
Memory System Evaluation for Disaggregated Cloud Data Centers

by

Andreas E. Andronikakis

A DIPLOMA THESIS

submitted to

Technical University of Crete

Presented May 8, 2017

This thesis is dedicated to my parents.
For their endless love, support and

encouragement.

ABSTRACT

In our time, there is a plethora of highly demanding computational work and

of major scientific research and applications. Various ways of compressing produc-

tion costs for the above operations are also sought. There can be found a variety of

efforts to meet the above-mentioned needs such as those that promote the automa-

tion of production, those which, more generally, seek to reduce operating costs,

but simpler and less effective are those that seek to reduce non-functional costs.

Such a practice and prospect could include the development of cloud computing

and, more specifically of cloud servers, which is a necessary infrastructure for cloud

computing services to work.

Their ease of use, scalability, low cost, and reliability are some of the most im-

portant reasons for deploying cloud computing, cloud servers and their respective

service providers. One element to be highlighted is the need for a high-standard

memory in terms of performance and size. The existing architecture of Cloud

Data Centers is characterized by high energy consumption and a great waste of

resources (mainly memory).

This thesis refers to estimating the memory of cloud data centers with disag-

gregated (or disintegrated) servers, ie servers whose components and/or resources

are in separate sub-assemblies, regarding their physical location. This type of

servers is being researched over the past years, and its advantages and disad-

vantages are examined. This Disaggregated Architecture System aims to change

the traditional way of organizing a Data Center by proposing a more flexible

and software-modulated integration around blocks, the Pooled Disaggregated Re-

sources, as opposed to traditional unification around from the mainboard.

The purpose of this diploma thesis is to study and develop a unified (modular)

memory simulation tool of the above architecture, driven by the execution of an

application, the DiMEM Simulator (DIsaggregated MEMory System Simula-

tor). This simulator was implemented to approximate the behavior of standard

Cloud application workloads in Shared Architecture Memory. The tool combines

the Intel Pin Framework, where this diploma focuses, with the DRAMSim2 mem-

ory simulator.

The subject of this thesis is the study of the Dynamic Binary Instrumentation,

the understanding of Cache levels and their simulation methods, the implementa-

tion of the Disaggregated Architecture Memory simulation, and experimentation

with various parameters. The results presented approximate the overall behavior

of a Memory System of a Disaggregated Cloud Data Center.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Thesis Contributions . 4

1.2 Thesis Outline . 5

2 Theoretical Background . 7

2.1 Instrumentation . 8
2.1.1 Source Instrumentation . 9
2.1.2 Binary Instrumentation . 9
2.1.3 Dynamic Instrumentation 10
2.1.4 Static Instrumentation . 12

2.2 Intel PIN : A Dynamic Binary Instrumentation Tool 13

2.3 Disaggregated Architecture . 18
2.3.1 Disaggregated System Design 19
2.3.2 Replace electrons with photons 20

3 Related Work . 23

4 Implementation of DiMEM Simulator . 26

4.1 Front-End of DiMEM Simulator: Instrumentation stage 26
4.1.1 Functional simulation of TLB and cache hierarchy using PIN 26
4.1.2 Instrumentation Function . 31
4.1.3 Analysis Functions . 33
4.1.4 Instrumentation Output . 36
4.1.5 Multithreading Functionality 38
4.1.6 Hyperthreading Functionality 41

4.2 Back-End of DiMEM Simulator: Simulation stage 42

5 Evaluation and Experimental Results . 43

5.1 Evaluation . 43
5.1.1 CPU Metrics . 43
5.1.2 DRAM Metrics . 45
5.1.3 Cloud Benchmarks . 46

5.2 Experimental Process . 48
5.2.1 Data Caching Profiling and Utilization 50
5.2.2 Simulation Scenarios . 51

5.3 Experimental Results . 52

TABLE OF CONTENTS (Continued)

Page

5.3.1 Dense Data Caching Experimental Results 53

6 Conclusion and Future Work . 69

6.1 Conclusion . 69

6.2 Future Work . 71

Appendices . 73

A Some useful codes . 74

B Simulation output . 86

LIST OF FIGURES

Figure Page

1.1 Whole System Abstract Figure. 4

2.1 This diagram depicts a scheme pertaining to the dynamic type (DBI). 10

2.2 DBI Frameworks. 11

2.3 This diagram depicts a scheme pertaining to the dynamic type (DBI). 13

2.4 The architecture of Pin. 14

2.5 1 Trace, 2 BBLs, 6 instructions . 17

2.6 Architectural differences between server-centric and resource-centric
datacenters. 18

2.7 Block Diagram of high-level dReDBox Rack-scale architecture . . . 20

2.8 Disaggregated data center interconnect requirements (Courtesy of
The Optical Society) [7] . 21

4.1 The DiMEM Simulator Logo. 26

4.2 Cache hierarchy of the K8 core in the AMD Athlon 64 CPU. 27

4.3 An example of a Multicore cache hierarchy 29

4.4 local.hpp File Reference . 30

4.5 Front-End Diagram . 31

4.6 Analysis Function . 33

5.1 DataCaching Power8 workload analysis. 51

5.2 Power 8 DataCaching 2GB Results 54

5.3 Cortex-A53 DataCaching 2GB Results 55

5.4 Cortex-A57 DataCaching 2GB Results 56

5.5 Power 8 DataCaching 4GB Results 57

5.6 Cortex-A53 DataCaching 4GB Results 58

5.7 Cortex-A57 DataCaching 4GB Results 59

LIST OF FIGURES (Continued)

Figure Page

5.8 Power 8 DataCaching 8GB Results 60

5.9 Cortex-A53 DataCaching 8GB Results 61

5.10 Cortex-A57 DataCaching 8GB Results 62

5.11 Power 8 DataCaching 16GB Results 63

5.12 Cortex-A53 DataCaching 16GB Results 64

5.13 Cortex-A57 DataCaching 16GB Results 65

5.14 Power 8 DataCaching 32GB Results 66

5.15 Cortex-A53 DataCaching 32GB Results 67

5.16 Cortex-A57 DataCaching 32GB Results 68

LIST OF TABLES

Table Page

4.1 Multithreading example . 41

5.1 CPU table 1 . 44

5.2 ARM Cortex-A53 Cache Metrics 44

5.3 ARM Cortex-A57 Cache Metrics 44

5.4 IBM Power8 Cache Metrics . 44

5.5 DRAM Metrics - Modified DDR4 Micron 1G 16B x4 sg083E 45

5.6 Nanosecond to Memory Cycles Disaggregated Latency Correspon-
dence . 52

CHAPTER1
Introduction

”We believe we’re moving out of the Ice Age, the Iron

Age, the Industrial Age, the Information Age, to the

participation age. (...) You are participating on the

Internet, not just viewing stuff. We build the

infrastructure that goes in the data center that

facilitates the participation age.”

— Scott McNealy, former CEO, Sun Microsystems

Cloud computing is where software applications, data storage and processing

capacity are accessed from a cloud of online resources. This permits individual

users to access their data and applications from any device, as well as, allowing

organizations to reduce their capital costs by producing software and hardware as

a utility service[9]. Cloud computing is closely associated with Web 2.0.

These times, as was in the past, organizations, institutes, even legal entities

engage in the business and production sector, looking for various ways to boost

output, improve productivity and compress production costs. One can find diverse

efforts, such as those that promote the automation of production; in general, they

seek to reduce operating costs, but being simpler and with less impact than those

1. INTRODUCTION 2

that seek to reduce non-recurring costs. The development of cloud computing

could be included in such a producting practice and perspective, as well as, more

specifically, cloud servers, which consist a necessary infrastructure enabling one to

operate the cloud computer services. This is a booming field that has attracted

providers like Microsoft and Amazon, which have developed Microsoft Azure and

Amazon Web Services (AWS), respectively. The main services offered are the IaaS

(Infrastructure as a Service), PaaS (Platform as a Service), SaaS (Software as a

Service), i.e. infrastructure services, platform and software[4].

One issue that arises is the specific booming and growth causes in cloud com-

puting over the past years, with greater emphasis on those from 2009 onwards.

The thesis will list and analyze some of the most fundamental ones below[4]:

1. Ease of use; in contrast to the ”more traditional” software development

environments, the cloud servers provide a range of user interface tools which

make development codes much easier and ”comfortable”. Such user interface

tools are the CLI and web CLI, the web UI, various API and IDE.

2. Scalability; scalability is defined as ”the ability of the system for easy ex-

tension by adding more machines, and vice versa, without influencing the

existing setup.” This advantage is related to the action and to the capac-

ity that the cloud server services have, in terms of cost. (i.e. all services

normally charge pay-as-you-go, which correspond exactly to the type and

temporal extent of provision of selected services).

3. Business or organizational risk; the cloud computing is considered to

,greatly , reduce the risk that a company assumes based or heavily using

Information Technology (IT), as long as the appropriate infrastructure nary

3

fixed costs of the business, due to the coverage of the need for computing

infrastructure through the cloud.

4. Cost; as mentioned above, similar service providers through cloud servers

correspond exactly to the demand required by each specific customer, while

the burden is only on the basis of accurate computational power and time

use of specific computing resources. Given that, the potential for cloud

computing services to the type, quantity and time, required one need to be

of no capital expense texture but only of functional. At the same time, there

is no need for maintenance of servers or software, and therefore thus, the

total cost of the organization or undertaking is reduced.

5. Reliability; is a key element that justifies the development of cloud com-

puting and, for some, it is a primary key element. What is indicated in these

cases is that storing data in a portable storage medium such as a USB Stick

disk or CD / DVD is a less reliable solution than storing them in a cloud

computing service, such as, for example, Rapidshare, Mega or the Dropbox.

All the above explains the development of cloud computing, the cloud server

and the respective service providers. One point that should be emphasized in this

introduction is the need for a high standard memory. An explanation given to

the urgency of the existence of this element from the inside to the lowest extent

is that Cloud Computing services (IaaS) meet virtual memory services, as well.

But an even more important issue has to do with the fact that cloud computing

services are memory intensive. In other words, such an architecture (and amount)

of memory is required, which permits the expansion of services to a sufficient

degree for each customer. This implies that the important advantage of scalability

1. INTRODUCTION 4

is based on such adequacy of memory in all species. The same applies to the cache,

the channels and broadband[9].

1.1 Thesis Contributions

This thesis relates to the judgment of the memory of cloud data centers with

disaggregated (or disintegrated) servers, in other words servers whose ingredients

or resources are in separate -concerning the physical location- subsystems[17, 32,

16, 23]. This type of servers has been under research lately, and the advantages

and disadvantages are presented. The reason for using cloud computing is that it

offers a better exploitation of the resources. In chapter 2 of this thesis, we will

make extensive reference to the theoretical background of that architecture.

In this thesis the design and implementation of a complete Memory System

Simulator is presented, as well as, the memory system evaluation of disaggregated

cloud data centers.

The complete design of the Memory System Simulator, was carried out in

co-operation with Orion Papadakis [26]. That includes the Instrumentation of a

binary executable, its Analysis, the Generation of its Memory Trace, the Simula-

Figure 1.1: Whole System Abstract Figure.

5 1.2 Thesis Outline

tion of that Trace and the Exertion of Final Results. The Simulator was based on

DRAMSim2[28], a Cycle Accurate Memory System Simulator for modelling and

simulation, as the back-end, while the front-end driver was developed from scratch.

The current thesis focuses on the front-end driver of our Simulator. In order

to implement that, we have created a tool, using Intel’s PIN[27, 22], a dynamic

binary instrumentation framework. Our PINtool simulates the functionality of all

Cache and TLB levels (of a given CPU-model) and generates a Trace File with

all RAM Accesses, including their Type of Access(Read/Write) and their Clock

Cycle. That Trace File is necessary for the back-end of the Simulator, which was

implemented by Orion Papadakis. To achieve the pairing between front-end and

back-end, DRAMSim2 was included, as a library on our PINtool, in order to export

the final .log file with the Simulation Results.

Our Simulator has been designed to be used on Disaggregated Cloud Servers,

in order to, effectively, draw conclusions about their Memory Usage on different

scenarios, by changing the Disaggregated/Local Memory Percentage.

1.2 Thesis Outline

In Chapter 2 we provide the theoretical background needed in order for the reader

to comprehend the need of an efficient Cloud Computing Memory System and also

the way to do the Instrumentation. All four forms of Instrumentation, and their

combinations, are presented and so is the Intel PIN framework, the tool used for the

Cloud Server’s Instrumentation. Finally, we present the theoretical background of

the Disaggregated Architectures. In Chapter 3 of this thesis, we present the related

work done in the field of Memory Simulation, using Instrumentation tools, as well

1. INTRODUCTION 6

as, research about Disaggregated Cloud Data Centers. In Chapter 4 we present

the complete Design of our Simulator, describing, in detail, all steps of it.

Consequently, Chapter 5 contains the results derived from the Simulations

made by our tool. We have used Cloudsuite Benchmarks, for our Simulations,

in order to evaluate the performance and efficiency of the cloud services to be

assessed, also considering some different Disaggregated Architectures. Finally,

Chapter 6 concludes the thesis and provides comments for possible future work.

In Appendix A the reader will find some useful codes that refer to different points

of the thesis.

CHAPTER2
Theoretical Background

This thesis identifies three specific restrictive elements concerning Cloud Comput-

ing; three restrictions which are imported because of the way current data centers

are built. These are [17]:

• The proportionality of the resources of the entire system follows that of the

mainboard (basic building block). Thus, it is not possible to focus on certain

elements that are crucial priorities, such as memory, so each system upgrades

should involve all elements, as they existed in its first manufacturing and

assembly.

• There is inadequate allocation of computing resources because of their con-

centration in one spot and their endorsement as a compact whole. The com-

putational processing resources (CPU cores) can be fully exploited, while,

conversely, utilizing only a relatively small amount of memory. Concentra-

tion of the cloud server components in a system thereby, leads to a fragmen-

tation and great inefficiencies of their resources.

• Even when a single cloud server component is upgraded, the entire system

of the server board is affected. Conversely, a disaggregated cloud server’s

2. THEORETICAL BACKGROUND 8

component could, with great discretion, be upgraded.

In order to solve these problems, the disaggregation or disintegration (frag-

mentation) of cloud servers was invented[17, 20, 21, 32]. However, as mentioned

above, there are some critical elements of cloud computing necessary to operate

with completeness in the above objectives. The prerequisite to do this is the in-

stallation and operation of specific control methods in the code source and binary

form. One of these ways will be analyzed in all its forms in this chapter. Specif-

ically, four of the main types of “orchestration code” as it is often called, will be

referred to. These are binary, source, dynamic and static instrumentation code.

2.1 Instrumentation

The instrumentation is a specific term used to denote the process and technique

of use and adding a control code that interferes with an intercalary way in a

program or the programming environment, in order to monitor or modify any

program behavior[8]. This technique proves very useful nowadays, since there are

a number of problems associated with the development of a code, which can, then,

be identified and eliminated. Thus, some of the objectives of the instrumentation

code can be:

• Gathering metrics code values.

• Automated debugging code.

• Detection (of other) error code.

• Memory Leak Detection.

9 2.1 Instrumentation

The general form of the process of instrumentation of the code also includes some

basic steps applicable to all sub. These are:

1. Determination of the points where the instrumentation will be implemented.

2. Introduction and implementation of specific form of the instrumentation

code.

3. Taking up the control of the program (compiler / linker, etc.).

4. Saving the program execution parameters.

5. Execution of the Control Code (instrumentation).

6. Restoration of the pre-existing program execution parameters.

7. Returning the control to the main program.

2.1.1 Source Instrumentation

The first type of instrumentation code to which we will refer to, is the source code

instrumentation[11]. The special feature of this format is that instrumentation

applies to the source code, which is written and performed at the level used in this

codes programming language.

2.1.2 Binary Instrumentation

Binary (or bytecode) instrumentation has to do with the binary code[2]. That is,

its basic difference, regarding the other types of instrumentation and especially

2. THEORETICAL BACKGROUND 10

source instrumentation, is that it refers to the microprogramming/assembly form

of the code, somewhere between the source and the machine code and, in fact,

one level above the latter. The binary instrumentation which is often used, is the

dynamic binary instrumentation, but there is the static one as well[5]. The diagram

below depicts a scheme pertaining to the dynamic type (DBI) (Figure 2.3).

Figure 2.1: This diagram depicts a scheme pertaining to the dynamic type (DBI).

We will refer to DBI, as well as to the additional aforementioned terms, in the

subsequent paragraphs.

2.1.3 Dynamic Instrumentation

Dynamic instrumentation is a more specific technique which is an important and

very frequently used element within the broader framework of instrumentation

techniques. Binary instrumentation is the most usual context of binary instru-

mentation, thus formulating dynamic binary instrumentation or Dynamic Binary

Instrumentation (DBI). The most distinctive characteristic of DBI is that the in-

strumentation process takes place shortly before it is executed. As a consequence,

11 2.1 Instrumentation

recompilation or re-linking of the code is not indispensable, as in the static one, as

will be seen in the forthcoming paragraph. This concept is named as Just In Time

or JIT[5] . The code is actually attached to processes already being executed,

hence the DBI code is considered to be injected into the whole code corpus. DBI

is implemented by tools such as PIN[27, 22], DynamoRIO[3, 30], DynInst[29] and

Valgrind[24].

Frameworks OS Arch Modes Features

PIN

Linux,

Windows,

MacOS

x86, x86-64,

Itanium, ARM
JIT, Probe Attach mode

DynamoRIO
Linux,

Windows
x86, x86-64 JIT, Probe

Runtime

optimization

DynInst

Linux,

FreeBSD,

Windows

x86, x86-64,

ppc32, ARM,

PPC64

Probe

Static & Dynamic

binary

instrumentation

Valgrind Linux, MacOS

x86, x86-64,

ppc32, ARM,

PPC64

JIT

IR-VEX,

Heavyweight DBA

tools

Figure 2.2: DBI Frameworks.

There are two kinds of DBI tools in all:

• Instrumentation code parts. The instrumentation parts are injected just

before a specific instruction which exists for the first time and defines the

place that instrumentation is implemented.

• Analysis code parts. The analysis code parts are inserted each time an in-

struction is met and define the specific instrumentation functionalities which

are to be implemented in the code.

2. THEORETICAL BACKGROUND 12

Pros & Cons: start-up times are much slower and the demand of memory usage

is increased as each method body has to be reallocated. The same applies to the

CPU load to instrument on the fly.

Dynamic analysis implies capability to administer code which is generated in

a dynamic or self-modifying manner.

2.1.4 Static Instrumentation

Static instrumentation appears, as the dynamic one, in the context of binary in-

strumentation. Thus, static binary instrumentation has got certain attributes

according to which it functions. The basic elements which differentiate it from

the dynamic type is that there are additional parts of code which are included

beforehand (not “Just In Time”), namely a segment and data. An other differ-

ence is that the instrumentation occurs before even the program starts running.

Furthermore, the header may be edited, as the following image indicates. The

important thing is that the probes are baked inside the binary. This can be done

in two ways:

First by having the compiler put the probes in.[15] Second, by what is called

post link instrumentation. This gives immediate access to all the methods and

instruments included in the binary and makes all the necessary changes.

Pros & Cons: This approach accomplishes much faster start-up times, since

the images are loaded in to memory are the image that run.

13 2.2 Intel PIN : A Dynamic Binary Instrumentation Tool

Figure 2.3: This diagram depicts a scheme pertaining to the dynamic type (DBI).

2.2 Intel PIN : A Dynamic Binary Instrumentation Tool

Pin is a framework for dynamic binary instrumentation[27, 22]. It supports the

Android, Linux, OS X and Windows operating systems and executables for the

IA-32, Intel(R) 64 and Intel(R) Many Integrated Core architectures.

The functionality of this framework is the insertion of an arbitrary code (written

in C or C++) in arbitrary places in the executable. While the executable is

running, the code is added dynamically, something that also makes the attachment

of the Pin to an already running process, possible.

“Pin provides a rich API that abstracts away the underlying instruction set id-

iosyncrasies and allows context information such as register contents to be passed

to the injected code as parameters. Pin automatically saves and restores the regis-

ters that are overwritten by the injected code so the application continues to work.

Limited access to symbol and debug information is available as well.” as described

2. THEORETICAL BACKGROUND 14

JIT Compiler

Emulation Unit D
is

p
a
tc

h
e
r

Virtual Machine (VM)

Code

Cache

Instrumentation APIs
A

p
p

li
c

a
ti

o
n

Operating System

Hardware

Pin

Pintool

Address Space

Figure 2. Pin’s software architecture

mentation API invoked by Pintools. The VM consists of a just-in-
time compiler (JIT), an emulator, and a dispatcher. After Pin gains
control of the application, the VM coordinates its components to
execute the application. The JIT compiles and instruments applica-
tion code, which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM from/to
the code cache involves saving and restoring the application register
state. The emulator interprets instructions that cannot be executed
directly. It is used for system calls which require special handling
from the VM. Since Pin sits above the operating system, it can only
capture user-level code.

As Figure 2 shows, there are three binary programs present
when an instrumented program is running: the application, Pin, and
the Pintool. Pin is the engine that jits and instruments the applica-
tion. The Pintool contains the instrumentation and analysis routines
and is linked with a library that allows it to communicate with Pin.
While they share the same address space, they do not share any li-
braries and so there are typically three copies of glibc. By making
all of the libraries private, we avoid unwanted interaction between
Pin, the Pintool, and the application. One example of a problematic
interaction is when the application executes a glibc function that
is not reentrant. If the application starts executing the function and
then tries to execute some code that triggers further compilation, it
will enter the JIT. If the JIT executes the same glibc function, it
will enter the same procedure a second time while the application
is still executing it, causing an error. Since we have separate copies
of glibc for each component, Pin and the application do not share
any data and cannot have a re-entrancy problem. The same prob-
lem can occur when we jit the analysis code in the Pintool that
calls glibc (jitting the analysis routine allows us to greatly reduce
the overhead of simple instrumentation on Itanium).

3.2 Injecting Pin

The injector loads Pin into the address space of an application. In-
jection uses the Unix Ptrace API to obtain control of an application
and capture the processor context. It loads the Pin binary into the
application address space and starts it running. After initializing
itself, Pin loads the Pintool into the address space and starts it run-
ning. The Pintool initializes itself and then requests that Pin start
the application. Pin creates the initial context and starts jitting the
application at the entry point (or at the current PC in the case of
attach). Using Ptrace as the mechanism for injection allows us to
attach to an already running process in the same way as a debug-
ger. It is also possible to detach from an instrumented process and
continue executing the original, uninstrumented code.

Other tools like DynamoRIO [6] rely on the LD PRELOAD en-
vironment variable to force the dynamic loader to load a shared li-
brary in the address space. Pin’s method has three advantages. First,
LD PRELOAD does not work with statically-linked binaries, which
many of our users require. Second, loading an extra shared library
will shift all of the application shared libraries and some dynami-
cally allocated memory to a higher address when compared to an
uninstrumented execution. We attempt to preserve the original be-
havior as much as possible. Third, the instrumentation tool cannot
gain control of the application until after the shared-library loader
has partially executed, while our method is able to instrument the
very first instruction in the program. This capability actually ex-
posed a bug in the Linux shared-library loader, resulting from a
reference to uninitialized data on the stack.

3.3 The JIT Compiler

3.3.1 Basics

Pin compiles from one ISA directly into the same ISA (e.g., IA32
to IA32, ARM to ARM) without going through an intermediate
format, and the compiled code is stored in a software-based code
cache. Only code residing in the code cache is executed—the origi-
nal code is never executed. An application is compiled one trace at
a time. A trace is a straight-line sequence of instructions which ter-
minates at one of the conditions: (i) an unconditional control trans-
fer (branch, call, or return), (ii) a pre-defined number of conditional
control transfers, or (iii) a pre-defined number of instructions have
been fetched in the trace. In addition to the last exit, a trace may
have multiple side-exits (the conditional control transfers). Each
exit initially branches to a stub, which re-directs the control to the
VM. The VM determines the target address (which is statically un-
known for indirect control transfers), generates a new trace for the
target if it has not been generated before, and resumes the execution
at the target trace.

In the rest of this section, we discuss the following features of
our JIT: trace linking, register re-reallocation, and instrumentation
optimization. Our current performance effort is focusing on IA32,
EM64T, and Itanium, which have all these features implemented.
While the ARM version of Pin is fully functional, some of the
optimizations are not yet implemented.

3.3.2 Trace Linking

To improve performance, Pin attempts to branch directly from a
trace exit to the target trace, bypassing the stub and VM. We
call this process trace linking. Linking a direct control transfer
is straightforward as it has a unique target. We simply patch the
branch at the end of one trace to jump to the target trace. However,
an indirect control transfer (a jump, call, or return) has multiple
possible targets and therefore needs some sort of target-prediction
mechanism.

Figure 3(a) illustrates our indirect linking approach as imple-
mented on the x86 architecture. Pin translates the indirect jump
into a move and a direct jump. The move puts the indirect target
address into register %edx (this register as well as the %ecx and
%esi shown in Figure 3(a) are obtained via register re-allocation,
as we will discuss in Section 3.3.3). The direct jump goes to the
first predicted target address 0x40001000 (which is mapped to
0x70001000 in the code cache for this example). We compare
%edx against 0x40001000 using the lea/jecxz idiom used in Dy-
namoRIO [6], which avoids modifying the conditional flags reg-
ister eflags. If the prediction is correct (i.e. %ecx=0), we will
branch to match1 to execute the remaining code of the predicted
target. If the prediction is wrong, we will try another predicted tar-
get 0x40002000 (mapped to 0x70002000 in the code cache). If the
target is not found on the chain, we will branch to LookupHtab 1,
which searches for the target in a hash table (whose base address is

192

Figure 2.4: The architecture of Pin.

in the Intel PIN’s user’s manual. It is a proprietary software. However it is freely

available for persons or entities using it to non-commercial ends.

Some of the advantages of Pin Instrumentation, as they have, already, been

described, are the following:

• Easy-to-use Instrumentation; Uses dynamic instrumentation. (Does not

need source code, recompilation, post-linking)

• Programmable Instrumentation; Provides rich APIs to write in C/C++

your own instrumentation tools.

• Multiplatform; Supports x86, x86-64, Itanium, Xscale. Supports Linux,

Windows, MacOS

15 2.2 Intel PIN : A Dynamic Binary Instrumentation Tool

• Robust; Instruments real-life applications: Database, web browsers, Instru-

ments multithreaded applications, Supports signals

• Efficient; Applies compiler optimizations on instrumentation code

Pin includes the source code for a large number of example instrumentation

tools, like basic block profilers, cache simulators, instruction trace generators, etc.

It is easy to derive new tools using the examples as a template.

The PIN engine uses the so-called PIN tools, for example an Instruction Count-

ing Tool. The two main components of a Pin tool are: instrumentation and

analysis routines:

• The Instrumentation routine’s role is to insert calls to user defined analysis

routines, by utilizing the rich API provided by Pin. These calls are inserted

at arbitrary points in the application instruction stream. The basic charac-

teristics of an application to instrument, are defined by the instrumentation

routines.

• Analysis routines are called by the instrumentation routines at application

run time.

For example, a user can write an instrumentation routine that instruments

every instruction executed by an application via the Pin API [4]. This Pintool

can count the total number of dynamic instructions executed by the program,

once the instrumentation routine sets up a call to the user-defined analysis routine

DoCount() (which increments a counter)

Moreover, Intel’s PIN provides further advanced features, helpful in a variety

of microarchitecture studies.

2. THEORETICAL BACKGROUND 16

For example, pintools can:

• profile the dynamic or static distribution of instructions executed by a given

application.

• acquire effective addresses of all memory instructions executed.

• determine the outcomes of branch instructions and their associated branch

targets.

• change architectural state of registers.

All the above information provides users with customizable Pintools which

model branch predictors, simple performance models and cache simulators.

Some of the basic arguments through which it is determined how instrumenta-

tion is carried out, are the following:

• IPOINT_BEFORE: a call is inserted before an instruction or a routine.

• IPOINT_AFTER: a call is inserted at the final paths of an instruction or a

routine.

• IPOINT_ANYWHERE: an instrumentation call is made anywhere within the ad-

ditional code corpus(that is, in a trace the PIN callback-function or a bbl).

• IPOINT_TAKEN_BRANCH: an instrumentation call is inserted on the taken edge

of a branch, given that all the proper alterations are made.

An example code which includes such an argument is the following:

17 2.2 Intel PIN : A Dynamic Binary Instrumentation Tool

1 void I n s t r u c t i o n (INS ins , void ∗v)
2 {
3 INS In s e r tCa l l (ins , IPOINT BEFORE,
4 (AFUNPTR) docount , IARG END) ;
5 }

Listing 2.1: An example of Instruction() function

Let it be noted here, that the PIN is initiated through the use of the following

instruction: PIN_Init(argc, argv); Subsequently, in order to perform the instru-

mentation for the next instruction encountered, PIN uses the elements analyzed

below:

1. The Function by the name Instruction().

2. The function INS_InsertCall(). This function takes, among others, the

arguments’ values specified above, as acceptable values for its second argu-

ment.

3. The function Fini(). This function is called when the application is about

to exit the program .

Instrumentation in PIN can be done at three different granularities[27, 22]:

1. Instruction

2. Basic block

• A sequence of instructions

terminated at a control-flow

changing instruction

• Single entry, single exit
Figure 2.5: 1 Trace, 2 BBLs,
6 instructions

2. THEORETICAL BACKGROUND 18

3. Trace

• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction

• Single entry, multiple exits

Every PIN tool performs different tasks to the instructions of the instrumented

program, and for every task there is a different function which implements it. For

example, the functions docount() or printip() are utilized, in order to perform

instruction counting or related IP printing. The same rules apply to the rest of

the PIN tools of the PIN engine.

2.3 Disaggregated Architecture

Disaggregated architecture is, as stated earlier, an answer provided to the chal-

lenges of our times concerning computing in general and cloud computing in spe-

cific, as well as drawbacks which are presented by systems developed nowadays.

These drawbacks and challenges are enumerated and presented in a comprehensive

way by Katrinis et al.)[17]

(a) Current datacenter (b) Disaggregated datacenter

Figure 2.6: Architectural differences between server-centric and resource-centric
datacenters.

19 2.3 Disaggregated Architecture

2.3.1 Disaggregated System Design

Disaggregation, by definition, means “separation into components”. Disaggregated

(or disintegrated) systems are systems which have components spread across sev-

eral physical locations. These systems are in a position to address certain issues of

paramount importance, such as scalability and (modular) heterogeneity[12]. This

type of architecture seems to introduce certain new challenges, such as, the need to

diminish a new overhead which appears, due to new forms of latency, which show

up in the architecture. However, it is the advantages of this architecture that

outweigh its disadvantages. One of the main goals of disintegrated architectures

is to promote and elevate the utilization degree of each component of a server or

data center. Such components are the ones pertaining to memory, (central, graph-

ical etc.) processing units, acceleration and storage units. It has been noted that

due to the integration of all these components into concrete computing units and

servers, there can be a massive -larger than 50%- underutilization. Every upgrade,

on the other hand, has to see these systems as a whole. Disintegration reverses

this process, which ceases to exist; it offers a much greater degree of flexibility, so

that the redundancy of systems hardware and the associated costs are significantly

lowered in a cost-effective way.

Especially, it is the memory quantity, quality and cost that have, long, been

a difficult problem to process and solve. As described above, it is especially the

cloud computing applications which are memory-intensive, thus they require a

more centered approach. It seems that the disintegrated architecture is able to

tackle this issue in a very efficient way. The issues solved[12] are the ones described

above, through the separate management and upgrade of each component.

2. THEORETICAL BACKGROUND 20

Figure 2.7: Block Diagram of high-level dReDBox Rack-scale architecture

Technologies used here are buffers-on-board, hierarchical buffers and disinte-

grated, master and slave controllers. All these innovative technologies contribute,

as a whole, to the complete and efficient partitioning of the memory controllers.

It is notable that this string of ideas was taken into careful consideration by the

developers of an innovative project called dReDBox[17], which was funded by the

EC (European Commission). This project seems to place a great emphasis on the

virtual memory management aspect of the disintegration process, as it implements

physical and logical attachments of remote memory. This emphasis is explained

by what has been mentioned in this, as well as previous paragraphs of this thesis.

2.3.2 Replace electrons with photons

Though disaggregation has many pros, we must keep in mind that using discrete

resource pools means developing interconnections previously included on the server

motherboard. Beyond doubt, PC-board electrical interconnections have almost

excelled physically and electronically.

21 2.3 Disaggregated Architecture

The answer may lie in the science of photonics. Photonics are defined as “a

research field whose goal is to use light to perform functions that traditionally fell

within the typical domain of electronics such as telecommunications and informa-

tion processing.”

Photons are already used to disseminate traffic from data center racks to the

rest of the digital world. Researchers are finding ways to replace electrical signals

all the way to the processor silicon, which raises the question of the use of fiber-

optic runs to interconnect the resource pools.

The members of OSA (The Optical Society)Industry Development Associates

and the Center for Integrated Access Networks when the organizations hosted a

workshop focused on how photonics may facilitate data-center disaggregation[7].

The workshop also attempted to find the way optics can enable a migration to

disaggregation, describe the appearance the photonics-enabled disaggregated data

Figure 2.8: Disaggregated data center interconnect requirements (Courtesy of The
Optical Society) [7]

2. THEORETICAL BACKGROUND 22

center and the performance metrics/requirements essential to photonics in disag-

gregated data centers

Disaggregation offers improved efficiency and increased capacity, but the ben-

efits are limited by the cost and performance of the photonic interconnections.

Latency requirements, in particular, impose hard limits on distances over which

certain resources can be disaggregated.

The workshop attendees were optimistic about fiber-optic interconnects replac-

ing electrical cables everywhere except on the rack shelf. Optics will out compete

electrical interconnects for links that enable disaggregation if optics can hit the

metrics of cost, performance, and size. The above table (Figure 2.8) lists the

aforementioned metrics.

CHAPTER3
Related Work

This thesis is related to projects which span several different topics, from in-

strumentation implementation to disaggregated (disintegrated) cloud servers dis-

courses. Regarding the programming work which was carried out in this thesis,

there are a lot of similarities with certain projects. We will refer to the most

important one below, which, in a way, inspired the whole thesis.

This thesis is based on the PIN project, released by Intel in 2012[27, 22] .

PIN uses, as has been mentioned above, instrumentation and analysis routines

and is very popular, as well as very broadly used in scientific studies and publica-

tions(40.000 users, 400 scientific citations). The PIN project is the one from which

this dissertation has derived a great deal of elements, as well as its fundamental

notions and inspiration.

The work named “Ramulator: A Fast and Extensible DRAM Simulator”[18]

is one similar to ours, fundamentally in terms of its DRAM usage and simulator.

The authors contribute their own version of a DRAM simulator, which empha-

sizes strongly on the concept of extensibility. Ramulator is based on a modular

design, thus promoting scalability, and supports several DRAM standards, such

as DDR3/4 and LPDDR3/4. Ramulator also uses a hierarchical design of nodes

3. RELATED WORK 24

(state machines). The authors conclude that such a simulator could facilitate

memory-related research.

Finally, regarding the disaggregated (disintegrated) server or data-center part,

we will refer here to a similar research, conducted by Han et al[12]. The authors

examine disaggregated data centers, where resources such as memory, storage and

communication resources are built up as separate groups of resources of the same

kind. This type of data centers brings about, as the authors deduce, not only a

greater level of modularity but an improved efficiency and performance, as well.

Nevertheless, they stress that a make-or-break factor will be the network which,

due to its structure, will have to be the host of the new disaggregated servers.

Many research efforts have focused on disaggregated memory with the aim to

enable scaling of memory and processing resources at independent growth paces.

Lim et al.[20, 21] presents the “memory blade” as an architectural approach to

introduce flexibility in memory capacity expansion for an ensemble of blade servers.

The authors explore memory-swapped and block-access remote access solutions

and address software- and system-level implications by developing a software-based

disaggregated memory prototype based on the Xen hypervisor. They find that

mechanisms which minimize the hypervisor overhead are preferred in order to

achieve low-latency remote memory accesses.

The dReDBox (disaggregated Recursive Datacenter in a Box)[17, 32, 16, 23]

project tries to address the problem of fixed resource proportionality in next-

generation, low-power data centers by proposing a paradigm shift toward finer

resource allocation granularity, where the unit is the function block rather than

the mainboard tray. This introduces various challenges at the system design level,

requiring elastic hardware architectures, efficient software support and manage-

25

ment, and programmable interconnect. Hardware accelerators can be dynamically

assigned to processing units to boost application performance, while high-speed,

low-latency electrical and optical interconnect is a prerequisite for realizing the

concept of data center disaggregation.

4CHAPTER

Implementation of DiMEM Simulator

4.1 Front-End of DiMEM Simulator: Instrumentation stage

Figure 4.1: The DiMEM Simula-
tor Logo.

The goal of this work is to simulate and evaluate

a memory system of a Cloud Server. To achieve

that, it was important to create the front-end

driver of the DiMEM Simulator. This thesis fo-

cuses on the Functional Simulation of TLB and

Cache hierarchy, as well as its use and exploita-

tion for Main Memory Accesses Trace File generation. We have used an example

Pintool for Memory Tracing, called Allcache[22]. Allcache is an ISA-portable PIN

tool for functional simulation of instruction/data TLB and cache hierarchy. We

have used it as a basic core to build our tool on it.

4.1.1 Functional simulation of TLB and cache hierarchy using PIN

First of all, we had to describe the TLB (Instruction TLB & Data TLB) and

Cache hierarchy (L1, L2 etc, Private or Unified) in our PINtool. There are many

27 4.1 Front-End of DiMEM Simulator: Instrumentation stage

different cache hierarchies, that depend on different architectures. On chapter 5,

we will make extensive reference to the architectures we have chosen to simulate.

Figure 4.2: Cache hierarchy of the K8 core in the AMD Athlon 64 CPU.

4.1.1.1 Cache hierarchy

All memory references generated by a workload have to be captured and played

through a cache model. By doing this the cache behavior of an application is

simulated. To design the cache hierarchy in our tool, we have used a namespace

for each cache level or TLB. In those namespaces we created a CACHE class,

as defined on pin_cache.H header file (see Appendix A). On that class we have

defined some necessary features of the Cache level. Those features are:

• Cache Sets such as direct-mapped, FIFO replacement (round-robin), least-

recently used (LRU) for Read Misses.

• Cache Allocation such as write-allocate or write-no-allocate for Write

Misses.

4. IMPLEMENTATION OF DIMEM SIMULATOR 28

• Cache Base such as cache size, line size, associativity, max sets and max

associativity.

The following code is an example of a Cache namespace:

1 namespace ITLB
2 {
3 // i n s t r u c t i o n TLB: 4 kB pages , 32 en t r i e s , f u l l y a s s o c i a t i v e
4 const UINT32 l i n e S i z e = 4∗KILO;
5 const UINT32 cacheS i ze = 32 ∗ l i n e S i z e ;
6 const UINT32 a s s o c i a t i v i t y = 32 ;
7 const CACHEALLOC: : STORE ALLOCATION a l l o c a t i o n = CACHEALLOC: :

STOREALLOCATE;
8 const UINT32 max sets = cacheS i ze / (l i n e S i z e ∗ a s s o c i a t i v i t y) ;
9 const UINT32 max a s s o c i a t i v i t y = a s s o c i a t i v i t y ;

10

11 typede f CACHE ROUNDROBIN(max sets , max as soc i a t i v i t y , a l l o c a t i o n)
CACHE;

12 }
13 LOCALFUN ITLB : :CACHE i t l b (”ITLB” , ITLB : : cacheSize , ITLB : : l i n e S i z e ,

ITLB : : a s s o c i a t i v i t y) ;

Listing 4.1: namespace ITLB, with 4 kB pages, 32 entries, fully associative

4.1.1.2 Cache hierarchy for multicore

The future of high-performance and Cloud computing - as shown by the latest

tendencies- will be defined by the performance of multi-core processors [1, 2, 3]; this

resulting, in processor architects currently facing key design decisions in designing

the memory hierarchy[13].

A Cache hierarchy, according to a modern multicore CPU, must follow the

multicore structure’s laws. To accomplish the actual parallel functionality, a pro-

cessor’s cache can not be completely shared, consequently, the existence of a private

structure per core is, also, necessary. We can see an example of a Multicore cache

hierarchy on Figure 4.3.

29 4.1 Front-End of DiMEM Simulator: Instrumentation stage

Carnegie Mellon

Now	
 Let’s	
 Consider	
 Consistency	
 Issues	
 with	
 the	
 Caches	

Todd	
 Mowry	
 &	
 Dave	
 Eckhardt	
 15-­‐410:	
 Intro	
 to	
 Parallelism	
 15	

CPU	
 0	
 CPU	
 1	
 CPU	
 2	
 CPU	
 N	
 …	

Memory	

TLB	
 0	
 TLB	
 1	
 TLB	
 2	
 TLB	
 N	

L3	
 Cache	

L2	
 $	

L1	
 $	

L2	
 $	

L1	
 $	

L2	
 $	

L1	
 $	

L2	
 $	

L1	
 $	

Figure 4.3: An example of a Multicore cache hierarchy

Allcache Pintool provides a single-core hierarchy example, as described above.

In order to extend its functionality, for more than one cores, we had to render the

Listing 4.1, as well as, all cache hierarchy namespaces, configurable. To accom-

plish that we had to insert a new Libraries package, in our code, the Boost C++

Libraries (boost.org). Those libraries are based on the standard libraries and they

are used to promote the flexibility and efficiency of code [6]. We chose to use the

local.hpp library, which has been made to enable us use MACROs in C++.

We need MACROs to make a configurable cache hierarchy for every core of the

system. To do that, we had to change the following code:

1 LOCALFUN ITLB : :CACHE i t l b (”ITLB” , ITLB : : cacheSize , ITLB : : l i n e S i z e ,
ITLB : : a s s o c i a t i v i t y) ;

Listing 4.2: ITLB::CACHE itlb() for single-core

to make use of BOOST Libraries, as below:

1 extern ITLB : :CACHE i t l b s [CORENUM] ;
2

3 #de f i n e BOOST PP LOCAL LIMITS (0 , CORENUM − 1)
4 #de f i n e BOOST PP LOCALMACRO(n) \
5 ITLB : :CACHE(”ITLB ” #n , ITLB : : cacheSize , ITLB : : l i n e S i z e , ITLB : :

a s s o c i a t i v i t y) ,

4. IMPLEMENTATION OF DIMEM SIMULATOR 30

Figure 4.4: local.hpp File Reference

6

7 ITLB : :CACHE i t l b s [] =
8 {
9 #inc lude ” . . / . . / . . / boo s t 1 60 0 / boost / p r ep ro c e s s o r / i t e r a t i o n / d e t a i l /

l o c a l . hpp”
10 } ;

Listing 4.3: ITLB::CACHE itlb() for multicore

We, finally, had to define the number of cores in our code, to make it fully

customizable. So we also added in our code the following line:

1 #de f i n e CORENUM 4

Listing 4.4: Define the number of cores

CORE_NUM not only is an argument that defines the number of Private Cache

levels (see lines 1 & 3 of Listing 4.3), but it also serves in many other points of our

pintool.

In general, the modern CPUs have, at least, one Unified/Shared Cache level

following the Private ones. That is not a commitment and it depends on each

architecture (e.g. ARM Cortex A-53 does not have any Unified Cache level).

31 4.1 Front-End of DiMEM Simulator: Instrumentation stage

4.1.2 Instrumentation Function

The Instrumentation Function of our pintool is the Instruction() call back func-

tion. It is defined as Instrumentation Function of the pintool, in the main() func-

tion making use of INS_AddInstrumentFunction(Instruction, 0) API call.

1 LOCALFUN VOID In s t r u c t i o n (INS ins , VOID ∗v)
2 {
3 i f (INS IsMemoryRead (i n s) && INS IsStandardMemop (i n s))
4 {
5 const UINT32 s i z e = INS MemoryReadSize (i n s) ;
6 const AFUNPTR countFun = (s i z e <= 4 ? (AFUNPTR) MemRefSingle

: (AFUNPTR) MemRefMulti) ;
7

8 // only pred icated−on memory i n s t r u c t i o n s a c c e s s D−cache
9 INS Ins e r tPred i ca t edCa l l (

10 ins , IPOINT BEFORE, countFun ,
11 IARG THREAD ID,
12 IARGMEMORYREADEA,
13 IARG MEMORYREAD SIZE,
14 IARG UINT32 , CACHE BASE : :ACCESS TYPE LOAD,
15 IARG UINT32 , ’R ’ ,
16 IARG END) ;
17 }
18

19 i f (INS IsMemoryWrite (i n s) && INS IsStandardMemop (i n s))
20 {
21 const UINT32 s i z e = INS MemoryWriteSize (i n s) ;

Figure 4.5: Front-End Diagram

4. IMPLEMENTATION OF DIMEM SIMULATOR 32

22 const AFUNPTR countFun = (s i z e <= 4 ? (AFUNPTR) MemRefSingle
: (AFUNPTR) MemRefMulti) ;

23

24 // only pred icated−on memory i n s t r u c t i o n s a c c e s s D−cache
25 INS Ins e r tPred i ca t edCa l l (
26 ins , IPOINT BEFORE, countFun ,
27 IARG THREAD ID,
28 IARGMEMORYWRITEEA,
29 IARG MEMORYWRITE SIZE,
30 IARG UINT32 , CACHE BASE : : ACCESS TYPE STORE,
31 IARG UINT32 , ’W’ ,
32 IARG END) ;
33 }
34

35 }
Listing 4.5: Instrumentation Function

The Instrumentation Granularity we have used in our pintool, is the Instruction

one, as we can see on the header of the Instrumentation Function (Listing 4.5).

The functionality of Instrumentation Function is to check the memory operation

existence (Read/Write), instruction following instruction. In case of a predicated

Memory Read, it calls the suitable Analysis Function (before the instruction) pass-

ing through the following arguments: IARG_THREAD_ID, IARG_MEMORYREAD_EA,

IARG_MEMORYREAD_SIZE, CACHE_BASE::ACCESS_TYPE_LOAD, ’R’ (access type flag).

In case of a predicated Memory Write, the arguments are the following:

IARG_THREAD_ID, IARG_MEMORYWRITE_EA, IARG_MEMORYWRITE_SIZE,

CACHE_BASE::ACCESS_TYPE_STORE, ’W’ (access type flag). Our Pintool uses two

Analysis Functions (MemRefSingle(), MemRefMulti()), as we can see above. Each

one is appropriate for single or multiple memory operands instructions.

INS_MemoryReadSize(ins) and INS_MemoryWriteSize(ins) are used to deter-

mine the total Memory size, that instruction reads or writes. If the total Memory

size is less than or equal to 4 bytes, the MemRefSingle() Analysis Function is

chosen. Otherwise the MemRefMulti() Analysis Function is chosen.

33 4.1 Front-End of DiMEM Simulator: Instrumentation stage

4.1.3 Analysis Functions

MemRefSingle() and MemRefMulti() functions are the “Alpha and Omega” of

our pintool. Their main functionality is to distinguish the Cache Misses from

Cache Hits, in order to collect only the Main Memory Read/Write accesses. A

Main Memory access occurs when the required data can not be found in Cache

(last-level Cache Miss).

The Analysis Functions operate by checking from the upper cache level (L1) to

the lower ones (L2, L3...), until they reach a cache hit or finally a last-level cache

miss.

1 LOCALFUN UINT32 MemRefSingle (UINT32 threadid , ADDRINT addr , UINT32
s i z e , CACHE BASE : :ACCESS TYPE accessType , CHAR r)

2 {
3 BOOL Miss = f a l s e ;
4 BOOL dl2Hit = f a l s e ;
5 // DTLB
6 const BOOL dt lbHit = dt lb s . Acce s sS ing l eL ine (addr , CACHE BASE

: :ACCESS TYPE LOAD) ;
7 // f i r s t l e v e l D−cache

Figure 4.6: Analysis Function

4. IMPLEMENTATION OF DIMEM SIMULATOR 34

8 const BOOL dl1Hit = d l1 s . Acce s sS ing l eL ine (addr , accessType) ;
9 // second l e v e l u n i f i e d Cache

10 i f (! d l1Hit)
11 {
12 dl2Hit = d l2 s . Access (addr , s i z e , accessType) ;
13 i f (! d l2Hit)
14 Miss = true ;
15 }
16 pena l ty = PenaltyCalc (dt lbHit , dl1Hit , d l2Hit) ;
17 i f (Miss)
18 {
19 RecordAtTable (threadid , addr , r , penalty , ’R ’) ;
20 ram count++;
21 }
22 e l s e
23 {
24 RecordCachePenalty (threadid , pena l ty) ;
25 }
26 re turn 0 ;
27 }

Listing 4.6: An Analysis Function without multithreading functionality

In case of a last level miss, the RecordAtTable() function is called (see line

19 on Listing 4.6). That function stores an instance of the Main Memory Access

Record (MMAR) structure, (Record() in our pintool), into the Record Buffer

(recs() in our pintool). So, the Record Buffer (RB) is a vector that contains

the MMAR instances. Furthermore, the MMAR structure models a main memory

access, with the following fields: Thread id, Instruction Address , Read/Write flag,

Cache Penalty, Cycle, Cache/RAM flag. An MMAR instance is created into the

RecordAtTable() function, which uses its attributes to set the struct fields. Some

MMAR fields (threadId, ip, r, cacheflags) are set directly from the corresponding

function fields, unlike the penalty field which has to be calculated.

1 s t a t i c VOID RecordAtTable (UINT32 threadid , ADDRINT ip , CHAR r , UINT32
penalty , CHAR cacheFlag)

2 { // record at Buf f e r
3 r e c s [thread id % CORENUM] . push back (Record ()) ;
4 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . thread id=

thread id ;

35 4.1 Front-End of DiMEM Simulator: Instrumentation stage

5 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . ip=ip ;
6 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . r=r ;
7 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . pena l ty=penalty

+ cachePena l t i e s [thread id % coreNUM] ;
8 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . c y c l e =0;
9 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . cacheFlag=

cacheFlag ;
10 j [thread id % CORENUM]++;
11 cachePena l t i e s [thread id % CORENUM] = 0 ;
12 }

Listing 4.7: RecordAtTable() with multithreading functionality

Between two Main Memory Accesses (MMAR1, MMAR2) which are stored in the

RB, there have, actually, been much more -not stored- Cache Hits. These are

useless for the Simulation, but their additive cache penalty is equal to the Cycles

between MMAR1 and MMAR2. This functionality has been achieved by inserting the

RecordCachePenalty(threadid, penalty) in the Analysis Functions, to sum up

each Cache Penalty, between two Cache Misses.

1 s t a t i c VOID RecordCachePenalty (UINT32 threadid , UINT32 pena l ty)
2 {
3 //keep the add i t i v e pena l ty
4 cachePena l t i e s [thread id % CORENUM]= cachePena l t i e s [thread id %

CORENUM] + penal ty ;
5 }

Listing 4.8: RecordCachePenalty() with multithreading functionality

The Record Buffer’s Penalty is calculated by adding the additive cache penalty

to the current penalty (see line 9 on Listing 4.7). The current Penalty is calculated

by using the PenaltyCalc(dtlbHit, dl1Hit, dl2Hit) function.

1 LOCALFUN std : : s i z e t PenaltyCalc (BOOL boo l t l bH i t , BOOL boo l l 1H i t ,
BOOL boo l l 2H i t)

2 {
3 std : : s i z e t i n t t l bH i t = (boo l t l bH i t) ? 1 : 0 ;
4 std : : s i z e t i n t l 1H i t = (boo l l 1H i t) ? 1 : 0 ;
5 std : : s i z e t i n t l 2H i t = (boo l l 2H i t) ? 1 : 0 ;
6 re turn (i n t t l bH i t ∗TLB PENALTY) + (i n t l 1H i t ∗L1 PENALTY) + (

i n t l 2H i t ∗L2 PENALTY) ;

4. IMPLEMENTATION OF DIMEM SIMULATOR 36

7 }

Listing 4.9: PenaltyCalc() function

PenaltyCalc() uses the following boolean attributes to calculate the Penalty of

an Instruction: dtlbHit, dl1Hit, dl2Hit, ... in combination with the defined

values of TLB_PENALTY, L1_PENALTY, L2_PENALTY, ... (see Listing 4.9).

1 #de f i n e TLB PENALTY 20
2 #de f i n e L1 PENALTY 3
3 #de f i n e L2 PENALTY 15

Listing 4.10: Cache Level Latencies and DTLB Miss Penalty #defines

4.1.4 Instrumentation Output

As described above, the back-end driver of our Simulator is DRAMSim2[28]. Trace-

driven simulation is a popular technique for conducting memory performance stud-

ies. In standalone mode, DRAMSim2 can simulate Memory-System traces. A

suitable trace file for DRAMSim2 has the following format:

1 0x7f64768732d0 P FETCH 1
2 0 x7f fd16a5a538 PMEMWR 8
3 0 x7f6476876a40 P FETCH 12
4 0 x7f6476a94e70 PMEMRD 61
5 0 x7f6476a95000 PMEMRD 79

Listing 4.11: A DRAMSim2 Trace File sample

The first column indicates the Instruction’s Virtual Address, the second one the

Instruction’s Type and the last column indicates the Cycle of each Instruction. To

communicate the front-end driver, with the analogous one back-end, it is necessary

for our pintool to generate the appropriate Trace Sequence.

37 4.1 Front-End of DiMEM Simulator: Instrumentation stage

4.1.4.1 Trace file

The functionality of writing into a Tracefile, has been added to our Simulator. To

achieve that, the following Command-line Switches have been added:

1 KNOB<s t r i ng> KnobOutputFile (KNOBMODEWRITEONCE, ” p in t oo l ” , ”o” ,
”TraceFi l e . t r c ” , ” s p e c i f y t r a c e f i l e name”) ;

2 KNOB<BOOL> KnobValues (KNOBMODEWRITEONCE, ” p in t oo l ” , ” va lue s ” , ”1” ,
”Output memory va lue s reads and wr i t t en ”) ;

as well as, the following lines in the main() function:

1 TraceFi l e . open (KnobOutputFile . Value () . c s t r ()) ;
2 TraceFi l e . s e t f (i o s : : showbase) ;

Now, we had to load the Tracefile.trc like the three-column DRAMSim2

Tracefile format:

1 f o r (i =0; i<r e c . s i z e () ; i++)
2 {
3 i f (r e c [i] . cacheFlag==’R ’)
4 {
5 i f (r e c [i] . r==’F ’)
6 {
7 TraceFi l e << hex << r e c [i] . ip << ” ” << ”P FETCH” << ” ” << dec

<< r e c [i] . pena l ty ;
8 TraceFi l e << endl ;
9 }

10 e l s e i f (r e c [i] . r==’W’)
11 {
12 TraceFi l e << hex << r e c [i] . ip << ” ” << ”PMEMWR” << ” ”

<< dec << r e c [i] . pena l ty ;
13 TraceFi l e << endl ;
14 }
15 e l s e
16 {
17 TraceFi l e << hex << r e c [i] . ip << ” ” << ”PMEMRD” << ” ”

<< dec << r e c [i] . pena l ty ;
18 TraceFi l e << endl ;
19 }
20 }
21 }

Listing 4.12: Trace File generation code

4. IMPLEMENTATION OF DIMEM SIMULATOR 38

4.1.4.2 Record Buffer

In the shared-library mode, DRAMSim2 exposes the basic functionality by creating

a new object (MemorySystem) and by adding requests to that. There is no need

for an external Tracefile, in the shared-library mode. The role of the Tracefile has

been played by the Record Buffer (RB), as described above. In fact, RB is the

source of the Tracefile.

4.1.5 Multithreading Functionality

Pin supports the instrumentation of multi-threaded applications, along with the

single-threaded ones. The operating system controls the scheduling of different

threads of the application. Pin charges each thread with a unique ID different

from the native process ID assigned by the operating system. It does so in order

to distinguish between the different threads of the application. Pin assigns the 1st

thread (i.e. the main thread) with thread ID 0 and each additional new thread the

next sequential ID (i.e. 1, 2, 3) and so on. This way, when a five-threaded workload

is used to conduct a study, PIN distinguishes between threads by assigning each

thread a different ID, starting from ID 0 (for the main thread) and continuing with

the remaining four threads.

The philosophy of multithreading in our Pintool is that every system core deals

with more than one threads simultaneously. The multi-threading functionality has

been achieved by making the following changes on our pintool. First of all, we had

to change the Cache hierarchy code, as described on subsection 4.1.1.2 above. The

next step was to add the thread_data_t class and the ThreadStart() function,

39 4.1 Front-End of DiMEM Simulator: Instrumentation stage

1 #de f i n e PADSIZE 56 // 64 byte l i n e s i z e : 64−8
2

3 // a running count o f the i n s t r u c t i o n s
4 c l a s s th r ead da ta t
5 {
6 pub l i c :
7 th r ead da ta t () : count (0) {}
8 UINT64 count ;
9 UINT8 pad [PADSIZE] ;

10 } ;
11

12 // key f o r a c c e s s i n g TLS s to rage in the threads . i n i t i a l i z e d once in
main ()

13 s t a t i c TLS KEY t l s k e y ;
14

15 // func t i on to ac c e s s thread−s p e c i f i c data
16 th r ead da ta t ∗ g e t t l s (THREADID thread id)
17 {
18 th r ead da ta t ∗ tdata =
19 s t a t i c c a s t <th r ead da ta t ∗>(PIN GetThreadData (t l s k ey , thread id)) ;
20 re turn tdata ;
21 }
22

23 VOID ThreadStart (THREADID threadid , CONTEXT ∗ ctxt , INT32 f l a g s , VOID
∗v)

24 {
25 PIN GetLock(&lock , thread id+1) ;
26 numThreads++;
27 PIN ReleaseLock(& lock) ;
28

29 th r ead da ta t ∗ tdata = new thr ead da ta t ;
30

31 PIN SetThreadData (t l s k ey , tdata , thread id) ;
32 }

Listing 4.13: Multithreading Functionality

in our Pintool. They give the access to a Pintool for dealing with more than

one threads simultaneously, but they can, only, work by combining them with

the functionality of Locks (which allow only one thread to enter the part that’s

locked and the lock is not shared with any other processes) and Mutexes (same as

locks, but shared by multiple processes). To add Lock/Mutex on our Pintool, the

following code has been added in the main function:

4. IMPLEMENTATION OF DIMEM SIMULATOR 40

1 // I n i t i a l i z e the lock
2 PIN InitLock(& lock) ;
3

4 // I n i t i a l i z e the mutexes
5 PIN MutexInit(&Mutex) ;
6

7 // Obtain a key f o r TLS s to rage .
8 t l s k e y = PIN CreateThreadDataKey (0) ;
9

10 // Reg i s t e r ThreadStart to be c a l l e d when a thread s t a r t s .
11 PIN AddThreadStartFunction (ThreadStart , 0) ;

Listing 4.14: Initialize the lock/mutex

as well, the following in the Fini function:

1 PIN MutexFini(&Mutex) ;

Every time, now, the Pintool is dealing with a threadId, it is enclosed between

a Lock or a Mutex. For example:

1 s t a t i c VOID RecordAtTable (UINT32 threadid , ADDRINT ip , CHAR r , UINT32
penalty , CHAR cacheFlag)

2 { // record at Buf f e r
3 PIN MutexLock(&Mutex) ;
4 r e c s [thread id % CORENUM] . push back (Record ()) ;
5 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . thread id=thread id ;
6 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . ip=ip ;
7 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . r=r ;
8 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . pena l ty=penalty +

cachePena l t i e s [thread id % coreNUM] ;
9 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . c y c l e =0;

10 r e c s [thread id % CORENUM] [j [thread id % CORENUM]] . cacheFlag=cacheFlag
;

11 j [thread id % CORENUM]++;
12 cachePena l t i e s [thread id % CORENUM] = 0 ;
13 PIN MutexUnlock(&Mutex) ;
14 }

Listing 4.15: Mutex example

Listing 4.15 indicates the last (but not least) change of the multithreading

functionality, we have rendered. Every one-dimensional table and vector had to

be replaced by a multi-dimensional one, to “simulate” the multicore design.

I.e. the recs.push_back(Record()) has been replaced by recs[threadid %

41 4.1 Front-End of DiMEM Simulator: Instrumentation stage

coreNUM].push_back(Record()), where threadid % coreNUM is the new func-

tionality, which has been added for making the right Core choice. E.g. a five-

threaded workload in a 2-core simulation, will be treated like that:

Table 4.1: Multithreading example

ThreadID Core 0 Core 1

0 X
1 X
2 X
3 X
4 X

4.1.6 Hyperthreading Functionality

Hyperthreading technology allows a single physical processor core to behave like

2 (or more) logical processors1. The processor can run 2 (or more) independent

applications at the same time. Hyperthreading technology allows a single processor

core to execute 2 (or more) independent threads simultaneously

While hyperthreading does not double the performance of a system, it can in-

crease performance by better utilizing idle resources leading to greater throughput

for certain important workload types. An application running on one logical pro-

cessor of a busy core can expect slightly more than half of the throughput that

it obtains while running alone on a non-hyperthreaded processor. Hyperthread-

ing performance improvements are highly application-dependent, and some ap-

plications might see performance degradation with hyperthreading because many

processor resources (such as the cache) are shared between logical processors.

1To avoid confusion between logical and physical processors, Intel refers to a physical processor
as a socket.

4. IMPLEMENTATION OF DIMEM SIMULATOR 42

As is clear from the above, the Hyperthreading Functionality is essential to a

modern processor. To add that functionality in our Pintool, the following addi-

tions, have been made:

1 #de f i n e HYPERTHREADING 2 // THREADS PER CORE, 1 = NO HYPERTHREADING
2

3 coreNUM = CORENUM∗HYPERTHREADING;

as well as, the CORE_NUM has been replaced by coreNUM, everywhere except in

the Cache Hierarchy part, in order to maintain the logical processors, as they were.

4.2 Back-End of DiMEM Simulator: Simulation stage

The Simulation Stage of the DiMEM Simulator was designed by Orion Papadakis[26].

His Diploma Thesis focuses on the Pintool’s Simulation Preparation functionality,

both from theoretical and implementation point of view, so that the Pintool ob-

tains more complete system and useful tool characteristics than a simple Memory

Tracing Pintool. The implemented features which have been added on the pintool

are the following:

1. Reordering, Approximate Timing and Sorting of the Multithreaded Trace

2. Making use of the capabilities of DRAMSim2 Cycle Accurate Memory Sys-

tem Simulator,

3. Implementation of Disaggregate Memory Behaviour

4. Speeding-up the Simulation with “Skip Mode”.

CHAPTER5
Evaluation and Experimental Results

5.1 Evaluation

The section of Evaluation is about the CPU, DRAM and Benchmark choices. The

first are presented by CPU Metrics and the DRAM model are described in the

DRAM Metrics. After that, a Cloudsuite benchmark suites summary performed.

5.1.1 CPU Metrics

As it has already been explained, the DiMEM Simulator is ISA portable. That

feature gives the user the valuable freedom of selection, to decide which CPU

Model he wants to use coupled with a Memory System. The user can modify the

Cache Size, Associativity, Penalties, the number of Cores, to enable/disable the

Hyperthreading etc.

Three popular CPUs for Cloud Servers, are used in the current thesis:

1. ARM Cortex-A53

2. ARM Cortex-A57

3. IBM Power8

5. EVALUATION AND EXPERIMENTAL RESULTS 44

Their metrics are presented below:

ARM Cortex-A53 ARM Cortex-A57 IBM Power8
Cores 4 8 20

Hyperthreading 2 threads/core 2 threads/core 8 threads/core
Logical Cores 8 16 160

Cache 2-levels and TLB 3-levels and TLB 4-levels and TLB

Table 5.1: CPU table 1

ARM Cortex-A53
DTLB Levels L1 L2

Entries 10 Size 32 KB 512 KB
Pages Mode 4 KB Line Size 64 B 64 B
Associativity 32-way Associativity 4-way 16-way
Miss Penalty 2 Latency 3 15

Table 5.2: ARM Cortex-A53 Cache Metrics

ARM Cortex-A57
DTLB Levels L1 L3 UL3

Entries 32 Size 32 KB 1 MB 64 MB
Pages Mode 4 KB Line Size 64 B 64 B 64 B
Associativity 32-way Associativity 2-way 16-way 16-way
Miss Penalty 7 Latency 5 18 60

Table 5.3: ARM Cortex-A57 Cache Metrics

IBM Power8
DTLB (D-ERAT) Levels L1 L2 L3 UL4
Entries 48 Size 64 KB 512 KB 8 MB 16 MB

Pages Mode 64 KB Line Size 128 B 128 B 128 B 128 B
Associativity 48-way Associativity 8-way 8-way 8-way 8-way
Miss Penalty 11 Latency 4 12 27 45

Table 5.4: IBM Power8 Cache Metrics

45 5.1 Evaluation

5.1.2 DRAM Metrics

The Memory System is portable, as well as, the CPU. The user can modify and ex-

periment with his/her own choices. The Device Ini and System Ini of DRAMSim2

contain many variables which can be modified. A modified Micron MT40A1G4HX-

083E DDR4 SDRAM[Micron site] it is used in the current thesis.

The original model has by default 4 GB of total storage, but the benchmarks

that the current thesis used had an average less than 1 GB footprint. So, the Rows

and Columns were modified, in order to shrink the original model to 1 GB of total

storage.

Some of the metrics of modified DDR4 Micron 1G 16B x4 sg083E model are

contained in Device ini file and presented below:

Name Value

NUM BANKS 16
NUM ROWS 16384
NUM COLS 8192

DEVICE WIDTH 4

tCK 0.85 ns
REFRESH PERIOD 7800 ns

CL 16
tRAS 32
tRCD 16
tRRD 4
tRC 48

tCMD 1
Vdd 1.2

Table 5.5: DRAM Metrics - Modified DDR4 Micron 1G 16B x4 sg083E

5. EVALUATION AND EXPERIMENTAL RESULTS 46

5.1.3 Cloud Benchmarks

Cloud benchmarks are certain tests which are applied to cloud computing services

offered by companies and organizations. More broadly speaking, we would say

that benchmarks are not merely tests, but they are considered best practices for

certain components of the Cloud computing which are examined. Benchmarking

is used for performance analysis and, from every aspect and type of computing,

one can discover that there are many benchmarking tests (pieces of software)

available, proprietary or not, in order to be utilized by the tester. For example,

let us refer to the geekbench product, which is a commercial CPU benchmarking

solution. Geekbench has got 27 different workloads (tests) at its disposal: namely,

13 integer tests, 10 floating-point tests and, lastly, 4 memory tests[1]. There are

many cloud benchmarks of the kind, such as those developed by large market-share

holders such as Google (PerfKitBenchmarker) and Oracle, and other companies

such as Upcloud. The one used in this thesis is CloudSuite[10, 25].

5.1.3.1 Cloudsuite

The CloudSuite employs certain specific criteria in order to evaluate the perfor-

mance and efficiency of the cloud services to be assessed. The scale-out services

(as opposed to the traditional ones) examined by the Suite are the most popular

ones [10] and are the following:

a) Data serving

b) Media streaming

47 5.1 Evaluation

c) Web search

Furthermore, some additional ones, as included in CloudSuite 3.0, are:

g) Data analytics

h) Graph analytics

i) In-Memory analytics

j) Data caching

The examination of the aforementioned can depict the architectural behavior of

the system, database and data transport performance, storage velocity, media files

transmission, fault tolerance, web services throughput and performance scalability.

All the benchmarking tests should be performed when the system has reached a

steady state[10, 25].

Lastly, let us refer to two elements which have especially been utilized during

the course of this thesis. These are Data caching and Media streaming.

Data Caching

Data Caching is an online benchmark; it is meant to constritute a performance

criterion of how well the system does when it is presented with an arbitrary amount

of online requests. The manner in which it functions emulates Twitter users and

memcached software is used to this end. The performance metrics put to use are

the number of requests served per second and the latency percent for the total of

these requests. The idea here is that, since data access is slow, and every failure to

5. EVALUATION AND EXPERIMENTAL RESULTS 48

reach to cache and retrieve a piece of data will result in a disk request, the metrics

are thought to effectively measure the performance of data caching, which results

in quick data access.

Media Streaming

Media Streaming benchmark, on the other hand, is still an online benchmark, but

referring to multimedia access performance. An HTTP Connection is made at first

and, then, a flexible total of video-streaming requests is sent to the servers. Videos

of all types and quality can be accessed and the performance metrics calculated

are the streaming bandwidth and the average delay for the reply to each request

that was sent.

5.2 Experimental Process

In that section the experimental process strategy is going to be described. The re-

sult reliability achievement is the main problem of an experimental process design.

We developed on the Simulator the functionality of the Skip mode, because of the

time consuming simulation as a result of the large overhead over the benchmark

execution time[31]. Skip mode, in essence, is a sampling method, consequently,

the existence of the statistical error ε cannot be hidden; it has to be determined,

as well as the sampling rate, to make the reader able to evaluate the result’s relia-

bility. The sampling rate, as a function of ”how many samples”, describes ”when”,

a measurement, or in our case a piece of simulation, must be applied for the result

reliability maintenance.

49 5.2 Experimental Process

We choose to use a simulation sample size of 2 Billion benchmark instructions,

our experiments The trade-off simulation sample size vs simulation time had lead

us to that choice. The sample has to be large enough to let the benchmark unfold

its true workload execution, but always in the context of paying the least useful

overhead. So that, the 2 Billion was estimated as a good trade-off, because that

size is quite over the usual benchmark execution and simulation threshold, which is

1 Billion (eg the Ramulator [18] evaluation uses 10M main memory accesses which

approximately corresponds to 1% miss rate per Billion Instructions), and also the

overhead was not excessively high. The overhead affection was experimentally

observed.

The simulation result of the 2 Billion sampling must be scaled up to the whole

benchmark size, in order to produce the final result. At this point, the final result

must be accompanied with the corresponding ε.

To calculate the ε, a complete simulation, without sampling, is the one way.

But as a result of the time limitations, imposed by the complete simulation, (ex-

pected duration of Media Streaming∼ 90 days = 3 months or non-stop data flow

on Datacache), the solution of just a 4 times denser simulation has been chosen.

A simulation with higher density will not provide us with an accurate ε, but with

just an indication of our sample selection accuracy level.

Sample Selection: The samples must be uniformly distributed along the whole

benchmark instructions, to make the sampling representative. A simple Workload

Profiling Pintool was developed to instrument the benchmark and produce a last

level cache miss profile representation. The functionality of that Pintool is quite

simple. The whole benchmark is simply instrumented, in order to profile the last

level cache miss number of each window. That number is recorded to a .csv file,

5. EVALUATION AND EXPERIMENTAL RESULTS 50

so that profile can be depicted in a chart.

The offered knowledge of a last level cache miss profile chart give us the ability

to design the simulation process, in order to distribute in a uniform and statistically

correct way our simulation samples.

In order to achieve the corresponding and appropriate sampling distribution,

each benchmark has to be utilized separately.

Finally we have to say, that we have failed to take the Simulation results of the

Media Streaming Benchmark because after the final video streaming the Client

terminates and the Server restarts,making the problem of deleting the log files, as

a new Server container starts, after deleting the old one automatically.

Only the DataCaching Profiling and Utilization with 4GB memory size is pre-

sented bellow, as all the other profiles are the same.

5.2.1 Data Caching Profiling and Utilization

As we can see in figure 5.1, the diagram cannot be divided in any areas. We

observe that the majority of the values is 0,4 MPKI, except of the initialization

phase ones (the first 4 windows)

Due to that stability it was prefered to simulate a solid area. In that benchmark

we use 200 Million Instructions sized Windows, subsequently, to perform a 2 Billion

Instructions Simulation, we need 10 Windows (samples).

51 5.2 Experimental Process

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

3
5

0
9

7
1

4
4

1
9

1
2

3
8

2
8

5
3

3
2

3
7

9
4

2
6

4
7

3
5

2
0

5
6

7
6

1
4

6
6

1
7

0
8

7
5

5
8

0
2

8
4

9
8

9
6

9
4

3
9

9
0

1
0

3
7

1
0

8
4

1
1

3
1

1
1

7
8

1
2

2
5

1
2

7
2

1
3

1
9

1
3

6
6

1
4

1
3

1
4

6
0

1
5

0
7

1
5

5
4

1
6

0
1

1
6

4
8

1
6

9
5

1
7

4
2

1
7

8
9

1
8

3
6

1
8

8
3

1
9

3
0

1
9

7
7

2
0

2
4

2
0

7
1

2
1

1
8

2
1

6
5

2
2

1
2

2
2

5
9

2
3

0
6

2
3

5
3

LL
C

 M
P

K
I

WINDOWS

DATACACHING WORKLOAD PROFILE

Figure 5.1: DataCaching Power8 workload analysis.

5.2.2 Simulation Scenarios

The final issue of Experimental Process Design is choosing the Simulation Scenar-

ios. These scenarios describe the Memory Disaggregation Percentage, or, in other

words, how the whole Simulated Disaggregated System makes use of its memory.

For example, if the system has to execute a 16 GB memory footprint application,

which amount is going to be delivered in Local, and which one in the Remote

Memory.

The Memory Disaggregation Percentage is a dynamic process result, through

which, the system will be able to choose between several factors, such as the

latency, the availability etc. In our approach for simplicity reasons it was assumed

that the Local Memory usage percentage, as well as, the Remote are static and

predefined. That assumption had been lead to the different Scenarios we used:

5. EVALUATION AND EXPERIMENTAL RESULTS 52

1. Local: 100%, Remote: 0%

2. Local: 75%, Remote: 25%

3. Local: 50%, Remote: 50%

4. Local: 25%, Remote: 75%

To implement these scenarios many different Disaggregated Latencies have been

used. The latency range is 500-2000 ns with a step of 250 ns. The Disaggregated

Latency had to be translated in Memory Cycles. The used Memory Model has a

0.85 ns Cycle, so we have the latencies in cycles below:

Latency in ns Latency in Cycles

500 588
750 882
1000 1176
1250 1470
1500 1764
1750 2058
2000 2352

Table 5.6: Nanosecond to Memory Cycles Disaggregated Latency Correspondence

5.3 Experimental Results

The experimental results are presented per Benchmark, CPU and Simulation Sce-

nario. Firstly are illustrated the results of 2GB Data Caching benchmark with

Power 8, then with Cortex-A53 and finally with Cortex-A53. Subsequently, the

results of 4GB, 8GB, 16GB, and 32GB of Data Caching Benchmarks are presented

in the same concept.

A latency oriented chart (left column), as well as a bandwidth one (right col-

umn), corresponds for each Scenario. The latency oriented chart shows the, pos-

53 5.3 Experimental Results

itive or negative, Overhead in total execution time over the 100-0 Scenario in a

stack bar per Disaggregation Latency Step. As total execution time, is defined the

addition between the Local and Disaggregated execution time.

With that kind of chart, we are able to observe how the Disaggregated nature

and behavior differs the benchmark execution time compared with the non Dis-

aggregated (scenario 100-0). The point that can be observed is that, the charts

depict the expected increase on the execution time. As the Disaggregated Latency

increases, so does the Overhead. That fact is the expected Disaggregated effect

over the total execution time.

The second kind of chart is about the Bandwidth. In that line chart the Average

Memory Bandwidth results in absolute values are depicted, also per Disaggregation

Latency Step. Here we can observe that as the Disaggregated Latency increases,

the Bandwidth falls. That phenomenon also validates the right Disaggregated

behavior of the DiMEM Simulator because the Disaggregated Latency enlarges

the time distance between the Memory Accesses and as a result we can observe

the Bandwidth loss.

5.3.1 Dense Data Caching Experimental Results

As noticed earlier, a denser experiment for Data Caching has been performed,

in order to evaluate that Benchmark’s experimental process. The Data Caching

Benchmark profile shows a stability on 0,4 MPKI.

The Dense Experiment results show 0.078% divergence in comparison with the

2 Billion Instructions Experiment. The above results were expected due to the

specific behavior of the workload profile.

5. EVALUATION AND EXPERIMENTAL RESULTS 54

500 750 1000 1250 1500 1750 2000
0

0.2

0.4

0.6

0.8

1

1.2
1.05 1.07 1.09 1.11 1.13 1.15 1.19

0.3 0.31 0.34 0.36 0.38 0.4 0.44

0.75 0.75 0.76 0.75 0.75 0.75 0.75

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Power 8 2GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 2GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.1 1.13 1.16 1.19 1.25 1.3
1.39

0.59 0.62 0.65 0.68 0.74 0.8
0.88

0.51 0.51 0.51 0.51 0.51 0.51 0.51

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 2GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 2GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.14 1.18
1.25

1.31
1.41

1.52
1.59

0.89 0.92
0.99

1.06
1.15

1.26
1.34

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 2GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 2GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.2: Power 8 DataCaching 2GB Results

55 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.24 1.3 1.36
1.49

1.6
1.78

1.93

0.49 0.55 0.62
0.74

0.86
1.03

1.2

0.75 0.75 0.74 0.75 0.75 0.75 0.74

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 2GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 2GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.47
1.64

1.86

2.19
2.41

2.67
2.9

0.97
1.16

1.37

1.68
1.92

2.16
2.4

0.5 0.49 0.49 0.5 0.49 0.51 0.51

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 2GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 2GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

4

1.71
2.07

2.43
2.79

3.14
3.5

3.86

1.46
1.81

2.17
2.53

2.89
3.25

3.6

0.26 0.25 0.26 0.26 0.25 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 2GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 2GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.3: Cortex-A53 DataCaching 2GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 56

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.25
1.38

1.5
1.63

1.76
1.88

2

0.5
0.63

0.76
0.88

1.01
1.13

1.25

0.75 0.75 0.75 0.74 0.75 0.75 0.75

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Cortex-A57 2GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 2GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.49
1.75

2
2.25

2.5
2.75

3

0.99
1.24

1.49
1.75

1.99
2.24

2.49

0.5 0.5 0.5 0.51 0.5 0.5 0.51

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 2GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 2GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

4

1.75
2.04

2.42

2.9
3.28

3.77

4.35

1.5
1.78

2.16

2.64
3.03

3.51

4.09

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 2GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 2GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.4: Cortex-A57 DataCaching 2GB Results

57 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.2

0.4

0.6

0.8

1

1.2
1.04 1.07 1.09 1.12 1.13 1.16 1.19

0.29 0.32 0.34 0.37 0.39 0.41 0.43

0.75 0.75 0.75 0.76 0.75 0.75 0.75

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 4GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 4GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.09 1.14 1.19 1.24 1.29
1.34 1.37

0.59 0.64 0.69 0.73 0.78
0.84 0.87

0.5 0.5 0.51 0.51 0.51 0.5 0.5

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 4GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 4GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.14
1.21 1.27

1.35
1.41

1.48
1.56

0.88
0.95 1.02

1.09
1.15

1.22
1.31

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 4GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 4GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.5: Power 8 DataCaching 4GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 58

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.24
1.37

1.48
1.6

1.72
1.84

1.96

0.49
0.61

0.73
0.85

0.96
1.09

1.21

0.76 0.76 0.75 0.76 0.76 0.76 0.75

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Cortex-A53 4GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 4GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.49
1.74

1.97
2.22

2.44
2.68

2.93

0.98
1.22

1.46
1.71

1.94
2.17

2.42

0.51 0.51 0.51 0.51 0.5 0.51 0.51

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 4GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 4GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

4

1.72
2.08

2.44
2.81

3.16
3.52

3.91

1.46
1.82

2.18
2.55

2.91
3.26

3.65

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 4GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 4GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.6: Cortex-A53 DataCaching 4GB Results

59 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.25
1.37

1.5
1.61

1.76
1.89

2.02

0.51
0.62

0.75
0.86

1.01
1.14

1.26

0.75 0.75 0.75 0.75 0.75 0.75 0.75

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 4GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

140

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 4GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.5
1.78

2.02
2.26

2.51
2.76

3.03

1
1.27

1.51
1.75

2.01
2.26

2.53

0.5 0.51 0.51 0.5 0.51 0.5 0.51

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 4GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

140

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 4GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

4

1.76
2.15

2.54
2.88

3.29
3.67

4.03

1.5
1.89

2.28
2.62

3.03
3.41

3.77

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 4GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

140

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 4GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.7: Cortex-A57 DataCaching 4GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 60

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.16 1.17 1.19 1.19 1.25 1.29 1.33

0.3 0.31 0.34 0.34 0.41 0.44 0.49

0.86 0.86 0.86 0.86 0.83 0.85 0.85

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Power 8 8GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 8GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1
1.04

1.15 1.19 1.23 1.28 1.3 1.35

0.56
0.68 0.71 0.74 0.77 0.81 0.85

0.48 0.47 0.49 0.49 0.5 0.49 0.5

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 8GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 8GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.18 1.2 1.24 1.28
1.42 1.47

1.91

0.9 0.94 0.99 1.04
1.16 1.22

1.59

0.28 0.26 0.25 0.25 0.25 0.25 0.32

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 8GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 8GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.8: Power 8 DataCaching 8GB Results

61 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.12
1.22

1.31 1.38
1.48

1.62
1.69

0.43
0.53

0.63 0.73
0.83

0.93
1.04

0.68 0.68 0.68 0.65 0.65 0.68 0.65

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 8GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 8GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

2.5

1.45
1.58

1.8
1.99

2.21
2.32

2.51

0.99
1.14

1.29
1.51

1.7
1.86

2.07

0.46 0.44 0.51 0.48 0.51 0.45 0.44

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 8GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 8GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.61
1.93

2.3

2.65
2.9 3.04

3.34

1.36
1.69

2.07

2.42
2.66 2.8

3.12

0.25 0.24 0.23 0.22 0.25 0.24 0.22

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 8GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 8GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.9: Cortex-A53 DataCaching 8GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 62

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.26
1.37

1.5
1.62

1.84 1.88
2.04

0.5
0.63

0.76
0.87

1.09 1.14
1.3

0.76 0.75 0.75 0.75 0.75 0.74 0.74

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Cortex-A57 8GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

140

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 8GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.5
1.76

2.01
2.26

2.5
2.8

3

1
1.25

1.51
1.76

2
2.3

2.5

0.5 0.51 0.5 0.5 0.51 0.5 0.5

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 8GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 8GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

4

2.17

3.2 3.25 3.3 3.42 3.48
3.85

1.5

2.01 2.52 3.03 3.49 3.69
3.8

0.26 0.26 0.26 0.26 0.26 0.26 0.25

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 8GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 8GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.10: Cortex-A57 DataCaching 8GB Results

63 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.16 1.17 1.16 1.21 1.23 1.28 1.33

0.33 0.34 0.35 0.4 0.42 0.44 0.49

0.84 0.83 0.81 0.82 0.81 0.84 0.84

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 16GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 16GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.23 1.29 1.33
1.4 1.44 1.46

1.55

0.66 0.72 0.76
0.83 0.87 0.9

0.98

0.57 0.57 0.57 0.57 0.57 0.56 0.57

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 16GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 16GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5
1.29

1.37 1.43
1.53 1.59

1.68 1.72

1
1.08 1.14

1.24 1.31
1.39 1.44

0.29 0.29 0.29 0.29 0.29 0.29 0.28

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 16GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 16GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.11: Power 8 DataCaching 16GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 64

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.18
1.25

1.35
1.43

1.54
1.64

1.74

0.43
0.52

0.6
0.69

0.79
0.89

0.99

0.75 0.74 0.75 0.74 0.75 0.75 0.75

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Cortex-A53 16GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 16GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

2.5

1.36
1.53

1.71
1.86

2.09
2.29

2.49

0.86
1.03

1.21
1.39

1.59
1.79

1.98

0.5 0.5 0.5 0.47 0.51 0.51 0.51

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 16GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 16GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.55
1.83

2.11
2.39

2.67
2.94

3.21

1.3
1.58

1.86
2.14

2.41
2.68

2.96

0.26 0.26 0.26 0.25 0.25 0.25 0.25

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 16GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

120

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 16GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.12: Cortex-A53 DataCaching 16GB Results

65 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.13
1.23

1.32
1.42

1.52
1.61

1.73

0.42
0.52

0.61
0.7

0.8
0.89

0.99

0.71 0.71 0.71 0.72 0.72 0.72 0.74

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 16GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

100

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 16GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

2.5

1.35
1.53

1.72
1.91

2.05
2.24

2.42

0.85
1.04

1.22
1.41

1.59
1.78

1.97

0.5 0.5 0.5 0.5 0.46 0.46 0.46

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 16GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000
20

40

60

80

100

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 16GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.55
1.82

2.09
2.36

2.65
2.93

3.21

1.29
1.57

1.84
2.11

2.39
2.67

2.95

0.26 0.26 0.26 0.25 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 16GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000
20

40

60

80

100

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 16GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.13: Cortex-A57 DataCaching 16GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 66

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.22 1.24 1.27 1.29 1.31 1.32 1.33

0.34 0.37 0.4 0.41 0.44 0.45 0.46

0.87 0.87 0.87 0.87 0.87 0.87 0.87

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Power 8 32GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 32GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5
1.27 1.32 1.38 1.44 1.49 1.54 1.59

0.68 0.73 0.8 0.85 0.9 0.95 1

0.59 0.59 0.59 0.59 0.59 0.59 0.59

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 32GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 32GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5
1.33

1.4
1.48

1.57
1.65

1.73
1.8

1.03
1.11

1.18
1.27

1.35
1.43

1.51

0.3 0.3 0.3 0.3 0.3 0.3 0.3

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Power 8 32GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000
12

14

16

18

20

22

24

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Power 8 32GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.14: Power 8 DataCaching 32GB Results

67 5.3 Experimental Results

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

1.44
1.56

1.67
1.78

1.9
2.01

2.12

0.53
0.64

0.76
0.87

0.98
1.09

1.21

0.91 0.91 0.91 0.91 0.91 0.91 0.92

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 32GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000
20

40

60

80

100

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 32GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.64
1.83

2.03
2.22

2.5
2.76

3.03

1.04
1.23

1.43
1.62

1.88
2.15

2.41

0.6 0.6 0.6 0.6 0.61 0.61 0.61

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 32GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000
20

40

60

80

100

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 32GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

4

1.89
2.23

2.57
2.91

3.25
3.59

3.93

1.58
1.92

2.26
2.6

2.94
3.28

3.62

0.31 0.31 0.31 0.31 0.31 0.31 0.31

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A53 32GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000
20

40

60

80

100

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A53 32GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.15: Cortex-A53 DataCaching 32GB Results

5. EVALUATION AND EXPERIMENTAL RESULTS 68

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

1.19
1.28

1.37
1.47

1.56
1.65

1.75

0.43
0.53

0.62
0.71

0.81
0.9

0.99

0.75 0.75 0.75 0.75 0.75 0.75 0.76

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%
Cortex-A57 32GB 75%-25% CLK

Local
Remote

(a)

500 750 1000 1250 1500 1750 2000

20

40

60

80

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 32GB 75%-25% Bandwidth

Local
Remote
Local100%

(b)

500 750 1000 1250 1500 1750 2000
0

0.5

1

1.5

2

2.5

1.38
1.56

1.74
1.93

2.17
2.41

2.65

0.87
1.05

1.24
1.42

1.66
1.9

2.15

0.51 0.51 0.51 0.51 0.5 0.5 0.5

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 32GB 50%-50% CLK

Local
Remote

(c)

500 750 1000 1250 1500 1750 2000
20

40

60

80

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 32GB 50%-50% Bandwidth

Local
Remote
Local100%

(d)

500 750 1000 1250 1500 1750 2000
0

1

2

3

1.57
1.85

2.13
2.4

2.68
2.96

3.24

1.31
1.59

1.87
2.15

2.43
2.71

2.99

0.26 0.26 0.26 0.26 0.26 0.26 0.26

Disaggregated Latency (ns)

O
ve

rh
ea

d
ov

er
sc

en
ar

io
10

0%
-0

%

Cortex-A57 32GB 25%-75% CLK

Local
Remote

(e)

500 750 1000 1250 1500 1750 2000
20

40

60

80

Disaggregated Latency (ns)

B
an

d
w

id
th

(M
B

/s
)

Cortex-A57 32GB 25%-75% Bandwidth

Local
Remote
Local100%

(f)

Figure 5.16: Cortex-A57 DataCaching 32GB Results

CHAPTER6
Conclusion and Future Work

6.1 Conclusion

In conclusion we can support that we have developed a simple Disaggregated

Memory System Simulator in combination with Orion Papadakis thesis[26]. Our

both approach comes with a simplistic level of detail, so that it can depict the

Disaggregated Memory System behavior, in an approximate way. It, also, bears

the Intel Pin framework and DRAMSim2 coupling. Despite the fact that the

coupling result comes along with a large overhead, it is useful for future work and

study on Memory System Simulators. It can play a supporting role as a base in

Disaggregated Memory System Simulators, due to the fact that a Simulator like

the DiMEM Simulator has never developed before, not even in a simplistic way.

Regarding to the experimental methods, we can say that only one approach

was used, due to the nature of the Benchmark. To simulate in a sampling way over

a benchmark application, the profile knowledge is very important. Sampling with

Nyquist theorem may be more safe, accurate and reliable, than the more custom

way. However the custom way sampling is not meaningless. In the current thesis

approach we observed that the chosen sampling method was accurate.

6. CONCLUSION AND FUTURE WORK 70

Furthermore, we observe that the Disaggregated Memory System behavior is

quite depicted, either in the Latency, or in the Bandwidth results. The higher

Disaggregated latency we give to the DiMEM Simulator, the clock grows, and the

bandwidth falls.

Comparing a system with Disaggregated Memory with a Local-only one in

Instruction and Memory Access level, the Disaggregated Memory shows worse

results than the Local, because of the Disaggregated Latency overhead. Despite

that fact, in our evaluation approach, we can observe the existence of a point,

where the results are not so bad. At the point of Disaggregated Latency = 1000 ns,

where the Step is 2x increased, we can see that the Bandwidth does not present the

linear 0.5x attended fall, but it is better than that. Consequently, we can assume

that while the Disaggregated Latency is bellow 1000ns, we can use Disaggregated

Memory without paying for the Disaggregated Latency in the highest price, which

is the 0.5x of the performance.

One more important observation is that despite the size of a the simulated

memory, it is very important the simulated application to be limited in the same

size from the system, otherwise we will collect wrong results.

Finally, it must be noticed, that only a high-level evaluation approach (for

example in application level) can provide us with a clear answer about when a

Disaggregated System presents a better performance than the traditional orga-

nization. In future work, we propose some ideas for further and more detailed

Disaggregated Systems evaluation.

71 6.2 Future Work

6.2 Future Work

The combined work of this thesis with the Orion Papadakis’ ones[26] leads us to

the following common conclusions:

1. Study of the Disaggregated Memory System benefits in an application level.

A transparent to application memory interface is needed. That study can

be done using criteria like Quality of Service (QoS) in an application level

comparison between Local-only Memory System and Local-Disaggregated

Memory System.

2. Main Memory Access Dynamic Split to Local and Remote Memory. The

dynamic memory access split can be achieved by implementing an algorithm

which passes a memory access to local or remote using a Memory Mapping

scheme.

3. Further study and experimentation with more DRAMSim2 parameters. In-

clude the ITLB namespace on the Simulator, as well as the I(nstruction)

Cache Levels

4. Experimentation with another DRAM Simulators. Ramulator[18] may be

a suitable one due to the reason that it is self-presented as the Memory

Simulator with the lower run time (2.5x faster than the next fastest simulator

and 2.7x faster than DRAMSim2).

5. Experimentation with latest Memory Technologies. 3D-stacked DRAM stud-

ies are aiming to overcome the traditional DRAM limits. The lights are on

the Hybrid Memory Cube (HMC) which is a type of 3D-stacked DRAM be-

cause of its usability for server systems and processing-in-memory (PIM) ar-

6. CONCLUSION AND FUTURE WORK 72

chitecture. HMC-Sim2.0[19] and CasHMC[14] Simulators have been designed

for this technology with CasHMC being a step forward due to its cycle ac-

curate HMC modeling. Regarding to the latest Memory technologies exper-

imentation, the DiMEM Simulator can be easily upgraded to them, through

a simple DRAMSim2 library replacement, for example with CasHMC li-

brary/interface. There is no need of changing the simulation feeding process,

except from the update() and addTransaction() library functions which must

be replaced by the corresponding new library ones.

6. Further DiMEM Simulator development/expansion by implementing new

modules alongside the already existed. These modules may be pools con-

taining different kind of resources such as FPGAs, GPUs, Accelerators, as

well as, more advanced interconnects between them.

7. More detailed evaluation of the used evaluation methods. Since, Raytrace

benchmark had been sampled in specific areas, the question of which is the

result reliability by using random sampling, in the same benchmark, was

risen.

8. Find a way to overcome docker container constraints to simulate more Cloud-

suite benchmarks.

73 6.2 Future Work

APPENDICES

AAPPENDIX

Some useful codes

pin cache.h

1 #i f n d e f PIN CACHE H
2 #de f i n e PIN CACHE H
3

4 #inc lude <s t r i ng>
5

6 #inc lude ” p i n u t i l .H”
7

8 /∗ !
9 ∗ @brie f Checks i f n i s a power o f 2 .

10 ∗ @returns t rue i f n i s power o f 2
11 ∗/
12 s t a t i c i n l i n e bool IsPower2 (UINT32 n)
13 {
14 re turn ((n & (n − 1)) == 0) ;
15 }
16

17 /∗ !
18 ∗ @brie f Computes f l o o r (log2 (n))
19 ∗ Works by f i nd i n g po s i t i o n o f MSB se t .
20 ∗ @returns −1 i f n == 0 .
21 ∗/
22 s t a t i c i n l i n e INT32 FloorLog2 (UINT32 n)
23 {
24 INT32 p = 0 ;
25

26 i f (n == 0) re turn −1;
27

28 i f (n & 0 x f f f f 0 0 0 0) { p += 16 ; n >>= 16 ; }
29 i f (n & 0 x0000 f f00) { p += 8 ; n >>= 8 ; }
30 i f (n & 0x000000f0) { p += 4 ; n >>= 4 ; }
31 i f (n & 0x0000000c) { p += 2 ; n >>= 2 ; }

75

32 i f (n & 0x00000002) { p += 1 ; }
33

34 re turn p ;
35 }
36

37 /∗ !
38 ∗ @brie f Computes f l o o r (log2 (n))
39 ∗ Works by f i nd i n g po s i t i o n o f MSB se t .
40 ∗ @returns −1 i f n == 0 .
41 ∗/
42 s t a t i c i n l i n e INT32 Cei lLog2 (UINT32 n)
43 {
44 re turn FloorLog2 (n − 1) + 1 ;
45 }
46

47 /∗ !
48 ∗ @brie f Cache tag − s e l f c l e a r i n g on c r e a t i on
49 ∗/
50 c l a s s CACHETAG
51 {
52 pr i va t e :
53 ADDRINT tag ;
54

55 pub l i c :
56 CACHETAG(ADDRINT tag = 0) { tag = tag ; }
57 bool operator==(const CACHETAG &r i gh t) const { re turn tag == r i gh t .

tag ; }
58 operator ADDRINT() const { re turn tag ; }
59 } ;
60

61

62 /∗ !
63 ∗ Everything r e l a t e d to cache s e t s
64 ∗/
65 namespace CACHE SET
66 {
67

68 /∗ !
69 ∗ @brie f Cache s e t d i r e c t mapped
70 ∗/
71 c l a s s DIRECTMAPPED
72 {
73 pr i va t e :
74 CACHETAG tag ;
75

76 pub l i c :
77 DIRECTMAPPED(UINT32 a s s o c i a t i v i t y = 1) { ASSERTX(a s s o c i a t i v i t y == 1)

; }

A. SOME USEFUL CODES 76

78

79 VOID Se tA s s o c i a t i v i t y (UINT32 a s s o c i a t i v i t y) { ASSERTX(a s s o c i a t i v i t y
== 1) ; }

80 UINT32 GetAs soc i a t i v i t y (UINT32 a s s o c i a t i v i t y) { re turn 1 ; }
81

82 UINT32 Find (CACHETAG tag) { re turn (tag == tag) ; }
83 VOID Replace (CACHETAG tag) { tag = tag ; }
84 VOID Flush () { tag = 0 ; }
85 } ;
86

87 /∗ !
88 ∗ @brie f Cache s e t with round rob in replacement
89 ∗/
90 template <UINT32 MAX ASSOCIATIVITY = 4>
91 c l a s s ROUNDROBIN
92 {
93 pr i va t e :
94 CACHETAG tag s [MAX ASSOCIATIVITY] ;
95 UINT32 tagsLas t Index ;
96 UINT32 nextReplaceIndex ;
97

98 pub l i c :
99 ROUNDROBIN(UINT32 a s s o c i a t i v i t y = MAX ASSOCIATIVITY)

100 : t agsLas t Index (a s s o c i a t i v i t y − 1)
101 {
102 ASSERTX(a s s o c i a t i v i t y <= MAX ASSOCIATIVITY) ;
103 nextReplaceIndex = tagsLas t Index ;
104

105 f o r (INT32 index = tagsLas t Index ; index >= 0 ; index−−)
106 {
107 t a g s [index] = CACHETAG(0) ;
108 }
109 }
110

111 VOID Se tA s s o c i a t i v i t y (UINT32 a s s o c i a t i v i t y)
112 {
113 ASSERTX(a s s o c i a t i v i t y <= MAX ASSOCIATIVITY) ;
114 tagsLas t Index = a s s o c i a t i v i t y − 1 ;
115 nextReplaceIndex = tagsLas t Index ;
116 }
117 UINT32 GetAs soc i a t i v i t y (UINT32 a s s o c i a t i v i t y) { re turn tagsLas t Index

+ 1 ; }
118

119 UINT32 Find (CACHETAG tag)
120 {
121 bool r e s u l t = true ;
122

123 f o r (INT32 index = tagsLas t Index ; index >= 0 ; index−−)

77

124 {
125 // t h i s i s an ugly micro−opt imizat ion , but i t does cause a
126 // t i g h t e r assembly loop f o r ARM that way . . .
127 i f (t a g s [index] == tag) goto end ;
128 }
129 r e s u l t = f a l s e ;
130

131 end : re turn r e s u l t ;
132 }
133

134 VOID Replace (CACHETAG tag)
135 {
136 // g++ −O3 too dumb to do CSE on f o l l ow i n g l i n e s ? !
137 const UINT32 index = nextReplaceIndex ;
138

139 t a g s [index] = tag ;
140 // cond i t i on t y p i c a l l y f a s t e r than modulo
141 nextReplaceIndex = (index == 0 ? tagsLas t Index : index − 1) ;
142 }
143 VOID Flush ()
144 {
145 f o r (INT32 index = tagsLas t Index ; index >= 0 ; index−−)
146 {
147 t a g s [index] = 0 ;
148 }
149 nextReplaceIndex= tagsLas t Index ;
150 }
151 } ;
152

153 } // namespace CACHE SET
154

155 namespace CACHEALLOC
156 {
157 typede f enum
158 {
159 STORE ALLOCATE,
160 STORE NO ALLOCATE
161 } STORE ALLOCATION;
162 }
163

164 /∗ !
165 ∗ @brie f Generic cache base c l a s s ; no a l l o c a t e s p e c i a l i z a t i o n , no

cache s e t s p e c i a l i z a t i o n
166 ∗/
167 c l a s s CACHE BASE
168 {
169 pub l i c :
170 // types , cons tant s

A. SOME USEFUL CODES 78

171 typede f enum
172 {
173 ACCESS TYPE LOAD,
174 ACCESS TYPE STORE,
175 ACCESS TYPE NUM
176 } ACCESS TYPE;
177

178 protec ted :
179 s t a t i c const UINT32 HIT MISS NUM = 2 ;
180 CACHE STATS a c c e s s [ACCESS TYPE NUM] [HIT MISS NUM] ;
181

182 pr i va t e :
183 // input params
184 const std : : s t r i n g name ;
185 const UINT32 cacheS i z e ;
186 const UINT32 l i n e S i z e ;
187 const UINT32 a s s o c i a t i v i t y ;
188 UINT32 numberOfFlushes ;
189 UINT32 numberOfResets ;
190

191 // computed params
192 const UINT32 l i n e S h i f t ;
193 const UINT32 setIndexMask ;
194

195 CACHE STATS SumAccess (bool h i t) const
196 {
197 CACHE STATS sum = 0 ;
198

199 f o r (UINT32 accessType = 0 ; accessType < ACCESS TYPE NUM; accessType
++)

200 {
201 sum += ac c e s s [accessType] [h i t] ;
202 }
203

204 re turn sum ;
205 }
206

207 protec ted :
208 UINT32 NumSets () const { re turn setIndexMask + 1 ; }
209

210 pub l i c :
211 // con s t ru c t o r s / d e s t r u c t o r s
212 CACHE BASE(std : : s t r i n g name , UINT32 cacheSize , UINT32 l i n e S i z e ,

UINT32 a s s o c i a t i v i t y) ;
213

214 // a c c e s s o r s
215 UINT32 CacheSize () const { re turn cacheS i z e ; }
216 UINT32 L ineS i z e () const { re turn l i n e S i z e ; }

79

217 UINT32 As s o c i a t i v i t y () const { re turn a s s o c i a t i v i t y ; }
218 //
219 CACHE STATS Hits (ACCESS TYPE accessType) const { re turn a c c e s s [

accessType] [t rue] ; }
220 CACHE STATS Misses (ACCESS TYPE accessType) const { re turn a c c e s s [

accessType] [f a l s e] ; }
221 CACHE STATS Accesses (ACCESS TYPE accessType) const { re turn Hits (

accessType) + Misses (accessType) ;}
222 CACHE STATS Hits () const { re turn SumAccess (t rue) ;}
223 CACHE STATS Misses () const { re turn SumAccess (f a l s e) ;}
224 CACHE STATS Accesses () const { re turn Hits () + Misses () ;}
225

226 CACHE STATS Flushes () const { re turn numberOfFlushes ;}
227 CACHE STATS Resets () const { re turn numberOfResets ;}
228

229 VOID Spl i tAddres s (const ADDRINT addr , CACHETAG & tag , UINT32 &
set Index) const

230 {
231 tag = addr >> l i n e S h i f t ;
232 se t Index = tag & setIndexMask ;
233 }
234

235 VOID Spl i tAddres s (const ADDRINT addr , CACHETAG & tag , UINT32 &
setIndex , UINT32 & l i n e Index) const

236 {
237 const UINT32 lineMask = l i n e S i z e − 1 ;
238 l i n e Index = addr & lineMask ;
239 Sp l i tAddres s (addr , tag , s e t Index) ;
240 }
241

242 VOID IncFlushCounter ()
243 {
244 numberOfFlushes += 1 ;
245 }
246

247 VOID IncResetCounter ()
248 {
249 numberOfResets += 1 ;
250 }
251

252 std : : ostream & StatsLong (std : : ostream & out) const ;
253 } ;
254

255 CACHE BASE : :CACHE BASE(std : : s t r i n g name , UINT32 cacheSize , UINT32
l i n e S i z e , UINT32 a s s o c i a t i v i t y)

256 : name (name) ,
257 ca cheS i z e (cacheS i ze) ,
258 l i n e S i z e (l i n e S i z e) ,

A. SOME USEFUL CODES 80

259 a s s o c i a t i v i t y (a s s o c i a t i v i t y) ,
260 l i n e S h i f t (FloorLog2 (l i n e S i z e)) ,
261 setIndexMask ((cacheS i ze / (a s s o c i a t i v i t y ∗ l i n e S i z e)) − 1)
262 {
263

264 ASSERTX(IsPower2 (l i n e S i z e)) ;
265 ASSERTX(IsPower2 (setIndexMask + 1)) ;
266

267 f o r (UINT32 accessType = 0 ; accessType < ACCESS TYPE NUM; accessType
++)

268 {
269 a c c e s s [accessType] [f a l s e] = 0 ;
270 a c c e s s [accessType] [t rue] = 0 ;
271 }
272 }
273

274 /∗ !
275 ∗ @brie f S ta t s output method
276 ∗/
277 std : : ostream & CACHE BASE : : StatsLong (std : : ostream & out) const
278 {
279 const UINT32 headerWidth = 19 ;
280 const UINT32 numberWidth = 10 ;
281

282 out << name << ” : ” << std : : endl ;
283

284 f o r (UINT32 i = 0 ; i < ACCESS TYPE NUM; i++)
285 {
286 const ACCESS TYPE accessType = ACCESS TYPE(i) ;
287

288 std : : s t r i n g type (accessType == ACCESS TYPE LOAD ? ”Load” : ” Store ”) ;
289

290 out << S t r i ngS t r i n g (type + ” Hits : ” , headerWidth)
291 << S t r i ng In t (Hits (accessType) , numberWidth) << std : : endl ;
292 out << S t r i ngS t r i n g (type + ” Misses : ” , headerWidth)
293 << S t r i ng In t (Misses (accessType) , numberWidth) << std : : endl ;
294 out << S t r i ngS t r i n g (type + ” Accesses : ” , headerWidth)
295 << S t r i ng In t (Accesses (accessType) , numberWidth) << std : : endl ;
296 out << S t r i ngS t r i n g (type + ” Miss Rate : ” , headerWidth)
297 << St r i ngF l t (100 . 0 ∗ Misses (accessType) / Accesses (accessType) , 2 ,

numberWidth−1) << ”%” << std : : endl ;
298 out << std : : endl ;
299 }
300

301 out << S t r i ngS t r i n g (”Total Hits : ” , headerWidth , ’ ’)
302 << S t r i ng In t (Hits () , numberWidth) << std : : endl ;
303 out << S t r i ngS t r i n g (”Total Misses : ” , headerWidth , ’ ’)
304 << S t r i ng In t (Misses () , numberWidth) << std : : endl ;

81

305 out << S t r i ngS t r i n g (”Total Accesses : ” , headerWidth , ’ ’)
306 << S t r i ng In t (Accesses () , numberWidth) << std : : endl ;
307 out << S t r i ngS t r i n g (”Total Miss Rate : ” , headerWidth , ’ ’)
308 << St r i ngF l t (100 . 0 ∗ Misses () / Accesses () , 2 , numberWidth−1) << ”%”

<< std : : endl ;
309

310 out << S t r i ngS t r i n g (”Flushes : ” , headerWidth , ’ ’)
311 << S t r i ng In t (Flushes () , numberWidth) << std : : endl ;
312 out << S t r i ngS t r i n g (” Stat Resets : ” , headerWidth , ’ ’)
313 << S t r i ng In t (Resets () , numberWidth) << std : : endl ;
314

315 out << std : : endl ;
316

317 re turn out ;
318 }
319

320 /// ostream operator f o r CACHE BASE
321 std : : ostream & operator<< (std : : ostream & out , const CACHE BASE &

cacheBase)
322 {
323 re turn cacheBase . StatsLong (out) ;
324 }
325

326 /∗ !
327 ∗ @brie f Templated cache c l a s s with s p e c i f i c cache s e t a l l o c a t i o n

p o l i c i e s
328 ∗
329 ∗ Al l that remains to be done here i s a l l o c a t e and d e a l l o c a t e the

r i g h t
330 ∗ type o f cache s e t s .
331 ∗/
332 template <c l a s s SET, UINT32 MAX SETS, UINT32 STORE ALLOCATION>
333 c l a s s CACHE : pub l i c CACHE BASE
334 {
335 pr i va t e :
336 SET s e t s [MAX SETS] ;
337

338 pub l i c :
339 // con s t ru c t o r s / d e s t r u c t o r s
340 CACHE(std : : s t r i n g name , UINT32 cacheSize , UINT32 l i n e S i z e , UINT32

a s s o c i a t i v i t y)
341 : CACHE BASE(name , cacheSize , l i n e S i z e , a s s o c i a t i v i t y)
342 {
343 ASSERTX(NumSets () <= MAX SETS) ;
344

345 f o r (UINT32 i = 0 ; i < NumSets () ; i++)
346 {
347 s e t s [i] . S e tA s s o c i a t i v i t y (a s s o c i a t i v i t y) ;

A. SOME USEFUL CODES 82

348 }
349 }
350

351 // mod i f i e r s
352 /// Cache ac c e s s from addr to addr+s i z e −1
353 bool Access (ADDRINT addr , UINT32 s i z e , ACCESS TYPE accessType) ;
354 /// Cache ac c e s s at addr that does not span cache l i n e s
355 bool Acce s sS ing l eL ine (ADDRINT addr , ACCESS TYPE accessType) ;
356 void Flush () ;
357 void ResetStat s () ;
358 } ;
359

360 /∗ !
361 ∗ @return true i f a l l a c ce s s ed cache l i n e s h i t
362 ∗/
363

364 template <c l a s s SET, UINT32 MAX SETS, UINT32 STORE ALLOCATION>
365 bool CACHE<SET,MAX SETS,STORE ALLOCATION> : : Access (ADDRINT addr ,

UINT32 s i z e , ACCESS TYPE accessType)
366 {
367 const ADDRINT highAddr = addr + s i z e ;
368 bool a l l H i t = true ;
369

370 const ADDRINT l i n e S i z e = LineS i z e () ;
371 const ADDRINT notLineMask = ˜(l i n e S i z e − 1) ;
372 do
373 {
374 CACHETAG tag ;
375 UINT32 set Index ;
376

377 Sp l i tAddres s (addr , tag , s e t Index) ;
378

379 SET & se t = s e t s [s e t Index] ;
380

381 bool l o c a lH i t = s e t . Find (tag) ;
382 a l lH i t &= l o c a lH i t ;
383

384 // on miss , l oads always a l l o c a t e , s t o r e s op t i o na l l y
385 i f ((! l o c a lH i t) && (accessType == ACCESS TYPE LOAD | |

STORE ALLOCATION == CACHEALLOC: : STOREALLOCATE))
386 {
387 s e t . Replace (tag) ;
388 }
389

390 addr = (addr & notLineMask) + l i n e S i z e ; // s t a r t o f next cache l i n e
391 }
392 whi le (addr < highAddr) ;
393

83

394 a c c e s s [accessType] [a l l H i t]++;
395

396 re turn a l lH i t ;
397 }
398

399 /∗ !
400 ∗ @return true i f a cce s s ed cache l i n e h i t s
401 ∗/
402 template <c l a s s SET, UINT32 MAX SETS, UINT32 STORE ALLOCATION>
403 bool CACHE<SET,MAX SETS,STORE ALLOCATION> : : Acce s sS ing l eL ine (ADDRINT

addr , ACCESS TYPE accessType)
404 {
405 CACHETAG tag ;
406 UINT32 set Index ;
407

408 Sp l i tAddres s (addr , tag , s e t Index) ;
409

410 SET & se t = s e t s [s e t Index] ;
411

412 bool h i t = s e t . Find (tag) ;
413

414 // on miss , l oads always a l l o c a t e , s t o r e s op t i o na l l y
415 i f ((! h i t) && (accessType == ACCESS TYPE LOAD | | STORE ALLOCATION

== CACHEALLOC: : STOREALLOCATE))
416 {
417 s e t . Replace (tag) ;
418 }
419

420 a c c e s s [accessType] [h i t]++;
421

422 re turn h i t ;
423 }
424 /∗ !
425 ∗ @return true i f a cce s s ed cache l i n e h i t s
426 ∗/
427 template <c l a s s SET, UINT32 MAX SETS, UINT32 STORE ALLOCATION>
428 void CACHE<SET,MAX SETS,STORE ALLOCATION> : : Flush ()
429 {
430 f o r (INT32 index = NumSets () ; index >= 0 ; index−−) {
431 SET & se t = s e t s [index] ;
432 s e t . Flush () ;
433 }
434 IncFlushCounter () ;
435 }
436

437 template <c l a s s SET, UINT32 MAX SETS, UINT32 STORE ALLOCATION>
438 void CACHE<SET,MAX SETS,STORE ALLOCATION> : : ResetStat s ()
439 {

A. SOME USEFUL CODES 84

440 f o r (UINT32 accessType = 0 ; accessType < ACCESS TYPE NUM; accessType
++)

441 {
442 a c c e s s [accessType] [f a l s e] = 0 ;
443 a c c e s s [accessType] [t rue] = 0 ;
444 }
445 IncResetCounter () ;
446 }
447

448

449 // de f i n e sho r t cu t s
450 #de f i n e CACHE DIRECTMAPPED(MAX SETS, ALLOCATION) CACHE<CACHE SET : :

DIRECTMAPPED, MAX SETS, ALLOCATION>
451 #de f i n e CACHE ROUNDROBIN(MAX SETS, MAX ASSOCIATIVITY, ALLOCATION)

CACHE<CACHE SET : :ROUND ROBIN<MAX ASSOCIATIVITY>, MAX SETS,
ALLOCATION>

452

453 #end i f // PIN CACHE H

boost/preprocessor/iteration/local.hpp

1 # /∗ ∗∗∗
2 # ∗ (C) Copyright Paul Mensonides 2002 .
3 # ∗ Dis t r ibu t ed under the Boost Software License , Vers ion 1 . 0 .
4 # ∗ (See accompanying f i l e LICENSE 1 0 . txt or copy at
5 # ∗ http : //www. boost . org /LICENSE 1 0 . txt)
6 # ∗∗∗ ∗/
7 #
8 # /∗ See http ://www. boost . org f o r most r e c ent ve r s i on . ∗/
9 #

10 # i f n d e f BOOST PREPROCESSOR ITERATION LOCAL HPP
11 # de f i n e BOOST PREPROCESSOR ITERATION LOCAL HPP
12 #
13 # inc lude <boost / p r ep ro c e s s o r / c on f i g / c on f i g . hpp>
14 # inc lude <boost / p r ep ro c e s s o r / s l o t / s l o t . hpp>
15 # inc lude <boost / p r ep ro c e s s o r / tup l e /elem . hpp>
16 #
17 # /∗ BOOST PP LOCAL ITERATE ∗/
18 #
19 # de f i n e BOOST PP LOCAL ITERATE() <boost / p r ep ro c e s s o r / i t e r a t i o n /

d e t a i l / l o c a l . hpp>
20 #

85

21 # de f i n e BOOST PP LOCAL C(n) (BOOST PP LOCAL S) <= n && (
BOOST PP LOCAL F) >= n

22 # de f i n e BOOST PP LOCAL R(n) (BOOST PP LOCAL F) <= n && (
BOOST PP LOCAL S) >= n

23 #
24 # end i f

BAPPENDIX

Simulation output

The Simulation Output consists of two discrete output files: Pintool’s .out file and

DRAMSim2 .log file.

Pintool .out file

These files contain information about Ram accesses and their percentage per Win-

dow, the Local and Disaggregated Clock cycles, the Total and Total Instrumented

Instructions, the Local and Disaggregated Cycles per Instruction (CPI) and finaly

a complete Cache report. The Cache report contains information about Load/S-

tore/Total Hits, Misses, Accesses, Miss Rate for each Cache Level separately. A

simple example is following:

1 Ram Accesses : 629850

2 Ram Percentage : 0.31%

3 Simulat ion number : 1 o f 10

4 ============================

5

6 Ram Accesses : 634720

7 Ram Percentage : 0.32%

8 Simulat ion number : 2 o f 10

87

9 ============================

10

11 Ram Accesses : 635207

12 Ram Percentage : 0.32%

13 Simulat ion number : 3 o f 10

14 ============================

15

16 Ram Accesses : 638265

17 Ram Percentage : 0.32%

18 Simulat ion number : 4 o f 10

19 ============================

20

21 Ram Accesses : 637306

22 Ram Percentage : 0.32%

23 Simulat ion number : 5 o f 10

24 ============================

25

26 Ram Accesses : 635036

27 Ram Percentage : 0.32%

28 Simulat ion number : 6 o f 10

29 ============================

30

31 Ram Accesses : 632138

32 Ram Percentage : 0.32%

33 Simulat ion number : 7 o f 10

34 ============================

35

36 Ram Accesses : 637267

37 Ram Percentage : 0.32%

38 Simulat ion number : 8 o f 10

B. SIMULATION OUTPUT 88

39 ============================

40

41 Ram Accesses : 636057

42 Ram Percentage : 0.32%

43 Simulat ion number : 9 o f 10

44 ============================

45

46 Ram Accesses : 640913

47 Ram Percentage : 0.32%

48 Simulat ion number : 10 o f 10

49 ============================

50

51 Local Clock : 992749854

52 Disaggregated Clock : 12574239309

53

54 Total I n s t r u c t i o n s : 4400000169

55 Total Instrumented I n s t r u c t i o n s : 2000000000

56

57 0 .496 c y l e s per I n s t r u c t i o n (L)

58 6 .29 c y l e s per I n s t r u c t i o n (D)

59

60 Simulat ion s t a r t ed at (0 4 : 3 5 : 1 4 | 2017−03−03) and ended at (0 6 : 4 1 : 0 0

| 2017−03−03)

61

62 DTLB 0 :

63 Load Hits : 163066592

64 Load Misses : 45

65 Load Accesses : 163066637

66 Load Miss Rate : 0.00%

67

89

68 Store Hits : 0

69 Store Misses : 0

70 Store Accesses : 0

71 Store Miss Rate : −nan%

72

73 Total Hits : 163066592

74 Total Misses : 45

75 Total Accesses : 163066637

76 Total Miss Rate : 0.00%

77 Flushes : 0

78 Stat Resets : 0

79

80 L1 Data Cache 0 :

81 Load Hits : 102827682

82 Load Misses : 2021252

83 Load Accesses : 104848934

84 Load Miss Rate : 1.93%

85

86 Store Hits : 53080510

87 Store Misses : 5137193

88 Store Accesses : 58217703

89 Store Miss Rate : 8.82%

90

91 Total Hits : 155908192

92 Total Misses : 7158445

93 Total Accesses : 163066637

94 Total Miss Rate : 4.39%

95 Flushes : 0

96 Stat Resets : 0

97

B. SIMULATION OUTPUT 90

98 L2 Data Cache 0 :

99 Load Hits : 854045

100 Load Misses : 1167207

101 Load Accesses : 2021252

102 Load Miss Rate : 57.75%

103

104 Store Hits : 4705229

105 Store Misses : 431964

106 Store Accesses : 5137193

107 Store Miss Rate : 8.41%

108

109 Total Hits : 5559274

110 Total Misses : 1599171

111 Total Accesses : 7158445

112 Total Miss Rate : 22.34%

113 Flushes : 0

114 Stat Resets : 0

115

116 DTLB 1 :

117 Load Hits : 158597676

118 Load Misses : 45

119 Load Accesses : 158597721

120 Load Miss Rate : 0.00%

121

122 Store Hits : 0

123 Store Misses : 0

124 Store Accesses : 0

125 Store Miss Rate : −nan%

126

127 Total Hits : 158597676

91

128 Total Misses : 45

129 Total Accesses : 158597721

130 Total Miss Rate : 0.00%

131 Flushes : 0

132 Stat Resets : 0

133

134 L1 Data Cache 1 :

135 Load Hits : 99947603

136 Load Misses : 1975900

137 Load Accesses : 101923503

138 Load Miss Rate : 1.94%

139

140 Store Hits : 51726528

141 Store Misses : 4947690

142 Store Accesses : 56674218

143 Store Miss Rate : 8.73%

144

145 Total Hits : 151674131

146 Total Misses : 6923590

147 Total Accesses : 158597721

148 Total Miss Rate : 4.37%

149 Flushes : 0

150 Stat Resets : 0

151

152 L2 Data Cache 1 :

153 Load Hits : 830255

154 Load Misses : 1145645

155 Load Accesses : 1975900

156 Load Miss Rate : 57.98%

157

B. SIMULATION OUTPUT 92

158 Store Hits : 4525207

159 Store Misses : 422483

160 Store Accesses : 4947690

161 Store Miss Rate : 8.54%

162

163 Total Hits : 5355462

164 Total Misses : 1568128

165 Total Accesses : 6923590

166 Total Miss Rate : 22.65%

167 Flushes : 0

168 Stat Resets : 0

169

170 DTLB 2 :

171 Load Hits : 159593926

172 Load Misses : 43

173 Load Accesses : 159593969

174 Load Miss Rate : 0.00%

175

176 Store Hits : 0

177 Store Misses : 0

178 Store Accesses : 0

179 Store Miss Rate : −nan%

180

181 Total Hits : 159593926

182 Total Misses : 43

183 Total Accesses : 159593969

184 Total Miss Rate : 0.00%

185 Flushes : 0

186 Stat Resets : 0

187

93

188 L1 Data Cache 2 :

189 Load Hits : 100668087

190 Load Misses : 1930028

191 Load Accesses : 102598115

192 Load Miss Rate : 1.88%

193

194 Store Hits : 52171348

195 Store Misses : 4824506

196 Store Accesses : 56995854

197 Store Miss Rate : 8.46%

198

199 Total Hits : 152839435

200 Total Misses : 6754534

201 Total Accesses : 159593969

202 Total Miss Rate : 4.23%

203 Flushes : 0

204 Stat Resets : 0

205

206 L2 Data Cache 2 :

207 Load Hits : 778062

208 Load Misses : 1151966

209 Load Accesses : 1930028

210 Load Miss Rate : 59.69%

211

212 Store Hits : 4399951

213 Store Misses : 424555

214 Store Accesses : 4824506

215 Store Miss Rate : 8.80%

216

217 Total Hits : 5178013

B. SIMULATION OUTPUT 94

218 Total Misses : 1576521

219 Total Accesses : 6754534

220 Total Miss Rate : 23.34%

221 Flushes : 0

222 Stat Resets : 0

223

224 DTLB 3 :

225 Load Hits : 164599458

226 Load Misses : 44

227 Load Accesses : 164599502

228 Load Miss Rate : 0.00%

229

230 Store Hits : 0

231 Store Misses : 0

232 Store Accesses : 0

233 Store Miss Rate : −nan%

234

235 Total Hits : 164599458

236 Total Misses : 44

237 Total Accesses : 164599502

238 Total Miss Rate : 0.00%

239 Flushes : 0

240 Stat Resets : 0

241

242 L1 Data Cache 3 :

243 Load Hits : 103791118

244 Load Misses : 2067925

245 Load Accesses : 105859043

246 Load Miss Rate : 1.95%

247

95

248 Store Hits : 53658600

249 Store Misses : 5081859

250 Store Accesses : 58740459

251 Store Miss Rate : 8.65%

252

253 Total Hits : 157449718

254 Total Misses : 7149784

255 Total Accesses : 164599502

256 Total Miss Rate : 4.34%

257 Flushes : 0

258 Stat Resets : 0

259

260 L2 Data Cache 3 :

261 Load Hits : 885205

262 Load Misses : 1182720

263 Load Accesses : 2067925

264 Load Miss Rate : 57.19%

265

266 Store Hits : 4651640

267 Store Misses : 430219

268 Store Accesses : 5081859

269 Store Miss Rate : 8.47%

270

271 Total Hits : 5536845

272 Total Misses : 1612939

273 Total Accesses : 7149784

274 Total Miss Rate : 22.56%

275 Flushes : 0

B. SIMULATION OUTPUT 96

276 Stat Resets : 0

Listing B.1: Pintool.out example

DRAMSim2 .log file

These files contain a DRAM report per EPOCH. The report presents statistical

results about the current DRAM state per Rank. For each Rank, at the begining

are presented the Total Return Trasactions and an average Bandwidth. Then are

listed the Reads, Writes, Latency and Bandwidth (per Bank) and Power Data for

that Rank. At the end of a .log file is presented a complete Latency Histogram for

all Ranks. A simple example is following:

1 | Benchmark : DataCaching | CPU: Cortex−A53 | Scenar io : 25−75 | Step :

7 |

2 ===

3 ============== Pr int ing S t a t i s t i c s [id:0]==============

4 Total Return Transact ions : 0 (0 bytes) aggregate average bandwidth

0 .000MB/ s

5 −Rank 0 :

6 −Reads : 0 (0 bytes)

7 −Writes : 0 (0 bytes)

8 −Bandwidth / Latency (Bank 0) : 0 .000 MB/ s −nan s

9 −Bandwidth / Latency (Bank 1) : 0 .000 MB/ s −nan s

10 −Bandwidth / Latency (Bank 2) : 0 .000 MB/ s −nan s

11 −Bandwidth / Latency (Bank 3) : 0 .000 MB/ s −nan s

12 −Bandwidth / Latency (Bank 4) : 0 .000 MB/ s −nan s

13 −Bandwidth / Latency (Bank 5) : 0 .000 MB/ s −nan s

14 −Bandwidth / Latency (Bank 6) : 0 .000 MB/ s −nan s

97

15 −Bandwidth / Latency (Bank 7) : 0 .000 MB/ s −nan s

16 −Bandwidth / Latency (Bank 8) : 0 .000 MB/ s −nan s

17 −Bandwidth / Latency (Bank 9) : 0 .000 MB/ s −nan s

18 −Bandwidth / Latency (Bank 10) : 0 .000 MB/ s −nan s

19 −Bandwidth / Latency (Bank 11) : 0 .000 MB/ s −nan s

20 −Bandwidth / Latency (Bank 12) : 0 .000 MB/ s −nan s

21 −Bandwidth / Latency (Bank 13) : 0 .000 MB/ s −nan s

22 −Bandwidth / Latency (Bank 14) : 0 .000 MB/ s −nan s

23 −Bandwidth / Latency (Bank 15) : 0 .000 MB/ s −nan s

24 == Power Data f o r Rank 0

25 Average Power (mW) : 0 .000

26 −Background (mW) : 0 .000

27 −Act/Pre (mW) : 0 .000

28 −Burst (mW) : 0 .000

29 −Refresh (mW) : 0 .000

30

31 == Pending Transact ions : 0 (0)==

32 ==== Channel [0] ====

33 | Benchmark : DataCaching | CPU: Cortex−A53 | Scenar io : 25−75 | Step :

7 |

34 ===

35 ============== Pr int ing S t a t i s t i c s [id:0]==============

36 Total Return Transact ions : 1636284 (104722176 bytes) aggregate

average bandwidth 118.353MB/ s

37 −Rank 0 :

38 −Reads : 1196027 (76545728 bytes)

39 −Writes : 440257 (28176448 bytes)

40 −Bandwidth / Latency (Bank 0) : 7 .488 MB/ s 34040.604 s

41 −Bandwidth / Latency (Bank 1) : 7 .436 MB/ s 33998.760 s

42 −Bandwidth / Latency (Bank 2) : 7 .410 MB/ s 34029.888 s

B. SIMULATION OUTPUT 98

43 −Bandwidth / Latency (Bank 3) : 7 .356 MB/ s 33996.971 s

44 −Bandwidth / Latency (Bank 4) : 7 .343 MB/ s 34047.424 s

45 −Bandwidth / Latency (Bank 5) : 7 .287 MB/ s 34035.362 s

46 −Bandwidth / Latency (Bank 6) : 7 .350 MB/ s 34057.701 s

47 −Bandwidth / Latency (Bank 7) : 7 .413 MB/ s 34086.468 s

48 −Bandwidth / Latency (Bank 8) : 7 .364 MB/ s 34009.594 s

49 −Bandwidth / Latency (Bank 9) : 7 .425 MB/ s 34010.433 s

50 −Bandwidth / Latency (Bank 10) : 7 .513 MB/ s 34044.460 s

51 −Bandwidth / Latency (Bank 11) : 7 .411 MB/ s 34054.859 s

52 −Bandwidth / Latency (Bank 12) : 7 .378 MB/ s 34092.583 s

53 −Bandwidth / Latency (Bank 13) : 7 .337 MB/ s 34075.726 s

54 −Bandwidth / Latency (Bank 14) : 7 .379 MB/ s 34171.051 s

55 −Bandwidth / Latency (Bank 15) : 7 .464 MB/ s 34069.420 s

56 == Power Data f o r Rank 0

57 Average Power (mW) : 1022.263

58 −Background (mW) : 983.599

59 −Act/Pre (mW) : 13 .160

60 −Burst (mW) : 23 .494

61 −Refresh (mW) : 2 .009

62 −−− Latency l i s t (28)

63 [l a t] : #

64 [20−29] : 205

65 [30−39] : 1120626

66 [40−49] : 39903

67 [50−59] : 6047

68 [60−69] : 6657

69 [70−79] : 2554

70 [80−89] : 4143

71 [90−99] : 1732

72 [100−109] : 1427

99

73 [110−119] : 1385

74 [120−129] : 1295

75 [130−139] : 1152

76 [140−149] : 1150

77 [150−159] : 1766

78 [160−169] : 1304

79 [170−179] : 1290

80 [180−189] : 1412

81 [190−199] : 1195

82 [200−209] : 274

83 [210−219] : 108

84 [220−229] : 233

85 [230−239] : 48

86 [240−249] : 102

87 [250−259] : 13

88 [260−269] : 3

89 [270−279] : 1

90 [290−299] : 1

91 [310−319] : 1

92

93 == Pending Transact ions : 0 (992751922)==

94 //// Channel [0] ////

Listing B.2: DRAMSim2.out example

Bibliography

[1] Robert Barnes. “Best Practices for Benchmarking and Performance Analy-

sis in the Cloud (ENT305)”. In: Amazon Web Services, 2013. url: http:

/ / www . slideshare . net / AmazonWebServices / best - practices - for -

benchmarking-and-performance-analysis-in-the-cloud-ent305-aws-

reinvent-2013-28437412?qid=15d7ec92-5db7-48d5-a764-01290a9021c4.

[2] Andrew R Bernat and Barton P Miller. “Anywhere, any-time binary instru-

mentation”. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools. ACM. 2011, pp. 9–16.

[3] Derek Bruening. QZ: Dynamorio: Dynamic instrumentation tool platform.

[4] K Chandrasekaran. Essentials of cloud computing. CRC Press, 2014.

[5] Gal Diskin. “Binary Instrumentation for Security Professionals”. In: Intel.

Blackhat USA (2011).

[6] Robert Demming & Daniel J. Duffy. Introduction to the Boost C++ Li-

braries; Volume I - Foundations. Datasim Education BV, 2010. isbn: 9789491028014.

[7] Karthi Duraisamy and Goutam Das. “WMRD net: An Optical Data Cen-

ter Interconnect”. In: Optical Fiber Communication Conference/National

Fiber Optic Engineers Conference 2013. Optical Society of America, 2013,

101 BIBLIOGRAPHY

OTu3H.3. doi: 10.1364/OFC.2013.OTu3H.3. url: http://www.osapublishing.

org/abstract.cfm?URI=OFC-2013-OTu3H.3.

[8] D. Evdokimov. Light and dark side of code instrumentation. 2013.

[9] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. “Virtualized

FPGA accelerators for efficient cloud computing”. In: Cloud Computing

Technology and Science (CloudCom), 2015 IEEE 7th International Confer-

ence on. IEEE. 2015, pp. 430–435.

[10] Michael Ferdman et al. “Clearing the clouds: a study of emerging scale-out

workloads on modern hardware”. In: ACM SIGPLAN Notices. Vol. 47. 4.

ACM. 2012, pp. 37–48.

[11] Robert E Filman and Klaus Havelund. Source-code instrumentation and

quantification of events. 2002.

[12] Sangjin Han et al. “Network support for resource disaggregation in next-

generation datacenters”. In: Proceedings of the Twelfth ACM Workshop on

Hot Topics in Networks. ACM. 2013, p. 10.

[13] Aamer Jaleel et al. “CMPSim: A Pin-based on-the-fly multi-core cache simu-

lator”. In: Proceedings of the Fourth Annual Workshop on Modeling, Bench-

marking and Simulation (MoBS), co-located with ISCA. 2008, pp. 28–36.

[14] D. I. Jeon and K. S. Chung. “CasHMC: A Cycle-Accurate Simulator for

Hybrid Memory Cube”. In: IEEE Computer Architecture Letters 16.1 (Jan.

2017), pp. 10–13. issn: 1556-6056. doi: 10.1109/LCA.2016.2600601.

BIBLIOGRAPHY 102

[15] Johnls. Dynamic vs. Static Instrumentation @ONLINE. Nov. 2006. url:

https://blogs.msdn.microsoft.com/johnls/2006/11/15/dynamic-vs-

static-instrumentation/.

[16] K. Katrinis et al. “On interconnecting and orchestrating components in

disaggregated data centers: The dReDBox project vision”. In: 2016 Euro-

pean Conference on Networks and Communications (EuCNC). June 2016,

pp. 235–239. doi: 10.1109/EuCNC.2016.7561039.

[17] K. Katrinis et al. “Rack-scale disaggregated cloud data centers: The dReD-

Box project vision”. In: 2016 Design, Automation Test in Europe Conference

Exhibition (DATE). Mar. 2016, pp. 690–695.

[18] Y. Kim, W. Yang, and O. Mutlu. “Ramulator: A Fast and Extensible DRAM

Simulator”. In: IEEE Computer Architecture Letters 15.1 (Jan. 2016), pp. 45–

49. issn: 1556-6056. doi: 10.1109/LCA.2015.2414456.

[19] J. D. Leidel and Y. Chen. “HMC-Sim-2.0: A Simulation Platform for Ex-

ploring Custom Memory Cube Operations”. In: 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW). May

2016, pp. 621–630. doi: 10.1109/IPDPSW.2016.43.

[20] Kevin Lim et al. “Disaggregated memory for expansion and sharing in blade

servers”. In: ACM SIGARCH Computer Architecture News. Vol. 37. 3. ACM.

2009, pp. 267–278.

[21] Kevin Lim et al. “System-level implications of disaggregated memory”. In:

High Performance Computer Architecture (HPCA), 2012 IEEE 18th Inter-

national Symposium on. IEEE. 2012, pp. 1–12.

103 BIBLIOGRAPHY

[22] Chi-Keung Luk et al. “Pin: building customized program analysis tools with

dynamic instrumentation”. In: Acm sigplan notices. Vol. 40. 6. ACM. 2005,

pp. 190–200.

[23] Hugo Meyer et al. “Disaggregated Computing. An Evaluation of Current

Trends for Datacentres”. In: Procedia Computer Science 108 (2017), pp. 685–

694.

[24] Nicholas Nethercote and Julian Seward. “Valgrind: A program supervision

framework”. In: Electronic notes in theoretical computer science 89.2 (2003),

pp. 44–66.

[25] Tapti Palit, Yongming Shen, and Michael Ferdman. “Demystifying cloud

benchmarking”. In: Performance Analysis of Systems and Software (ISPASS),

2016 IEEE International Symposium on. IEEE. 2016, pp. 122–132.

[26] Orion Papadakis. Memory System Evaluation of Disaggregated High Perfor-

mance Parallel Systems. 2017.

[27] Vijay Janapa Reddi et al. “PIN: A Binary Instrumentation Tool for Com-

puter Architecture Research and Education”. In: Proceedings of the 2004

Workshop on Computer Architecture Education: Held in Conjunction with

the 31st International Symposium on Computer Architecture. WCAE ’04.

Munich, Germany: ACM, 2004. isbn: 978-1-4503-4733-4. doi: 10.1145/

1275571.1275600. url: http://doi.acm.org/10.1145/1275571.1275600.

[28] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A cy-

cle accurate memory system simulator”. In: IEEE Computer Architecture

Letters 10.1 (2011), pp. 16–19.

BIBLIOGRAPHY 104

[29] Open Source. “Dyninst: An application program interface (api) for runtime

code generation”. In: Online, http://www. dyninst. org ().

[30] Gregory T. Sullivan et al. “Dynamic Native Optimization of Interpreters”.

In: Proceedings of the 2003 Workshop on Interpreters, Virtual Machines and

Emulators. IVME ’03. San Diego, California: ACM, 2003, pp. 50–57. isbn:

1-58113-655-2. doi: 10.1145/858570.858576. url: http://doi.acm.org/

10.1145/858570.858576.

[31] Gang-Ryung Uh et al. “Analyzing dynamic binary instrumentation over-

head”. In: WBIA Workshop at ASPLOS. 2006.

[32] Georgios S. Zervas et al. “Disaggregated Compute, Memory and Network

Systems: A New Era for Optical Data Centre Architectures”. In: Optical

Fiber Communication Conference. Optical Society of America, 2017, W3D.4.

doi: 10.1364/OFC.2017.W3D.4. url: http://www.osapublishing.org/

abstract.cfm?URI=OFC-2017-W3D.4.

