success real and fast rendering of the 3d

avatar.

Furthermore, this chapter provides background information regarding the virtual

games were used inside the fMRI scanner by neuroscientists in order to investigate social

phenomena such as social exclusion and empathy.

 Chapter 3 – Software Architecture and Development Framework: In this chapter,

the technical requirements of the interactive 3D gaming system are introduced as well as

the architecture of the application developed for the experiments is presented, along with

the inherent architecture of the Unreal Development Kit (UDK) used to develop it.

 Chapter 4 – Implementation: Chapter 4 describes in detail the implementation of

the interactive 3d gaming framework. Specifically, examples and source code samples are

demonstrated, in relation to analyze how the application met the requirements imposed by

the expert psychiatrists in order to incorporate a formal neuroscientific protocol for the fMRI

scanner.

 Chapter 5 – UI Implementation: In this chapter, the implementation of the User

Interfaces that were presented to the users in the fMRI scanner is described. The steps taken

to create the individual UIs as Flash applications and embed them in the complete systems

are presented as well. The challenges concerning the creation of interactive synthetic worlds

and associated UIs as displayed in the fMRI scanner are presented and the solutions to

overcome them are also explained.

 Chapter 6 – Experiments: This chapter is concerned with the experimental methods

employed when the actual experiments were conducted in the fMRI scanner. The

experimental procedures are presented as well as the results of the experiments.

Chapter 7 – Conclusions: In the final chapter, the conclusions of this thesis are

presented as well as hints about future work.

21

2 Chapter 2 – Technical Background

A Virtual Environment (VE) is a computer simulated scene which can be interactively

manipulated by users as shown in Figure 1. Typical scenes used in such environments

generally comprise of geometric and animating 3D models, shades, images and lights which

are converted into final images through the rendering process. The rendering process must

be completed in real time in order to provide scenes which are updated reacting to user

interaction. An Immersive Virtual Environment (IVE) perpetually surrounds the user within

the VE. IVEs are virtual environments that present rich layers of synthesized sensory cues to

the user so that the user feels enveloped by the mediated environment and is willing to

believe that the environment is real (Witmer and Singer 1998).

The immersive virtual environments (IVEs) were first introduced as a research tool in

the late 1980s by psychologists conducting studies on perception and spatial cognition.

Social psychologists explored the incorporation of virtual humans within IVEs to examine the

possibility of using virtual reality technology as a research tool to answer social scientific

questions (Loomis, Blascovich and Beall 1999). The Immersive Virtual Environments permit

the researcher to design experimental situations with more ordinary realism compared to

the rigidly controlled laboratory settings, provoking more genuine participant reactions to

the stimuli (Sun, Fox, and Bailenson 2012).

Figure 1: Immersive virtual environment technology as a tool for social psychology. The
source of the image is from the Hank Virtual Environments Lab.

 The first section of this chapter analyzes the humanoid avatars in VEs. The second

section presents the technology of the 3d avatars, while the third section proceeds by

22

describing previous researches that they used 3d games to explore neuroscientific

phenomena. Finally, the fourth section presents experiments that were conducted for the

investigation of the social exclusion and empathy.

2.1 Humanoid Avatars in VEs

A humanoid object is something that has a human appearance. Particularly, this

term can refer to anything with uniquely human characteristics and/or adaptations, such as

binocular vision (having two eyes),

possessing opposable appendage (thumbs), or biomechanic bipedalism (the ability to walk in

an upright position).

On the other side an avatar can be considered any form of representation that

marks a user’s entity. For example a name, a voice, a photograph or a top cap that is utilized

as a part of a game, all these can be served as a user's avatar despite the fact that they may

not look or act like the user (Bailenson et al. 2008). Diverse qualities such as the level of

anthropomorphism (i.e., how the symbol looks like a human user) and behavioral realism

(i.e., how the symbol acts like a human user) impacts how someone else sees and reacts to

an avatar (Blascovich et al 2002).

Over time, avatars have become more complex creations, rendered in three

dimensional forms with a vast range of animated movements that help in the

expression of the avatar’s personality and supplement various social interactions. The

options for individual customization of avatars have increased significantly as well, allowing

users to change a number of physical features including face shape, hair style, eye color,

height, body

shape, clothing, and even facial expressions. Using these diverse features, users are free to

design not just a graphical marker of themselves, but virtual humans with unique

appearances, distinctive personalities and individualized behavioral patterns.

3D human avatars (characters) are used in the film and game industry but it still

remains undetermined how design, stylization and behavioral factors interweave to make a

character believable. When using synthetic characters in experiments simulating realistic

scenarios, the aim is that people emotionally respond to them in a similar manner to

humans. It has been shown that there is no significant difference in relation to skin

conductance response (SCR) scores when comparing psychological activity for certain events

between scenarios involving either real actors or animated characters (Ekanayake et al.

23

2013). Although research has shown that users show empathy for 3D characters, it is

challenging to identify at which level of anthropomorphism such emotional experiences

occur.

2.1.1 Scale of Anthropomorphism and Uncanny Valley

Anthropomorphism can be characterized as far as either behavior or appearance. In

behavioral terms, anthropomorphism suggests the task of human qualities such as mental

capacities and behavior to objects that are not human (DiSalvo & Gemperle 2003), while in

appearance terms, anthropomorphism defines an object that has human appearance or

visual characteristics (DiSalvo & Gemperle 2003; Nowak 2003; Nowak & Rauh 2005;

Shapiro 1997).

More generally, anthropomorphism refers to the attribution of a human form and

behavior to non-human entities such as robots, animals, etc. However, uncanny valley

effects – ie dips in user impressions – can arise: behavioural fidelity expectations increase

alongside increases in visual fidelity and vice versa. Moreover, the influence of

anthropomorphism and perceived agency on presence, copresence, and social presence in a

Virtual Environment (VE) (Nowak and Biocca 2003) has been investigated. . During the

experimental procedure they used three levels of anthropomorphism: high

anthropomorphism, low anthropomorphism and no image. The results have depicted that

the participants interacting with the less-anthropomorphic characters reported a higher

level of presence and social presence than those interacting with either no image at all or

with a highly anthropomorphic image. This indicates that high level anthropomorphic images

set up higher expectations that lead to reduced presence when these expectations were not

met.

 The androids that were created by Hiroshi Ishiguro, for a short period, were

indistinguishable from human beings (Ishiguro H. 2005). These highly anthropomorphic

androids struggle with so-called ‘uncanny valley’, a theory that defines that as a robot is

made more human like in its appearance and movements, the emotional responses from a

human being to the robot becomes increasingly positive and empathic, until a point is

reached beyond which the response quickly becomes that of intense repulsion. However, as

the appearance and movements continue to become less distinguishable from those of a

human being, the emotional responses become positive once more and approaches human -

to - human empathy levels.

24

An interesting behavioral measurement for anthropomorphism has been presented

by (Minato et al. 2005) analyzing the differences between the reactions of the participants

to a human and an android. Also, another experiment conducted by (Gong 2007) where

participants manipulated 12 computer agents that are represented by four levels of

anthropomorphism: low, medium, high and real human images. The results have shown that

as the agent became more anthropomorphic, it received more social responses from the

users.

The Uncanny Valley (UV) theory as described above indicates that near-

photorealistic virtual humans often appear unintentionally eerie or creepy. This UV theory

was first hypothesized by a robotics professor in the 1970s. He observed that as a robots

come to look more human like, they seem more familiar, until a point is reached at which

subtle deviations from human norms cause them to look creepy (Mori 1970). Particularly, he

hypothesized that the familiarity increases with human likeness until an uncanny valley is

reached caused by sensitivity to perceived imperfections in near-humanlike forms as shown

in Figure 2. A study by (MacDorman 2006) indicated that the perceived human likeness of a

robot is not the only factor determining the perceived familiarity, strangeness, or eeriness of

the robot. In a study of (Seyama and Nagayama 2007) the uncanny valley was investigated

by measuring observers’ impressions of facial images whose degree of realism was

manipulated by morphing between artificial and real human faces. The results suggested

that to have an almost perfectly realistic human appearance is a necessary but not a

sufficient condition for the uncanny valley. Additionally, their findings showed that the

uncanny valley emerges only when there is an abnormal feature. A series of psychophysical

experiments were performed by (McDonnell, Breidt and Bülthoff 2012) aimed to

investigate if using realistic rendering does in fact produce a more negative response than

using lower quality or stylized rendering. Particularly, in the experiments a range of 11

different render styles are applied to identical geometry and motion pairs. The outcomes

demonstrated that negative reactions occurred mainly for characters that used human

texture maps, but that were not rendered with realistic eye and skin shaders. Cartoon

characters were considered highly appealing, and were rated as more pleasant than

characters with human appearance, when large motion artifacts were presented. They also

were rated as friendlier than realistic styles and in this manner they might were more

suitable for certain virtual interactions.

25

Figure 2: The relation between human likeness and perceived familiarity based on the
hypothesis of Mori (Mori 1970).

In addition, (McDonnell and Breidt 2010) carried out more experiments about

rendering styles in order to investigate if changing the rendering style of a virtual human

alone can change how trustworthy they are perceived to be. The results of the experiments

indicated that participants judged HQ (high quality style) to be lying more often than NPR

(non – photorealistic rendering style) during the task. However, all styles were judged as

equally trustworthy in the qualitative rating, which imply that a subconscious feeling of un-

trustworthiness was felt by participant towards HQ.

In this work, we examined the neural responses of the social exclusion based on the

different levels of anthropomorphism. Three levels of anthropomorphism (low, medium and

high) were employed and in each round of our experimental game the appropriate 3D

characters of the scene were displayed. Our results showed that compared to more human

like avatars, playing the non-anthropomorphic avatars is less subjectively rewarding.

Therefore, when studying complex emotional responses, a high level of anthropomorphism

of synthetic characters is not only required but also able to engage common neuroscientific

patterns of brain activation as in real-world circumstances.

26

 Figure 3: Screenshots from three different levels of anthropomorphism. The source of the
first image is from a virtual-storytelling experiment.

2.1.2 Animations and Facial Expressions

Humans express their emotions in many ways, in particular through face, eye and

body motion. Therefore, the creators of virtual humans strive to convincingly depict

emotional movements using a variety of methods. The human face is capable of producing a

large variety of facial expressions that supply important information for the communication.

Realistic computer animated faces were used by (Griesser et al. 2007) to investigate the

spatiotemporal coactions of facial movements. Single regions (mouth, eyes, and eyebrows)

of a computer animated face performing seven basic facial expressions were selected as well

as combinations of these regions, were animated for each of the seven chosen facial

expressions. In their experiments the participants were asked to recognize these animated

expressions. The results showed that the animation system is good enough to support

recognition of some of the computer animated avatar’s facial expression with high accuracy.

A study of (Curio et al. 2008) presented the first study on high – level – after –

effects in the recognition of dynamic facial expressions (Figure 4). In order to be analyzed

the emotional content of motions portrayed by different characters, (McDonnell et al. 2008)

created real and virtual replicas of an actor exhibiting six basic emotions: sadness,

happiness, surprise, fear, anger and disgust. During the experiments participants were asked

to rate the actions based on a list of 41 more complex emotions. The results showed that the

perception of emotional actions was highly robust and to the most part independent of the

character’s body. In another study of (McDonnell et al. 2009) were found that both form

and motion influence sex perception of virtual characters: for neutral synthetic motions,

form determines perceived sex, whereas natural motion affects the perceived sex of both

androgynous and realistic forms. A second investigation into the influence of body shape

27

and motion on realistic male and female models showed that adding stereotypical indicators

of sex to body shapes influenced sex perception. Exaggerated female body shapes influences

sex judgments more than exaggerated male shapes.

Figure 4: Examples of facial expressions retargeted from Motion Capture onto a
morphable 3D face model (Curio et al. 2008).

2.1.3 Method for Rendering Real - Time Animated Crowds in VEs

It is challenging for the developers to simulate heterogeneous crowds. The assets

required to vary humans, such as textures and accessories, can be expensive to purchase,

time-consuming to create and require extensive memory and computing resources. In the

study of (McDonnell, Larkin, Hernández, Rudomin & O'Sullivan 2009) they addressed these

issues by developing a selective variation method for virtual humans. They investigated

which body parts of virtual characters were most looked at in scenes containing duplicate

characters or clones. Using an eye – tracking device, they recorded fixations on body parts

while participants were asked to indicate whether clones were present or not. The outcomes

indicated that the head and upper torso attract the majority of first fixations in a scene and

were attended to most. This is true regardless of the orientation, presence or absence of

motion, sex, age, size, and clothing style of the character. They also, developed a selective

variation method to exploit this knowledge and perceptually validated their method. The

results showed that selective color variation is as effective at generating the illusion of

variety as full color variation as well as the head accessories, top texture and face texture

variation are all equally effective at creating variety, whereas facial geometry alterations are

less so.

2.2 Modeling and Animating 3D Avatars for VE and Games

Virtual characters in animated movies and games can be very expressive and have

the ability to convey complex emotions. However, it has been suggested that the more

anthropomorphic a humanoid robot or virtual character becomes the more eerie it is

28

perceived to be (Mori 1970). From a neuroscientific point of view some studies suggest that

different neural networks are activated when viewing real or virtual stimuli (Perani et al.

2001). It was founded by (McDonnell et al. 2008) that when realistic human body motion is

used, it is the motion and not the body representation that dominates our perception of

portrayed emotion. Also, she found that there is no difference between the emotion ratings

for high and low resolution virtual models as well as between the emotion ratings for the

zombie and the real human or the other characters.

 An approach for the learning of structured dynamical models based on hierarchical

Gaussian process latent variable models was presented by (Taubert et al. 2012). The latent

spaces of this model encoded postural manifolds and the dependency between the postures

of the interacting characters. Their findings showed that the highly-realistic interactive

movements were almost indistinguishable from natural ones. They also, supported that the

synthesis of stylized interactive movements with high levels of realism is a difficult problem

in computer graphics, especially for the developers that they have to convincingly depict

emotional movements to virtual humans. The principles of the human motion connect many

areas of the research such as the biomechanic, optimal control, machine learning, robotics,

motor neuroscience and psychology. Each of these areas can give a different perspective on

motion, helping the developers to understand how the human moves.

2.2.1 Methods for Modeling a 3D Avatar

 The 3D modeling of the human body has many applications ranging from fashion to

the production of movies and video games. The designing of the human body shape is very

challenging compared to other 3D objects in the world (Aggeliki Tsoli 2014). Although the

human body consists of many parts that move in a rigid way, there are also many ways in

which the human shape deforms non-rigidly; e.g. different muscles are flexed when a person

is standing compared to when the same person is sitting, deformations due to breathing

lead to a constantly changing body shape even when the person remains seated.

Additionally, she found that the distinction of many human attributes ranging from age,

gender to the emotional state of a person depends on the human body shape.

Several graphics approaches for modeling and generating human characters have

taken an inside-out approach and relied on complex anatomically inspired, physically based

models of the human body (Glueck et al. 2012; Magnenat-Thalmann, Zhang and Feng

2009). One of the first endeavors to model full-body skin deformations utilizing surface data

was employed by (Park and Hodgins 2006) using a marker-based capture system with a

29

large number of markers distributed over the body of the subject. The outcomes were

encouraging, yet the methodology experienced drawn out instrumentation of the subject

and couldn't capture deformations of the whole surface of the human body. Many

alternative approaches such as high-resolution 3D scanners, image-based 3D reconstruction

systems, and low-resolution 3D capture systems offer to developers the ability to capture

the whole surface of the body, potentially across time, and generalize easily to capturing

different human shapes.

A way to present an articulated 3D deformable object by using a 3D triangular mesh

was described by (Aggeliki Tsoli 2014). The object that she used was determined mainly by

three factors: pose, intrinsic shape, resolution. Particularly, the resolution referred to the

number of vertices in the 3D mesh representing an articulated 3D object, while the pose

referred to the relative joint rotations in the underlying skeleton or the rotation and

translation of groups of triangles and finally the Intrinsic shape typically referred to the pose-

independent shape, such as shape related to height and weight.

It is worth noting that a polygon is a 3D structure consisting of three or more points

called vertices that are connected in 3D space with lines called edges. The smallest

polygon is simply a triangle serving as the basic unit of measurement for a 3D model.

Several polygons together complete a mesh object that can be deformed and animated. A

target polygon count refers to the target face count of a model.

Another approach for the creation of a 3d human avatar by using Kinect was

followed by (Aitpayev and Gaber 2012). Particularly, their results suggest that it is very easy

using Kinect to create one’s own avatar as well as the whole process takes a few minutes by

doing the following steps. At the beginning a camera scans the whole body; afterwards it

scans the face and makes snapshots of the

head to reconstruct the hairstyle. At the last the user chooses clothes and other accessories

which will be applied to the final model. However, they reported that the hardest task of

avatar creation is the reconstruction of facial geometry. In addition, researchers from the

Computer Graphics Group in Erlangen have presented a system for generating 3D face

avatars using the Kinect. A generic face model is fitted to the depth map obtained by the

Kinect. The resulting 3D face model is finally textured using the captured RGB image. The

proposed algorithm combines the advantages of robust no rigid registration and fitting of a

morphable face model. Their results showed that it is possible to obtain a high quality

reconstruction of the facial geometry and texture along with one-to-one correspondences

with generic face model as illustrated.

30

An interesting finding was presented by (Zhang et al. 2013) that it suggests that

there are mostly two categories, the Sketch-based and the Gesture-based, that are used by

novices to create 3d models. The Sketch-based is a common approach to interactively

interpret the user’s 2D sketches into 3D shapes, while the Gesture-based is a method that

allows the user to construct and manipulate 3D shapes using hand gestures performed in 3D

space, often based on a virtual sculpting metaphor. Particularly, two paradigms where the

Sketch-based method was used are the SKETCH (Zeleznik, Herndon & Hughes 1996) that

supported constructing 3D scenes by sketching geometric primitives and the Teddy (Igarashi

et al. 1999) that let the user to create rotund 3D objects by drawing their 2D silhouettes, as

well as supporting operations like extrusion, cutting, and bending as shown in Figure 5.

Figure 5: The use of the creation, extrusion and cutting operations for the modeling of a 3D
object (Igarashi et al. 1999).

Contrary, two researches where the Gesture-based method was used are the project

of (Nishino, Utsumiya & Korida 1998) in which he used two-handed spatial and pictographic

gestures and the project of (Schkolne, Pruett & Schröder 2001) that is called Surface

Drawing in which he used repeated marking of the hand to construct 3D shapes.

In this work, we used the Sketch-based method because we found that it is the

simplest and easiest method to create and model a 3D avatar. Particularly, for the modeling

of the lowest fidelity 3d avatar two sketches were used that were depicted the front and the

right view of a human silhouette, respectively. These sketches were imported and

positioned on the scene of the 3ds Studio Max so as to form a vertical angle. Using the

Editable Poly Modifier tool of the 3ds Studio Max we started to create small polygons and

connect them to each other based on these two sketches until a human silhouette be

modeled.

31

2.2.2 Methods for Animating a 3D Avatar

 Human realistic facial and body animation remains a challenging goal in computer

graphics and animation research. However, the success of human dynamic realism does not

exclusively depend from computer graphics and animation research, but there is also a

strong dependency on what we can learn from psychophysical and perceptual

experimentation with faces and bodies. For example, unobtrusive varieties in articulation

timing (Krumhuber et al. 2007) and even a slight dampening of element movement

(Theobald et al. 2009) have been demonstrated to firmly impact how declarations and

people are seen. Examination utilizing dynamic facial expressions as a part of software

engineering and brain research is generally centered on facial models with control

parameters in view of the Facial Action Coding System (FACS) (Ekman et al. 2002). FACS

gives definite depictions of 44 facial activities – termed Action Units (AUs) – which endeavor

to incorporate the fundamental set of unique facial developments proficient by a face. This

gives to the scientists a standard for coding, evaluating and imparting results. Given such a

model, experimenters may control these parameters to gauge the perceptual impact of AU

varieties in a controlled way. FACS is additionally utilized widely as a premise for activity

frameworks in feature recreations and films (Sagar 2006; Duncan 2009). Henceforth, it has a

noteworthy part to play in both facial movement and perception research.

 The first Facial Action Coding System (FACS) was introduced by (Cosker, Krumhuber &

Hilton 2010) and is a substantial model to be based on dynamic 3D scans of human faces for

use in graphics and mental exploration. The model comprised of FACS Action Unit (AU)

based parameters and has been freely accepted by FACS specialists. Utilizing this model,

they investigated the perceptual contrasts between linear facial motions – represented by a

linear blend shape approach – and real facial motions that have been synthesized through

the 3D facial model. In their experiments, they also investigated the perceptual profits of

nonlinear movement for different AUs. Their outcomes are insightful for designers of

animation systems both in the entertainment industry and in the scientific research. They

uncovered a critical general advantage to utilize captured nonlinear geometric vertex

movement over linear mix shape motion. However, their findings suggested that not all

motions need to be animated nonlinearly.

 The first parameterized face model was designed by (Parke and Waters 1996) in

1974, with the objective of creating facial movements rapidly. Utilizing photogrammetric

strategies, they gathered 3D information from real faces and created animations by

interpolating between the facial expressions. A muscle-based activity framework was

32

showed by (Sifakis et al. 2005) where he used motion capture data in a non-direct

improvement procedure to gauge facial muscle actuation parameters. A different approach

was conducted by (Blanz and Vetter 1999) building up an algorithm that fitted a blend shape

model onto a single picture, bringing about an estimation of the geometry and surface of the

individual's face. In 2005, Joshi proposed a programmed physically roused division that took

in the controls and parameters straightforwardly from the set of blendshapes (Joshi et al.

2005). Recent movement frameworks determined facial movements in three-dimensional

space by following markers appended to a person's face. A model in 2003 was displayed by

(Breidt et al. 2003) consolidating 3D scans and motion capture data for highly realistic facial

animation. Another model for multimodal complex feelings including motion expressivity

and blended facial expressions was exhibited by (Martin et al. 2006).

 An interesting system for realistic facial animation was presented by (Curio et al

2006) where he decomposed facial motion capture data into semantically meaningful

motion channels based on the Facial Action Coding System. They retargeted a captured

performance onto a morphable 3D face model based on a semantic correspondence

between motion capture and 3D scan data. The resulting facial animation uncovered a high

level of realism by combining the high spatial resolution of a 3D scanner with the high

temporal exactness of motion capture data that accounts for subtle facial movements with

inadequate estimations.

 In technical terms “Motion capture” (Mocap) is sampling and recording motion of

humans, animals, and inanimate objects as 3D data", but in simple terms the Motion

Capture is defined as “Recording of motion and playback” OR "One way of acting out an

animation". Particularly, during the first phase of the Mocap the movements of the objects

are captured in the real world and then in the second phase the data of the captured

movement are inserted into a 3D model of the world in a virtual environment.

 Motion capture is used as an analysis tool in biomechanics research, as well as in

education, training and sports and recently in both cinema and video games. Motion capture

is broadly utilized procedure as a part of the Film making. Now day’s motion capture is

utilized as a part of movies to record the actors and proprietary software to animate the

creatures and fight scenes. These animations made through software were constantly

subjected to synchronization with the Mocap actor’s movements and also between the

digital creatures, in order to create a believable battle or dialog scene (Figure 6).

33

Figure 6: The use of the Fastmocap technology with markerless 3D motion capture with
Microsoft kinect sensor for the creation of the animations of a 3D avatar.

In this work, motion capture data were not utilized, however, we tried the

movement to be as natural as possible. Particularly, we used the Physique Modifier tool of

the 3ds Studio Max for the modeling of the animations of the characters as well as for the

association of the characters mesh with the biped’s skeletal parts. This was accomplished

through a process called skinning. Firstly, we applied the Physique Modifier to the characters

and secondly we created the movements of the avatars using the Auto-Key and the

Animation Timeline tools of the 3ds Studio Max. Using the Auto Key tool, when a change of

objects’ position, rotation, and scale happens the 3ds Max Studio creates a key storing the

new value for the changed parameter at the current time. The 3ds Max Studio automatically

fills in the frames between the different keys.

The process that was followed for the animation of the 3d avatars is described,

analytically in the fourth chapter of this thesis.

2.3 Using VEs and Games for Neuroscientific Research

 A broader aim of many works was to assess whether such powerful social-

psychological studies could be usefully carried out within VEs advancing cognitive

neuroscience and computer graphics as well as serious gaming research. It would be

34

valuable to understand the cognitive processes involved while interacting with 3D characters

in a gaming scenario. 3D characters could be employed to simulate experimental scenarios

as part of neuroscientific protocols in the fMRI. An economic game combined with Milgram’s

original experimental scenario has been implemented which, in the future, could be

interactively played in an fMRI scanner (Rivera et al. 2010).

A lighting system has been designed to render an interactive VE on an fMRI display,

enabling the conduct of formal neuroscientific experiments and investigating the effects of

visual fidelity as well as varied lighting configurations of an indoors/outdoors space on

feelings of presence, ‘reality’ and comfort (Christodoulou et al. 2012). Another 3d virtual

system for fMRI has been designed investigating the influence of two prominent VR

parameters, e.g. 3d-motion and interactivity, while brain activity is measured for a mental

rotation task (Sjölie et al 2010). The subjects performed a variation of the mental rotation

task in a simple VE and brain activity was recorded during three conditions of varied 3d-

motion and interactivity. Also, an interactive digital game based on the Re-Mission video

game has been designed for cancer patients in the fMRI in order to determine whether

mesolimbic neural circuits associated with incentive motivation are activated, and if so,

whether such effects stem from the participatory aspects of interactive gameplay, or from

the complex sensory/perceptual engagement generated by its dynamic event-stream (Cole,

Yoo and Knutson 2012).

The Smart Ageing that was implemented by (Tost et al 2014) is a serious game in a

3D virtual environment aimed at the early detection of Mild Cognitive Impairments in

persons ageing between 50 and 60, and at assessing cognitive impairments in persons

already diagnosed or having neurodegenerative dementia. Smart Ageing is a telematic

system where the users realize a set of screening tests structured in five daily-life tasks in a

familiar environment addressing various cognitive skills: memory, executive functions,

divided attention, short-term and long-term memory and spatial orientation and attention.

The Trauma Treatment Game that was designed by (Mayr, Horleinsberger & Petta 2014) is

another serious game specifically designed to provide individualized interventions to

children suffering from complex trauma and comorbid disorders such as anxiety and

depression to have undergone rigorous clinical evaluation.

 In the experiments of (Bhatt & Camerer 2005) 16 subjects brain activity were

scanned using fMRI as they made choices expressed beliefs and expressed iterated 2nd-order

beliefs (what they thought others believed they would do) in eight games. Cingulate cortex

and prefrontal areas were differentially activated in making choices versus expressing

35

beliefs. Forming self-referential 2nd-order beliefs about what others thought you would do

seemed to be a mixture of processes used to make choices and form beliefs. A similar work

was presented by (Yoshida et al. 2010) developing a “stag hunt” game where human

subjects interacted with a computerized agent using different degrees of sophistication

(recursive inferences) and applied an ecologically valid computational model of dynamic

belief inference. They showed that rostral medial prefrontal (paracingulate) cortex, a brain

region consistently identified in psychological tasks requiring mentalizing, had a specific role

in encoding the uncertainty of inference about the other’s strategy.

An interesting research was conducted by (Mathiak & Weber 2006). Particularly,

they recorded 13 experienced gamers (18–26 years) while playing a violent first-person

shooter game (a violent computer game played in self-perspective) by means of distortion

and dephasing reduced fMRI. They found that the occurrence of violent scenes revealed

significant neuronal correlates in an event-related design. They also, proposed that virtual

environments can be used to study neuronal processes involved in semi-naturalistic

behavior as determined by content analysis.

On the contrary, (Wang, Sourina and Nguyen 2011) claimed that the EEG-based

technology has become more popular in “serious” games designs and developments since

new wireless headsets that meet consumer demand for wearability, price, portability and

ease-of-use are coming to the market. Originally, EEG-based technologies were used in

neurofeedback games and brain-computer interfaces. They conducted experiments

efficiency of fractal dimension value and the results showed that the brain states were

recognizable with the difference in fractal dimension value. Two EEG-based games “Brain

Chi” and “Dancing Robot” where designed and implemented for concentration training. For

more information, Electroencephalogram (EEG) is a noninvasive technique that allows

recording the electrical potentials over the scalp which are produced by activities of brain

cortex and reflect the state of the brain (Nunez & Srinivasan 2006). Neurofeedback is a

technique that presents the real-time feedback to the user in the form of video display

and/or sound based on the processing results of EEG signals taken from the scalp of the user

(Hammond 2007).

It is claimed that using VEs and 3D characters in fMRI has the advantage that it is

possible to involve participants in interactive animated environments which more

realistically reflect social and emotional situations. In this work we present an interactive 3D

gaming framework for fMRI experiments exploring whether artificial characters of varied

anthropomorphism recruit brain activation associated with empathy and social pain (Meyer

36

et al. 2012). In addition, the goal of this work was to investigate whether the level of

anthropomorphism of the avatars might affect game playing as well as fMRI data acquired at

the same time the game playing occurred. For the first time, using this study devised

behavioral fidelity metrics of character believability and emotional engagement based on

neural activity.

2.4 The Examination of Social Exclusion and Empathy

The term ‘social exclusion’ first originated in Europe, where there has tended to be a

greater emphasis on spatial exclusion. There is also a policy focus on those living in ‘deprived

areas’, where poor housing, inadequate social services, weak political voice and lack of

decent work all combine to create an experience of marginalization. However, there are

various definitions of social exclusion. (Walker and Walker 1997) mentioned that the social

exclusion is the dynamic process of being shut out from any of the social, economic, political

and cultural systems which determine the social integration of a person in society.

(Burchardt et al, 2002) referred that an individual is socially excluded if (a) he or she is

geographically resident in a society but (b) for reasons beyond his or her control, he or she

cannot participate in the normal activities of citizens in that society, and (c) he or she would

like to so participate. In addition, (Levitas et al. 2007) claimed that the social exclusion is a

complex and multi-dimensional process. Particularly, it involves the lack of resources, rights,

goods and services, and the inability to participate in the normal relationships and activities,

available to the majority of people in a society, whether in economic, social, cultural or

political arenas. It affects both the quality of life of individuals and the equity and cohesion

of society as a whole.

Many people face social exclusion in their daily life as well as other people

empathizing with excluded people. Empathy is a complex form of psychological inference in

which observation, memory, knowledge, and reasoning are combined to yield insights into

the thoughts and feelings of others (Ickes 1997). Behavioral research has suggested that

empathy includes two primary components (Davis 1983): (1) an affective component that

involves sharing the emotional experiences of others, and (2) a cognitive component that

involves thinking about, understanding and predicting some-one else’s mental state.

The neuroscientists have shown strong interesting for these social phenomena and

their effects on human's life as well as for the brain activation that occurs when people get

social exclusion or empathize with someone else that gets exclusion. In the next subsections

37

we describe some researches that investigated the social exclusion and empathy feeling

using fMRI scanner. In addition, in this study we used reinforcement learning method to

examine the participant’s behavior when the rewards were included in the game.

Particularly, we wanted to investigate the differences in the behavior of the participants to

the other players when they have the ability to get points in the case of the use of the

reinforcement learning method in the game and when they have not any benefit to play

with specific way in the case of the use of the standard scenes of the game. Therefore, the

goal of this study was to explore if the participants included the excluded player in the game

because they were feeling empathy or they wanted to win the game. The definition of the

reinforcement learning method as well as some reinforcement learning algorithms are

described analytically in a next subsection as well.

2.4.1 The Investigation of the Social Exclusion on Human's Life

In the experiments of (Moor et al. 2012) participants that were from 3 age groups

(10–12, 14–16 and 19–21 year olds) participated in two tasks; first, they played the Cyberball

game in order to induce feelings of social inclusion and exclusion, followed by a Dictator

game where they were asked to divide coins between themselves and the players who

previously included or excluded them. Results revealed that although social exclusion

generated strong distress for all age groups, 10–12 year olds showed increased activity in

the subgenual ACC in the exclusion game, which has been associated in previous studies

with negative affective processing. Results of the Dictator game revealed that all age groups

selectively punished the excluders by making lower offers. These offers were associated with

activation in the temporoparietal junction (TPJ), superior temporal sulcus (STS) and the

lateral PFC. Age comparisons revealed that adults showed additional activity in the insula

and dorsal ACC when making offers to the excluders.

A similar research was conducted by (Masten et al. 2009) investigating the neural

correlates of social exclusion during adolescents. Their findings showed that the adolescents

with higher rejection sensitivity and interpersonal competence scores displayed greater

neural evidence of emotional distress, and adolescents with higher interpersonal

competence scores also displayed greater neural evidence of regulation, perhaps suggesting

that adolescents who are vigilant regarding peer acceptance may be most sensitive to

rejection experiences. Furthermore, the same authors (Masten et al 2011) conducted

another block of experiments exploring the neural responses to peer exclusion among

adolescents with ASD compared to typically developing adolescents. The results of their

experiments showed that compared to typically developing adolescents, those with ASD

38

displayed less activity in regions previously linked with the distressing aspect of peer

exclusion, including the subgenual anterior cingulate and anterior insula, as well as less

activity in regions previously linked with the regulation of distress responses during peer

exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly,

however, both groups self-reported equivalent levels of distress. This suggested that

adolescents with ASD might engage in differential processing of social experiences at the

neural level, but be equally aware of, and concerned about, peer rejection.

The fMRI additionally, was employed by (Krill and Platek 2009) to examine the

sensitivity to social exclusion in three conditions: same-race, other-race, and self-resembling

faces. In his experiments, the results showed that the participants demonstrated greatest

ACC activation when being excluded by self-resembling and same-race faces, relative to

other-race faces. Additionally, participants expressed greater distress and showed increased

ACC activation as a result of exclusion in the same-race condition relative to the other-race

condition.

They have been conducted many researches for the social situations as we described

above, however the study of Maurage in 2012 identified for the first time the cerebral

correlates of interpersonal alterations in alcohol-dependence (Maurage et al. 2012). In his

experiments participants played the Cyberball game where they were first included by other

players, then excluded, and finally re-included. The results showed that while both groups

presented dorsal anterior cingulate cortex (dACC) activations during social exclusion,

alcohol-dependent participants exhibited increased insula and reduced frontal activations (in

ventrolateral prefrontal cortex) as compared with controls. In addition, the Alcohol-

dependence was linked with increased activation in areas eliciting social exclusion feelings

(dACC–insula), and with impaired ability to inhibit these feelings (indexed by reduced frontal

activations).

In this study, we designed an interactive Virtual Environment (VE) on an fMRI

display, enabling the conduct of formal neuroscientific experiments and investigating the

effects of social exclusion, empathy and different level of anthropomorphism on human

brain activity. For the investigation of the social exclusion we implemented several scenarios

of the game simulating the inclusion or the exclusion of the human participants as well as

the exclusion of other virtual players of the game. Our results presented that T-Contrast

estimates showing main effect of exclusion of other versus inclusion, demonstrating activity

in emotional brain regions such as bilateral parahippocampal, left superior and left middle

frontal gyrus as well as in anterior cingulate and amygdala. The anterior cingulate cortex can

39

be partitioned anatomically taking into account cognitive (dorsal) and emotional (ventral)

components. The dorsal part of the ACC is associated with the prefrontal cortex and parietal

cortex and also the motor system and the frontal eye fields making it a central station for

processing top-down and bottom-up stimuli and assigning appropriate control to other areas

in the brain. fMRI studies have shown that the dorsal anterior cingulate cortex (dACC) and

insula activations reflect the negative feelings and distress associated with social exclusion

as well as the middle frontal gyrus (MFG) and inferior frontal gyrus (IFG) activations

implicate in the regulation and inhibition of this emotional response.

2.4.2 The Investigation of the Empathy Feeling on the Human's Relationships

An interesting research was investigated by (Decety and Lamm 2006) exploring the

human empathy through the Lens of Social Neuroscience. Their work demonstrated that

adopting a self-perspective when observing others in pain, resulted in strong feelings of

personal distress activated the pain matrix to a larger extent, as well as the amygdala. Such a

complete self-other merging seems to be detrimental to empathic concern. In addition, they

found that the best response to another person’s plight might not be distress, but efforts to

soothe that distress. Conversely, when participants took the other’s perspective, there was

less overlap between the neural circuits involved in the processing of first-hand experience

of pain, and they indeed reported more feelings of empathic concern.

In other study of (Masten, Morelli & Eisenberger 2011) was examined empathy-

related neural processing and resulting prosocial behavior during observed social exclusion.

Their results indicated that the neural regions supporting empathy for social pain may differ

from those previously linked with empathy for physical pain. For example, responses to

observed physical pain may trigger an automatic, affective response such that most

individuals spontaneously feel distress when they saw someone in physical pain. In contrast,

observing social exclusion might require an additional layer of mentalizing to understand the

situation and imagine the victim's affective responses, and thus, might only elicit pain-

related neural activity among the most empathic individuals. Given that understanding social

situations is complex and relatively ambiguous, simply watching someone experiencing

social pain may not automatically elicit distress like observing physical pain.

Unlike the research of Masten the study of (Novembre, Zanon, and Silani 2014)

provides evidence that experiences of social rejection can activate regions of the brain so far

observed during experiences of physical pain and possibly responsible for coding the

intensity of the threatening event. The aim of this study was to explore what extent first

40

person experiences of physical and social pain overlap as well as the commonalities and

differences related to the vicarious experience of physical and social pain. In addition, their

results showed that this pattern of brain activation extends to the witnessing of the same

type of social pain in others.

Although, in healthy individuals, affective perspective taking has proven to be an

effective means to elicit empathy and concern for others, in individuals with psychopathy

the extent to which perspective taking can elicit an emotional response was studied for the

first time by (Decety et al. 2013). Their results demonstrated that while individuals with

psychopathy exhibited a strong response in pain-affective brain regions when taking an

imagine-self perspective, they failed to recruit the neural circuits that were activated in

controls during an imagine-other perspective, and that might contribute to lack of empathic

concern.

Another interesting research was done by (Meyer et al. 2015) investigating the

neural responses during an empathy paradigm for friends and strangers. Their results

demonstrated that the mechanisms linking interdependence to empathy differentiate

between close others and strangers. Specifically, they found that MPFC activation when

observing a friend’s exclusion (vs. inclusion) positively correlated with trait interdependence

and empathy, whereas MPFC activation when observing a stranger’s exclusion (vs. inclusion)

negatively correlated with trait interdependence and empathy.

One of the goals of this study was to explore the brain activation associated with the

empathy feeling when a player got social exclusion. We simulated situations of the empathy

feeling implementing rounds of the game where programmed players got excluded from the

other virtual players. The outcomes of this work showed that watching the exclusion of

other demonstrated activity in emotional brain regions such as bilateral parahippocampal

and amygdala. One can attribute this activation pattern to the imprecise mapping of avatar

features to normative ‘top-down’ representational expectancies of the human body within

extrastriate visual cortices (particularly areas like STS that are functionally tied to humans

emotional signals) and to the processing of negatively-valenced stimuli, activating lateral

orbitofrontal cortex.

An extension of this implementation is to simulate situations of the empathy feeling

for friends and strangers and explore whether these situations activate different brain

regions. This can be employed by modelling the avatars in order to look like a friend or a

stranger, respectively.

41

2.4.3 The Reinforcement Learning Method

Reinforcement learning is referred as an important method by which people learn

and change behavior based on feedback as well as they plan actions in order to maximize

reward. Particularly, Reinforcement learning is an approach to learn policies for agents

acting in an unknown stochastic world, observing the states that occur and the rewards that

are given at each step. Reinforcement learning is learning to maximize a reward signal by

exploring many possible actions. The agent is not told the correct actions. Instead it explores

the possible actions and remembers the reward it receives. With supervised learning, an

agent takes an action and is then told what the correct action was.

The Reinforcement learning algorithms are usually used in video games in order to

create automated opponents that perform well in strategy games. For instance, human

players rapidly discover and exploit the weaknesses of hard coded strategies. To build better

strategies a reinforcement learning approach is suggested for learning a policy that switches

between high-level strategies. These strategies are chosen based on different game

situations and a fixed opponent strategy. Strategy games are an important and difficult

subclass of video games. In games such as Warcraft and Civilization players build cities, train

workers and military units, and interact with other human or AI players. The goal of these

games is to make the best use of limited resources to defeat the opposing players. The large

state space and action set, uncertainty about game conditions as well as multiple

cooperative and competitive agents make strategy games realistic and challenging.

All Reinforcement learning algorithms are based on estimating the value function

which is the expected return starting from state st and following policy π. Vπ (s) = Eπ {Rt |st

=s} The value function is an estimate of how good it is for an agent choosing actions based

the policy π to be in a given state. Similarly, the state-action value function is the expected

return starting from state s, taking action α, and thereafter following policy π, defined as

Qπ (s, α) =Eπ {Rt |st =s, αt =α}.

The five basic elements of a Reinforcement learning system are:

1. Agent: The learning component of a RL system. He executes some actions a ∈ A,

where A the set of the allowed actions, depending on the state of the environment

in which it belongs.

2. Model of the environment: Mimics the behavior of the environment. For instance,

given a state and an action it determines what the next action will be. The

environment is described by a set of states s ∈ S, where S the total states of the

environment.

42

3. Policy π: Determines the behavior of each agent at each time.

4. Reward function: Maps to each state a reward, which expresses whether this state

is desirable. The reward function determines the set of the states that are good for

the agent to be found.

5. Value function: Determines what actions are good in the long term. Unlike the

reward function expressing the temporary value of a state of the environment, the

value function reflects the long-term value of a state taking into account the states

that may arise and the corresponding rewards.

Markov Decision Process (MPD) is a common method for modeling sequential

decision-making with stochastic actions. We learn a policy for an MDP through

reinforcement learning approaches. We represent the learning problem as an MDP, defined

as a tuple (S, A, P, R) with:

 S, a finite set of states with designated initial state s0.

 A, a finite set of actions.

 P, a set of state transition probabilities: P(s’ |s, α), the probability of transitioning

from state s to s’ when action α is taken by the agent.

 R, a reward function: R(s, a), a real-valued immediate reward for taking action α in

state s.

An MDP unfolds over a series of steps. At each step, the agent observes the current

state, s, chooses an action, α, and then receives an immediate reward that depends on the

state and action, R(s, α). The agent begins in the initial state So, which is assumed to be

known. The state transitions according to the distribution P as given above and the process

continues. The goal is to find a policy, which is a mapping, π, from states to actions, that

maximizes the sum of rewards over the steps of the problem. The value of a policy π at state

s can be calculated as:

Vπ(s) = R(s, π(s)) + γΣP(s’|s, π(s)) Vπ(s’).

Where π: S → A is a mapping from states to actions according to policy π, γ ∈ [0, 1) is the

discount factor.

Q–learning method is a Reinforcement Learning algorithm that updates the value of

a state-action pair after the action has been taken in the state and an immediate reward has

been received (Watkins & Dayan 1992). Values of state-action pairs, Q(s, α) are learned

because the resulting policy is more easily recoverable than learning the values of states

43

alone, V(s). Q-learning converges to an optimal value function under conditions of

sufficiently visiting each state-action pair, but often requires many learning episodes to do

so. When an action α is taken in state s, the value of a state-action pair, or Q-value, is

updated as

Q(s, α) = Q(s, α) + a(r + γV(s’) - Q(s, α)), Where α ∈ [0, 1] is the learning rate, r is reward that

is observed, γ is the discount factor, s’ is the next state, and V(s’) = maxa’Q(s’, α’).

The learning rate α determines to what extent the newly acquired information will

override the old information. A factor of 0 will make the agent not learn anything, while a

factor of 1 would make the agent consider only the most recent information. In fully

deterministic environments, a learning rate of α = 1 is optimal. When the problem is

stochastic, the algorithms still converges under some technical conditions on the learning

rate that require it to decrease to zero. In practice, often a constant learning rate is used,

such as α = 0.1 for all t.

 The discount factor γ determines the importance of future rewards. A factor of 0 will

make the agent "myopic" (or short-sighted) by only considering current rewards, while a

factor approaching 1 will make it strive for a long-term high reward. If the discount factor

meets or exceeds 1, the action values may diverge.

A study was conducted by (D’Mell 2012) examining the effects of social reward on

reinforcement learning. Participants completed three versions of a reinforcement learning

task where feedback varied. These included a visual condition where correct and incorrect

feedback was presented visually, a neutral condition where correct and incorrect feedback

was presented by a human voice and a reinforced condition where feedback was presented

by human voice saying positive and negative social statements. Learning strategies, for

example, exploitative versus explorative behaviors and the impacts of positive versus

negative feedback on learning were measured. The type of feedback received was not found

to have any significant effect on early learning strategies. Additionally, there was no

difference in the impacts of positive versus negative feedback on reinforcement learning.

In this work, we implemented a more sophisticated version of Cyberball3D+

including state of the art Reinforcement Learning methods in Games and incorporating a

form of learning affecting players' behavior in Cyberball3D+. This sophisticated version of

Cyberball3D+ made the game more competitive and intelligent integrating rules and scores

as well as creating intelligent opponents (computer players) modeling their decision making

behavior.

44

We created two potential rules that were the ability of each player to throw the ball

to any of the rest of the players of the game and the inclusion of a reward system whereby

points were given to or removed from a player depending on his/her ball throws. In

particular, if a player threw the ball to the player that had the highest number of receiving

tosses he/she lost a point while if a player threw the ball to the player that had the lowest

number of receiving tosses he/she won a point. In addition, if a player threw the ball to a

player that had a medium number of receiving tosses he/she did not lose or win points. The

player that obtained the highest score of points he/she won the game. The score of the

participant was displayed on the screen during the rounds of the game.

Participants were informed that they were able to throw the ball to any player in the

game and also that there was a reward system. Although they were not informed on how

they gain or lose points, they were able to figure it out on their own, if they paid attention

on the pointing system since the score appear on the screen. The purpose of this approach

was to make the players to understand that they had to feel empathy for the excluded

players throwing the ball to them if they wanted to win the game.

2.4.4 The Variants of the Cyberball Game for the Investigation of the Social

Exclusion

Cyberball is a ball-toss game that can be used for research on ostracism, social

exclusion or rejection. It has also been used to study discrimination and prejudice. Cyberball

was originally intended as a simulation of ostracism in the context of a research program

(see Williams 1997, 2001; Williams, Forgas & von Hippel 2005; Williams & Zadro 2005).

 During the first Cyberball experiments, the participants were recruited to log on to

an online experiment where they played a virtual ball-tossing game with two other

participants who had logged on from somewhere else in the world (Williams, Cheung and

Choi 2000). Before the experiment, the participants were informed that Cyberball was a

means to an end, and was, by itself, unimportant for the experiment. It was portrayed as

merely a task that helped participants exercised their mental visualization skills, which they

would purportedly use in the subsequent experimental task. After reading the instructions,

they would view a game where the players were represented on the screen by animated

icons. They would then play the Cyberball for about 5 min. The results showed that if

participants were over-included (getting the ball for half the throws) or included (getting the

ball for one third of the throws), they felt better than if they received the ball for only one

sixth of the throws. Still, getting the ball for a sixth of the time was significantly better than

45

not getting it at all. Fully ostracized participants answered a post-experimental

questionnaire indicating lower levels of belonging, self-esteem, control, and meaningful

existence (Williams and Jarvis 2006).

Brain imaging studies demonstrate that physical pain sensations are processed

across a network of connected brain regions, which together are proposed to form the ‘pain

matrix’. Most of the pain matrix is also activated if we observe empathically someone else in

physical pain (Eisenberger 2012). Interestingly, experiencing the ‘pain of social exclusion’

also engages these same regions during brain imaging studies of the original Cyberball task,

consistent with the notion of social pain. There is early work suggesting that a similar brain

activation pattern is present when one sees and empathizes with someone else being

ostracized (Eisenberger 2012).

Researchers from around the world have used the Cyberball game for similar

purposes, sometimes with minor modifications, but always for the purpose of manipulating

inclusion and exclusion. (Krill, Platek & Wathne 2008) modified the cyberball game so it

could be played over the internet. They programmed Cyberball to generate 60 tosses during

each round and to delay each toss for 0.5–3 seconds in an effort to make the game seem

realistic. Players were randomly assigned to either an inclusion round or an exclusion round.

In the inclusion round the subject was involved in playing the game (throwing the ball) with

confederates (computerized opponents) throughout the duration of the game. In the

exclusion round, the participants were allowed to participate during the beginning of the

game (six throws). After six throws the game was programmed to stop tossing the ball to the

participant; the participant saw the computerized confederates playing amongst themselves

but no longer received a throw during this exclusion period.

 In the variant of the Cyberball game of (Andari et al. 2010) participants engaged in

a multi round ball-toss game over a computer network with three fictitious partners. The

researchers manipulated the amount of reciprocation exhibited by the three fictitious

players. The critical task manipulation was the probability that each of the three fictitious

players would throw the ball to the participants, which allowed us to create different

cooperative behavior profiles (good, bad, and neutral). At game start, probabilities were

homogeneous for all players, that was, the participant had a probability P = 1/3 of receiving

the ball from any of the three players. After a predetermined number of rounds, player

profiles diverged such that player A (the “good” profile) passed 70% of its played balls to

player D (the participant), 20% to player C (the bad profile), and 10% to player B (the neutral

profile); player C (the bad profile) passed 10% of its played balls to player D (the participant),

46

20% to player A (the good profile), and 70% to player B (the neutral profile); player B (the

neutral profile) passed 30% of its played balls to player D (the participant), 40% to player C

(the bad profile), and 30% to player B (the good profile). The game included a monetary

incentive to enhance the participant’s cognitive engagement in the task. Any player

receiving the ball earned 2€. To optimize cognitive engagement in the task, the participant

was told that each ball received was worth 2 euros and that when returning the ball two

outcomes were possible: either the recipient would toss the ball back to the participant,

generating further income, or toss it to another player, earning that player 2 euros. The

participant’s cumulative gains were displayed on the screen and he/she was led to expect a

percentage of the gains at the end of the game. The participant was instructed that the

game ended after a total of 80 tosses.

 In the experiments of (Lelieveld et al. 2012) the participants were informed that

they would participate in a three-player game of Cyberball. During the game, half of the

participants were equally included by the other players (i.e., they received one third of the

tosses) and half of the participants were excluded (i.e., they received one toss at the

beginning and then never received another toss). In the financial compensation condition,

participants obtained 50 euros’ cent for each ball that was not thrown to them. There was a

counter made visible in the Cyberball screen, which was incremented with 50 cents each

time the participant was not given a ball (after the 30 throws, participants thus earned

€14,50).

In this work the Cyberball3D+ game was played by three virtual players and the

human subject and many scenarios were evaluated by the neuroscientists, some fair and

other unfair to the subject (simulating social exclusion) or to the other avatars (simulating

empathy for social exclusion). The human subject played several rounds of the game. Each

round included varied scenarios simulating situations of social exclusion or empathy as well

as varied levels of anthropomorphism of the avatars. For the first time, the Cyberball game

was implemented in three - dimensional form as well as it included three level of

anthropomorphism (Figure 7). In addition, in this project three versions of the game were

implemented including the five basic scenes, the probabilities version and the

Reinforcement Learning version. Each of these versions simulated different situations of

social exclusion or empathy. Especially, in the probabilities version of the game the

neuroscientists were able to simulate any situation of the fairness of the game they wanted

by filling in the percentages of the tosses that each player would throw to each one of the

other players.

47

This game proposed was designed to render an interactive Virtual Environment (VE)

on an fMRI display, enabling the conduct of formal neuroscientific experiments and

investigating the effects of social exclusion, empathy and different level of

anthropomorphism on human brain activity. For the first time, we got a validated

neuroscientific measure of character believability and emotional engagement at the same

time the experience was taking place.

Figure 7: The original version of the cyberball game (left). The version of the cyberball
game of this work in three - dimensional form (right).

2.5 Summary

In this chapter were presented some methods that were used by researchers in

order to model and animate a 3d avatar as well as success real and fast rendering of the 3d

avatar. Furthermore, in this chapter we provided background information regarding the

virtual games were used inside fMRI scanner by neuroscientists in order to investigate social

phenomena such as social exclusion and empathy. In addition, we described different

variants of the Cyberball game that were used for the investigation of the social exclusion as

well as for the investigation of the empathy for the social exclusion.

48

3 Chapter 3 – Software Architecture and Development

Framework

 In this chapter, we describe the software architecture and the development

framework that is used in this project as well as the tools that are used to build several parts

of this project’s application, such as the Flash authoring environment.

3.1 Virtual Reality Technology and Game Engines

A game engine is a software framework designed for the creation and development

of video games. Video game developers use them to create games for video game consoles,

mobile devices and personal computers. The core functionality typically provided by a game

engine includes a rendering engine for 2D or 3D graphics, a physics engine or collision

detection (and collision response), sound, scripting, animation, artificial intelligence,

networking, streaming, memory management, threading, localization support, and a scene

graph. A game engine provides the framework and the Application User Interface (API) for

the developer to use and communicate with the hardware. It consists of separate

autonomous systems, each handling a specific process, e.g. the graphics system, the sound

system, the physics system, etc.

There are several game engines offering a wide range of tools to create interactive

environments, primarily used for the development of a computer game. Game engines are

also powerful platforms for the development of any 3D interactive environment.

 In the following subsections, are described three different game engines but two of

them were rejected and one engine (UDK) was selected for the implementation of this 3D

gaming system.

3.1.1 Unity 3D

Unity game engine offers a vast array of features and a fairly easy to grasp interface.

Its bread and butter is cross-platform integration, meaning games can be quickly and easily

ported onto Android, iOS, Windows Phone 8, and BlackBerry, making it a great game engine

for the development of mobile games.

The game engine supports assets from major 3D applications like 3ds Max, Maya,

Softimage, CINEMA 4D, Blender and more, meaning there is no real restrictions to the type

of file formats that it supports. With the recent release of Unity 3D 4.3 it also has native 2D

49

capabilities, supporting sprites and 2D physics, making it a great game engine to use for the

development of 2D games.

While the engine supports integration of just about any 3D application, it does,

however, suffer in the amount of editing capabilities inside the engine editor. Unity 3D has

no real modeling or building features outside of a few primitive shapes so everything will

need to be created in a third party 3D application. It does, however, boast a large asset

library where a wide variety of assets can be downloaded or purchased (pricing is

determined by the asset author).

In terms of programming, Unity 3D supports three programming languages:

JavaScript, C# and Boo, which is a python variation. All three languages are fast and can be

interconnected. The game’s logic runs in the open-source platform “Mono”, offering speed

and flexibility. Required for the development process a debugger is also included, allowing

pausing the game at any time and resuming it step-by-step.

Unity 3D is widely used, utilized by a large community offering help. It is free for

noncommercial use and is targeted to all platforms, such as PC, MAC, Android, iOS and web.

This game engine targets at offering increased rendering speed, even on machines with low

memory and computational power, such as iOS and Android smartphones, and not at

creating interactive photorealistic environments, which need a lot of memory and very fast

CPU and GPU to render at acceptable speed. Unity 3D was rejected, because it was

necessary to have the ability to create photorealistic VEs and render them in real-time.

3.1.2 Torque 3D

Torque 3D is a sophisticated game engine for creating networked games. It includes

advanced rendering technology, a Graphical User Interface (GUI) building tool and a World

Editor, providing an entire suit of WYSIWYG (What-You-See-Is-What-You-Get) tools to create

the game or simulation application.

 The programming language used is “TorqueScript”, which resembles C/C++. It is

targeted for both Windows and MacOS platforms, as well as the web. The main

disadvantage of Torque 3D is that it is not free, but it needs to be licensed for $100. For this

reason, Torque 3D was, also, rejected.

3.1.3 Unreal Engine 3 – Unreal Development Kit (UDK)

Unreal Development Kit (UDK) is one of the leading game engines currently. It

became free on November 2009 for non-commercial use and is used by the world’s largest

50

development studios. The UDK community includes thousands of people from around the

world, providing help and advice.

The UDK is a framework used mostly in creating computer games and visualization.

UDK consists of different parts, making it act both like a game engine and a 3D authoring

environment. It provides the necessary tools to create 3D objects and assign materials on

these, import 3D objects such as characters and their animations from 3ds Studio Max and

import and use sounds and sound effects. It, also, allows the designed application to

seemingly attach to Flash User Interfaces (UI). UDK can also be used to render computer

graphics scenes as well as create and respond to events while playing the game.

UDK offers the ability to use both C/C++ and UnrealScript, which provides the

developers with a built-in object-oriented programming language that maps the needs of

game programming and allows easy manipulation of the actors in a synthetic scene. The

main components inside the UDK are: the Unreal Editor which is used to create or import

objects and edit VEs handling all the actors and their properties located in the VEs; the

Unreal Kismet, which allows for the creation of sequences of events and corresponding

actions and the Unreal Matinee which is responsible for the animation of actors or real-time

changes in the actors’ properties.

3.2 Tools of Unreal Development Kit (UDK)

In this project we used the UDK which, as we already discussed is a framework that

is used mostly in creating computer games and visualization. UDK consists of different parts,

making it act both like a game engine and a 3D authoring environment. In the following

subsections are analyzed the UDK framework and its tools.

3.2.1 Unreal Editor

 The Unreal Editor is the tool inside UDK that is used to create and edit VEs. 3D

objects, materials, textures, lights, sounds, videos and images can be imported to the

Content Browser library and inserted in the VEs through the Unreal Editor. Also, the Unreal

Editor can create and assign materials to the 3D objects, as well as animate them (Figure 8).

51

Figure 8: Screenshot from the Unreal Editor.

 Everything inside the virtual scene made in the Unreal Editor is considered by UDK

to be an Actor, extending from 3D objects to lights. This is in accordance with Unreal Script

which is an Object-Oriented Programming language and each item is appointed to a class

that extends from Actor. For example, the 3D objects are assigned to the SkeletalMeshActor

class, the lights be variedly assigned to the PointLight, PointLightToggleable,

DominantDirectionalLight classes according to their function, as well as the sounds are

assigned to the Sound class. All these classes extend from the Actor class.

 The 3D objects imported into Unreal Editor can be assigned to Static Mesh, used for

static objects, or Skeletal Mesh, used for character bodies. The 3D objects in this project are

Skeletal Meshes because represent virtual humans. After an object is imported through the

Content Browser, we can change its main attributes, such as its clothes, materials and its

movements within the Unreal AnimSet Editor (Figure 9). These changes will affect the

instances of this object that will be inserted in the virtual scene, unless they are overridden.

52

Figure 9: A paradigm of Unreal AnimSet Editor depicting a 3d human.

When an object is inserted in the Unreal Editor through the Content Browser library,

an instance of its predefined Actor class is created and the editor offers the option to change

the configuration of the specific instance, without affecting the other instances. The options

that can be changed include the object’s position, draw scale, properties for the lighting

system, materials, actor's movements, actor's attachment, collision, components, etc. The

Figure 10 displays a paradigm of SkeletalMeshActor, depicting the properties of a 3D human

instance that was inserted in the VE. It shows that several properties can be changed, such

as Physics and Collision properties, or the Location and Rotation of the object.

Figure 10: A paradigm of SkeletalMeshActor, depicting the properties of a 3D human
instance.

53

There are many other actor classes that simulate the functions of a variety of other

objects, such as triggers, sounds, dynamic meshes that can be moved or rotated, etc. These

can be embedded and controlled through the Unreal Editor.

3.2.2 Material Editor

 The Material Editor is a useful tool within Unreal Editor which is used to create

realistic environment. Particularly, this tool is responsible for the creation and editing of

different materials that can be assigned to objects inside the scenes created. The objects are

affected by these materials in a variety of ways, mainly in terms of their texture and their

interaction with the light. The Material Editor provides the ability to create shaders to be

applied to geometry using a node-based graph interface.

 Specifically, the Material Editor is node-based; however, its nodes do not represent

events or actions, but textures, colors and several processing filters, such as addition of two

different textures. It provides the main node which has all the supported properties of the

material, such as the diffuse, emissive and specular properties and each property can

receive the output from a node or from a sequence of nodes. The Material Editor can be

opened by double-clicking any Material asset or through the right-click context menu of a

Material asset in the Content Browser. Either of these will open up that particular Material

in the Material Editor for editing.

54

Figure 11: Screenshot from the Material Editor depicting the overall material that was
used for a 3d human.

3.2.3 Unreal Kismet

 Another useful tool inside the Unreal Editor is the Unreal Kismet which can be

described as a graphical system that connects specific events to specific actions. It is

responsible for the creation of sequences of events and corresponding actions. Particularly,

it is node-based and properties of different nodes can be connected with arrows. However,

there are only some predefined events and actions that can be created; more actions can be

created through Unreal Script.

It is noteworthy to add that the complete sequence of events and actions applies

only to the currently loaded scene and not to other scenes. Along these lines, Unreal Kismet

is not efficient in creating general rules that apply to a complete game or application and for

this reason the Unreal Script is recommended. As opposed to that, Unreal Kismet is

preferred for the connection of specific events and actions.

Several Unreal Script events are generated in order to load the main menu of the

game which was used by neuroscientists to fill in the parameters of the game and was

loaded on the screen when the game was initiated as well as for the loading of the ‘return’

menu which was displayed on the screen at the end of the game. In addition, in the Figure

55

12, we can see the events that were created in Unreal Matinee, as detailed below, for the

creation of the player’s animations.

Figure 12: Unreal Script events are generated for the requirements of the game.

3.2.4 Unreal Matinee

 The Unreal Matinee is responsible for the animation of the actors or for real-time

changes in the actors’ properties. It provides the ability to animate the properties of the

actors over time, to create either dynamic gameplay or cinematic in-game sequences. The

system is based on the use of specialized animation tracks in which key frames can be placed

to set the values of certain properties of the actors in the level. The Matinee Editor is similar

to the non-linear editors used for video editing, making it familiar to video professionals.

 The advantage of working with Matinee is that the actors in the level can be moved

around and their properties can be changed as part of previewing the sequence. However,

when Matinee exits, all level state will be restored to the way it was when Matinee was

entered.

 We used the Unreal Matinne to create the animations of the ball as shown in Figure

13. Particularly, we created different Matinee events for each animation of the ball by

designing separate Matinee sequences for each different direction of the ball from a player

to all other players.

56

Figure 13: An example shows the creation of a ball animation.

3.2.5 Sound Engine

 The behavior of the audio playback in the Unreal Engine is defined within Sound

Cues. The Sound Cue Editor is a node-based editor that is used to work with audio and

provides the necessary tools in order to create various sound effects. It supports immersive

3D location based sounds and gives complete control over pitch, levels, looping, filtering,

modulation and randomization. The audio output of the combination of nodes created in the

Sound Cue Editor is saved as a Sound Cue. By default, every Sound Cue's Audio Graph Node

contains an output node, which has a speaker symbol on it. The output node's default value

for Volume Multiplier is 0.75, and for Pitch Multiplier is 1.00. These values can be altered in

the details panel. The volume and pitch settings are used to manage relative Sound Cue

volumes. This affects the output of all audio contained within the Sound Cue.

As the rest of the Unreal Editor’s tools, the Sound Editor provides a node-based User

Interface to import and use several sound cues, change their properties as well as mix them

together and channel the resulting output as a new sound effect. An example of the Sound

Editor is shown in the Figure 14, which depicts a SoundCue which is used in the game. In the

left part of the figure, the SoundCue residing in the asset library is shown; while in the right

part of the figure the Sound Editor window is displayed by depicting one Sound node.

57

Figure 14: Depicts a SoundCue.

3.2.6 Configuration files

 Almost every property of the Unreal Editor and its components can be changed

through the configuration files, which are bound to their respective UnrealScript class that

implements each component. There are two versions of the configuration files, the first is

the default, which is used to initialize the component and the other is the compiled and

altered version. If, for any reason, the compiled version of a configuration file is corrupted or

deleted, a new one is created based on the default one.

 Every UnrealScript class that binds to a configuration file can define which of its

properties should be saved and / or edited in the respective configuration file. So, when the

Unreal Editor loads up and initializes its components, it uses the configuration files to recall

their properties. The UnrealScript class bound to a configuration file can save the current

state of its properties to the file, by calling the SaveConfig function.

An UnrealScript can bind to a configuration file by declaring it in its definition in the

UnrealScript file. For example, the following class definition declares that it will bind to the

configuration file “Cyberball” and the class properties that are defined to be set through

configuration will be saved and loaded through that file:

class CyberballGamePlayerController extends GamePlayerController DLLBind(TestDLL)

config(Cyberball);

58

Each configuration file stores the information as key – value pairs, with each pair

being the declared variables as keys and their respective values as the value of the pair. So,

assuming that the Cyberball included a variable definition and code as follows:

Then, UDK would produce the following statement in the Cyberball:

(We suppose that the previous value of ParticipantNumber was zero).

3.2.7 Input Manager

The input manager is responsible to handle the communication between the input

hardware, such as keyboard, mouse, joystick or button boxes and the application. The input

manager examines a configuration file based on DefaultInput.ini and according to it binds

each input action, such as the joystick/mouse movement or key press to a specific method

designated to perform the selected action. The Unreal Editor comes with a default

configuration file including a limited set of predefined bindings between buttons and

methods; however, this file can be altered to match the needs of each application.

In order to create a new binding between a button press and the performed action

or to change an already defined binding, this change must be reflected in the configuration

file. Also, the method defined in the configuration file must exist in the UnrealScript code of

the new application being developed.

For example, if we wanted to add or change the actions performed when some

number buttons of the keyboard are pressed, we would add or change these lines in the

“DefaultInput.ini” configuration file:

Left and Right Button Boxes (the buttons respond like pressing numbers 1,2,3,4 in the

keyboard)

.Bindings=(Name="one",Command="GBA_ThrowLeft")

.Bindings=(Name="four",Command="GBA_ThrowRight")

.Bindings=(Name="GBA_ThrowLeft",Command="ThrowLeft");

.Bindings=(Name="GBA_ThrowRight",Command="ThrowRight");

var config int ParticipantNumber;

ParticipantNumber++;

SaveConfig();

ParticipantNumber = 1;

59

In the first two lines, we define that the press of the 1 and 4 buttons of the keyboard

corresponds to the game bindable actions named GBA_ThrowLeft and GBA_ThrowRight,

respectively. In the next two lines, we define that if a game bindable action named

GBA_ThrowLeft or GBA_ThrowRight occurs, then the Input Manager should start the

ThrowLeft or ThrowRight method respectively, which are located in the application’s

UnrealScript file. Inside those methods we could effectively develop the application to

perform whatever actions are necessary to correspond to the press of these buttons of the

keyboard.

3.2.8 DLL Files

 UDK provides the option for an UnrealScript class to bind to an external DLL file, by

declaring it in the class definition. For example, the following line declares that

CyberballGamePlayerController class binds to the TestDLL:

By binding to a DLL file, an UnrealScript class can call the declared in that DLL file

methods or functions, which are written in C/C++. This proves to be an easy and efficient

way to implement functions that either UDK does not support at all, such as I/O operations,

or it would slow down the application, due to the fact that UnrealScript is slow.

A function residing inside the DLL must be first declared in the UnrealScript class file,

and then it can be called exactly like it would be if it was an original UnrealScript function.

Following the previous example and assuming that the TestDLL contained a function called

SaveFiledll, the code inside the UnrealScript class would be:

class CyberballGamePlayerController extends GamePlayerController DLLBind(TestDLL)

config(Cyberball);

60

3.2.9 Lighting and Rendering Engine

The Unreal Development Kit (UDK) comes along with Gemini, a flexible and highly

optimized multi-threaded rendering system, which creates lush computer graphics scenes

and provides the power necessary for photorealistic simulations. UDK features a 64-bit color

High Dynamic Range (HDR) rendering pipeline. The gamma-corrected, linear color space

renderer provides for immaculate color precision while supporting a wide range of post-

processing effects such as motion blur, depth of field, bloom, ambient occlusion and user-

defined materials.

UDK supports all modern per-pixel lighting and rendering techniques, including

normal mapped, parameterized Phong lighting, custom user-controlled per material lighting

models including anisotropic effects, virtual displacement mapping, light attenuation

functions, precomputed shadow masks and directional light maps. UDK provides volumetric

environmental effects that integrate seamlessly into any environment. Camera, volume and

opaque object interactions are all handled per-pixel. Worlds created with UDK can easily

feature multilayered, global fog height and fog volumes of multiple densities.

It also supports a high-performance texture streaming system. Additionally, UDK’s

scalability settings ensure that the application will run on a wide range of PC configurations,

supporting both Direct3D 9 and Direct3D 11.

The Unreal Development Kit (UDK) includes the Unreal Lightmass, which is an

advanced global illumination solver. Unreal Lightmass supports the illumination with a single

sun, giving off soft shadows and automatically computing the diffuse interreflection (color

bleeding). It also offers a variety of options to optimize the illumination solution. It can

provide detailed shadows by using directional light mapping, static shadowing and diffuse

normal-mapped lighting. An unlimited number of lights can be pre-computed and stored in a

single set of texture maps.

dllimport final function SaveFiledll(string saveThefile, string text); //Function declaration

SaveFiledll(saveThefile,txt); //Function call

61

3.2.10 Unreal Lightmass

 Unreal Lightmass is an advanced global illumination solver. It uses a refined version

of the radiosity algorithm, storing the information in each illuminated 3D object’s light map,

while providing ray-tracing capabilities, by supporting Billboard reflections, which allows

complex reflections even with static and dynamic shadows with minimal CPU overhead.

 Unreal Lightmass is provided as part of the Unreal Development Kit (UDK) and it can

only work on scenes created through it. Its performance is dependent on the complexity of

the scenes created and the types of light emitting sources that exist in the scene. It is

optimized to increase the renderer’s performance.

Its main features include:

 Area lights and shadows: Within Lightmass, all lights are area lights by default. The

shape used by Point and Spot light sources is a sphere. The radius of the sphere is

defined by LightSourceRadius under LightmassSettings. Directional light sources use

a disk, positioned at the edge of the scene. Light source size is one of the two factors

controlling shadow softness, as larger light sources will create softer shadows. The

other factor is distance from the receiving location to the shadow caster. Area

shadows get softer as this distance increases, just like in real life.

 Diffuse interreflection: Diffuse Interreflection is by far the most visually important

global illumination lighting effect. Light bounces by default with Lightmass, and the

Diffuse term of each material controls how much light (and what color) bounces in

all directions. This effect is sometimes called color bleeding. It's important to

remember that diffuse interreflection is incoming light reflecting equally in all

directions, which means that it is not affected by the viewing direction or position.

 Mesh Area Lights from Emissive: The emissive input of any material applied to a

static object can be used to create mesh area lights. Mesh area lights are similar to

point lights, but they can have arbitrary shape and intensity across the surface of the

light. Each positive emissive texel emits light in the hemisphere around the texel's

normal based on the intensity of that texel. Each neighboring group of emissive

texels will be treated as one mesh area light that emits one color.

62

 Translucent shadows: Light passing through a translucent material that is applied to

a static shadow casting mesh will lose some energy, resulting in a translucent

shadow.

In this thesis, we present a complete system based on the Unreal Development Kit

(UDK) where participant is either excluded or not from a ball tossing game played by

three virtual players while immersed in an fMRI scanner detailed in Chapter 4 and 5. A

complete neuroscientific experimental scenario has been implemented detailed in

Chapter 6.

3.3 UnrealScript

 UnrealScript was designed to provide the developers with a powerful, built-in

programming language that maps the needs of game programming. The major design goals

of UnrealScript are:

• Enabling time, state and network programming, which traditional programming

languages do not address but are needed in game programming. C/C++ deals with AI and

game logic programming, through events which are dependent on aspects of the object's

state. This results in long-length code that is hard to maintain and debug. UnrealScript

includes native support for time state and network programming which not only

simplifies game programming, but also results in low execution time, due to the native

code written in C/C++.

• Programming simplicity, object-orientation and compile-time error checking, helpful

attributes met in Java are also met in UnrealScript. More specifically, deriving from Java

UnrealScript offers:

o A pointerless environment with automatic garbage collection;

o A simple single-inheritance class graph;

o Strong compile-time type checking;

o A safe client-side execution "sandbox";

o The familiar look and feel of C/C++/Java code.

63

 Often during the implementation, design trade-offs had to be made, choosing

between execution speed and development simplicity. Execution speed was then sacrificed,

since all the native code in UnrealScript is written in C/C++ and resulted performance

outweighs the added complexity. UnrealScript has very slow execution speed compared to

C, but since a large portion of the engine's native code is in C only the 10%-20% of code in

UnrealScript that is executed when called has low performance.

3.3.1 The Unreal Virtual Machine

 The Unreal Virtual Machine consists of several components: The server, the client,

the rendering engine, and the engine's support code.

The Unreal server controls all the gameplay and interaction between players and

actors (3D objects, lights or sounds that can be inserted in a synthetic scene). A listen server

is able to host both a game and a client on the same computer, whereas the dedicated

server allows a host to run on the computer without a client. All players connect to this

machine and are considered clients.

The gameplay takes place inside a level, containing geometry actors and players.

Many levels can be running simultaneously, each being independent and shielded from the

other. This helps in cases where pre-rendered levels need to be fast-loaded one after

another. Every actor on a map can be either player-controlled or script-controlled. The script

controls the actor's movement, behavior and interaction with other actors. Actor's control

can change in game from player to script and vice versa.

 Time management is done by dividing each time second of gameplay into Ticks. Each

Tick is only limited by CPU power, and typically lasts 1/100th of a second. Functions that

manage time are really helpful for gameplay design. Latent functions, such as Sleep, MoveTo

and more cannot be called from within a function but only within a state.

When latent functions are executing in an actor, the actor's state execution does not

continue until the latent functions are completed. However, other actors may call functions

from the specific actor that handles the latent function. The result is that all functions can be

called, even with latent functions pending.

64

 In UnrealScript, every actor is as if executed on its own thread. Windows threads are

not efficient in handling thousands at once, so UnrealScript simulates threads instead. This

means that 100 spawned actors will be executed independently of each other each Tick.

3.3.2 Object Hierarchy

 UnrealScript is purely object-oriented and comprises of a well-defined object model

with support for high level object-oriented concepts such as serialization and polymorphism.

This design differs from the monolithical one that classic games adopted having their major

functionality hardcoded and being non-expandable at the object level. Before working with

UnrealScript, understanding the object's hierarchy within Unreal is crucial in relation to the

programming part (Figure 15).

 The main gain from this design type is that object types can be added to Unreal at

runtime. This form of extensibility is extremely powerful, as it encourages the Unreal

community to create Unreal enhancements that all interoperate. The five main classes one

should start with are Object, Actor, Pawn, Controller and Info.

Object is the parent class of all objects in Unreal. All of the functions in the Object

class are accessible everywhere, because everything derives from Object. Object is an

abstract base class, in that it doesn't do anything useful. All functionality is provided by

subclasses, such as Texture (a texture map), TextBuffer (a chunk of text), and Class (which

describes the class of other objects).

Actor (extends Object) is the parent class of all standalone game objects in Unreal.

The Actor class contains all of the functionality needed for an actor to be placed inside a

scene, move around, interact with other actors, affect the environment, and complete other

useful game-related actions.

Pawn (extends Actor) is the parent class of all creatures and players in Unreal which

are capable of high-level AI and player controls.

Controller (extends Actor) is the class that defines the logic of the pawn. If Pawn

resembles the body, Controller is the brain commanding the body. Timers and executable

functions can be called from this type of class.

65

Info (extends Actor) is the class that sets the rules of gameplay. Players joining will

be handled in this class, which decides which Pawn will be created for the player in the

scene and which Controller will handle the behavior of the pawn.

Figure 15: The class hierarchy for the three most important classes that control the
application flow.

 As already described, the CyberballGameInfo class decides how new players

entering the scene are treated. The CyberballPawn class describes the properties and the

behavior of a Pawn entering a scene that is handled by CyberballGameInfo. Finally, the

CyberballGamePlayerController class handles the Pawn in the scene, according to user input.

3.3.3 Timers

 Timers are a mechanism used for scheduling an event to occur. Time management is

important both for gameplay issues and for programming tricks. All Actors can have more

than one timers implemented as an array of structs. The native code involving timers is

written in C++, so using many timers per tick is safe, unless hundreds expire simultaneously.

This would require the execution of UnrealScript code for each one of the timers and the

heavy computational demands would lead to unwanted delay to the handling of the timers.

CyberballGameInfo CyberballPawn

CyberballGamePlayerController

GamePawn

GameInfo

GamePlayerController

PlayerController Pawn

Actor

Object

Info

Controller

66

This line of code defines that after 0.7 seconds, the function ThrowBall should be

called. The false value passed as an argument means that this timer should not repeat the

counting; it will only work once.

3.3.4 States

 States are known from hardware engineering where it is common to see finite state

machines managing the behaviour of a complex object. The same management is needed in

game programming, allowing each actor to behave differently, according to its state.

Usually, when implementing states in C/C++ there are many switch cases used, based on the

object's state. This method, however, is not efficient, since most applications require many

states, resulting to difficulties in developing and maintaining the application.

UnrealScript supports states at the language level. Each actor can include many

different states; however, only one can be active at any time. The state the actor is in

reflects the actions it wants to perform. Attacking, Wandering, Dying are potential states a

Pawn may acquire. Each state can have several functions, which can be the same as another

state's functions. However, only the functions in the active state can be called. For example,

if an application dictates that an action should only be performed in a specific stage, then

this stage could be encapsulated in a different state that implements the function

corresponding to that action differently than other states.

States provide a simple way to write state-specific functions, so that the same

function can be handled in different ways depending on which state the actor is in when the

function is called. Within a state, one can write special "state code", using the regular

UnrealScript commands plus several special functions known as "latent functions". A latent

function is a function that executes slowly (i.e. non-blocking), and may return after a certain

amount of "game time" has passed. Time-based programming is enabled which is a major

benefit that neither C/C++, nor Java offer. Namely, code can be written in the same way it is

conceptualized. For example, a script can support the action of "turn the TV on; show video

for 2 seconds; turn the TV off". This can be done with simple, linear code, and the Unreal

engine takes care of the details of managing the time-based execution of the code.

SetTimer(0.7, false, 'ThrowBall');

67

3.3.5 Interfaces

UnrealEngine3’s UnrealScript has support for interface classes that resembles much

of the Java implementation. As with other programming languages, interfaces can only

contain function declarations and no function bodies. The implementation for these

declared methods must be conducted in the class that actually implements the interface. All

function types, as well as events, are allowed. Even delegates can be defined in interfaces.

 An interface can only contain declarations which do not affect the memory layout of

the class: enums, structs and constants can be declared. Variables cannot be declared for

this reason.

3.3.6 Delegates

 Delegates are a reference to a function within an instance. Delegates are a

combination of two programming concepts, e.g. functions and variables. In a way, delegates

are like variables in that they hold a value and can be changed during runtime. In the case of

delegates, though, that value is another function declared within a class. Delegates also

behave like functions, because they can be executed. It is this combination of variables and

functions that makes delegates such a powerful tool under the right circumstances.

3.3.7 Unreal Script Compiler

 The UnrealScript compiler is three-pass. Unlike C++, UnrealScript is compiled in

three distinct passes. In the first pass, variable, struct, enum, const, state and function

declarations are parsed and remembered, e.g. the skeleton of each class is built. In the

second pass, the script code is compiled to byte codes. This enables complex script

hierarchies with circular dependencies to be completely compiled and linked in two passes,

without a separate link phase. The third phase parses and imports default properties for the

class using the values specified in the default properties block in the .uc file.

3.3.8 Unrealscript Programming Strategy

 UnrealScript is a slow programming language when compared to C/C++. A program

in UnrealScript runs about 20x slower than C. However, script programs written are

executed only 5-10% of the time with the rest of the 95% being handled in the native code

written in C/C++. This means that only the 'interesting' events will be handled in

UnrealScript. For example, when writing a projectile script, you typically write a HitWall,

68

Bounce, and Touch function describing what to do when key events happen. Thus, 95% of

the time, a projectile script isn't executing any code and is just waiting for the physics code

to notify it of an event. This is inherently very efficient.

 The Unreal log may provide useful information while testing scripts. The

UnrealScript runtime often generates warnings in the log that notify the programmer of

non-fatal problems that may have occurred.

UnrealScript's object-oriented capabilities should be exploited as much as possible.

Creating new functionality by overriding existing functions and states leads to clean code

that is easy to modify and easy to integrate with other peoples' work. Traditional C

techniques should be avoided, such as writing a switch statement based on the class of an

actor or the state because code like this tends to clutter as new classes and states are added

or modified.

3.4 Flash Applications as User Interfaces

 The Unreal Development Kit (UDK) supports Heads-Up Displays (HUD) that can be

constructed in UnrealScript. In order to create a Graphical User Interface to be displayed on

the top of the regular viewport such as a menu that displays textboxes, checkboxes etc.

requires user response to it, however, this is inefficient. For this reason, UDK provides

support to integrate a Flash application inside a scene and project it on top of the surface of

a 3D object in the scene, or in the center of the screen.

 A Flash application can be ideally used as a User Interface in UDK, because it

incorporates the ability to display animated graphics, text or buttons on the screen on top of

the scene being rendered. It can also receive user input and provide feedback according to

it. A Flash application consists of many frames placed in the main timeline, an example

shown in Figure 16. The flow of the frames being displayed can be changed through

ActionScript - Flash’s scripting language, thus allowing controlling which frame will be

displayed next and when that will happen. Each frame can have its own set of graphics,

texts, movie clips and buttons and a script controlling the behavior of the frame’s

components.

69

Figure 16: The Flash authoring environment is presented with a completed Flash User
Interface.

 The graphics, the buttons, the checkboxes, the comboboxes and the input texts

inserted into the stage are shown. The components shown can be adjusted by user input

through ActionScript, which is a scripting programming language with a superset of the

syntax and semantics of the more widely known JavaScript and is suited to the development

of Flash applications. More details about Action Script can be found in section 3.4.2.

3.4.1 Authoring Environment

 In order to create a Flash application, a Flash authoring environment is necessary.

There are many different Flash authoring environments available; however, the most

powerful is Adobe Flash Professional CS5.5. Although it is not free, a 30-day trial version is

available for download.

 A freshly created Flash application is equipped with an empty stage and an empty

timeline. Objects, such as movie clips, graphics, buttons, text, sounds or other Flash

components, can be inserted into the application’s library, or directly into the scene in the

currently selected frame. Various different frames can be created, carrying different

components inserted into each frame and the control of the application can be handled

through ActionScript.

70

 When the Flash application is fully developed and working, the authoring

environment can compile the assets and the ActionScript comprising the application into an

executable file in SWF format. Such files can be directly executed by a Flash player and also

this is the format that UDK supports.

3.4.2 ActionScript 2.0

 Although Flash Professional provides the tools to create applications running in all

versions of ActionScript (up to 3.0) and of Flash Player (up to 10.3), UDK currently only

supports the integration of Flash applications with ActionScript 2.0 (AS2) and Flash Player 8.

ActionScript is a scripting programming language and it is a dialect of ECMAScript,

meaning it has a superset of the syntax and semantics of the more widely known JavaScript.

It is suited to the development of Flash applications.

 The language itself is open-source in that its specification is offered free of charge

and both an open source compiler and open source virtual machine are available. It is often

possible to save time by scripting something rather than animating it, which usually also

enables a higher level of flexibility when editing.

ActionScript 2.0 primitive data types

 The primitive data types supported by ActionScript 2.0 are:

 String: A list of characters such as "Hello World".

 Number: Any Numeric value.

 Boolean: A simple binary storage that can only be "true" or "false".

 Object: Object is the data type all complex data types inherit from. It allows for the

grouping of methods, functions, parameters, and other objects.

ActionScript 2.0 complex data types

There are additional "complex" data types. These are more processor and memory

intensive and consist of many "simple" data types. For AS2, some of these data types are:

 MovieClip - An ActionScript creation that allows easy usage of visible objects.

 TextField - A simple dynamic or input text field. Inherits the MovieClip type.

71

 Button - A simple button with 4 frames (states): Up, Over, Down and Hit. Inherits the

MovieClip type.

 Date - Allows access to information about a specific point in time.

 Array - Allows linear storage of data.

 XML - An XML object

 XMLNode - An XML node

 LoadVars - Load Variables objects allows for the storing and send of HTTP POST and

HTTP GET variables.

 Sound

 NetStream

 NetConnection

 MovieClipLoader

 EventListener

3.4.3 Connection between User Interface and Application

 The integration of a Flash application inside a scene in UDK requires that it should

first be compiled into an SWF file and imported inside the UDK asset library. Afterwards,

either UnrealScript or Unreal Kismet can initiate the Flash application, interact with it, hide it

or instruct it to stop playing.

 While a Flash application is playing inside a scene, UnrealScript can initiate a call of

an ActionScript function and vice versa. This feature allows full interaction between the

Flash interface and the application. Consequently, it is easy and efficient to create an

application that initiates a Flash interface whenever it is required and then receive the user’s

response and order it to stop playing.

72

Figure 17: The actions Open GFx Movie and Close GFx Movie.

 The action Open GFx Movie performs the required operations to start the Flash

Movie, which is inserted as an argument in its properties, as shown in Figure 17. Additional

settings may include whether a movie can capture user input as well as where to project this

movie, either on the screen or on an Actor’s surface.

 Also, Unreal Kismet provides the action Close GFx Movie which handles the

termination of the selected Flash application. In the Figure 17 the action Close GFx Movie

firing up when a flash command is executed through Unrealscript.

3.5 Summary

In this chapter, the technical requirements of this interactive 3D gaming system

were introduced. In addition, the architecture of the application that was developed for the

experiments of this work was presented, along with the inherent architecture of the Unreal

Development Kit (UDK) used to develop it.

73

4 Chapter 4 – Implementation

The Cyberball game is a ball-toss game that can be used for research on ostracism,

social exclusion or rejection. It has also been used to study discrimination and prejudice. The

Cyberball was originally intended as a simulation of ostracism in the context of a research

program (see Williams 1997, 2001; Williams, Forgas & von Hippel 2005; Williams & Zadro

2005). During the first Cyberball experiments, participants were recruited to log on to an

online experiment where they played a virtual ball-tossing game with two other participants

who had logged on from somewhere else in the world.

In this project the Cyberball3D+ game was played by three virtual players and the

human subject and many scenarios were evaluated by the neuroscientists, some fair and

other unfair to the subject (simulating social exclusion) or to the other avatars (simulating

empathy for social exclusion). The human subject played several rounds of the game. Each

round included varied scenarios simulating situations of social exclusion or empathy as well

as varied levels of anthropomorphism of the avatars. A typical paradigm of a game playing

consists of six rounds and each of these rounds is played twice but not consecutively and

used a scene from the five basic scenes, lasting 1.3 minutes. The first round simulates the

inclusion of all players and uses a low level of anthropomorphism; the second round

simulates the inclusion of all players as the first round but uses a high level of

anthropomorphism for all players. The third and the fourth rounds of the game simulate the

exclusion of the participant in the fMRI scanner and use low and high level of

anthropomorphism respectively. In addition, the fifth and the sixth rounds of the game

simulate the exclusion of the programmed players and use low and high level of

anthropomorphism respectively.

In this chapter the designing and implementation of the whole project is described

analytically.

4.1 Scenarios

Many scenarios were evaluated by the neuroscientists, some fair and other unfair to

the participant of the experiment (simulating social exclusion) or to the other avatars

(simulating empathy for social exclusion). The human subject played several rounds of the

game. Each round included varied scenarios simulating situations of social exclusion or

empathy.

74

Particularly, for the purposes of the Cyberball3D++ game we implemented three

versions of the game. The three versions were the five basic scenarios, the probabilities and

the Reinforcement Learning version.

4.1.1 Five Basic Scenes

In the five basic scenes either no-one player is excluded or the participant/Player3

gets excluded by Player 1 or Player 2 or both of them. In addition, in this version of the game

the participant and the Player 3 are not able to throw the ball to each other.

Scene1: No – one player is excluded

75

Scene2: The user (Player P) gets excluded by Player 1 and Player 2

Scene3: The Player 3 gets excluded by Player 1 and Player 2

76

Scene4: The Player 3 gets excluded by Player 1 or Player 2

 OR

Scene5: The user (Player P) gets excluded by Player 1 or Player 2

 OR

77

4.1.2 Scenarios Based on Probabilities

In this version, the neuroscientists using the main menu of the game are able to fill

in the percentages of the tosses that each player makes to each one of the other players. For

example, the neuroscientists can set the probabilities that the Player 1 will pass the ball to

the Players 2, 3 and the participant independently of one another, the probabilities that the

Player 2 will pass the ball to the Players 1, 3 and the participant, as well as the probabilities

that the Player 3 will pass the ball to the Players 1 and 2. In addition, the participant and the

Player 3 are not able to throw the ball to each other.

In the graph below we can see a typical paradigm of this version. The neuroscientists

using these percentages want to investigate if the participant (P) reduces or increases the

number of passes to player 2. The first behaviour indicates an ‘altruistic punishment’ (other-

oriented motive) where the participant (P) is not passing the ball to player 2 because the

player 2 is excluding the player 3, while the second behaviour indicates a ‘direct reciprocity’

(self-oriented motive) where the participant (P) is passing the ball to player 2 because the

player 2 includes the participant (P) during the game.

 P

1

3

33%

33%

33%

10%

45%

45%

2

78

4.1.3 Reinforcement Learning in Cyberball3D+

An extension of the Cyberball3D+ game was to program players to be dynamically

intelligent. For this reason, we implemented the third version of the Cyberball3D+ game.

Particularly, we implemented a more sophisticated version of Cyberball3D+ including state

of the art Reinforcement Learning methods in Games and incorporating a form of learning

affecting players' behavior in Cyberball3D+. This sophisticated version of Cyberball3D+ made

the game more competitive and intelligent integrating rules and scores as well as creating

intelligent opponents (computer players) modeling their decision making behavior.

Two potential rules were the ability of each player to throw the ball to any of the

players of the game and also the inclusion of a reward system whereby points were given to

or removed from a player depending on his/her ball throws. Particularly, if a player threw

the ball to the player that had the highest number of receiving tosses he/she lost a point

while if a player threw the ball to the player that had the lowest number of receiving tosses

he/she won a point. In addition, if a player threw the ball to a player that had a medium

number of receiving tosses he/she did not lose or win points. The player that obtained the

highest score of points he/she won the game. The score of the participant was displayed on

the screen during the rounds of the game.

Participants were informed that they were able to throw the ball to any player in the

game and also that there was a reward system. Although they were not informed on how

they gain or lose points, they were able to figure it out on their own, if they paid attention

on the pointing system since the score appear on the screen. The purpose of this approach

was to make the players to understand that they have to feel empathy for the excluded

players throwing the ball to them if they want to win the game.

We created intelligent opponents (computer players) using a Reinforcement

Learning Algorithm. The algorithm that we used was the Q‐Learning algorithm. The Q–

learning method is a Reinforcement Learning algorithm that updates the value of a

state‐action pair after the action has been taken in the state and an immediate reward has

been received (Watkins & Dayan 1992). Values of state‐action pairs, Q(s, α) are learned

since the resulting policy is more easily recoverable than learning the values of states alone,

V(s). Q‐learning algorithm will converge to an optimal value function under conditions of

sufficiently visiting each state-action pair, but often requires many learning episodes to do

so.

79

We assumed that the Cyberball3D+ game has thirty six states, three actions that can be

taken and a reward system that is described above. The thirty six potential states are the Sk

where the factor k belongs to the range from ‘1’ to ‘36’. The situation of the environment

for each state Sk is described in the table below. The key C indicates who player has the

ball, the keys H, M and L indicate if the player has the highest, medium or lowest number of

receiving tosses.

TABLE I: The states of the environment in the Reinforcement learning version of the game.

State Participant (P) Player1 Player2 Player3

S1 C H M L

S2 C H L M

S3 C H L L

S4 C M H L

S5 C L H M

S6 C L H L

S7 C M L H

S8 C L M H

S9 C L L H

S10 H C M L

S11 H C L M

S12 H C L L

S13 M C H L

S14 L C H M

S15 L C H L

S16 M C L H

S17 L C M H

S18 L C L H

S19 H M C L

S20 H L C M

S21 H L C L

S22 M H C L

S23 L H C M

S24 L H C L

S25 M L C H

80

S26 L M C H

S27 L L C H

S28 H M L C

S29 H L M C

S30 H L L C

S31 M H L C

S32 L H M C

S33 L H L C

S34 M L H C

S35 L M H C

S36 L L H C

The three actions that could be taken in a state were the throws of the ball to any of the

rest of the players of the game (the game consisted of four players).

In the Q‐Learning algorithm when an action α is taken in state s, the value of a

state‐action pair, or Q‐value, is updated as Q(s, α) = Q(s, α) + a(r + γV(s’) ‐ Q(s, α))

Where α ∈ [0, 1] is the learning rate, r is reward that is observed, γ is the discount factor, s’

is the next state, and V(s’) = maxa’Q(s’, α’).

We defined the value of the learning rate ‘a’ to be equal to 1 because our

environment is full deterministic and it has a finite number of steps. In addition, we defined

the value of the discount factor ‘γ’ to be equal to 1 due to our game is played to a specified

period, which is determined by neuroscientists.

The best using of the Reinforcement learning system in our project was to train first

the opponents (virtual players) with the rules and the reward that we have already

implemented in order to learn the best strategy to win the game and in the second phase

insert the trained opponents inside our game in order to explore the behavior and the brain

activation of the participant when he was trying understand and learn the environment.

However, we decided the learning of the environment from the opponents (virtual players)

and the participant to be done at the same time because the system is a fully deterministic

environment.

The intelligent opponent (computer player) acquired the necessary knowledge about

which action was the best choice for a given state after some learning episodes on each

state-action pair, by observing the points that he gained/lost and also the overall number of

receiving tosses of each player.

81

4.2 Creating the 3D Virtual Scenes

 The 3D Cyberball3D+ game was developed with the Unreal Development Kit (UDK)

allowing one user in the fMRI scanner to play with three players modeled in three levels of

anthropomorphism while undergoing an fMRI scan examining the neural basis of empathy

for social exclusion as an effect of level of anthropomorphism.

The UDK is a framework used mostly in creating computer games and visualization.

UDK consists of different parts, making it act both like a game engine and a 3D authoring

environment. It provides the necessary tools to create 3D objects and assign materials on

these, import 3D objects such as characters and their animations from 3ds Studio Max and

import and use sounds and sound effects. It, also, allows the designed application to

seemingly attach to Flash User Interfaces (UI). UDK can also be used to render computer

graphics scenes as well as create and respond to events while playing the game. UDK offers

the ability to use both C/C++ and UnrealScript, which provides the developers with a built-in

object-oriented programming language that maps the needs of game programming and

allows easy manipulation of the actors in a synthetic scene. The main components inside the

UDK are: The Unreal Editor which is used to create or import objects and edit VEs handling

all the actors and their properties located in the VEs; the Unreal Kismet, which allows for the

creation of sequences of events and corresponding actions and the Unreal Matinee which is

responsible for the animation of actors or real-time changes in the actors’ properties.

3ds Studio Max modeling software and the Adobe Flash Professional platform were

also employed. 3ds Studio Max provides the necessary tools to create 3D objects such as

virtual characters and assign materials on these. Additionally, it provides the tools to create

animation on 3D objects by applying a Physique or skin modifier. Also, 3ds Studio Max

exports the 3D objects in FBX format supported by UDK. 3D characters of varied

anthropomorphism were modeled and animated for catching and throwing the ball (Figures

28, 31 and 34). Motion capture data were not utilized and the movement was as natural as

possible. The derived 3D objects and animations were imported in UDK, by selecting the

import option in the asset library of the Unreal Editor.

The Adobe Flash Professional is a Flash authoring environment. A Flash application

can be used as a User Interface in UDK, because it incorporates the ability to display

animated graphics, text or buttons on the screen on top of the scene being rendered. It can

also receive user input and provide feedback according to it. A Flash application consists of

many frames, placed in the main timeline. The flow of the frames being displayed can be

82

changed through ActionScript - Flash’s scripting language. Each frame can have its own set of

graphics, texts, movie clips and buttons and a script controlling the behavior of the frame’s

components. The integration of a Flash application in a UDK scene requires that it should

first be compiled into an SWF file and then imported in UDK’s asset library. Afterwards,

either UnrealScript or Unreal Kismet can initiate the Flash application, interact with it, hide it

or instruct it to stop playing. While a Flash application is playing in a scene, UnrealScript can

initiate a call of an ActionScript function and vice versa. We used the Adobe Flash

Professional to create many User Interfaces such as the initial and return menu as well as

the interface that depicted the scores of the players in the Reinforcement Learning version

of the game.

In order to create the 3D scene that the application would render, several steps

were required, from creating the actual 3D objects placed in the scenes, to importing them

inside UDK and placing them in a synthetic scene, as well as creating and assigning the

appropriate materials and apply animations to these objects. These steps will be further

explained below.

4.2.1 Creating Visual Content

The synthetic scene of the Cyberball3D+ game consists of 4 players and one ball.

Particularly, the four players are positioned on the scene so as to form a rhombus, e.g. they

are placed on the vertices of a rhombus. Player 1 is placed on the left side, Player 2 on the

right and directly opposite of the participant in the fMRI scanner is Player 3. Three levels of

anthropomorphism (low, medium and high) were employed and in each round of the game

the appropriate 3D characters of the scene (Figures 45, 46 and 47) were displayed based on

the parameters selected by the neuroscientists as entered in the initial menu. The 3D

characters of the ‘low level’ of anthropomorphism (Figure 28) consist of human form of the

face and the body but their gender is not distinguishable. This was considered as the lowest

fidelity 3D character. While, the gender of the 3D characters of the ‘medium level’ of

anthropomorphism (Figure 31) is distinguishable, however, they do not have hair or beard

and they wear uniform clothing. Finally, the 3D characters of the ‘high level’ of

anthropomorphism (Figure 34) consist of high fidelity human characteristics and wear

distinguished clothes. The low-level 3D characters and their animations were modeled in 3ds

Studio Max. The 3D characters of medium and high level of anthropomorphism were

downloaded from 3D model’s repositories; however, the animations of the ball-throwing

were created in 3ds Studio Max.

83

Especially, the animations of the 3D characters such as the ball-throwing and ball-

catching to all directions were modeled inside the 3ds Studio Max only once using the low

level 3D character and were saved in a .bip format. Then, each different animation was

imported to all characters of all levels of the anthropomorphism through motion editor of

3ds Studio Max, separately and was exported in an .fbx format as is the format that UDK

supports. In the next state of the implementation of the game the derived 3D objects and

animations were imported in UDK in an .fbx format by selecting the import option in the

asset library of the Unreal Editor. The modeling of the characters of all levels of the

anthropomorphism will be more explained and depicted in figures analytically below.

A. “Low level’ of anthropomorphism

The 3D characters of the ‘low level’ of anthropomorphism as described above consist of

human form of the face and the body but their gender is not distinguishable. For the

modeling of the lowest fidelity 3D character were used two sketches that were depicted the

front and the right view of a human silhouette, respectively. These sketches were imported

and positioned on the scene of 3ds Studio Max so as to form a vertical angle. Using the

Editable Poly Modifier of the 3ds Studio Max we started to create small polygons and

connect them to each other based on these two sketches until a human silhouette be

modeled.

 Figure 18 shows two viewpoints of the 3ds Max scene that depicts the two sketches

and a part of the final model of the low level 3d character. In this figure, the human body is

depicted without the head, the hands and the foot. In the next steps, were modeled the rest

parts of the body as shown in Figures 19, 20, 21, 22, 23.

84

Figure 18: A 3d representation from the process of the low level character modeling.

Figure 19: A 3d representation from the process of the modeling of the head of the low level
character.

85

Figure 20: A 3d representation from the process of the modeling of the hand of the low level
character.

Figure 21: The left image represents the low level character without UVW modifing, while the
right image shows a snapshot during the application of the Unwrap UVW modifier to the sub-

object selections of the character.

86

Figure 22: The left image represents the result of the UVW modifier. The right image shows the
3d object that finaly were used for the head of the low level character.

Figure 23: The screenshot represents the final 3D model of the low level 3D character.

 After the modeling of the 3D character using the Editable Poly, a Unwrap UVW

modifying is necessary to assign mapping (texture) coordinates to objects and sub-object

selections. The Unwrap UVW modifier is used to assign planar maps to sub-object

selections and to edit the UVW coordinates of those selections. Existing UVW

coordinates on an object can be unwrapped and edited as well. Maps can be adjusted to

the proper fit on a Mesh, Patch, Polygon, HSDS, or NURBS model. Also, the Unwrap UVW

87

modifier can be used as a self-contained UVW mapper and UVW coordinate editor, or in

conjunction with the UVW Map modifier.

Although, the modeling of the body of the character is done, is required the

application of a Skin or Physique Modifier for the modeling of the animations of the

character. Particularly, it is necessary to associate the character mesh with the biped’s

skeletal parts. This is accomplished through a process called skinning. Just as the human

skin is moved by the motion of our bones and muscles, the character is animated by

means of a skinning modifier that deforms the mesh according to the rotation and

position of the objects in the biped hierarchy. After the biped is correctly associated with

the mesh (skinned), each part of the biped acts just like a bone inside a body.

At the time the mesh is skinned, vertices on the mesh are associated with one or

more bones via a weighting system. A capsule-shaped envelope is created around each

bone based on the bone’s size as shown in Figure 24. Vertices that fall within a bone’s

envelope receive some weight from it, meaning they are moved by it. A vertex that falls

within the capsules of more than one bone receives appropriate weights from each

bone.

Figure 24: The representation of the applying of the Skin Modifier and the capsule-
shaped envelope that was created around of a thigh bone.

88

When the Skin or Physique Modifier applied to the character, then next step for the

modeling of the animations of the character is to create the movements using the Auto-Key

and the Animation Timeline. The animation timeline is the numbered bar just below the

animation views and the numbered increments represent the number of frames set for an

animation. Using the Auto Key Mode, when a change to objects’ position, rotation, and scale

made, the 3ds Max creates a key storing the new value for the changed parameter at the

current time. The 3ds Max automatically fills in the frames between the different keys.

For the purposes of the Cyberball3D++ game we implemented the ball-throwing and

the ball-catching animations to all directions such as the catching/throwing of the tossing

ball from/to the left or right or front player.

The animations were modeled only once using the low level 3D character and were

saved in a .bip format (Figure 25). Then, for the modeling of the animations of the rest 3D

characters the .bip animations were loaded through the Motion Editor and its loading action

for a .bip file (Figure 26). Finally, all characters and their animations separately were

exported in an .fbx format as is the format that UDK supports (Figure 27).

Figure 25: The screenshots represent a paradigm of the modeling of an animation.

89

Figure 26: The screenshots depict the loading of a .bip file.

Figure 27: The screenshots depict the exporting of a low level character as well as an
unique animation.

90

Figure 28: 3D representation of the character of the “low level” anthropomorphism.

B. “Medium level’ of anthropomorphism

As described above, while, the gender of the 3D characters of the ‘medium level’ of

anthropomorphism is distinguishable, however, they do not have hair or beard and they

wear uniform clothing. The 3D characters of medium level of anthropomorphism were

downloaded from 3D model’s repositories (Figure 29); however, the animations of the ball-

throwing and the ball-catching were modeled in 3ds Studio Max loading the .bip files that

are created using the lowest fidelity 3D character (Figure 30).

Figure 29: Screenshots that represent the process of generate a 3d model using the 3D model’s
repositories.

91

Figure 30: These images decpict two paradigms of loading two different animations using the .bip files.

92

Figure 31: The six images above represent the 3d characters of the medium level of anthropomorphism
that were used in the game.

C. “High level’ of anthropomorphism

Finally, the 3D characters of the ‘high level’ of anthropomorphism consist of high fidelity

human characteristics and wear distinguished clothes. The process of the modeling of these

characters and their animations was the same as the process that was following for the

medium level anthropomorphism characters.

93

Figure 32: Screenshots that represent the process of generate a 3d model using the 3D model’s
repositories.

Figure 33: These images decpict two paradigms of loading two different animations using the .bip
files.

94

Figure 34: The six images above represent the 3d characters of the high level of
anthropomorphism that were used in the game.

95

D. Modeling of the ball

The ball was downloaded from a 3d model repository but the changes of the model

were made through the Edit Poly modifier (Figure 35). The 3d model was exported in a .fbx

format and imported in UDK by selecting the import option in the asset library of the Unreal

Editor. The movements of the ball such as the tossing or catching of the ball from or to all

other players were modeled using the Matinee tool of the Unreal Editor (Figures 37 and 38).

Particularly, we created different Matinee events for each animation of the ball by designing

separate Matinee sequences for each different direction of movement of the ball from a

player to all other players (Figure 36).

Figure 35: 3d representation of the modeling of the ball inside the 3ds Max.

Figure 36: The images depict all Matinee events that created for each animation of the ball.

96

Figure 37: An example of creating a ball animation using the Unreal Matinee Editor.

97

Figure 38: 3d representation of a ball animation inside the scene of the Unreal Editor.

4.2.2 Setting up the Scene in UDK

Inside UDK, the created 3D objects such as the 3D characters and the ball were

imported, by selecting the import option in the Asset library of the Unreal Editor. UDK reads

the file containing the exported 3D objects and recreates the geometry of the objects. It also

creates the different material slots for each part of the 3D object and initializes the UV

channels of the object. The 3d characters were imported as Skeletal Meshes while the ball as

Static Mesh. In addition, the animations of each character as well as the sounds that were

used during the game were imported inside the Content Browser. Particularly, the AnimSet

Editor of each Skeletal Mesh was using to import all animations in an .fbx format for each

human character, separately.

In the (Figures 39, 40, 41, 42 and 43), were represented the Content Browser that

contains all 3d models, the importing option inside the Content Browser as well as the

AnimSet Editor, the Material Editor, and the Sound Cue Editor. Furthermore, The Content

Browser is the primary area of the Unreal Editor for creating, importing, organizing, viewing,

and modifying content assets within Unreal Editor. It also provides the ability to manage

content folders and perform other useful operations on assets, such as renaming, moving,

98

copying, and viewing references. The Content Browser can search for and interact with all

assets in the game.

 In addition, the AnimSet Editor is responsible for the changing of the main attributes

of a Skeletal Mesh, such as its clothes, materials and its movements. These changes will

affect the instances of this object that will be inserted in the virtual scene, unless they are

overridden. The Material Editor Tool is responsible for creating and editing the different

materials that can be assigned to objects inside the scenes created, while the Sound Cue

Editor is a node-based editor that is used to work with audio and provides the necessary

tools, in order to create various sound effects.

Figure 39: The Content Browser.

Figure 40: The importing option inside the Content Browser.

99

Figure 41: The importing option of a fbx animation inside the AnimSet Editor.

Figure 42: Material Editor depicting the overall material that was used for a 3d model.

100

Figure 43: One Sound node inside the Sound Cue Editor.

Figure 44: The final scene of the game inside the Unreal Editor.

The synthetic scene of the Cyberball3D+ game consists of 4 players and one ball,

inside the Unreal Editor (Figure 44). Particularly, the four players are positioned on the scene

so as to form a rhombus, e.g. they are placed on the vertices of a rhombus. Player 1 is placed

on the left side, Player 2 on the right and directly opposite of the participant in the fMRI

101

scanner is Player 3. Three levels of anthropomorphism (low, medium and high) were

employed and in each round of the game the appropriate 3D characters of the scene

(Figures 45, 46 and 47) are displayed based on the parameters selected by the

neuroscientists as entered in the initial menu.

In addition, a PointLight was utilized in the center of the scene, simulating an

artificial light.

Figure 45: Cyberball3D+ game of low level of anthropomorphism.

Figure 46: Cyberball3D+ game of medium level of anthropomorphism.

102

Figure 47: Cyberball3D+ game of high level of anthropomorphism.

4.3 Unrealscript Classes

 The core of the development of the complete application required for the fMRI

experiments was implemented in UnrealScript. Several classes were created in UnrealScript

which would handle the aspects of the application’s rendering, navigation and interaction

with the synthetic scenes and the other 3d models. The most important classes created will

be presented here.

CyberballGameInfo: This was the class of the application that defined the main properties,

such as the Pawn that would be used in the application and the Controller that would handle

the Pawn. This class extended the GameInfo class, as can be seen in its declaration:

class CyberballGameInfo extends GameInfo;

This class was needed to define the default Pawn and the Controller for the Pawn

that would be used in the experiments, when a new 3D scene was loaded. It defines the

game being played: the game rules, scoring, which actors are allowed to exist in this game

type, and who may enter the game. While this class is the public interface, much of its

functionality is delegated to several classes to allow easy modification of specific game

components. A CyberballGameInfo actor is instantiated when the level is initialized for

gameplay (in C++ UGameEngine::LoadMap()). The class of this actor is determined by the

DefaultGame entry in the game's .ini file (in the Engine.Engine section), which was set to be

103

CyberballGameInfo. The GameType used can be overridden in the class’s script event

SetGameType(), called on the game class picked by the above process.

The experiment flow was controlled from the Controller of the Pawn, so the code

needed in this class was to define the default Pawn and the default Controller of the Pawn as

well as the class that was responsible for the User Interfaces, in the default properties block

of the class as follows:

DefaultProperties
{

 bDelayedStart = false;
 HUDType = class'ScoreHUD';
 DefaultPawnClass = class 'CyberballPawn';
 PlayerControllerClass = class 'CyberballGamePlayerController';

}

CyberballPawn: This class defined the Pawn that would be used in the application. When a

scene was started, a new CyberballPawn was instantiated, as instructed from the

CyberballGameInfo class. It extended from the Pawn class and defined the main properties

of the used Pawn. The class declaration was the following:

class CyberballPawn extends Pawn;

The only pawn used in the experiments was that belonging to the participant and it

was assumed to be a simple camera navigating inside the synthetic scenes. Also, UDK

supports the ability for Pawns to jump, swim, fly, climb ladders, etc. Such features were not

required; therefore, these abilities were disabled in the default properties of the Pawn class.

The settings used for the Pawn in its default properties block can be seen below:

DefaultProperties
{
 bCanBeDamaged=false //this pawn cannot receive any damage.
 bCanCrouch=false //this pawn cannot crouch
 bCanFly=false //this pawn cannot fly
 bCanJump=false //this pawn cannot jump
 bJumpCapable=false //this pawn is not capable of jumping
 bCanSwim=false //this pawn cannot swim
 bCanTeleport=false //this pawn cannot teleport

}

104

CyberballGamePlayerController: This class was used as the Controller of the CyberballPawn

and took control of the created Pawn when a scene was started, as instructed by

CyberballGameInfo. It was the class that handled all aspects of the application and in which

all computations were taking place, such as the interactions with the other players. It

extended from GamePlayerController and it was bound to Cyberball for saving its properties

between different rounds of the game and to TestDLL, in order to create entries in the log

files. The declaration of the class was the following:

class CyberballGamePlayerController extends GamePlayerController DLLBind(TestDLL)
config(Cyberball);

The CyberballGamePlayerController class contained all the functions and code

necessary to control the state of the experiment and the events that should occur at specific

time points. All of these will be described in different parts in the following subsections. In

the default properties block of this class, the default Player Input class, which is responsible

for the translation between button presses from the user and actions inside the virtual

scene, was defined, as follows:

DefaultProperties
{
 InputClass=class'CyberballPlayerInput';
}

4.4 Handling User Input

 The core development of the complete application as described above was

implemented in UnrealScript. Several classes were created in UnrealScript which handles the

aspects of the application’s interaction with the synthetic scenes. One of the main

requirements of the application was that the synthetic scenes were to be interactively

manipulated and that the application was required to react to user input throwing the ball

to the players. In order to achieve this, the buttons corresponding to the physical button

boxes placed in the fMRI scanner and utilized for interacting with the scene were registered

with their respective commands. A Current Designs 932 set up was utilized (Figure 59). Two

buttons from a four-button interface are used to throw the ball left or right respectively. The

105

remaining two buttons of the 4-button-boxes are not used. The two main methods that

handled the participant’s actions were ThrowLeft and ThrowRight. When the participant

pressed a button to throw the ball left or right the Controller class executed the ThrowLeft

or ThrowRight method, respectively. These methods check first if the participant has the ball

and then act to throw the ball to either Player 1 or 2. In addition, a more action was added

to the configuration file that was responsible for the termination of the current round

displaying the main menu when the button escape of the keyboard is pressed by the

neuroscientists.

So, the following entries were added in the “DefaultInput.ini” configuration file,

which is responsible of defining the key bindings for the Input Manager to handle:

.Bindings=(Name="one",Command="GBA_ThrowLeft")

.Bindings=(Name="four",Command="GBA_ThrowRight")

.Bindings=(Name="Escape",Command="GBA_EscapeFunction")

Then, in the same configuration file, the commands bound to the buttons were

further assigned to a specific method that would handle them in the

CyberballGamePlayerController class:

.Bindings=(Name="GBA_ThrowLeft",Command="ThrowLeft");

.Bindings=(Name="GBA_ThrowRight",Command="ThrowRight");

.Bindings=(Name="GBA_EscapeFunction",Command="EscapeFunction");

Each one of the methods ThrowLeft, ThrowRight and EscapeFunction assigned to

each button resides in the CyberballGamePlayerController class and handles the specific

action that it is assigned to.

exec function ThrowLeft(){
 if(currentPosition == 0 && ballIsAttached == 1){
 Values(0,1,'ThrowBallLeft','CatchBallRight',5);
 SetTimer(0.7,false,'ThrowBall');
 }
}

exec function ThrowRight(){
 if(currentPosition == 0 && ballIsAttached == 1){
 Values(0,2,'ThrowBallRight','CatchBallLeft',4);

106

 SetTimer(0.7,false,'ThrowBall');
 }
}

exec function EscapeFunction(){

 consolecommand("open CyberballNew");
}

 The functions ThrowLeft and ThrowRight check first whether the participant had the

ball and then acted to throw the ball to Player 1 and 2 activating the animations

'ThrowBallLeft'/'CatchBallRight' and 'ThrowBallRight'/'CatchBallLeft, respectively. In

addition, there was a timer that counted the time that had to be passed before the function

'ThrowBall' was executed. Furthermore, the function EscapeFunction was responsible to

send a console command to the Game Controller to terminate the current round and open

the CyberballNew scene again.

4.5 Logging of Player’s Actions

The application is recording every action by the players in a separate log file

dedicated to each experimental round of the game in order to be able to understand and

analyze the data gathered from each experiment. For each participant, a different log file is

created for each round which follows the following naming convention: log(Participant

Number)_r(Number of Round).csv. Each ball tossing occurring by all players is being

recorded in the log file. The first data column records the time stamp when a player throws

a ball, the second column which player throws the ball and the third column which player

catches the ball. The time was measured in milliseconds starting just at the start of the game

of the experiment assumed to be time point 0.

In order to implement the log file operations, a .dll file was bound to the Controller

class, providing the necessary methods to record each log entry. This was implemented

because UDK’s support for I/O operations is limited avoiding extreme overhead for the

application since UnrealScript is very slow and inefficient for such operations. Whenever a

new log entry was recorded in the log file, the controller could simply call the C/C++ function

residing in the .dll file and let it perform the operation.

107

In order also, to make a function residing in the .dll visible in an UnrealScript class, it

had to be declared in that class with a dllimport and a final modifier. The functions that were

in the .dll file and were included in the controller class were the following:

dllimport final function initStartTime();

dllimport final function int ReturnCurrentTime();

dllimport final function logWriteEvent(int pn, int round, int ThisPlayer, int ToPlayer, string
msg);

dllimport final function logWriteSyncPulse(int pn, int round, int ThisPlayer, int ToPlayer,
string msg);

dllimport final function logHeaders(int pn, int round, string Lev, string levelAnt, string GeA,
string genderA, string GeB, string genderB, string GeC, string genderC, string GeD, string
genderD);

dllimport final function logWriteTossesAndScores(int pn, int round, int tossesFromPlayerA,
int tossesFromPlayerB, int tossesFromPlayerC, int tossesFromPlayerD, int scoreFromPlayerA,
int scoreFromPlayerB, int scoreFromPlayerC, int scoreFromPlayerD);

dllimport final function logWriteEventScorePlayer(int pn, int round, int CurrentPlayer, int
score);

dllimport final function SaveFiledll(string saveThefile, string text);

dllimport final function string LoadFiledll(string loadThefile);

dllimport final function string LoadAllFilesdll();

 The function startTime was executed when the game was started while the function

ReturnCurrentTime was executed when a new round of the game was started. The .dll file

had two global variables named startTime and Timenow respectively, which were set to be

of struct timeb type, located in <sys/timeb.h>. So, the functions were designed to be the

following:

__declspec(dllexport) void initStartTime()
{
 ftime(&startTime);
 FILE* fp = 0;

 fopen_s(&fp, "startTime.jc", "w");

 fprintf(fp, "%ld\n", startTime.time);

108

 fprintf(fp, "%d", startTime.millitm);

 fclose(fp);
}

__declspec(dllexport) int ReturnCurrentTime()
{
 int currenttime;
 ftime(&Timenow);

 currenttime = Timenow.time; //Seconds of current time

 return(currenttime);

}

__declspec(dllexport) void logWriteEvent(int pn, int round, int ThisPlayer, int ToPlayer,
wchar_t* msg){

 double n = Timenow.time*1000 + Timenow.millitm;
 double s = startTime.time*1000 + startTime.millitm;

 double diff = n - s;

 FILE* fp = 0;
 char filename[100] = "";

 int rd = round+1;

 sprintf_s(filename, "%s_%d_r%d%s", "log", pn, rd, ".csv");

 fopen_s(&fp, filename, "a");
 if(fp == NULL)
 return;

 fprintf(fp, "%.0lf,", diff);

 fprintf(fp, "%d,%d,",ThisPlayer, ToPlayer);

 const size_t newsize = 500;
 size_t convertedChars = 0;

 size_t origsize = wcslen(msg) + 1;
 char message[newsize];
 wcstombs_s(&convertedChars, message, origsize, msg, _TRUNCATE);
 fprintf(fp, "%s\n", message);

 fclose(fp);
}

109

__declspec(dllexport) void logWriteSyncPulse(int pn, int round, int ThisPlayer, int ToPlayer,
wchar_t* msg){

 double n = Timenow.time*1000 + Timenow.millitm;
 double s = startTime.time*1000 + startTime.millitm;

 double diff = n - s;

 FILE* fp = 0;
 char filename[100] = "";

 int rd = round+1;

 sprintf_s(filename, "%s_%d_r%d%s", "log", pn, rd, ".csv");

 fopen_s(&fp, filename, "a");
 if(fp == NULL)
 return;

 fprintf(fp, "%.0lf,Sync Pulse,", diff);

 fprintf(fp, "%d,%d,",ThisPlayer, ToPlayer);

 const size_t newsize = 500;
 size_t convertedChars = 0;

 size_t origsize = wcslen(msg) + 1;
 char message[newsize];
 wcstombs_s(&convertedChars, message, origsize, msg, _TRUNCATE);
 fprintf(fp, "%s\n", message);

 fclose(fp);
}

When a ball tossing occurs by a player the functions logWriteEvent and

logWriteSyncPulse were executed in order to record the data in the log files. As described

above, the first data column records the time stamp when a player throws a ball, the second

column which player throws the ball and the third column which player catches the ball. The

time was measured in milliseconds starting just at the start of the game of the experiment

assumed to be time point 0.

In addition, the function LogHeaders was called at the starting of each round of the

game recording some parameters of the round such as the level of the anthropomorphism

of all players as well as the gender of each player. While the functions

110

logWriteTossesAndScores and logWriteEventScorePlayer were used in the ReInforcement

Learning version of the game to record the scores of each player.

Finally, the functions SaveFiledll, LoadFiledll and LoadAllFilesdll were used for

loading and saving the parameters of each round of the game and will be described in the

fifth section.

4.6 Time Limits Control

 The game consists of a number of rounds and each round is played at preordained

time defined by the neuroscientists in the initial menu. The application was timed perfectly

in order to be synchronized with the brain images acquired by the scanner.

 The Controller class was developed in order to control the time limits and react so as

not to exceed them. At the end of each ball tossing, the Controller class calls a C/C++

function residing in the .dll file to check if the time limit was exceeded or calculate the

remaining time. The implementation code that checks the time limit is described below:

curTime = ReturnCurrentTime();
timenow = curTime - initTime ;
newversiontime = timenow + 3;
remaintime = overallnum - timenow;

if(newversiontime < overallnum){
 SetTimer(0.8,false,'ThrowBall');
}
else{
 CurrentRound++;
 if(CurrentRound==CountOfRounds){
 returnMenuForScores = 1;
 SetTimer(remaintime,false,'Finished');
 }
 else{

 SetTimer(remaintime,false,'NextRound');
 SetTimer(remaintime,false,'SetBlackScreen');
 InTheNextRound = true;
 rmtime = remaintime + 5.5;
 SetTimer(rmtime,false,'GameBegin');
 }

}

111

As we can see, at the end of each ball tossing, the Controller class calls the

ReturnCurrentTime function to get the current time, and then calculates the time that is

passed from the starting of the current round and finally calculates the time that remains

until the end of the round. If there is enough time for the next ball tossing then the current

round is continuing to be played else the Controller class checks if there is other round that

has to be played by loading it. If all rounds of the games were played, then the game will be

finished.

4.7 Time Synchronization with fMRI Scanner

 The experiments were conducted inside an fMRI scanner and the application was

required to be perfectly synchronized with the scanner, in order to be able at a later stage of

the game to identify the exact action of the application associated with each brain image

acquired by the scanner. The application was instructed to send a specific sound sync pulse

to be recorded from the PC that was dedicated to recording the spike signals sent from the

synchronization box of the scanner, as well as the heart rate data and pupillometry of the

participant. The sound sync pulses were directed through the left audio channel of the

application, leaving the right audio channel available to the participant.

 The required synchronization between the fMRI scanner and the application was

achieved by sending such sound sync pulses to be recorded as an analog spike signal,

whenever a ball tossing occurred in the application while at the same time recording that

action and the exact time it happened in the log file. The log file describes the state of the

application associated to a specific brain image taking into account the sound sync pulse

sent last before receiving that image.

For each different ball tossing based on the direction of the movement of the ball

was sending different sound sync pulse through the left audio channel of the application, in

order to be easy distinguishable by the neuroscientists which player throws the ball and

which player catches the ball. When a ball tossing occurred, the Controller class sent a sync

pulse through the left audio channel in order to be recorded by the spike application and

then recorded the sync pulse in the log file, as described below:

ClientPlaySound(AllPlayersData[currentplayer].AnimsData[ToPlayerCount].sound);

logWriteSyncPulse(ParticipantNumber, CurrentRound, currentplayer, nextplayer, "");

112

In addition, at the start of each round of the game the Controller class also sent

sound sync pulses through the both audio channels, in order to be recorded by the spike

application and inform the participant that will be started a new round of the game, as we

can see on the code below:

ClientPlaySound(ParticipantSound);
ClientPlaySound(RoundSound);

4.8 Summary

This chapter describes in detail the implementation of this interactive 3D gaming

framework. Specifically, examples and source code samples were demonstrated, in relation

to analyze how the application met the requirements imposed by the expert psychiatrists in

order to incorporate a formal neuroscientific protocol for the fMRI scanner.

113

5 Chapter 5 – UI Implementation

 Although UDK includes preliminary support for User Interfaces (UI), the ability to

embed Flash User Interfaces was appropriate in relation to the requirements of the

experiments, since the UIs were required to be interactive and to be displayed transparently

on top of the rendered scene. These requirements could only be fulfilled with the use of

embedded Flash UI applications. The Flash application is imported as .SWF file in UDK and

loaded and displayed in a scene by connecting the Open GFx Movie action to the Level

Loaded and Visible event, which is automatically generated and activated by UDK, when the

virtual scene becomes visible. The Open GFx Movie action is provided by UDK and it accepts

an imported Flash UI as an argument, which it loads and displays it on the center of a screen

or on a specified surface.

Each Flash UI was designed so as to be displayed on top of the currently rendered

virtual scene as shown in Figure 48. The participant’s ability to navigate and look around the

virtual scene was disabled every time a Flash UI was displayed, so that the input could be

captured by the Flash UI itself.

Figure 48: A Flash UI menu being displayed on top of the currently rendered virtual scene.

114

5.1 Application Menus as Flash UIs

For the purposes of the Cyberball3D++ game we implemented the User Interfaces of

the game such as the "initial" and "return" menu as well as the interface that depicted the

scores of the players in the Reinforcement Learning version of the game using the Adobe

Flash Professional.

5.1.1 Initial Menu

The "initial" menu of the game (Figures 49, 50, 51, 52, 53 and 54) was used by

neuroscientists to define the parameters of the game. It was displayed on the top of the

screen when the game was initiated and the neuroscientists had the ability to select the

level of anthropomorphism of all avatars, the gender of each avatar and the scenario of each

round as well as define which player initially would have the ball at the start of each round.

In addition, they filled in the duration limit for each round.

Analytically, the neuroscientists had the ability to select one of the three versions of

the game. The three versions were the five basic scenarios, the probabilities and the

Reinforcement Learning version. Particularly, in the version of the five basic scenarios the

neuroscientists had the ability to select either the first scenario in which no player is

excluded or the second and third scenario in which programmed Players 1 or 2 (left or right

player) exclude the participant and Player 3 (player opposite the participant) from the game,

respectively. Finally, they were able to select the fourth or fifth scenario in which either the

Player 1 or 2 exclude the Player 3 and the participant from the game, respectively.

In the probabilities version of the game the neuroscientists were able to fill in the

probability of the tosses that each player made to each one of the other players. For

example the neuroscientists could set the probabilities that Player 1 would pass the ball to

Player 2, 3 and the participant independently of one another, the probabilities that Player 2

would pass the ball to Player 1, 3 and the participant, as well as the probabilities that Player

3 would pass the ball to Player 1 and 2.

Finally, in the Reinforcement Learning version of the game the neuroscientists were

able only to select the checkbox for this version.

115

Figure 49: The selection of the level of anthropomorphism of all avatars.

Figure 50: The selection of the gender of the player 1.

Figure 51: Two examples show the selection of the scenario from the five basic scenarios version of the game.

116

Figure 52: The filling of the probabilities in the second version of the game.

Figure 53: the selection of the third version of the game.

117

Figure 54: The left screenshot depicts the filling of two parameters of the game, while the right screenshot displays
an error message.

5.1.2 Return Menu

The "return" menu was displayed on the top of the screen at the end of the game

depicting a question to the neuroscientists if they want to continue the game or finish it.

Figure 55: The return menu that was depicted on the screen at the end of the game.

5.1.3 Score Menu

 The "score" menu was displayed on the upper left of the screen over the whole

duration of the game in the Reinforcement Learning version of the game and depicted the

scores of the players.

118

Figure 56: A screenshot shows the scores of the players during the game.

5.2 DLL Files for saving and loading UIs Parameters

Additionally, the neuroscientists using the "initial" menu had the ability to save the

rounds and the parameters of each round in a file through a C/C++ function residing in a .dll

file which is called by the Controller class as well as load them by selecting the name of the

file. The functions those were responsible for the saving and loading of the parameters of

the game were SaveFiledll, LoadFiledll and LoadAllFilesdll. As also described above, in order

to make a function residing in the .dll visible in an UnrealScript class, it had to be declared in

that class with a dllimport and a final modifier. So, these functions that were in the .dll file

were included in the controller as we can see below:

dllimport final function SaveFiledll(string saveThefile, string text);
dllimport final function string LoadFiledll(string loadThefile);
dllimport final function string LoadAllFilesdll();

The parameters of the game such as the level of the anthropomorphism of all

avatars, the gender of each avatar, the scenario and the definition of the starter player as

well as the duration limit of each round are saved and loaded as a string joining them using

the semicolon (‘,’) delimiter. The function SaveFiledll saves the string that contains the

parameters of the game in a file. The string with the parameters of the game and the name

of the file are passed as parameters in the function. In the same way, the functions

119

LoadFiledll and LoadAllFilesdll load the parameters of the game and the saved files returning

the string with the parameters of the game and the string with the names of all saved files,

respectively. So, the functions that were in the .dll file were designed to be the following:

__declspec(dllexport) void SaveFiledll(wchar_t* saveThefile, wchar_t* text)
{
 FILE* fp = 0;
 FILE* fpa = 0;

 // the name of the file
 size_t origsize = wcslen(saveThefile) + 1;
 const size_t newsize = 1000;
 size_t convertedChars = 0;
 char savefile[newsize];
 wcstombs_s(&convertedChars, savefile, origsize, saveThefile, _TRUNCATE);

 fopen_s(&fp, savefile, "w");
 if(fp == NULL)
 return;

 //the string that will be saved in the file
 origsize = wcslen(text) + 1;
 convertedChars = 0;
 char txt[newsize];
 wcstombs_s(&convertedChars, txt, origsize, text, _TRUNCATE);

 fprintf(fp, "%s", txt);

 fclose(fp);

 origsize = wcslen(saveThefile) + 1;
 convertedChars = 0;
 char savefile2[newsize];
 wcstombs_s(&convertedChars, savefile2, origsize, saveThefile, _TRUNCATE);

 //Save the name of the file in the allfiles file
 fopen_s(&fpa, "allfiles", "a");
 if(fpa == NULL)
 return;

 fprintf(fpa, "%s", savefile2);
 fprintf(fpa, "%s", ",");

 fclose(fpa);
}

__declspec(dllexport) wchar_t* LoadFiledll(wchar_t* loadThefile)
{

120

 FILE* fp = 0;

 const size_t newsize = 1000;
 char txt[newsize];

 // the name of the file
 size_t origsize = wcslen(loadThefile) + 1;
 size_t convertedChars = 0;
 char loadfile[newsize];
 wcstombs_s(&convertedChars, loadfile, origsize, loadThefile, _TRUNCATE);

 const size_t cSize = 1000;
 wchar_t wc[cSize];

 fopen_s(&fp, loadfile, "r");
 if(fp == NULL)
 return wc;

 fgets(txt,1000,fp);

 fclose(fp);

 mbstowcs (wc, txt, cSize);

 return wc;
}

__declspec(dllexport) wchar_t* LoadAllFilesdll()
{
 FILE* fp = 0;

 const size_t newsize = 1000;
 char txt[newsize];

 const size_t cSize = 1000;
 wchar_t wc[cSize];

 fopen_s(&fp, "allfiles", "r");
 if(fp == NULL)
 return wc;

 fgets(txt,1000,fp);

 fclose(fp);

 mbstowcs (wc, txt, cSize);

 return wc;
}

121

The Figures 57 and 58 depict two examples of the loading and saving of the

parameters of the game. In the example of the loading of the parameters of the game the

neuroscientists are able to select the file that they want by using the combobox that

contains all the files that have been saved and press the ‘load’ button. In addition, in the

example of the saving of the parameters the neuroscientists have the ability to typing the

name of the file as they want and save it using the ‘save’ button.

Figure 57: The loading of the parameters of the game by selecting the name of a file.

Figure 58: The saving of the parameters of the game by pressing the ‘save’ button.

122

5.3 Creating UIs using both of Unrealscript and Actionscript

 As mentioned in the Section 3, the integration of a Flash application inside a scene in

UDK requires that it should first be compiled into an SWF file and then imported inside the

UDK asset library. Afterwards, either UnrealScript or Unreal Kismet can initiate the Flash

application, interact with it, hide it or instruct it to stop playing.

 While a Flash application is playing inside a scene, UnrealScript can initiate a call of

an ActionScript function and vice versa. This feature allows full interaction between the

Flash interface and the application. Consequently, it is easy and efficient to create an

application that initiates a Flash interface whenever it is required and then receive the user’s

response and order it to stop playing.

 The most User Interfaces that were used in this project such as the ‘initial’ menu and

the ‘return’ menu were initiated through the Unreal Kismet; however the User Interface that

depicted the scores of the players in the Reinforcement Learning version of the game was

initiated through UnrealScript. Nevertheless, all User Interfaces that were used in this

project could initiate a call of an UnrealScript function and vice versa.

 In particular, the pressing of the ‘Submit’, ‘Load’ and ‘Save’ button in the ‘initial’

menu initiated the call of the StartGame, LoadFile and SaveFile UnrealScript function,

respectively, passing the necessary parameters. The initiation of the call of the UnrealScript

functions inside Actionscript can be seen below:

ExternalInterface.call("StartGame",countofrounds,overallNumber,startPlayer,Scenario,ExcPl

ayer,countOfExc,ExcPlayerByOne,ExcPlayerByTwo,levelAnthrop,avatarP,avatar1,avatar2,ava

tar3,Modes,Probabilities0,Probabilities1,Probabilities2,Probabilities3,Probabilities4,Probabili

ties5,Probabilities6,Probabilities7);

ExternalInterface.call("SaveFile",SaveFile.text,countofrounds,overallNumber,startPlayer,Sce

nario,ExcPlayer,countOfExc,ExcPlayerByOne,ExcPlayerByTwo,levelAnthrop,avatarP,avatar1,a

vatar2,avatar3,Modes,Probabilities0,Probabilities1,Probabilities2,Probabilities3,Probabilities

4,Probabilities5,Probabilities6,Probabilities7);

ExternalInterface.call("LoadAllFile");

ExternalInterface.call("LoadFile",CurrentFile);

 In the Reinforcement Learning version of the game the User Interface that depicted

the scores of the players was initiated through the CyberballGameInfo class of UnrealScript

123

declaring the HUDType object to be an instance of the ScoreHUD class. In addition the

HudMovie object of the ScoreHUD was declared to be an instance of the ScoreMovie class as

well as the ScoreMovie class set to its MovieInfo object to be a .swf movie that was created

using Adobe Flash Professional. As we can see below, the TickHUD function of the

ScoreMovie class was used to get ticks in real time in order to update the interface in real

time as well via PostRender function of the ScoreHUD class.

 The TickHUD function in every tick updated the variables scorA, scorB, scorC, scorD,

tosA, tosB, tosC, and tosA as well as set the visibility of the interface. These variables were

used to depict the scores and the overall number of receiving tosses of each player. In

addition, the interface was visible only in the Reinforcement Learning version of the game

so in every tick the TickHUD function checks if the game was in this mode in order to change

the visibility of this to true. So, the functions that were in the Unrealscript classes were

designed to be the following:

class CyberballGameInfo extends GameInfo;

DefaultProperties
{
 HUDType = class'ScoreHUD';

}

class ScoreHUD extends HUD;

var ScoreMovie HudMovie;

simulated event PostBeginPlay()
{
 // Grab all the normal initialization for the HUD class.
 super.PostBeginPlay();

 //Create a new instance of our custom GFX HUD class.
 HudMovie = new class'ScoreMovie';

 //Set it to realtime updating.
 HudMovie.SetTimingMode(TM_Real);

 //Calls an initialization function inside the custom GFX HUD class
 HudMovie.Init();

}

124

event PostRender()
{
 //Call all the other PostRender stuff from GFxMovie
 super.PostRender();

 // As long as we have a HUD, we call the TickHUD function on every tick.
 if (HudMovie != none){
 HudMovie.TickHUD();
 }

}

class ScoreMovie extends GFxMoviePlayer;

DefaultProperties
{
 MovieInfo=SwfMovie'Cyberball.Scores';
}

function Init(optional LocalPlayer LocPlay)
{
 //Gets all the other intialization stuff we need.
 super.Init (LocPlay);

 //Starts the GFx Movie that's attached to this script (IE: our HUD).
 Start();

 //Advances the frame to the first one.
 Advance(0.f);
 SetViewport(0,0,350,350);
}

function TickHUD(){
 local WorldInfo myworldinfo;
 local CyberballGameInfo cyberinfo;

 local String scorA, scorB, scorC, scorD;
 local String tosA, tosB, tosC, tosD;

 myworldinfo = class 'WorldInfo'.static.GetWorldInfo();
 cyberinfo=CyberballGameInfo(myworldinfo.Game);

 SetModeVis();

 scorA = cyberinfo.MyController.scs[0];
 scorB = cyberinfo.MyController.scs[1];
 scorC = cyberinfo.MyController.scs[2];
 scorD = cyberinfo.MyController.scs[3];

 tosA = cyberinfo.MyController.toss[0];

125

 tosB = cyberinfo.MyController.toss[1];
 tosC = cyberinfo.MyController.toss[2];
 tosD = cyberinfo.MyController.toss[3];

 SetVariableString ("_root.ScoreYou.text",scorA);
 SetVariableString ("_root.Score1.text",scorB);
 SetVariableString ("_root.Score2.text",scorC);
 SetVariableString ("_root.Score3.text",scorD);

 SetVariableString ("_root.TossesYou.text",tosA);
 SetVariableString ("_root.Tosses1.text",tosB);
 SetVariableString ("_root.Tosses2.text",tosC);
 SetVariableString ("_root.Tosses3.text",tosD);

}

function SetModeVis(){
 local WorldInfo myworldinfo;
 local CyberballGameInfo cyberinfo;

 myworldinfo = class 'WorldInfo'.static.GetWorldInfo();
 cyberinfo=CyberballGameInfo(myworldinfo.Game);

 if(cyberinfo.MyController.Mode == "2"){
 MyActionScriptVoidTrue();
 }

 else if(cyberinfo.MyController.Mode != "2"){
 MyActionScriptVoidFalse();
 }

 if(cyberinfo.MyController.returnMenuForScores == 1){
 MyActionScriptVoidFalse();
 }
}

function MyActionScriptVoidTrue(){
 ActionScriptVoid("_root.SetVisibleTrue");
}

function MyActionScriptVoidFalse(){
 ActionScriptVoid("_root.SetVisibleFalse");
}

126

Furthermore, from the side of ActionScript were used the functions

SetVariableString and ActionScriptVoid to set values to the TextBoxes objects of the

interface as well as the visibility of its.

5.4 Summary

This chapter describes the implementation of the User Interfaces (UI) that we used

in this interactive 3D gaming framework. The steps taken to create the individual UIs as Flash

applications and embed them in the complete systems were presented as well. In addition,

the challenges concerning the creation of interactive synthetic worlds and associated UIs as

displayed in the fMRI scanner were described as well as the solutions to overcome them

were explained.

127

6 Chapter 6 – Experiments

6.1 Materials

This experiment was designed to explore the changes in regional brain activity

associated with the pain of social exclusion as well as with feelings such as the empathy felt

when people observe other people get socially excluded. From a computer graphics point of

view this experiment investigated whether the level of anthropomorphism of the avatars

may affect game playing as well as fMRI data acquired at the same time the game playing

occurs. The goal was to discover the neural circuitry that supports such feelings as well as,

for the first time, devised behavioral fidelity metrics of character believability and emotional

engagement based on neural activity. Two groups of experiments were conducted, using the

‘Five Basic Scenes’ version of the Cyberball in the first group and a combination of the ‘Five

Basic Scenes’ and the Reinforcement learning versions in the second group.

6.1.1 Participants

10 healthy adult volunteers (eight female, two male mean age 41.5 years, range 29-

65) underwent functional echo planar imaging at Brighton and Sussex Medical School,

Sussex, United Kingdom in the first group of the experiments as well as 12 healthy adult

volunteers separated into two groups of six persons (nine male, three female mean age 29.5

years, range 25-34) participated in the second stage of the experiments at Technical

University of Crete.

6.1.2 Apparatus

In the first stage of the experiments the VEs were presented at VGA resolution on

the screen of an fMRI, with a Field-of-View comprising 50 degrees diagonal. A Current

Designs 932 (Figure 59) set up was utilized for interacting with the scene. Two buttons from

a four-button interface were used by participants to throw the ball left or right respectively.

The remaining two buttons of the 4-button-boxes were not used. The viewpoint was set in

the middle and front of the synthetic scene. Rotation and navigation around the scene were

disabled so that participants would not interact with the other virtual avatars only through

the playing of the game. The application ran on a standard PC connected to the screen of the

fMRI as Clone-Mode. The experiments were conducted inside an fMRI, which recorded the

128

brain images data. Another standard PC was used to record the spikes sent from the fMRI’s

synchronization box, as well as pulse oximetry and sound sync pulses from the application.

In the second stage of the experiments the VEs were presented at a standard PC of

the Laboratory of Distributed Multimedia Information Systems and Applications of the

Technical University of Crete. The arrows buttons of the computer keyboard were used by

participants to throw the ball to the virtual players. As the first stage of the experiments the

viewpoint of the VE was set in the middle and front of the synthetic scene as well as rotation

and navigation around the scene were disabled so that participants would not interact with

the other virtual avatars only through the playing of the game.

Figure 59: Photo of the Current Designs 932 response pad used in the experiments.

6.1.3 Visual Content

The synthetic scenes of the Cyberball3D+ game consisted of 4 players and one ball.

The four players were positioned on the scene so as to form a rhombus, e.g. they were

placed on the vertices of a rhombus. Player 1 was placed on the left side, Player 2 on the

right and directly opposite of the participant was Player 3. Three levels of

anthropomorphism (low, medium and high) were employed and in each round of the game

the appropriate 3D characters of the scene were displayed based on the parameters

selected by the neuroscientists as entered in the initial menu. In addition, three versions of

the game were implemented simulating social exclusion or empathy situations in all level of

anthropomorphism.

The 3D characters of the ‘low level’ of anthropomorphism consist of human form of

the face and the body but their gender is not distinguishable. This was considered as the

lowest fidelity 3D character. While, the gender of the 3D characters of the ‘medium level’ of

anthropomorphism is distinguishable, however, they do not have hair or beard and they

129

wear uniform clothing. Finally, the 3D characters of the ‘high level’ of anthropomorphism

consist of high fidelity human characteristics and wear distinguished clothes.

6.2 Experimental Procedure

6.2.1 Five Basic Scenes

In a block design the human subjects participated in several rounds of the

Cyberball3D+ task and these rounds were combinations of low or high anthropomorphism,

inclusion of all avatars, exclusion of human subject or exclusion of other player, simulating

social exclusion or empathy for social exclusion. A typical paradigm of an experiment was to

consist of six rounds and each of these rounds to be played twice but not consecutively,

lasting 1.3 minutes. The first round simulated the inclusion of all players (Scene 1) and used

a low level of anthropomorphism; the second round simulated the inclusion of all players

(Scene 1) as the first round but used a high level of anthropomorphism for all players. The

third and the fourth rounds of the game simulated the exclusion of the participant in the

scanner (Scene 2) and used low and high level of anthropomorphism respectively. In

addition, the fifth and the sixth rounds of the game simulated the exclusion of the

programmed players (Scene 3) and used low and high level of anthropomorphism

respectively. The task took 20 minutes. Between each round there was a 5-second break

displaying a black screen. The order of rounds was counterbalanced amongst participants.

 Two buttons from a 4 - button interface were used by participants to throw the ball

left or right respectively (Figure 59). User interactions were synchronized to the fMRI

scanner by using trigger information. A frequency modulated audio signal was generated at

prescribed times within the experimental phase. The audio signal was fed into a biometric

recorder, which also recorded heartbeat, scanning synchronization etc. A log was generated

marking the exact time the sync pulses were sent to the biometric recorder as well as logs

for user interactions.

Neuroscientists used a dedicated user interface to select the level of

anthropomorphism of all avatars, the gender of each avatar and the fairness of the game.

Particularly, before the game begun, the neuroscientists used a dedicated user interface to

fill in the overall number of rounds of the game (Figure 48). Moreover, the neuroscientists

selected the level of anthropomorphism of all avatars, the gender of each avatar, the level of

fairness of the round represented by the selected players to be excluded from the game and

the duration time of each round. When the researchers filled in all parameters of the game,

130

the game began and the participants in the fMRI scanner interactively played Cyberball3D+

by using the button boxes.

The fMRI scanner acquired brain images at strictly specified timings while the

participants followed the experimental protocol, performing the tasks assigned to them

while being immersed in the VEs such as throwing the ball to a player. Meanwhile,

participants’ physiological measures were acquired, such as heart rate and heart pulse

oximetry. In addition, this neuroscientific protocol implemented maintained the imposed

time limits and was completely synchronized with the fMRI scanner.

Participants followed a formal neuroscientific experimental protocol for fMRI

Cyberball3D+ task for which healthy controls were recruited to an existing study of abnormal

skin sensations. This study included structural imaging and DTI. They undertook an fMRI

emotional processing task exploring effects of skin and infestation related images. They also

complete questionnaire measures of Alexithymia (TAS), Anxiety (BAI), Interoceptive

Sensibility (Porges Body Perception Questionnaire), Empathy (BEES) and hypermobility

(Beighton score). In addition, the participants underwent laboratory testing for

Interoceptive Sensitivity (heartbeat detection and mental tracking tasks) and the Rubber

Hand Illusion. During the completion of the Cyberball3D+ task they underwent simultaneous

heart rate recording and pupillometry.

The 3D Cyberball3D+ paradigm conducted investigated two hypotheses. The first

hypothesis was that the emotional response of inclusion and exclusion of self and other

would be modulated by the level of anthropomorphism of the players. The second

hypothesis was that the exclusion of others would activate similar networks (social pain

matrix) to watching exclusion of self, therefore, eliciting empathy.

6.2.2 Five Basic Scenes and Reinforcement Learning

The Reinforcement Learning as described in a previous section is a type of Machine

Learning, and thereby also a branch of Artificial Intelligence. It allows machines and software

agents to automatically determine the best behavior within a specific context, in order to

maximize its performance. Simple reward feedback is required for the agent to learn its

behavior; this is known as the reinforcement signal. Reinforcement Learning allows the

machine or software agent to learn its behavior based on feedback from the environment.

This behavior can be learnt once and for all, or keep on adapting as time goes by.

In this work we used the Reinforcement learning methods to implement a more

sophisticated version of Cyberball and incorporating a form of learning affecting players'

131

behavior. This sophisticated version of Cyberball made the game more competitive and

intelligent integrating rules and scores as well as creating intelligent agents modeling their

decision making behavior.

We created two potential rules that were the ability of each player to throw the ball

to any of the rest of the players of the game and the inclusion of a reward system whereby

points were given to or removed from a player depending on his/her ball throws. In

particular, if a player threw the ball to the player that had the highest number of receiving

tosses he/she lost a point while if a player threw the ball to the player that had the lowest

number of receiving tosses he/she won a point. In addition, if a player threw the ball to a

player that had a medium number of receiving tosses he/she did not lose or win points. The

player that obtained the highest score of points he/she won the game. The score of the

participant was displayed on the screen during the rounds of the game.

Participants were informed that they were able to throw the ball to any player in the

game and also that there was a reward system. Although they were not informed on how

they gain or lose points, they were able to figure it out on their own, if they paid attention

on the pointing system since the score appear on the screen. The purpose of this approach

was to make the players to understand that they had to feel empathy for the excluded

players throwing the ball to them if they wanted to win the game.

In a block design the human subjects participated in two rounds of the Cyberball3D+

task and these rounds were combinations of low or high anthropomorphism as well as the

using of the Scene4 from the ‘Five Basic Scenes’ version or the Reinforcement learning

version. Particularly, the participants divided into two groups of six persons and each group

of the participants played the same rounds of the game but in a different order of the

rounds. In the one round of the game were used the low level of anthropomorphism and the

scene4 from the five basic scenes version of the game in which the player 3 gets excluded by

player 1. In the other round of the game were used the high level of anthropomorphism and

the reinforcement learning version of the Cyberball. Both rounds of the game were lasting

180 seconds and in each group the starter player of the first round was Player 1 as well as in

the second round was the Player 2.

132

6.3 Experimental Setup

6.3.1 Five Basic Scenes

The experiments were conducted inside the fMRI scanner. In order to synchronize

the interactive 3D application with the fMRI scanner, several hardware parts had to be set

up including the fMRI scanner, the synchronization box, the analog signal box, the button

boxes, the sound mixer, the visual stimuli PC, on which the application was executed and the

spike PC, which recorded the spike signals sent from the synchronization box. The Figure 60

describes the experimental setup and shows that the Visual Stimuli PC, which executed the

interactive application, was connected to the fMRI projector and displayed the VEs on the

projector screen. The button boxes were connected to that PC. The PC’s sound card was

connected to a sound mixer, which separated the two audio channels and directed the left

towards the analog signal box and the right towards the participants’ headphones. The

analog signal box also received signals from the synchronization box which was connected to

the fMRI scanner, as well as from the heart rate recorder attached to the participant’s toe.

The spike PC was dedicated in recording the inputs received from the analog signal box.

Figure 60: The experimental setup.

133

Whole brain functional Magnetic Resonance Imaging (fMRI) data was acquired on a

1.5 T Siemens Avanto scanner. To minimise signal artefacts originating from the sinuses,

axial slices were tilted 30º from the intercommissural plane. Thirty-four slices (3mm thick,

0.75 mm interslice gap) were acquired with an in plane resolution of 3 x 3 mm (repetition

time = 2.52 per volume, echo time = 43ms. The participants’ heads were placed inside the

coil that can be seen in the fMRI scanner. Through a mirror on top of the coil, the

participants could see the VEs displayed on the projector screen behind them.

134

6.3.2 Five Basic Scenes and Reinforcement Learning

The experimental setup of the experiments of the second stage was very simple. The

experiments were conducted at the Laboratory of Distributed Multimedia Information

Systems and Applications of the Technical University of Crete. The participants played the

game in a Standard PC of the laboratory and they used only the arrows buttons of the

computer keyboard to throw the ball to the virtual players.

135

6.4 Data Analysis

6.4.1 Five Basic Scenes

Functional neuroimaging involved the measurement of brain activity. The scanner

produced a map of the brain that was represented as voxels. A voxel represents a value on a

grid in three-dimensional space – a combination of volume and pixel. As such each voxel

represents the activity of a particular co-ordinate in the three dimensional space of the

brain.

Acquired images were conventionally pre-processed before statistical analysis to

remove noise and correct for sampling error.

Pre-processing was performed so data would approximate the following

assumptions – all voxels in any given image of the series of images taken over time were

acquired at the same time; each data point in the time series from a given voxel was

collected from that voxel only; residual variance had a Gaussian distribution; when carrying

out analyses across different subjects any given voxel corresponded to the same brain

structure in all the subjects in the study. For example, to account for the motion of the head

between scans, images were adjusted so each of the voxels corresponds to the same site in

the brain; this is known as realignment. As imaging studies involved multiple participants

who had slightly differently shaped brains, a process of normalization was employed so that

each 3D image was transformed so that key brain structures line up. They were then set into

standard space. Images were smoothed so voxels were averaged with their neighbours using

a Gaussian filter to reduce noise. As such, standard spatial preprocessing [realignment,

coregistration, segmentation, normalisation to Montreal Neurological Institute (MNI) space,

and smoothing with an 8-mm FWHM Gaussian Kernel] was performed. Voxel size was

interpolated during pre-processing to isotropic 3 x 3 x 3 mm.

 Results were analysed using Statistical Parametric Mapping software (SPM8) on a

Matlab platform. First level (individual) analysis modeled timing of block stimuli (i.e type of

round of the game – level of anthropomorphism and level of inclusion) using the general

linear model; a full factorial design was used at the second level (group) of analysis (random

effects analysis).

136

6.4.2 Five Basic Scenes and Reinforcement Learning

The application was recording every action of the players, the score of each player

as well as the total receiving tosses and scores of each player in a separate log file dedicated

to each experimental round of the game in order to be able to understand and analyze the

data gathered from each experiment. For each participant, a different log file was created

for each round which follows the following naming convention: log(Participant

Number)_r(Number of Round).csv and it recorded each ball tossing occurred by all players.

The first data column recorded the time stamp when a player threw a ball, the second

column which player threw the ball and the third column which player got the ball. In

addition, for each participant, different log files were created for each round and each player

which follow the following naming convention: log(Participant Number)_r(Number of

Round)_P(Number of Player).csv and they recorded the score of each player of the game

every time a ball tossing occurred . The first data column recorded the time stamp when a

player threw a ball and the second column the score of that player. Finally, For each

participant, a different log file was created for each round which follows the following

naming convention: logScores(Participant Number)_r(Number of Round).csv and it recorded

the total receiving tosses and scores of each player every time a ball tossing occurred. The

time was measured in milliseconds starting just at the start of the game of the experiment

assumed to be time point 0.

Each .csv file of each participant was analyzed using the Microsoft Office Excel

program. Particularly, each .csv file was converted into .xls file in order to be able to design

statistical charts. After the conversion of the .csv files into excel files we found the

percentages of receiving/throwing tosses that each player got/threw from/to the other

players in each round using mathematical functions. In addition, we had the information for

any time of each round which player threw and got the ball, respectively, in order to have

the ability to analyze the behavior of each participant during the game. Furthermore, we

designed scatter charts describing the score of each participant based the time during the

Reinforcement Learning round of the experiment.

137

6.5 Results

6.5.1 Five Basic Scenes

A whole brain analysis was performed with an uncorrected significance threshold of

p <0.01. Threshold significance was set using the cluster extent to manage multiple

comparisons across the whole brain (Slotnick, 2008). 10,000 Monte Carlo simulations

determined that clusters of 64 or more contiguous voxels activated at an uncorrected voxel-

wise threshold of p<0.01 ensured the probability of Type-1 statistical errors was below 0.05.

CONTRAST HIGH>LOW ANTHROPOMORPHISM

T-Contrast estimates showing main effect of high versus low anthropomorphism

demonstrating activity in right orbitofrontal cortex.

138

TABLE II: Activations in the brain based on the contrast between the high and low

anthropomorphism level.

Region Cluster size
(voxels)

X Y Z Z score

Right lateral
orbitofrontal
cortex

252 38 34 -18 3.68

Right
cerebellum

346 38 -32 30 3.42

Left superior
temporal
gyrus

170 -40 8 -26 3.33

Left lateral
orbitofrontal
cortex

182 20 20 -22 3.34

CONTRAST EXCLUSION OF OTHER > INCLUSION OF SELF

T-Contrast estimates showing main effect of exclusion of other versus inclusion,

demonstrating activity in bilateral parahippocampal regions.

139

TABLE III: Activations in the brain based on the contrast between the exclusion of other and

inclusion of self.

Region Cluster size
(voxels)

X y z Z score

Left
parahippocampus

246 -18 -16 -14 3.52

Left superior
frontal gyrus and
anterior cingulate

103 -15 56 -4 3.38

Left middle
frontal gyrus

109 -28 42 36 3.19

Right
parahippocampus

138 22 -16 -26 3.11

This work showed interesting differences when playing with high level

anthropomorphic characters compared to low level avatars. Participating in a high

anthropomorphism environment rather than a low anthropomorphism environment

revealed significant activations in both frontal cortex and superior temporal gyrus. One can

attribute this activation pattern to the imprecise mapping of avatar features to normative

‘top-down’ representational expectancies of the human body within extrastriate visual

cortices (particularly areas like STS that are functionally tied to humans emotional signals)

and to the processing of negatively-valenced stimuli, activating lateral orbitofrontal cortex.

This suggests that compared to more human like avatars, playing the non-anthropomorphic

avatars is less subjectively rewarding. Therefore, when studying complex emotional

responses, a high level of anthropomorphism of synthetic characters is not only required but

also able to engage common neuroscientific patterns of brain activation as in real-world

circumstances. In addition, watching the exclusion of other players the bilateral

parahippocampus regions that play an important role in the encoding and recognition of

environmental scenes as well as the amygdala region of the brain which it relates to

negative emotions, especially fear and sadness were activated. More complex accounts for

these observations must draw more heavily on neural predictive coding models of

perception.

140

Figure 61: The brain activity in a peak, cluster and set level based on contrast between
high and low level of anthropomorphism.

141

Figure 62: The brain activity in a peak, cluster and set level based on contrast between
exclusion of other and inclusion of self.

142

6.5.2 Five Basic Scenes and Reinforcement Learning

In this stage of the experiments, 12 healthy adult volunteers separated into two

groups of six persons participated in two rounds of the Cyberball3D+ task. Each group of the

participants played the same rounds of the game but in a different order of the rounds. In

the one round of the game were used the low level of anthropomorphism and the scene4

from the ‘Five Basic Scenes’ version of the game in which the player 3 gets excluded by

player 1. In the other round of the game were used the high level of anthropomorphism and

the Reinforcement learning version of the Cyberball. The Group1 played first the round using

the Scene4 from the ‘Five Basic Scenes’ version and secondly the round using the

Reinforcement learning version of the Cyberball. The Group2 played the same rounds with

Group1 but in reverse order.

 In the round that we used the Scene4 from the ‘Five Basic Scenes’ version of the

Cyberball the Player1 excluded the Player3 and the Player2 included all other players in the

game. However, the Player3 and Participant were not able to throw the ball to each other

straightly only through the Players 1 and 2. The Figure 63 shows the percentages of throwing

tosses from player 1 and 2 to other players, respectively. In the round that we used the

Reinforcement learning version of the Cyberball game the participants were not informed

the way that the virtual players played as well as how they gain or lose points, they were

able to figure it out on their own.

Figure 63: The screenshots show the percentages of throwing tosses from players 1 and 2
to the other players, respectively.

50% 50%

0%

Percentage of Tosses
From Player1 To

Other Players

1

2

3

34%

33%

33%

Percentage of Tosses
From Player2 To

Other Players

1

2

3

143

GROUP1

 The Group1 consisted of three female and three male. In the first round of the game

the most participants threw the ball to the Player2 more times in relation to the Player1;

only one participant threw the ball to the Player1 more. On the contrary, in the second

round the most participants threw the ball to the Player1 more times in relation to the

Player2.

A) Round1 using Scene4 from the ‘Five Basic Scenes’ version

The participants of the Group1 played firstly the scene4 from the ‘Five Basic Scenes’

version. As we can see in the figure below, the most participants threw the ball to the

Player2 more because they felt empathy for the Player3 which got excluded by Player1 as

well as they were not able to throw the ball directly to the Player3. The Player1 excluded the

Player3 while the Player2 threw the ball equally to all players. For this reason, the

participants threw the ball more to the Player2 in order the Player2 was able to include the

Player3 in the game.

Figure 64: The percentages of throwing tosses of each participant of the Group1 to players
1 and 2.

144

B) Round2 using Reinforcement learning version

In the second round, the participants of the Group1 played the reinforcement learning

version of the Cyberball. As we can see in the Figure 65, the most participants threw the ball

to the Player1 more, except one participant that played the round with one virtual player

only. In addition, the Player1 got the lowest number of receiving tosses so that means that

the most participants showed empathy for this Player throwing the ball to him more.

Therefore, the score of the participants that showed empathy for the Player with the lowest

number of receiving tosses was on the increase. On the contrary, the score of the participant

that played the round interacting only with one virtual player had a downward trend.

Figure 65: The percentages of receiving/throwing tosses From/To the virtual players To/From the
Participants of the Group1 as well as the scores of each participant.

To sum up, observing the behavior of the participants of the Group1, we can see

that the most of the participants felt empathy for the excluded Players and they tried to

include them in both rounds of the game as well as only one participant did not feel

empathy and he cared more about his inclusion.

145

GROUP2

The Group2 consisted of six male. Most participants of this group threw the ball to the

Player1 more times in relation to the Player2 in both rounds.

A) Round1 using Reinforcement learning version

In the first round, the participants of the Group2 played the reinforcement learning

version of the Cyberball. As we can see in the Figure 66, the most participants threw the ball

to the Player1 more, except two participants who threw the ball to the Players 2 and 3 more,

respectively. In addition, we observe that the scores of the participants had strong

fluctuations. The reason of these fluctuations was that the participants played firstly the

reinforcement learning scene that was a competitive round with scores and they had to find

on how they could gain points, unlike the round1 of the Group1 that was the round with the

Scene4 which was more relaxing and with no competition.

Figure 66: The percentages of receiving/throwing tosses From/To the virtual players To/From the
Participants of the Group2 as well as the scores of each participant.

146

B) Round2 using Scene4 from the ‘Five Basic Scenes’ version

In the second round, the participants of the Group2 played the scene4 from the ‘Five

Basic Scenes’ version. As we can observe in the figure below, the most participants threw

the ball to the Player1 more because they were influenced from their performance in the

first round. Particularly, because the first round was a competitive round they had to find on

how they could gain points in order to be able to win this round of the game. Therefore, the

most participants observed that throwing the ball to

the Player1 more they gain points, so they followed the same strategy and in the second

round of the game.

Figure 67: The percentages of throwing tosses of each participant of the Group2 to
players 1 and 2.

To sum up, analyzing the behavior of the participants of the Group2, we can see

that the most of the participants tried to find the way that they could gain points by

observing the scores and the number of receiving tosses of each player in the first round of

147

the game as well as they adopted the same strategy in the second round of the game by

throwing the ball to the same Player as did in the first round.

The Figures 68 and 69 show the average scores of the participants of the two Groups

while playing the round of the game that we used the Reinforcement learning version. As we

can observe, the main difference between these graphs is the trend in which the score

increases. In the Group1 the score increases quickly and suddenly, while in the Group2 the

score increases with steady and carefully steps by the participants. Therefore, as described

above the participants of the Group1 due to they played firstly the scene4 and then the

reinforcement learning scene they felt more the empathy feeling unlike the participants of

the Group2 who played firstly the reinforcement learning scene that was a competitive

round with scores.

Additionally, the figure 70 depicts two paradigms of the scores of two virtual players

over intervals of time. As we can see from the upward trend of the scores, the playing of the

virtual players was very competitive and intelligent and was very difficult for the participants

to win the round in which we used the Reinforcement learning version of the Cyberball

game.

Figure68: The average scores of all participants of the group1 on intervals of time.

148

Figure 69: The average scores of all participants of the group2 in relation to time.

Figure 70: Screenshots depict the scores of two virtual players over intervals of time.

This chapter was concerned with the experimental methods employed when the

actual experiments were conducted in the fMRI scanner at Brighton and Sussex Medical

School and at the Technical University of Crete, respectively. Also, the experimental

procedures as well as the results of the two groups of the experiments were presented.

149

7 Chapter 7 – Conclusions and Future Work

The presented framework put forward a sophisticated interactive real-time gaming

system called Cyberball3D+ incorporating virtual characters to be played interactively in

functional Magnetic Resonance Imaging (fMRI) for the study of empathy, social exclusion

and ostracism. The 3D game proposed was designed to render an interactive VE on an fMRI

display, enabling the conduct of formal neuroscientific experiments and investigating the

effects of social exclusion, empathy and different level of anthropomorphism on human

brain activity.

Although this work focused on the technical implementation of the system, the goal

was to use this system to explore whether the pain felt by someone when socially excluded

is the same when observing other people get socially excluded. Moreover, for the first time,

we proposed a validated neuroscientific measure of character believability and emotional

engagement.

It was challenge to develop an interactive system to be displayed in fMRI displays

due to the infrastructural and technical demands. fMRI experiments of this type usually

employ simple display material, for example using photographs, video clips or simple

computerized stimuli which are non-stereoscopic. Using VEs in fMRI has the advantage that

it is possible to involve participants in interactive animated environments which more

realistically reflect social and emotional situations. This seamless naturalism and interactivity

is impossible to achieve with video clips. In addition, some experiments could be only

conducted using synthetic stimuli for ethical reasons.

The 3D gaming framework was developed in UDK, which enabled the development

of interactively manipulated rendered synthetic scenes, as well as providing the necessary

tools to overcome the technical difficulties of using the system in an fMRI display. The

implementation of the 3D gaming framework was adjusted to address the challenges arising

from the strict experimental protocol, including the creation of the synthetic scenes as well

as the importing of the avatars and their animations. In order to make the VEs interactive,

including the throwing of the ball to the virtual players, the 3D gaming framework

responded to the fMRI-compliant button boxes, surpassing the challenge of handling user

input.

The strict experimental protocol imposed time limits that the framework met, by

specifying timers in order to change the experimental round of the game, meanwhile logging

every action taking place in the VEs in a log file, in order to be able to understand and

150

analyze the data gathered from each experimental round of the game. The UIs were

implemented through the use of Flash applications embedded in the

framework and displayed on top of the displayed synthetic scene.

7.1 Main contributions

The innovative application designed to render an interactive Virtual Environment (VE)

on an fMRI display, enabling the conduct of formal neuroscientific experiments and

investigating the effects of social exclusion, empathy and different level of

anthropomorphism on human brain activity. For the first time, the Cyberball game was

implemented in three - dimensional form by modeling three levels of anthropomorphism as

well as the neuroscientists were able to simulate any situation of the fairness of the game

they wanted by filling in the percentages of the tosses that each player would throw to each

one of the other players. Moreover, for the first time, we got a validated neuroscientific

measure of character believability and emotional engagement at the same time the

experience was taking place.

Results demonstrated that there are interesting differences when playing with high

level anthropomorphic characters compared to low level avatars. Particularly, this work

showed that participating in a high anthropomorphism environment rather than a low

anthropomorphism environment activated both frontal cortex and superior temporal gyrus.

This suggests that compared to more human like avatars, playing the non-anthropomorphic

avatars is less subjectively rewarding and potentially anxiogenic. In addition, the results

indicated that when studying complex emotional responses, a high level of

anthropomorphism of synthetic characters engages neuroscientific patterns of brain

activation as in real-world circumstances. Moreover, the results demonstrated that the

exclusion of other activated emotional brain regions showing that the participants felt

empathy for the excluded players.

An extension of the Cyberball3D+ game was to program players to be dynamically

intelligent. For this reason, we included rules to the game and created intelligent avatars

modeling their decision making behavior using the Q-learning algorithm. The rules consisted

of the ability of each player to throw the ball to any of the rest of the players of the game

and also the inclusion of a reward system; points were given or deducted from a player

depending on his/her ball throws. The difference between this version and the previous one

was that players did not have a pre-programmed behavior; in this version the players

151

dynamically adapted to the best strategy to win. For instance, if a player showed empathy

and threw the ball more to the excluded player, then he got rewarded.

The results of the experiments of this version of the Cyberball indicated that when

the participants played with the intelligent virtual players using the competitive round of the

Reinforcement learning version without they trained first to a trial round in which were not

used scores then they did not feel empathy for the excluded players because they focused to

find the best strategy to win.

7.2 Implications for Future Work

The experiments described in detail in Chapter 6 were formally designed. However,

certain improvements could be accomplished by the following actions:

 The experiments were designed to explore whether the pain felt by someone

when socially excluded is the same when observing other people get socially

excluded. It would be extremely interesting to explore whether there are

differences in relation to empathy for friends and strangers. This could be

employed by modelling the avatars of the game in order to look like a friend

or a stranger, respectively.

 It would be innovative and useful to test the feelings of the social exclusion

and empathy in even more extreme or more subtle fidelity variations. This

could be employed by using the ‘Probabilities’ version of the game in which

the neuroscientists are able to fill in the percentages of the tosses that each

player makes to each one of the other players as well as modeling the avatars

with highest fidelity of the anthropomorphism and utilizing motion capture

data for the animations of the avatars.

152

8 References – Bibliography

Aitpayev and Gaber 2012 Aitpayev, K., & Gaber, J. (2012). Creation of 3d human avatar using
kinect. Asian Transactions on Fundamentals of Electronics,
Communication & Multimedia, 1(5), 1-3.

Amato & Shani 2010 Amato, C., & Shani, G. (2010, May). High-level reinforcement learning
in strategy games. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1-Volume
1 (pp. 75-82). International Foundation for Autonomous Agents and
Multiagent Systems.

Andari et al. 2010 Andari, E., Duhamel, J. R., Zalla, T., Herbrecht, E., Leboyer, M., &
Sirigu, A. (2010). Promoting social behavior with oxytocin in high-
functioning autism spectrum disorders. Proceedings of the National
Academy of Sciences, 107(9), 4389-4394.

Bailenson et al. 2008 Bailenson, J. N., Yee, N., Blascovich, J., & Guadagno, R. E. (2008).
Transformed social interaction in mediated interpersonal
communication. Mediated interpersonal communication, 77-99.

Bartlett et al. 2012 Bartlett, M. Y., Condon, P., Cruz, J., Baumann, J., & Desteno, D. (2012).
Gratitude: Prompting behaviours that build relationships. Cognition &
emotion, 26(1), 2-13.

Bartneck et al. 2009 Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement
instruments for the anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety of robots. International
journal of social robotics, 1(1), 71-81.

Bhatt & Camerer 2005 Bhatt, M., & Camerer, C. F. (2005). Self-referential thinking and
equilibrium as states of mind in games: fMRI evidence. Games and
Economic Behavior, 52(2), 424-459.

Blanz and Vetter 1999 Blanz, V., & Vetter, T. (1999, July). A morphable model for the
synthesis of 3D faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques (pp. 187-194). ACM
Press/Addison-Wesley Publishing Co.

Blascovich et al 2002 Blascovich, J., Loomis, J., Beall, A. C., Swinth, K. R., Hoyt, C. L., &
Bailenson, J. N. (2002). Immersive virtual environment technology as a
methodological tool for social psychology. Psychological Inquiry, 13(2),
103-124.

Breidt et al. 2003 Breidt, M., Wallraven, C., Cunningham, D., & Bulthoff, H. (2003).
Combining 3d scans and motion capture for realistic facial
animation. Proceedings der Eurograph,(Eds.) Julian and F. and P. Cano
and The Eurographics Association, 63-66.

Burchardt et al, 2002 Burchardt, T., Le Grand, J. and Piachaud, D. (2002) ‘Degrees of
exclusion: developing a dynamic multidimensional measure’, in J. Hills,
J. Le Grand and D. Piachaud (eds) Understanding social exclusion,
Oxford: Oxford University Press, pp 30-43.

Christodoulou et al. 2012 Christodoulou, G., Radulescu, E., Medford, N., Critchley, H., Watten, P.
L., & Mania, K. (2012). A 3D Lighting System for fMRI Rendering
Fidelity Experiments. International Journal of Interactive Worlds, 2012,
1.

153

Cole, Yoo and Knutson 2012 Cole, S. W., Yoo, D. J., & Knutson, B. (2012). Interactivity and reward-
related neural activation during a serious videogame.

Cosker, Krumhuber & Hilton
2010

Cosker, D., Krumhuber, E., & Hilton, A. (2010, July). Perception of
linear and nonlinear motion properties using a FACS validated 3D
facial model. InProceedings of the 7th Symposium on Applied
Perception in Graphics and Visualization (pp. 101-108). ACM.

Curio et al 2006 Curio, C., Breidt, M., Kleiner, M., Vuong, Q. C., Giese, M. A., &
Bülthoff, H. H. (2006, July). Semantic 3d motion retargeting for facial
animation. In Proceedings of the 3rd symposium on Applied perception
in graphics and visualization (pp. 77-84). ACM.

Curio et al. 2008 Curio, C., Giese, M. A., Breidt, M., Kleiner, M., & Bülthoff, H. H. (2008,
August). Probing dynamic human facial action recognition from the
other side of the mean. In Proceedings of the 5th symposium on
Applied perception in graphics and visualization (pp. 59-66). ACM.

Davis 1983 Davis, M. H. (1983). Measuring individual differences in empathy:
evidence for a multidimensional approach. Journal of personality and
social psychology,44(1), 113.

Decety and Lamm 2006 Decety, J., & Lamm, C. (2006). Human empathy through the lens of
social neuroscience. The Scientific World Journal, 6, 1146-1163.

Decety et al. 2013 Decety, J., Chen, C., Harenski, C., & Kiehl, K. A. (2013). An fMRI study
of affective perspective taking in individuals with psychopathy:
imagining another in pain does not evoke empathy. Frontiers in
Human Neuroscience, 7.

DiSalvo & Gemperle 2003 DiSalvo, C., & Gemperle, F. (2003, June). From seduction to
fulfillment: the use of anthropomorphic form in design. In Proceedings
of the 2003 international conference on Designing pleasurable
products and interfaces (pp. 67-72). ACM.

D’Mell 2012 D'Mell, A. (2012). The Effects of Social Reward on Reinforcement
Learning(Doctoral dissertation).

Duncan 2009 Duncan, J. (2009). The unusual birth of benjamin button. Cinefex, 116,
70-99.

Eisenberg and Miller 1987 Eisenberg, N., & Miller, P. A. (1987). The relation of empathy to
prosocial and related behaviors. Psychological bulletin, 101(1), 91.

Eisenberger 2012 Eisenberger, N. I. (2012). The pain of social disconnection: examining
the shared neural underpinnings of physical and social pain. Nature
Reviews Neuroscience, 13(6), 421-434.

Ekanayake et al. 2013 Ekanayake, H. B., Fors, U., Ramberg, R., Ziemke, T., Backlund, P., &
Hewagamage, K. P. (2013). Affective Realism of Animated Films in the
Development of Simulation-Based Tutoring Systems. International
Journal of Distance Education Technologies (IJDET), 11(2), 96-109.

Ekman et al. 2002 Ekman, P., Friesen, W. V., & Hager, J. C. Facial action coding system.
2002.Salt Lake City: Research Nexus eBook.

Freeman et al. 2008 Freeman, D., Pugh, K., Antley, A., Slater, M., Bebbington, P., Gittins,
M., ... & Garety, P. (2008). Virtual reality study of paranoid thinking in
the general population. The British Journal of Psychiatry, 192(4), 258-
263.

154

Glueck et al. 2012 Glueck, M., Khan, A., Fiume, E., & Jackson, K. (2012). Modeling and
simulation of skeletal muscle for computer graphics: A survey. Now.

Gong 2007 Gong, L. (2008). How social is social responses to computers? The
function of the degree of anthropomorphism in computer
representations. Computers in Human Behavior, 24(4), 1494-1509.

Griesser et al. 2007 Griesser, R. T., Cunningham, D. W., Wallraven, C., & Bülthoff, H. H.
(2007, July). Psychophysical investigation of facial expressions using
computer animated faces. In Proceedings of the 4th symposium on
Applied perception in graphics and visualization (pp. 11-18). ACM.

Hammond 2007 Hammond, D. C. (2007). What is neurofeedback?. Journal of
Neurotherapy, 10(4), 25-36.

Hoffman 2001 Hoffman, M. L. (2001). Empathy and moral development: Implications
for caring and justice. Cambridge University Press.

Ickes 1997 Ickes, W. J. (Ed.). (1997). Empathic accuracy. Guilford Press.

Igarashi et al. 1999 Igarashi, T., Matsuoka, S., Tanaka, H. Teddy. (1999): a sketching
interface for 3D freeform design. SIGGRAPH, p.409-416.

Ishiguro H. 2005 Ishiguro, H. (2005). Towards a new cross-interdisciplinary framework.
InCogSci Workshop Towards social Mechanisms of android science,
Stresa.

Joshi et al. 2005 Joshi, P., Tien, W. C., Desbrun, M., & Pighin, F. (2005, July). Learning
controls for blend shape based realistic facial animation. In ACM
SIGGRAPH 2005 Courses (p. 8). ACM.

Krill, Platek & Wathne 2008 Krill, A. L., Platek, S. M., & Wathne, K. (2008). Feelings of control
during social exclusion are partly accounted for by empathizing
personality. Personality and individual differences, 45(7), 684-688.

Krill and Platek 2009 Krill, A., & Platek, S. M. (2009). In-group and out-group membership
mediates anterior cingulate activation to social exclusion. Frontiers in
Evolutionary Neuroscience, 1.

Krumhuber et al. 2007 Krumhuber, E., Manstead, A. S., Cosker, D., Marshall, D., Rosin, P. L., &
Kappas, A. (2007). Facial dynamics as indicators of trustworthiness
and cooperative behavior. Emotion, 7(4), 730.

S. Lee, G.J. Kim and J. Lee
2004

Lee, S., Kim, G. J., & Lee, J. (2004, November). Observing effects of
attention on presence with fMRI. In Proceedings of the ACM
symposium on Virtual reality software and technology (pp. 73-80).
ACM.

Lelieveld et al. 2012 Lelieveld, G. J., Moor, B. G., Crone, E. A., Karremans, J. C., & van Beest,
I. (2012). A penny for your pain? The financial compensation of social
pain after exclusion. Social Psychological and Personality Science, 4(2),
206-214.

Levitas et al 2007 Levitas, R., Pantazis, C., Fahmy, E., Gordon, D., Lloyd, E., & Patsios, D.
(2007). The multi-dimensional analysis of social exclusion.

Loomis, Blascovich and Beall
1999

Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immersive virtual
environment technology as a basic research tool in
psychology. Behavior Research Methods, Instruments, &
Computers, 31(4), 557-564.

MacDorman 2006 MacDorman, K. F. (2006, July). Subjective ratings of robot video clips

155

for human likeness, familiarity, and eeriness: An exploration of the
uncanny valley. In ICCS/CogSci-2006 long symposium: Toward social
mechanisms of android science (pp. 26-29).

Magnenat-Thalmann, Zhang
and Feng 2009

Magnenat-Thalmann, N., Zhang, J. J., & Feng, D. D. (Eds.).
(2009). Recent Advances in the 3D Physiological Human. Springer.

Mania et al. 2010 Mania, K., Badariah, S., Coxon, M., & Watten, P. (2010). Cognitive
transfer of spatial awareness states from immersive virtual
environments to reality. ACM Transactions on Applied Perception
(TAP), 7(2), 9.

Martin et al. 2006 Martin, J. C., Niewiadomski, R., Devillers, L., Buisine, S., & Pelachaud,
C. (2006). Multimodal complex emotions: Gesture expressivity and
blended facial expressions. International Journal of Humanoid
Robotics, 3(03), 269-291.

Masten et al 2011 Masten, C. L., Colich, N. L., Rudie, J. D., Bookheimer, S. Y., Eisenberger,
N. I., & Dapretto, M. (2011). An fMRI investigation of responses to
peer rejection in adolescents with autism spectrum
disorders. Developmental cognitive neuroscience, 1(3), 260-270.

Masten et al. 2009 Masten, C. L., Eisenberger, N. I., Borofsky, L. A., Pfeifer, J. H., McNealy,
K., Mazziotta, J. C., & Dapretto, M. (2009). Neural correlates of social
exclusion during adolescence: understanding the distress of peer
rejection. Social cognitive and affective neuroscience, 4(2), 143-157.

Masten, Morelli & Eisenberger
2011

Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI
investigation of empathy for ‘social pain’and subsequent prosocial
behavior. Neuroimage,55(1), 381-388.

Mathiak & Weber 2006 Mathiak, K., & Weber, R. (2006). Toward brain correlates of natural
behavior: fMRI during violent video games. Human brain
mapping, 27(12), 948-956.

Maurage et al. 2012 Maurage, P., Joassin, F., Philippot, P., Heeren, A., Vermeulen, N.,
Mahau, P., ... & de Timary, P. (2012). Disrupted regulation of social
exclusion in alcohol-dependence: an fMRI
study. Neuropsychopharmacology, 37(9), 2067-2075.

Mayr, Horleinsberger & Petta
2014

Mayr, S., Horleinsberger, W., & Petta, P. (2014, September). The
Trauma Treatment Game: Design Constraints for Serious Games in
Psychotherapy. InGames and Virtual Worlds for Serious Applications
(VS-GAMES), 2014 6th International Conference on (pp. 1-6). IEEE.

McDonnell and Breidt 2010 McDonnell, R., & Breidt, M. (2010, December). Face reality:
Investigating the uncanny valley for virtual faces. In ACM SIGGRAPH
ASIA 2010 Sketches (p. 41). ACM.

McDonnell, Breidt and
Bülthoff 2012

McDonnell, R., Breidt, M., & Bülthoff, H. H. (2012). Render me real?:
investigating the effect of render style on the perception of animated
virtual humans. ACM Transactions on Graphics (TOG), 31(4), 91.

McDonnell et al. 2009 McDonnell, R., Jörg, S., Hodgins, J. K., Newell, F., & O'sullivan, C.
(2009). Evaluating the effect of motion and body shape on the
perceived sex of virtual characters. ACM Transactions on Applied
Perception (TAP), 5(4), 20.

McDonnell et al. 2008 McDonnell, R., Jörg, S., McHugh, J., Newell, F., & O'Sullivan, C. (2008,
August). Evaluating the emotional content of human motions on real

156

and virtual characters. In Proceedings of the 5th symposium on
Applied perception in graphics and visualization (pp. 67-74). ACM.

McDonnell, Larkin,
Hernández, Rudomin &
O'Sullivan 2009

McDonnell, R., Larkin, M., Hernández, B., Rudomin, I., & O'Sullivan, C.
(2009, July). Eye-catching crowds: saliency based selective variation.
In ACM Transactions on Graphics (TOG) (Vol. 28, No. 3, p. 55). ACM.

Meyer et al. 2012 Meyer, M. L., Masten, C. L., Ma, Y., Wang, C., Shi, Z., Eisenberger, N. I.,
& Han, S. (2012). Empathy for the social suffering of friends and
strangers recruits distinct patterns of brain activation. Social cognitive
and affective neuroscience, nss019.

Meyer et al. 2015 Meyer, M. L., Masten, C. L., Ma, Y., Wang, C., Shi, Z., Eisenberger, N. I.,
... & Han, S. (2015). Differential neural activation to friends and
strangers links interdependence to empathy. Culture and Brain, 3(1),
21-38.

Milgram 1963 Milgram, S. (1963). Behavioral study of obedience. The Journal of
Abnormal and Social Psychology, 67(4), 371.

Minato et al. 2005 Minato, T., Shimada, M., Itakura, S., Lee, K., & Ishiguro, H. (2005, July).
Does gaze reveal the human likeness of an android?. In Development
and Learning, 2005. Proceedings. The 4th International Conference
on (pp. 106-111). IEEE.

Moor et al. 2012 Moor, B. G., Güroğlu, B., de Macks, Z. A. O., Rombouts, S. A., Van der
Molen, M. W., & Crone, E. A. (2012). Social exclusion and punishment
of excluders: neural correlates and developmental
trajectories. Neuroimage, 59(1), 708-717.

Mori 1970 Mori, M. (1970). Bukimi no tani [The uncanny valley], Energy,[Online]
7 (4), 33-35.

Nishino, Utsumiya & Korida
1998

Nishino, H., Utsumiya, K., & Korida, K. (1998, November). 3d object
modeling using spatial and pictographic gestures. In Proceedings of
the ACM symposium on Virtual reality software and technology (pp.
51-58). ACM.

Novembre, Zanon, and Silani
2014

Novembre, G., Zanon, M., & Silani, G. (2014). Empathy for social
exclusion involves the sensory-discriminative component of pain: a
within-subject fMRI study. Social cognitive and affective neuroscience,
nsu038.

Nowak 2003 Nowak, K. L. (2003). Sex categorization in computer mediated
communication (CMC): Exploring the utopian promise. Media
Psychology, 5(1), 83-103.

Nowak and Biocca 2003 Nowak, K. L., & Biocca, F. (2003). The effect of the agency and
anthropomorphism on users' sense of telepresence, copresence, and
social presence in virtual environments. Presence, 12(5), 481-494.

Nowak & Rauh 2005 Nowak, K. L., & Rauh, C. (2005). The influence of the avatar on online
perceptions of anthropomorphism, androgyny, credibility, homophily,
and attraction. Journal of Computer‐Mediated Communication, 11(1),
153-178.

Nunez & Srinivasan 2006 Nunez, P.L., Srinivasan, R. (2006): Electric Fields of the Brain. Oxford
University Press, New York.

Park and Hodgins 2006 Park, S. I., & Hodgins, J. K. (2006, July). Capturing and animating skin
deformation in human motion. In ACM Transactions on Graphics

157

(TOG) (Vol. 25, No. 3, pp. 881-889). ACM.

Parke and Waters 1996 Parke, F. I., and Keith Waters. "Computer Facial Animation, 1996." AK
Peters. Wellesley, MA.

Parsons 2011 Parsons, T. D. (2011). Neuropsychological assessment using virtual
environments: enhanced assessment technology for improved
ecological validity. In Advanced Computational Intelligence Paradigms
in Healthcare 6. Virtual Reality in Psychotherapy, Rehabilitation, and
Assessment (pp. 271-289). Springer Berlin Heidelberg.

Perani et al. 2001 Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S.,
Decety, J., & Gilardi, M. C. (2001). Different brain correlates for
watching real and virtual hand actions. Neuroimage, 14(3), 749-758.

Rivera et al. 2010 Rivera, F., Watten, P., Holroyd, P., Beacher, F., Mania, K., & Critchley,
H. (2010, July). Real-time compositing framework for interactive
stereo fMRI displays. In ACM SIGGRAPH 2010 Posters (p. 16). ACM.

Sagar 2006 Sagar, M. (2006, July). Facial performance capture and expressive
translation for king kong. In ACM SIGGRAPH 2006 Sketches (p. 26).
ACM.

Schkolne, Pruett & Schröder
2001

Schkolne, S., Pruett, M., & Schröder, P. (2001, March). Surface
drawing: creating organic 3D shapes with the hand and tangible tools.
In Proceedings of the SIGCHI conference on Human factors in
computing systems (pp. 261-268). ACM.

Seyama and Nagayama 2007 Seyama, J. I., & Nagayama, R. S. (2007). The uncanny valley: Effect of
realism on the impression of artificial human faces. Presence:
Teleoperators and Virtual Environments, 16(4), 337-351.

Shapiro 1997 Shapiro, K. (1997). A phenomenological approach to the study of
nonhuman animals.

Sifakis et al. 2005 Sifakis, E., Neverov, I., & Fedkiw, R. (2005, July). Automatic
determination of facial muscle activations from sparse motion capture
marker data. In ACM Transactions on Graphics (TOG) (Vol. 24, No. 3,
pp. 417-425). ACM.

Sjölie et al 2010 Sjölie, D., Bodin, K., Elgh, E., Eriksson, J., Janlert, L. E., & Nyberg, L.
(2010, April). Effects of interactivity and 3D-motion on mental rotation
brain activity in an immersive virtual environment. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (pp.
869-878). ACM.

Slater et al. 2006 Slater, M., Antley, A., Davison, A., Swapp, D., Guger, C., Barker, C., ... &
Sanchez-Vives, M. V. (2006). A virtual reprise of the Stanley Milgram
obedience experiments. PloS one, 1(1), e39.

Sun, Fox, and Bailenson 2012 Sun J. A., Fox J., & Bailenson J. N. (2012) Leadership in Science and
Technology: A Reference Handbook, Chapter: 79 AVATARS.

Szita 2012 Szita, I. (2012). Reinforcement learning in games. In Reinforcement
Learning (pp. 539-577). Springer Berlin Heidelberg.

Taubert et al. 2012 Taubert, N., Christensen, A., Endres, D., & Giese, M. A. (2012, August).
Online simulation of emotional interactive behaviors with hierarchical
Gaussian process dynamical models. In Proceedings of the ACM
Symposium on Applied Perception (pp. 25-32). ACM.

158

Theobald et al. 2009 Theobald, B. J., Matthews, I., Mangini, M., Spies, J. R., Brick, T. R.,
Cohn, J. F., & Boker, S. M. (2009). Mapping and manipulating facial
expression.Language and speech, 52(2-3), 369-386.

Tost et al 2014 Tost, D., Pazzi, S., von Barnekow, A., Felix, E., Puricelli, S., & Bottiroli,
S. (2014, May). SmartAgeing: a 3D serious game for early detection of
mild cognitive impairments. In Proceedings of the 8th International
Conference on Pervasive Computing Technologies for Healthcare (pp.
294-297). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

Aggeliki Tsoli 2014 Tsoli, A. (2014). Modeling the Human Body in 3D: Data Registration
and Human Shape Representation (Doctoral dissertation, Brown
University, Department of Computer Science Providence, RI, USA).

Walker and Walker 1997 Walker, A., & Walker, C. (Eds.). (1997). Britain divided: The growth of
social exclusion in the 1980s and 1990s (p. 8). London: Cpag.

Wang, Sourina and Nguyen
2011

Wang, Q., Sourina, O., & Nguyen, M. K. (2011). Fractal dimension
based neurofeedback in serious games. The Visual Computer, 27(4),
299-309.

Watkins & Dayan 1992 Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-
4), 279-292.

Williams 1997 Williams, K. D. (1997). Social ostracism. In Aversive interpersonal
behaviors(pp. 133-170). Springer US.

Williams 2001 Williams, K. D. (2001). Ostracism: The Power of Silence (pp. 7–
11). New York: Guilford.

Williams and Jarvis 2006 Williams, K. D., & Jarvis, B. (2006). Cyberball: A program for use in
research on interpersonal ostracism and acceptance. Behavior
research methods, 38(1), 174-180.

Williams & Zadro 2005 Williams, K. D., & Zadro, L. (2005). Ostracism: The Indiscriminate Early
Detection System.

Williams, Cheung and Choi
2000

Williams, K. D., Cheung, C. K., & Choi, W. (2000). Cyberostracism:
effects of being ignored over the Internet. Journal of personality and
social psychology,79(5), 748.

Williams, Forgas & von
Hippel 2005

Williams, K. D., Forgas, J. P., & Von Hippel, W. (Eds.). (2005). The social
outcast: Ostracism, social exclusion, rejection, and bullying.
Psychology Press.

Witmer and Singer 1998 Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual
environments: A presence questionnaire. Presence: Teleoperators and
virtual environments, 7(3), 225-240.

Yoshida et al. 2010 Yoshida, W., Seymour, B., Friston, K. J., & Dolan, R. J. (2010). Neural
mechanisms of belief inference during cooperative games. The Journal
of Neuroscience, 30(32), 10744-10751.

Zeleznik, Herndon & Hughes
1996

Zeleznik, R.C., Herndon, K., & Hughes, J. (1996). SKETCH: an interface
for sketching 3D scenes. SIGGRAPH. p. 163-170.

Zhang et al. 2013 Zhang, Y., Han, T., Ren, Z., Umetani, N., Tong, X., Liu, Y., ... & Cao, X.
(2013, October). BodyAvatar: Creating freeform 3D Avatars using first-
person body gestures. In Proceedings of the 26th annual ACM
symposium on User interface software and technology (pp. 387-396).

159

ACM.

3D face scanning using the
Kinect

http://kinecthacks.net/3d-facescanning-using-the-kinect.

3D Model Repositories https://charactergenerator.autodesk.com/

Fastmocap technology http://www.npasja.net/modern-3d-motion-capture-from-fastmocap-
technology/

Hank Virtual Environments
Lab

http://psychology.uiowa.edu/hank-virtual-environments-lab

Torque 3D http://torque3d.org/

Unity 3D http://unity3d.com/

Unreal Development Kit http://www.unrealengine.com/udk/

Virtual - Storytelling
Experiment

https://mrl.nyu.edu/~perlin/experiments/virtual-storytelling/

http://kinecthacks.net/3d-facescanning-using-the-kinect
https://charactergenerator.autodesk.com/
http://www.npasja.net/modern-3d-motion-capture-from-fastmocap-technology/
http://www.npasja.net/modern-3d-motion-capture-from-fastmocap-technology/
http://psychology.uiowa.edu/hank-virtual-environments-lab
http://torque3d.org/
http://unity3d.com/
http://www.unrealengine.com/udk/
https://mrl.nyu.edu/~perlin/experiments/virtual-storytelling/

