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“People who are more than casually interested in computers should have at least some idea
of what the underlying hardware is like.Otherwise the programs they write will be pretty
weird. ..”
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Implementation of Mutual Information and Transfer Entropy Algorithms with
FPGA-based SuperComputer

by Konstantinos IORDANOU

It is widely known that contemporary applications are bounded by massive compu-
tational demands. With conventional CPUs falling out of favor due to their limitations,
the industry of Hybrid-SuperComputers using reconfigurable logic which is a grow-
ing field in the area of Computer Systems. This thesis explores the Convey Computer,
and more specifically the platform HC-2ex which is a hybrid platform with increased
computational capacity as well as a combination of a high-bandwidth memory inter-
face with an architecture featuring multiple levels of computational parallelism. This
platform selected in order to efficiently map computationally intensive algorithms in
modern hardware. We address two challenging problems within this framework, the
tirst being time-series analysis by focusing on the calculation of the Mutual Informa-
tion (MI) statistical value and the second being the Transfer Entropy (TE) statistical
value between two time-series. The problems of Mutual Information and Transfer En-
tropy respectively, have been addressed by the research community for low-precision
arithmetic applications, but the performance of these algorithms have not been eval-
uated on platforms like Convey Computer. This is the first work to extensively study
of using this platform, by identifying the pros and cons of Convey Computer with
computationally intensive algorithms as well as describing how these algorithms can
efficiently utilized. In terms of result, Mutual Information and Transfer Entropy imple-
mentations compared with implemented architectures on other platforms like Maxeler.
Compared to the reference software, the implementation of MI algorithm yielded 13x
speedup as well as the implementation of TE yielded 15x speedup for high dimen-
sional data using 32-bit precision arithmetic on Convey HC-2ex.
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Chapter 1

Introduction

It is widely known that contemporary applications are bounded by massive computa-
tional demands. With conventional CPUs falling out of favor due to their limitations,
the industry of Hybrid-SuperComputers using reconfigurable logic which is a grow-
ing field in the area of Computer Systems. This thesis explores the Convey Computer,
and more specifically the platform HC-2ex which is a hybrid platform with increased
computational capacity as well as a combination of a high-bandwidth memory inter-
face with an architecture featuring multiple levels of computational parallelism. This
platform selected in order to efficiently map computationally intensive algorithms in
modern hardware.

The idea of entropy of random variables and processes which proposed by Claude
Shannon, signified the beginnings of information theory and the modern age of er-
godic theory. It is a foregone conclusion that entropy and related information mea-
sures, provide useful descriptions of the long term behavior of random processes and
this behavior is a key factor in developing the coding theorems of information the-
ory. There are various notions of entropy for random variables, vectors, processes and
dynamical systems. More specific the statistical analysis of financial time series has
resulted in the possibility of predicting unobserved values of time series. The interest
in forecasting future stock values does not only stem from the fact that it is a very chal-
lenging research problem but also from the people’s desire to make money. From an
algorithmic perspective, identifying time series with the highest probability to reveal
information about themselves and most importantly about other time series is a very
challenging problem, especially when time is critical importance, such as risk analysis.
In this thesis our aim is to accelerate the computation of Mutual Information as well
as the computation of Transfer Entropy statistical measures between two time-series to
identify dependence.

1.1 Thesis Contribution

In general, Information Theory studies the quantification, storage and communication
of information. It was originally proposed by Claude E. Shannon in 1948 to find fun-
damental limits on signal processing and communication operations such as data com-
pression. This theory has found applications in many other areas, including statistical
inference, natural language processing, cryptography, neurobiology, model selection in
ecology, thermal physics, quantum computing, linguistics, plagiarism detection, pat-
tern recognition and anomaly detection. A key measure in information theory is en-
tropy. Some others important measures in information theory are mutual information,
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channel capacity, relative entropy and error exponents. Applications of fundamental
topics of information theory include lossless data compression, lossy data compres-
sion and channel coding. Considering the above the Mutual Information and Transfer
Entropy computations have been proven redemptive for several scientific fields with
massive amounts of data to be processed and high computational demands. The prob-
lem of accelerating these computations has been tackled by several research groups. In
this work we utilize the HC-2ex Hybrid-SuperComputer provided by Convey Com-
puters to map these two algorithms and accelerate them. To the best of our knowledge
this is the first work that address the whole problem of designing two architectures, the
tirst being the calculation of Mutual Information statistical value and the second being
the calculation of Transfer Entropy statistical value from the beginning until the end
using the Convey computer. We decided to create two architectures (MI and TE) that
produce the exact same solution as the reference software on high dimensional datasets
using the Convey Hybrid Core platform which is a heterogeneous computing system,
efficiently pairing traditional general purpose CPUs with reconfigurable hardware co-
processor units, in order to increase application performance beyond what is typically
possible in a standard x86 system. Hence, we considered the problems of calculat-
ing the Mutual Information and Tranfer Entropy statistic values between time-series
and achieved 13x and 15x speedup respectively, compared to the respective software
implementations.

1.2 Thesis outline

Chapter 2 initially introduces us to the Convey System platform and present the the-
oritical background of the algorithms studied in this thesis. The goal of these descrip-
tions is to provide a deep comprehension regarding the outcomes of modifying our
algorithms based on the properties of the Convey platform. Chapter 3 presents all the
related works that have been proposed for the acceleration of the Mutual information
and Transfer Entropy algorithms with the use of hardware-based platforms or multi-
core processors. Chapter 4 analyses the two algorithms from the hardware designer’s
perspective. Also in this chapter comes up the methology followed to efficiently map
these to algorithms to the FPGA'’s of the Hybrid platform as well as how these algo-
rithms modified in order to become integrated to the Convey System. In Chapter 5 we
describe the verification process followed during the implementation and present a se-
ries of performance comparisons between our implementations, the reference software
and implementations on Maxeler platforms. In chapter 6 a conclusion about the pre-
sented work is provided in order to give the proper and worth considering directions
for future work.



Chapter 2

Background

2.1 Convey System Description

In the race of developing novel chip technologies to accelerate special-purpose designs,
several companies have attempted to propose specialized solutions. One of these en-
terprises is the Convey Computer. The Convey Computer Architecture integrates two
types of processor architecture in one system: the Intel 64 architecture implemented
by an Intel processor and a reconfigurable architecture implemented as a co-processor
designed and implemented by Convey.

Standard x86 Instructions Logic for Accelerated Instructions

while (*listA != NULL) {
idA = (*listA)->id a;
indexA = idA + nodes;

if (previous[indexA] ==/nodea) {
tmp = *lista; HCMI
*listA = (*listA)->next;

} else {
head = *lista;

*1listA = (*listA)->next;
tail = head;
A
Cluster
G
TRV R e DRRR

Interconnect
Hybrid-Core Globally Shared Memory (HCGSM)

Fabric

FIGURE 2.1: Hybrid-Core Computing as appeared to an application

The ability to support different instruction sets in a common hardware platform
allows the implementation of new instruction sets. An application executable contains
both Intel and co-processor instructions, and those instructions execute in a common,
coherent address space. The huge reduction in implementation time makes it practical
to develop instruction sets tailored to specific applications and algorithms.

2.1.1 System Architecture

Convey Hybrid Core systems utilize a commodity motherboard that includes an In-
tel 64 host processor and standard Intel I/O chipset, along with a reconfigurable co-
processor based on FPGA technology. This co-processor can be reloaded dynamically
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while the system is running with instructions that are optimized for different work-
loads. It includes its own high bandwidth memory subsystem. Co-processor instruc-
tions can be considered as extensions to the Intel instructions set. The co-processor
supports multiple instruction sets referred to as personalities.

Intel-based x86 Host FPGA-based Coprocessor

1/0 Intel® \ Y \ e . .
Controller x86 HCMI G \G S G
Hub (ICH) Processor(s)

Intel I/0 Application-specific Personalities
Subsystem

—_——————
Host Memory %@%@ Mem ory %@@@
Host Memory

Hybrid-Core Globally Shared Memory (HCGSM)

FIGURE 2.2: Convey Hybrid Core System Diagram

2.1.2 Co-processor

At the other end of the spectrum the co-processor has three major sets of components
referred to as the Application Engine Hub (AEH), the Memory Controllers (MCs) and
the Application Engines (AEs). To begin with, the AEH is the central hub for the co-
processor. More specific it implements the interface to the host processor and to the
Intel I/O chipset, fetches and decodes instructions, and executes scalar instructions.
As a result it processes coherence and data requests from the host processor as well as
routing requests for addresses in co-processor memory to the MCs. Scalar instructions
are executed in the AEH, while extended instructions are passed to the AEs for the
execution. In order to support the bandwidth, 8 Memory Controllers support a total
16 DDR2 memory channels providing an aggregate of over 80 GB/sec of bandwidth
to ECC protected memory. The memory controllers support standard DIMMs as well
as Convey designed Scatter-Gather DIMMs. The main task is of these kind of DIMMs
is to translate virtual to physical addresses on behalf of the AEs. Together the AEH
and the MCs implement features that are present in all personalities. This ensures that
important features such as memory protection, access to co-processor memory or the
communication with the host processor are always available. The Application Engines
(AEs) implement the extended instructions that deliver performance for a personality.
In general the Application Engines (AEs) are the heart of the co-processor and imple-
ment the extended instructions that deliver performance for a personality. There are
four AEs, connected to the AEH by a command bus that transfers opcodes and scalar
operands, and connected via a network of point-to-point links to each of the memory
controllers. Each AE instruction is passed to all four AEs. Although it is known that
the clock rate for the FPGAs used to implement the co-processor is lower than that of a
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commodity processor, each AE will have many functional units operating in parallel.
This high degree of parallelism gives an advantage to the co-processor’s performance.

Instructions/Data

! !

Application Engines (AEs)

3
HCMI ©
% Xilinx® Xilinx® Xilinx® Xilinx®
E VIRTEX VIRTEX VIRTEX VIRTEX Direct
= FPGA FPGA Data
o
n
8x2.5GB/s 8x2.5GB/s 8x2.5GB/s 8x2.5GB/s
20 GB/s 20 GB/s 20 GB/s 20 GB/s
7 2 x 7Y 3 X
Memory Subsystem and
Crossbar (MCs) A A A
- -
A F N F N A F N A A A
Memory Memory Memory Memory Memory Memory Memory Memory
16 channel Controlle Controller Controller Controller Controller Controller Controller Controller
word-addressable TLB

SG-DIMMS

o [ R ey e v R e S A

FIGURE 2.3: The Convey HC-2 memory Subsystem

2.1.3 Personalities

Personalities include precompiled FPGA bit files, a description of the machine state
model sufficient for the compiler to generate and schedule instructions, and an ID
used by the application to load the correct image at runtime. More specific a person-
ality implements two types of instructions, the scalar instructions and the extended
instructions. The scalar instructions are common among all personalities and ensure
that all personalities share the same basic functionalities, while the extended instruc-
tions provide customization for different applications and workloads. All personali-
ties have some elements in common. More specifically the defined Convey Instruction
Set controls and initiates via instructions the co-processor execution. The co-processor
instructions use virtual addresses and coherently share memory with the host pro-
cessor. The host processor and I/O system can access co-processor memory and the
co-processor can access host memory. Furthermore all the personalities use a common
host interface to dispatch co-processor instructions and return status. On the other
hand all the personalities support the canonical instruction set which can be generated
and executed. In general a personality therefore implements a computer architecture
customized for a particular type of algorithm or workload. It is widely known that
many applications don't fit in classic architectural models. Convey provides a Per-
sonality Development Kit (PDK) that allows custom instructions to be implemented to
support such applications.
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2.2 Mutual Information

In this section we present a comprehensive background about Mutual Information (MI)
as formulated in [12]. Also we will make some short references to other fundamental
notions of Information theory closely related to MI in order acquire a better under-
standing of the notion of Information Theory. All the references that will presented in
this section they are referred with great detail in [12] and [1].

It is a foregone conclusion that Information Theory is one of the few scientific fields
fortunate enough to have an identifiable beginning, and that is the Claude Shannon’s
1948 paper [23]. Also Information is a very broad and abstract notion. It is widely
known that Information Theory answers two fundamental question in communication
theory. What is the ultimate data compression and what is the ultimate transmission
rate of communication. This approach led some scientists to consider that information
theory to be a subset of communication theory and only targeted to the area of com-
munication. In this section also we will describe why this belief is misunderstood, and
we will present the fundamental contributions in the fields of prediction, filtering an
learning.

2.2.1 Entropy

This section presents the notion of entropy, which is a measure of the uncertainty of a
random variable. Before defining entropy in order to yield a better overall understand-
ing of entropy it is worthwhile to present a quantified description of information. Let’s
suppose that p(m) is the probability that, message m is chosen from all the possible
choices in the message space M. That means:

p(m) = Pr(M =m) (2.1)

So the self-Information of a message based on Shannon’s measure of Information
is:

I(m) = loga(—) (2.2)
p(m)

So considering the above equations, we say that for the message m we received I(m)
bits. We have to notice that the base of the logarithm only affects a scaling factor and
consequently, the units in which the measured information content is expressed. If the
logarithm in base 2 the measure of information is expressed in bits. If the logarithm is
in base of e then the measure of information is expressed in nats. For example on toss-
ing a coin the chance of ‘tail” is 0.5. When it is proclaimed that indeed ‘tail” occurred,
this amounts to I(“tail’)=1og2(1/0.5)=log2(2)=1 bit of information. Also when throwing
a fair dice the probability of ‘four” is 1/6. When it is proclaimed that ‘four” has been
thrown, the amount of information is I(‘four”’)= log2(1/(1/6)) = log2(6) = 2.585 bits.
Thus, when independently, two dice are thrown, the amount of information associ-
ated with throw_1="two” and throw_2="four” equals I("throw’_1 is two and throw_2 is
four’) = (1/P(throw_1="two” and throw_2="four’)) = log2(1/(1/36)) = log2(36) = 5.170
bits. This outcome equals the sum of the individual amounts of self-information as-
sociated with (throw 1 = "two’) and (throw 2 = "four’), namely 2.585 + 2.585 = 5.170
bits. Considering the above, we are going to examine the definition of Entropy. Gener-
ally entropy is a measure of the uncertainty of a random variable. Let X be a discrete
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random variable with alphabet X and probability mass function p(z) = Pr(X = x),
r € X. We denote the probability mass function by p(z) rather than p,(z), for conve-
nience. Thus, p(z) and p(y) refer to two different probability mass functions,p,(x) and
py(y), respectively. So the entropy H(X) of a discrete random variable X is defined by

H(X) == p(x)log,(p(x)) (2.3)
zeX
where b is the base of the logarithm used. Common values of b as referred above
are 2, Euler’s number e, and 10, and in the unit of entropy is Shannon for b=2, nat for
b=e and hartley for b=10. When b=2, the units of entropy are also referred as bits. For
example, the entropy of a fair coin toss is 1 bit. We will use the convention that 0 log0
= 0, which is easily justified by continuity since zlogr — 0 as x — 0. Adding terms of
zero probability does not change the entropy. In order to understand better the notion
of entropy we present some examples with the notion of entropy.
Let’s assume that:

X — 1, with propability p
| 0, with propability 1-p

Then

H(X) = —plogz(p) — (1 = p)loga(1 —p) = H(p) (24)

In particular H(X)=1 bit when p = 1/2.0ne of the basic properties of entropy is that
entropy is concave function of distribution and equals 0 when p=0 or 1.1t is a foregone
conclusion that when p=0 or 1 the variable is not random and there is no uncertainty.
Similarly, the uncertainty is maximum when p=1/2, which also corresponds to the
maximum value of entropy.

Let’s assume that:
a, with propability 1/2
b, with propability 1/4
¢, with propability 1/8
d, with propability 1/8
The entropy of X in bits is :

1 7

1 1 1 1 1 1 1
H(X) = _51092(;) - j092(2) - g5092(§) - glOQQ( )= "

5
2.2.2 Joint Entropy and Conditional Entropy

In the previous section we defined entropy and we gave some examples in order to get
an overall understanding of this notion. In this section we present the notion of joint

entropy and the notion of conditional entropy. The same formula 2.3 can be extended
to pairs of random variable vectors. Based on the above assumption, the joint entropy
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H(X,Y) of a pair of discrete random variables (X,Y) with joint distribution p(z,y) is
defined as:

==Y > plxy Jlog(-

reX yeyY

) (2.5)

We also define the conditional entropy of a random variable X given another ran-
dom variable Y as the expected value of the entropies of the conditional distributions,
averaged over the conditioning random variable. More specifically the conditional
entropy H(Y | X) is defined as:

HY [X) = S p) Y [ X =a) = 3 plaalono—)  @6)

reX zeX,yeY ( | )

The joint entropy H(X,Y) and conditional entropy H(Y | X) are correlated by the
chain rule which says that the entropy of a pair of random variables is equal to the
entropy of one variable plus the conditional entropy of the other. More specifically:

HX,Y)=H(X)+H(Y | X) (2.7)
Of course we must note that
H(Y|X) 4 H(X[Y)

but
H(X)—-H(X|Y)=H(Y)—- H(Y|X).

So now let’s consider the follow example: “If I know the student’s major could I predict
if he likes computer games?”. Assuming that we have the following information as input
about the college majors and as output we are trying to predict if the specific student
likes Computer games or no. All the information described as presented on the the
table 2.1:

TABLE 2.1: The input data for the example of the calculation of Condi-

tional Entropy.
X Y H X Y
Math Yes || Math No
History No || CS Yes
CS Yes || History No
Math No || Math Yes

Considering the table 2.1, now we can create a new table and we can calculate the
marginal distribution for X and Y respectively in the table 2.2.
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TABLE 2.2: The calculation of Conditional Entropy.

H X\Y H YES NO H Marginal Distribution X H
Math (M) 0.25 0.25 P(X=Math)=0.5
CS (C) 0.25 0 P(X=CS)=0.25
History (H) 0 0.25 P(X=History)=0.25
Marginal Distribution Y | P(Y=Yes)=0.5 P(Y=No0)=0.5

Now let’s calculate the specific Conditional Entropy H (Y |X = v).This entropy of Y
calculated only on those records in which X has value v. For example:

H(Y|X = math) = —p(Yes|X = math)log(p(Yes| X = math))
— p(No|X = math)log(p(No|X = math)) =1 (2.8)

Respectively the conditional entropies for CS and History are: H(Y | X=H) = 0 and
H(Y I X=C) = 0.

Considering the formula 2.6, the conditional entropy H(Y | X) which is the average
conditional entropy of Y, we can easily now calculate the H(Y | X).

H(Y|X)=05x140.25%0+0.25x 0=0.5.

So now let’s calculate the joint entropy H(X,Y). As we prove in formula 2.7 the
joint entropy H(X,Y) and conditional entropy H(Y | X) are correlated by the chain rule
which says that the entropy of a pair of random variables is equal to the entropy of one
variable plus the conditional entropy of the other. So in our example the joint entropy
is:

HX,Y)=HX)+H(Y|X)=15+05=2.

2.2.3 Relative Entropy and Mutual Information

In this section we introduce two related notions, relative entropy and mutual informa-
tion. The relative entropy is a measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative entropy
D(p || ¢) is a measure of inefficiency of assuming that the distribution is g when the
true distribution is p. For example, if we knew the true distribution p of the random
variable, we could construct a corresponding encoding with average descriptive infor-
mation H(p).If instead, we associate distribution g with the random variable, we would
need H(p) + D(p || q) bits on the average to describe the random variable. The relative
entropy between two probability mass functions p(z) and ¢(x) is defined as:

p

Dol @) =Y pa)loga () 29)

(z
T
zeX al

where for the extreme cases 0log(2) = 0 and plog(%) = inf based on the arguments
for the continuity principle. Similariy to entropy, relative entropy is a non-negative
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measure which is equal to 0 if and only if, the assumed distribution is exactly the same
as the true distribution.

Considering all the above it is obvious that we cannot regard relative entropy as
a true distance between distributions for two main reasons. The first is the triangle
inequality and the second is that it is not symmetric. Now we introduce the notion of
Mutual Information that is the most important notion for this thesis. In the previous
sections we presented that if entropy is regarded as a measure of “uncertainty about a
random variable”, then H(Y | X) is a measure of “what X does not say about Y.” To sum up
briefly Mutual Information I(X;Y) computes the amount of information a random vari-
able includes about another random variable. For example, suppose two discrete ran-
dom variables X,Y which X represents the roll of a fair six-sided dice, whereas Y shows
whether the roll is odd or even. Then, it is clear that the two random variables share
information, as by observing one, we receive knowledge about the other. For a pair
of discrete random variables X, Y with joint probability function p(z,y) and marginal
probability functions p(z) and p(y) respectively, the mutual information I(X;Y) is the
relative entropy between the joint distribution and the product distribution:

p(z,y)
p(@)p(y)

I(X;Y) =Y > plz,y)logs( ) = D(p(z,y) || p(x)p(y)) (2.10)

zeX yeyY

Considering the above we must note that MI is nonnegative (X;Y) > 0 and sym-
metric /(X;Y) = I(Y;X) . Moreover /(X;Y) = 0 if and only if, X and Y are indepen-
dent random variables. This is easy to see in one direction: if X and Y are independent,
then p(z,y) = p(z)p(y) and therefore log(p(z, y)/p(2)p(y)) = logl = .

2.24 Relation between Entropy and Mutual Information

In this section we can re-write the definition of Mutual Information as follows :

I(X;Y) =Y pla, y)logz(pfg;:;) 2.11)
reX yey
=3 p(, y)log2(p§5)) (2.12)
rzeX yey
== > playlogp@)+ Y plr,y)log(p(|y)) (2.13)
rzeX,yeY zeX,yeyY
== p@)loga(p(x)) — (= Y plx,y)loga(p(x | ) (2.14)
— H(X)— H(X |Y) | @.15)

The above formula shows that assuming the entropy H(X) as “the uncertainty about
the random variable X” and the H(Y | X) is the “the amount of uncertainty remaining about
Y after X is known” the right side of these equalities can be read as “the amount of uncer-
tainty in X, minus the amount of uncertainty in X which remains after Y is known”, which is
equivalent to “the amount of uncertainty in Y which is removed by knowing X”. This cor-
roborates the intuitive meaning of mutual information as the amount of information (that
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is, reduction in uncertainty) that knowing either variable provides about the other. The chain
rule does not apply to entropy, but also relative entropy and mutual information. More
specifically, in the case of entropy the general chain rule says that assuming X, ..., X,,
are drawn according to p(z1, ..., z,,) then:

H(Xy, ., Xp) =Y H(X; | Xio1, ., X1) (2.16)

=1

Similarly, the chain rule for relative entropy between two joint distributions on a
pair of random variables can be expanded as the sum of a relative entropy and a con-
ditional relative entropy:

D(p(z,y) | a(z,y)) = D(p(x) || ¢(x)) + D(p(y [ 2) [ ¢(y | z)) (2.17)

Finally, Mutual information also satisfies the chain rule which yields:

(X1, X Y) =) HXGY | Xig, o X)) (2.18)

2.3 Transfer Entropy

2.3.1 Definition of Transfer Entropy

In this section we present the notion of Transfer Entropy. Transfer entropy was de-
signed to determine the direction of information transfer between two, possibly cou-
pled, processes, by detecting asymmetry in their interactions. More specifically, it is
a Shannon information-theoretic quantity which measures directed information be-
tween two time series. Formally, transfer entropy shares some of the desired properties
of mutual information but takes the dynamics of information transport into account.
As an example, if there are two stocks, namely A and B, it is important to know whether
A is correlated to B, but it is also important to know that, for instance, A affects B, which
may mean that if A’s price rises, then B’s price will also rise, but the opposite might not
hold (i.e., "when B’s price rises, A’s price will rise too").
Assuming two time series X,Y the Transfer Entropy from Y to X can be given by:

P(ianrl |1’n 7yn)

Tyox =Y. @1, o, Yn)logs(———) (2.19)

p(znt1lzn)
Tn+1,Tn,Yn

Respectively, we can define the transfer entropy from X to Y :

p(yn+1 ‘zn 7yn)

Txy = Z P(Ynt1, Ty Yn ) l0go(——————) (2.20)

P(Yn+1lyn)
Yn+1,Tn,Yn

Considering the definition of conditional probabilities can be rewritten as:

P(Tn41,%n,Yn)p(Tn)

Tyox= Y, P@s1, 0 yn)logs( ) (2.21)

p(xn+l sTn )p(l’n 7yn)

Tn+41,Tn,Yn
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P(Yn+1,Tn,Yn )p(yn)

Tx_y = Z P(yn+17$myn)1092( ) (2.22)

P(Yn+1,Yn)P(Tn,Yn)

Yn+1,Tn,Yn

2.3.2 Relation between Transfer Entropy and Mutual Information

In the previous section we presented the notion of Transfer Entropy and we described
the basic equations. Considering the above we conclude that Transfer Entropy can de-
tect the directed exchange of information between two time series, unlike the Mutual
Information which is designed to ignore static correlations due to the common history.
Transfer entropy is introduced by Thomas Schreiber in his paper “Measuring Informa-
tion Transfer” [22]. In this section we describe the relation between Transfer Entropy
and Mutual Information through one example which described in [22]. In this paper
there is an example in order to detect whether heart beat results in breath or vice versa.

Let’s assume that the figure 2.4 describes a bivariate time series of the breath rate
and instantaneous heart rate of a sleeping human suffering from sleep apnea. The data
is sampled at 2 Hz. Both traces have been normalized to zero mean and unit variance.
We can calculate the Transfer Entropy from heart to breath 7},cq;i—preqrn, and from breath
to heart Ty, cath—sheart and Mutual Information from breath to heart My, cqth—sheart and
from heart to breath M},cori—breath-

Next figure 2.5 shows transfer entropy (solid line and dotted line) compared with
time delayed mutual information (dashed line) More specifically small r means high
resolution so r represents the granularity. As we can observe Tjeqri—brearn (s0lid line) is
always larger or equal to Th,cqth—sheart (dotted line).

As a conclusion we could say that heart beat results in breath. In contrast, time
delayed mutual information failed to distinguish causality because the two dashed
lines corresponding to Mcqrt—sbreath aNd Myeath—heart (Aashed line) overlap in the figure.
So we could yield as a result that transfer entropy overpowers against the information-
based measures.



Chapter 2. Background

13

breath rate
lI\D o N

|
0 5 min 10 min

heart rate

FIGURE 2.4: Bivariate time series of the breath rate (upper) and instanta-

neous heart rate (lower) of a sleeping human. The data is sampled at 2

Hz. Both traces have been normalized to zero mean and unit variance.The
figure borrowed from [22]
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FIGURE 2.5: Transfer entropies Theart—sbreath (501id line) Threath—sheart(dotted
line),and time delayed mutual information M(t=0.5 s) (directions indistin-
guishable, dashed line).The figure borrowed from [22]
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Chapter 3

Related Work

In this section we present a few hardware-based approaches which have been pro-
posed for the acceleration of Mutual Information and Transfer Entropy respectively.
Because of Transfer Entropy is quite similar measure with Mutual Information we
present the proposed architecture for both algorithms in one section. So in this section
we present a few FPGA-based and GPU-based hardware approaches for both algo-
rithms.

3.1 FPGA

One of the first FPGA-based approach for the acceleration of Mutual Information was
presented by Castro-Pareja and Shekhar in [2]. In this paper the proposed architecture
can be used to accelerate linear and image registration algorithms which use Mutual
Information as a similarity measure. This architecture called FAIR-II and is targeting
to perform image registration in real time but without the use of a supercomputer. To
the best of our knowledge this architecture has two basic steps. In the first step the
mutual and individual histograms are created. More specifically this step creates these
histograms with an algorithm which convert the floating image’s coordinates to the
respective reference ones with the use of Partial Volume interpolation. In the second
step the accumulator modules send the partial joint histogram values to the entropy
accumulator and in the entropy accumulator the individual and point probabilities
are calculated from the joint histogram. The results are then accumulated, thus ob-
taining the mutual information value. Their architecture mapped on an Altera Stratix
EP1540 FPGA and it could process 50 million reference image voxels per second. This
architecture achieved x30 speedup for linear registration and x100 speedup for elastic
registration compared to a software implementation on a 3.2-GHz Xeon with 1GB of
266 MHz DDRAM.

The first reconfigurable computing solution to accelerate Transfer Entropy presented
in the papers of Shao in [9] and from the same author in [24]. The novel aspects of this
approach include a new techinque for the probability estimation based on Laplace Rule
of Succesion. At the other end of the spectrum on hardware they managed to map
some small and medium-sized tables on BRAMs during initialization while sending
large ones at run-time. In this way, they pipeline data transfer and computing. More-
over in their design in order to optimise memory allocation and to reduce I/O over-
headed, they adopted the technique of bit-width narrowing. Their implementation
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targeted a Xilinx Virtex-6 SX475T FPGA. In their experiments, the proposed FPGA-
based solution is up to 111.47 times faster than one Xeon CPU core, and 18.69 times
faster than a 6-core Xeon CPU.

3.2 GPU

In this section we present a few GPU-based approaches for the Mutual Information
and Transfer Entropy. In the recent decade, the computing capacities of the graphics
processor units (GPUs) have improved exponentially. This has made GPU-accelerated
computation a viable option for many applications.

Shams and Barnes in their paper [20] presented an efficient method for mutual in-
formation computation between images (2D or 3D) for NVIDIA’s compute unified de-
vice architectures (CUDA) compatible devices. In order to use the 1D joint histogram
code for joint histogram calculation in the preprocessing stage they convert the 2D joint
histogram calculation to 1D joint histogram calculation. After the preprocessing stage
the pmf calculation distributed to L thread blocks each with N threads. Each block will
maintain a partial histogram of its own in the global memory for the portion of the in-
put data assigned to the block. Partial histograms are finally summed up using a very
efficient multi-threaded reduction function. They implement their architecture on an
NVIDIA 8800 GTX platform. Moreover, results indicated that in the case of a 3D image
with approximately 7x10 million voxels and 256 threads the GPU-based registration
was around 25 times more efficient.

In addition another paper from Lin and Medioni [32] presented a GPU implemen-
tation to compute both mutual information and its derivatives. They show that com-
putations of Mutual Information and its derivatives are fully parallelizable and can be
efficiently ported onto the GPU architecture. They focus on the speed up of Viola’s
approach to computing mutual information, since the approach follows a close form
solution of the mutual information derivatives. More specifically in order to reduce the
number of exponential computations they pre-computing the Gaussian densities of all
possible density values into a lookup table. Also they find a way to parallelize the
computation of Viola’s algorithm in order to achieve a significant speed-up by using
the GPU. The probability density is estimated using Parzen Window method which di-
rectly uses the samples drawn from an unknown distribution, and uses Gaussian Mix-
ture model to estimate its density, which is robust to noise. After that they tackle the
image registration problem. They solve this problem by estimating the transformation
T that best aligns two images. In order to do so they maximize mutual information by
approximating its derivative. For the proposes of parallelism the statistics computed
for each element, are independent from the others, which can be computed efficiently
in GPU. Their design mapped on an Nvidia GeForce 8800 GTX platform. For 1000 sam-
ples the computation time for both mutual information and its derivatives is reduced
up to a factor of 170 and 400 respectively compared with a work station level CPU.

Another paper by Guo and Luk [7] presents an FPGA accelerator for ordinal pat-
tern encoding, a statistical method for analyzing the complexity of time series. Even
though we are not studying analyzing the complexity of time series in this thesis, it is
worth to make a reference on this paper because the complexity of time series covers
our implementation of Mutual Information and Transfer Entropy. They apply it to the
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computation of permutation entropy. They propose a two-level hardware-oriented or-
dinal pattern encoding scheme to avoid sequence sorting operations in the accelerator,
enabling theoretically best code compactness. Second, they develop a hardware map-
ping method by promoting data reuse, by parallelizing arithmetic operations, and by
pipelining the data path. The FPGA system is implemented on a Xilinx Virtex-6 FPGA,
and is integrated with a quad-core Intel i7-870 CPU running at 2.93GHz. Experimental
results show that the hybrid system is up to 11 times faster than the CPU-only solution.

In addition to the aforementioned implementations, other works have also been
proposed for hardware-based Mutual Information computation [21], [10]. However,
apart from [9], all these approaches focus on accelerating specifically the image regis-
tration problem.

To conclude for Transfer Entropy, as it is a new statistical metric, we are not aware
of any published work on its hardware acceleration on FPGA.
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Chapter 4

Implementation

This Chapter focuses on the profiling of the Mutual Information and Transfer Entropy
algorithms as well as on the implementation of them based on the specific features of
Convey HC-2ex. We describe the optimization of the computationally intensive part of
these two algorithms. We propose hardware architectures which accelerate the algo-
rithms of Mutual Information and Transfer Entropy with respect to the computational
features of the Convey HC-2ex in order to achieve the best possible performance.

4,1 Mutual Information

4.1.1 Software Profiling of MI Algorithm

In order to optimize the calculation of Mutual Information, it is necessary to profiling
the software algorithm, in order to find the most-computationally intensive part of the
algorithm and accelerate it on hardware.

Before to proceed to the calculation of the Mutual Information algorithm, the es-
timation of Mutual and joint Probability Density Functions (PDF) are necessary. His-
tograms used for the estimation of Mutual and joint Probability Density Functions
(PDF). A histogram is a graphical representation of the distribution of numerical data.
It is an estimation of the probability distribution of a continuous variable and was first
introduced by Karl Pearson [8]. The first step to construct a histogram is, to divide the
entire range of values into a series of small intervals. The second step is to count the
number of values which fall into each interval.

More specifically the value range of the X and Y random variables is divided into
R parts, with R being the number of Bins of the histogram. That means that each value
of the time series is classified into one of the R Bins and the value of that Bin is in-
creased by 1. In our approach, the outputs produced from the histogram construction
are probabilities p(x), p(y) and p(x,y), which correspond to the PDF functions of ran-
dom variables X,Y and joint variable of X and Y respectively. The first two functions
are one-dimensional vectors, whereas the third is depicted by a two-dimensional ma-
trix. The result of the above is the estimation of the PDF’s functions given two random
variables. Many methods for PDF estimation have been proposed like Kernel Density
Estimation(KDE) or K-Nearest Neighbor(KNN). We used the equi-distant histogram
estimator which is the simplest non-parametric density estimator and it is easy to pro-
duced and understand.

Considering all the above the time required to produce the PDF estimations di-
rectly depends on the length of the time-series. The table 4.1 presents the dependency
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between the execution time and the size of the inputs for the PDF estimation keeping
the Resolution equal to 10000 because this value is the maximum value for the reso-
lution we can reach. From the table 4.1 we conclude that the execution time for PDF
estimation increases linearly with the input size.

TABLE 4.1: Dependency between the execution time and the size of the
inputs for the PDF estimation of the Mutual Information Algorithm.

Time series(Elements) | Execution Time(sec)
10000 0.00016
100000 0.0043
1000000 0.043
10000000 0.42
100000000 4.8
1000000000 51.2

At the other end of the spectrum, on the second table 4.2 we can conclude that the
increase of the number of bins can cause the squared increase of the execution time,
keeping the size of time series to a fixed value of 100000 elements. Furthermore from
the equation 2.11, goes without saying, that the time complexity for the MI computa-
tion is O(R?). To provide a sufficient understanding, for a very small number of Bins
and a very large time series lengths the pdf estimation can be more time consuming,
but for example for 1000 bins and for size of time series equal to 100000 elements, based
on the MI computation requires 2.58 sec, whereas the creation of the histogram only
needs 0.0043 sec which means that the most of the time consumed to the calculation of
Mutual Information.

TABLE 4.2: Dependency between the execution time and the number of
bins for the Mutual Information Algorithm.

Number of Bins(R) | Execution Time(sec)
100 0.002
500 0.012
1000 0.032
2000 0.11
5000 0.65
10000 2.58

To conclude, based on the tables 4.1 and 4.2 we can assume that the most compu-
tationally intensive part of the MI algorithm is the final computation of the statistic
value. So after the software profiling of the MI algorithm we have been summoned to
accelerate the MI calculation between two random variables, so the formula 2.11 needs
to be parallelized and mapped to hardware.

4.1.2 CPU and FPGA Integrated System of MI Architecture

As we described in the previous section we can split the algorithm in two parts. The
tirst part is the PDF estimation and the second part is the computationally intensive
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part of the MI algorithm which is the final computation of this statistic value. The first
part of the algorithm was implemented on the host side of the system and the second
part was mapped on the hardware side. Also we must note that the PDF estimation,
based on histograms, requires random accesses, which would be very slow if this part
of the algorithm would have been implemented on the shared memory of Convey
HC-2ex. We conclude that the most efficient approach for the PDF estimation is to
be implemented in software side. The basic Mutual Information System illustrated in
the figure 4.1 and the basic Mutual Information flowchart illustrated in the figure 4.2
respectively. As we can observe from the figure 4.1, the outputs of the PDF estimation
stage are probability vectors p(z), p(y) and p(z,y) which are the PDF function of the
random variables X,Y and joint variable of X,Y respectively.

Time series X instances Time series Y instances
( A
- fl 2 D 12 n
1 1
2 2
Time Time
seriesX < series Y
length length
nly v v niy v v
~ Time serie X_i Time serie Y_i
Software
PDF estimation
z A z A A
p(x) length R h p(y) length R p(x,y) length RxR h
A [~]

H Hardware M

Mutual Information Core

Ml result

FIGURE 4.1: Basic System Architecture of Mutual Information

Also from the figure we can note that the first two function p(x) and p(y) are 1-
dimensional vectors and p(z, y) is a 2-dimensional vector. Furthermore the input time
series are vectors which stored in one-dimensional structures of floats.



Chapter 4. Implementation 20

Input
Data

PDF P Init data

estimation | | processing

Valid Init
data

PDF created

Init data and PDF
data areready

YES

Mutual

Information
Calculation

Ml calculated

FIGURE 4.2: Basic flowchart of Mutual Information

4.1.3 Pre-processing on Host Processor

In this section we present the pre-processing of the dataset for the deployment of a
single AE. We explore the way in which, Convey acts in order to process the data in the
FPGA’s. We note that when multiple AEs are deployed the same process is followed
but with respect in some major differences.

As we described in the previous section before we proceed to the calculation of
Mutual Information in the hardware side, we have to estimate the PDF functions p(x),
p(y), p(z,y) from the random variables X,Y. We presented why we choose to implement
this estimation in the Host side. After the creation of the PDF function we have to hold
the PDF functions to the shared memory of the system in order to get retrieved from
the FPGA’s via memory controllers. More specifically a C-based application, which is
running on the host processor, is responsible for the creation of the PDF functions and
for the allocation of the necessary data structures for the hardware execution.

To make the function call to the co-processor, some piece of information must be
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sent to the AEs. In particular a pointer to the first address of the contiguous memory
space in which the input data and the initialization constants are located. In our imple-
mentation, that means, a pointer to the first element of the PDF vector and a pointer
to the first element of the initialization data. Secondly a pointer to the first address
of the contiguous memory space that the output data will be stored. In order to, MI
calculation takes place we need to have further information about the length of the
time series and the length of the PDF functions. This information allocated also in the
shared memory and get used by the FPGA’s. In order to hardware execution take place
a function call with the necessary addresses as arguments must be implemented.

As we described above the two first arguments are the pointers to the PDF vec-
tor and initialization data respectively. The rest of the values are constants for each
architecture of MI core.

After the necessary allocations, the software is ready to call the co-processor to
start processing the dataset, so at this point, a function call implemented through the
convey-specific copcall fmt() function. We note that the limited attributes of this func-
tion call is set to 15 64-bit values.The figure 4.3 illustrates the copcall fmt() with the
attributes for the MI calculation.

Copcall_fmt()
A
e Y
Pointerto Pointerto Pointerto Pointerto Pointer
Pointer to the PDF . . the sizes of | the sizes of | inverse size Pointer
vector mantissa @RI the p(x) and | the p(x,y) of the time | result arra
init data init data P Py ) 4
p(y) vectors vectors series
‘ f
1 1
o { 2 1 1 1 1
o { ’ ’
# of # of
elements elements #of parallel| | # of parallel
pixy) LG SR EIER L EEES MiCores | |4 ofparallel| |# ofparallel
RXRXR Ml Cores Ml Cores

FIGURE 4.3: copcallfmt() function call with attributes of Mutual Informa-
tion

Afterwards, all the initial addresses for each memory controller, are assigned via a
short assembly script. This assembly script can be modified by the user. More specif-
ically this script is responsible for the routing of all the necessary constants and ad-
dresses to the FPGA'’s, in order to start the processing. This script also is responsible
for the sharing of the workload from one to four AEs, depending on the preferences of
the programmer. In our implementation this script is designed for multi-FPGA instan-
tiations as for single-FPGA ones, with the difference that each AE is assigned different
addresses.
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4.1.4 Hardware Architecture Instantiation

After the pre-processing all the necessary data are allocated on the shared memory of
the Convey HC-2ex. Afterwards the co-processor is ready to process the data and cal-
culate the Mutual Information. In this section we present the basic architecture which
mapped onto the FPGA’s. The proposed architecture is described using VHDL and de-
veloped with the Xilinx ISE 12.4 interface, while the floating-point cores and memory
elements are generated by the Xilinx Core Generator.

4.1.4.1 Decomposition of the Problem

From the software profiling, we conclude that when p(z), p(y) and p(z,y) vector cre-
ated, the final result is ready after R? clock cycles. So taking into account the idea of
parallel computing, we can split p(y) and p(z, y) into two streams.

Architecture of Ml calculation

Information core
even

> .
Final M
Interconnect
and control > Sum | result

Mutual
Information core

FIGURE 4.4: Partitioning of the Mutual Information Algorithm

Then, each half of p(y) and p(z, y) are processed simultaneously, as there is no de-
pendence between the different levels of the distribution function. The system uses
two parallel units to compute an MI value twice. Note that we do not have to split
p(x), we split only p(y) and p(z, y) vectors due to the fact that index y in the sum for-
mula remains constant, thus allowing us to divide the vector, whereas index x receives
all possible values in the range from 1 to R for a constant y. Therefore, the hardware
produces two partial MI, the first produced from the elements in the even positions
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of the vector and the second produced from the elements in the odd positions of the
vector that are summed at the end of the partial calculation of the Mutual Information.
With this simple consideration we divide the required time of R? by a factor of 2, which
means finally %2 cycles.

The figure 4.4 illustrates the idea of partitioning the MI algorithm in odd and even
pipelined cores. We note that the hardware processing is fully pipelined, meaning that
to produce correct partial MI values each cycle, the respective p(x), p(y) and p(z,y)
vectors should arrive simultaneously at each processing unit of the MI calculation.

The idea of splitting the p(y) and p(z, y) vectors into odd and even sub-vectors was
invented by the way which the data allocated in the shared memory of the Convey
HC-2ex. More specifically when an address requested through memory controller to
the shared memory, the memory controller respond with an 64 bit value. The MI calcu-
lation uses single-precision floating-point arithmetic so in 64 bit we can store 2 single-
precision floating-point. With this consideration we exploit the whole bandwidth of
the system.

As a result with every request in the shared memory of the Convey HC-2ex through
memory controllers, the memory controllers respond with 2 single-precision floating-
point values each clock cycle.

41.4.2 Data Movement to Hardware Side

In this section we present the architecture between the computational modules of the
architecture and the shared memory. More specifically we describe how to retrieve and
manipulate the necessary data from the shared memory in order to calculate MI.

The main interface which connects the shared memory of the Hybrid-superComputer
with the FPGA's is the interface of Memory Controllers. More specifically the Memory
Controller interface provides the AEs with direct access to the co-processor memory.
The 4 AEs are connected to 8 MCs, each via a 300 MHz DDR interface designed by
Convey Computers, while each of the 8 interfaces is directly connected to a single MC.
As a result the 300 MHz interface is converted into two 150MHz memory ports to and
from the AE personality.

In our architecture every vector of p(x), p(y) and p(z,y), binds one memory con-
troller port each. Also when the core is ready for writing the result back to the shared
memory one of these three accepts the responsibility to store the result. Furthermore
that three memory controllers for each special-purpose core are responsible to retrieve
the constants which are essential for the computation.

The retrieval of the data from the shared memory can split up in two discrete
phases. To begin with:

e In the first phase the three memory controllers acquire the addresses of the al-
located constants from the C-based application in order to get retrieved in our
architecture. More specifically that means the length of the p(z) vector and p(y)
consequently, the length of the p(x,y) and the initialization data for the BRAM’s
for the logarithm unit.

e Afterwards in the second phase, we need to retrieve the PDF functions p(z,y),
p(x) and p(y) from the shared memory to the hardware side in order to MI calcu-
lation take place. In this phase as long as we retrieved the lengths of the vectors
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and the BRAM'’s has already initialized, we calculating the requested address
range for each vector. So as long as the length of each vector get retrieved as well
as the address of the first element of the vector passed through as argument, the
system starts to request the elements of the vectors in this address range through
memory controllers. The figure 4.5 illustrates the connection between the shared
memory of the system and our implementation. Note that all the FIFO’s which
are illustrated in the figure consist of two FIFO'’s instances which hold a floating
point 32-bit value.
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FIGURE 4.5: Connection between the architecture and the shared memory
of the Convey HC-2ex

To begin with as we can observe from the figure 4.5 every port to the shared mem-
ory is connected with a logic module implemented in our architecture which acts in
order to request data from the shared memory and manages all the responds and con-
trol signals from the memory. To be more specific we note that logic modules of the
memory controllers are intimately related with the control signals of the memory con-
troller. These three logic modules controlled by the main control unit as illustrated in
the figure 4.5. More specifically we look into the finite state machines of the three logic
modules as well as the finite state machine of the main control unit. In order to provide
a sufficient understanding, we present the functionality of each logic module:
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e MC logic 1: This logic module consists of two processes and retrieves the ele-
ments of the vector p(x). The first process is responsible for the requests from
our architecture to the shared memory and the second process is responsible for
counting the elements which are retrieved from the memory. This logic module
is connected with the interface of the first memory controller port of the system.
The first process is a finite state machine which consists of three states. The first
state is the state idle. In this state the logic module waits for a signal from the
Main Control Unit in order to proceed to the next state. Note that when this logic
module is in the idle state, the Main Control Unit is responsible for fetching the
proper addresses to the logic module in order to request data. When the synchro-
nization signal arises, the finite state machine proceed to the next state which is
the state load. In this state the logic module has already fetched the length and
the first address of the vector, so it can calculate the last address of it. Afterwards
starts to request the addresses from the first address up to the last address of the
vector. After that the logic module proceed to the idle state again and waits for
the store signal which arises when the result is ready for store from the pipeline.
This control signal synchronized from the Main Control Unit. When the store
signal arises the logic module proceed to the store state in order to enable all the
proper signals of the memory controller for a store. When the respond from the
memory that the result stored arises, the logic module proceed to the idle state
again and waits for the system to finish the calculation. As we mentioned above
the logic module has two processes, in other words, two finite state machines in
parallel. Up to this point we described the first FSM which is responsible for the
requests of the data.

The second FSM is responsible for counting the retrieved elements. It has two
states the state idle and the state count. The function of idle state is exactly the
same with the idle state in the first process. In the count the process waits for new
elements and when a new requested element retrieved, this state keeps a counter
updated.

So with this logic module we retrieve a piece of elements based on their first
address and their length and we can keep a counter updated about the number
of elements which retrieved from the shared memory as well as to store the MI
result.

e MClogic 2: This logic module fetches the elements of the vector p(y) and consists
of two processes. The first is responsible for the requests in the shared memory
and the second is responsible for counting the retrieved elements, similarly with
the MC logic 1. To begin with the first process is the same with the process of MC
logic 1 with the only difference the number of states. Because the store request
to the shared memory implemented by the memory controller which fetches the
vector p(z), in this process we meet only two states, the idle state as well as the
load state. The idle state is exactly the same with the idle state of the MC logic 1. As
we described above the load state is the state which starts to request the addresses
from the first address up to the last address of the vector. The only difference with
MC logic 1 is that when the vector retrieved, then the load state starts from scratch
in order to retrieve the vector p(y) R times. The fact that distribution estimations
p(z) and p(y) are one-dimensional vectors and the calculation of MI assumes that
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for one retrieved element of p(z) vector, needs to retrieve all the elements of p(y)
as well as R elements from the vector p(z, y) for one iteration of element p(z), lead
us to the decision to stream p(y) vector R times into the architecture. When the
retrieval of the vector R times finished, the logic module proceed to the idle state
again and waits for the system to finish the calculation.

The second in parallel FSM is responsible for the counting of the retrieved ele-
ments as described above in the MC logic 1. The only difference is that in the
count state the counter counts how many times the vector retrieved, while in the
MC logic 1 the counter counts the number of elements which retrieved from the
memory. When the vector retrieved R times then the function proceed to idle
state.

e MC logic 3: This logic module responds with the elements of the p(z,y) vector.
The processes of this logic module are two and the first process is exactly the
same with the first process of the MC logic 1 but without the functionality of the
storing state as well as the second process described in the MC logic 1 with the
same number of states.

The figure 4.6 illustrates the functionality which described up to this point for the
MC logic 1, the figure 4.7 illustrates the MC logic 2. The MC logic 3 is similarly with MC
logic 1 and MC logic 2 as described above.
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When retrieve the first
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the vector, calculate the last
address and start to request
this address space. When the
requested address space
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architecture about store
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order to store the result.
When the ack arises the
logicmodule proceed
the IDLE.

LOAD finished

(A)
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Main Control Unit
tostarttoload =1

COUNT
finished
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FIGURE 4.6: Finite State Machines for the Memory Logic 1. In (A) illus-
trated the FSM for the load and in (B) illustrated the FSM for the count.
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FIGURE 4.7: Finite State Machines for the Memory Logic 2. In (A) illus-
trated the FSM for the load and in (B) illustrated the FSM for the count.

41.4.3 The Main Control Unit

The Main Control Unit as shown in the figure 4.5 is the main unit which controls all
the units in our architecture. This finite state machine has 7 states, all of them con-
trol a different part of the system. To begin with we present the functionality of each
state in order to provide a sufficient understanding. So the functionality of each state
implemented as follows:

e idle state: This is the first state of the Main Control Unit and it is the state which
waits for the start signal in order to proceed to the next state and control the re-
set of the system in case of reset mode. In this state when the start signal arises,
the MC logic 1 updated with the address of the length of the p(z) and p(y) conse-
quently, the MC logic 2 updated with the address of the p(x,y) vector length and
the MC logic 3 updated with the first address of the initialization data block for
the mantissa vector and its size in the shared memory. So after that, the Main
Control Unit proceed to the init mantissa state in order to wait for the two con-
stants (length p(z) and length p(z, y)) and the mantissa vector to be retrieved.

e init mantissa state: This state is responsible for the initialization of the first of
the two BRAM'’s in the logarithm unit. This state is responsible for counting how
many elements of the mantissa vector have been stored in the BRAM. When the
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counting finished and the data stored to the BRAM, the Main Control Unit re-
ceives the acknowledgement signals in order to proceed to the initialization of
the second BRAM of the logarithm unit.

e init exponent state: This state is responsible for the initialization of the second
BRAM in the logarithm unit in the pipeline. This state is similarly the same with
the previous state with the only difference that the Main Control Unit updates the
MC logic 3 with the first address of the initialization data block for the exponent
vector and its size.

e wait for non empty fifos state: After the initialization of the system, the logic
modules updated with the first addresses and their sizes of the vectors of Mutual
and joint Probability Density Functions which are allocated in the shared mem-
ory and they start to request addresses in the calculated address space of each
vector. Instead of feeding the inputs of the pipeline, the responded data stored in
block RAM’s configured as FIFO’s. When the Main Control Unit updated that
the FIFO’s hold a sufficient number of elements in order to start the processing
the Main Control Unit proceed to the next processing state.

e processing state: This is the most important state of the Main Control Unit. This
state is the state which controls all the memory elements configured as FIFO’s
before the pipeline and the pipeline instead. Because the iterations for the MI
calculation is known from the lengths of the PDF functions, the number of it-
erations which the system implements is predefined. So in this state when the
FIFO’s hold a sufficient number of elements in order to process simultaneously
the three vectors, an iteration is done. We note that all individual components
of this architecture are finely tuned in order to receive new data for processing
once every clock cycle in order to eliminate the need for stalls for the purpose of
avoiding possible hazards. So after the proper number of iterations done in order
to calculate the MI this states proceed to the next state.

e wait for finish signal state: After the proper number of iterations this state waits
for an acknowledgement signal from the pipeline when the result is ready for
store. When this signal arises, the Main Control Unit proceed to the next state
but in this state the MC logic 1 updated with the address of the shared memory
in which the result will be stored.

e store state: This is the state in which the store request implemented from our ar-
chitecture to the shared memory. This state waits for the MC logic 1 to implement
a store request to the shared memory and when the store is successful proceed to
the next state.

e finish state: This is the last state of the Main Control Unit and this state is respon-
sible to check that there are not any requests from and to the shared memory
which are out of date and sends a finish signal to the host processor in order to
finish the processing in the co-processor of the system and return the execution
of our application in the host side.

The figure 4.8 illustrates the FSM which described up to this point, in order to allowed
us to understand the main control of the system.
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FIGURE 4.8: The Finite State Machine (FSM) of the Main Control of the
system

4.1.44 Computation Core on Hardware Side

The hardware architecture which calculates the MI is shown in figure 4.9. As we de-
scribed before, in our implementation we use two parallel special-purpose units to
compute the partial MI, in order to divide the number of iterations by two. The figure
illustrates one of these cores. Note that, in order to calculate the final MI we need two
of these cores in parallel and the partial results of these two cores added through an
adder unit which produces the final MI result.

As presented above, when the FIFO’s hold a sufficient number of elements in order
to start the processing, which means that one element from every PDF vector is ready
to inserted to the pipeline, the processing starts and these values are processed in the
pipeline. Note that the MI hardware architecture is fully pipelined, which means that
if and only if, there are no exist stalls, an iteration of the MI calculation is performed
every clock cycle.

More specifically about stalls, a stall requested from the Main Control Unit to the
pipeline when one element from a vector can not inserted to the pipeline simultane-
ously with the elements of the other two vectors. In this case, the iteration can not
implemented from the pipeline and all the units of the pipeline wait until the elements
of the current iteration processed simultaneously. All the basic arithmetic functions
use single-precision floating point and implemented with the Xilinx Core Generator.
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The logarithm unit and the Sum Unit consists of more complex arithmetic operations
and are described in detail in the following sections.
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FIGURE 4.9: Mutual Information Hardware Core Architecture

4.1.4.5 Sum Unit

The Sum unit, is the unit which is responsible for accumulating the partial results.
It consists of three modules, 2 single-precision floating point adders and one FIFO.
The main hardware implementation of the Sum unit illustrated in the figure 4.10. The
2 single-precision floating point adders are fully pipelined with latency of 11 clock
cycles, which means that the first result of the adder after the insertion of the data in
the Sum unit will be observed after 11 clock cycles. To be more specific the calculation
of the MI demands one element for each p(z,y), p(y) and p(x) should be streamed
every “adder latency” clock cycles. Indisputably, this idea is not optimized because it
implements a “adder latency” times slower system architecture. In order to overcome
this obstacle, an instance per stream is inputted every clock cycle, accumulated and
stored in the “adder latency”-depth pipeline buffer, but with the first slot of the buffer
containing the results of instances 1 + 12 + ... and so on. Similarly the second slot of the
buffer contains the partial results of inputs 2 + 13 + .. and so on. This applies for all the
11 slots of the feedback buffer. Afterwards, each slot of the buffer will contain the final
11 partial sums that are streamed to the final adder in order to sum the final 11 partial
sums. Also this adder has a latency of 11 clock cycles. All the above functionality
controlled by the Sum Unit Control which controlled by the Main Control Unit.

In order to yield a better overall understanding the Sum Unit Control consists of 5
states. The functionality of the Sum Unit Control is as follows:
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FIGURE 4.10: The Sum Unit of the Mutual Information Hardware core

e idle state : In this state the Sum unit waits for a signal which asserted when the
tirst element of the stream is ready to inserted to the Sum unit.

o init state : This state waits for "adder latency” clock cycles for the adder core
in order to produce the first result after the insertion of the first element of the
stream. Note that in the first iteration and until the first elements stored in the
FIFO the second port of the adder is connected with zero via a multiplexer.

o writestart state : After the latency clock cycles the first result of the adder stored
in the FIFO.So after “adder latency” clock cycles + "adder latency” clock cycles the
sum unit control is ready to proceed to the next state. To conclude this state is
responsible for filling the FIFO with the first 11 results of the add unit.

o readwritestart state : After the writestart state, the Sum Unit Control proceed
to the next state. In the readwritestart state, in every clock cycle one element was
read from the FIFO and added with the current element of the stream which
inserted in the sum unit and the current result stored to the FIFO. This state reads
one element from the FIFO and stores the current result of the adder for length of
stream + 22 cycles. Note that 22 is the latency of the adder and the latency of the
tifo to fill up with elements.

e finalsum state : In the end of readwritestart state, the FIFO holds the last 11 partial
sums in order to calculate the final MI. In this state the 11 slots of the buffer added
in add unit as illustrated in the figure 4.10.
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4.1.4.6 Logarithm Unit

The Logarithm Unit is illustrated in figure 4.11. In this unit we use the architecture
for floating-point logarithm calculation with a piece of changes in our implementa-
tion, designed by Nikolaos Alachiotis and Alexandros Stamatakis which described in
[25]. The open-source VHDL implementation of logarithm approximation unit for FP-
GAs downloaded from here.The architecture of the Logarithm Unit which proposed,
can be easily adjusted to the desired accuracy, and their implementation is based on
the ICSILog approximation method. More specifically an IEEE floating point number
consists of three fields: the sign(sgn), the exponent(exp), and the mantissa (man). The
decimal floating point value of a number (num) is represented as follows:

num = (+/—)2°" x man (4.1)

In order to calculate the logarithm of num, one can use the multiplicative property
of the logarithmic function and decompose the computation as follows:

log(num) = log(2°" x man) (4.2)
= log(2%?) + log(man) (4.3)
= exp X log(2) + log(man) (4.4)

Since the real-valued logarithm is only defined for positive numbers, the sign bit
can be discarded. The factor by which exp is multiplied is a constant and only depends
on the base of the logarithm. Thus, the calculation of the logarithm for an arbitrary
base x, only requires the constant log,(2) and an appropriately initialized full-size LUT
(comprising all values) for the base x. As we observe, the calculation has two parts the
first part is the exp x log(2) and the second part is log(man). The calculation of the first
part of the sum requires the floating point representation for the decimal value of the
exponent field. As presented in the figure 4.11 in order to calculate the first part of the
equation 4.2, the proposed architecture use a separate LUT that is exclusively used for
this conversion.

The implementation is based on the observation that there is a correspondence be-
tween the decimal values of the exponent field and the exponents themselves. For sin-
gle precision the exponent range is from —126 to +127. In order to reduce the size of the
exp_LUT by 50% the proposed architecture stores only the bits required to represent
floating point numbers in the range 0 — 126. To support the full range uses additional
logic as described in figure 4.11. After this transformation, the resulting floating point
number becomes the first operand of the multiplication. The second operand is a con-
stant value. The second part of the equation 4.2 calculated by the man_LUT module
as illustrated in 4.11. The man_LUT is the standard quantized LUT of the ICSILog al-
gorithm and contains pre-calculated values of logarithms. The most significant bits of
the mantissa are used for indexing the man_LUT. Each entry of the table consists of
a single precision floating point number. After that the two calculated parts proceed
to the add unit in order to calculate the final result. The leftmost module is the spe-
cial_case_detector. As the name suggests, this module assesses whether the input to the
LAU is valid or not as defined by the IEEE standard.Both lookup tables are enhanced
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by a construct_sp_fp_value unit.These units consist of logic gates, registers, and multi-
plexers which are used to construct the correct floating point representations from the
respective LUT entries.
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FIGURE 4.11: The Logarithm Unit of the Mutual Information Hardware
core

To adapt the architecture of Logarithm Unit to our implementation, some changes
in the Logarithm Unit are essential. In order to make our implementation fully pa-
rameterized, the initialization of the BRAM’s without the use of COE files was a matter
of necessity. In our architecture, we load the initialization files in the host side from
the C-based application, and hold them in the shared memory of the system. After-
wards in the hardware side, in the initialization phase, we fetch the elements for the
two BRAM'’s in order to initialize them. The downloaded version of Logarithm Unit
also makes available several COE files that can be used to initialize LUTs of various
sizes and hence easily adapt the LAUs to the desired accuracy level, so these COE files
can be loaded in our implementation and in the initialization phase we can control the
desired accuracy of our result. In order to implement this functionality in our system,
the use of additional logic and the use of multiplexers in the inputs of the Logarithm
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Unit were a matter of necessity. It is inevitable result that the size of the COE files are
amenable to the BRAM’s size. Note that if the LUT size is increased, the speed will only
slightly decrease. Also as the authors of the paper present, a LUT with 4,096 entries
represents a good trade-off between accuracy and LUT size. In our implementation we
use LUT with 4,096 entries and the result for our application was providing a sufficient
accuracy.

The authors of the paper proposed specific LUT for base e. So the result of Loga-
rithm Unit is log. (input). To the best of our knowledge, the only open-source logarithm
for FPGAs is the one provided by FloPoCo [6]. One can use FloPoCo [6] to generate
the aforementioned logarithm implementation, but in our case because of compatibil-
ity issues with the Convey platform, we implemented the Logarithm Unit as proposed
in the paper, in order to calculate the [og.(input) and then using the change of base
formula we can calculate the logs(input). The change of base formula implemented as
follows:

log,(v) (4.5)

08(*) = 104,0)

4.1.5 Multi-core Architecture

In the previous sections we presented the architecture for one core, which means that
we calculate one MI value in one FPGA of the Convey HC-2ex.
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FIGURE 4.12: The Multi-core architecture of the Mutual Information

In terms of parallelism, as long as the FPGA resources allow us to map more than
one core and memory controllers are available, we can map more than one core of MI
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algorithm in the FPGA. Taking into account all the above, we expand our architecture
and we manage to map up to 5 cores per FPGA. The figure 4.12 illustrates the Multi-
core architecture of MI algorithm. As we can observe from the figure, every FPGA of
the system exploits the 16 total memory controller ports. Each core is connected to
three ports of memory controllers. The basic architecture of each MI core illustrated in
4.5. On the Host side with the C-based application, the arrays of constants for each MI
core allocated in the shared memory as provided in figure 4.3. On the FPGA side, the
top-level of the architecture is responsible for the routing of the first address to the con-
tiguous memory space in which the PDF vectors for each MI core are located, as well
as for the routing of the first address of the contiguous memory space that the output
data will be stored. Note that in the Multi-core architecture each MI result stored in
the corresponding address of a result array. Also the top-level is responsible to fetch
the addresses of the init mantissa array and init exponent array which are the arrays with
the initialization data for the BRAM’s of Logarithm Unit which are common to each
MI core. Furthermore in order to calculate the MI, each core needs the addresses of the
constants in order to fetch the lengths of the vectors. After the distribution of the above
addresses we proceed to the initialization phase. In the initialization phase as long as
the distribution of the addresses has already done, each MI core fetches the lengths of
the PDF vectors and the initialization arrays for the BRAM'’s of each Logarithm Unit
and the processing is ready to start. For each MI core the time series lengths are differ-
ent as well as the PDF vectors lengths are different. As a result some cores produce the
tinal MI result faster than others. Our architecture is designed to wait all the MI cores
to finish, store the result back to the shared memory and then the processing returns
to the C-based application.The figure 4.12 illustrates the Multi-core architecture of MI
algorithm.

4.1.6 Multi-FPGA Architecture

In the previous section we provided the Multi-core architecture of the MI algorithm.
This architecture can calculate 5 different MI results. The Convey HC-2ex is equipped
with 4 Virtex6 LX760 FPGA. The same bitfile must be downloaded on all FPGAs in
order to use them. So in the Multi-FPGA architecture we can produce up to 20 MI re-
sults. When the host requests through the copcall function, the initial addresses for each
memory controller are assigned through a short assembly script, which also routes the
constants to the corresponding ports of the architecture. Since only one pointer is pro-
vided for the input data memory space, this script implements scalar instructions to
determine the correct initial address for each of the two ports of each memory con-
troller through the use of a predefined step depending on the dataset size. The script
ends by notifying the co-processor that all data and initial addresses are in order, thus
the AEs can start processing the dataset. Note that each assembly instruction may be
formed to refer to any number of AEs, therefore the user may choose how many AEs
will share the workload. The figure 4.13 illustrates the Multi-FPGA architecture of MI
algorithm.
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FIGURE 4.13: The multi-FPGA architecture of the Mutual Information al-
gorithm

4.2 Transfer Entropy

As described in the equations 2.21 and 2.22 the algorithm of Transfer Entropy takes as
input two random variables in the form of time series and produces one value which
is the result of the Transfer Entropy of these two random variables. Transfer Entropy
calculation is a computationally intensive algorithm with O(R?) complexity, making
an excellent candidate for implementation on heterogeneous hardware.

4.2.1 Software Profiling of TE Algorithm

In order to optimize the calculation of the Transfer Entropy, it is necessary to profiling
the software algorithm as we already done with the Mutual Information algorithm, in
order to find the most-computationally intensive part of the algorithm and accelerate
it on hardware.

Before to proceed to the calculation of Transfer Entropy algorithm, the estimation
of Probability Density Functions (PDF) are necessary. For TE, just like Mutual Infor-
mation, histograms were used for PDF estimation. The output of the histograms are
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p(x),p(x,y), p(Tnt1, ) and p(z,41, 2, y). These functions are represented by a 1-D array
for p(z), two 2-D arrays for p(z,y) and p(z,+1, ), and one 3-D array for p(z,41,z,y).
The result is the estimation of the PDF’s functions given two random variables. The
table 4.3 shows the dependency between the execution time and the size of the inputs
for the PDF estimation keeping the resolution equal to 1200 because this value is the
maximum value for the resolution we can reach in our experiments. As we observe
from the table 4.3, we conclude that the execution time for PDF estimation increases
linearly with the input size just like the Mutual Information Algorithm.

On the other side, on the table 4.4 we can conclude that increasing the number of
bins, can cause the cube increase of the execution time, keeping the size of time series
to a fixed value of 100000 elements. Furthermore from the equations 2.21 and 2.22 goes
without saying that the time complexity for the TE computation is O(R?). To provide a
sufficient understanding, just like with Mutual Information, for very small number of
Bins and very large time series lengths the PDF estimation can be more time consum-
ing but for example for 1200 bins and for size of time series equal to 100000 elements,
the TE computation requires 24.5 sec, whereas the creation of the histogram only needs
0.0062 sec which means that the most of the time consumed to the calculation of Trans-
fer Entropy.

TABLE 4.3: Dependency between the execution time and the size of the
inputs for the PDF estimation of the Transfer Entropy Algorithm.

Time series(Elements) | Execution Time(sec)
10000 0.00059
100000 0.0062
1000000 0.065
10000000 0.71
100000000 7.8
1000000000 72.3

TABLE 4.4: Dependency between the execution time and the number of

bins for the Transfer Entropy Algorithm.

Number of Bins(R) | Execution Time(sec)
100 0.05
200 0.28
500 3.51
800 12.8
1000 245
1200 40.9

To conclude, based on the tables 4.3 and 4.4, we can assume that the most compu-
tationally intensive part of the TE algorithm is the final computation of this statistic
value, just like the MI algorithm. As a result we have been summoned to accelerate the
TE calculation between two random variables.
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4.2.2 CPU and FPGA Integrated System of TE Architecture

The splitting of TE Algorithm is the same with the splitting of MI algorithm. So we
follow the same steps with the MI algorithm and partitioning the TE algorithm in two
parts. The first part is the PDF estimation and the second part is the computationally
intensive part of the TE algorithm which is the final computation of its statistic value,
which means that the first part of the algorithm was implemented on the host side
of the system and the second part was mapped on the hardware side, just like the
MI algorithm. The figure 4.14, illustrates the basic System Architecture of Transfer
Entropy algorithm. As we can observe from the figure 4.14, the inputs in the PDF stage
are the random variables X,Y in form of time series and the outputs are the probability
vectors p(z), p(z,y), p(Tnt1, ), p(Tnt1,2,y). The flowchart that corresponds to the TE
calculation is exactly the same with the flowchart of MI algorithm which illustrated in
tigure 4.2.
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FIGURE 4.14: Basic System Architecture of Transfer Entropy
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4.2.3 Pre-processing on Host Processor

Due to the similarity of MI algorithm and TE algorithm, the Pre-processing phase on
Host Processor for TE algorithm is similar with the Pre-processing phase of MI algo-
rithm which described in section 4.1.3. So the only difference between the two Pre-
processing phases is that the PDF estimation for TE algorithm creates different proba-
bility vectors with different lengths. To be more specific as we described in the previous
section the TE PDF estimation phase produces 1-D array for p(x), two 2-D arrays for
p(x,y) and p(z,4+1, ), and one 3-D array for p(z,+1, x,y). After the allocation of the vec-
tors and the initialization constants, a function call to the co-processor is ready. As we
described in section 4.1.3 the two first arguments of the function call are the pointers
to the PDF vector and the initialization vectors respectively. The rest of the values are
constants for each architecture of TE core. After the necessary allocations,the software
is ready to call the co-processor so at this point, a function call implemented through
the convey-specific copcall fmt() function.The figure 4.15 illustrates the copcall fmit()
with the attributes for the TE calculation.
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4 Y
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| _array | TE Cores

FIGURE 4.15: copcallfmt() function call with attributes of Transfer Entropy

4.2.4 Hardware Architecture Instantiation

After the function call, the co-processor is ready to process the data and calculate the
Transfer Entropy value given two random variables. In this section we present the
basic architecture which mapped onto the FPGA’s. Note that the Transfer Entropy
and the Mutual Information algorithms are very similar in their implementation. As
a result some sections which are describing the basic architecture of TE, presented as
references to the implemented sections of MI architecture.
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4.24.1 Decomposition of the Problem

From the software profiling, just like with the MI algorithm we conclude that when
p(x), p(z,y), p(xni1, ), and p(z,41, %, y) vectors created, the final result is ready after
R? clock cycles. So taking into account the idea of parallel computing, we can split
p(x,y), p(ni1,2,y) into two streams. Then, each half of p(z,y), p(x,41,x,y) is pro-
cessed simultaneously, as there is no dependence between the different levels of the
distribution function. The system uses two parallel units to compute an TE value twice.
Therefore, the hardware produces two partial TE, the first produced from the elements
in the even positions of the vector and the second produced from the elements in the
odd positions of the vector which are summed at the end of the partial calculation of
the Transfer Entropy. With this simple consideration we divide the required time of R?
by a factor of 2, which means finally £ cycles.

The figure 4.16 illustrates the idea of partitioning the TE algorithm in odd and
even pipelined cores. We note that the hardware processing is fully pipelined, mean-
ing that to produce correct partial TE values each cycle, the respective p(z), p(z,y),
p(@pi1,),and p(z,41,x,y) vectors should arrive simultaneously at each processing
unit of the TE calculation.
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FIGURE 4.16: Partitioning of the Transfer Entropy Algorithm
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4.2.4.2 Data Movement to the Hardware Side

This section describes how to retrieve and manipulate the necessary data vectors from
the shared memory in order to calculate the TE. Every vector of p(z), p(x,vy), p(Tnt1, ),
and p(z,+1, x, y), uses one memory controller port each. As a result in contrast with the
MI architecture, we use four memory controllers, one for each PDF vector. Furthermore
the four memory controllers for each special-purpose core are responsible to retrieve
the constants which are essential for the computation.
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FIGURE 4.17: Connection between the architecture and shared memory of
the Convey HC-2ex

Every port to the shared memory is connected to a logic module in our architec-
ture, which acts in order to request data from the shared memory and manages all the
responds and control signals from the memory. These logic modules controlled by the
Main Control Unit which is responsible to control the system. A detailed description
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of functionality of each logic module was provided in section 4.1.4.2. The only differ-
ence between the MI architecture and the TE architecture is the inclusion of another
one logic module which controls another one memory controller port. The figure 4.17
illustrates the interconnect between the TE architecture and shared memory. Note that
all the illustrated FIFO’s consist of two 32-bit FIFO’s. More specifically in the initial-
ization phase, the MC logic 1 and the MC logic 2 has the same functionality with the MI
architecture. The MC logic 3 is responsible to fetch the length of the p(z,11, z,y) and the
MC logic 4 is responsible for the initialization of the BRAM’s for the Logarithm Unit.
In the second phase the logic modules acquire the addresses of the PDF vectors. The
MC logic 1 fetches the vector p(z), the MC logic 2 fetches the p(x,1,x) vector, the MC
logic 3 responds with the elements of p(z, y) vector and the MC logic 4 assigned to the
p(Znt1,x,y) vector. The basic functionality of each logic module described in section
4.1.4.2. Note that the MC logic 4 has exactly the same functionality with the MC logic 3
module of the MI architecture.

4.2.4.3 The Main Control Unit

The Main Control Unit which illustrated in the figure 4.17 is the module which con-
trols all the signals of the architecture. It is responsible for enabling the logic modules
in order to fetch the data from the memory, manage the FIFO’s of before the computa-
tional cores in order to process the data simultaneously as well as to control the cores
in order to produce the partial TE results and finally to be added at the end. It consists
of 7 states, all of them control a different part of the system. The detailed functionality
of Main Control Unit was provided in the section 4.1.4.3 in which every state described
individually.

4.2.4.4 Computation Core on Hardware Side

In this section we describe the basic hardware architecture for the calculation of TE.
Because the MI algorithm is very similar with the TE algorithm the implementation of
the pipelined core is based on the implementation in section 4.1.4.4. In our implemen-
tation we use two parallel special-purpose units to compute the partial TE just like the
MI architecture, in order to divide the number of iterations by two. Note that, in order
to calculate the final TE we need two of these cores in parallel and the partial results
of these two cores added through a adder unit which produces the final TE result.The
difference of the two algorithms is the size of the PDF vectors, which for MI is k? and
for TE is R? and the additional vector as input. The figure 4.18 illustrates the basic core
architecture of TE algorithm.

4.2.4.5 Sum Unit

The Sum unit of the TE architecture is responsible of accumulating the partial results.
It consists of three modules, 2 single-precision floating point adders and one FIFO.
The main hardware implementation of the Sum unit illustrated in the figure 4.10. The
functionality of Sum unit controlled by the Sum Unit Control which is controlled by
the Main Control Unit. The Main Control Unit consists of 5 states. Because of MI archi-
tecture and TE architecture use the exactly the same Sum unit a detailed description of
this unit was provided in section 4.1.4.5.
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FIGURE 4.18: Transfer Entropy Hardware Core Architecture

4.2.4.6 Logarithm Unit

As we can observe in figure 4.18 in order to calculate TE a Logarithm Unit is needed.
We use in our implementation the Logarithm Unit which proposed by Nikolaos Ala-
chiotis and Alexandros Stamatakis and described in [25] as we use in MI architecture.
One of the advantages of this architecture is the ability to easily adjusted to the desired
accuracy. The architecture of Logarithm Unit is based on the ICSILog approximation
method. The basic architecture as well as the changes which are made in order to
adapt the architecture of Logarithm Unit to our implementation presented in the sec-
tion 4.1.4.6 and the basic architecture of the Logarithm Unit illustrated in 4.11.

4.2.5 Multi-core Architecture

Up to this point we presented a detailed functionality of the TE architecture and how
every unit of the architecture acts in order to calculate the TE result. In order to in-
crease the throughput of the system we compute up to 4 different TE results in parallel
in each FPGA. So we implemented an architecture in which we mapped 4 TE cores in
one FPGA. This architecture is very similar with the multi-core MI architecture. The
detailed functionality of multi-core architecture was provided in section 4.1.5. The
only difference with the MI multi-core architecture is that in the TE multi-core archi-
tecture we mapped up to 4 cores in contrast with MI in which we use up to 5. This
difference is based on the number of memory controllers which use each independent
core. Another difference is the changes in the assembly script which are made in order
to distribute the proper addresses to each FPGA and constants which are necessary
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for the processing. The figure 4.19 illustrates the Multi-core Architecture for the TE
algorithm.
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FIGURE 4.19: The Multi-core architecture of Transfer Entropy algorithm

4.2.6 Multi-FPGA Architecture

In order to entrench the 4 FPGAs of the system, we implemented a Multi-FPGA ar-
chitecture. In order to map the Multi-core Architecture to the 4 FPGA'’s of the system
the bitfile needs to distribute to all the FPGA’s. A detailed functionality of this ar-
chitecture was provided in section 4.1.6. Because the two algorithms are very similar
between them, the Multi-FPGA architectures for these two algorithms are very simi-
lar too. The basic difference between the two Multi-FPGA architectures is that on the
MI architecture we produce up to 20 different MI calculation but on the other side on
the TE architecture we produce up to 16. The main reason is related with the number
of memory controllers each core use which by extension means the best exploitation
of the available bandwidth between the AEs and the shared memory. The figure 4.20
provides the Multi-FPGA architecture of TE algorithm.
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Chapter 5

Experimental Evaluation and System
Verification

5.1 Setup

We implemented parallel cores of the computationally intensive algorithms of Mutual
Information and Transfer Entropy on the Convey HC-2ex platform. The HC-2ex sys-
tem, specifically, utilizes two Intel Xeon E5-2642 6-core as its host processor with 64 GB
RAM, four Xilinx Virtex LX760 FPGAs on its co-processor unit and a total of 128 GB
shared memory capable of providing up to 80 GB/s of memory bandwidth when the
four FPGA'’s of the co-processor are deployed. All the architectures were compiled to
run to the predefined from the system 150 MHz. As inputs in the two algorithms we
used artificial time-series due to the fact that at the time this thesis was written, we
wanted to be able to evaluate whether the final MI and TE result was correct. Also all
the experiments yielded with 100000 random time-series length.

5.2 System Verification

After the implementation phase, the two architectures needs to be properly verified
for correct operation and evaluated based on their performance in comparison with
reference software when processing a wide array of datasets. We present the steps we
follow for the verification of MI architecture. Because of the similarity of the MI and TE
algorithms the verification of TE architecture is exactly the same with the verification
of MI implementation.

The development process of the architecture design was accompanied by a number
of simulations that verified the correct operation. Each individual module before it was
connected to the rest of the architecture tested extensively using the Xilinx ISim 12.4
simulator. After the individual testing of the modules of the system, the fully imple-
mented systems operation was at first verified using ModelSim SE-64 6.5¢, along with
a simulation infrastructure provided by Convey Computers. By performing extensive
simulations of the system and its components, the correct and synchronized operation
was assured before attempting to map it onto the actual platform, thus minimizing the
chance of the latter malfunctioning. After the ensuring that the simulations of the ar-
chitecture confirm the proper operation of the design in regards to result correctness, it
was ready to mapped onto the AE FPGA’s and yield the results. In order to reduce the
risk of malfunction due to incorrect operation of the full system, the final verification
process was subdivided into 4 stages. The first stage consists of the verification of the
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software running on the host processor without a function call to the co-processor. It
is a very important step which ensures that the dataset is handled correctly and the
correct constants are calculated before attempting to pass them to the co-processor for
processing. Note that as inputs in the two algorithms we used artificial time-series.
The second verification stage addressed the proper retrieval of data to the AEs. This
step was necessary because, an erroneous data management could very easily lead us
to incorrect behavior from the architecture and, possibly, even system crash. In the
third stage, as long as the retrieval of the data were valid, the processing of the data
and the proper result were the main verification goals of this stage. That achieved
by cross-referencing the produced results by small datasets with their corresponding
known expected values calculated through the software implementation of each algo-
rithm. The fourth and the last stage was the management and the store of result. In
order to complete a store a piece of signals must controlled in order to a store request
be successful back to the shared memory. So in this stage verified the control of store
signals as well as verified the successful storing to the shared memory and the proper
tinish of the co-processor. Finally, with a working prototype in place, small-scale opti-
mization improvements were implementing and attempting to reach higher operating
clock frequencies, the achieved stable clock frequency is 149.5 MHz, with 150 MHz
being an upper bound imposed by the vendor.

5.3 Experimental Evaluation

This section presents the performance of the hardware-based MI and TE calculation
as well as the multi thread implementation on software. In order to yield a better
overall understanding about the behavior of our application on the Convey HC-2ex we
provide all the experiments we follow in order to yield the best possible performance.

5.3.1 Mutual Information
5.3.1.1 Multi-thread Software Implementation of MI

In order to explore the performance of the Mutual Information algorithm and yield an
overall understanding of the performance of this algorithm we expand the reference
software of MI in order to use multi-threading and evaluate this implementation in
software. We achieved this transformation using OpenMP API. In order to observe
the differences of a multi-thread execution on software only with our Multi-core and
Multi-FPGA architectures on the selected hybrid system we created an application
which calculates 12 MI cores in parallel on software. The yielded results provided
on the table 5.1. As expected, the multi-thread implementation with four cores on soft-
ware can not achieve a speedup of the theoretical 4x as well as the implementation of
twelve cores on software can not achieve the theoretical 12x compared to the reference
software because a decisive factor of the overall execution time of the application is
the memory bandwidth of the system which is shared to the implemented threads of
the application. However, as we can observe from the table 5.1 for a small number
of bins the execution time of the application is very small so the performance of the
multi-thread implementation is not very obvious. The platform software in which the
experiments took place was a two 6core Intel Xeon at 3.2GHz with 50GB RAM.



Chapter 5. Experimental Evaluation and System Verification 48

TABLE 5.1: Performance of Single-core Mutual Information calculation
compared with the performance of multi-threaded four-core and twelve
-core Mutual Information on software with 12 Ml-calls.

Resolution | single core SW | 4 core SW | SpeedUp | 12 core SW | SpeedUp
100 0.024 0.006 4 0.0027 8.88
500 0.144 0.042 3.42 0.020 7.2
1000 0.384 0.117 3.28 0.049 7.83
2000 1.32 0.42 3.14 0.180 7.33
5000 7.8 2.67 2.92 1.050 7.42

10000 30.96 10.7 2.86 4.3 7.2

5.3.1.2 Multi-thread Histogram Function

As we described in Chapter 4, the Host side runs the C-based application. A function-
call to the co-processor proceed to the calculation of the desired result. On the Host
side we decided after the software profiling analysis of the algorithm to implement the
function which is responsible for the PDF vectors creation. Because our architecture
calculates up to 16 Ml results in parallel, the idea of parallel creation of PDF vectors on
the Host side goes without saying that accelerates our application. So on the Host side,
the PDF vectors creation implemented with OpenMP API. Depending on the number
of parallel cores architecture, we use on the Host side the proper number of threads in
order to accelerate the piece of code which is responsible for the PDF vectors creation.
For example if we have an architecture with 16-cores hardware implementation, we use
16 threads on the Host side in order to create the PDF vectors in parallel and accelerate
the function. Each thread on the Host side assumes the PDF creation for one core. The
table 5.2 represents the execution time only for the PDF creation function in order to
yield a better overall understanding. To be more specific the first column represents
the Resolution of the Histogram. The other columns represent the execution time in
seconds for the PDF vectors creation for 2,4,8 and 16 PDF vectors creation with single
execution respectively.

TABLE 5.2: Performance of PDF creation function on the Host side with
single-thread execution of Mutual Information Algorithm.

Resolution | Hist-func(2) | Hist-func(4) | Hist-func(8) | Hist-func(16)
100 0.006451 0.01268 0.024 0.05
500 0.007 0.0136 0.026 0.055
1000 0.0075 0.015 0.032 0.064
2000 0.011 0.02 0.05 0.1
5000 0.049 0.097 0.2 0.41
10000 0.17 0.3 0.73 1.45

The table 5.3 represents the execution time in seconds of the PDF vector creation
with multi-thread execution. In this implementation each thread assumes the instance
of one PDF vector creation. In the next sections we will use the multi-threaded archi-
tectures for the PDF vectors creation on the Host side in order to evaluate our archi-
tectures. As we can observe from the tables 5.2 and 5.3 the achieved speedup of each
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implementation depending approximately from the number of different instances of
the function for the PDF vector creation.

TABLE 5.3: Performance of PDF creation function on the Host side with
multi-thread execution of Mutual Information Algorithm.

Resolution | Hist-func(2) | Hist-func(4) | Hist-func(8) | Hist-func(16)
100 0.00326 0.00327 0.0331 0.00341
500 0.00359 0.00361 0.0369 0.00376
1000 0.00378 0.00379 0.004 0.0042
2000 0.0055 0.00568 0.0062 0.00645
5000 0.0247 0.0248 0.025 0.02562
10000 0.0854 0.0855 0.0914 0.0923

5.3.1.3 Performance of MI Implementation

In this section we present the performance of the different implemented MI architec-
tures and evaluate them with other implemented architectures. In the following tables,
the column Resolution represents the Number of Bins. The column Software presents the
execution time in seconds for the reference software. The column Hist-func represents
the execution time in seconds in order to create the PDF vectors from the time-series on
the Host processor, the column Hardware is the time in seconds required to implement
the copcall function which means the Hardware time in the FPGA’s and the Memcpy
column is the time required to transfer the data to the shared memory in order to be
available for the AEs. The column overall is the aggregation between the Hist-func,
Hardware and memcpy columns in order to produce the overall execution time of our
application. Finally the last column of the tables is the speedup between the reference
software and our application.

To begin with, table 5.4 presents the results derived from the comparison between
the Mutual Information software implementation and the single core-hardware ap-
proach. Note that the architecture which reflects to these results, is our first imple-
mented architecture in which we were using the half bandwidth of the system. To be
more specific the Convey HC-2ex can fetch 64-bit words every clock cycle. In our first
steps in the exploration of the system and in order to be familiar with it, we were fetch-
ing in each FPGA, 32-bit words every clock cycle. Also in this implementation we are
not partitioning the PDF vectors in order to split the workload in two parallel cores.

TABLE 5.4: Performance of single-core MI Calculation with half band-
width usage in single FPGA.

Resolution | Software || Hist-func | Hardware | Memcpy | Overall | SpeedUp
100 0.002 0.0032 0.00015 | 0.00011 || 0.003473 0.57
500 0.012 0.00349 0.00176 | 0.00052 || 0.005775 2.07
1000 0.032 0.00367 0.0067 0.0017 0.01207 2.65
2000 0.11 0.0053 0.026 0.0066 0.0379 2.90
5000 0.65 0.024 0.16 0.04 0.224 2.90
10000 2.58 0.0843 0.66 0.16 0.9043 2.85
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The Table 5.5 provides another comparison which take place between the reference
software and a single-core MI of our application with full bandwidth usage which
means that in this implementation we exploit all the available bandwidth of the system
fetching every clock cycle 64-bit words, and splitting the PDF vectors as provided in
Chapter 4 in order to partitioning the workload. The results comparing the tables 5.4
and 5.5 respectively are the expected, because in the second architecture we divide the
execution time in FPGA by a factor of two as well as we use the full bandwidth of the

system.

TABLE 5.5: Performance of single-core MI Calculation with full band-
width usage in single FPGA.

Resolution | Software || Hist-func | Hardware | Memcpy | Overall | SpeedUp
100 0.002 0.0032 0.000123 | 0.00011 || 0.003438 0.58
500 0.012 0.00349 | 0.000924 | 0.00052 | 0.004936 2.43
1000 0.032 0.00367 0.0033 0.0017 0.00867 3.69
2000 0.11 0.0053 0.013 0.0066 0.00249 441
5000 0.65 0.024 0.083 0.04 0.147 4.42
10000 2.58 0.084 0.33 0.16 0.5743 4.49

Up to this point the yielded results provided by the single-core architecture of our
MI architecture. As long as we evaluated the architecture that works perfectly with one
core we proceed to design new architectures with more than one core in a single FPGA
as well as to find the best mapped architecture in one FPGA based on the available
resources of the Convey and expanded them to the four FPGA’s of the system. The
tables 5.6, 5.7, 5.8 present the yielded results from the two-core, four-core and five-core
MI architectures respectively. Taking into account these tables we can observe that the
yielded speedups from the four-core architecture with the five-core architecture are
very close. As a result we assume that the best mapped architecture in a single FPGA
is the four-core architecture for Mutual Information. In the next tables we present the
multi-FPGA architectures. We expanded the architectures of two-core and four-core
architectures in 4 FPGA’s. The tables 5.9 and 5.10 provide the yielded results of eight-
core and sixteen-core architectures respectively.

TABLE 5.6: Performance of 2-core MI Calculation in single FPGA with
Multi-threaded PDF function.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.002 0.003226 | 0.000123 | 0.000152 || 0.00353 1.13
500 0.012 0.00359 | 0.000924 | 0.00097 | 0.00548 4.37
1000 0.032 0.00378 0.0033 0.0034 0.0104 6.10
2000 0.11 0.055 0.013 0.013 0.0315 6.98
5000 0.65 0.0247 0.083 0.084 0.191 6.78
10000 2.58 0.0854 0.33 0.32 0.7354 7.01

The resource summary of all our architectures is shown in table 5.11.

As clearly

denoted by the table above, only a small fraction of the available resources of the FPGA
are utilized for the implementation of the architecture. Thus, any attempt to implement
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TABLE 5.7: Performance of 4-core MI Calculation in single FPGA with
Multi-threaded PDF function.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.002 0.00327 | 0.000123 | 0.000237 || 0.00363 2.20
500 0.012 0.00361 | 0.000924 | 0.0025 | 0.007034 6.82
1000 0.032 0.00379 0.0033 0.0067 0.01379 9.28
2000 0.11 0.0568 0.013 0.026 0.04468 9.84
5000 0.65 0.0248 0.083 0.16 0.2678 9.70
10000 2.58 0.085 0.33 0.63 1.0455 9.87

TABLE 5.8: Performance of 5-core MI Calculation in single FPGA with
Multi-threaded PDF function.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.002 0.00328 | 0.000123 | 0.000274 || 0.00367 271
500 0.012 0.00361 | 0.000924 0.0027 || 0.007234 8.29
1000 0.032 0.0038 0.0033 0.0084 0.015 10.32
2000 0.11 0.0062 0.013 0.032 0.051 10.74
5000 0.65 0.0249 0.083 0.2 0.307 10.55
10000 2.58 0.0863 0.33 0.81 1.226 10.51
TABLE 5.9: Performance of 2-core MI Calculation in 4 FPGA’s with Multi-
threaded PDF function.
Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.002 0.00331 | 0.000197 | 0.000277 || 0.003784 422
500 0.012 0.00369 | 0.000978 0.0023 || 0.006968 13.77
1000 0.032 0.004 0.0038 0.013 0.0208 12.30
2000 0.11 0.0062 0.014 0.052 0.0722 12.18
5000 0.65 0.025 0.085 0.32 0.43 12.09
10000 2.58 0.0914 0.34 1.2 1.6314 12.65
TABLE 5.10: Performance of 4-core MI Calculation in 4 FPGA’s with Multi-
threaded PDF functions.
Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.002 0.00341 | 0.000197 | 0.00046 || 0.004067 7.86
500 0.012 0.00376 | 0.000981 0.0065 || 0.011241 17.08
1000 0.032 0.0042 0.004 0.026 0.0342 14.97
2000 0.11 0.00645 0.016 0.1 0.12245 14.37
5000 0.65 0.02562 0.091 0.65 0.76662 13.56
10000 2.58 0.0923 0.358 2.6 3.0503 13.53

the proposed design is bound first by the available memory bandwidth and, if the latter

is large enough,only then will the available resources become a hindrance.

Taking into account all the above tables, we can illustrate the performance of the

Mutual Information implemented on the Convey HC-2ex.
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TABLE 5.11: Resources summary of the Multi-core architectures of Mutual
Information

occupied slices | slice registers | Slice LUT | DSPs | BRAMs
1 used 23555 74785 72082 32 120
core | percentage 19% 7% 15% 3% 16%
2 used 28178 92371 87745 64 160
core | percentage 23% 9% 18% 7% 22%
4 used 38154 128699 119296 128 240
core | percentage 32% 13% 25% 14% 33%
5 used 41987 145070 132823 160 260
core | percentage 35% 15% 28% 18% 36%

The figure 5.1 illustrates the different performances of the different architectures for
the MI algorithm.

Achieved Speed Up vs single core software

As we can conclude from figure 5.1 the maximum speedup derived from the the
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FIGURE 5.1: Achieved Speed Up for all the proposed architectures of MI
Algorithm. Note that the scaling factor in x axis is x100 and represents the
Resolution (Number of bins) of the MI algorithm.

architecture with 4 cores per FPGA when the 4 FPGA’s are enabled. Also as observed
from the waveforms until the resolution of the PDF vector reach the 1000 bins, all
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the architectures achieve the highest speedup of their performance compared to the
reference software. After reaching this value the speed up of each architecture settled
down. The behavior of these waveforms attests that although we manage to keep the
hardware time in low levels as well as we performed a multi threaded implementation
in the PDF vector creation the memory copy of the data to the shared memory is a
deciding factor of the overall time of our application because as the number of bins
getting wide the memory copy time is the most consuming part of the execution time
of our application.
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FIGURE 5.2: Time Consuming for all the proposed Architectures of MI
Algorithm.The x axis represents the number of Bins of the PDF vector.Note
that the scaling factor in x axis is x100

The figure 5.2 illustrates the distribution of the execution time in three main section
of the application.The y axis is the execution time in seconds and x axis represents the
performance of our architectures with different lengths of PDF vectors. Note that in the
figure illustrated only one small range of bins. The first section of the application is the
function which creates the PDF vectors.The second section consists of the transferring
of the memory blocks to the shared memory in order to the vectors retrieved very
fast from the FPGA'’s. The third section is the function call to the co-processor which
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means the hardware execution time. As we can observe from the figure the most time
consuming section of our application is the section which transfers the data to the
shared memory of the system. In order to yield a better overall understanding, the
tigure 5.3 illustrates the performance of our architectures with a more wide number
of of bins. The y axis represents the execution time in seconds but in logarithm scale in
order to draw a conclusion about the most time consuming section of our application.
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FIGURE 5.3: Time Consuming for all the proposed Architectures of MI
Algorithm in logarithm scale.The x axis represents the number of Bins of
the PDF vectors. Note that the scaling factor in x axis is x100

In order to reduce the time of memory copy to the shared memory a number of
different implementations took place. We re-designed our application in the Host pro-
cessor in order to implement it with threads. Our first idea was to partitioning the
memory blocks and assign the transferring of these memory blocks in threads in order
to transfer them in parallel. After the above implementation we conclude that the sys-
tem could not transfer the memory blocks with the use of threads. Another idea was
to partitioning the wide memory block with the PDF vector and processing smaller
memory blocks. With this idea we were creating a pipeline and we were transferring
a memory block. After the transferring of the first memory block we were processing
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this memory block and simultaneously we were transferring the second memory block
and etc. We came up with many obstacles with this implementation because the pro-
cessing time was a drop in the bucket in relation with the transferring time. Also the
required time to synchronize the pipeline of transferring and processing each mem-
ory block was very time consuming. So this implementation would be a very fruitful
alternative but under circumstances. Last but not least we came up with the idea of
transferring the memory block at once. To be more specific we wrote code in order to
transfer a very wide array with all the PDF vectors at once and then using the assem-
bly script to route all the necessary addresses to each FPGA. That happened because
the transferring of a wide array over the PCle is more efficient than to partitioning this
wide array and transfer it in blocks.
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FIGURE 5.4: Time Consuming for the single core on single FPGA of MI

Algorithm and the proposed reference software on logarithm scale. The x

axis represents the number of Bins of the PDF vector.Note that the scaling
factor in x axis is x100

The execution time of partitioning the memory block compared with the transfer-
ring this block at once are very close. That happened because from the scratch the vec-
tor partitioned in four wide memory blocks so the idea to transfer a very wide memory
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block would be more efficient if from the scratch, the transferring memory blocks were
much more than four.The difference between the partitioning these kind of wide arrays
which used for our experiments, from the transferring them at once was insignificant.
So taking into account all the above ideas, our effort to reduce the transferring time of
the memory blocks to the shared memory was impossible. Nevertheless the execution
time of our application was achieved a significant speed up compared to the reference
software.

The figure 5.4 presents the time consuming parts of MI calculation implemented on
Convey HC-2ex with one core on a single FPGA and the time consuming parts of Ml in
software in logarithm scale. As we can observe the execution time for the MI calcula-
tion is insignificant compared with the MI calculation in the software implementation.
However as the number of bins and cores getting more wide, the most time consuming
part of our application becomes the transferring of the memory blocks to the shared
memory. We can observe that in this experiment with the one core calculation the most
time consuming part of our application is the PDF estimation although in Multi-core
and Multi-FPGA implementation the PDF estimation compared with the transferring
time of the memory block to the shared memory is insignificant.

The main motivation of the implementation of these algorithms in a system like
Convey HC-2ex, it was to push to the limits the system with computationally intensive
algorithms and to evaluate its performance in relation with the same algorithms in
other platforms. Based on the implementations of the MI algorithm which described
in the Qualimaster project [16] in the deliverables [17], [18] and [19].

The figure 5.5 illustrates the achieved speedups compared to the reference soft-
ware. The architectures of MI algorithm mapped on a MAX3A Vectis PCI Express card
version of a Maxeler Dataflow Supercomputing System. The MAX3A Vectis card is
inserted into a base workstation with an Intel XEON 2-6 core processor running at a
clock rate of 3.2 GHz and with 50GB RAM. MAX3A Vectis card is equipped with a Xil-
inx Virtex-6 FPGA device and 24 GB of DDR RAM. At the other end of the spectrum,
another implementation of the MI algorithm mapped on a newer generation of Max-
eler, the Maia platform. Maxeler MPC-X consists of 8 Altera Stratix V FPGA devices
and 48 GB RAM. The Maia card has the same maximum PCle bandwidth of 2GB/s
and the same 24 GB internal memory (LMEM) as the Vectis platform. The increased
resources, provided by the Altera FPGA which allows the implementation of up to 6
parallel memory controllers,which improve the LMEM bandwidth. The derived re-
sults from the platform of Maia and from the MAX3A Vectis are estimated results as
derived from the deliverables of the Qualimaster Project.

Our implementation with the implementation on the MAX32 Vectis are very close
based on their features. Also if we evaluate the two platforms we conclude that they
are very close in performance. Furthermore the FPGA’s which are equipped the two
platforms they belong in the same family devices of Xilinx. As we can observe from
the figure the Maxeler platform presents a higher overhead on MI call compared to
the Convey HC-2ex which yields a higher speedup on smaller number of bins. As the
number of bins getting more wide the transferring time to the shared memory of Con-
vey HC-2ex getting the decisive factor of the overall application time. In terms of eval-
uation the Maia platform is a new device so it has a significant advantage compared to
the other platforms and also there is a main difference in the scope of architecture. The
MI as well as the TE architectures in Maia streamed a piece of the input vectors from a
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FIGURE 5.5: Achieved Speed for the proposed architectures on different
platforms of MI Algorithm. Note that the scaling factor in x axis is x100
and represents the Resolution (Number of bins) of the MI algorithm.

internal DDR memory instead from PCle which gives a significant advantage on this
architecture in the design section.

5.3.2 Transfer Entropy
5.3.2.1 Multi-thread Software Implementation of TE

In order to explore the performance of the Transfer Entropy algorithm and yield an
overall understanding of the performance of this algorithm just like for the MI algo-
rithm we expand the reference software of TE in order to use multi-threading and
evaluate this implementation in software. We created an application which calculates
12 TE cores in parallel on software. The yielded results provided on the table 5.12. As
expected the multi-thread implementation on software can not achieve a speedup of
the theoretical 4x and 12x respectively, compared to the reference software because a
decisive factor to the overall execution time of the application is the memory band-
width of the system which is shared to the implemented threads of the application as
we already presented on the multi-thread implementation of MI algorithm. However,
as we can observe from the table 5.12 for a small number of bins the execution time of
the application is very small so the performance of the multi-thread implementation is
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not very obvious. Note that from 1000 number of bins the execution time of the appli-
cation is very high. That happened because the systems runs out of memory and starts
to use the memory of the disk as well as in the 1200 number of bins. So typical for the
TE calculation we can reach to the 800 number of bins for 12 TE calls in parallel because
of the system limitations. The platform software in which the experiments took place
was a two 6core Intel Xeon at 3.2 GHz with 50GB RAM.

TABLE 5.12: Performance of Single-core Transfer Entropy calculation com-
pared with the performance of multi-threaded four-core and twelve core
Transfer Entropy on software with 12 TE-calls.

Resolution | single core SW | 4-core SW | SpeedUp | 12-core SW | SpeedUp
100 0.6 0.15 4 0.065 9.23
200 3.36 0.87 3.86 0.34 9.88
500 32.12 11.61 3.62 4.32 9.75
800 153.6 47.88 3.2 17.95 8.55
1000 2941 90.51 3.24 53.14 1 5.531
1200 out of mem | out of mem | out of mem | out of mem | out of mem

5.3.2.2 Multi-thread Histogram Function

As we described in section 5.3.1.2, we decided to implement the PDF vector function on
the Host processor with threads as we already done with the MI algorithm. The tables
5.13 and 5.14 provides the reason for choosing the multi-thread implementation of the
PDF function. As we can observe the execution time of the PDF vector in parallel with
the use of OpenMP API is insignificant in relation with the single thread execution.

TABLE 5.13: Performance of PDF creation function on the Host side with
single-thread execution for Transfer Entropy Algorithm.

Resolution | Hist-func(2) | Hist-func(4) | Hist-func(8) | Hist-func(16)
100 0.011 0.023 0.047 0.09
200 0.021 0.057 0.11 0.21
500 0.24 0.48 0.97 1.83
800 0.92 1.85 3.89 6.8
1000 1.78 3.56 7.15 13.1
1200 3.073 6.16 12.28 25.1

5.3.2.3 Performance of TE Implementation

In this section we present the performances of our implemented architectures. Firstly
we present the multi-core architectures mapped in a single FPGA. The tables 5.15, 5.16
and 5.17 present the results of the architectures for one,two and four cores respectively.
As we can observe from the tables the most time consuming part of our application
is the transfer of the memory blocks to the shared memory. The obstacle of achieving
better speedup of memory transferring in our implementation is obvious. In relation
with the MI algorithm because the length of PDF vectors in order to calculate the TE
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TABLE 5.14: Performance of PDF creation function on the Host side with
Multi-thread execution for Transfer Entropy Algorithm.

Resolution | Hist-func(2) | Hist-func(4) | Hist-func(8) | Hist-func(16)
100 0.0055 0.0058 0.00589 0.0061
200 0.014 0.0148 0.0151 0.016
500 0.129 0.132 0.139 0.142
800 0.471 0.473 0.483 0.491
1000 0.91 0.916 0.926 0.928
1200 1.538 1.542 1.558 1.568

statistical value are more wide than the PDF vectors length of MI algorithm, the prob-
lem of transferring is come into focus. About the execution time of histogram function
as well as the execution time of our hardware implementation the results are expected.

TABLE 5.15: Performance of 1-core TE Calculation in single FPGA.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.05 0.00551 0.0034 0.0017 0.0106 4.71
200 0.28 0.014 0.026 0.013 0.053 5.28
500 3.51 0.12 0.41 0.2 0.73 4.80
800 12.8 0.46 1.69 0.83 2.98 429
1000 24.5 0.89 3.31 1.62 5.82 4.20
1200 40.9 1.53 5.7 2.81 10.04 4.07

TABLE 5.16: Performance of 2-core TE Calculation in single FPGA with
Multi-threaded PDF function.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.05 0.0055 0.0034 0.0035 0.0124 8.06
200 0.28 0.014 0.026 0.026 0.066 8.48
500 3.51 0.129 0.41 0.4 0.939 7.47
800 12.8 0.471 1.69 1.67 3.831 6.68
1000 24.5 0.91 3.31 3.25 747 6.55
1200 40.9 1.538 5.7 5.62 12.858 6.36

TABLE 5.17: Performance of 4-core TE Calculation in single FPGA with
Multi-threaded PDF function.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.05 0.0058 0.0034 0.0069 0.0161 12.42
200 0.28 0.0148 0.026 0.053 0.0938 11.94
500 3.51 0.132 0.41 0.81 1.352 10.38
800 12.8 0.473 1.69 3.33 5.493 9.32
1000 24.5 0.916 3.31 6.56 10.786 9.08
1200 40.9 1.542 57 11.24 18.482 8.85
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TABLE 5.18: Performance of 2-core TE Calculation in 4 FPGA’s with Multi-

threaded PDF function.
Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.05 0.00589 0.0035 0.013 0.02239 17.86
200 0.28 0.0151 0.0285 0.1 0.1436 15.59
500 3.51 0.139 0.43 1.63 2.199 12.76
800 12.8 0.483 1.73 6.67 8.883 11.52
1000 245 0.926 3.35 13.08 17.356 11.29
1200 40.9 1.558 5.74 20.9 28.198 11.60

As we can observe from the tables, the best mapped architecture in a single FPGA in
terms of achieved speedup is the implementation with four TE cores. This architecture
achieved the best speedup in a single FPGA. So in order to expand our architectures we
attempted to mapped eight cores and sixteen cores in four FPGA’s respectively. Our
architectures implements two and four cores in each FPGA of the system. The tables
5.18 and 5.19 present the yielded results from the Multi-FPGA architectures.

TABLE 5.19: Performance of 4-core TE Calculation in 4 FPGA’s with Multi-

threaded PDF function.

Resolution | Software || Hist-func | Hardware | Memcpy || Overall | SpeedUp
100 0.05 0.0061 0.0038 0.027 0.0369 21.68
200 0.28 0.016 0.0292 0.21 0.2552 17.55
500 3.51 0.142 0.438 3.38 3.96 14.18
800 12.8 0.491 1.747 13.2 15.438 13.26
1000 24.5 0.928 1 3.39 252 % 295181 | 13.281%
1200 40.9 1.565 1 5.78 3541 || 427481 | 15.381%

The resource summary of our multi-core architectures are presented in table 5.20.
As we can conclude from the table 5.20, just like the MI implementations, under the
average fraction of the available resources of the FPGA are utilized for the implemen-
tation of the architecture in each FPGA. Thus, any attempt to implement the proposed
design is bound first by the available memory bandwidth similarly with the MI imple-
mentations.

TABLE 5.20: Resources summary of the Multi-core architectures of Trans-

fer Entropy:.
occupied slices | slice registers | slice LUT | DSPs | BRAMs
1-core Used 24241 76649 74514 32 142
Percentage 20% 8% 15% 3% 19%
9-core Used 29388 96021 92080 64 204
Percentage 24% 10% 19% 7% 28%
d-core Used 40841 138647 128951 128 328
Percentage 34% 14% 27% 14% 45%

In order to yield a better overall understanding the figure 5.6 illustrates the per-
formance of our architectures for TE algorithm in relation with the produced speed
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up compared to the reference software. The y axis represents the achieved speedup
of our implementations compared to the reference software and the x axis represents
the range of PDF vectors. As we can conclude from the figure the best achieved speed
up produced by the architecture with the 16 cores. Also the produced speed up starts
from a peak value for each architecture and as the PDF vector be more wide the speed
up of the architecture decreased. The problem of our architectures is located in the
transferring of the PDF vectors.
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FIGURE 5.6: Achieved Speed for all the proposed architectures of TE Al-
gorithm. Note that the scaling factor in x axis is x100 and represents the
Resolution(Number of bins) of the TE algorithm.

As seen and from the figure 5.6, the performance of our architectures affected by
the factor of the transferring time, and the achieved speed up decreased. Although
we manage to keep the hardware time in low levels as well as we performed a multi
threaded implementation in the PDF vector creation, the memory copy of the data to
the shared memory is a deciding factor of the overall time of our application.

The figure 5.7 illustrates the distribution of the execution time in three main section
of the application. As we described in the MI section, the y axis is the execution time
in seconds and x axis represents the performance of our architectures with different
lengths of PDF vectors. Note that in the figure 5.7 illustrated only one small range of
bins and more specifically from 200 to 1200 number of bins which affects the overall
time of our application. The first section of the application is the function which creates
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FIGURE 5.7: Time Consuming for all the proposed Architectures of TE
Algorithm.The x axis represents the number of Bins of the PDF vector.
Note that the scaling factor in x axis is x100

the PDF vectors. The second section consists of the transferring the data to the shared
memory. The third section is the function call to the co-processor which means the
execution time of our hardware implementation. The lengths of the PDF vectors for
the TE algorithm are more wide than the lengths of the PDF vectors in MI algorithm,
so the system in order to transfer the data to the shared memory requires more time, so
for the TE implemented architectures the most time consuming part is more obvious.
In order to yield a better overall understanding the figure 5.8 presents the time
consuming parts of one core implementation on a single FPGA of the Convey HC-2ex
compared with the time consuming parts of the reference software. As we can observe
the TE call (TE calculation on hardware) yields an important decrease of the execution
time compared with the TE call on reference software. Also because we calculate one
TE result in this experimental application the transferring time of the memory blocks
to the shared memory is not the most time consuming part of our application. From
this figure the most time consuming part seems to be the PDF estimation as well as in
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the software implementation, although in the Multi-core and Multi-FPGA implemen-
tation because of the significant increase of the transferring time to the shared memory,
the PDF estimation on those experiments is a drop in the bucket compared to the trans-
ferring time.

Just like the MI algorithm, the most time consuming part of our application is the
transferring of the data. As described in section 5.3.1 in order to reduce the time of the
data transferring a piece of different reworks implemented in the C-based application
on the Host side and applied also in the TE implementation. A detailed functionality
of these reworks described in section 5.3.1. The yielded results were the expected,
after the apply of these reworks in the TE implementations. The figure 5.9 presents the
achieved speedup of our implementation compared to other platforms as we already
presented in the MI algorithm. The experiments of the other platforms yielded from
the deliverables of the Qualimaster Project [16]. Note that the experimental values from
the other platforms are the estimated results of the implementations. The platforms in
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FIGURE 5.9: Achieved Speed for the proposed architectures on different
platforms of TE algorithm. Note that the scaling factor in x axis is x100
and represents the Resolution (Number of bins) of the TE algorithm.

which the comparison took place were a MAX3A Vectis PCI Express card version of
a Maxeler Dataflow Supercomputing System and a next generation Maxeler platform,
the Maia. The detailed features of the platforms described in 5.3.1.

In conclusion, we can extract that our implementation compared with the Max-
eler Vectis MAX3A are very close. Although we tried to keep the hardware and his-
togram creation execution times in low levels, the transferring of the data consumed
a very wide percentage of the execution time of our application. This observation
goes without saying as long as the two platform specifications are very similar. As we
can observe from the figure, the Maxeler platform just like on the MI implementation,
presents a higher overhead on TE call compared to the Convey HC-2ex which yields a
higher speedup on smaller number of bins. As the number of bins getting more wide
the transferring time to the shared memory of Convey HC-2ex getting the decisive
factor of the overall application time. At the other side of the spectrum the yielded
speedup of Maia platform is better than the implementations in MAX3A and Convey
HC-2ex. Note that the implementation of TE in Maia as well as the implementation of
MI algorithm deployed the internal internal memory (LMEM) of the platform so the
achieved speed up was expected. Also the Maia platform has a key strength compared
to the specifications of our platform Convey HC-2ex and MAX3A.



65

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The evolution of computer systems has been driven by the exponential increase in logic
density. Performance has increased exponentially as clock rates increased, and soaring
transistor counts are utilized in a wide variety of architectural innovations to increase
performance. However, in recent years single-core performance is falling out of fla-
vor because of the increasing of system complexity and of clock frequency. As a result
companies have turned to heterogeneous computing architectures that employ semi-
conductor gates in more efficient configurations. Specifically, computing elements like
general-purpose graphics processing units (GPGPUs) and field programmable gate ar-
rays (FPGAs) are used to perform application-specific functions directly in hardware.
The resulting combination of a custom architecture based on reconfigurable logic is a
more efficient alternative compared with conventional CPU.

In this thesis we mapped two computationally intensive algorithms on Convey HC-
2ex, a hybrid supercomputer. The implementation process entailed the gradual design
of the architecture following a top-down approach. The first steps in order to design
and map the hardware architectures in the system were the detecting of the individual
key calculations which led us to compose them and produce the final result of the two
algorithms.

The two algorithms designed, mapped and evaluated on the Convey HC-2ex, a hy-
brid supercomputer in order to fully exploit its capabilities for the parallelization of
the operations required for the estimation of the statistical value of MI and TE algo-
rithms. The combination of a high-bandwidth memory interface with an architecture
featuring multiple levels of computational parallelism proved to perform better than
state-of-the-art software running on high-end CPUs. Even thought the design was not
tailored for extreme performance efficiency, it still managed to process large datasets
13 times faster than its current software counterparts for MI and 15 times faster for TE
results.

The conclusion of this work would have to be that implementing, such as compu-
tationally intensive algorithms consisting of a large amount of repetitive simple calcu-
lations, highly benefit from the development of custom application-specific pipelines
that exploit the capacity of reconfigurable devices for cheap and efficient parallel im-
plementations with custom-width arithmetic addressing exactly the application’s re-
quirements. However, the difficulty in using Convey platform lies in the fact that the
studied algorithm needs to be reconsidered from the beginning based on the prop-
erties of the tool and not based on related works, as well as that the Convey platform
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presents unpredictable behavior in certain simple functionalities that cannot be known
in advance.

As a result this thesis is a small contribution to the fields of reconfigurable com-
puting that is to be improved upon, as hybrid computing comes to the front as the
demands of the applications getting overburdened.

6.2 Lessons Learned

This thesis focused on two directions. The first direction was the implementation of
computational intensive algorithms on reconfigurable hardware and the second was
the comparison between the two multi-FPGA platforms (MAX3A from Maxeler Tech-
nologies and the Convey HC-2ex). The basic difference between the two platforms is
that Maxeler platform initiates streams from memory to the DFEs. Data transfer and
processing is done simultaneously when PCle streams are used (Multiplexing 1/0).
On the other hand for the Convey platform the data have to be copied from the host
memory to the FPGA memory, which takes a significant amount of the total execution
time. So even if the Convey system offers greater memory bandwidth (80GB/s) vs.
the Maxeler PCle (2GB/s per FPGA), the performance is very similar. In other words,
the Convey system can offer memory bandwidth of 80GB/s to the 4 FPGAs with the
important assumption that the data first have to be copied from the hosting shared
memory subsystem to the coprocessor memory subsystem via PCle which is very con-
suming and then the coprocessor memory subsystem transfers the data with 80GB/s
memory bandwidth to the FPGAs.

Concerning the parts of the processing between the two multi-FPGA platforms,
MAXB3A Vectis as well as Convey HC-2ex can solve very easily and efficiency algo-
rithms which are in the class of systolic arrays problems, despite the fact that Convey
HC-2ex is even better in processing compared to the Maxeler MAX3A Vectis and this
observation goes without saying from the fact that in small range of input data MAX3A
Vectis seems to have a significant overhead compared to Convey HC-2ex.

We can only be hopeful for the future of hardware design, as more interesting ad-
vances in high-performance computing are underway. For example with the new co-
operation between Intel and Altera in the near future we will enjoy new hybrid ar-
chitectures in which the reconfigurable co-processor will be directly attached on the
host processor. With this way the memory copy between the memory subsystems via
PCle will be distinguished and this progress with many other new features in hetero-
geneous architectures will lead us to a blissful yearning for further experimentation
around novel ideas and designs.

6.3 Future Work

The time for completing a diploma thesis is always too short for implementing all ideas
that arise during the work. At the end, three of them are outlined as outlook for future
work.

Although in our architectures for the MI and TE we managed to keep the hardware
execution time as well as the PDF vector creation in low levels, we yielded that the
transferring time was the most time consuming part of our application. We tried to
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decrease the transferring time of our application using the concept of pipelining in
the data transferring and we implemented a piece of other ideas as presented in this
thesis. The idea of implementing a pipelining between the memory blocks was a very
good idea if the processing time was close to the transferring time. As we presented
the processing time was a drop in the bucket compared to the transferring time. So as
future work include an effective way to reduce the transferring time of the data to the
shared memory of the system.

Furthermore the PDF vector creation in our implementations for MI as well as for
TE are based on the matrix representation. More specifically histograms are commonly
represented by an array or a matrix of counters. Although simple and intuitive, this
representation is quite inefficient in terms of memory, for large resolution, especially
when the PDFs are skewed (i.e., sparse) and not uniform. So as future work include
the sparse representation of the PDFs using Hashmap as described in [15].

Finally, it would be useful to study other algorithms especially in the fields of fi-
nance, geophysics and data mining to further evaluate our acquired knowledge and
achieve higher speedups.
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