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Abstract 

As science progresses, the need for analyzing multivariate data sets is growing by the minute. 

Multiple disciplines, either scientific or not, require the examination of large amounts of data, 

in a short period of time, in order to obtain useful information. During the recent few decades, 

multivariate statistical analysis methods have been developed, aiming to satisfy such 

purposes.  

This dissertation deals with the implementation of multivariate data analysis methods on a 

given data set, derived from oil family affiliations, which originate from Williston Basin of 

North America. In particular, Hierarchical Clustering, k-means and Principal Component 

analysis have been applied on four independent models, in an attempt to extract information 

regarding the oil-oil correlations among the samples under study. The models used on the 

exploration of the compositional information were the Saturated Fraction Compositional 

Model, the Saturated Fraction Ratios Model, the Gasoline Range Compositional Model and 

the Biomarkers Compositional Model.  

These standard statistical methods were found to be quite insufficient in classifying the 

sample set into distinct familial affiliations. For this reason, the need to examine the nature of 

the data set arose. Compositional data represent a category on their own as they are 

characterized by specific numerical properties which present significant consequences when 

being analyzed by standard multivariate techniques. The analysis of such type of data 

represents a whole new chapter in the world of statistics and the need for further examination 

on this matter is constantly growing. 
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1. Introduction 

Over the last decades an overwhelming amount of data is poured into our lives and obtaining 

meaningful information out if them is an imperative task for people. Multiple disciplines such 

as chemistry, biology, medicine etc. demand the analysis of huge amounts of data and 

sometimes their multivariate nature makes it difficult to analyze. For this reason, special 

statistical techniques have been developed in order to process information in a meaningful 

fashion. 

In this project, multivariate clustering methods have been implemented on geochemical data 

concerning oil family affiliations that exist in Williston Basin, North America, in order to 

explore the oil-oil correlations. The methods which have been utilized consider both 

Supervised and Unsupervised learning phases. These include Hierarchical Clustering, k-means 

clustering, as well as Principal Component Analysis. The ultimate goal of this project is to test 

how well such multivariate analysis methods perform, as far as classification of the 

compositional data is concerned. 

The thesis project is organized into seven chapters. In Chapter 2 a detailed description of the 

geological setting of Williston Basin is presented. The stratigraphy and the tectonic regime are 

thoroughly described and special focus is placed upon the geochemical classification of oil 

families which have been recognized in the area.  

Chapter 3 raises the subject of Multivariate Data Analysis (MDA). It provides a brief 

presentation of the principles of Hierarchical Clustering, k-means clustering as well as Principal 

component analysis. All the main concepts that characterize each method are included. 

In Chapter 4 we discuss the matter of the existing Family Affiliations of Williston Basin. In this 

chapter, there is an attempt to test the criteria under which the classification of the oil families 

was determined.  

Chapter 5 deals with the application of multivariate data analysis methods on two different 

models; the Saturated Fraction Component Model and the Saturated Fraction Ratios Model. 

All MDA methods were implemented on both models and the results are discussed briefly.   

In the final Chapter (6) the subject of Compositional Data, as a special type of data, is 

introduced. In this chapter, we analyze the properties of Compositional Data as well as the 

methodology with which, such kind of data should be treated.  
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2. Geological Setting of Williston Basin 

The Williston Basin is an intracratonic, sub-circular sag basin that comprises main part of the 

North American craton. In particular, it forms a large depression in the western edge of the 

Canadian shield, occupying much of North Dakota, northwestern South Dakota, the eastern 

quarter of Montana, a significant part of southern Saskatchewan, and a portion of 

southwestern Manitoba. Among these regions major production of oil and gas occurs. 

Williston Basin is characterized by Phanerozoic, carbonate and clastic sedimentation of more 

than 16,000ft strata thickness in its central part, near Watford City, North Dakota [1, 2]. Having 

undergone episodic and prolonged subsidence rates, it comprises a preservational basin and 

it is composed by six major depositional sequences, each bounded by larger structural 

features [2, 3, 4] (Fig. 1). The basin is neither considered structurally complex nor tectonically 

active and its well -established petroleum provinces, clearly described rock succession, 

modest burial history and simple tectonics make this an uncomplicated area to study. 

 

Fig. 1 Location map showing the main geological and geophysical elements of Williston Basin and environs. The 
region of anomalous subsidence that is Williston Basin proper (Ahern and Mrkvicka, 1984) is generally coincident 
with the 1 km depth contour on Carboniferous strata. The region of preserved Middle Devonian Prairie Formation 
salt deposited in Elk Point Basin is illustrated. The inset shows the location of Williston Basin and the extent of Elk 
Point Basin. Samples from petroleum pools entrapped at the subcrop of the upper Paleozoic succession in 
southeastern Saskatchewan and southwestern Manitoba, as well as American samples constitute the sample set 
for this study (following Burrus et al., 1996a). 
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Williston Basin is discretized into the American and the Canadian portions. The American 

portion of the basin is influenced by major deformational features, mainly anticlines (Fig. 2). 

The Canadian part of Williston Basin forms a petroleum province where oil production is quite 

active. Petroleum accumulations mainly occur in stratigraphic traps within the Phanerozoic 

succession [5]. There is, however, variety of trapping features which are structurally linked to 

Precambrian basement [6, 1, 7]. In southwestern Manitoba and southeastern Saskatchewan, 

oil exists around the Mississippian subcrop. In southwestern and west-central Saskatchewan, 

oil exists in stratigraphic traps within latest Devonian to Mississippian, Jurassic, and Lower 

Cretaceous formations. 

 

Fig. 2 Petroleum region and crucial tectonic elements in the Williston Basin and adjacent area. Only generalized 
outlines of the Mississippian Madison Group Subcrop Petroleum Province and other Williston Basin petroleum 
provinces are indicated. 

 

2.1 Stratigraphy of Williston Basin 

The Williston Basin forms a large, roughly circular depression on the North American Craton. 

Its sedimentology is characterized by Paleozoic and Cenozoic – Mesozoic carbonate and clastic 

deposition, accordingly with a thickness of strata that exceeds 16,000 ft in the basin’s core 

(Fig. 3). 
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Fig. 3 Contour map pf Williston Basin presenting the thickness of sediments. Contour interval is 1,000 ft. [8] 

There are six main depositional sequences, each bounded by major unconformities [3], which 

can be distinguished within the Phanerozoic succession of North American portion of the 

basin. The formulation of unconformities resulted in numerous processes affecting its final 

structure, such as primary and secondary dissolution, deposition of salt and anhydrite beds, 

and secondary dolomitization of limestone. Clastic deposition initiated in Mesozoic and 

Cenozoic Eras, including mudstone, sandstone, siltstone, coal and shale. All depositional 

sequences are briefly described in the following paragraphs.  

Sauk Sequence (Middle Cambrian – Lower Ordovician) 

The Sauk sequence was deposited on the early Paleozoic miogeocline of western North 

America [7, 9], and is composed of Upper Precambrian sediments, interrupted by minor 

transgressions and regressions, which create several sub-members within the formation [10]. 

Saul deposition, mainly represented by Deadwood formation, includes shallow marine, 

coastal and alluvial plain sediments along with sandstone, mudstone and siltstone successions 

and finalizes due to the activity of an unconformity. 

 

Tippecanoe Sequence (Ordovician – Silurian) 

The Tippecanoe sequence marks the beginning of Ordovician clastic, carbonate and evaporitic 

sedimentation. From bottom to top, it consists of Winnipeg, Red River, Stony Mountain and 

Stonewall Formations, each unconformably overlying the other (Fig. 4). Upper Ordovician 
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rocks of this sequence contain important petroleum sources. Depositional processes 

terminate at the end of the Silurian due to major regression activity.  

 

Fig. 4 Diagram showing geologic time scale, major stratigraphic sequences of [3], first- and second order sea level 
curves from [11], and ages of petroleum source and reservoir rocks in the Williston Basin. Solid black interval in 
source rock column are for thick accumulations; thin lines indicate association with carbonate depositional cycles. 
In reservoir rock column, green is for oil and red is for gas; thin lines indicate generalized reservoir rock and do not 
necessarily represent the full spectrum of possible reservoirs. E, Early; M, Middle; L, Late; Pal, Paleocene; Eoc, Eocen; 
Olig, Oligocene; Mio, Miocene; Plio, Pliocene (following Lawrence , et al., 2013). 

Kaskaskia Sequence (Devonian - Mississippian) 

The Kaskaskia sedimentation cycle initiated in Ordovician, continued to Jurassic and 

concluded due to transgressional activity. Three main transgressional events impacted on the 

depositional history of the sequence, during which several formations were deposited. The 

most significant is the Bakken Formation which represents the first major input of clastic 

material into the Williston Basin since the Cambrian Deadwood and Winnipeg Formations. 

Bakken marks a change in Kaskaskia sequence depositional patterns and sedimentation style 

[12, 13] and it is the most important interval for petroleum source rocks in the Williston Basin. 

In general, the Kaskaskia Sequence is stratigraphically characterized by subtidal, intertidal and 

rare supratidal depositional environments. 

Absaroka Sequence (Pennsylvanian - Triassic) 

The Absaroka Sequence includes the Tyler and the Minnesula formations and mainly occurs 

in the American portion of the Williston Basin. It is vastly affected by major unconformities, 

occurring near the end of Pennsylvanian, Permian and Triassic [14] and contains effective oil 

source rocks [15, 16].  

 

Zuni Sequence (Jurassic – Early Tertiary [Eocene]) 

Two major transgressional events influenced the depositional history of the Zuni Sequence, 

which is characterized by shallow marine and clastic sediments. Sedimentation terminated 

during early Paleocene and the sands of the Dakota Group are likely the most significant 

targets for sequestration in the Zuni Sequence. This sequence can be locally subdivided into 
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two other sequences. The first includes the Jurassic, when Williston Basin changed from a 

large reentrant on the craton margin into an orogenic foreland [17, 18]. The lower sequence 

contains a time equivalent succession to the last cratonically derived miogeoclinal succession. 

Tejas Sequence (Tertiary - Quaternary)  

Latest Jurassic and Cretaceous successions of the Columbian and Laramide orogenic forelands 

[19] form the final significant depositional episode [20, 21]. Thick shales of this final sequence 

include significant probable source rocks, but they are all immature in the Canadian Williston 

Basin. The first produced hydrocarbons in North Dakota were from the youngest strata in the 

state, glacial drift of the Tejas Sequence. However, there is no production from glacial drift 

today. 

 

2.2 Tectonic Regime of Williston Basin 

In order to understand the Williston Basin’s evolution, structural configuration, 

sedimentation, and thermal patterns, one must refer to the geological history of the 

Precambrian basement underlying the basin.  

Two critical structures have influenced the evolution of the basin; the Trans-Hudson orogenic 

belt [22] and the northeast–southwest trending Proterozoic lineament and structural zones 

[23]. The Trans-Hudson belt sutured the Archean Superior craton to the Archean Wyoming 

craton (Fig. 5A, B); the resulting collision created a north–south trending strike-slip fault and 

shear belt. A basin center was created, caused in part by later folding of the Trans-Hudson 

orogenic belt and rifting [24], although Nelson et al., [25] stated that there is a lack of direct 

evidence of a rift.  

The northeast–southwest trending Proterozoic lineament and structural zones were renamed 

as the Transcontinental arch, Brockton-Froid fault zone, Great Falls tectonic zone, Poplar fault, 

and Hinsdale fault. These Precambrian structures were reactivated during the 

Neoproterozoic, which resulted in the creation of new north–south and northwest–southeast 

trending structures. 
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Fig. 5 Precambrian structural configuration of the Williston Basin and surrounding area. A: Tectonic map of the 
northern Great Plains region [23] showing northeast-southwest strike slip faults; Williston Basin province outline is 
shown for scale. Ga, billion years ago. B: Map showing the configuration of Trans-Hudson orogenic belt and 
associated north-south trending structures of the Williston Basin (modified Nelson et al., 1993). 

Numerous studies have shown that surface lineament patterns in the Northern Great Plains 

region, including the Williston Basin, are a result of the aforementioned reactivation of 

Precambrian faults during the Phanerozoic [26, 27, 28, 29]. These studies show pervasive 

northeast–southwest and northwest–southeast trends that are parallel to major lineaments 

of Proterozoic terrane. North–south trending lineaments that are parallel to the Trans-Hudson 

structural system are less prominent, although north–south thermal patterns are evident 

from present-day subsurface temperature measurements. 

Based on several observations, it is believed that Precambrian tectonic events and their 

recurrent movement along preexisting zones of weakness played a major role in the 

development of most of the major fault and shear systems in the Williston Basin. Although 

the basin is generally reported as a depression and tectonically inactive, its final structure is 

thought to be mostly formed as a result of structural deformation and down-to-the-basin 

block faulting from Precambrian rooted structures, as well as from deformation related to the 

Trans-Hudson orogenic belt. 

 

2.3 Geochemical Classification of Oil Families in Williston Basin 

Classification of oil families in the Canadian portion of the Williston Basin has been attempted 

by a number of investigators over the past decades. Dow and Williams, in their 1974 papers, 
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were the first researchers to apply the ‘petroleum system’ concept, identifying three oil 

systems in the Williston Basin, relying mainly on stable isotopic and gasoline range 

hydrocarbon composition: Tyler, Bakken, and Winnipeg [15, 16]. Each oil system is associated 

with a unique oil type. Type I refers to Ordovician and Silurian oils which originate from Middle 

Ordovician Winnipeg shale sources. Type II oils occur in Upper Devonian, Mississippian and 

Mesozoic reservoirs, and are probably linked to Fammenian – Tournaisian Bakken Formation 

Source rocks. Type III refers to Pennsylvanian oils which originate from Tyler Formation source 

rocks.      

Most recent studies, however, have defined at least nine oil systems in the area. Zumberge 

[30] and Leenheer and Zumberge [31] defined five oil families based on the study of samples 

from the American part of the Williston Basin, while, Osadetz et al., [32] categorized oils from 

the Canadian part of the Basin (southeastern Saskatchewan and southwestern Manitoba) into 

four compositional families (Table 1). The criteria under which the classification of the latter 

was conducted, include pristane/phytane (Pr/Ph) ratio, n-alkane predominance, C23 

tricyclic/C30 pentacyclic terpane ratio and prominence amongst extended hopanes.  

In particular, Family A oils occur in Ordovician to Middle Devonian and Upper Ordovician 

formations and match solvent extracts from kukersites (marine Type I rocks) of the Late 

Ordovician Binghorn Group [32, 33], rather than, as initially suggested, extracts from 

Winnipeg shales [15, 16]. Oils of this family present diagnostic saturate fraction gas 

chromatograms (SFGC), low C23tricyclic/C30 pentacyclic terpane ratios (<0.20) and a strong C34 

hopane prominence. They can be further subdivided into a group distinguished by low Pr and 

Ph, relative to faster eluting n-alkanes nC17 and nC18, a strong odd-even predominance among 

n-alkanes between C15 and C20, and a low relative abundance in higher carbon number n-

alkane homologues [34]. 

Family B oils primarily occur in Bakken reservoirs [32, 35, 33], they are however, also found in 

early Cretaceous reservoirs. They are sourced from Type II marine organic matter in the Upper 

Devonian-Mississippian Bakken Formation shale members. Main characteristic of this family 

is that it displays the highest Pr/Ph (>1.50) and C23/C30 (>0.80) ratios, accompanying n-alkane 

and hopane profiles, without any predominance and prominence respectively. 
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Table 1 Table showing all groups and oil families, in correlation with the according formations, present in Williston 
Basin (modified by Osadetz, 1994) 

 

 

Family C oils occur the Mississippian Madison Group and Mesozoic formations and are 

sourced from Type II marine rocks in the Mississipian Lodgepole formation. They present high 

C23/C30 (>0.20) ratio but, compared to Bakken sources, lower Pr/Ph ratio (<1.1), a pronounced 

(>nC20) even n-alkane predominance and a strong C35 prominence.  

Finally, Family D oils occur in Silurian to Mississippian sediments. They originate from Middle 

Devonian Winnipegosis Formation marine rocks, which vary in terms of depositional 

background. In particular, there are two kinds of settings; the platform depositional and 

starved basinal. Family D oils display similar terpane compositional characteristics to kukersite 

derived oils (abundant Pr, Ph and generally complex SFGCs ), they differ however, in that they 

present greater relative acyclic isoprenoid and higher carbon n-alkane abundance. Oils of D 

Family, are further discretized into D1 platformal and D2 starved basinal, based on nC17/Pr and 

nC18/Ph ratios. They display higher nC17/Pr ratios for a given nC18/Ph ratio compared to 

otherwise similar oils that occur in overlying Saskatchewan and Manitoba groups’ strata, and 

they belong to the Elk Point Group οf Winnipegosis reef formulations. Group D1 

predominantly occurs in younger Devonian reservoirs, lacking however, clear source 

definition. Suggested possible source rocks are thin organic-rich beds in Winnipegosis 

platform carbonates, the Birdbear Formation, and some Upper Devonian rocks. Group D2 

occurs in pinnacle reefs of the Middle Devonian Winnipegosis Formation and the Brightholme 

Member comprises the source rock. Oils having similar molecular compositions to D2 oils have 

been found in the Upper Cambrian Deadwood Formation, Silurian pools of the Nesson 

Anticline, and new discoveries in the Middle Ordovician Winnipeg Formation. They have, 

however, very different isotopic compositions of carbon and sulphur, suggesting that a still-

undescribed petroleum system exists in Paleozoic strata [36]. Family D oils correlate to Groups 

3, 4, and 5 of Leenheer and Zumberge [31]. 

As previously mentioned, the compositional classification of the Williston Basin petroleum, 

relied much on terpane, sterane, and select n- and iso- alkane characteristics. The original 

classification by Williams [16], however, took into consideration the gasoline range fraction 
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(GRH) and later studies, based on that scheme, came to agree that families A - D and families 

B - C were inseparable and consistent with oil Types I and II [37]. Most recent work, depends 

on multivariate statistical methods, such as Principal Component Analysis (PCA), combined 

with geological information, in an attempt to enhance the independent interpretation of GRH 

and SFH fractions [32, 38]. Findings show that, while Family A oils can be uniquely classified, 

oils from Families B, C and D present insufficient characteristics for independent classification. 

Especially the composition of Family C seems to be quite heterogenous, often overlapping 

with families B and D [39]. 

This is attributed to the mixing of oils derived from different sources, without however, the 

extent to which this process occurs, having been defined [38]. A characteristic example of that 

mixing is the relative effectiveness of Bakken and Lodgepole petroleum systems [40, 41]. 

While part of the scientific community suggests that mixing is rare in the American portion of 

the basin [42, 43, 44], there is another part, proposing that major mixing is possible, without 

an impact on the biomarker traits [45, 46]. What is to account for the inability to precisely 

define the extend of mixing sources, is either the neglection of current interpretive techniques 

or the semi-quantitative confirmation of the biomarker based classification in the GRH and 

SFH [34, 39]. 
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3. Exploratory Data Analysis 

Analysis of Data (DA) constitutes the science of collecting, organizing and examining raw data 

under the purpose of obtaining useful and usable information for decision-making by users. 

The analysis may describe and summarize the data, identify relationships among variables, 

compare and identify differences between them as well as forecast outcomes. Data analytics 

is distinguished from data mining, which is a particular data analysis technique, by the scope, 

purpose and focus of the analysis. The target of Data Mining is rather predictive than 

descriptive. Data miners sort through huge data sets using sophisticated software to identify 

undiscovered patterns and establish hidden relationships. Data analytics focuses on inference, 

the process of deriving a conclusion based solely on what is already known by the researcher. 

Statistician John Turkey defined the term “Data Analysis” in 1961 as: "Procedures for 

analyzing data, techniques for interpreting the results of such procedures, ways of planning 

the gathering of data to make its analysis easier, more precise or more accurate, and all the 

machinery and results of (mathematical) statistics which apply to analyzing data." 

Turkey [47] distinguished in Data Analysis techniques and procedures, two major groups: 

Exploratory Data Analysis (EDA) and Confirmatory Data Analysis (CDA). In EDA analysts make 

a few assumptions under the purpose of suggesting hypotheses and according to Turkey it is 

a rather detective work. In contrast, CDA "quantifies the extent to which deviations from a 

model could be expected to occur by chance" [48]. Confirmatory Data Analysis utilizes the 

traditional statistical tools of inference, significance, and confidence.  

As a scientific tool, DA can be further subdivided in alternate groups. Therefore, based on the 

quantity of variables examined, Data Analysis can be dichotomized into Univariate (UDA) and 

Multivariate (MDA). Univariate data analysis is conducted when one variable is used for one 

observation. Subsequently, it makes sense to state that Multivariate data analysis is used 

when more than one outcome variables are measured and it is concerned with the study of 

association among sets of measurements. It is referred to as any statistical technique used to 

analyze data that arises from more than one variable.  

 

3.1 Multivariate Data Analysis (MDA) 

This project will focus on MDA techniques that will be implemented on the given data set and 

the outcomes will be examined thoroughly. Multivariate Data Analysis can fall into two 

phases: Unsupervised learning and Supervised learning. The goal of unsupervised learning is 

the detection of hidden structure in unlabeled data and encompasses many techniques that 

seek to summarize and explain key features of the data (i.e. Clustering Analysis, PCA).  

Supervised learning is a task of inferring a function from labeled training data. Each example 

on training data is a pair consisting of an input object (typically a vector) and a desired output 

value (i.e. Classification Analysis). In general, supervised methods are used when the aim is 

the construction of a model to be used to classify future samples [49].  

There are several clustering techniques established by the scientific community, all governed 

by some kind of taxonomy [50, 51]. A major distinction among them involves the Hierarchical 

and the Partitional approaches, which are based on whether the set of produced clusters is 

nested or unnested. A Hierarchical clustering leads to a set of nested clusters that are 
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organized as a tree, whereas a Partitional clustering formulates a division of the set of data 

objects into non-overlapping subsets (clusters) such that each data object is in exactly one 

subset. Characteristic examples of algorithms derived from the aforementioned approaches 

are agglomerative or divisive, deterministic or stochastic, incremental or non-incremental, 

monothetic or polythetic and hard or fuzzy [51]. 

 

3.1.1 Hierarchical Clustering 

Hierarchical Clustering Analysis is an unsupervised technique that examines the interpoint 

distances between all of the data objects and generates a tree diagram or dendrogram on 

which, that information is visualized. It can be considered both as a sequence of nested 

partitions and the similarity levels at which these change [51, 52]. Hierarchical clustering 

algorithms are either bottom-up (agglomerative) or top-down (divisive). At each step of the 

agglomerative hierarchical approach each subject is treated as a singleton cluster which is 

successively merged into the closest cluster [51, 49, 53]. This process is repeated until all 

clusters have been merged into a singleton cluster that contains all subjects. The alternate 

divisive approach, begins with a single cluster containing all subjects, and at each step, the 

cluster splits until N clusters form (each with a single subject). 

The criterion under which clusters are merged or split, differentiates at each case. Since the 

bottom-up approach agglomerates pairs of clusters with the minimum distance, measures of 

similarity and dissimilarity have to be taken into account. Those measures are defined by 

linkage functions which have a direct impact on the whole clustering procedure. They affect 

the way clusters are merged together and subsequently the final cluster solution. Therefore, 

linkage measures will be discussed extensively in the process. 

The following notation is given in order for the various linkages to be described: 

• Cluster r is formed from clusters p and q. 

• nr is the number of objects in cluster r 

• xri is the ith object in cluster r 

Single Linkage (Nearest Neighbor) functions utilize the shortest distance between any two 

objects in a pair of clusters [54, 55]:  

𝑑(𝑟, 𝑠) = min (𝑑𝑖𝑠𝑡(𝑥𝑟𝑖 , 𝑥𝑠𝑗)) , 𝑖 ∈ (𝑖, … , 𝑛𝑟), 𝑗 ∈ (1, … , 𝑛𝑠) 

The similarity under which two clusters merge is the similarity of their most similar objects 

and the merge criterion is local. Single linkage is a bottom-up (agglomerative) process where 

the number of clusters is reduced by one at each step.  

Complete Linkage (Furthest Neighbor/Maximum Method) functions utilize the furthest 

distance between any two objects in a pair of clusters [55]: 

𝑑(𝑟, 𝑠) = max (𝑑𝑖𝑠𝑡(𝑥𝑟𝑖 , 𝑥𝑠𝑗)) , 𝑖 ∈ (𝑖, … , 𝑛𝑟), 𝑗 ∈ (1, … , 𝑛𝑠) 
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Accordingly, in complete linkage method, the similarity under which two clusters fuse, is the 

similarity of their most dissimilar objects and the merge criterion is non-local, that is, the 

entire structure of clustering can affect the way how clusters fuse.  

Average linkage functions utilize the averaged distance between all pairs of the two clusters’ 

members [55]: 

𝑑(𝑟, 𝑠) =
1

𝑛𝑟𝑛𝑠
∑ ∑ 𝑑𝑖𝑠𝑡(𝑥𝑟𝑖𝑥𝑠𝑗)

𝑛𝑠

𝑗=1

𝑛𝑟

𝑖=1

 

There is also, an average linkage method within groups, proposed by Sokal & Michener [55], 

which takes into consideration the variability present within each cluster. This method will not 

be further discussed. 

All the three methods mentioned above (single, complete and average) use a proximity matrix 

as input and the inter-cluster distances used are presented in Fig. 6.  

 

Fig. 6 Single, Complete and Average linkage graphical representations, modified after [56]. 

 

Centroid linkage (Unweighted Pair-Group Method using the centroid approach- UPGMC) 

utilizes the Euclidean distance between the centroids of the two clusters: 

𝑑(𝑟, 𝑠) = ‖𝑥𝑟̃ + 𝑥𝑠̃‖2 

where 𝑥𝑟̃ =
1

𝑛𝑟
 ∑ 𝑥𝑟𝑖

𝑛𝑟
𝑖=1  

As single linkage method, centroid linkage also represents an agglomerative approach to 

hierarchical clustering. This approach uses a data matrix, in contrast to the previous ones, 

rather than a proximity matrix and involves merging clusters with the most similar mean 

vectors.  
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Median linkage (Weighted Pair-Group Method using the centroid approach) functions also 

utilize the Euclidean distance between the weighted centroids of the two clusters: 

𝑑(𝑟, 𝑠) = ‖𝑥𝑟̃ − 𝑥𝑠̃‖2 

where 𝑥𝑟  ̃and 𝑥𝑠̃ are weighted centroids for the clusters r and s. If cluster r was created by 

combining clusters p and q, 𝑥𝑟̃ is defined recursively as: 

𝑥𝑟̃ =
1

2
(𝑥𝑝̃ + 𝑥𝑞̃) 

Apart from the Euclidean distance, other proximity measures may be used for the Centroid 

and the Median linkage approaches, they would, however, lack interpretation in terms of the 

raw data [56]. The following table (Table 2) presents a brief description of various proximity 

measures used in linkages. 

Table 2 Several Computational methods for distance 

Distance measures Formula 

Euclidean Distance ‖𝑎 − 𝑏‖2 = √∑ (𝑎𝑖 − 𝑏𝑖)2
𝑛

𝑖=1
 

Squared Euclidean Distance ‖𝑎 − 𝑏‖2
2 = ∑ (𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=1
 

Manhattan/City block 
DIstance 

‖𝑎 − 𝑏‖1 = ∑ |𝑎𝑖 − 𝑏𝑖|
𝑛

𝑖=1
 

Maximum Distance ‖𝑎 − 𝑏‖∞ = 𝑚𝑎𝑥|𝑎𝑖 − 𝑏𝑖| 

Mahalanobis Distance √(𝑎 − 𝑏)𝑇𝑆−1(𝑎 − 𝑏) 𝑤ℎ𝑒𝑟𝑒 𝑆 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
 

Ward’s Method aims to minimize the variance between clusters by utilizing an incremental 

sum of squares: that is, the increase in the total within-cluster sum of squares as a result of 

joining two clusters [57]. The within-cluster sum of squares is defined as the sum of the 

squared distances between all objects in the cluster and the centroid of the cluster. The sum 

of squares measure is equivalent to the following distance measure d(r,s), which is the formula 

linkage: 

𝑑(𝑟, 𝑠) = √
2𝑛𝑟𝑛𝑠

(𝑛𝑟 + 𝑛𝑠)
‖𝑥𝑟̃ + 𝑥𝑠̃‖2 

Where:  

• ‖𝑥𝑟̃ + 𝑥𝑠̃‖2 is the Euclidean distance 

• 𝑥𝑟  ̃ and 𝑥𝑠̃ are the centroids of the clusters r and s 

• 𝑛𝑟  ̃ and 𝑛𝑠̃ are the number of elements in clusters r and s 

In some references, factor of 2 multiplying 𝑛𝑟𝑛𝑠  is not utilized by Ward’s method. The linkage 

function uses this factor so that the distance between two singleton clusters is the same as 

the Euclidean distance. Ward’s method differs from the centroid approach in clustering, in 

that centroids are weighted by nrns/(nr + ns) when computing distances between centroids, 

where nr and ns are the numbers of objects in the two clusters r and s. 
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Finally, Weighted Average Linkage (WPGMA) utilizes a recursive definition for the distance 

between two clusters [58]. If cluster r was created by combining clusters p and q, the distance 

between r and another cluster s is defined as the average of the distance between p and s and 

the distance between q and s: 

𝑑(𝑟, 𝑠) =  
(𝑑(𝑝, 𝑠) + 𝑑(𝑞, 𝑠))

2
 

There are several other hierarchical approaches, related to the ones described above. There 

is the Sum-of-Squares Approach [59, 60] which differs from Ward’s method in that it is based 

on the sum of squares within each cluster rather than the increase in sum of squares in the 

merged cluster. Another flexible method defined by values of the parameters of a general 

recurrence formula has also been introduced by Lance and Williams [61] but in this project, it 

will not be discussed any further. 

 

3.1.2 k - means Clustering 

The k-means algorithm is one of the most used clustering algorithms and it was first described 

by Macqueen [62]. It was designed to cluster numerical data in which each cluster has a center 

called the mean. k-means belongs to the partitional (non-hierarchical) clustering methods 

[50], which are fundamentally different from the hierarchical ones. Partitional clustering 

methods generate a single partition of the data in an attempt to recover natural groups in the 

data. While hierarchical clustering methods require only the proximity matrix among the data 

points, partitional techniques expect the data in the form of a pattern matrix. 

k-means  [62] is one of the simplest unsupervised learning algorithms, which is used to solve 

the well-known clustering problem. The goal of k-means method is to divide the data into k 

distinct groups (clusters) so that observations within a group are similar, whilst observations 

between groups are different. The value of k (number of clusters) may or may not be specified. 

In most cases, it is assumed to be fixed.  As an algorithm, it is rather iterative than hierarchical, 

which means that at each stage of the algorithm data points are assigned to a fixed number 

of clusters (whereas in hierarchical clustering, the number of clusters ranges from the number 

of data points down to a single cluster). The method allows the reallocation of data objects 

from one cluster to another, which is not the case at hierarchical clustering. 

There is an error function behind this reallocation of data objects. It proceeds, for a given 

initial k clusters, by allocating the remaining data to the nearest clusters and then repeatedly 

changing the membership of the clusters according to the error function until the error 

function does not change significantly or the membership of the clusters no longer changes. 

The conventional k-means algorithm [63, 64] is briefly described below. 

Let D be a data set with n instances, and let C1, C2, . . . , Ck be the k disjoint clusters of D. Then 

the error function is defined as 

𝐸 =  ∑ ∑ 𝑑(𝒙, 𝜇(𝐶𝑖)),

𝑥∊𝐶𝑖

𝑘

𝑖=1
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where μ(Ci) is the centroid of cluster Ci. d(x,μ(Ci)) denotes the distance between x and μ(Ci), 

and it can be one of the many distance measures, a typical choice of which is the Euclidean 

distance. 

Given a set of observations, k-means clustering aims to partition n observations into k clusters 

so that the total distance between the group's members and its corresponding centroid, 

representative of the group, is minimized. The component to be minimized is the within-

cluster sum of squares (WCSS): 

∑ ∑‖𝑥𝑖
𝑗

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

where the term ‖𝑥𝑖
𝑗

− 𝑐𝑗‖
2
provides the distance between any data point and the cluster’s 

centroid. 

Each cluster is associated with a centroid, which is the mean of the points in the cluster. Each 

point is assigned to the cluster with the closest centroid.  The first step of k-means is to select 

as initial cluster centers K, randomly selected documents, the seeds (initialization phase). The 

algorithm then moves the cluster centers around in space in order to minimize WCSS (iteration 

phase). This is accomplished iteratively by repeating the following steps until a stopping 

criterion is met: reassigning documents to the cluster with the closest centroid; and re-

computing each centroid based on the current members of its cluster. Firstly, WCSS decreases 

in the reassignment step, since each vector is assigned to the closest centroid, so the distance 

it contributes to WCSS decreases. Secondly, it decreases in the re-computation step because 

the new centroid is the vector 𝑣⃗ for which WCSSk reaches its minimum. Ultimately, k-means 

converges for the common similarity measures to a local minimum point after a finite number 

of iterations (normally the first few) [65]. Convergence and some probability properties 

regarding the k-means algorithm are also discussed in Pollard [66, 67], and Serinko & Babu, 

[68]. García-Escudero and Gordaliza [69] discussed the robustness properties of the k-means 

algorithm. 

The complexity of the whole procedure is summarized in the following expression: 

O(n*K*I*d) 

Where:  n= number of points 

K= number of clusters  

I= number of iterations  

d= number of attributes 

Choosing the right initial number of centroids is very important as it controls the performance 

of the algorithm. If there are K ‘real’ clusters (especially when K is large), then the probability 

of selecting one centroid from each cluster is relatively small. Particularly, if clusters are of the 

same size, n, then the aforementioned probability is as follows: 

𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑠𝑒𝑙𝑒𝑐𝑡 𝑜𝑛𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑠𝑒𝑙𝑒𝑐𝑡 𝐾 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠
=

𝐾! 𝑛𝐾

(𝐾𝑛)𝐾
=

𝐾!

𝐾𝐾
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There are several approaches to this problem such as multiple runs, sampling and usage of 

hierarchical clustering to determine the initial centroid number, selection of more than k 

initial centroids and re-selection among these (the most widely separated), postprocessing 

and/or bisecting k-means. Some methods for selecting good initial centers are proposed in 

Babu and Murty [70] and Bradley and Fayyad [71]. Pena et al. [72] provide a comparison of 

four initialization methods: a random method, Forgy’s approach [56], Macqueen’s approach 

[62], and Kaufman’s approach [73]. Other initialization methods are presented in Khan and 

Ahmad [74].  

Silhouette analysis is a method for selecting the number of clusters for k-means clustering. It 

can be used as a tool to study the separation distance between the resulting clusters. The 

silhouette plot displays a measure of how close each point in one cluster is to points in the 

neighboring clusters and thus provides a way to assess parameters like number of clusters 

visually. This measure has a range of [-1, 1]. 

Silhouette coefficients (as these values are referred to as) near +1 indicate that the sample is 

far away from the neighboring clusters. A value of 0 indicates that the sample is on or very 

close to the decision boundary between two neighboring clusters and negative values indicate 

that those samples might have been assigned to the wrong cluster. In other words, a value of 

+1 is ideal and -1 is the least preferred. Hence, the higher the value, the better is the cluster 

configuration. 

The silhouette value for the ith point, Si, is defined as 

Si = (bi-ai)/ max(ai,bi) 

where ai is the average distance from the ith point to the other points in the same cluster as i, 

and bi is the minimum average distance from the ith point to points in a different cluster, 

minimized over clusters. 

A disadvantage of k-means algorithm is that it is sensitive to the presence of outliers and when 

clusters are of different size, different density or non-globular it might be disfunctional. For 

this reason, pretreatment and postprocessing of data is essential when implementing k-

means, especially on high-dimensional data. Also, working only on numerical data restricts 

some applications of the k-means algorithm. 

All in all, k-means is a greedy, computationally efficient technique, being the most popular 

representative-based clustering algorithm. 

 

3.1.3 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) constitutes a multivariate statistical technique, probably 

one of the most popular in the chemometric literature, used by various scientific disciplines, 

in order to identify patterns and relationships within a data set [75, 76]. It is an unsupervised 

learning method which aims to reduce the dimensionality of a high-dimensional data set 

consisting of a large number of interrelated variables and at the same time to retain as much 

as possible of the variation present in the data set. In mathematical terms, this is accomplished 

by manipulating a data matrix in such a way that the variation or spread of data objects (i.e. 

the description of their interpoint distances) is described by as few dimensions as possible. In 

addition to data reduction, Principal Component Analysis forms a transformation technique 



18 
 

of data, also used for simplification, modelling, outlier detection (identification of their class 

membership), variable selection, classification, prediction and unmixing of constant sum 

mixtures (curve resolution) [77, 78, 79]. 

The information that PCA extracts from the mathematical manipulation of the data matrix, is 

expressed by a new orthogonal set of variables (PC axes), known as the Principal Components 

(PCs) [76]. These are new variables that are uncorrelated and ordered such that the first few 

retain most of the variation present in all of the original variables. Principal components are 

obtained as linear combinations of the original variables and each one of them is characterized 

by certain properties. For example, the first PC contains the maximum amount of possible 

variance in the data set, in one direction and successive PCs describe decreasing amounts of 

variation. Each data object has coordinates, defined by the original variables, which are 

relative to the new principal component axes (scores). What is more, PC axes are influenced 

by variables and this is because the formulation of each axis is based on combinations among 

the original measurement variables. Variables’ contribution to PC axes depends mainly on the 

relative orientation between those two elements. Hence, parallel arrangement (in space) of 

the variable and PC axes, means that minimum variation is contained in the PC and 

accordingly, orthogonal arrangement of the two, means maximum variation. Finally, the 

maximum PC quantity to be calculated, is at the same time, the minimum quantity of data 

objects or variables (six habits). 

The PCs are defined as follows. Let v = (v1, v2, . . . , vd )′ be a vector of d random variables, 

where ′ is the transpose operation. The first step is to find a linear function a′1v of the elements 

of v that maximizes the variance, where a1 is a d-dimensional vector (a11, a12, . . . , a1d )′, so 

a′1𝑣 = ∑ 𝑎1𝑖𝑢𝑖

𝑑

𝑖=1

 

After finding a′1v, a′2v, . . . , a′j −1v, we look for a linear function a′j v that is uncorrelated with 

a′1v, a′2 v, . . . , a′j −1v and has maximum variance. Then we will find d such linear functions after 

d steps. The j th derived variable a′j v is the j th PC. In general, most of the variation in v will 

be accounted for by the first few PCs. To find the form of the PCs, we need to know the 

covariance matrix ∑ of v. In most realistic cases, the covariance matrix ∑ is unknown, and it 

will be replaced by a sample covariance matrix. For j = 1, 2, . . . , d, it can be shown that the jth 

PC is given by zj = a′j v, where aj is an eigenvector of ∑ corresponding to the jth largest 

eigenvalue λj . 
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4. Family Affiliations of Williston Basin Oils 

The sample set under study consists of four compositional families, A, B, C and D, each 

containing 44, 11, 38 and 27 oil samples, respectively (a total of 120 oil samples – see 

Appendix). Family A oil samples belong to Red River and Yeoman formations. Family B oil 

samples belong to Bakken and Lodgepole formations while samples of family D belong to 

Winnipegosis formations. Oil samples of family C belong to various formations, such as 

Midale, Tilston, Bakken, Frobisher, Ratcliffe, Lodgepole, and Madison formations. The 

exploration of the compositional data was conducted on the main hydrocarbons of the 

gasoline range, the n-alkanes in the saturated fraction of the oils, as well as the biomarker’s 

content of this sample set. 

As far as the gasoline range is concerned, it represents the number of hydrocarbons containing 

less than twelve carbon atoms, and are often referred to as light hydrocarbons. In highly 

thermally mature oils, this range constitutes almost the 100% of the oil composition and 

therefore geochemical characterization of such oils is carried out based on these compounds. 

The saturated fraction of hydrocarbons (SFH) is comprised of either the linear, branched or 

cyclic hydrocarbons. SFH contains the structural group of n-alkanes (usually between C12-C35) 

as well as the pristane (Pr) and phytane (Ph) isoprenoid compounds, measured in geochemical 

studies along with n-alkanes, due to their geochemical significance. In the analysis, the lighter 

n-alkanes were excluded and only the C13-C32 alkanes were considered. 

Biomarkers are a group of compounds, found in oils and rock extracts. They have a variety of 

applications in petroleum exploration. Such applications are in source-rock correlation and/or 

in the inference of characteristics of the source rock that generated an oil, without examining 

the source rock itself. Specifically, biomarkers in an oil can reveal the relative amount of oil-

prone vs. gas-prone organic matter in the source kerogen, the age of the source rock, the 

environment of deposition, the lithology of the source rock (carbonate vs. shale), and the 

thermal maturity of the source rock during generation. Such data may be key inputs to 

effective basin modelling of a prospect or block. In this study, the sterane and hopane parts 

of the biomarkers’ range have been examined thoroughly. 

Before performing Multivariate Data Analysis (MDA) on the given oil sample set, an attempt 

was made in order to test the criteria under which the classification of the four family 

affiliations of Williston Basin, was determined in previous studies. The biomarker based 

classification of the four families relies on various compositional criteria, including Pr/Ph ratio, 

tricyclic to pentacyclic C23/C30 ratio, n-alkane predominance and prominence amongst 

extended hopanes and many other, extensively described in the following paragraphs. Empty 

spaces on the barcharts presented below, correspond either to zero component values for 

specific samples, or to infinite numbers, generated during the calculative ratio calculations. 

The compositional character of each family is unique and this is evident from their n-alkane 

distributions, biomarker signature as well as their gasoline range characteristics, in general 

[39, 32]. Family A oils display diagnostic saturate fraction gas chromatograms (SFGC) and are 

fairly distinguishable from the other families by their overall n-alkane profile (centered at C13-

C17) and CPI values (average CPI: 1.59) [39, 32]. According to Obermajer et al., (2000), they 
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also present a smooth extended hopane profile with a steady decrease in the concentration 

of C31+ homologues with increasing carbon numbers [39]. In addition, Family A oils, are 

characterized by a C34 hopane prominence, according to Osadetz et al., [32]. Homohopane 

distributions have been used to distinguish oils from different organic facies of the same 

source rock. Such distributions are sensitive and may be altered due to various factors such 

as thermal maturity and API gravity. Judging from the barchart (Fig. 7), Family A oils display a 

high C34 homohopane distribution, but, in addition, oils from Family D, present an even 

stronger prominence on this compound (Fig. 7). The behavior of C34 for Families B and C is 

similar to that of Family A. 

 

Fig. 7 C34 barchart for the whole sample set. 

Another diagnostic feature of this group is its very low concentration of acyclic isoprenoids 

relative to n-alkanes, presenting the lowest Pr/C17 and Ph/nC18 ratios among all families [39]. 

The corresponding barcharts (Fig. 14, Fig. 15), in which these ratios have been plotted, is in 

agreement with this fact. According to Osadetz et al., [32], the C23 tricyclic/C30 pentacyclic 

terpanes ratio, especially for Families A and B, is very distinct, differentiating them from the 

rest family groups. From the corresponding barchart, it is indeed observed that Family A oils 

display very low values of C23/C30, whereas Family B displays the highest peaks for the same 

ratio (Fig. 8). What is also noticeable from the C23/C30 barchart, is that Family D oils, similarly 

to Family A, present very low values for this ratio.  

 

 

Fig. 8 Barchart presenting C23/C30 ratios for the whole sample set. 
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Family B oils, according to Obermajer et al., [39], differ from the rest in that they present a 

smooth n-alkane distribution with a maximum in the C13-C17 range, lacking any homohopane 

prominence, which is in agreement with Osadetz et al., [32]. According to Obermajer et al., 

[39], there are variations in 17a(H)-trisnorhopane (Tm) over 18a(H)-trisnorhopane (Ts), 

compared to the rest oils. From the respective barchart (Fig. 10) we observe that there are 

indeed, intense variations within this Family affiliation, the density of the specimens, however, 

is not adequate enough in order to confirm the clear distinction of this family from the rest. 

The calculative process of the code has produced the NaN notation, resulting in non-plotted 

samples. The Ts/Tm ratio profiles of the rest Families (A,C and D) show almost equivalent 

variations. 

Another characteristic of Family B oils, is that they obtain values above unity for the Pr/Ph 

ratio [32]. This ratio is one of the most common correlation parameters, utilized as an 

indicator of depositional environment [80]. Variations may reflect multiple degrees of 

oxidation during the early stages of chlorophyll degradation. It is one of the most commonly 

utilized correlation parameters, indicative of the source rock’s depositional environment [80]. 

Being sensitive to diagenetic conditions, values of Pr/Ph ratios substantially below unity are 

considered to indicative of petroleum origin and/or highly reducing depositional 

environments. Very high Pr/Ph ratios (> 3) reflect source material of terrestrial origin. Pr/Ph 

ratios ranging between 1-3 reflect oxidizing depositional environments [81]. According to 

Lijmbach [82] low Pr/Ph values (<2) reflect aquatic depositional environments including 

marine, fresh and brackish water (reducing conditions), intermediate values (2–4) reflect 

fluviomarine and coastal swamp environments, whereas very high values (up to 10) are 

related to peat swamp depositional environments (oxidizing conditions). From the 

corresponding barchart (Fig. 9), we observe that, contrary to Family C, Families A, B and D 

present similar, above unity values for this ratio, which is in agreement with Osadetz et al., 

[32]. At the same time, however, Family B oils display the highest peaks (Fig. 9). 

 

Fig. 9 Pr/Ph ratios barchart for the whole sample set. 
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Fig. 10 Ts/Tm ratios barchart for the whole sample set. 

 

Fig. 11 CPI profile for the whole sample set. 

 

Fig. 12 Odd/Even predominance for the whole sample set. 

 

Fig. 13 C35 barchart for the whole sample set. 
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Main characteristic of Family C is the strong C35 prominence [32], which is confirmed by the 

respective barchart (Fig. 13). The lowest C35 homohopane distribution is indicative of Family 

A oils, as shown. According to Osadetz et al., [32] and Obermajer et al., [39], these oils obtain 

lower Pr/Ph values in comparison to the rest, and in particular, less than unity. This fact holds 

true, as we observe from the corresponding barchart (Fig. 9), confirming at the same time that 

Family C oils display a strong and consistent predominance of Ph/Pr ratio.  

Additionally, oils of this familial group also display an even/odd n-alkane predominance [32]. 

The composition and distribution of n-alkanes carbon numbers reflect the source of kerogenic 

organic matter, sedimentary environment, and maturity of the rocks. Traditional geochemists 

feel that the odd/even carbon number predominance of n-alkane decreases as rocks mature. 

The OEP (odd/even predominance) of mature source rocks is close to 1. However, the odd 

carbon number predominance appears in Upper Ordovician source rocks, and an even carbon 

number predominance is found in Cambrian - Lower Ordovician source rocks. Family C oils are 

characterized by an even/odd n-alkanes predominance and this is confirmed by both the CPI 

and OEP, respective barcharts (Fig. 11, Fig. 12). 

 

Fig. 14 nC17/Pr barchart for the whole sample set. 

 

Fig. 15 nC18/Ph barchart for the whole sample set. 

Oils from Family D display a distinctive stratigraphic occurrence and have been subdivided 

into two separate groups D1 and D2, based on nC17/Pr and C18/Ph ratios [32]. The 

corresponding barcharts (Fig. 14, Fig. 15) present the distributions of these ratios amongst the 

whole sample set. What is more, D1 and D2 oils, depending on the pools they occur, either in 

Madison or Birdbear, they display Pr/Ph ≤ 1.0 and Pr/Ph> 1.1, respectively. This is indeed, 

evident, from the corresponding barchart (Fig. 9). 
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Reviewing the barcharts presented before, it would be important to state that based on 

individual geochemical characteristics, the four families can be indeed uniquely identified at 

a great extent. However, it would be a challenge to investigate if a clear classification can be 

obtained, by applying this time, multivariate data analysis (MDA) on raw data. 

In the next chapters, we implement several multivariate methods on the given data set and 

examine the results, that each method produces. Hierarchical clustering, k-means and 

Principal Component Analysis are applied on four independent models that were developed 

for this purpose; the Saturated Fraction Compositional Model, the Saturated Fraction Ratios 

Model, the Gasoline Range Compositional Model and the Biomarkers Compositional Model. 

All of the steps that were followed are extensively described. 
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5. Application of MDA methods; inputs and results 

The core of this project is the investigation of the oil-oil correlations among compositional 

data of a sample set from Williston Basin, by using multivariate statistical analysis methods. 

Oil-oil correlations are based on compositional criteria and examine whether a genetic 

relationship exists among a group of oil samples. In particular, Hierarchical Clustering, k-

means and PCA have been employed in order to explore compositional data from the gasoline 

range (GRH), saturated hydrocarbons (SFH) and biomarker traits of 120 oil samples from the 

Williston Basin Petroleum province. The samples examined in this study are from four, 

previously defined, compositional families (A-D) [34].  

For the application of MDA methods on the sample set, a MATLAB code created in the 

“Hydrocarbons Chemistry and Technology Research Unit”, of the School of Mineral Resources 

of the TUC, was utilized. All necessary adjustments and modifications were applied in order 

for the code to work.   

From the sample set under study, four independent models were developed in order to 

explore different compositional information. The models used for the identification of 

petroleum systems were: a) Saturated Fraction Compositional Model (SFCM) b) Saturated 

Fraction Ratios Model (SFRM), c) Gasoline Range Compositional Model (GRCM) and d) 

Biomarkers Compositional Model (BCM). SFCM embodies original variables derived from the 

gas chromatographic analysis of the Saturated Fraction of Hydrocarbons (SFH). It takes into 

account peak areas of n-alkanes, nC13-nC24, pristane (Pr) and phytane (Ph). The SFRM contains 

the most commonly utilized compositional ratios and factors derived from the gas 

chromatographic analysis of the SFH (Pr/Ph, n-C17/Pr, n-C18/Ph, CPI n-C14-20, CPI n-C22-32). GRCM 

includes variables derived solely from GRH compositional data. The parameters reflect 

internal variations for compounds with the same number of carbon atoms to minimize 

possible variations due to sample handling and experimental conditions. Finally, BCM contains 

all variables derived from biomarkers’ traits of the oil sample set.  

The approach under which all statistical methods were applied, was that of trial and error in 

order to achieve a “clear clustering” (if possible) of the oil samples. A pretreatment scheme 

of the sample set was considered necessary in order to reformat the original data file and 

prepare data for clustering. This is because the data set consists of peak areas that are 

analysis-dependent. As a consequence, only by preprocessing the data, we get meaningful 

statistical results, since all components are put under the same scale. The idea is that if 

different components of data (features) have different scales, then derivatives tend to align 

along directions with higher variance, which leads to poorer/slower convergence. The 

chemometric software package that was utilized, offered various pretreatment options, all of 

which were originally applied on the sample set, in order to examine which one produces the 

best classifying solution. While only the results from one preprocessing option will be 

presented, all pretreatment schemes which were utilized, are briefly described below.   

Command “pre_scaling_0_1”: It refers to the subtraction of the minimum value and the 

division of each column by the range. The results of this pretreatment scheme are going to be 

presented in the upcoming chapters. 



26 
 

Command “norm_variables_0_1”: It refers to the subtraction of the minimum value and the 

division of each variable by the range. 

Command “pre_minusMean”: It concerns the subtraction of the mean value from each 

variable. 

Command “pre_PQN” (Probabilistic quotient normalization): It refers to the division of each 

sample with the sum of the sample’s variables. The calculative process takes into 

consideration the median value of each column. 

Command “pre_CLR” (Centered log-ratio normalization): It concerns the division of each 

sample with the sum of the sample’s variables. It differs, however, from “pre_PQN” in that it 

takes into consideration the geometric mean of each column. 

Command “Subtract_sample_min”: It refers to the subtraction from each sample of its 

minimum value. 

Command “pre_TSN” (total sum normalization): It concerns the division of each sample with 

the sum of the samples’ variables. 

Command “pre_max”: This matlab command refers to the division of each sample with the 

maximum value of the samples’ variables. 

 

 

5.1 Saturated Fraction Compositional Model (SFCM) 
 

5.1.1 Hierarchical Clustering on SFCM  

Τhe subtraction of the minimum value from the subset and division of each variable by the 

range (“pre_scaling_0_1” command) resulted in the following dendrogram (Fig. 16). Average 

linkage with a correlation coefficient were combined  

It is evident that the oil samples from all four family affiliations overlap, presenting no clear 

distinction. In particular, there is a slight overlap of samples from Families B (B1014, B1993, 

B2121, B2179, B1879, B1874) and D (D1275, D1276, D1289, D1313, D1288, D1290, D1291) 

with Family A. The original clustering solution detected outlier values (samples C599, D2595 

and C566), removing which from the sample set and reprocessing it under the same 

pretreatment, made no difference on the clustering solution. 
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Fig. 16 Resulting Dendrogram under the command “pre_scaling_0_1” for the Saturated fraction compositional 
model (SFCM). 

As observed, the algorithm failed to discriminate distinct familial affiliations among the given 

oil sample set, under this pretreatment scheme. In order to test how Hierarchical Clustering 

would offer the best clustering solution, many other pretreatment schemes were also applied 

on the data set and as a procedure, this was also followed in the upcoming MDA methods. 

The following dendrogram resulted from the division of each sample with the sum of the 

samples’ variable - Total Sum Normalization (“pre_TSN” command of the chemometric 

software package). City block distance and Centroid linkage were combined and the produced 

dendrogram displays a relatively good distinction of Family A. It fails, however, to distinguish 

amongst Families B, C and D, which, once again, overlap one another (Fig. 17). 

 

Fig. 17 Dendrogram under the “pre_TSN” command for the Saturated fraction compositional model (SFCM). 

An interesting feature of the dendrogram in Fig. 17, is that it displays a non-monotonic tree. 

This occurs when the distance from the union of two clusters, r and s, to a third cluster is less 

than the distance between r and s. In this case, in a dendrogram drawn with the default 

orientation, the path from a leaf to the root node takes some downward steps. Usually, the 

centroid and median methods (as in this case) can produce a cluster tree that is not monotonic 

and if this happens, it is better to utilize another linkage method. In our case, however (Fig. 

17), the centroid linkage, which was automatically chosen by the chemometric software 

package, produced a dendrogram which classified sufficiently samples of Family A. All other 

pretreatment options failed in this task significantly. 
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5.1.2 k – means algorithm on SFCM 

k-means clustering was then performed under the same pretreatment option 

(“pre_scaling_0_1”) resulting in the following features (Fig. 18, Fig. 19, Table 3). 

Table 3 Summary of k-means clustering under the " pre_scaling_0_1" pretreatment option for the Saturated 
fraction compositional model (SFCM). 
 

K-values Best distances sums Average silhuette values 

K=2 594.077 0,566689 

K=3 41.787 0,539449 

K=4 345.548 0,503212 

K=5 290.114 0,467112 

 

The silhouette plots for K=2, K=3, K=4 and K=5 clusters are shown in the following figure (Fig. 

18). An insufficient choice of an initial K value would result in clusters below average silhouette 

scores or even wide fluctuations in the size of the silhouette plots. This is the criteria under 

which, each clustering solution is evaluated as sufficient or insufficient. 

 

Fig. 18 Silhouette plots for k=2, k=3, k=4 and k=5 clusters under the " pre_scaling_0_1" pretreatment option for 
the Saturated fraction compositional model (SFCM). 

From the silhouette plots (Fig. 18), we observe that, in general, the obtained silhouette values 

fall in the range of 0.1-0.9. The size of the silhouette plots does not present wide fluctuations 

for each case, and negative values are present in all clustering solutions. The two - cluster 

solution has an average silhouette value of 0.566689, being the highest amongst the others 

(Table 3). This is an indication that grouping into two clusters using k-means is more efficient 

compared to grouping into three, four or five clusters. It is not, however, sufficient enough, 

as we would expect, grouping into four clusters to be the best solution. In Fig. 20 we can 

observe, which cluster each sample is assigned to. 
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Fig. 19 The plot of k-means clustering for k=2 under the “pre_scaling_0_1” pretreatment option for the Saturated 

fraction compositional model (SFCM). Thesymbol represents the centroid of each cluster. 

Fig. 19 represents the plot of k-means clustering, for the case of k = 2. Taking into 

consideration the average silhouette value, k=2 is the most efficient clustering solution. 

However, by observing the plot, we could say that there is no clear boundary between the 

two clusters and samples overlap with each other.  

 

 

Fig. 20 Table displaying to which cluster each sample belongs, for each K value of the SFCM (idx2 = k:2, idx3 = k:3, 
etc.) 

Taking into consideration that the most sufficient clustering solution is that of k=2 (idx=2) and 

according to Fig. 20, all samples from Family A oils are assigned to one cluster. The vast 

majority of Family C oil samples are assigned to a different cluster with a few exemptions 

(C540, C543). The discretization of these two families is relatively sufficient, but as far as 

Family D and B oil samples are concerned, they overlap with A and C considerably, as samples 

from both families are assigned to both clusters. 
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5.1.3 Principal Component Analysis on SFCM 

Sample scores describe a position in principal component space, and each original variable 

has loadings that describe their contribution to each principal component. The sample score 

of the first two principal components and the respective loading diagrams are presented in 

figure (Fig. 21a, b). The percentages of variation attributed to each of the Principal 

Components are shown in Fig. 21c. 

 

Fig. 21 a) Sample scores for the first to Principal Components resulting from the Saturated Fraction Compositional 
Model (SFCM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families 
determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for 
Family C oils and yellow for Family D oils.  “Pre_scaling_0_1” command was used on the data set. b) Original 
Variable loadings for the first to Principal Components resulting from the Saturated Fraction Compositional Model 
(SFCM) of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component. 

SFCM sample scores of the first two PCs explain almost 85 per cent of the variance (Fig. 21c). 

There are linear gradients observed in the data by comparing the sample scores of the first 

two principal components of the SFCM. These gradients indicate that both distinctive family 

characteristics and linear compositional variations of the original variables exist within each 

family. Sample scores of Family A oils exhibit the most coherent grouping and are 

characterized by a positive gradient defined by positive PC1 scores and positive PC2 scores. 

Family C oils are also characterized by a positive gradient whereas Family B and D are defined 

by a negative gradient. The mild gradients of Families B, C and D exhibit positive PC1 scores, 

as Family A, but negative PC2 scores. There is a considerable overlap of Family B with Family 

D and a slight overlap of Family C with Family D. What is more, for a given value of PC1 Families 

C and D have more negative PC2 scores but this is not enough to be uniquely distinguishable.  

As far as variable loadings are concerned, they are a tool used for the understanding of the 

role and importance of the original variables. The original variable loadings for the SFCM 

distinguish between a preponderance of lighter versus heavier n-alkanes (Fig. 21b).  C13-C17 
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alkanes are characterized by strongly positive PC1 and PC2 loadings but C16 and C17 exhibit 

negative PC3 values. Probably all these variable loadings control the gradients that separates 

independently defined oil families. The variable with the higher weight (0.1034) among the 22 

variables of the SFCM, is alkane C13 with strongly positive PC1, PC2 and PC3 loadings.  

 

5.1.4 Discussion on the performance of MDA on the SFCM 

To summarize, Hierarchical Clustering, k-means and Principal Component analysis were 

applied on the Saturated Fraction Component Model. Both in Hierarchical Clustering and PCA, 

Family A oils presented the most coherent group, being sufficiently separated from the rest 

familial affiliations. Families B and D overlapped significantly while also in both cases there 

appeared a slight overlap between families C and D. The method which completely failed to 

distinguish among the four oil families (A, B, C and D) was k – means clustering. The clustering 

solution produced only two clusters and according to which cluster each sample was assigned, 

k-means presents only 25% of success. Out of the three statistical methods, k-means was the 

one to produce the most insufficient results.  

 

 

5.2 Saturated Fraction Ratios Model (SFRM) 
 

5.2.1 Hierarchical Clustering on SFRM  

The following dendrogram is the outcome of the “pre_scaling_0_1” command (Fig. 22). 

Average linkage along with Euclidean distance as a measure of proximity, were combined. 

Family A is clearly distinguished from the rest. Family C considerably overlaps with Families B 

and D. All pretreatment schemes that were applied on the data set, behaved similarly 

producing almost the same results when Hierarchical Clustering was performed; all 

distinguished Family A quite sufficiently, but exhibited a slight overlap amongst Families B, C 

and D. 

 

Fig. 22 Resulting Dendrogram under the command “pre_scaling_0_1” for the Saturated fraction ratios model 
(SFRM). 
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5.2.2 k – means algorithm on SFRM  

Under the same pretreatment scheme (“pre_scaling_0_1” command), k-means algorithm was 

applied and below we present the results. 

Table 4 Summary of k-means clustering under the “pre_scaling_0_1” pretreatment option on the Saturated Fraction 
Ratios Model (SFRM). 

K-values Best distances sums Average silhuette values 

K=2 184.117 0,727318 

K=3 115.198 0,691804 

K=4 832.004|831.205 0,715499 

K=5 649.877 0,702406 

 

The silhouette plots for K=2, K=3, K=4 and K=5 clusters are presented in the following figure 

(Fig. 23).  

Fig. 23 Silhouette plots for k=2, k=3, k=4 and k=5 clusters under the " pre_scaling_0_1" pretreatment option for 
the Saturated Fraction Ratios Model (SFRM). 

From the silhouette plots (Fig. 23), we observe that in all cases we obtain silhouette values 

above 0.6 and negative silhouette coefficients are always present. Average silhouette values 

are similar for all clustering solutions, with a maximum of 0,727318 for K=2 (Table 4). This is 

an indication that under the "pre_scaling_0_1" pretreatment scheme, grouping into two 

clusters using k-means is more efficient compared to grouping into three, four or five clusters. 

In Fig. 25 we can observe, which cluster each sample is assigned to. 

In Fig. 24 the plot of k-means clustering, for the case of k = 2 is presented with different colors 

for sample members that belong to different clusters. 
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Fig. 24 The plot of k-means clustering for k=2, of the Saturated Fraction Ratios Model (SFRM). Thesymbol 

represents the centroid of each cluster.  

 

 

Fig. 25 Table displaying to which cluster each sample belongs, for each K value of the SFRM (idx2 = k:2, idx3 = k:3, 
etc.) 

Based on the average silhouette values, the most efficient clustering solution is that of k=2 

(idx=2). According to Fig. 25, all samples from Family A oils are assigned to cluster one. Almost 

all of Family C oil samples are assigned to cluster two (only sample C1705 is assigned to cluster 

1). Oil samples from family B are all assigned to cluster 2, whereas family D oil samples are 

assigned in both clusters.  

 

5.2.3 Principal Component Analysis on SFRM  

The original variables used in the Saturate Fraction Ratios Model (SFRM) include the 

compositional factors Pr/Ph, nC17/Pr, nC18/Ph and the carbon preference indices for both 

lighter (nC14-nC20) and heavier (nC22-nC30) alkanes of the saturated fraction hydrocarbons. The 
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sample scores of the first two principal components and the respective loading diagrams are 

presented in Fig. 26. The percentages of variation attributed to each of the Principal 

Components are shown in Fig. 26c. 

 

Fig. 26 a) Sample scores for the first to Principal Components resulting from the Saturated Fraction Ratios Model 
(SFRM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families 
determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for 
Family C oils and yellow for Family D oils.  “Pre_scaling_0_1” command was used on the data set. b) Original 
Variable loadings for the first to Principal Components resulting from the Saturated Fraction Ratios Model (SFRM) 
of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component. 

SFRM sample scores of the first two PCs explain 83 per cent of the variance (Fig. 26c). There 

are two linear gradients observed in the data by comparing the sample scores of the first two 

principal components of the SFRM; a dispersed positive gradient displayed by samples with 

positive PC1 scores and PC2 scores less than 0, and a relatively tight negative gradient 

consisting of both positive PC1 and PC2 scores. As in the SFCM, these gradients also indicate 

that distinctive family characteristics and linear compositional variations of the original 

variables exist within each family. When the samples are compared to the biomarker-based 

oil families, Family A is once again clearly distinguished by consistently positive PC1 and PC2 

scores and a linear variation between them. Only sample D2626 overlaps with this group, 

however. Family D oils are also characterized by a general positive gradient, while Families B 

and D are defined by mainly a positive gradient. All gradients exhibit high positive PC1 scores 

but, Families B, C and D exhibit negative PC2 scores. As in the SFCM, the fields of PC1 and PC2 

in Family C overlap those of Families B and D, effectively obscuring their separation. However, 

Family C samples appear to fall along a positively correlated gradient in PC1 vs PC2 space. 

The original variable loadings for the SFRM indicate a lack of discriminating power of the 

nC17/Pr and nC18/Ph with respect to Families B and C, which opposes to Osadezt et al. [32], 

who claim that this biomarker parameter is highly effective as far as the discrimination among 

these affiliations is concerned.  
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5.2.4 Discussion on the performance of MDA on the SFRM 

MDA methods on the Saturated Fraction Ratios Model seemed to perform in a similar manner 

as in the Saturated Fraction Compositional Model. In all three methods Family A was 

significantly distinguished in contrast to the rest familial affiliations. Only sample D2626, in 

PCA overlapped with family A samples. As far as k-means is concerned, even though it 

discretizes family A, as a whole, it failed in considerably in separating families B, C and D. It 

produced a two-cluster solution. 

 

5.3 Gasoline Range Compositional Model (GRCM) 
 

5.3.1 Hierarchical Clustering on GRCM  

Applying the Hierarchical Clustering algorithm on GRCM, produced the following dendrogram 

(Fig. 27). Single linkage with Euclidean distance were combined this time.  

From the figure, we notice that oil samples from all four family affiliations overlap, presenting 

no clear distinction. In this case, we also observe that a few samples from C and D are excluded 

from the clustering solution (samples B1873, B1874, B1014, C1390, and D842). 

 
Fig. 27 Resulting Dendrogram under the command “pre_scaling_0_1” for the Gasoline range compositional model 

(GRCM). 

These components presented zero values for all variables. To examine how the model would 

perform without these values, they were removed from the data set and then hierarchical 

clustering was implemented again. The following dendrogram is the result. 
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Fig. 28 Resulting Dendrogram under the command “pre_scaling_0_1” for the Gasoline range compositional model 
(GRCM) after removing zero values. 

Implementing the algorithm produced another two outlier samples from family D (samples 

D1312 and D2885). Family A oil samples, however, seem to distinguish from the rest, but not 

sufficiently enough, as there is a slight overlap with samples from family D. As far as families 

B, C and D are concerned, there is a considerable overlap among them. 

 

5.3.2 k-means algorithm on GRCM  

Implementing the k-means algorithm on the Gasoline range compositional model produced 

the following results. Components with zero values (as mentioned before) were kept out of 

the analysis. 

Table 5 Summary of k-means clustering under the “pre_scaling_0_1” pretreatment option on the Gasoline Range 
Compositional Model (GRCM). 

K-values Best distances sums Average silhuette values 

K=2 60,1718 0.4438 

K=3 49,6733 0.4572 

K=4 43,5093  0.4510 

K=5 38,3703 0.4271 

The silhouette plots for K=2, K=3, K=4 and K=5 clusters are presented in the following figure 

(Fig. 23). 
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Fig. 29 Silhouette plots for k=2, k=3, k=4 and k=5 clusters under the " pre_scaling_0_1" pretreatment option for 
the Gasoline Range Compositional Model (GRCM). 

From the silhouette plots (Fig. 29), we observe that generally we obtain silhouette values in 

the range of 0.01-0.8. Negative silhouette coefficients are present in all cases. Average 

silhouette values are close for all clustering solutions, with a maximum of 0.4572 for K=3 

(Table 5). The outcome of this analysis, infers that grouping into three clusters using k-means 

is more efficient compared to grouping into two, four or five clusters. In Fig. 31 we can 

observe, which cluster each sample is assigned to. 

In Fig. 30 we observe the clustering solution of k-means for k=3. The figure shows the three 

clusters along with their centroids. 

 

Fig. 30 Plot of k-means clustering for k=3, of the Gasoline Range Compositional Model (GRCM). Thesymbol 

represents the centroid of each cluster.  
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Fig. 31 Table displaying to which cluster each sample belongs, for each K value of the GRCM (idx2 = k:2, idx3 = k:3, 
etc.) 

Even though the three-cluster solution seems to be the most efficient out of the analysis, from 

the plot we observe that the clusters present no clear boundaries from one another. The 

overlapping among samples is evident. Fig. 31 confirms this fact as it presents in which of the 

three clusters, each sample is assigned to.  

 

5.3.3 Principal Component Analysis on GRCM  

The sample scores of the first two principal components and the respective loading diagrams 

are presented in Fig. 32. The percentages of variation attributed to each of the Principal 

Components are shown in Fig. 32c. 

 

Fig. 32 a) Sample scores for the first to Principal Components resulting from the Gasoline Range Compositional 
Model (GRCM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families 
determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for 
Family C oils and yellow for Family D oils.  “Pre_scaling_0_1” command was used on the data set. b) Original 
Variable loadings for the first to Principal Components resulting from the Gasoline Range Compositional Model 
(GRCM) of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal 
Component. 

A549 A550 A920 A1140 A1710 A1711 A1712 A1723 A1724 A1725 A2268 A2269 A2270 A2283 A2284 A2313 A2362 A2363 A2364 A2424

idx2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

idx3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

idx4 1 1 4 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1

idx5 1 1 5 1 5 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1

A2425 A2426 A2427 A2428 A2429 A2430 A2431 A2432 A2433 A2434 A2435 A2436 A2468 A2469 A2470 A2611 A2627 A2706 A2884 A2892

idx2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

idx3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

idx4 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1

idx5 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1

A2895 A2896 A2897 A2898 B515 B554 B1279 B1393 B1443 B2121 B2122 B2887 C495 C499 C503 C511 C513 C529 C540 C548

idx2 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

idx3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1

idx4 1 1 1 1 4 2 2 2 2 2 2 4 4 4 3 4 4 2 3 4

idx5 1 1 1 1 4 2 2 2 2 2 2 4 4 4 3 4 3 2 3 5

C553 C557 C566 C574 C575 C579 C582 C589 C596 C711 C714 C721 C722 C725 C1386 C1387 C1388 C1389 C1465 C1466

idx2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2

idx3 1 3 1 1 2 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2

idx4 4 4 2 2 3 3 3 2 2 4 4 4 4 4 3 3 3 2 3 3

idx5 4 4 2 2 3 2 5 2 4 4 4 4 4 4 3 3 2 2 3 3

C1467 C1468 C1469 C1470 C1471 C1472 C1473 C1705 C1715 D756 D800 D801 D802 D841 D924 D1173 D1273 D1274 D1275 D1276

idx2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2

idx3 2 2 1 2 1 2 1 2 2 3 1 1 1 1 1 1 1 1 3 1

idx4 3 3 3 3 2 3 2 4 3 1 4 4 4 2 4 2 2 4 1 4

idx5 3 3 2 3 2 3 4 3 3 1 5 4 5 2 5 5 5 5 1 5

D1288 D1289 D1290 D1291 D1312 D1313 D1335 D1364 D1365 D1385 D2471 D2472 D2595 D2626 D2885

idx2 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1

idx3 3 3 3 1 1 1 1 1 1 1 1 1 1 3 3

idx4 4 1 4 4 2 4 3 4 4 3 4 4 4 1 1

idx5 5 1 5 5 2 5 5 5 5 5 4 4 5 1 4

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1
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GRCM sample scores of the first two PCs explain 82 per cent of the variance (Fig. 32c). There 

is generally one linear gradient observed in the data by comparing the sample scores of the 

first two principal components of the GRCM; a dispersed negative gradient displayed by 

samples with positive PC1 scores and PC2 scores both positive and negative. Family A is once 

again clearly distinguished by consistently positive PC1 and PC2 scores and a linear variation 

between them. The gradient exhibits high positive PC1 scores but for Families B, C and D 

exhibits also negative PC2 scores. The gradients of Families B, C and D overlap each other’s 

scores resulting in the obscureness of their separation.  

The variable loadings for the GRCM indicate that PC1 is controlled strongly by loadings 

attributed to the relative concentration of n-alkanes and branched and cyclic alkanes. High 

negative PC1 loadings are characteristic of the GRH n-alkanes, while the cyclic and branched 

alkanes with 6 to 8 carbon atoms are characterized by strong positive values. In our case the 

GRCM fails in the task of classifying the four family affiliations.  

 

 

5.3.4 Discussion on the performance of MDA on the GRCM 

Although in several studies (e.g. [38]) the Gasoline Range Compositional Model appears to be 

successful in classifying efficiently oil samples of the four family affiliations recognized in 

Williston Basin, in our case it substantially fails. All statistical methods that were implemented 

on this model, classified relatively sufficiently only family A. Families B, C and D presented a 

significant overlap, both one to another, but also with Family A. This is evident from the 

dendrogram of Fig. 28 as well as from Fig. 32a. The overlapping of oil families is incredibly 

apparent in the k-means plot (Fig. 30), where there is no distinct cluster. 

 

 

5.4 Biomarkers Compositional Model (BCM) 

The biomarkers of the given sample set were examined in multiple ways; firstly as a whole 

and secondly in their separate parts of steranes and hopanes. The results that each model 

produced were similar, as far as the classification of oil families, is concerned. For this reason, 

only the results from BCM will be presented in the upcoming paragraphs, as the most 

characteristic.  

 

5.4.1 Hierarchical Clustering on BCM  

Applying the Hierarchical Clustering algorithm on ΒCM, produced the following dendrogram 

(Fig. 27). Average linkage with Euclidean distance were combined this time.  
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Fig. 33 Resulting Dendrogram under the command “pre_scaling_0_1” for the Biomarkers compositional model 
(BCM). 

Hierarchical clustering on BCM seems to separate relatively well Family C oils. Only sample 

B1443 (of Family B) overlaps with family C. The dendrogram illustrates an overlapping of 

Family D with Family A and the rest of Family B samples form a small group which is 

interrupted by sample D2885.  

 

5.4.2 k-means algorithm on BCM  

Implementing the k-means algorithm on the Biomarkers compositional model produced the 

following results. 

Table 6 Summary of k-means clustering under the “pre_scaling_0_1” pretreatment option on the Gasoline Range 
Compositional Model (GRCM). 

K-values Best distances sums Average silhuette values 

K=2 250.993 0.5503 

K=3 15.438 0.6665 

K=4 131.334 0.5865 

K=5 113.741 0.5425 

The silhouette plots for K=2, K=3, K=4 and K=5 clusters are presented in the following figure 

(Fig. 23). 

From the silhouette plots (Fig. 34), we observe that generally the highest silhouette values we 

obtain almost reach the value of 0.9. Fluctuations in the width of clusters is present in all cases 

and so are negative silhouette coefficients. Average silhouette values fall in the range of 

0.5425-0.665, with 0.665 being the maximum for K=3 (Table 6). The outcome of this analysis, 

infers that grouping into three clusters using k-means is more efficient compared to grouping 

into two, four or five clusters. In Fig. 36 we can observe, which cluster each sample is assigned 

to. 
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Fig. 34 Silhouette plots for k=2, k=3, k=4 and k=5 clusters under the " pre_scaling_0_1" pretreatment option for 
the Biomarkers Compositional Model (BCM). 

 

Fig. 35 illustrates the clustering solution of k-means for k=3. The figure shows the three 

clusters along with their centroids. 

 

 

Fig. 35 Plot of k-means clustering for k=3, of the Biomarkers Compositional Model (BCM). Thesymbol 

represents the centroid of each cluster.  

 



42 
 

 

Fig. 36 Table displaying to which cluster each sample belongs, for each K value of the BCM (idx2 = k:2, idx3 = k:3, 
etc.) 

Fig. 35 illustrates the three-cluster solution that silhouette analysis produced as the most 

efficient. The clusters do not exhibit clear boundaries and overlapping is evident. Fig. 36 

supports the overlapping fact as it illustrates in detail in which cluster each sample is assigned 

to. 

 

5.4.3 Principal Component Analysis on BCM  

The sample scores of the first two principal components and the respective loading diagrams 

are presented in Fig. 32. The percentages of variation attributed to each of the Principal 

Components are shown in Fig. 32c. 

BCM sample scores of the first two PCs explain almost 90 per cent of the variance (Fig. 37c). 

By comparing the sample scores of the first two principal components of the BCM, we observe 

no clear distinction among families. All families exhibit high positive PC1 scores and all of them 

present both negative and positive PC2 scores. Family B (green symbols on the PC plot) exhibit 

solely negative PC2 scores. Family A overlaps here mainly with family D and a few samples of 

family D overlap with family C. Scores of family B are quite dispersed in the plot.  

A549 A550 A920 A1140 A1710 A1711 A1712 A1723 A1724 A1725 A2268 A2269 A2270 A2283 A2284 A2313 A2362 A2363 A2364 A2424

idx2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

idx3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

idx4 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

idx5 4 4 1 4 3 4 4 4 4 4 4 4 4 3 4 3 3 3 4 4

A2425 A2426 A2427 A2428 A2429 A2430 A2431 A2432 A2433 A2434 A2435 A2436 A2468 A2469 A2470 A2611 A2627 A2706 A2884 A2892

idx2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

idx3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

idx4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

idx5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 3

A2895 A2896 A2897 A2898 B515 B554 B1014 B1279 B1393 B1443 B2121 B2122 B2887 B1873 B1874 C495 C499 C503 C511 C513

idx2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

idx3 2 2 2 2 3 3 3 3 2 2 2 3 3 2 2 1 1 1 1 1

idx4 3 3 3 3 1 1 1 1 1 3 1 1 1 3 3 2 2 2 2 2

idx5 4 3 4 3 2 2 2 2 3 4 3 2 2 3 3 5 5 5 5 5

C529 C540 C548 C553 C557 C566 C574 C575 C579 C582 C589 C596 C711 C714 C721 C722 C725 C1386 C1387 C1388

idx2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

idx3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

idx4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

idx5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

C1389 C1390 C1465 C1466 C1467 C1468 C1469 C1470 C1471 C1472 C1473 C1705 C1715 D756 D800 D801 D802 D841 D842 D924

idx2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1

idx3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 2

idx4 2 2 2 2 2 2 2 2 2 2 2 2 3 4 3 3 4 4 4 4

idx5 5 5 5 5 5 5 5 5 5 5 5 5 4 1 4 4 1 1 1 4

D1173 D1273 D1274 D1275 D1276 D1288 D1289 D1290 D1291 D1312 D1313 D1335 D1364 D1365 D1385 D2471 D2472 D2595 D2626 D2885

idx2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1

idx3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2

idx4 4 3 4 3 3 3 3 3 3 4 3 4 3 3 4 4 4 3 3 3

idx5 1 4 4 4 4 4 4 4 4 4 4 1 4 4 1 1 1 4 4 3

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1

pre_scaling_0_1
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Fig. 37 a) Sample scores for the first to Principal Components resulting from the Biomarkers Compositional Model 
(BCM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families 
determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for 
Family C oils and yellow for Family D oils.  “Pre_scaling_0_1” command was used on the data set. b) Original 
Variable loadings for the first to Principal Components resulting from the Biomarkers Compositional Model (BCM) 
of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component. 

 

5.4.4 Discussion on the performance of MDA on the BCM 
 

The Biomarkers Compositional Model appears to be successful in classifying relatively well oil 

family C. All methods produced similar results as far as this classification pattern is concerned. 

Families A and D overlap significantly, while family B overlaps slightly with family D. 

All in all, the performance of MDA methods was insufficient, failing in all models to classify 

the samples into four familial affiliations. Based on common compositional information, it 

seems that unsupervised methods fail to cluster these oils. They cannot be implemented 

blindly without additional information. For this reason, in the next chapter we examine the 

compositional character of the given data set in an alternative approach.    
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6. Compositional Data 

As discussed in the previous chapters, MDA methods failed in the task of classifying the data 

set into distinct oil family affiliations. This applies to all the compositional models and is 

probably attributed to the nature of the data, which fall into a special category of data; the 

Compositional Data. The Saturates Fraction Ratios Model is excluded from this category and 

none of the following information concerns this model. 

Compositional Data (CoDa) are a type of multivariate data, the components of which 

represent proportions or fractions of a whole. Such data come in a closed form, meaning that 

they sum to a constant value (e.g. one if measured in parts per unit or 100 if measured in 

percentages). However, the term Compositional Data, covers all those vectors representing 

parts of a whole which only carry information on the relative (and not the absolute) 

frequencies, with which different and positive components occur.  

Typical examples of Coda are geochemical elements in geology, data corresponding to 

categories of sedimentary particle-size distributions, proportions of fossil species in two or 

more assemblages, body composition (fat, sugar, etc.) in medicine, nutrient-balance ionomics 

(measurement of the total elemental composition of an organism to address biological 

problems) in agriculture, genotype frequency in genetics, chemical compositions in chemistry, 

and many more other. This type of data is generally widespread in disciplines supporting 

modeling, classification or discrimination and is characterized by specific numerical properties 

that have significant consequences for any statistical analysis [85] [86] [87] [88] [89] [90] [91]. 

Their fundamental properties are briefly reviewed in the upcoming paragraphs.  

 

6.1 The Constant Sum Constraint (CSC) – Impacts on the Analysis 
 

As mentioned before, Compositional Data only convey relative information as they represent 

part of a whole, and their unique properties are a corollary of this fact. They concern data 

consisting of vectors of always positive components, often subject to a constant (unit-) sum 

constraint; they must sum to one because they are proportions. Their main difference to 

unconstrained variables is that they are never free to vary independently, which in turn 

imposes constraints upon their variance-covariance structure (Aitchison 1986, chapter 3). The 

constant sum constraint forces at least one of their covariance to obtain a negative value. The 

result is at least one correlation or coefficient between elements, is also negative. This is 

explained as a consequence of the Euclidean Foundation of classical statistics, where the scale 

is absolute and not relative.  

In particular, for a D-part composition [ x1, . . . , xD] with the component sum x1+ . . . +xD = 1, 

since  

cov( x1,x1 + . . . + xD) = 0 

we have 

cov(x1,x2) + ... + cov(x1,xD) = -var(x1) . 

https://en.wikipedia.org/wiki/Organism
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The right-hand side here is negative except for the trivial case where the first component is 

constant. 

The fact that data are closed, induces invalid correlations and as a result, all methods based 

on the covariance or correlation matrix of vectors of observations, are inappropriate to 

examine and analyze Compositional Data in crude or raw form (e.g. as simple percentages) 

[92]. Conventional statistical methods present uncertainty in the analysis of compositional 

data, as far as the results are concerned. The main reason is because it is not possible to 

distinguish between the spurious effects caused by the constant sum constraint and the 

effects that would be attributed to natural processes. Rock [90] in his paper describes some 

of the problems: trends and clusters on petrological ternary and principal components 

diagrams can have little or no geological significance; dendrograms produced by cluster 

analysis can be severely biased; results from discriminant analysis are likely to be illusory; any 

correlation coefficient will be affected to an unknown degree by spurious effects induced by 

the constant sum constraint, etc. In general, problems appear with all methods based on 

regression and multivariate analysis which rely on an assumption of multivariate normality. 

Such methods refer to Factor Analysis, Discriminant Analysis or Principal Component Analysis 

and they seem to perform better on unconstrained random variables. 

 

6.2 Approaches in the Statistical Analysis of CoDa 
 

In the early 1980’s the analysis of Compositional Data began to obtain a more efficient form. 

The key to such analysis is the relative magnitudes and variations of the parts in a D-part 

composition, rather than their absolute values. Thus, the information provided is essentially 

about ratios and any meaningful function (scale-invariant) of a composition should be 

expressed under such terms. The principal justification for using ratios of components is the 

Sub-Compositional coherence, which is a fundamental property of Aitchison’s approach to 

compositional data analysis. Ratios are unaltered in the process of forming sub-compositions 

(si/sj=ui/uj) which should mean that there exists some form of covariance structure based 

upon them. 

However, mathematically and statistically speaking, ratios are somewhat difficult to handle. 

For example, between var(ui/uj) and var(uj/ui) there does not exist any simple relationship. 

Therefore, in order to overcome this difficulty, Aitchison was the first to introduce the log-

ratio method, because of the simplicity of relationships such as  

var{log(xi/xj)}=var{log(xj/xi)}.  

Since there is also a one-to-one correspondence between compositions and a full set of log-

ratios, for example, 

[ y1. . . yD-1] = [log( x1/ xD) . . . log( xD-1 / xD)] 

with inverse 

[ x1 x2. . . xD] = [ exp( y1) . . . . exp( yD-1) + 1 ] / { exp( y1) + . . . . + exp( yD-1) +1 }  

any problem or hypothesis concerning compositions can be fully expressed in terms of log 

ratios and vice versa. 
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The proposed methodology is simple; first transform each of the compositions (ui,…,ud) to 

their log-ratio vectors and then apply standard multivariate procedures upon them. The 

conclusions of the unconstrained multivariate analysis can then be translated back into 

conclusions about the compositions, and the analysis is complete. 

The aforementioned methodology represents a transformation technique, widely utilized in 

statistics. Starting with McAlister [93] and his logarithmic transformation, the lognormal 

distribution and the significance of the geometric mean, the log-ratio transformation comes 

in line with a long tradition of statistical methodology. 

 

6.3 The Simplex SD – Fundamental Properties of CoDa Analysis 
 

There has been much debate against transformation techniques over the scientific community 

[94, 95, 96, 97, 98, 99, 100, 101, 102, 103]. However, while most of them are still valid, new 

approaches have been developed towards the statistical analysis of compositional data. 

Staying-in-the-simplex approach, represents part of them, offering the advantage of keeping 

the analysis free of dependence upon transformations and results in unconstrained 

multivariate analysis. Therein, compositional data analysis is conducted within a simple 

algebraic-geometric structure on the simplex. At this point, the term simplex has to be 

defined. 

One of the main differences between compositional and unconstrained data, is the sample 

space within which, each type lies. The natural sample space of CoDa is the (restricted) unit 

simplex Sd (while unconstrained data belong to the real space R). The simplex is a basic 

geometric element in a Euclidean space, and is defined as 

𝑆𝐷 = {𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝐷] ∈ ℝ𝐷|𝑥𝑖 > 0, 𝚤 = 1,2 … , 𝐷; ∑ 𝑥𝑖 = 𝜘𝐷
𝚤=1 } 

The constant 𝜘 simplex is positive and arbitrary. Frequent values for 𝜘 are 1 (per unit), 100 

(percent, %), 1000, etc. The simplex SD is a line segment in one dimension (D=1), a triangle in 

two dimensions (D=2), a tetrahedron in three dimensions (D=3), and so on. As far the 

superscript in the SD is concerned, it accounts for the effective dimension of D-part 

compositions and is often reduced to D-1, due to the unit-sum constraint. A unit-simplex is 

defined as 

𝑆𝐷 = {[𝑥1, … , 𝑥𝐷]: 𝑥𝑖 > 0(𝚤 = 1,2 … , 𝐷)|𝑥1 + ⋯ + 𝑥𝐷 = 1} 

With this representation, scale invariance is an element to be ensured by formulating all 

statements concerning compositions in terms of ratios of components. 

Scale invariance is one the fundamental principles governing the compositional data analysis 

according to Aitchison. What scale variance addresses, is that statistical inferences about 

compositional data should not depend upon the scale of the data. 

More specifically, two vectors of D positive real components x, y ∈ R D + (xi , yi≥ 0 for all i = 1, 

2, . . . , D), are compositionally equivalent if there exists a positive scalar λ∈ R + such that x = 

λ· y and, equivalently, C(x) = C(y). It is highly reasonable to ask our analyses to yield the same 

result, independently of the value of λ. This is what Aitchison (1986) called scale invariance. 
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Α function f(·) is scale-invariant if for any positive real value λ∈ R + and for any composition x 

∈ SD, the function satisfies f(λx) = f(x), i.e. it yields the same result for all vectors 

compositionally equivalent. This can only be achieved if f(·) is a function only of log-ratios of 

the parts in x (equivalently, of ratios of parts) [102, 104]. According to Aitchison, apart from 

scale invariance, there are also two other conditions that should be satisfied in order for any 

statistical method to be performed on compositional data; permutation invariance and sub-

compositional coherence.  

A function is permutation-invariant if it yields equivalent results when the order of parts of 

the composition is changed. Two examples might illustrate what “equivalent” means here. If 

we are computing the distance between our initial sandstone and our final sand compositions, 

this distance should be the same if we work with [Q, F, R] or if we work with [F, R, Q] (or any 

other permutation of the parts). On the other side, if we are interested in the change occurred 

from sandstone to sand, results should be equal after reordering. A classical way to get rid of 

the singularity of the classical covariance matrix of compositional data is to erase one 

component: this procedure is not permutation-invariant, as results will largely depend on 

which component is erased. 

Before examining the topic of sub-compositional incoherence, the definition of sub-

composition must be given. A composition only representing some of the possible 

components is called a sub-composition and most of real compositional data is actually 

representing a sub-composition, as we never analyze each and every possible component of 

our samples. Sub-compositions represent the marginals of compositional data analysis. Two 

compositions (a greater and a smaller one) sharing common parts (therefore, the smaller is 

the sub-composition) should produce common correlations for these parts, regardless of 

whether we analyzed only that sub-composition or a larger composition containing other 

parts. This is what coherence means. If this is not the case, then there is what is expressed as 

sub-compositional incoherence.  

 

6.4 Perturbation and Powering  
 

In any sample space there is, only certain operations can be performed. For example, in real 

space RD translation and scalar multiplication are the most commonly used operations. 

However, the typical algebraic/geometric operations (addition/translation, product/scaling, 

scalar product/orthogonal projection, Euclidean distance) used to deal with conventional real 

vectors are neither sub-compositionally coherent nor scaling invariant. The simplex is a 

sample space characterized by a different, compositional geometry and such operations 

would not be adequate for any analysis within it. Two fundamental groups of operations for 

the simplex are the perturbation operations, analogous to translation in the real space, and 

power transformation, analogous to multiplication by a scalar in the real space. These 

operational sets were introduced by Aitchison [89], they underpin the complete algebraic – 

geometric structure of the simplex and both require in their definition the closure operation 

[104, 105]. Closure is nothing but the operation responsible for the constant sum constraint 

as it divides each component of a vector by the sum of the components and represents the 

projection of a vector with positive components onto the simplex.  
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For any two equivalent compositions x and X, in the same compositional class, there is a scale 

relationship ( X1, …, XD)= ( ax1, …, axD) for some a >0, where each component of  x  is scaled by 

the same factor a to obtain the corresponding component of X. For any two compositions x 

and X in different compositional classes c and Ca similar, but differential, scaling relationship 

(x1, …, XD)= (p1x1, …, pDxD) can always  be found, simply by taking pi = Xi/xi(i= 1, …,D).Denoting 

the operation between the positive perturbing vector p= (p1, … ,pD)and the composition x by 

⊕ we have p ⊕ x =(p1x1, … , pDxD) and X = p ⊕ x. Such a perturbation operator is then easily 

adapted to the simplex simply by defining p⊕u =(p1u1, … , pDuD)/(p1u1+ … + pDuD). Note  that 

the roles of p and u are interchangeable in this definition and we can conveniently restrict p 

to lie in the simplex Sd. Perturbations thus defined form a group, with p-1, the inverse of p, 

defined as (p1
-1, … , pD

-1)/(p1
-1+… + pD

-1)and the identity perturbation as (1/D, … 

,1/D).Moreover, for any two compositions u, U there is a unique perturbation p ∈ Sd such that 

U = p ⊕ u and u = p-1⊕ U, where p = U ⊕ u-1.Thus,the perturbation U ⊕ u-1, or equivalently X 

⊕x-1 characterizes the change from c to C; the change from X to x is simply the inverse 

perturbation U ⊕ u-1.  

Powering or power transformation, as mentioned before, is the second fundamental 

operational group in the simplex. First, we define the power operation and then consider its 

relevance in compositional data analysis. For any real number a ∊R1 and any composition x∊SD, 

we define: 

    X = αx = C [ x1
α … xD

α] 

as the a-power transform of x. Such an operation arises in compositional data analysis in two 

distinct ways. First it may be of relevance directly because of the nature of the sampling 

process. More indirectly the power transformation can be useful in describing regression 

relations for compositions. 

It is clear that powering and perturbation ⊕ play a significant role as far as the geometry of 
SD is concerned. Powering is an external operation whereas perturbation is an internal one, 
and it would be meaningless to establish that they define a vector or linear space structure on 
SD. In particular, the ⊕operation defines an abelian group with identity e = [1, . . . ,1] / D. Both 
operational groups are marked by certain properties, which will now be addressed. 

x y yx, ( xy)z x( yz), a (x y) (a x)(a y). 

The operator is the inverse of ⊕and is defined by: 

 x y= C[x1/y1 … xD/yD] 

and plays an important role in the construction of compositional residuals. 

The structure can be extended by the introduction of the simplicial metric 

 Δ: SDxS D R≥0 

Defined as follows: 

𝛥 (𝑥, 𝑦) = [∑ {𝑙𝑜𝑔
𝑥𝑖

𝑔(𝑥)
− 𝑙𝑜𝑔

𝑦𝑖

𝑔(𝑦)
}

2
𝐷

𝑖=1

]

1
2⁄

= [∑ {𝑙𝑜𝑔
𝑥𝑖

𝑥𝑗
− 𝑙𝑜𝑔

𝑦𝑖

𝑦𝑗
}

2𝐷

𝑖<𝑗

]

1
2⁄

(𝑥, 𝑦 ∊  𝑆𝐷) 
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where g() is the geometric mean of the components of the composition. The metricΔ satisfies 

the usual metric axioms: 

• Positivity: (x, y) 0(x y), (x, y) 0 (x y) 

• Symmetry: (x, y) (y, x) 

• Power relationship: (a x, a y) | a | (x, y) 

• Triangular inequality: (x, z) (z, y) (x, y) 

The fact that this metric has also desirable properties relevant and logically necessary, such as 

scale, permutation and perturbation invariance and sub-compositional dominance, for 

meaningful statistical analysis of compositional data is now well established and the relevant 

properties are recorded briefly here: 

• Permutation invariance: (xP, yP) (x, y) , for any permutation matrix P. 

• Perturbation invariance: (xp, yp) (x, y) , where p is any perturbation. 

• Sub-compositional dominance: if sx and sy are similar, say (1, . . . , C)-Sub-

compositions of x and y, then ΔS
C (sx, sy) ≤ΔS

D (x,y). 

 

 

6.5 The Log Ratio Methodology 

The constant-sum constraint is a mathematical property embedded in any compositional data 
set, causing problems on the analysis of such a type of data. Aitchison [106, 107, 89] showed 
that the effects of this constraint on the covariance and correlation matrices disappear, if the 
raw percentage data are expressed as logarithms of ratios, where the denominator is the 
geometric mean of the percentages in each sample.  
 
For applying statistical methods designed for the Euclidean geometry on compositional data, 

as wells as for representing them in the Aitchison geometry on the simplex, some kind of 

transformations are first necessary. The main idea that leads to such transformations is to find 

a basis (or a generating system) and to express compositions in coefficients of such a basis 

(coordinate system). This class of mappings is widely known under the term log ratio 

transformations. There are three types to be presented in the upcoming paragraphs: a) the 

additive log ratio transformation (alr) and inverse b) the centered log ratio transformation 

(clr), and finally, c) the isometric log-ratio transformation (ilr). All of them move the operations 

of perturbation and power transformation to the usual vector addition and scalar 

multiplication. However, only the latter two transformations move the whole Aitchison 

geometry to the Euclidean one, i.e. including the Aitchison inner product. As the proposed 

transformations are one-to-one transformations, the obtained results are usually back-

transformed to the simplex in order to simplify the interpretation. 

 

6.5.1 Additive Log Ratio Transformation (alr) 

The additive log ratio (alr) transformation transforms raw compositional data from simplex to 
real (Euclidean) space. Alr transformation is also capable of performing its inverse 
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transformation (from real space to simplex) with its inverse ALR-1 (Aitchison, 2003). ALR 
differs from other transformations in that it maps a composition in the D-part simplex none 
isometrically to a D-1, dimensional Euclidean vector. As it maps, the last part is treated as a 
common denominator to the others, which means that in case the denominator changes, then 
the ALR transformations obtained, would be different. The additive log ratio transformation 
follows the idea to construct a (non-orthonormal) basis which is very easy to interpret, since 
the relation to the original D-1 first parts is preserved. Thus, for a composition x, a special case 
of the additive log ratio (alr) transformation [89] to RD−1 , is defined as: 

𝑎𝑙𝑟(𝑥) = (𝑙𝑛
𝑥1

𝑥𝐷
, … , 𝑙𝑛

𝑥𝐷−1

𝑥𝐷
)

΄

. 

In this equation, there is a division of each of the first D-1 components by the final component. 
It is easy to see that also another part can be used as ratio part in the denominator. It is usually 
chosen in such a way that the interpretation of the result is facilitated. Note that different alr 
transformations are related by linear transformations (see, e.g., Filzmoser and Hron, 2008). 

The inverse transformation ALR-1: RD-1
 SD is 

x = alr-1(x) = C[exp(y1), exp(y2)…exp(yD-1)1] 

,where C is the closure operation. When data are in their transformed state, they can be 
analyzed by all those statistical methods not relying on a distance. The drawback of alr 
transformation is that it is not an isometric transformation from the simplex. It lacks symmetry 
and orthogonality dew to the use of a common numerator or denominator. This weakness 
could be solved by  use  of  an appropriate  metric  with  oblique  coordinates in real ALR-
space, but that is not a standard practice [91]. 

 

6.5.2 Centered Log Ratio Transformation (clr) 

Taking a generating system on the simplex leads to the centered log ratio (clr) transformation 
(Aitchison, 1986) to RD, 

𝑐𝑙𝑟(𝑥) = [𝑙𝑛
𝑥

𝑔(𝑥)
− ⋯ − 𝑙𝑛

𝑥𝐷

𝑔(𝑥)
] 

,where g(x) is the geometric mean of the parts involved: 

𝑔(𝑥) = (∏ 𝑥𝑖

𝐷

𝑖=1

)

1 𝐷⁄

= 𝑒𝑥𝑝 (
1

𝐷
∑ 𝑙𝑛𝑥𝑖

𝐷

𝑖=1

) 

,or with the inverse transformation (clr-1), from real space (clr coefficients) to the simplex (raw 
data) (Aitchison, 1986). The clr coordinates represent a generating system, not a basis, and 
therefore clr coordinates sum up to zero [108], i.e. we get a constrained transformed vector. 
As a result, correlations and covariances between clr parts are not sub-compositionally 
coherent. 
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6.5.3 Isometric Log Ratio Transformation (ilr) 

The calculation of ilr coordinates is more complex and the generation of specific expressions 
is dominated by different rules. With ilr the data are transformed from the simplex to real 
space, as ilr coordinates, or conversely applying the inverse ilr-1. Both features are defined by 
a sequential binary partition [108, 109]. The ilr transformation is defined as: 

ilr(x)=(y1, y2,…, yD-1) ∈ RD-1, 

where 𝑦𝑖 = ∑ 𝑦𝑖𝑗𝑙𝑛𝑥𝑗,𝐷
𝑗=1 𝑖 = 1, 2, … 𝐷 − 1 and  

𝜓𝑖,𝑗 = √
𝑠𝑖

𝑟𝑖(𝑠𝑖 + 𝑟𝑖)
 𝑖𝑓 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑗 𝑖𝑠 + 1 

or 

𝜓𝑖,𝑗 = −√
𝑠𝑖

𝑟𝑖(𝑠𝑖 + 𝑟𝑖)
 𝑖𝑓 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑗 𝑖𝑠 − 1 

or 

𝜓𝑖,𝑗 = 0  𝑖𝑓 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑗 𝑖𝑠 0 

with ri the number of parts at step i as +1, and si the number of parts at step i as -1. 

The ilr-1 transformation is defined as: 

X=ilr-1 (y)=(x1, x2, …,  xD) ∈ SD , where [x1, x2, …,  xD]=Cexp[z1, z2, …,  zD], 𝑧𝑗 = ∑ 𝜓𝑖𝑗𝑦;
𝐷−1
𝑗=1 , C stands 

for the closure operation [89]. 
 

 

6.6 The CoDaPack v2 Software Package 

Over the last years, a new methodological approach has been developed for the statistical 

analysis of compositional data, based on the approach introduced in the early eighties by John 

Aitchison. This methodology is not straightforward to use with standard statistical packages. 

For this reason, in this project, we examine a new freeware software, The Compositional Data 

Package, which implements at this moment the most elementary of mentioned statistical 

methods. The features of this new software are very wide: 

• Transformations between the real space to the simplex or vice versa such as the alr, 

clr and ilr transformations. 

• Operations inside the simplex like centering, perturbation, power transformation, 

amalgamation, subcomposition (closure) or rounded zero replacement. 

• 2-D and 3D graphical outputs like ternary diagrams, alr plots, clr plots, biplots, plots 

of principal components. 
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• Compositional Descriptive Statistics. 

The software has been developed by members of the Research Group on Compositional Data 

Analysis at the Dept. Informàtica, Matemàtica Aplicada i Estadística (IMAE-UdG) under the 

projects Compositional Data Analysis and Related methods (CODA-RETOS) and Compositional 

and Spatial Data Analysis (COSDA). The core of the group belongs to the University of Girona 

(UdG), and includes members from the Technical University of Catalonia (UPC), and 

Biomathematics & Statistics Scotland (BioSS).  

 

6.6.1 Interface of the CoDaPack software  

This time the analysis will be conducted only on a small part of the data set, in order to 

examine briefly, how a different treatment approach would impact on the data. There will be 

a comparison of the results between the classical statistical analysis and the compositional 

statistical approach. For this attempt, the Saturate Fraction Compositional Model (SFCM) was 

selected, and in the next paragraphs there will be a presentation of the interface of the 

software package. 

Data could be imported from Excel files or recovered from previous sessions. The observations 

are organized in rows and the variables in columns. CoDaPack v2 main window (Fig. 38) has 

four parts. On the very top there are the menus, on the left the active data frame and the 

name of its variables. The bigger part is the right side. On top of this part there is the place 

where alphanumerical results are placed, and on bottom there is the data. 

 

Fig. 38 CoDaPack v2 main window. 

In order to run a CoDaPack routine we first import the data. The software stores a set of data 

on Data Frames or Tables. It is possible to have opened more than one Data frame. A set of 
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Data frames could be saved as a Workspace and also it could be recovered by means of the 

item button Open Workspace (Fig. 39). 

Each Data frame contains the name of variables and its numerical values. As far as the missing 

values are concerned, there are two kinds; non-detected or non-available data and there is a 

specific symbol to distinguish them. Non-detected data should begin with a character prefix, 

for example <, followed by the value of low detection limit while Non-Available data should 

use a symbol, for example "NA". 

 

Fig. 39 Menu File 

Data frames may be imported and exported from Excel files. After data are imported, (Fig. 40) we must 

indicate in which row starts the data, if there are labels, non-available symbol and non-detected prefix. 
At any time, we may can delete a Data Frame from the active workspace. The exportation saves the 
names of the variables into the first row of an Excel file and the data in rows below variable names. 
 

 
Fig. 40 Importing Data 

Another part of the menu which is utilized in this project, is the Data menu (Fig. 41). In general, 

this menu manages three kinds of routines: 1) transformations of the data from the simplex 
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to the real space and vice versa, 2) operations inside the simplex and 3) management of 

variables. 

 

 

Fig. 41 Menu: Data 

The software package offers various options as far as the data analysis is concerned (Fig. 41). 

Beginning with the Data Menu, Centering is a feature with which the data are centered, that 

is, they are perturbed by the center or closed geometric mean of the data (Fig. 42).  

 

Fig. 42 Data: Centering 

This routine centers the data set, that is, it returns the data set Y formed by the D-part 

compositions y = gN(X)-1 X, where  

𝑔𝑁(𝑋) = 𝐶 [(∏ 𝑥𝑘1

𝑁

𝑘=1

)

1 𝑁⁄

, … , (∏ 𝑥𝑘𝐷

𝑁

𝑘=1

)

1 𝑁⁄

] 
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is the closed geometric mean of the data set X. The center of the set Y is e, the barycenter of 

the simplex; e.g. for D = 3 the geometric center of a ternary diagram is [0:333; 0:333; 0:333]. 

If Show Center is activated this routine writes the center of the parts selected on the output 

window. 

The feature Subcompostion/Closure the data is closed, i.e. data are converted into parts of 

some whole summing to a given constant, Y = C(X) : This constant is, by default 1:0 but could 

be entered by the user by means of the Closure form. If S parts, S < D; are selected, a 

subcomposition with S-parts is obtained (Fig. 43).  

 

Fig. 43 Data : Subcomposition/Closure 

The Amalgamation feature amalgamates some columns of the data (Fig. 44). The result of   

amalgamation of some of the parts of a D-composition selected by the user is the sum of those 

parts. Amalgamation should be used only as a first step in preparing the data for further 

analysis, as this operation is non-linear in the Aitchison geometry and might lead to 

inconsistent results if compared to analysis made without amalgamation. 
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Fig. 44 Data: Amalgamation 

With the Perturbation feature a vector perturbs the data. The output is a matrix of D-part 

compositions 

𝑦 = 𝒑 𝒙 = 𝐶[𝑝1𝑥1𝑝2𝑥2 ,…, 𝑝𝐷𝑥𝐷],  

 
where C stands for the closure operation, and p is a given D-part composition. The user has to 
indicate on Perturbation box the vector p, which has to be the same length as the 
compositions x. 

 

Fig. 45 Data : Perturbation 

The Power Transformation feature applies a power transformation to the data. For a ∊ R; the 
power transformation returns 
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a x=𝐶 [𝑥1
𝑎 , 𝑥2 ,…,

𝑎 𝑥𝐷
𝑎] 

In this option, we have to indicate the constant of the operation on the Power box. 

The Rounded Zero Replacement applies a transformation to the data to avoid zeros (Fig. 46). 

This transformation involves substituting an observation x, with zeros in some parts, by an 

observation y using the expression: 

𝑦𝑖 = {

𝛿𝑖 ,                                𝑖𝑓 𝑥𝑖 = 0

𝑥𝑖 (1 −
𝛴𝑥𝑗 = 0𝛿𝑗

𝐶𝑥
) ,   𝑖𝑓 𝑥𝑖 > 0

} 

where δi is the replacement value for the i-th part defined by the user and Cx the components 

sum of observation x. This routine applies to non-detected data (the software distinguishes 

between non-available and non-detected data). There is an individual constant δi for each 

non-detected value, that is stored on the data frame. 

 

Fig. 46 Data : Rounded Zero Replacement 

The Numeric to Categorical feature transforms the selected variables into strings and 

overwrites the results on the same variables.  
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Fig. 47 Data : Numeric to Categorical 

The Numeric to Categorical feature, on the other hand, transforms the selected variables 

coded with a string into numerical ones, and overwrites the result on the same variables. 

The Add Numeric Variables feature, imports date to the data set by a simple copy-paste action 

(Fig. 48).  

 

Fig. 48 Data : Add numeric variables 

Finally, the Delete Variables routine deletes the variables the user selects from the workspace 

(Fig. 49). 

 

Fig. 49 Data : Delete Variables 

The CoDaPack software includes a Statistics Menu. The first option is the Compositional 

Statistics Summary (Fig. 50). This menu produces two types of descriptive statistics: the first 

related to logratios (Variation Array, CLR variance and Total Variance) and the second related 
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to compositional descriptive statistics (Centre, Min, Max and quartiles). This routine is utilized 

and the results are presented in the next chapter. 

 

Fig. 50 Statistics : Compositional Statistics Summary 

1. Variation Array: Returns a matrix where the upper diagonal contains the logratio variances 

and the lower diagonal contains the logratio means. That is, the ij-th component of the upper 

diagonal is var [ln(Xi=Xj )] ; and the ij-th component of the lower diagonal is E[ln(Xi=Xj )], where 

i, j= 1 ,2, …, D. 

2. CLR Variances: Returns, for each part, the sum of logratio variances that involve it. Thus, for 

the i-th clr component ξi we have 

𝑣𝑎𝑟(𝜉𝑖) =
1

2𝐷
∑ 𝑣𝑎𝑟[𝑙𝑛(𝑋𝑖 𝑋𝑗⁄ )]

𝐷

𝑖=1,𝑗≠1

. 

3. Total Variance: The sum of all clr Variances is the Total Variance totvar. 

4. Centre: Returns the center of the data set, that is,  𝜉̂ = 𝐶[𝑔1𝑔2, … , 𝑔𝐷], where 𝑔𝑖 =

(∏ 𝑥𝑘𝑖
𝑁
𝑘=1 )

1 𝑁⁄
 stands for the geometric mean of part Xi in data set X. The data set X has been 

previously closed. 

5. Minimum and Maximum: For each part of the data set X it returns the maximum and the 

minimum of the closed data set. 

6. Quartiles: For each part of the data set X it returns the first quartile Q1, the median Q2 and 

the third quartile Q3 of the closed data set. The user has to select the columns to close and 

where to put the results. There are two buttons in this routine: 

The output of the routine is placed on the output part. It includes a color classification of the 

logratio variances (elements of the upper diagonal of Variation Array). It is assumed that the 

logarithm of the logratio variances follow a t-student distribution, then dark blue colores 

those elements below percentile 5, light blue from percentile 5 to 25, light red form 

percentiles 75 to 95 and dark red up to percentile 95. 

The menu Classical Statistics Summary produces standard descriptive statistics, including 

mean (arithmetic), standard deviation, covariance matrix, Min, Max and quartiles). The output 

of the routine is placed on the output part. 
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The Additive-Logistic normality test feature allows the user to perform a test for logistic 

normality of a D-part composition (Fig. 51). It includes all marginal, univariate distributions 

(with a total of (D - 1) tests); all bivariate angle distributions (with a total of D(D-1)/2 tests); 

and the (D-1)-dimensional radius distribution. For each kind of test the Anderson-Darling, 

Cramer-von Misses and Watson statistics are computed and their significance is given. 

 

Fig. 51 Statistics: Logistic Normality tests 

The Atypicality Indices feature obtains the atypical observations and their indices under the 

assumption of Additive Logistic Normal distribution of the selected parts (Fig. 52). The user 

has to select the columns to calculate its atypical observations and the threshold of atypicality 

(usually 0:95) has to be given. 

 

Fig. 52 Statistics : Atypicality indices 

The last part in the Menu section is the Graphs Section (Fig. 53). The options this software 

offers, enable the user to create graphs in independent windows. The can customize the 

appearance of each graph and, in some cases, plot the observations in the graph according to 

a previous classification. These graphs can be zoomed and, in 3D, rotated. 
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Fig. 53 Graphs Menu 

To perform a zoom in a graph it is possible to use the slider scroll at the bottom of the graph 

or just using the scroll wheel of the mouse. It is also possible to rotate a figure by means of 

the left button of the mouse. Holding the left mouse button and moving it the graph rotates 

following the direction of the mouse. If the graph is 2D then the figure just moves inside the 

windows without rotation. To move the graph inside the window holding the left mouse 

button and simultaneously holding the ALT key. Furthermore, the graphs can be saved by 

means of snapshots of what windows have each moment. This can be done with the menu 

File-Snapshot and the files produced could be in jpeg, eps, png and bitmap formats. The same 

menu File includes a submenu Configuration that allows to customize the elements of the 

graph like lines and labels by means of changing size and colors. 

The Graphs menu will not be further presented here, as many of the options will be used 

straight on the data set, and the outcome will be discussed. 

 

6.6.2 Application of the CoDaPack’s routine on the Saturates’ fraction  

To examine how compositional data behave when treated according to Aitchison, only a part 

of the whole data was used; the Saturates’ fraction (see Appendix). Components with zero 

values were removed from this data set, as they would cause problems to the transformation 

operations. In particular, samples A549, A1711,A1724, A2268, A2283, A2284, A2468, A2469, 

B515, B554, B014, B1279, B2121, B2122, C540, C1465 and finally, C1473 were removed. 

The first step is to use the Amalgamation option. As mentioned before, amalgamation should 

be applied on the data to prepare them before further analysis. Amalgamation is equal to 

addition in R. The results are presented in the following table (Table 7). 
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Table 7 Amalgamation of all variables for each component 

 

The next options utilized are the Compositional Statistics Summary and the Classical Statistics 

Summary (Table 8, Table 9). 

Table 8 Compositional Statistics Summary 

 

The Menu Compositional Statistics Summary, as mentioned before, includes two types of 

descriptive statistics. On Table 8 we observe the Variation Array, CLR variance and Total 

Variance as well as the Center, Min, Max and quartiles. The sample size is 95 in this case, due 

to the fact that in the data set, there exist zero values. The inadvertency introduced by a log-

ratio variance (here clr variance) is that the logarithm of zeros does not exist, so if there are 

such observations in the data 

On the other hand, the Menu Classical Statistics Summary includes the arithmetic mean, 

standard deviation, covariance matrix, Min, Max and quartiles (Table 9).  The first step in 

analyzing multivariate data is computing the mean vector and the variance-covariance matrix. 

The mean vector consists of the means of each variable and the variance-covariance matrix 

consists of the variances of the variables along the main diagonal and the covariances 

between each pair of variables in the other matrix positions. The variance and the standard 

deviation are important in data analysis because of their relationships to correlation and the 

A549 A550 A920 A1140 A1710 A1711 A1712 A1723 A1724 A1725 A2268 A2269 A2270 A2283 A2284 A2313 A2362 A2363 A2364 A2424

amalg 24574.0 164351.0 95894.0 118237.0 84688.0 96204.0 130134.0 58253.0 65913.0 66642.0 39317.0 24519.0 41602.0 53986.0 62386.0 65691.0 79984.0 76814.0 78769.0 239513.0

A2425 A2426 A2427 A2428 A2429 A2430 A2431 A2432 A2433 A2434 A2435 A2436 A2468 A2469 A2470 A2611 A2627 A2706 A2884 A2892

amalg 229793.0 252557.0 255369.0 288556.0 147814.0 212470.0 152544.0 103844.0 142061.0 202393.0 284439.0 171464.0 94280.0 255283.0 348520.0 51185.0 115613.0 64207.0 137398.0 121527.0

A2895 A2896 A2897 A2898 B515 B554 B1014 B1279 B1393 B1443 B2121 B2122 B2887 B1873 B1874 C495 C499 C503 C511 C513

amalg 239946.0 141455.0 191406.0 104755.0 63637.0 85889.0 37508.0 24213.0 83605.0 63678.0 18410.0 22286.0 37639.0 39058.0 40661.0 73354.0 80288.0 124331.0 300295.0 200714.0

C529 C540 C548 C553 C557 C566 C574 C575 C579 C582 C589 C596 C711 C714 C721 C722 C725 C1386 C1387 C1388

amalg 286154.0 74231.0 152070.0 253089.0 268887.0 181418.0 133703.0 233839.0 124065.0 124764.0 49701.0 70429.0 69213.0 95710.0 201581.0 69094.0 53147.0 124722.0 162462.0 224475.0

C1389 C1390 C1465 C1466 C1467 C1468 C1469 C1470 C1471 C1472 C1473 C1705 C1715 D756 D800 D801 D802 D841 D842 D924

amalg 93596.0 135161.0 33821.0 26273.0 16547.0 20901.0 77669.0 18958.0 22813.0 19675.0 15327.0 101468.0 80685.0 101365.0 164064.0 206299.0 87376.0 89224.0 56791.0 45470.0

D1173 D1273 D1274 D1275 D1276 D1288 D1289 D1290 D1291 D1312 D1313 D1335 D1364 D1365 D1385 D2471 D2472 D2595 D2626 D2885

amalg 54842.0 33217.0 85176.0 47918.0 49561.0 52781.0 52667.0 41060.0 31760.0 82846.0 66946.0 45664.0 79499.0 117301.0 244337.0 403272.0 93609.0 83301.0 79110.0 139966.0

C13 C14 C15 C16 C17 Pr

0.0653 0.0869 0.1131 0.1035 0.1227 0.0265

C18 Ph C19 C20 C21 C22

0.0676 0.0305 0.0771 0.0463 0.0375 0.0355

C23 C24 C25 C26 C27 C28

0.0300 0.0290 0.0266 0.0233 0.0200 0.0168

C29 C30 C31 C32 C31 C32

0.0145 0.0116 0.0086 0.0072 0.0086 0.0072

Xi\Xj C13 C14 C15 C16 C17 Pr C18 Ph C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 clr

variances

C13 0.2668 0.2975 0.4900 0.5675 15.260 0.9115 20.073 0.9388 12.839 15.900 14.883 16.916 16.127 16.077 16.570 16.381 17.318 15.840 16.146 15.135 18.519 10.099

C14 0.2860 0.1872 0.2844 0.3442 11.968 0.5762 15.872 0.5804 0.8622 11.456 10.586 12.674 12.097 12.433 12.637 12.676 13.312 12.123 12.002 11.353 14.289 0.6816

C15 0.5492 0.2632 0.0518 0.0812 0.8739 0.2740 12.048 0.2701 0.5247 0.7707 0.6867 0.8709 0.8133 0.8331 0.8605 0.8596 0.9301 0.8117 0.8116 0.7528 10.275 0.3700

C16 0.4608 0.1748 -0.0884 0.0372 0.9882 0.2583 12.921 0.1937 0.4852 0.7392 0.6621 0.8605 0.8143 0.8593 0.8682 0.8736 0.9294 0.8137 0.7888 0.7329 10.108 0.3809

C17 0.6304 0.3444 0.0812 0.1696 11.495 0.3356 14.719 0.2185 0.5932 0.8582 0.7788 0.9760 0.9261 0.9645 0.9806 0.9811 10.527 0.9213 0.8987 0.8330 11.264 0.4747

Pr -0.9007 -11.866 -14.498 -13.615 -15.310 0.4274 0.0982 0.8334 0.4168 0.4618 0.3732 0.4566 0.3901 0.3871 0.4090 0.4426 0.4735 0.4574 0.4543 0.4949 0.5272 0.3265

C18 0.0353 -0.2507 -0.5139 -0.4255 -0.5951 0.9360 0.5457 0.1672 0.0679 0.2097 0.1376 0.2684 0.2278 0.2878 0.2702 0.2959 0.3095 0.2770 0.2563 0.2596 0.4260 0.0516

Ph -0.7596 -10.456 -13.088 -12.205 -13.900 0.1410 -0.7950 10.365 0.4776 0.4970 0.3924 0.4639 0.3790 0.3856 0.3866 0.4261 0.4401 0.4556 0.4437 0.5201 0.5050 0.4256

C19 0.1660 -0.1200 -0.3831 -0.2948 -0.4644 10.667 0.1307 0.9257 0.2502 0.4559 0.3874 0.5627 0.5349 0.6184 0.5950 0.6189 0.6455 0.5700 0.5345 0.5160 0.7796 0.2570

C20 -0.3448 -0.6308 -0.8940 -0.8056 -0.9752 0.5558 -0.3801 0.4148 -0.5109 0.1028 0.0385 0.1521 0.1318 0.2198 0.1831 0.2251 0.2148 0.2254 0.1878 0.2187 0.3730 0.0719

C21 -0.5536 -0.8396 -11.028 -10.144 -11.840 0.3471 -0.5889 0.2060 -0.7196 -0.2088 0.0698 0.0337 0.1423 0.2067 0.1793 0.2167 0.2159 0.2446 0.2074 0.2532 0.3730 0.1509

C22 -0.6104 -0.8964 -11.596 -10.712 -12.408 0.2902 -0.6457 0.1492 -0.7765 -0.2656 -0.0568 0.0699 0.0444 0.1110 0.0794 0.1145 0.1138 0.1347 0.1079 0.1522 0.2674 0.0734

C23 -0.7775 -10.635 -13.267 -12.383 -14.079 0.1231 -0.8128 -0.0179 -0.9436 -0.4327 -0.2239 -0.1671 0.0706 0.1153 0.0865 0.1093 0.1201 0.1534 0.1427 0.1841 0.2731 0.1489

C24 -0.8121 -10.981 -13.613 -12.729 -14.425 0.0886 -0.8474 -0.0524 -0.9781 -0.4673 -0.2585 -0.2017 -0.0346 0.0437 0.0122 0.0282 0.0406 0.0665 0.0742 0.1147 0.1903 0.1006

C25 -0.8986 -11.846 -14.478 -13.594 -15.290 0.0021 -0.9339 -0.1390 -10.646 -0.5538 -0.3450 -0.2882 -0.1211 -0.0865 0.0409 0.0469 0.0761 0.0853 0.1047 0.1423 0.2210 0.1339

C26 -10.294 -13.154 -15.786 -14.902 -16.598 -0.1288 -10.647 -0.2698 -11.955 -0.6846 -0.4758 -0.4190 -0.2519 -0.2173 -0.1308 0.0079 0.0186 0.0351 0.0513 0.0843 0.1559 0.1169

C27 -11.851 -14.711 -17.343 -16.459 -18.155 -0.2844 -12.204 -0.4254 -13.511 -0.8403 -0.6315 -0.5747 -0.4076 -0.3730 -0.2865 -0.1557 0.0157 0.0238 0.0492 0.0712 0.1421 0.1273

C28 -13.571 -16.431 -19.063 -18.179 -19.875 -0.4564 -13.924 -0.5974 -15.231 -10.123 -0.8035 -0.7467 -0.5796 -0.5450 -0.4585 -0.3276 -0.1720 0.0221 0.0424 0.0631 0.1343 0.1485

C29 -15.070 -17.930 -20.562 -19.678 -21.374 -0.6063 -15.423 -0.7473 -16.730 -11.622 -0.9534 -0.8966 -0.7295 -0.6949 -0.6084 -0.4776 -0.3219 -0.1499 0.0297 0.0334 0.1249 0.1195

C30 -17.317 -20.176 -22.808 -21.925 -23.620 -0.8310 -17.670 -0.9720 -18.977 -13.868 -11.781 -11.212 -0.9541 -0.9196 -0.8331 -0.7022 -0.5466 -0.3746 -0.2247 0.0322 0.1415 0.1145

C31 -20.328 -23.188 -25.820 -24.936 -26.632 -11.321 -20.681 -12.731 -21.988 -16.880 -14.792 -14.224 -12.553 -12.207 -11.342 -10.034 -0.8477 -0.6757 -0.5258 -0.3011 0.1263 0.1173

C32 -22.047 -24.906 -27.538 -26.655 -28.350 -13.040 -22.400 -14.450 -23.707 -18.598 -16.511 -15.942 -14.271 -13.926 -13.061 -11.752 -10.196 -0.8476 -0.6977 -0.4730 -0.1719 0.2524

56.537 Total Variance

Center

Variation array:

Variance ln(Xi/Xj)

Mean ln(Xi/Xj)

Compositional 

Sample size:

95

NA's:

25

Statistics
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normal curve. Correlation between a pair of variables measures to what extent their values 

co-vary. The term covariance is undoubtedly associatively prompted immediately. There are 

numerous models for describing the behavioral nature of a simultaneous change in values, 

such as linear, exponential and more. Observing Table 9, it is evident that all variables are 

correlated positively. The strongest positive correlation forms between C14 and C13 (0.9434). 

What is interesting here, is that in the classical statistics summary, the sample size remains at 

each original form of 120 samples. This is contrast to the Compositional Statistics summary, 

where sample size reduces, due to the exclusion of zero values. 

Table 9 Classical Statistics Summary 

 

 

The CoDaPack softaware offers the option of a Ternary Principal Component Graph. This 

feature calculates the two (or three) compositional principal components for a 3-part (or 4-

part) composition and displays the result in a ternary diagram. What is more, it returns, as a 

numerical result, the Principal Components and the cumulative proportion explained with 

each component. 

It would be meaningful if the Principal Components of this 3-part composition, is based on 

variables that present a bigger weight, related to the rest variables of the data set. For this 

reason, the command var(X) was utilized on Matlab to examine which are the three variables 

with the most impact. It was found that C13, C14 and phytane obtain the biggest weights 

(0.1034, 0.0796 and 0.924 respectively). Below we present both the ternary principal 

NA's:

0

Sample 

size:

120

Statistics

Mean Std.Dev 0 25 50 75 100

C13 82.765.083 88.639.087 0.0000 28.380.000 54.460.000 104.410.000 528.180.000

C14 97.541.417 84.559.280 0.0000 42.280.000 76.800.000 133.040.000 421.600.000

C15 121.133.500 101.799.595 0.0000 53.530.000 92.440.000 144.660.000 461.170.000

C16 113.407.583 99.571.357 7.800.000 46.660.000 81.820.000 135.770.000 449.950.000

C17 142.907.667 135.388.242 14.280.000 56.110.000 94.930.000 180.720.000 592.610.000

Pr 31.463.083 32.061.154 2.340.000 11.090.000 21.010.000 41.090.000 232.300.000

C18 69.584.167 51.639.032 10.080.000 30.240.000 56.290.000 96.550.000 226.860.000

Ph 39.796.000 45.425.844 1.410.000 11.890.000 24.180.000 53.310.000 332.640.000

C19 84.766.167 70.033.547 9.580.000 29.900.000 59.420.000 114.730.000 275.920.000

C20 50.742.083 46.542.324 0.0000 18.190.000 39.300.000 61.150.000 239.940.000

C21 42.336.167 40.446.243 1.070.000 15.320.000 30.870.000 52.330.000 208.640.000

C22 39.475.083 38.984.371 2.720.000 14.510.000 27.610.000 49.230.000 206.220.000

C23 34.644.500 34.646.541 1.030.000 12.480.000 24.740.000 45.240.000 177.670.000

C24 32.257.667 32.915.131 2.770.000 10.930.000 21.540.000 40.650.000 184.340.000

C25 29.748.917 28.974.933 2.290.000 9.380.000 21.880.000 39.380.000 176.900.000

C26 25.860.417 26.808.898 1.040.000 8.090.000 18.480.000 33.200.000 158.100.000

C27 22.054.167 22.940.668 1.750.000 7.380.000 15.070.000 28.450.000 143.090.000

C28 18.874.667 19.582.024 1.440.000 6.410.000 12.350.000 23.310.000 97.930.000

C29 15.620.417 15.579.848 0.0000 5.260.000 11.190.000 19.470.000 79.610.000

C30 13.196.333 13.438.383 730.000 4.390.000 9.790.000 16.330.000 71.050.000

C31 9.331.583 9.881.062 0.0000 3.360.000 6.390.000 11.380.000 52.020.000

C32 9.408.833 18.428.670 0.0000 2.730.000 5.430.000 9.000.000 184.820.000

Correlation:

C13 C14 C15 C16 C17 Pr C18 Ph C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32

C13 10.000 0.9434 0.8505 0.7750 0.7316 0.1084 0.3769 0.0310 0.5192 0.1427 0.0897 0.0689 0.0309 0.0319 0.0439 0.0321 0.0402 0.0024 0.0281 0.0054 0.0418 0.0148

C14 0.9434 10.000 0.9604 0.9007 0.8646 0.2542 0.5544 0.1844 0.6985 0.3212 0.2635 0.2370 0.1840 0.1874 0.1920 0.1798 0.1789 0.1345 0.1618 0.1328 0.1713 0.1180

C15 0.8505 0.9604 10.000 0.9599 0.9485 0.3125 0.6306 0.2415 0.7903 0.3870 0.3303 0.3023 0.2688 0.2505 0.2820 0.2426 0.2433 0.1980 0.2303 0.2289 0.2413 0.1689

C16 0.7750 0.9007 0.9599 10.000 0.9789 0.1943 0.6044 0.1533 0.8272 0.3911 0.3277 0.2994 0.2445 0.2416 0.2455 0.2340 0.2323 0.2016 0.2363 0.2166 0.2640 0.1388

C17 0.7316 0.8646 0.9485 0.9789 10.000 0.1779 0.5905 0.1267 0.8324 0.3590 0.2900 0.2620 0.2186 0.1995 0.2183 0.1905 0.1885 0.1584 0.1922 0.1913 0.2250 0.1168

Pr 0.1084 0.2542 0.3125 0.1943 0.1779 10.000 0.6878 0.9485 0.4244 0.6665 0.7037 0.6977 0.7359 0.7382 0.7940 0.7458 0.7500 0.6854 0.6873 0.6799 0.6575 0.7282

C18 0.3769 0.5544 0.6306 0.6044 0.5905 0.6878 10.000 0.7424 0.8479 0.9215 0.8922 0.8728 0.8494 0.8214 0.8012 0.7920 0.7658 0.7739 0.7466 0.7647 0.7445 0.5363

Ph 0.0310 0.1844 0.2415 0.1533 0.1267 0.9485 0.7424 10.000 0.4478 0.7715 0.8127 0.8167 0.8470 0.8572 0.8836 0.8576 0.8525 0.8048 0.7838 0.7748 0.7580 0.7944

C19 0.5192 0.6985 0.7903 0.8272 0.8324 0.4244 0.8479 0.4478 10.000 0.7398 0.6854 0.6606 0.6024 0.5925 0.5589 0.5687 0.5472 0.5455 0.5475 0.5295 0.5701 0.3413

C20 0.1427 0.3212 0.3870 0.3911 0.3590 0.6665 0.9215 0.7715 0.7398 10.000 0.9888 0.9802 0.9314 0.9259 0.8545 0.8921 0.8542 0.8896 0.8478 0.8336 0.8486 0.5529

C21 0.0897 0.2635 0.3303 0.3277 0.2900 0.7037 0.8922 0.8127 0.6854 0.9888 10.000 0.9965 0.9649 0.9660 0.9071 0.9386 0.9079 0.9307 0.8921 0.8750 0.8843 0.6171

C22 0.0689 0.2370 0.3023 0.2994 0.2620 0.6977 0.8728 0.8167 0.6606 0.9802 0.9965 10.000 0.9714 0.9763 0.9203 0.9527 0.9238 0.9460 0.9071 0.8887 0.9002 0.6351

C23 0.0309 0.1840 0.2688 0.2445 0.2186 0.7359 0.8494 0.8470 0.6024 0.9314 0.9649 0.9714 10.000 0.9760 0.9675 0.9599 0.9443 0.9514 0.9130 0.9400 0.9014 0.7147

C24 0.0319 0.1874 0.2505 0.2416 0.1995 0.7382 0.8214 0.8572 0.5925 0.9259 0.9660 0.9763 0.9760 10.000 0.9687 0.9918 0.9787 0.9736 0.9458 0.9131 0.9245 0.7296

C25 0.0439 0.1920 0.2820 0.2455 0.2183 0.7940 0.8012 0.8836 0.5589 0.8545 0.9071 0.9203 0.9675 0.9687 10.000 0.9735 0.9760 0.9500 0.9359 0.9367 0.9076 0.7775

C26 0.0321 0.1798 0.2426 0.2340 0.1905 0.7458 0.7920 0.8576 0.5687 0.8921 0.9386 0.9527 0.9599 0.9918 0.9735 10.000 0.9950 0.9843 0.9711 0.9245 0.9484 0.7566

C27 0.0402 0.1789 0.2433 0.2323 0.1885 0.7500 0.7658 0.8525 0.5472 0.8542 0.9079 0.9238 0.9443 0.9787 0.9760 0.9950 10.000 0.9802 0.9751 0.9280 0.9513 0.7832

C28 0.0024 0.1345 0.1980 0.2016 0.1584 0.6854 0.7739 0.8048 0.5455 0.8896 0.9307 0.9460 0.9514 0.9736 0.9500 0.9843 0.9802 10.000 0.9860 0.9512 0.9663 0.7007

C29 0.0281 0.1618 0.2303 0.2363 0.1922 0.6873 0.7466 0.7838 0.5475 0.8478 0.8921 0.9071 0.9130 0.9458 0.9359 0.9711 0.9751 0.9860 10.000 0.9438 0.9764 0.6980

C30 0.0054 0.1328 0.2289 0.2166 0.1913 0.6799 0.7647 0.7748 0.5295 0.8336 0.8750 0.8887 0.9400 0.9131 0.9367 0.9245 0.9280 0.9512 0.9438 10.000 0.9364 0.6922

C31 0.0418 0.1713 0.2413 0.2640 0.2250 0.6575 0.7445 0.7580 0.5701 0.8486 0.8843 0.9002 0.9014 0.9245 0.9076 0.9484 0.9513 0.9663 0.9764 0.9364 10.000 0.7392

C32 0.0148 0.1180 0.1689 0.1388 0.1168 0.7282 0.5363 0.7944 0.3413 0.5529 0.6171 0.6351 0.7147 0.7296 0.7775 0.7566 0.7832 0.7007 0.6980 0.6922 0.7392 10.000

Clasical statistics summary:
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component graph for all components produced by CoDaPack, as well as the PC plot that is 

produced by matlab (using raw compositional data).  

 

Fig. 54 Ternary Principal Component Graph for C13, C14 and phytane. 

 

Fig. 55 Plot of the first two Principal Components for C13, C14 and phytane. 

By examining the ternary principal component graph (Fig. 54), we observe that Family A oils 

are distinctively separated from the rest, presenting a sub-parallel alignment to the first 

principal component axis (PC1). Samples from families B, C and D follow a linear trend along 

the PC2 axis overlapping each other. In Table 10 we observe the numerical representation of 

the principal components for each variable, as well as, the cumulative proportion explained 

with each PC. Both PC1 and PC2 are positively correlated to the three variables. C13 is the 

most important in explaining PC1, whereas C14 is the most important in explaining PC2 

Table 10 Principal Components as Numerical results and the Cumulative proportions explained with each principal 
component. 

 C13 C14 Ph 
Cum. Prop. 

Exp. 

PC1 0.4715 0.3999 0.1287 0.9074 

PC2 0.1465 0.5970 0.2565 1.0000 

 

On the other hand, Fig. 55 displays a completely different principal component analysis result. 

As far as the discrimination of the four family affiliations is concerned, it is evident that there 

is no clear distinction among them. All samples follow strictly linear gradients, overlapping 
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significantly, at the same time. PC1 scores for all samples are positively high, whereas for PC2, 

the majority obtains negative scores. The first Principal Component in this case explains 81% 

of the total variance, and PC2 follows with 15% of the total variance.  

A simple ternary plot of C13, C14 and phytane is displayed on Fig. 56. As in the ternary principal 

component graph, in this plot there is a significant overlapping among oils B, C and D. Family 

A oils form a quite distinct group along the C13-C14 axis. Along the C13-phytane axis there is 

a sample (number) which displays a different behavior from the rest and it is D1338. Fig. 57 

displays the centered version of the same plot. It offers a better understanding of how oil 

samples exist in the ternary plot’s space. 

 

Fig. 56 Ternary Plot of C13, C14 and phytane 

 

Fig. 57 Centered ternary plot with grid on 
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The ALR plot represents a plot of three (four in 3D) alr-transformed parts (Fig. 58). The new 

variables obtained with the ALR transformation are displayed in an orthogonal coordinate 

system to visualize how the plot changes when permuting the components or initial columns. 

Nevertheless, care is required when interpreting the plot, as the axis are not really orthogonal, 

but at 60o.  

 

 

Fig. 58 ALR plot of C13, C14 and phytane 

What is observed in the ALR plot, is that oil samples form a positive gradient of 30o along the 

intersection of alr.C14_Ph and alr.C13_Ph axes. The additive logratio transformation seems to 

reveal a linearity embodied in oil families. Once more, the most distinct group is that of family 

A oils. The overlapping still holds among the other oil families.  

The CLR plot feature represents a plot in an orthogonal coordinate system of the data, after 

the centred logratio transformation (clr) of two (three in 3D) selected parts. It has the same 

capabilities as the ALR Plot. 

The ILR plot feature displays a plot in an orthogonal coordinate system of the data after the 

isometric logratio transformation (ilr) of three (four in 3D) selected parts according to a 

sequential binary partition. The way to select the partition is the same as in Transformation-

ILR routine. The partition selected in our case is the default (Table 11). 
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Fig. 59 CLR plot of C13, C14 and phytane 

 

Table 11 Binary partition for ILR transformation 

C13 C14 Ph 

1 1 -1 

1 -1 0 

 

 

Fig. 60 ILR plot of C13, C14 and phytane 
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In the ILR plot there are two distinct positive gradients sub-parallel to and below the ilr.1 axis 

(Fig. 60). One of the two gradients, consists of oil samples solely from Family A and the other 

consists of oil samples from families B, C and D. The projections of sample points of family A 

oils do not overlap with any of the other, in contrast to the rest that overlap significantly. 

The CLR biplot includes the selected variables C13, C14 and phytane. Once the graph is 

performed, we may choose 1) which 2D view we prefer (axes XY, YZ or XZ), 2) to display 

observations or not, and 3) which biplot display depending on the Form value; α = 0 

corresponds to a Covariance Biplot, α = 1 Form Biplot, and α = 0:5 Symmetric Scaling Biplot, 

which is the default value. In Fig. 61 the biplot is a Form Biplot.  

What is more this routine returns, as a numerical result, the Principal Components and the 

cumulative proportion explained with each component (Table 12). Biplot consists on the 

decomposition of clr matrix, X = UDV’. If numerical output is desired the routine writes three 

matrices: UD, D and V. UD are the ilr coordinates of the original data. 

 

Fig. 61 CLR biplot of C13, C14 and phytane 

As far as the distinction of the families is concerned, more or less, the CLR Biplot presents the 

same results, as in the previous graphs. 

Table 12 Principal Components explained by clr.13, clr.14 and phytane 

 clr.C13 clr.C14 clr.Ph Cum.Prop.Exp. 

PC1 0.4878 0.3231 -0.8109 0.9074 

PC2 -0.6548 0.7498 -0.0951 1.0000 
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Table 12 displays with which variable each principal component is explained along with the 

cumulative proportion explained. PC1 is positively correlated with clr.C13 and clr.C14, but 

negatively with clr.ph. PC2 is negatively correlated with clr.C13 and clr.ph, but positively with 

clr.C14. 

Lastly, the Balance Dendrogram represents a dendrogram by means of a sequential binary 

partition of selected parts (Fig. 62). The way to select the partition is the same as in 

Transformation-ILR routine. Here the default partition is chosen (Table 14). As a numerical 

output, this routine returns on the output window the sequential binary partition used, the 

mean and the variance of each balance (Table 13). Also on the Data window are the ilr 

coordinates produced with this partition. 

 

Fig. 62 Balance dendrogram of C13, C14 and phytane 

Table 13 Numerical output of Balance Dendrogram routine, including the mean and variance 

 Mean Variance 

 Balance 1 Balance 2 Balance 1 Balance 2 

 0.7370 -0.2022 1.1537 0.1334 

 

Table 14 Default partition for the Balance Dendrogram routine 

C13  C14  Ph  

1  1  -1  

1  -1  0  
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7. Conclusions 

The aim of this project has been the examination of the way multivariate clustering methods 

perform on the classification of oil family affiliations. The methods implemented hereby 

include Hierarchical clustering, k-means clustering and Principal Component Analysis. The 

data set under study contained raw compositional information of four distinct oil families 

present at Williston Basin of Canada. For the needs of the study, four different models were 

developed out of the given geochemical information; the Saturates’ Fraction Compositional 

Model, the Saturates’ Fraction Ratios Model, the Gasoline Range Compositional Model. Focus 

was not placed on how the models would perform under the aforementioned statistical 

analysis, but the exact opposite. The effort was on the examination of the data set through a 

manifold manner.  

Taking into consideration the performance of each method separately we conclude as follows: 

• Hierarchical Clustering performed relatively well on all models. Family A oils were 

classified sufficiently and in some cases Family C oils appeared to form fair clusters. 

However, there was always considerable overlapping among families B, C and D. 

• k-means failed in the task of classifying the given data set into distinct groups. In the 

SFCM and SFRM, it produced a two-cluster solution, with one cluster including mainly 

samples from Family A, and another cluster containing the rest. Judging, however, 

from the k-means plots, the clusters produced, did not present clear boundaries 

between them. In the GRCM and BCM, k-means produced a three-cluster solution, 

but significant overlapping among all families was observed. This was also evident 

from the respective k-means plots. 

• Principal Component Analysis performed similarly to hierarchical clustering. It mainly 

distinguished Family A samples and presented significant overlapping among the rest 

oil samples. In BCB especially, there was an overlapping between families A and D, as 

well as with families C and D. Family B oil samples were dispersed in the plot. 

All in all, the geochemical information under study, contains complex compositions of 

different oils. A blind application of multivariate data analysis methods on such data 

seems to be unable to classify them into distinct groups. Compositional data require 

probably different approaches concerning their analysis. Their special properties cause 

problems when analyzed with standard multivariate methods and a whole new chapter 

has been introduced by the scientific community on the way to examine them. The final 

chapter of this project deals with an alternative approach towards the analysis of 

compositional data, and results are compared to previous approaches. Principal 

Component Analysis in particular, presents a completely different picture when 

approached in a different manner. Further investigation, however, should be conducted 

on this type of data in order to understand their behavior and obtain meaningful 

information through their analysis.  
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APPENDIX 

Below we present the data set under study. The next tables include all raw data concerning 

the Biomarkers, the Gasoline range and the Saturated fraction. All models that were examined 

by multivariate statistical were derived from these three parts of the data set. 

Biomarkers (Hopanes and Steranes) of the sample set
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