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Abstract

The optimization of oil production is a tedious and computationally intensive pro-
cess that requires the solution of time dependent nonlinear set of partial differ-
ential equations describing the flow of hydrocarbons in anisotropic porous me-
dia. Optimization of production is usually performed using either gradient free
techniques like genetic algorithms, particle swarm algorithms, or gradient-based
techniques where the gradients are computed through the solution of the adjoint
problem. A gradient-based optimization method, in which the gradient is com-
puted using an adjoint formulation, is often the method of choice since in con-
trast to numerical perturbation techniques that require as many objective function
evaluations as the number of control parameters, the gradient using adjoint-based
techniques is obtained only at a small fraction of the time spent for the evaluation
of the objective function. It is well known that for non-convex optimisation prob-
lems, gradient-based techniques are likely to get trapped in poor local optima. A
common practise is to lunch several independent optimisation runs from different
initial guesses or to combine ideas from gradient-free algorithms with gradient-
based to benefit from the merits of both. An adequate sampling of the search space
would require an intractable number of simulations and it is thus impossible.

The aim of this work is to exploit an observation in homogeneous reservoirs,
where the global optimum, when optimising cumulative oil recovery, is usually
achieved from practically any initial guess. This observation suggest to optimize
cumulative oil by adopting a “geology continuation” method. In this novel ap-
proach the porosity and permeability fields, gradually switch from some average
homogeneous values chosen heuristically for the particular benchmark, to the in-
homogeneous geological properties characterizing the reservoir. The optimal con-
trols from each step become the initial controls to the next step.

In addition instead of maximizing the cumulative oil we suggest to minimize mod-
ified versions of the residual oil function which are likely to be more convex and
thus less likely to lead in poor local optima.





Chapter 1

Oil production methods

Need for energy

Modern industrial societies consume large quantities of energy in order to main-
tain todays high standard of living. Most of that energy comes as a result of the
technology of oil production. According to the U.S. Energy Information Admin-
istrations (EIA) International Energy Outlook 2016, the global supply of crude
oil, other liquid hydrocarbons, and biofuels is expected to be adequate to meet the
world’s demand for liquid fuels through 2040. There is substantial uncertainty
about the levels of future liquid fuels supply and demand. According to current
prognosis, oil production in matured reservoirs is expected to decline and this
could create gap between supply and demand of hydrocarbons in various parts of
the world. To counterpart this growing demand-supply discrepancy,the petroleum
industry will have to give more attention to their mature fields to sustain current
production levels. It should be realized that most operators have not exploited the
full capacity of mature fields to their potential. In addition to this they face the
challenge of developing green fields in such a way that they can be produced to
their maximum potential in the future. With a mean recovery factor of about 36%,
there is an immense opportunity for “production optimization”.

The primary objective within reservoir management is to provide optimal pro-
duction scenarios, accompanied by estimates of expected hydrocarbon recovery,
ultimately resulting in an optimized field development plan. Elements of such
a plan include recovery techniques, well types and position or pattern designs,
completion types, and production scheduling. In fields with significant complex-
ity, automated workflows based on numerical algorithms will need to be used to
find optimal choices for all these variables.
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1.1 Oil production methods

During the life of a producing oil field, several production stages are encountered.
Initially, when a field is brought into production, oil flows naturally to the surface
due to current reservoir pressure in the primary stage. As reservoir pressure drops,
water is typically injected to boost the pressure, so that it displaces the oil in
the so called “secondary” stage. Lastly, the remaining oil can be recovered by
a variety of methods such as CO2 injection, natural gas miscible injection, and
steam recovery in a tertiary or enhanced oil recovery (EOR) phase [Meyer, 2007].

1.2 Primary recovery

Glover [Glover, 2001] explained all recovery methods, including primary recov-
ery mechanism as it is the stage when the natural energy of the reservoir is used
to transport hydrocarbons towards and out of the production wells. The earliest
possible determination of the drive mechanism is a primary goal in the early life
of the reservoir, as its knowledge can greatly improve the management and re-
covery of reserves from the reservoir in its middle and later life. There are five
important drive mechanisms: (i) Solution gas drive; (ii) Gas cap drive; (iii) Water
drive; (iv) Gravity drainage; (v) Combination or mixed drive. All these mecha-
nisms maintain the reservoir pressure, though water drive maintains much higher
pressure than the gas drive mechanisms (Figure 1.2).

Solution gas drive
In solution gas drive, the expansion of the dissolved gases in the oil and
water provides most of the reservoirs drive energy. Oil recovery from this
type is typically between 20% and 30% of original oil in place.

Figure 1.1: Pressure trends under various drive mechanisms.
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Gas cap drive
As production continues, the gas cap expands pushing the gas-oil contact
(GOC) downwards. Eventually the GOC will reach the production wells
and the gas oil ratio (GOR) will increase by large amounts. The recovery of
gas cap reservoirs can be (20% to 40% OOIP).

Water drive
The drive energy is provided by an aquifer that interfaces with the oil in the
reservoir at the oil-water contact (OWC). The recovery from water driven
reservoirs is usually good (20-60% OOIP).

Gravity drainage
Gravity drainage is the fourth drive force that might be considered for drive
mechanism where the density differences between oil and gas and water re-
sult in their natural segregation in the reservoir. This process is relatively
weak and in practice is only used in combination with other drive mecha-
nisms.

1.3 Secondary recovery

After initial discover and production, typical oil reservoirs lose the drive mech-
anism of gas or water that originally forced the oil to the surface. The second
stage of hydrocarbon production in which an external fluid such as water: usually
named water flooding or water injection or gas: referred to as gas flooding or gas
injection, is injected into the reservoir through injection wells. By secondary re-
covery methods, another 15-20% may be produced. [Fleshman and Lekic, 1999].

Water flooding
Water Flooding is implemented by injecting water into a set of wells while
producing from the surrounding wells. Water flooding projects are generally
implemented to accomplish reservoir pressure maintenance and as a water
drive to displace oil from the injector wells to the producer wells[Fleshman
and Lekic, 1999].

Gas flooding
This method is similar to water flooding in principal, and is used to maintain
gas cap pressure even if oil displacement is not required. Usually the pro-
duced natural gas is re-injected to the reservoir in order to maintain reservoir
pressure rather than to displace the hydrocarbon.



4 · OIL PRODUCTION METHODS

Figure 1.2: The different oil recovery stages and the corresponding oil recovery
factor.

1.4 Enhanced oil recovery

Enhanced oil recovery techniques refer to the recovery of oil through the injec-
tion of fluids and energy not normally present in the reservoir [Romero-Zeran,
2012]. The objectives of the injected fluids are to achieve mainly two purposes;
First is to boost the natural energy in the reservoir; second is to interact with the
reservoir rock/oil system to create conditions favourable for residual oil recovery
that leads to reduce the interfacial tension between the displacing fluid and oil,
increase the capillary number, reduce capillary forces, increase the drive water
viscosity, provide mobility-control, create oil swelling, reduce oil viscosity, alter
the wettability of reservoir rock [Romero-Zeran, 2012]. Enhanced oil recovery
can be divided into two: thermal and non-thermal recovery [Anazi, 2007]. Fig. 2
illustrates oil recovery stages by the different EOR techniques.

1.4.1 Thermal techniques

Thermal methods raise the temperature of the reservoir to heat the crude oil in
the formation and therefore reduce its viscosity and/or vaporise part of the oil
and thereby decrease the mobility ratio. The increase in heat reduces the surface
tension, increases the permeability of the oil and improves the reservoir seepage
conditions. The heated oil may also vaporise and then condense to be produced.
This operation, however, requires substantial investment in special equipment.



1.4 ENHANCED OIL RECOVERY · 5

In-situ combustion (ISC)
In-situ combustion or fire flooding is a process in which an oxygen con-
taining gas is injected into a reservoir where it reacts with the oil contained
within the pore space to create a high temperature self-sustaining combus-
tion front that is propagated through the reservoir.

Steam Injection
Steam is injected into the reservoir either continuously or in cycles. Steam
floods are easier to control than in-situ combustion. For the same pattern
size, the response time is 25-50% lower than the response time for addi-
tional production by in-situ combustion [et al., 2010].

Hot water flooding
Water-flooding in heavy oils is generally not an efficient way of production
due to high viscosity of heavy oil compared to water. In hot water-flooding,
thermal energy will increase oil mobility, and possibly improve sweep effi-
ciency [Kermen, 2011].

1.4.2 Non thermal techniques

Chemical Flooding
These processes use chemicals added to water in the injected fluid of a water
flood to alter the flood efficiency in such a way as to improve oil recovery
by: (i) Increasing water viscosity (polymer floods) (ii) Decreasing the rela-
tive permeability to water (cross-linked polymer floods) (iii) Increasing the
relative permeability to oil (micellar and alkaline floods) [Glover, 2001]

Polymer flooding
Polymers improve both vertical and areal sweep efficiency by reducing
water-oil ratio. Polymers are injected through water injection wells in order
to displace the residual oil. Increasing the displacing fluids viscosity and
lowering its relative permeability through plugging [Anazi, 2007].

Micelalr polymer flooding
It is well known that water and oil cannot be mixed until the third compo-
nent, surfactant or soap, is added to reduce the interfacial tension between
oil and water. Since micellar solution makes fluids miscible in the reservoir,
almost 100% of oil can be displaced especially in the presence of alkaline.
However, due to reservoir rock non-uniformity in the field, the amount of
oil recovered is reduced.
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Alkaline-surfactant-polymer (ASP) flooding
During waterflooding residual oil is trapped due to low water viscosity and
high water-oil interfacial tension, therefore another way is to inject the three
chemicals; alkaline to minimize surface adsorption; surfactant to lower in-
terfacial tension and stabilizes the emulsion. On the other hand, polymer is
used to increase viscosity and to improve mobility control and sweep effi-
ciency[et al., 2011].

1.4.3 Nitrogen Injection

Nitrogen itself is an inert gas that gets miscible at very high pressure and effi-
ciently reduces the oil viscosity while providing efficient miscible displacement
[Syed et al., 2011]. Nitrogen can be used for the following enhanced oil recovery
applications:

Nitrogen immiscible flooding
Gas is being injected into the crest of the structure to maintain the pressure,
to recover the hydrocarbon liquids in the gas cap, and to stabilize the gas/oil
contact.

Nitrogen miscibility displacement mechanism
There are three types of miscibility including; First contact miscibility;
Multi- contact miscibility; Vaporizing mass-transfer miscibility [Shine and
Holtz, 2008].

Multi-contact miscibility
This type of miscibility is subdivided into vaporizing gas drive, condensing
gas drive[Juttner, 1997].

Gas Flooding Injection
Gas is generally injected single or intermittently with water and this man-
ner of injection called Water-Alternating-Gas (WAG), has become widely
practiced over all of worlds oil fields [Kulkarni, 2003]. According to misci-
bility between gas injected and oil displaced, gas injection can be classified
into two major types: miscible gas injection and immiscible gas injection.
In miscible gas injection, the gas is injected at or above minimum misci-
bility pressure (MMP) which causes the gas to be miscible in the oil. In
contrast in immiscible gas injection, flooding by the gas is conducted be-
low MMP. This low pressure injection of gas is used to maintain reservoir
pressure to prevent production cut-off and thereby increase the rate of pro-
duction [Anazi, 2007]. In miscible flooding, the incremental oil recovery
is obtained by one of the three mechanisms: oil displacement by solvent
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through the generation of miscibility (i.e. zero interfacial tension between
oil and solvent hence infinite capillary number), oil swelling, and reduc-
tion in oil viscosity [Kulkarni, 2003]. Miscible fluids are 100% soluble in
each other. The interfacial tension between miscible fluids is zero. Injection
gases include:

LPG injection
Miscible LPG products such as ethane, propane, or butane have first contact
miscibility, which means they will be miscible from the first contact with
oil. However, LPGs are in such demand as marketable commodity that their
use in EOR is limited [Romero-Zeran, 2012]. In particular, this process uses
a slug of propane or other liquified petroleum gas (2 to 5% of pore volume
PV) followed by natural gas, inert gas, and/or water. Thus, the solvent will
bank oil and water ahead, and fully displace all contacted oil [Anazi, 2007].

Enriched gas miscible process
In this process, a slug of methane (C1) enriched with ethane (C2), propane
(C3), or butane (C4) (10% to 20% of the PV) and followed by lean gas
and/or water is injected from water injection well into the reservoir. When
the injected gas contacts virgin reservoir oil, C1-C3 are quenched from the
injected gas and absorbed into the oil [Anazi, 2007]. The injected HC sol-
vent is usually displaced with cheaper chase leaner or inert gas like Methane
or Nitrogen. At reservoir conditions the most usual problem occurs with
the hydrocarbon miscible flood is the gravity over-ride because of its lighter
density than the oil and water. So that in any miscible flood the Minimum
Miscibility Pressure (MMP) plays the most major role to overcome this
problem. As a remedial factor the solvent is to be injected at or above the
MMP of the reservoir fluid. Once it becomes miscible then it improves the
sweep efficiency and fallouts in optimum recovery [Syed et al., 2011].

Carbon dioxide (CO2 ) injection
Is one of the most proven of these methods. Almost pure CO2 (>95% of
the overall composition) has the property of mixing with the oil to swell
it, make it lighter, detach it from the rock surfaces, and causing the oil to
flow more freely within the reservoir so that it can be swept up in the flow
from injector well to producer well [Melzer and Midland, 2012]. Flooding
a reservoir with CO2 can occur either miscibility or immiscibly. Miscible
CO2 displacement is only achieved under a specific combination of con-
ditions, which are set by four variables: reservoir temperature, reservoir
pressure, injected gas composition, and oil chemical composition. From
a fundamental point of view, CO2 EOR works on a very simple principle,
namely, that given the right physical conditions, CO2 will mix miscibly with
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oil, acting much like a thinning agent, the same way that gasoline does with
motor oil. After miscible mixing, the fluid is displaced by a chase phase,
typically water [Meyer, 2007]. In this thesis CO2 injection as EOR method
is going to by examined.

1.5 Need for simulation and optimization

Use of reservoir simulation has grown because of its ability to predict the future
performance of oil and gas reservoirs over a wide range of operating conditions.
Reservoir simulators use numerical methods and high-speed computers to model
multidimensional fluid flow in reservoir rock. Technology improvements have en-
abled a widespread use of integrated simulation models for a better asset manage-
ment to be fully combined with measured field data. Reliable simulators and ade-
quate computing capacity are available to most reservoir engineers, so simulation
is usually practical for all reservoir sizes and all types of reservoir performance
studies. Although the use of simulation frequently is optional, it may be the only
reliable way to predict the performance of a large, complex reservoir, especially if
such external considerations as government regulations influence the production
schedule. Even for small reservoirs where simple calculations or extrapolations
may be adequate, simulation is often faster, cheaper, and more reliable than alter-
native methods for predicting performance.[Mattax and Dalton, 1990]

In petroleum fields, hydrocarbon production is often constrained by reservoir con-
ditions, deliverability of the pipeline network, fluid handling capacity of surface
facilities, safety and economic considerations, or a combination of these consid-
erations. Optimization of reservoir development requires many evaluations of the
possible combinations of the decision variables in order to obtain the best econom-
ical strategies. The objective of dynamic production optimization is to find the
best operational settings at a given time, subject to all constraints, this gives you
greater production gains for longer. Overall, optimization delivers a faster return
on investment during initial production, yields greater revenues during plateau
and decline, and delays well abandonment. Given the fact that oil prices continue
to drop to their lowest levels in several years, oil industry will inevitably turn to
optimization in order to continue to deliver the dividend levels that investors have
come to expect. Production optimization is no longer an option it is a necessity.
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1.6 Previous work

In petroleum industry, optimization methods are necessary for history matching,
where we adjust the physical properties of the reservoir model, and for optimiza-
tion of production, where the objective is to maximize either the net present value
or the cummulative production of hydrocarbons. All the above methods can be
implemented both with gradient-free and gradient-based techniques. Generally,
gradient-free techniques are not necessarily guaranteed to find the true global opti-
mal solution, they converge very slowly and require high performance computing
infrastructures. On the other hand, for gradient-based techniques, once the gradi-
ent is computed there are several options for finding an optimum. Furthermore,
proper exploitation of gradient information can significantly enhance the speed of
convergence in comparison with a method that does not compute gradients. An-
other feature of gradient-based methods is that they provide a clear convergence
criterion.

Among gradient-based algorithms we consider only the adjoint approach for com-
positional reservoir simulation problems.Procedures of this type entail the appli-
cation of optimal control theory and have their roots in the calculus of variations
[Bryson and Ho, 2001; Stengel, 1986]. Adjoint-based optimization techniques
have been used in a reservoir simulation setting both for history matching (see,
e.g., [Chavent et al., 1975; Chen et al., 1974; Li et al., 2003; Oliver et al., 2008;
Sarma et al., 2006]) and for production optimization. Much of the early work on
their use for optimization of oil recovery was performed by Ramirez and cowork-
ers, who considered the optimization of several different enhanced oil recovery
(EOR) processes [Liu et al., 1993; Mehos and Ramirez, 1989; Ramirez, 1987]. In
subsequent work, the focus was on gradient-based optimization (and in some cases
on the optimization of ‘smart wells’) for water flooding [Asheim, 1988; Brouwer
and Jansen, 2004; Sarma et al., 2006; Sudaryanto and Yortsos, 2000; Virnovski,
1991]. Refer to [Jansen, 2011] for a more complete overview of adjoint-based
optimization methods. We note additionally that, although not considered here,
derivative-free methods can also be applied for production optimization problems
– see [Echeverría Ciaurri et al., 2011] for discussion and examples. Recently
an adjoint treatment for multicomponent oil-gas compositional systems was pre-
sented in [Kourounis et al., 2014]. The formulation included an extensive dis-
cussion on engineering constraints that should usually be taken into account in
realistic scenarios. These constraints appear either as bounds (box constraints)
on the control variables or as inequality constraints on nonlinear functions of the
controls and states of the underlying PDEs. Two treatments were proposed for
the nondifferentiable constraints: a formal treatment within the optimizer per-
forming lumping for all wells and time steps, and a heuristic approach, where
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bound constraints are treated in the optimization and nondifferentiable constraints
are satisfied in the forward model. The investigation showed that although stan-
dard lumping techniques perform well for simple academic problems, they fail
to obtain optimal solutions better than the reference for realistic problems. That
result motivated further developments of formal constraint-handling techniques.
In [Kourounis and Schenk, 2015] the author introduces a new formal treatment
for the nondifferentiable constraints where lumping is avoided to allow for a more
realistic discretization of the nonlinear constraints. The performance of the new
approach is compared to the ones introduced in [Kourounis et al., 2014] for several
different examples of increased complexity.

1.7 The scope of this work

Optimization using gradients converges much faster than gradient-free techniques
resulting in significant saving in computational time but it usually gets trapped to
poor local optima [Kourounis et al., 2014; Kourounis and Schenk, 2015].

The aim of this work is to exploit an observation in homogeneous reservoirs,
where the global optimum, when optimising cumulative oil recovery, is usually
achieved from any initial guess. We perform continuation with respect to a pa-
rameter that transforms the homogenous reservoir with respect to porosity and
permeability, gradually to the original inhomogeneous one, solving an optimal
control problem for each distinct value of the parameter. This approach allows us
to follow the optimal solution (cummulative oil recovery) as the geology switches
from homogeneous to inhomogenous. This novel technique is presented at the
best of our knowledge for first time for production optimization problems and
tested in several examples of increased complexity.



Chapter 2

Production Optimization

The optimization of oil production is a tedious and computational intensive pro-
cess that requires the solution of time dependent nonlinear set of partial differen-
tial equations describing the flow of hydrocarbons in anisotropic porous media.
The optimization of time-varying well settings, such as injection rates, produc-
tion rates or bottom-hole pressures, is an important aspect of optimal reservoir
management. Optimization of production is usually performed using either gra-
dient free techniques like genetic, particle swarm algorithms, or gradient-based
techniques where the gradients are computed through the solution of the adjoint
problem.

2.1 Gradient-free methods

In this section we review the basic gradient-free method employed in industry and
academia for the solution of several optimal control problems of the oil industry.

2.1.1 Genetic algorithms (GAS)

Genetic algorithms are commonly used to generate high-quality solutions to op-
timization and search problems by relying on bio-inspired operators such as mu-
tation, crossover and selection. The method is a general one, capable of being
applied to an extremely wide range of problems. Genetic algorithms are based on
three essential components:

- Survival of the fittest (Selection).
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- Reproduction processes where genetic traits are propagated (Crossover).

- Variation (Mutation).

2.1.2 Particle Swarm Optimization(PSO)

Particle swarm optimization (PSO) is is a stochastic, population-based computer
algorithm. It applies the concept of swarm intelligence (SI) to problem solving.
Swarm intelligence is the property of a system whereby the collective behaviors of
(unsophisticated) agents interacting locally with their environment cause coherent
functional global patterns to emerge (e.g. self-organization, emergent behavior).
Gradient-free methods are not necessarily guaranteed to find the true global opti-
mal solutions, but they are able to find many good solutions.

2.2 Gradient-based methods

Gradient-based optimization methods offer the advantage to construct additional
information about the shape of the surface for the particular problem. Hence, the
gradient of a function provides information about the behavior of a function such
as steepness and extrema in the parameter space. The gradients are computed
through the solution of the adjoint problem. With this additional information, the
convergence of the search algorithm can be drastically enhanced.

2.2.1 Sequential quadratic programming (SQP)

Sequential quadratic programming (SQP) is an iterative procedure that utilizes a
2.order approximation of the Lagrangian function of a problem. The quadratic for-
mulation of the problem is a local approximation of the real problem and consists
of a quadratic objective function and linear equality and/or inequality constraints.
SQP can be used both within a trust-region and a line search framework. In a
line search framework, the algorithm proceeds by first calculating a search direc-
tion. If we are trying to maximize the original problem, a function is then solved
that maximize the quadratic approximation in the search direction. When a new
iteration point in the direction that was searched has been reached, a new local ap-
proximation is constructed and the algorithm proceeds to the next iteration given
that a set of optimality conditions has not been fulfilled. SQP is a generalization
of Newtons method for unconstrained problems as it uses a quadratic approxima-
tion of the Lagrangian function, steps in a direction it believes the optimum lies,
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and then creates a new approximation of the original model when a new iteration
point has been reached. The main difference between Newtons method and SQP
is that for constrained nonlinear problems the Taylor approximation of the origi-
nal problem cannot be used, as the model problem also needs to incorporate the
constraints of the original problem. Instead, the Lagrangian function is used and
the constraints of the problem thereby taken into account. SQP is appropriate for
small and large problems and it is well-suited to solving problems with significant
nonlinearities[Bonnans et al., 2006].

2.2.2 Interior point optimization (IPO)

An interior point method is a linear or nonlinear programming method that achieves
optimization by going through the middle of the solid defined by the problem
rather than around its surface.

Both gradient-based and derivative-free methods have been considered for this
problem, and both are applicable in different situations. A gradient-based opti-
mization method, in which the gradient is computed using an adjoint formulation,
is often the method of choice since in contrast to numerical perturbation tech-
niques that require as many objective function evaluations as the number of con-
trol parameters, the gradient using adjoint-based techniques is obtained only at a
small fraction of the time spent for the evaluation of the objective function. The
development of adjoint procedures for general compositional flow problems is
much more challenging than black-oil simulation because of the need to perform
phase-equilibrium (flash) calculations for all grid blocks at every iteration of ev-
ery time step. Adjoint formulations are challenging to code because they require
analytical derivatives of many variables, and the increased complexity of compo-
sitional simulators renders these derivatives much more cumbersome to calculate
than in the case of a black-oil simulator. Furthermore, the production optimisa-
tion problem is usually subject to industrial constraints, for example, maximum
gas rate specification in injection or production wells, when the control variables
are well bottom-hole pressures. At the same time optimising time-varying well
settings, such as injection rates, production rates or bottom-hole pressures, is an
important aspect of optimal reservoir management that increases significantly the
dimension of the search space. It is well known that for non-convex optimisation
problems, gradient-based techniques are likely get trapped in poor local optima.
A common practise is to lunch several independent optimisation from different
initial guesses or to combine ideas from gradient-free algorithms with gradient-
based to benefits from the merits of both. An adequate sampling of the search
space would require an intractable number of simulations and it is thus impossi-
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ble.

2.3 Oil-gas compositional simulation equations

The mass conservation equation for component i, which can exist in any phase j
(here j = o, g, where o indicates oil and g gas), is given by Cao [2002]; Voskov
and Tchelepi [2012]; Voskov et al. [2009]:

∂

∂ t

(
φ ∑

j
xi jρ jS j

)
−∇ ·

(
∑

j
xi jρ jK

kr j

µ j
∇Φ j

)
+ (2.1)

∑
w

∑
j

xi jρ jqw
j = 0, i = 1, . . . ,nc.

In the first (accumulation) term, t is time, φ is porosity, xi j designates the mole
fraction of component i in phase j, S j is saturation, and ρ j is molar density. In the
second (flow) term, K is the permeability tensor, kr j is the relative permeability
to phase j, µ j the phase viscosity, and the phase potential Φ j is given by Φ j =
p j−ρ jg(D−D0), where p j is phase pressure, D is depth, D0 is a reference depth,
and g is gravitational acceleration. In the third (source/sink) term, qw

j indicates the
phase flow rate for well w. Equation (2.1) is written for each of the nc components
present in the system.

For a mixture of nc components in two fluid phases (oil and gas), thermodynamic
equilibrium can be expressed as:

fio(po,xio)− fig(pg,xig) = 0, (2.2)

where fio(po,xio) is the fugacity of component i in the oil phase and fig(pg,xig)
is the fugacity of component i in the gas phase (temperature does not appear be-
cause the system is assumed to be isothermal). We additionally must satisfy the
saturation constraint (So +Sg = 1) and the component mole fraction constraints:

nc

∑
i=1

xi0−1 = 0,
nc

∑
i=1

xig−1 = 0. (2.3)

A capillary pressure relationship also appears in cases with nonzero capillary pres-
sure, though here we neglect capillary pressure so po = pg.

As discussed by many authors (see, e.g., Cao [2002]; Coats [1980]; Voskov and
Tchelepi [2012]; Young and Stephenson [1983]), the system described above con-
tains a total of only nc primary equations and primary variables per grid block.
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These equations and variables are coupled (from block to block), and in a fully-
implicit method are all computed simultaneously at each Newton iteration. The
remaining (secondary) variables can be computed locally (block by block), and
thus very efficiently, once the primary variables are determined. Various options
exist for the choice of primary variables (see Voskov and Tchelepi [2012] for dis-
cussion). Here we use the so-called natural variable set, which includes, for each
grid block, one pressure unknown, np− 1 saturation unknowns (where np is the
number of phases; here np = 2), and nc−np component mole fraction unknowns.

In our formulation, the governing equations (2.1) are solved fully-implicitly, using
a backward-Euler time discretization, two-point flux approximation, and single-
point upwinding Aziz and Settari [1979]. These treatments are standard in practi-
cal reservoir simulation. For the solution of the set of nonlinear equations, we use
Newton’s method with the solution at the previous time step as the initial guess. A
limit on the change of the grid-block saturation and mole fractions over a Newton
iteration is applied Younis et al. [2010]. The Newton iterations terminate when
the maximum relative norm of the residual is less than 10−6 (tight convergence
criteria are required for the adjoint solution, discussed below). For the solution of
the linear system at each Newton iteration we use GMRES preconditioned by the
constrained pressure residual method, as described in Han et al. [2013]. Iteration
is terminated when the Euclidean norm of the initial residual has decreased by five
orders of magnitude.

We employ a simple time stepping strategy. The time step size at step n+ 1 is a
multiple of that at n, provided nonlinear convergence was achieved at step n. In
this way the time step can increase until it reaches the maximum allowable value.
If the nonlinear solver fails to converge within a prescribed number of Newton
iterations, we divide the time step by a fixed constant. This process is repeated
until the nonlinear system converges.

2.4 Adjoint equations for the compositional system

We now present the discrete and continuous adjoint equations. Some numerical
and coding issues are also discussed.

2.4.1 Automatic differentiation

It is quite common for comprehensive computational platforms, in reservoir simu-
lation and other application areas, to undergo frequent modification and enhance-
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ment. This poses a problem for adjoint formulations because, when an existing
feature is modified the corresponding adjoint code may also be impacted, and
when a new feature is added, the associated adjoint code must (in many cases) be
written. The maintenance and development of adjoint code poses challenges be-
cause the necessary derivatives are generally complicated. This is particularly the
case in compositional simulation where variables couple in many ways, including
through the nonlinear equation of state.

Automatic differentiation, or AD, is gaining popularity in the field of scientific
computing as a means of facilitating the development and enhancement of large
code bases. AD enables, for example, the fast (analytical) determination of Ja-
cobian matrix elements from the code defining the residual vector. The use of
AD has allowed the fast construction and assessment of different compositional
formulations within the same code Voskov et al. [2009]. In this work, we take
advantage of AD to automate the construction of many of the derivatives required
for the adjoint formulation.

The AD implementation used in our compositional simulator is the ‘automatic
differentiation expression templates library’ (ADETL), developed originally by
Younis and Aziz Younis and Aziz [2007]. This library generates efficient com-
puter code for the evaluation of the Jacobian matrix and the corresponding par-
tial derivatives from discrete algebraic expressions of the governing conservation
equations, associated constraint relations, and equations of state. We refer to You-
nis and Aziz [2007] for a detailed description of the underlying theory.

2.4.2 Discrete adjoint formulation

Following the fully-implicit discretization of the governing equations (using the
usual finite volume method, with treatments as noted above), we can express the
nonlinear system as:

gn(xn,xn−1,un) = 0, (2.4)

where gn denotes the fully discretized, both in space and time, set of partial dif-
ferential equations. Here xn = x(tn) and un = u(tn) are the states and controls
(well settings), respectively, at time step n. The corresponding time step size is
designated ∆tn. We will use throughout the notation ∂gT/∂x to denote the matrix
(∂g/∂x)T .

We are interested in either maximizing or minimizing an objective function J that
is in general a nonlinear function of the states xn and the controls un of the forward
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problem. We assume that J has the following form:

J(x,u) =
∫ tN

t0
f (x(t),u(t))dt +ϕ(x(tN)), (2.5)

where f (x(t),u(t)) is a nonlinear function varying with time and ϕ(x(tN)) is a
function of only the last state xN . After the solution of the forward problem has
been obtained, J may be approximated by

J ≈
N

∑
n=1

∆tn fn (xn,un)+ϕ(xN). (2.6)

Using (2.6) we can state the optimal control problem as:

Extremize f =
N

∑
n=1

∆tn fn (xn,un)+ϕ(xN)

subject to gn(xn,xn−1,un) = 0,
and x0 = x(t0).

(2.7)

In general, a number of linear and nonlinear constraints may need to be included in
the optimal control problem.Now, since gn = 0, we can introduce the augmented
objective function JA by ‘adjoining’ the governing equations to the original objec-
tive function J. The new objective JA shares the same extrema as J and is defined
as:

JA =
N

∑
n=1

(
∆tn fn(xn,un)+λλλ

T
n gn(xn,xn−1,un)

)
+ϕ(xN). (2.8)

In (2.8), the vectors λλλ n are the Lagrange multipliers.

The maximum or minimum of JA (and thus J) is achieved when the first variation
of JA is zero (δJA = 0). After performing some index-shifting, and grouping terms
multiplied by the same variation (δxn,δxN ,δun), δJA can be written as:

δJA =

(
∂ϕN

∂xN
+∆tN

∂ fN

∂xN
+λλλ

T
N

∂gN

∂xN

)
δxN

+
N−1

∑
n=1

(
∆tn

∂ fn

∂xn
+λλλ

T
n+1

∂gn+1

∂xn
+λλλ

T
n

∂gn

∂xn

)
δxn

+
N

∑
n=1

(
∆tn

∂ fn

∂un
+λλλ

T
n

∂gn

∂un

)
δun. (2.9)
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In order to achieve δJA = 0, we require δJA/δxn = 0T (for n = 1,2, . . . ,N) and
δJA/δun = 0T . To satisfy δJA/δxn = 0T for n = 1,2, . . . ,N, we require that the
Lagrange multipliers satisfy the following equations:

∂gT
n

∂xn
λλλ n =−

(
∂gT

n+1

∂xn
λλλ n+1 +∆tn

∂ f T
n

∂xn

)
, (2.10)

∂gT
N

∂xN
λλλ N =−

(
∆tN

∂ f T
N

∂xN
+

∂ϕT
N

∂xN

)
. (2.11)

With this choice of the Lagrange multipliers the total variation becomes

δJA =
N

∑
n=1

(
∆tn

∂ fn

∂un
+λλλ

T
n

∂gn

∂un

)
δun,

and the gradient of the objective function with respect to the controls is

δJA

δu
=

[
δ f1

δu1
,

δ f2

δu2
, . . . ,

δ fN

δuN

]
. (2.12)

The individual entries of δJA/δu are given by

δ fn

δun
= ∆tn

∂ fn

∂un
+λλλ

T
n

∂gn

∂un
, n = 1,2, . . . ,N. (2.13)

By driving δJA/δu to zero, we achieve the minimum or maximum of JA (and
thus J). In practice, δJA/δu, along with other quantities related to constraints,
are provided to a gradient-based optimization algorithm to determine the next
estimate for the controls u.

In optimization problems, the well control variables do not typically change at
each time step in the flow simulation. Rather, they are defined over longer time
periods that are referred to as control steps. Time steps are usually small in order
to capture flow dynamics, reduce time-discretization error, and facilitate conver-
gence of the Newton iterations. The gradient at the control period m, δ fn/δum, is
simply the sum of the gradients δ fn/δun for all time steps that belong to control
period m.

2.4.3 Continuous adjoint formulation

The continuous adjoint formulation employs the continuous representation of the
objective function along with the spatially discretized reservoir flow equations.
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The optimal control problem can then be stated as:

minimize
u

J(x,u) =
∫ tN

t0
f (x(t),u(t))dt +ϕ(x(tN))

subject to g(ẋ(t),x(t),u(t)) = 0.

In this case we express the governing set of partial differential equations, for a
specified dynamic well-control strategy u(t), as g(ẋ(t),x(t),u(t)) = 0. We intro-
duce the Lagrange multipliers λλλ (t) and define the Lagrangian L as:

L(ẋ,x,u,λλλ ) = f (x,u)+λλλ
T g(ẋ,x,u), (2.14)

The variables u(t), x(t), ẋ(t) and λλλ (t) are denoted as u, x, ẋ and λλλ to simplify
notation. The augmented objective function, JA, can be expressed as:

JA(ẋ,x,u,λλλ ) =
∫ tN

t0
L(ẋ,x,u,λλλ )dt +ϕ(xN). (2.15)

The first variation of JA is given by

δJA =
∫ tN

t0

(
∂L
∂ ẋ

δ ẋ+
∂L
∂x

δx+
∂L
∂u

δu+
∂L
∂λλλ

δλλλ

)
dt

+
∂ϕ(xN)

∂xN
δxN . (2.16)

Note that δ ẋ = d(δx)/dt, so any variation in the state vector x will introduce a
variation in its time derivative ẋ.

After integration by parts, using the fact that the variation of the initial conditions
δx0 = 0, and taking into account that ∂LT/∂λλλ = g(ẋ,x,u) = 0, the first variation
of JA can be written as:

δJA =
∫ tN

t0

(
∂L
∂x
− d

dt
∂L
∂ ẋ

)
δxdt

+

(
∂L(xN)

∂ ẋN
+

∂ϕ(xN)

∂xN

)
δxN

+
∫ tN

t0

∂L
∂u

δudt. (2.17)

To achieve δJA/δx = 0, λλλ must be chosen to satisfy the following:

d
dt

(
∂gT

∂ ẋ
λλλ

)
− ∂gT

∂x
λλλ − ∂ f T

∂x
= 0 (2.18)

∂gT
N

∂ ẋN
λλλ N =−∂ϕT (xN)

∂xN
. (2.19)
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The ordinary differential equation in (2.18) is integrated backwards in time start-
ing from the final time condition (2.19). With the resulting λλλ , the first variation of
the objective function becomes:

δJA =
∫ tN

t0

(
∂ f
∂u

+λλλ
T ∂g

∂u

)
δudt. (2.20)

In order to allow a direct comparison of the discrete and continuous adjoint for-
mulations, we integrate the continuous adjoint backwards in time fully implicitly,
using the same scheme as is applied for the forward problem. The discrete form
of (2.18) is:

∂gT
n

∂xn
λλλ n =−

∂gT
n+1

∂xn
λλλ n+1−∆tn

∂ f T
n

∂xn
. (2.21)

This equation is solved backwards in time, starting from the boundary condi-
tion (2.19). Once the Lagrange multipliers have been obtained, the gradient is
computed using equations (2.12) and (2.13).

2.4.4 Continuous versus discrete adjoint formulation

The gradients obtained by the discrete adjoint formulation are, as would be ex-
pected, fully consistent with the discrete forward problem. Indeed, if we com-
pute the gradients using numerical perturbation of the controls, we find that they
coincide with those from the discrete adjoint solution in the first 5-8 significant
digits (to achieve this level of agreement, tight tolerances must be used for lin-
ear and nonlinear convergence of the forward simulation). There are differences,
however, between these gradients and those provided by the continuous adjoint
formulation.

To illustrate this, consider the simplified case where ϕ(xN) = 0. The solution of
(2.19) in this case will give λλλ N = 0, and as a result, the first term in (2.9) will not
vanish. There will be a nonzero term left multiplying the variation of δxN :

δJA = ∆tN
∂ fN

∂xN
δxN +

N

∑
n=1

(
∆tn

∂ fn

∂un
+λλλ

T
n

∂gn

∂un

)
δun. (2.22)

It is evident that, as the time step size ∆tN → 0, the term multiplying δxN will
vanish, and the gradient provided by the continuous formulation will become con-
sistent with that from the discrete problem. However, as long as ∆tN is significant,
the two gradients will not coincide, especially at the last time step.
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We implemented both the continuous and discrete adjoint formulations into our
optimization framework. Using a small ∆tN , we observed that the computed gra-
dients were very similar, consistent with (2.22). Even using small ∆tN , however,
we did not observe any advantage of the continuous formulation over the dis-
crete formulation. In cases where ∆tN was not small, the continuous formula-
tion required more iterations of the optimizer, presumably because of errors in
δJA/δu. In light of these observations, we do not present any detailed results us-
ing the continuous adjoint formulation since we do not see any advantages to this
approach for our problem. We note that these finding are consistent with those
reported in Hager [2000] and Walther [2007] for general Runge-Kutta time step-
ping methods, in Nadarajah and Jameson [2000], where the discrete and continu-
ous adjoint approaches were applied to automatic aerodynamic optimization, and
in Petra and Stadler [2011] for general variational inverse problems governed by
partial differential equations. A similar gradient discrepancy between discretiza-
tion/optimization versus optimization/discretization can also occur with respect
to the spatial discretization – see the discussion for a shape optimization problem
in Gunzburger [2003].

2.4.5 Solution of adjoint equations

The solution of the linear system of equations that arises when solving (2.10)
constitutes the largest computational demand in the adjoint problem. The matrix
appearing in this equation at time step n, ∂gT

n /∂xn, is the transpose of the Jaco-
bian matrix for the converged forward problem, ∂gn/∂xn. In our implementation,
the converged states are written to disk during the solution of the forward prob-
lem. These converged states are then read back, during the solution of the adjoint
problem, and ∂gn/∂xn is reconstructed, along with all other derivatives appearing
in equations (2.10), (2.11) and (2.13). This enables the evaluation of the Lagrange
multipliers λλλ n and the gradients ∂ fn/∂un.

For the solution of the linear system in (2.10), we use GMRES preconditioned
by the transpose of the CPR (constrained pressure residual) preconditioner, as
described in Han et al. [2013]. In these linear solutions, we require very high
accuracy to guarantee that residual errors accumulated over hundreds of time steps
do not pollute the gradients (which would influence the computed optimum). For
this reason, we continue iterating the linear solver until the Euclidean norm of
the initial residual has decreased by 10 orders of magnitude. This is significantly
higher accuracy than is required for the forward problem.
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2.5 Gradient-based optimization and related software

The SNOPT optimizer is used in this work for solving the nonlinear constrained
optimization problem, and in this section we will provide a concise overview of
the underlying theory. This discussion loosely follows Gill et al. [2005], which
provides a much more in-depth description. SNOPT uses a sparse sequential
quadratic programming (SQP) algorithm that exploits sparsity in the constraint
Jacobian and maintains a limited-memory quasi-Newton approximation to the
Hessian of the Lagrangian. The QP subproblems are solved using an inertia-
controlling reduced-Hessian active-set method (SQOPT) that allows for variables
appearing linearly in the objective and constraint functions.

We now discuss the main features of the SQP method used to solve our nonlinear
program (NP). This discussion follows Gill et al. [2005]. All realistic recovery
optimization problems involve bound constraints on the inputs, and often several
other linear or nonlinear equality or inequality constraints, which together consti-
tute a so-called general nonlinear program (GNP). Here we take the problem to
be

(NP) minimize
u

f (u)
subject to c(u)≥ 0,

where u ∈ Rn, c ∈ Rm, while the objective function f (u) and the constraints
ci(u), i = 1,2, . . . ,m have continuous second derivatives. The gradient of f is
denoted by the vector ∇ f (u), and the gradients of each element of c form the
rows of the Jacobian matrix J(u).

An SQP method obtains search directions (for the primal u and dual variables π)
from an iterative sequence of QP subproblems. Each QP subproblem, in turn,
iteratively minimizes a convex quadratic model of a certain Lagrangian function
subject to linearized constraints associated with (NP), namely,

L (u,uk,πk) = f (u)−π
T
k dL(u,uk), (2.23)

defined in terms of the constraint linearization cL(u,uk) and the departure from
linearity dL(u,uk):

cL(u,uk) = ck +Jk(u−uk),

dL(u,uk) = c(u)− cL(u,uk),

subject to linearized constraints. In this formulation k is the SQP (major) iteration
counter, and π are Lagrangian multipliers to adjoin dL to f . The first and second
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derivatives of the modified Lagrangian with respect to u are

∇L (u,uk,πk) = ∇ f (u)− (J(u)−Jk)
T
πk,

∇
2L (u,uk,πk) = ∇

2 f (u)−∑
i
(πk)i∇

2ci(u).

Observe that ∇2L is independent of uk and is the same as the Hessian of the con-
ventional Lagrangian. At u = uk, i.e., after convergence of the inner iterations, the
modified Lagrangian has the same function and gradient values as the objective:
L (uk,uk,πk) = fk, ∇L (uk,uk,πk) = ∇ fk. The modified augmented Lagrangian
is ‘less’ nonlinear than the augmented Lagrangian itself because linear terms in
the constraints disappear, especially in the quadratic penalty term. The number of
nonlinear variables in the modified augmented Lagrangian is the same as in the
original problem.

The merit function

Mρ(u,π,s) = f (u)−π
T(c(u)− s

)
+ 1

2

m

∑
i=1

ρi
(
ci(u)− si

)2
, (2.24)

where ρ and s are vectors of penalty parameters and slack variables, respectively,
is reduced along each search direction to ensure convergence from any starting
point.

In summary, the basic structure of an SQP method involves major and minor iter-
ations. The major iterations generate a sequence of iterates (uk,πk) that converge
to the optimal solution (u∗,π∗). At each major iterate a QP subproblem is solved
to generate a search direction towards the next iterate (uk+1,πk+1). Solving such
a subproblem is itself an iterative procedure, and the minor iterations of an SQP
method are the iterations of the QP method. SNOPT requires first-order deriva-
tives of the nonlinear objective and constraint functions with respect to the control
variables, which are provided by our adjoint procedure.





Chapter 3

Benchmark Problems

We implement an adjoint treatment for multicomponent oil-gas compositional
systems through use of a recently developed automatic differentiation capability
[Younis et al., 2010]. The application of automatic differentiation in the context of
Stanford’s General Purpose Research Simulator (AD-GPRS) [Cao, 2002], a mod-
ular simulator with many advanced features, enables us to construct a gradient-
based optimization framework suitable for use in compositional problems. In a
discrete implementation, the governing equations for the so-called adjoint system
are constructed based on the discretized-in-time forward model equations. In all
examples we maximize cumulative oil recovery under CO2 injection.

The oil industry considers as optimum production implementation the so called
“full blast method” where the injectors operate at the upper bound of the accept-
able pressure while the producers operate at the lower pressure boundary. The
concept of “full blast” is based on pressure maintenance. The primary objective
of this thesis is to present the advantages of optimization over the “full blast”
method. We will present results for two benchmarks of increased complexity.

Initially, the objective function of Cumulative oil is optimized with the use of AD-
GPRS. The Net Present Value function is a nonlinear function of the states xn and
the controls un of the forward problem and has the following format:

fn = F
(
xn,xn+1,uu

)
, (3.1)

fn =
dtn

(1+al pha)tn
[

Np

∑
( j=1)

PT Qn
p, j +

Ni

∑
( j=1)

CT Qn
i, j], (3.2)
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where Np is the number of producers, Ni is the number of injectors, P the pro-
duction prices for each phase [$ / barrel], C is the injection prices for each phase
[$ / barrel], Qp, j and Qi, j are the production and injection rates of each phase at
surface conditions,where j stands for the jth injector/producer, alpha is the dis-
count factor, dtn is the the nth timestep and tn is the simulation time at after the nth
timestep.

The gradient-based optimization will find only a local optimum thus, we run each
case nine times, using a different initial guess for the well controls. Each initial
guess corresponds to a combination of BHPs from the set {pu

I , pl
I, pa

I } for the
injectors and from the set {pu

P, pl
P, pa

P} for the producers, where pu, pl and pa

designate the upper and lower limits on the initial BHPs, and the average between
these limits, respectively. We set pl = pinit + 1 bar for the injectors and pu =
pinit−1 bar for the producers, where pinit is the initial reservoir pressure as listed
in Table 3.1. Note that these ‘limits’ are simply used to prescribe initial guesses
for the optimization – they are not related to the actual BHP bound constraints.

Run Initial guess

1 [pl
I, pl

P]
2 [pl

I, pa
P]

3 [pl
I, pu

P]
4 [pa

I , pl
P]

5 [pa
I , pa

P]
6 [pa

I , pu
P]

7 [pu
I , pl

P]
8 [pu

I , pa
P]

9 [pu
I , pu

P]

Table 3.1: Initial guesses for the optimizations for all cases considered.

Subsequently, we optimize the objective of Cumulative oil by implementing a
“geology continuation” method. In this novel method the geology alters gradu-
ally, from the homogeneous version of the benchmark to its final geology. The
optimum controls from each optimized sub-geology are sequentially introduced
as initial controls to the next sub-geology. This optimization approach was in-
spired by similar methods implemented in continuum mechanics and was based
on the fact that in an homogeneous benchmark, it is more probable for the opti-
mization process to end up in a global optimum. Thus, by changing gradually the
geology, the outcome will remain in the vicinity of the global optimum.
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3.1 Example 1 - Π obstacle

In the first example we maximize cumulative oil recovery under CO2 injection.
The two-dimensional geological model is depicted in Fig. 3.1. A Π-shaped region
is located at the center of a homogeneous reservoir. The model is discretized on
a grid of dimensions 80×80. The permeability in most of the domain (red cells)
is set to 4000 mD, while the permeability for the blue cells that comprise the Π-
shaped region is set to 1 mD. In all of our examples we describe the permeability
with a diagonal tensor: K = diag(kx,ky,kz); here, in addition, the permeability is
isotropic and uniform within both of the regions. Four injection wells are placed
at the corners of the model and the single production well is located inside the Π-
shaped region. The model includes a total of four components (three hydrocarbon
components plus CO2), as specified in Table 3.2. Further details on the reservoir
model are provided in Table 3.3.

1 500 1000 1500 2000 2500 3000 4000

Figure 3.1: Injection wells (blue) and production well (red) for Example 1. Back-
ground shows kx (kx = ky).
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Component CO2 C1 C4 C10

Initial composition (%) 1 20 29 50
Injection composition (%) 100 - - -

Table 3.2: Fluid description for Example 1

Parameter Value Units

Grid size 80 × 80 × 1 —
∆x 6 m
∆y 6 m
∆z 4 m
Depth 4000 m
Initial pressure 100 bar
Temperature 100 ◦C
Rock compressibility 7.2×10−5 1 / bar
Simulation time 256 d
Pressure upper bound 120 bar
Pressure lower bound 90 bar
Residual gas saturation 0 —
Residual oil saturation 0 —
End point rel perm gas 1 —
End point rel perm oil 1 —
Corey exponent gas 2 —
Corey exponent oil 2 —

Well locations [grid block no.] i j

Injector 1 1 1
Injector 2 1 80
Injector 3 80 1
Injector 4 80 80
Producer 1 40 48

Table 3.3: Model parameters for example 1.

The control parameters in the optimization problem are the well BHPs. These are
constrained to lie between an upper bound of 120 bar and a lower bound of 90 bar.
The total simulation period is 256 days, and the well controls are determined at
initial time and for every subsequent 32-day interval. There are thus a total of
eight control steps and 40 control parameters.
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3.1.1 Optimization of cumulative oil

As a reference we run the simulation with the production wells operating at the
minimum BHP and the injection wells at the maximum BHP. The cumulative
oil production for this case is given in the first row (‘Reference’) of Table 3.4.
We next perform optimizations that honor the bound constraints for all nine ini-
tial guesses. The simulation and the optimization results, are presented in Ta-
ble 3.4 in the columns labeled ‘Reference’ and ‘One step’ respectively.In order
to evaluate the time discretization error, the final simulations are repeated for a
smaller timestep.The results are presented in Table 3.4, in the columns labeled
‘Re f erence’ and ‘Onestep’ respectively. Also a relative error is presented in the
last column of Table 3.4.

The optimization procedure resulted the to same controls of full blast method
(starting from the initial guess of [pu

I , pl
P]) and subsequently the exact same result

on account to the simplicity of the benchmark. A visual representation of the cu-
mulative oil, the BHPs , the gas rates and the oil rates for the optimal for refernce
case are shown in Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.5.

Run Reference Re f erence One step Onestep Error

Re f erence 11.91
[pa

I , pa
P] 10.09 10.12 10.26 10.28 0.3%

[pa
I , pl

P] 10.84 10.88 10.86 10.88 0.36%
[pa

I , pu
P] 8.97 8.99 8.93 8.94 0.22%

[pl
I , pa

P] 6.15 6.15 6.15 6.15 0%
[pl

I , pl
P] 8.81 8.83 11.46 11.52 0.52%

[pl
I , pu

P] 2.45 2.45 8.16 8.18 0.24%
[pu

I , pa
P] 11.6 11.64 11.62 11.64 0.34%

[pu
I , pl

P] 12.11 11.91 12.11 11.91 1.65%
[pu

I , pu
P] 11.21 11.24 11.22 11.24 0.27%

Table 3.4: Oil production in 104 m3 (Example 2) for the objective function of
Cumulative oil (Example 1, 256 days) for nine initial guesses, using the ADGPRS.
The simulation and optimization for 2 different time steps and their relative time
discretization error are presented.
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Figure 3.2: Oil production versus time for Example 1. Results are for reference
case (orange curve), best optimized solution ( green curve).
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Figure 3.3: BHPs of injectors and producer versus time for the reference case of
Example 1.
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Figure 3.4: Gas rates in m3/d of injectors and producer versus time, for the refer-
ence case of Example 1.
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Figure 3.5: Oil rates in m3/d of the producer versus time, for the reference case
of Example 1.
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3.1.2 Optimization with geological continuation

In this part of the thesis we examine if the results can be further improved by
using a continuation in geology. In this process we use twenty different geologies,
starting from the homogeneous version of the benchmark and gradually altering
it until we reach the original one. The optimal controls for each sub–geology
are introduced as initial guesses for the next sub–geology in sequential process.
The concept is that in a homogeneous reservoir, permeability, porosity and well
indexes exhibit the same values in all grid blocks, thus, the optimization with
gradient based algorithms should result to a global optimum and avoid falling into
poor local optima. Specifically, for this example, twenty sequential optimizations
have been made and for the first sub-geology (homogeneous) the controls of “full
blast” were set as initial conditions. The gradual change of the cumulative oil
is presented in Fig. 3.6. For the final geology an extra simulation step with an
improved time step is used to in order to obtain a more accurate value of the
objective. Also a visual representation of the depleted sub–reservoirs is shown at
Fig. 3.7 where the gradual change of the oil saturation is depicted.
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Figure 3.6: Cumulative oil production in m3 for each optimized geology step
(Example 1, 256 days).
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Figure 3.7: Oil saturation maps for 20 optimized geology steps for example 1.
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The resulted cumulative oil for each case is given in Table 3.5, where results from
the simulation, the optimization and optimization with the geological continua-
tion method, are presented in the respectively labeled columns. The optimization
process of geological continuation slightly outweighted the reference method, re-
sulting an improved value of 12.11 104 m3 instead of 11.9 104 m3. The gradual
change of the cumulative oil is presented in Fig. 3.20. A comparative represen-
tation of the results is demonstrated in Fig. 3.8. Also, the BHPs, the oil and gas
rates for this new approach are presented in Fig. 3.9, 3.10 and in Fig. 3.11.

[pu
I , pl

P] Reference One Step Continuation

Cumulative oil 11.9 11.91 12.21

Table 3.5: Oil production in 104 m3 for simulation, optimization without contin-
uation and optimization with twenty geological steps. Reference result shown in
bold.
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Figure 3.8: Oil production versus time for Example 1. Results are for reference
case (orange curve), optimized solution (green curve) and optimized solution with
geological continuation (blue dashed curve).
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Figure 3.10: Gas rates in m3/d of the injectors and the producer versus time, for
the optimal solution with geological continuation of Example 1.
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Figure 3.9: BHPs of injectors and producer, versus time, for the optimal solution
with geological continuation optimization of Example 1.
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Figure 3.11: Oil rates in m3/d of the producer versus time, for the reference, the
optimized and the geological continuation case of Example 1.
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3.2 Example 2 - Top layer of SPE 10 model

As we did in the first example, in this example we also maximize cumulative oil
recovery under CO2 injection. The two-dimensional geological model is the top
layer of the model defined in the SPE comparative solution project Christie and
Blunt [2001], referred to as SPE 10. The model includes a total of four compo-
nents, as specified in Table 3.6.

0.003 0.023 0.178 1.358 10.38 79.43 607.6 4648

Figure 3.12: Injection wells (blue) and production wells (red) for Example 2.
Background shows logkx (kx = ky).

Component CO2 C1 C4 C10

Initial composition (%) 1 20 29 50
Injection composition (%) 99 1 - -

Table 3.6: Fluid description for Example 2.

Details of the reservoir model are provided in Table 3.7. The well locations, along
with a map of the permeability field, are depicted in Fig. 3.12. The control param-
eters in this optimization problem are the well BHPs, constrained to lie between
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50 bar and 150 bar. The total simulation period is 1000 days. The well controls
are determined at initial time and then at every 100-day interval. Subsequently,
there is a total of ten control steps and 80 control parameters in this example.

Parameter Value Units

Grid size 60 × 220 × 1 —
∆x 6.096 m
∆y 3.048 m
∆z 0.6096 m
Depth 2574 m
Initial pressure 100 bar
Temperature 100 ◦C
Rock compressibility 7.2×10−5 1 / bar
Simulation time 1000 d
Pressure upper bound 150 bar
Pressure lower bound 50 bar
Residual gas saturation 0 —
Residual oil saturation 0 —
End point rel perm gas 1 —
End point rel perm oil 1 —
Corey exponent gas 2 —
Corey exponent oil 2 —

Well locations [grid block no.] i j

Injector 1 58 9
Injector 2 58 126
Injector 3 2 67
Injector 4 2 211
Producer 1 2 3
Producer 2 58 67
Producer 3 2 143
Producer 4 58 210

Table 3.7: Model parameters for Example 2.
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3.2.1 Optimization of cumulative oil

We first generate the reference solution as in the previous example. The cumula-
tive oil production for this case is given in the first row (‘Reference’) of Table 3.8.
We next perform optimizations for the previously mentioned nine initial guesses
that honor the bound constraints for BHPs. The cumulative oil production for
both the simulation and the optimization, for all nine initial guesses, are presented
in Table 3.8, in the respectively labeled columns. Similarly to the previous ex-
ample, in order to evaluate the time discretization error, the simulations for the
optimal controls of each case were repeated for a smaller timestep. The results
are presented in Table 3.8, in the columns labeled ‘Re f erence∗’ and ‘Onestep∗’
respectively. The optimization process resulted an improved cumulative oil pro-
duction of 51.19104 m3 ( [pu

I , pl
P] ). A visual representation of the cumulative oil

for the optimum solution and the reference is depicted in Fig. 3.13. Addition-
ally, the BHPs, the oil and gas rates for both cases are presented in Fig. 3.14,
3.15, 3.16, 3.17, 3.18, 3.19.

Run Reference Re f erence∗ One step Onestep∗

Reference 50.86
[pa

I , pa
P] 38.87 38.83 51.18 51.17

[pa
I , pl

P] 45.79 45.77 51.19 51.18
[pa

I , pu
P] 29.2 29.17 51.19 51.18

[pl
I, pa

P] 28.84 28.85 51.01 50.99
[pl

I, pl
P] 38.31 38.32 51.18 51.17

[pl
I, pu

P] 28.25 28.3 50.91 50.88
[pu

I , pa
P] 46.29 46.19 51.19 51.18

[pu
I , pl

P] 50.91 50.86 51.2 51.19
[pu

I , pu
P] 39.68 39.57 51.19 51.18

Table 3.8: Cumulative oil production in 104 m3 for nine initial guesses (Example
2). Results for simulation and optimization. Reference and optimal results are
shown in bold.
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Figure 3.13: Oil production versus time for Example 2. Results are for reference
case (orange curve)and best optimized solution ( green curve)
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Figure 3.14: BHPs of injectors and producers, versus time, for the reference case
of Example 2.
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Figure 3.15: BHPs of injectors and producers, versus time, for the optimal solu-
tion of Example 2.

5

20
0

40
0

60
0

80
0

1,
00

00

500

1,000

1,500

2,000

Time (days)

O
il

R
at

e
(m

3 /d
)

PRD1 Qo
PRD2 Qo
PRD3 Qo
PRD4 Qo

Figure 3.16: Oil rates in m3/d for the producers versus time for the reference case
of Example 2.
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Figure 3.17: Oil Rates in m3/d for the producers versus time for the optimal case
of Example 2.
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Figure 3.18: Gas rates in m3/d for the injectors versus time for the reference case
of Example 2.



3.2 EXAMPLE 2 - TOP LAYER OF SPE 10 MODEL · 43

5

20
0

40
0

60
0

80
0

1,
00

00

0.25

0.5

0.75

1

1.1
·106

Time (days)

G
as

R
at

e
(m

3 /d
)

PRD1
PRD2
PRD3
PRD4
INJ1
INJ2
INJ3
INJ4

Figure 3.19: Gas rates in m3/d for the injectors versus time for the optimal case
of Example 2.

3.2.2 Optimization with geological continuation

Similarly to the previous example,we examine if the results can be further im-
proved by using a continuation in geology. For this process we use ten different
geologies, starting from the homogeneous version of the benchmark and gradu-
ally reaching the original geological values of the benchmark. In order to remain
in the vicinity of the global optimum, we optimize sequentially the geologies until
the final one. For this example, ten sequential optimizations have been made for
all nine initial guesses. The controls from each optimized sub-geology are intro-
duced as initial controls to the next geology. The geology variations are presented
in Fig. 3.21. The objective values for each step of this continuation process are
presented in Table 3.9. Also a visual representation of the depleted sub–reservoirs
is shown at Fig. 3.22 where the gradual change of the oil saturation is depicted.
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Step [pa
I , pa

P] [pa
I , pl

P] [pa
I , pu

P] [pl
I , pa

P] [pl
I , pl

P] [pl
I , pu

P] [pu
I , pa

P] [pu
I , pl

P] [pu
I , pu

P]

0 56.23 56.08 56.45 55.74 56.13 56.07 56.08 56.08 56.1
1 59.24 59.31 57.38 59.33 57.45 59.31 59.23 59.31 59.23
2 60.2 60.43 59.65 60.67 59.07 60.43 60.43 60.43 60.28
3 59.36 59.67 59.04 60.3 58.91 59.67 59.67 59.67 59.67
4 57.7 58 57.72 58.57 57.44 58 58 58 58
5 56.08 56.34 56.09 56.68 55.76 56.34 56.34 56.34 56.34
6 54.63 54.87 54.45 55.07 54.67 54.87 54.87 54.87 54.87
7 53.36 53.54 53.34 53.47 53.32 53.54 53.54 53.54 53.55
8 52.19 52.3 52.19 52.22 51.35 52.3 51.85 52.3 52.3
9 51.36 51.44 51.36 51.43 51.35 51.44 51.44 51.44 51.44
10 51.07 51.14 51.04 51.11 51.07 51.14 51.13 51.13 51.13

Table 3.9: Cumulative oil production in 103 m3 for each geology step and all
initial guesses (Example 2).
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Figure 3.20: Cumulative oil production in m3 per geology step for nine initial
guesses (Example 2).
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Figure 3.21: Permeability maps for all the geological steps used for optimization
of cumulative oil in SPE10 top layer (Example 2).
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Figure 3.22: Oil saturation for the SPE10 top layer for all geological steps, starting
from the homogeneous one (Example 2).
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For this example, the geological continuation was examined for nine initial condi-
tions. The cumulative oil for all methods and for all ten geology steps, are given
in Table 3.10 , in the respectively labeled columns. Similarly to the previous
example, in order to evaluate the time discretization error, the final simulations
were repeated for a smaller timestep.The results are presented in Table 3.10, in
the columns labeled ‘Re f∗’, ‘One∗’ and Geo∗ respectively. The gradual change
of the cumulative oil is presented in Fig. 3.20. The optimization process with the
geological continuation resulted an improved optimum of 51.53104 m3 instead of
51.19104 m3 the one step optimization provides. A comparative representation
of the results is presented in Fig. 3.23. Also, the BHPs, the oil and gas rates for
the optimal result of geological continuation method are depicted in Fig. 3.24,
3.25, 3.26.

Run Reference Re f∗ One step One∗ Continuation Geo∗

Reference 50.86
[pa

I , pa
P] 38.87 38.83 51.18 51.17 51.07 51.08

[pa
I , pl

P] 45.79 45.77 51.19 51.18 51.14 51.15
[pa

I , pu
P] 29.2 29.17 51.19 51.18 51.04 51.04

[pl
I, pa

P] 28.84 28.85 51.01 50.99 51.11 51.08
[pl

I, pl
P] 38.31 38.32 51.18 51.17 51.07 51.08

[pl
I, pu

P] 28.25 28.31 50.91 50.88 51.14 51.16
[pu

I , pa
P] 46.29 46.19 51.19 51.18 51.13 51.14

[pu
I , pl

P] 50.91 50.86 51.2 51.19 51.13 51.53
[pu

I , pu
P] 39.68 39.57 51.19 51.18 51.13 50.9

Table 3.10: Oil production in 104 m3 for nine initial guesses (Example 2). Results
for simulation, optimization and geology steps. Optimal results shown in bold.
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Figure 3.23: Cumulative oil production versus time for Example 2. Results are
for reference case (orange curve), best optimized solution ( green curve) and the
geology continuation result ( blue curve).
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Figure 3.24: BHPs of injectors and producers versus time, for the optimal case of
geology continuation of Example 2.
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Figure 3.25: Oil rates in m3/d of the producers versus time, for the optimal case
of geology continuation of Example 2.
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Figure 3.26: Gas rates in m3/d for the injectors versus time, for the optimal case
of geology continuation of Example 2.
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3.2.3 Alternative objectives

Finally, we introduce two alternative objectives for production optimization: resid-
ual oil and residual of heavier component. All these objectives depend on the last
state xN . For the all the alternative objectives the equation (2.5), obtains the sim-
plified form

J(x,u) = ϕ(xN), (3.3)

and the Lagrange multipliers will satisfy the equations:

∂gT
n

∂xn
λλλ n =−

∂gT
n+1

∂xn
λλλ n+1, (3.4)

∂gT
N

∂xN
λλλ N =−

∂ϕT
N

∂xN
. (3.5)

The individual entries of δJA/δu are given by

δ fn

δun
= λλλ

T
n

∂gn

∂un
, n = 1,2, . . . ,N. (3.6)

The residual oil objective (3.7) expresses how much oil is left in the reservoir at
the last time step. The function ϕ(xN) for this case takes the form

ϕ(xN) =
∫
V

So
N(1− xN

CO2o)φdV , (3.7)

where φ the porosity of the block, NB is the number of grid blocks, and So is the
oil saturation of the block. We exclude the carbon dioxide CO2 because in the
reservoir conditions of our benchmarks due to the particular reservoir temperature
and pressure, it is usually disolved in the liquid phase resulting an overestimation
of the residual oil. The residual of heavier component (3.8), is a similar objective
that is introduced to prioritise the removal of the heavier component, which is the
least mobile component of the oil in place. For this case the function ϕ(xN) is
written

ϕ(xN) =
∫
V

So
NxN

C10oφdV, (3.8)

where xC10o is the molar fraction of the heavier component in the oil phase. From
the volume integration in equations (3.7), (3.8) we exclude the grid cells fully
saturated with the injected gas dissolved in the oil phase. In contrast to the cumu-
lative oil that is maximised, each one of the aforementioned objective functions is
minimized.
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In Table 3.11 the reference solution results are given at column “Re f ”, the one
step optimization of cumulative oil at column“One”, the optimization of cumula-
tive oil with the geological continuation approach at column “Geo”, the one step
optimization of residual oil at column “ROil” and finally the one step optimization
of the residual of heavier component at the column “HeavC”. The residual oil re-
sulted in higher cumulative oil production compared to the reference essentially
from every initial guess. On the contrary the residual of the heavier component
did not outperformed the reference case.

Run Re f One Geo ROil HeavC

[pa
I , pa

P] 38.83 51.17 51.08 50.85 50.63
[pa

I , pl
P] 45.77 51.18 51.15 50.82 50.71

[pa
I , pu

P] 29.17 51.18 51.04 50.85 50.68
[pl

I, pa
P] 28.85 50.99 51.08 50.97 50.51

[pl
I, pl

P] 38.32 51.17 51.08 50.95 50.64
[pl

I, pu
P] 28.31 50.88 51.16 51.02 50.67

[pu
I , pa

P] 46.19 51.18 51.14 50.9 50.64
[pu

I , pl
P] 50.86 51.19 51.53 50.94 50.86

[pu
I , pu

P] 39.57 51.18 50.9 50.95 50.68

Table 3.11: Oil production in 104 m3 for nine initial guesses (Example 2). Results
for simulation, optimization and geology steps. Optimal results shown in bold.
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3.3 Concluding remarks

In this work we formulated and tested an adjoint-based optimization procedure
for compositional reservoir simulation adopting a continuation approach with re-
spect to the geology. Numerical results were presented for two example cases of
increasing complexity. Nine runs, starting from different initial conditions, were
performed in all cases, using box-constraints on the control variables In our ex-
amples, the control variables were the time-varying well BHPs. In the simplest
case (Example 1), the optimization of cumulative oil using continuation increased
the oil production by 2.6%. For the second benchmark problem (Example 2), the
optimization of cumulative oil using continuation produced results that were es-
sentially the same up to the discretization errors with respect to space and time
variables from all nine initial guesses. The re-evaluation of the optimal objectives
with a much smaller time step size, revealed that one of the optimal solutions using
continuation increased by 0.8% providing an overal increase of the oil production
over the reference case of 1.3%. This result strongly suggests that first order time
discretization, as the backward Euler adopted in this work, may be inadequate to
capture small scale transient phenomena, and thus higher order time discretization
methods may be more effective.

There are a number of areas in which future research should be directed. The
present methods should be also tested with nonlinear constraints such as maxi-
mum gas injection and/or production rates specified at each injector and/or pro-
ducer well. We anticipate that the continuation with respect to the geology, will as-
sist production optimization problems subject to nonlinear inequality constraints,
since the starting point of the optimization will always be a feasible solution, once
the feasibility has been achieved in the homogeneous reservoir. Finally it is of
interest to apply the continuation framework to larger and more realistic 3D reser-
voir models where gravity effects add another level of difficulty giving room to
the optimizer to dictate solutions that increase the oil production even further that
the one observed in our 2D benchmarks.
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