
TECHNICAL UNIVERSITY OF CRETE
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

Distributed Algorithms for Convex

Optimization

by

George Lykoudis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRICAL AND COMPUTER ENGINEERING

July 2017

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor
Associate Professor Georgios N. Karystinos

Assistant Professor Vasilis Samoladas

2

Abstract

We consider convex optimization problems whose cost function can be expressed as

the sum of P convex functions. With each function, we associate a convex set and as-

sume that the optimal vector lies in the intersection of these sets. We associate each

problem with a network, where each node has its private cost function and private

constraint set. We present the Distributed Alternating Direction Method of Multi-

pliers (D-ADMM) for the solution of this problem, and demonstrate it by solving

problems for the areas of signal processing and control. We use the Message Passing

Interface (MPI) for the development of parallel implementations of the D-ADMM;

we describe in detail three variations. We test the efficiency of the implementations

in extensive numerical experiments.

3

Acknowledgements

I would like to thank my friends and my family for supporting me during my studies.

Also, I would like to thank my supervisor, Professor Athanasios Liavas, for his

guidance throughout this work.

4

Table of Contents

Table of Contents . 4

List of Figures . 6

List of Abbreviations . 7

1 Introduction . 8

1.1 Motivation . 8

1.2 Notation . 8

1.3 Thesis Outline . 9

2 Convex Optimization . 10

2.1 Basic Optimization Concepts . 10

2.1.1 Convex Sets . 10

2.1.2 Convex Functions . 11

2.1.3 Gradient and Subgradient . 11

2.1.4 Convex Optimization Problem 13

2.1.5 Lagrangian Duality . 14

2.1.6 Lagrange Dual Function . 14

2.1.7 Dual Problem . 15

2.1.8 Optimality Conditions . 16

3 ADMM and D-ADMM . 17

3.1 Dual Ascent . 17

3.2 Augmented Lagrangians and Method of Multipliers 19

3.2.1 Augmented Lagrangian . 19

3.2.2 Method of Multipliers . 20

3.3 Alternating Direction Method of Multipliers 21

3.3.1 Algorithm . 21

3.3.2 Scaled Form . 22

3.3.3 Proximity Operator . 22

3.4 Convergence . 23

3.5 Optimality Conditions . 24

3.6 Stopping Creteria . 24

Table of Contents 5

3.7 Over-relaxation . 25

3.8 Soft Thresholding . 25

3.9 Constrained Convex Optimization 25

3.10 Linear and Quadratic Programming 26

3.11 l1 Norm Problems . 27

3.11.1 Lasso . 27

3.12 Consensus . 28

3.12.1 Global Variable Consensus Optimization 28

3.12.2 Global Variable Consensus with Regularization 29

3.13 Distributed Alternating Direction Method of Multipliers 30

3.13.1 Introduction to the Algorithm 30

3.13.2 Notation . 31

3.13.3 Problem Reformulation . 32

3.13.4 Extended ADMM . 33

3.13.5 Laplacian Graph . 34

3.13.6 Applying Extended ADMM 35

4 Message Passing Interface . 37

4.1 Multiple Instruction-Multiple Data Systems 37

4.1.1 Distributed-Memory MIMD 37

4.2 Message Passing . 38

4.2.1 Buffering . 40

4.2.2 Blocking Communication . 40

4.3 Communicators and Distributed Graph Topologies 41

4.3.1 Communicators . 41

4.3.2 Distributed Graph Topologies 43

4.4 Collective Communication . 45

4.4.1 Broadcast . 45

4.4.2 Allreduce . 46

4.4.3 Neighborhood Collectives . 47

5 Experimental Results . 49

5.1 Performance Measure . 49

5.2 Setup . 49

5.3 Consensus . 50

5.4 Lasso . 54

6 Conclusion . 59

Bibliography . 60

6

List of Figures

2.1 Graph of a convex function. 11

2.2 Important property of gradient. 12

2.3 The absolute value function (left) and its subdifferential ∂f(x) as a

multivalued function of x (right). 12

3.1 Network of P = 10 nodes. 30

4.1 Generic distributed-memory system. 38

4.2 Static network (a) and Dynamic Network (b). Round vertices are

nodes and squares are switches. 38

4.3 Network with one communicator (a) and same network with four

communicators (b). 42

4.4 Adjacent distributed graph example, with 4 processes. 45

4.5 MPI Bcast with 4 processes. 46

4.6 MPI Allreduce with 4 processes. 47

4.7 MPI Neighbor allgather (a) and MPI Neighbor alltoall (b). 48

5.1 Row partition of A of P blocks, where a block is a set of rows. 50

5.2 Fully connected networks. 52

5.3 Partially connected networks. 53

5.4 Fully connected networks. 57

5.5 Partially connected networks. 58

7

List of Abbreviations

KKT Karush Kuhn Tucker

MM Method of Multipliers

ADMM Alternating Direction Method of Multipliers

QP Quadratic Programming

LP Linear Programming

D-ADMM Distributed Alternating Direction Method of Multipliers

MPI Message Passing Interface

MIMD Multiple Instruction-Multiple Data

8

Chapter 1

Introduction

1.1 Motivation

The expansion of size and complexity of nowadays datasets, created the need to

solve problems with large number of features in relatively small amount of time. In

order to solve these problems, distributed algorithms were developed, which work

in a decentralized way for various reasons, such as privacy or memory issues. The

work of Joãh F. C. Mota, Joãh M. F.Xavier, Pedro M. Q. Aguiar and Markus

Püschel in [1] and [2] was the main motivation for this thesis and a great help for

understanding these methods. We study one of these algorithms called Distributed

Alternating Direction Method of Multipliers (D-ADMM). It is an algorithm built for

solving a class of optimization problems, known as separable optimization problems,

in networks of interconnected nodes. In separable optimization problems there is a

private cost function and a private constraint set at each node.

Our goal is to present this algorithm so that the reader will be able to understand

and apply it to a problem he is facing. This is achieved by presenting the framework

and different examples in network problem formulations.

The results concerning the speedup attained by the Message Passing Interface

(MPI) implementations on a multi-core system.

1.2 Notation

Capital (small) bold face letters will denote matrices (column vectors); small letters

will be scalars; [·]ij ([·]i) for the (i, j)-th (i-th) entry of a matrix(vector); (·)T denotes

transposition; (·)−1 inverse of a matrix; IN denotes N × N identity matrix; 1N

denotes a N×1 vector of all ones; 0N denotes a N×1 zero vector; ‖·‖2 the Euclidean

norm; ‖·‖1 the l1 norm; | · | the cardinality of a set; ∇xf(·) the gradient of function

f with respect to vector x.

1.3. Thesis Outline 9

1.3 Thesis Outline

The thesis is organized as follows:

• In chapter 2, is an introduction to basic concepts of convex optimization.

• In chapter 3, presents the ADMM and D-ADMM algorithms.

• In chapter 4, presents Message Passing Interface

• In chapter 5, we implement the algorithms presented in chapter 3, developed

applications based on chapter 4 and present the results from their combination.

• Finally, in chapter 6 we end our thesis with the conclusion.

10

Chapter 2

Convex Optimization

Convex optimization refers to the minimization of a convex objective function sub-

ject to convex constraints. Convex optimization techniques are important in engi-

neering applications, like parameter estimation and signal processing, communica-

tions and networks, electronic circuit design, statistics, finance, etc. The most basic

advantage of casting an optimization problem into a convex optimization problem is

that, due to the convex nature of the feasible set of the problem, any local optimum

is also global optimum. Therefore, algorithms developed to solve convex optimiza-

tion problems that exploit such properties are reliable enough, much more efficient

and also fast.

2.1 Basic Optimization Concepts

In this section, our main goal is to help the reader to develop a working knowledge

of convex optimization, before dealing with mathematical problems for engineer-

ing applications. The review of the optimization concept, is based on the work of

Stephen Boyd and Lieven Vandenberghe [3] and course notes of thesis advisor A.

Liavas [4].

2.1.1 Convex Sets

A set C ⊆ Rn is called convex if, for any set of points x,y ∈ C, the line segment

that joins them also lies in C. So, for x,y ∈ C and ∀θ ∈ [0, 1],

θx + (1− θ)y ∈ C.

Well-known convex sets are cones, ellipsoids, polyhedral sets, and so on. In general,

a convex set must be compact, meaning that it should have a solid body, containing

no holes. Roughly speaking, a set is convex if every point in the set can be seen by

every other point, while both points belong in the set.

Operations between convex sets that preserve convexity and will be of use in the

following chapters are the intersection of any number (finite or infinite) sets, and

the projection of a convex set onto some of its coordinates.

2.1. Basic Optimization Concepts 11

2.1.2 Convex Functions

A function f : domf ⊆ Rn → R, is convex if domf is convex and if for any points

x,y ∈ domf and ∀θ ∈ [0, 1] applies,

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.1)

Geometrically, this means that the line segment joining (x, f(x)) and (y, f(y)) is

always above the graph of function f , as seen in the following figure. A function f

is strictly convex, if strict inequality holds in (2.1) whenever x 6= y and 0 < θ < 1.

We say f is concave if −f is convex, and strictly concave if −f is strictly convex.

x

f(x)

(x0, f(x0)) (x1, f(x1))

Figure 2.1: Graph of a convex function.

There are many examples of convex functions, including functions on R with variable

x as, |x|, ex, x2, as well as functions with variable x ∈ Rn, like, aTx+b, ‖Ax‖2, where

A, a, and b are given matrix and vectors respectively.

2.1.3 Gradient and Subgradient

If f : Rn → R is differentiable, then the function ∇f : Rn → Rn defined as

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ,
is called the gradient of f at x.

An important property of a convex and differentiable function f : domf → R,

with domf ⊆ Rn, is that, for every x,y ∈ Rn, we have

f(y) ≥ f(x) +∇f(x)T (y − x).

2.1. Basic Optimization Concepts 12

That means that first-order Taylor approximation serves as a global underestimator

of f . Furthermore, if f is twice differentiable, then f is convex if and only, if domf

is convex and its Hessian is positive semidefinite ∀x ∈ domf

∇2f(x) ≥ 0.

x
y

f(x)f(y)

f(x) +∇f(x)(y − x)

Figure 2.2: Important property of gradient.

When the function of interest is not differentiable everywhere, its gradient can not

be computed at the non-smooth points. At these points, we use the subgradient of

the function. A subgradient of a function f , at x, is any vector g such that

f(y) ≥ f(x) + gT (y − x), ∀y ∈ domf.

The set of all subgradients of f , at point x, is called the subdifferential of f at x

and is denoted as

∂f(x) = {g | f(y) ≥ f(x) + gT (y − x), ∀y ∈ domf}.

y

f(y) = |y|

x

∂f(x)

1

-1

Figure 2.3: The absolute value function (left) and its
subdifferential ∂f(x) as a multivalued function of x (right).

2.1. Basic Optimization Concepts 13

2.1.4 Convex Optimization Problem

A generic convex optimization problem is defined as

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(2.2)

where vector x ∈ Rn is called optimization variable of the problem and function

f0 the objective (or cost) function. The inequalities fi(x) ≤ 0 are called the in-

equality constraints, and the corresponding functions fi : Rn → R are the inequality

constraint functions. All functions fi, for i = 0, . . . ,m, are convex. The equations

hi(x) = 0 are called the equality constraints and the functions hi : Rn → R are the

equality constraint functions, which are affine functions, that is hi(x) = aTi x − bi.
In case of non-existence of contraints, the problem is called unconstrained.

The set of points for which the objective and all constraint functions are defined

is called the domain D of the convex optimization problem (2.2)

D :=
m⋂
i=0

domfi ∩
p⋂
i=1

domhi. (2.3)

A point x is said to be feasible if x ∈ D and satisfies all inequality and equality

constraints. Problem (2.2) is said to be feasible if there exists at least one feasible

point, and infeasible otherwise. The set of all feasible points is called the feasible

set and is defined as

X := {x ∈ D | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}. (2.4)

The feasible set of a convex optimization problem is convex, since it is the inter-

section of the domain ∩mi=0domfi, which is a convex set, with m sublevel sets and

p hyperplanes. Thus, in a convex optimization problem, we minimize a convex

objective function over a convex set.

The optimal point of (2.2) is defined as

p∗ = inf{f0(x) | x ∈ X}.

A feasible solution x∗ is said to be globally optimal if f0(x
∗) ≤ f0(x), ∀x∗ ∈ X.

2.1. Basic Optimization Concepts 14

2.1.5 Lagrangian Duality

While trying to solve an optimization problem, we should keep in mind that, there is

always another problem that is closely connected to the first. The original problem

is called primal and the second one, the Lagrange dual. Under some conditions (i.e

convexity), those two problems have the same optimal point. So, dual problem can

be of use in some cases.

In order to define the Langrangian function of a convex optimization problem,

we take the constraints in (2.2) into account by augmenting the objective function

with a weighted sum of the constraint functions. We form the Lagrangian function

L : D × Rm × Rp → R

L(x,λλλ,v) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

vihi(x). (2.5)

We refer to λi as the Lagrange multiplier associated with the i-th inequality con-

straint fi(x) ≤ 0. Similarly, we refer to vi as the Lagrange multiplier associated

with the i-th equality constraint hi(x) = 0. Vectors λλλ ∈ Rm and v ∈ Rp are called

dual variables or Lagrange multiplier vectors, associated with problem (2.2).

2.1.6 Lagrange Dual Function

The Lagrange dual function (or just dual function) g : Rm × Rp → R is defined as

the minimum value of the Lagrangian over x : for λλλ ∈ Rm, v ∈ Rp,

g(λλλ,v) = inf
x∈D

L(x,λλλ,v). (2.6)

When the Lagrangian is unbounded from below at x, the dual function takes the

value −∞. Since the dual function is the pointwise infimum of a family of affine

functions of (λλλ,v), it is concave, even when problem (2.2) is not convex. An im-

portant property of the dual function is that it yields lower bounds on the optimal

value p∗ of the problem (2.2): For any λλλ ≥ 0 and any v, we have

g(λλλ,v) ≤ p∗.

2.1. Basic Optimization Concepts 15

2.1.7 Dual Problem

The dual function provides a lower bound that depends on parameters λλλ,v. The

best lower bound that can be obtained from the dual function is computed by the

optimization problem

maximize
λλλ,v

g(λλλ,v),

subject to λλλ ≥ 0.
(2.7)

is called Lagrange dual problem associated with the problem (2.2) In this context,

the original problem (2.2) is sometimes called the primal problem. Also, the pairs

(λλλ,v) are known as dual feasible, if λλλ ≥ 0 and dual function is finite. We refer to

(λ∗,v∗) as dual optimal or optimal Lagrange multipliers if they are optimal for the

problem (2.7).

The dual problem (2.7) is a convex optimization problem, since the objective to

be maximized is concave, and the constraint is convex, regardless of the convexity

of the primal problem (2.2).

The optimal value of the Lagrange dual problem, which we denote d∗, is, by

definition, the best lower bound on p∗ that can be obtained from the Lagrange dual

function. In particular, we have the simple but important inequality d∗ ≤ p∗ , which

holds even if the original problem is not convex. This property is called weak duality.

We refer to the difference p∗ − d∗ as the optimal duality gap of the original

problem, since it gives the gap between the optimal value of the primal problem and

the best lower bound on it that can be obtained from the Lagrange dual function.

The optimal duality gap is always nonnegative. If the equality d∗ = p∗ holds, i.e.,

the optimal duality gap is zero, then we say that strong duality holds. This means

that the best bound that can be obtained from the Lagrange dual function is tight.

Strong duality does not, in general, hold. But, if the primal problem (2.2) is convex,

we usually (but not always) have strong duality.

2.1. Basic Optimization Concepts 16

2.1.8 Optimality Conditions

When a convex optimization problem is unconstrained and the objective function

f0 is differentiable for all x ∈ domf0, then x0 is optimal if and only if

∇f0(x0) = 0.

For any optimization problem with differentiable objective and constraint functions

for which strong duality obtains, any pair of primal and dual optimal points, x∗ and

(λ∗, v∗), must satisfy the Karush Kuhn Tucker (KKT) conditions

fi(x
∗) ≤ 0, for i = 1, . . . ,m, (2.8)

hi(x
∗) = 0, for i = 1, . . . , p, (2.9)

λ∗i ≥ 0, for i = 1, . . . ,m, (2.10)

λ∗i fi(x
∗) = 0, for i = 1, . . . ,m, (2.11)

and

∇f0(x) +
m∑
i=1

λ∗i∇fi(x) +

p∑
i=1

v∗i∇hi(x) = 0. (2.12)

Notice that the first two conditions guarantee primal feasibility of x∗, condition

(2.10) guarantees dual feasibility, condition (2.11) signifies the complementary slack-

ness for the primal and dual inequality constraint pairs, fi(x) ≤ 0 and λi ≥ 0, while

the final condition is equivalent to ∇L(x∗,λλλ,v∗) = 0.

In general, the KKT conditions are necessary but not sufficient for optimality.

However, for convex optimization problems like (2.2), the KKT conditions are also

sufficient. In other words, if fi are convex and hi are affine, and for any x∗, (λλλ,v)

points that satisfy the KKT conditions then x∗, (λλλ,v) are primal and dual optimal,

with zero duality gap.

17

Chapter 3

ADMM and D-ADMM

The enormous growth in size and complexity of modern datasets required for algo-

rithms that could solve problems with huge numbers of features or training examples.

Alternating Direction Method of Multipliers (ADMM) is a well suited algorithm for

distributed convex optimization and in particular to problems arising in applied

statistics and machine learning [5]. Furthermore, D-ADMM is an algorithm based

on the extended ADMM [6], for solving separable optimization problems from signal

processing and control, in networks of interconnected nodes, as average consensus

and compressed sensing, [2].

3.1 Dual Ascent

In the first two sections, we will do a brief review to dual ascent algorithm and

method of multipliers, which are precursors of ADMM.

Consider the equality-constrained convex optimization problem,

minimize
x

f(x),

subject to Ax = b,
(3.1)

with x ∈ Rn, A ∈ Rm×n and f : Rn → R is convex. As seen in (2.5), the Lagrangian

for problem (3.1) is

L(x,y) = f(x) + yT (Ax− b),

and the dual function is

g(y) = inf
x
L(x,y) = −f ∗(−ATy)− bTy,

where y is the dual variable or Lagrange multiplier and f ∗ is the convex conjugate

of f . The dual problem is

maximize
y

g(y)

3.1. Dual Ascent 18

with variable y ∈ Rn. Optimal values of the primal and dual problems are equal,

under the assumption that strong duality holds. Primal optimal point x∗ can be

recovered from a dual optimal point y∗ as

x∗ = argmin
x

L(x,y∗),

in the case that only one minimizer of L(x,y∗) exists.

The Dual Ascent method is an iterative technique for the solution of (3.1), that

can be described as follows. Assuming that dual function g is differentiable and that,

at the k-th iteration, we have computed dual variable yk, the updates of variables

x,y are given by

xk+1 := argmin
x

L(x,yk), (3.2)

yk+1 := yk + αk(Axk+1 − b), (3.3)

where αk > 0 is a step size. Equation (3.2) is the x-minimization step, while equation

(3.3) is a dual variable update. In our case, g(yk) = f(xk+1) + (yk)T (Axk+1 − b)

and ∇g(yk) = Axk+1 − b.

The dual variable y can be described as a vector of prices. Then the y-update is

called a price update or price adjustment step. This algorithm is called dual ascent

because, with proper choice of αk , the dual function increases in each step, i.e.,

g(yk+1) > g(yk).

The dual ascent method can be used even in cases where g is not differentiable.

In these cases, the residual Axk+1−b is the negative of a subgradient of g(yk). These

cases require a different choice of αk than when g is differentiable, and convergence

is not monotone; it is often the case that g(yk+1) ≯ g(yk). In these cases, the

algorithm is called the dual subgradient method. If αk is chosen appropriately

and several other assumptions hold, then xk converges to an optimal point and yk

converges to an optimal dual point. However, these assumptions do not hold in

many applications, so dual ascent often cannot be used.

The advantage of using dual ascent method is that there are cases in which

can lead to a decentralized algorithm. For example, we have a separable objective

function f (with respect to a partition, or splitting of the variable into subvectors),

f(x) =
N∑
i=1

fi(xi)

where x = (x1, . . . ,xN) and the variables xi ∈ Rni are subvectors of x.

3.2. Augmented Lagrangians and Method of Multipliers 19

Partitioning, also the matrix A as

A = [A1 . . .AN],

so that Ax =
N∑
i=1

Aixi, the Lagrangian can be written as

L(x,y) =
N∑
i=1

Li(xi,y) =
N∑
i=1

(fi(xi) + yTAixi −
1

N
yTb),

which is also separable in x. This means that the x-minimization step (3.2) splits

into N separable problems that can be solved in parallel.

Explicitly, the algorithm is

xk+1
i := argmin

xi

Li(xi,y
k), (3.4)

yk+1 := yk + αk(Axk+1 − b), (3.5)

From (3.4) we can see that, for each i = 1, . . . , N , the x-minimization step can

be carried independently. To this form of dual ascent method, we refer as dual

decomposition.

3.2 Augmented Lagrangians and Method of

Multipliers

3.2.1 Augmented Lagrangian

Augmented Lagrangian methods were developed for two reasons. First, to bring ro-

bustness to the dual ascent method and second to yield convergence without making

any assumptions for f , like strict convexity or finiteness. The augmented Lagrangian

for problem (3.1) is

Lρ(x,y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖22 , (3.6)

where ρ > 0 is called the penalty parameter. In case ρ = 0, we get the standard

Lagrangian for the same problem. The augmented Lagrangian is associated with

the problem

minimize
x

f(x) +
ρ

2
‖Ax− b‖22 ,

subject to Ax = b.
(3.7)

3.2. Augmented Lagrangians and Method of Multipliers 20

It is clear that problem (3.7) is equivalent to (3.1), since for any feasible x, the term

added to the objective function is zero. Also, the dual function for the problem

above is gρ(y) = infxLρ(x,y). We should mention that the use of the penalty term,

under mild conditions on the original problem, has as result the dual function to be

differentiable.

3.2.2 Method of Multipliers

If we apply dual ascent to problem (3.7), the algorithm that occurs is

xk+1 := minimize
x

Lρ(x,y
k), (3.8)

yk+1 := yk + ρ(Axk+1 − b), (3.9)

which is known as the method of multipliers(MM) for solving (3.1). The difference

between this algorithm and the dual ascent lies on the x-minimization step. The

method of multipliers uses the augmented Lagrangian and the penalty parameter

ρ instead of αk. Also, MM method converges under far more general conditions,

including cases when f is infinite or not strictly convex.

Let us assume that f is differentiable (although that is not necessary for the

algorithm to work). The optimality conditions for (3.1) are primal and dual feasi-

bility, i.e.,

Ax∗ − b = 0, ∇f(x∗) + ATy = 0,

respectively. By definition, xk+1 minimizes Lρ(x,y
k), so

∇xLρ(x
k+1,yk) = 0⇒

∇xf(xk+1) + AT
(
yk + ρ(Axk+1 − b)

)
= 0⇒

∇xf(xk+1) + ATyk+1 = 0

We see that by using ρ as the step size in the dual update, the iterate (xk+1,yk+1)

is dual feasible. As the MM proceeds, the primal residual, Axk+1 − b, converges to

zero.

Although MM has improved convergence properties compared to dual ascent’s, it

has a drawback. When f is separable, the augmented Lagrangian Lρ is not separable,

meaning that the x-minimization step (3.8) cannot be carried out separately, in

parallel, for each xi.

3.3. Alternating Direction Method of Multipliers 21

3.3 Alternating Direction Method of Multipliers

3.3.1 Algorithm

ADMM is an algorithm that solves problems in the form

minimize
x,z

f(x) + g(z),

subject to Ax + Bz = c,
(3.10)

with minimization variables x ∈ Rn and z ∈ Rm. Also A ∈ Rp×n, B ∈ Rp×m and

c ∈ Rp. We will make the assumption that both f and g are convex. The only

difference between (3.10) and (3.1) is that variables x, z in the first, are actually

variable x in the second, divided into two parts, with the objective function separable

across the splitting. The optimal value of (3.10) is

p∗ = inf{f(x) + g(z) | Ax + Bz = c}.

Working as we did with the MM, we form the augmented Lagrangian

Lρ(x, z,y) = f(x) + g(z) + yT (Ax + Bz− c) + (ρ/2) ‖Ax + Bz− c‖22 .

ADMM consists of the iterations (unscaled form)

xk+1 := argmin
x

Lρ(x, z
k,yk), (3.11)

zk+1 := argmin
z

Lρ(x
k+1, z,yk), (3.12)

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c), (3.13)

where ρ > 0. Apparently, ADMM algorithm is very close to both methods we

discussed above. It is composed of an x-minimization, a z-minimization step, and a

dual variable update ((3.11)− (3.13), respectively). Also, the dual variable update

is being computed, with a step size equal to the augmented Lagrangian parameter

ρ. Notice that variables x and z are updated in an alternating or sequential fashion,

which accounts for the term alternating direction. By separating these minimizations

in two steps, we are able to talk about decomposition when at least one of the

functions in the objective is separable.

3.3. Alternating Direction Method of Multipliers 22

The algorithm state in ADMM consists of zk and yk, which means that (zk+1,yk+1)

is a function of (zk,yk). That does not apply for xk that is an intermediate result

computed from the previous state (zk−1,yk−1).

Finally, the roles of x and z are almost symmetric, but not quite, since the dual

update is done after the z-update but before the x-update.

3.3.2 Scaled Form

In order to be more convenient, ADMM can be reformed, by combining the linear

and quadratic terms in the augmented Lagrangian and scaling the dual variable.

Defining the residual r = Ax + Bz− c, we get

yT r +
ρ

2
‖r‖22 =

ρ

2

(
‖r + u‖22 − ‖u‖

2
2

)
,

where u = (1/ρ)y is the scaled dual variable. Using this, ADMM can be expressed

as

xk+1 := argmin
x

(
f(x) + (ρ/2)

∥∥Ax + Bzk − c + uk
∥∥2
2

)
, (3.14)

zk+1 := argmin
z

(
g(z) + (ρ/2)

∥∥Axk+1 + Bz− c + uk
∥∥2
2

)
, (3.15)

uk+1 := uk + Axk+1 + Bzk+1 − c. (3.16)

We should also define the k-th iteration residual as rk = Axk + Bzk − c and the

running sum of the residuals on the k-th iteration as, uk = u0 +
∑k

j=1 rj.

3.3.3 Proximity Operator

Equation (3.14) can be expressed as,

x+ = argmin
x

(
f(x) + (ρ/2) ‖Ax− v‖22

)
,

with v = −Bz + c− u. If we consider the simple case that A = I, then the right-

hand side is denoted as proxf,ρ(v), known as the proximity operator of f with

penalty ρ. The x-minimization step in the proximity operator is referred as proximal

minimization.

3.4. Convergence 23

3.4 Convergence

We will start by making two assumptions.

Assumption 1:

The functions, f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed, proper

and convex.

This implies that the subproblems arising in the x-update and z-update are solv-

able, i.e., there exist x and z, not necessarily unique, that minimize the Lagrangian.

Notice, that we make no presumption for differentiability.

Assumption 2:

The unaugmented Lagrangian L0 has a saddle point.

There exist (x∗, z∗,y∗), not necessarily unique, for which

L0(x
∗, z∗,y) ≤ L0(x

∗, z∗,y∗) ≤ L0(x, z,y
∗)

holds for all x, z,y.

From Assumption 1, we have that L0(x
∗, z∗,y∗) < ∞ for any saddle point

(x∗, z∗,y∗). That means, (x∗, z∗) is a solution to (3.10), so the constraint hold

and both functions in the objective are finite. Moreover, y∗ is dual optimal, and the

optimal values of primal and dual problems are equal(strong duality holds). There

is no need for neither matrix in the constraint to be full rank.

Under both assumptions, ADMM iterates satisfy the following:

• Residual convergence, rk → 0, as k →∞.

• Objective convergence, f(xk) + g(zk)→ p∗, as k →∞.

• Dual variable convergence, yk → y∗, as k →∞, where y∗ is the dual optimal

point.

3.5. Optimality Conditions 24

3.5 Optimality Conditions

The necessary and sufficient optimality conditions for problem (3.10), are primal

and dual feasibility,

Ax∗ + Bz∗ − c = 0, (3.17)

0 ∈ ∂f(x∗) + ATy∗, (3.18)

0 ∈ ∂g(z∗) + BTy∗. (3.19)

In case that f, g are differentiable then the subgradients of f, g can be replaced by

gradient and ∈ by =.

As seen in chapter 3.3 of [5], zk+1 and yk+1 always satisfy (3.17). Then, in order

to reach optimality (3.18) and (3.19) should hold. For that case, we get the following

quantities,

rk+1 = Axk+1 + Bzk+1 − c (3.20)

sk+1 = ρATB(zk+1 − zk) (3.21)

Equation (3.20) can be viewed as a residual for the primal feasibility condition

(3.17) and (3.21) as the dual residual for (3.18). Both equations (3.20) and (3.21)

as ADMM proceeds, converge to zero.

3.6 Stopping Creteria

Residuals (3.20) and (3.21) can be described as a bound on the objective subopti-

mality of the current point,i.e., f(x) + g(z)− p∗. This means, that as the residuals

become smaller, so will the objective suboptimality. So the primal and dual residuals

should be, ∥∥rk∥∥
2
≤ εpri and

∥∥sk∥∥
2
≤ εdual,

where εpri > 0 and εpri > 0 are feasibility tolerances for the primal and dual feasibility

conditions. These tolerances can be computed by an absolute and relative criterion,

such as,

εpri =
√
pεabs + εrel max{

∥∥Axk
∥∥
2
,
∥∥Bzk

∥∥
2
, ‖c‖2},

εdual =
√
nεabs + εrel

∥∥ATyk
∥∥
2
,

with εabs, εabs positive numbers.

3.7. Over-relaxation 25

3.7 Over-relaxation

In z,y-updates, we can replace Axk+1 with

αkAxk+1 − (1− αk)(Bzk − c)

where αk ∈ (0, 2) is a relaxation parameter. In case αk > 1, this is called over-

relaxation, and when αk < 1, it is called under-relaxation. This can be used to

improve convergence.

3.8 Soft Thresholding

Consider f(x) = λ ‖x‖1, with λ > 0 and A = I. Then the scalar xi-update is,

xk+1
i := argmin

xi

(
λ|xi|+ (ρ/2)(xi − vi)2

)
Although the first term is not differentiable, we can compute a closed-form solution

for the problem and it will be denoted as

xk+1
i := Sλ/ρ(vi).

S is called the soft thresholding operator, and is defined as,

Sκ(α) =


α− κ, if α > κ,

0, if |α| ≤ κ,

α + κ, if α < −κ,

We will refer to updates that reduce to this form as element-wise soft thresholding.

3.9 Constrained Convex Optimization

The generic constrained convex optimization problem is

minimize
x

f(x),

subject to x ∈ C,
(3.22)

with x ∈ Rn, f convex function and C convex set.

3.10. Linear and Quadratic Programming 26

In ADMM form, the problem can be reformed as

minimize
x

f(x) + g(z),

subject to x− z = 0,
(3.23)

where function g is the indicator for set C.

The augmented Lagrangian (scaled form) is

Lρ(x, z,u) = f(x) + g(z) + (ρ/2) ‖x− z + u‖22 ,

so ADMM for this problem is

xk+1 := argmin
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2
2

)
,

zk+1 := ΠC(xk+1 + uk),

uk+1 := uk + xk+1 − zk+1,

where ΠC denotes projection (in the Euclidean norm) onto C. There is no need for

the objective to be smooth; we can simply add more constraints by defining f to be

infinite where the constraints are violated. Then the proximity minimization of x

becomes a constrained minimization problem over domf = {x | f(x) <∞}.
In all cases where the constraint is x− z = 0, the primal and dual residuals take

the simple form

rk = xk − zk,

sk = −ρ(zk − zk+1).

3.10 Linear and Quadratic Programming

A generic form for quadratic programming(QP) is,

minimize
x

1

2
xTPx + qTx,

subject to Ax = b, x ≥ 0,
(3.24)

with variable x ∈ Rn; we assume that P ∈ Sn+. In case that, P is zero matrix,

then (3.24) reduces to standard form linear program (LP). We express, now, QP in

ADMM form like (3.23), with

3.11. l1 Norm Problems 27

f(x) = (1/2)xTPx + qTx, domf = {x | Ax=b},

and function g as the indicator function of the nonegative orthant Rn+.

xk+1 := argmin
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2
2

)
zk+1 := (xk+1 + uk)+

uk+1 := uk + xk+1 − zk+1

where x-minimization step is an equality-constrained least squares problem with

optimality conditions

(P + ρI)xk+1+ATv + (q− ρ(zk − uk)) = 0,

Axk+1 − b = 0.

3.11 l1 Norm Problems

There are a variety of problems involving l1 norms, but in this chapter we will focus

on Lasso problem. With the use of ADMM, we gain the advantage of separating

the nonsmooth l1 term from the smooth loss term.

3.11.1 Lasso

The problem l1 regularized linear regression, or commonly known lasso, is

minimize
x

(1/2) ‖Ax− b‖22 + λ ‖x‖1 , (3.25)

where λ > 0, is a scalar regularization parameter. Lasso is mostly beneficial in cases

where only a small part of a huge number of possible factors can be of use.

Lasso expressed in ADMM form, with

f(x) = (1/2) ‖Ax− b‖22 and g(z) = λ ‖x‖1 ,

consists of the iterations

xk+1 := (ATA + ρI)−1(ATb + ρ(zk − uk))

zk+1 := Sλ/ρ(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1.

3.12. Consensus 28

Note that in x-update, ATA + ρI is always invertible since ρ > 0 and also x-update

is a ridge regression (i.e., quadratically regularized least squares) computation.

3.12 Consensus

In this section, we will deal with a generic optimization problem, called consensus

and describe ADMM-based methods that use distributed optimization in order to

solve it.

3.12.1 Global Variable Consensus Optimization

Consider a single global variable, but the objective and constraints can split into N

parts

minimize
x

f(x) =
N∑
i=1

fi(x)

where x ∈ Rn and fi : Rn → ∪{+∞} are convex. Each term can also be a constraint,

where when it is violated we assign, fi(x) = +∞. In order to find variable x, data

are ‘working together′ to develop a global model.

If we rewrite the problem with local variables xi ∈ Rn and a global variable z we

get,

minimize
x1,...,xN ,z

N∑
i=1

fi(xi)

subject to xi − z = 0, i = 1, . . . , N

(3.26)

This is called global consensus problem. That is because of the constraint that

obligates each local variable to agree with the global variable. The augmented

Lagrangian (unscaled form) for the problem is,

Lρ(x1, . . . ,xN , z,y) =
N∑
i=1

(
fi(xi) + yTi (xi − z) + (ρ/2) ‖xi − z‖22

)
.

The resulting ADMM algorithm is

xk+1
i := argmin

xi

(
fi(xi) + ykTi (xi − zk) + (ρ/2)

∥∥xi − zk
∥∥2
2

)
zk+1 :=

1

N

N∑
i=1

(
xk+1 + (1/ρ)yki

)
yk+1
i := yki + ρ(xk+1 − zk+1).

3.12. Consensus 29

The first and third step are carried out independently for each i = 1, . . . , N in

order to drive variables into consensus. The quadratic regularization helps attract

all variables toward their average value, while attempting to minimize each local fi.

Also, the processing element that handles x variable, is called central controller or

fusion center.

This algorithm, is being used to solve problems that the objective functions

and constraints are distributed across multiple processors, with each one handles

its private objective and constraint, while at every iteration the quadratic term is

updated.

For consensus ADMM, primal and dual residuals are,

∥∥rk∥∥2
2

=
N∑
i=1

∥∥xki − xki
∥∥2
2
,∥∥sk∥∥2

2
= Nρ2

∥∥xki − xk−1i

∥∥2
2
,

where xk = (1/N)
∑N

i=1 xk.

3.12.2 Global Variable Consensus with Regularization

In this section, we are going to include an objective term g, that could represent a

constraint or even a regularization. Function g is handled by the central collector.

The problems is

minimize
x1,...,xN ,z

N∑
i=1

fi(xi) + g(z),

subject to xi − z = 0, i = 1, . . . , N.

(3.27)

The resulting algorithm for problem (3.27) is

xk+1
i := argmin

xi

(
fi(xi) + ykTi (xi − zk) + (ρ/2)

∥∥xi − zk
∥∥2
2

)
, (3.28)

zk+1 := argmin
z

(
g(z) + (Nρ/2)

∥∥z− xk+1 − (1/ρ)yk
∥∥2
2

)
, (3.29)

yk+1
i := yki + ρ(xk+1 − zk+1), (3.30)

with x,y the average sum over all xi,yi.

3.13. Distributed Alternating Direction Method of Multipliers 30

3.13 Distributed Alternating Direction Method

of Multipliers

This section will focus on the main algorithm of our thesis. This algorithm, can

be used for solving separable optimization problems in networks of interconnected

nodes or agents. As we mentioned in the beginning of this chapter, our work is

based on [2].

3.13.1 Introduction to the Algorithm

Consider the following separable optimization problem

minimize
x

f1(x) + f2(x) + . . .+ fP (x),

subject to x ∈ X1 ∩ X2 ∩ . . . ∩ XP ,
(3.31)

where x ∈ Rn is the optimization variable, and x∗ will denote any solution of the

problem. Figure 3.1 shows the association between problem (3.31) and a network of

P nodes. As illustrated, cost function fp and set Xp are private and accessible only

from node p. Nodes i, j can exchange messages with each other, only when they are

neighbors. Even in the case we do not have an all to all communication, all nodes

try to solve (3.31) in a cooperative way. The solution to the problem will occur,

with the absence of a central node or aggregating data in the network. Methods

that work this way, are called distributed algorithms.

1

f1,X1

2

f2,X2

3f3,X3

4

f4,X4

5

f5,X5

6

f6,X6

7

f7,X7

8

f8,X8
9 f9,X9

10

f10,X10

Figure 3.1: Network of P = 10 nodes.

3.13. Distributed Alternating Direction Method of Multipliers 31

Furthermore, we make the following assumptions,

• Each fp : Rn → R is a convex function over Rn, and each set Xp is a closed

and convex.

• There is at least one solution x∗, for problem (3.31).

• The network is connected and does not vary with time.

• A coloring scheme of the network is available.

More specifically, the third assumption implicates that, when a network is connected

then for any two nodes there is a path connecting them. Finally, in the last assump-

tion, a coloring scheme is an assignment of numbers to the nodes of the network,

such that no neighboring nodes have the same number. Those numbers, from now

on, will be called colors.

The D-ADMM algorithm is based on ADMM, which as we have already seen

in section 3.3 is an augmented Lagrangian based algorithm that consists of only

one loop (in order to update primal and dual variables). D-ADMM is a distributed

algorithm and can be applied to any connected network topology.

3.13.2 Notation

To begin with, the network is represented as an undirected graph G = (V,E) where

V = {1, 2, . . . , P}, is the set of nodes, and E ⊆ V × V is the sets of edges. The

cardinality of these sets are P and E, respectively. An edge of connecting nodes

is represented as (i, j), with i < j, meaning that these nodes can send and receive

messages to each other. The set of neighbors of node p is written as Np, and its

degree is Dp = |Np|.
According to the fourth assumption we made, a proper coloring with C =

{1, . . . , C} of the graph is available. This means that each node is labeled with

a number c ∈ C, which we call color, so that no adjacent nodes have the same color.

The set of nodes that have color c will be denoted with Cc, for c = 1, . . . , C, and its

cardinality with Cc = |Cc|.
Assume the nodes are ordered such that the first C1 nodes have color 1, the next

C2 nodes have color 2 and so on.

3.13. Distributed Alternating Direction Method of Multipliers 32

3.13.3 Problem Reformulation

ADMM is not directly applicable to problem (3.31), so we need to reformulate it.

At first, we create copies xp of the global variable x and attach them to each node

p. We also constrain them to be equal since the network is connected. Then, we get

minimize
x=(x1,...,xP)

f1(x1) + . . .+ fP (xP),

subject to x1 ∈ X1, . . . ,xP ∈ XP ,

xi = xj, (i, j) ∈ E,

(3.32)

where x = (x1, . . . ,xP) ∈ (Rn)P is the optimization variable. Problem (3.32) de-

pends now only on the equations xi = xj, for all pairs (i, j) ∈ E. These constraints

can be written as (BT ⊗ In)x = 0, where B ∈ RP×E is the node arc-incidence

matrix of the graph, and ⊗ is the Kronecker product. Each column of B is con-

nected with (i, j) ∈ E and has 1 and −1 at the i-th and j-th entry, respectively,

while every other entry is zero. The existence of colors imports a partition of B

as [BT
1 , . . . ,B

T
C]T , where the columns of BT

c are associated to the nodes with color

c. In the same notion, we partition x as x1, . . . ,xC , where xc ∈ (Rn)Cc collects the

copies of all nodes with color c. With these changes, we rewrite (3.32) as,

minimize
x1,...,xC

C∑
c=1

∑
p∈Cc

fp(xp)

subject to x1 ∈ X1, . . . ,xC ∈ XC ,
C∑
c=1

(BT
c ⊗ In)xc = 0,

(3.33)

where Xc = Πp∈CcXp.

3.13. Distributed Alternating Direction Method of Multipliers 33

3.13.4 Extended ADMM

The extended ADMM is a natural generalization of ADMM [6]. In case we have C

functions gc, C sets Xc, and C matrices Ac (with the same number of rows), the

extended ADMM solves

minimize
x1,...,xC

C∑
c=1

gc(xc),

subject to xc ∈ Xc, c = 1, . . . , C,

C∑
c=1

Acxc = 0,

(3.34)

where x := (x1, . . . ,xC) is the optimization variable. The augmented Lagrangian

for problem (3.34) is

Lρ(x;λλλ) =
C∑
c=1

(gc(xc) + λλλTAcxc) +
ρ

2

∥∥∥∥∥
C∑
c=1

Acxc

∥∥∥∥∥
2

2

Assuming that at time k we have completed xk1,x
k
2, . . . ,x

k
p,λλλ

k, then, the updates of

the primal and dual variables of the extended ADMM are computed as follows,

xk+1
1 = argmin

x1∈X1

Lρ(x1,x
k
2, . . . ,x

k
C ;λλλk) (3.35)

xk+1
2 = argmin

x2∈X2

Lρ(x
k+1
1 ,x2,x

k
3, . . . ,x

k
C ;λλλk) (3.36)

...

xk+1
C = argmin

xC∈XC

Lρ(x
k+1
1 ,xk+1

2 , . . . ,xk+1
C−1,xC ;λλλk) (3.37)

λλλk+1 = λλλk + ρ
C∑
c=1

Acx
k+1
c , (3.38)

where λλλ is the dual variable and ρ > 0. If we have only two colors in our network,

then expressions (3.35)−(3.38) becomes the ordinary ADMM, which converges under

mild assumptions. However, if we have more colors, then there is only a known proof

of convergence when all the functions gc are strongly convex [6].

3.13. Distributed Alternating Direction Method of Multipliers 34

Theorem 1: Let gc : Rnc → R be a convex function over Rnc ,Xc ⊆ Rnc , which is

a closed convex set, and Ac ∈ Rm×nc a matrix for c = 1, . . . , C. If we assume that

(3.34) is solvable and one of the two following assumptions holds

• C = 2 and each Ac has full column rank,

• C ≥ 2 and each gc is strongly convex.

then, the sequence {(xk1, . . . ,xkC ,λλλk)} generated by (3.35) − (3.38) converges to

{(x∗1, . . . ,x∗C ,λλλ∗)}, where (x∗1, . . . ,x
∗
C) is the optimal point for (3.34) and λλλ∗ is the

dual optimal for

max
λλλ

C∑
c=1

Gc(λλλ),

with Gc(λλλ) = infxc∈Xc(gc(xc) + λλλTAcxc), for c = 1, . . . , C.

3.13.5 Laplacian Graph

Before applying the extended ADMM to problem (3.33), we will introduce the Lapla-

cian graph term.

Given a simple graph G = (V, E), with V,E sets as already denoted in section

3.13.2, its Laplacian matrix L is a n×n matrix defined in [12] as L = D−A. Matrix

D is a diagonal matrix with the degrees for each vertex, and A is the adjacency

matrix of graph G. Matrix A is also a n× n matrix where

ai,j =

1, if {i, j} ∈ E,

0, otherwise.

So, if di denotes the degree of the vertex i, then

Li,j =


di, if i = j,

−1, if i 6= j and i, j are adjacent,

0, otherwise.

This will help us rewrite some equations in the following.

3.13. Distributed Alternating Direction Method of Multipliers 35

3.13.6 Applying Extended ADMM

We now apply the extended ADMM to problem (3.33), which has the format of

(3.34). We will show how the x1 = (x1, . . . ,xC1) can be updated but, in the same

way, we can rewrite the rest minimization steps. So,

xk+1
1 = argmin

x1∈X1

∑
p∈C1

fp(xp) + λλλkTA1x1 +
ρ

2

∥∥∥∥∥A1x1 +
C∑
c=2

Acx
k
c

∥∥∥∥∥
2

2

, (3.39)

with A1 = BT
1 ⊗ In. The norm term in the equation above can be written as,

ρ

2
xT1 AT

1 A1x1 + ρxT1

C∑
c=2

AT
1 Acx

k
c +

ρ

2

∥∥∥∥∥
C∑
c=2

Acx
k
c

∥∥∥∥∥
2

2

. (3.40)

The first term is essentially AT
1 A1 = B1B

T
1 ⊗ In, where B1B

T
1 is a diagonal block of

the graph Laplacian, which means that the degrees of the respective nodes appear

at the diagonal. This way, we can write the first term of (3.40) as, xT1 AT
1 A1x1 =∑

p∈C1
Dp ‖xp‖22. Similarly, the second term can be written as AT

1 Ac = B1B
T
c ⊗ In,

where B1B
T
c is an off-diagonal block of the Laplacian matrix. This means that,

for i 6= j, if nodes i, j are neighbors, then the ij-th entry of the Laplacian matrix

contains −1, and 0 otherwise. Then, we can write the second term of (3.40) as

xT1
∑C

c=2 AT
1 Acx

k
c = −

∑
p∈C1

∑
j∈Np

xTp xkj . Finally, we can ignore the last term,

since there is no dependency on x1.

Furthermore, we can rewrite the second term in (3.39) as

(
(B1 ⊗ In)λλλk

)T
x1 =

∑
p∈C1

∑
j∈Np

λλλkpj
T
xp,

where λλλij is defined for i < j and is connected with equation xi = xj. We also set

γγγkp =
∑

j∈Np
λλλkpj. Working like this, equation (3.39) simplifies to

x1 = argmin
x1∈X1

∑
p∈C1

fp(xp) +
(
γγγkp − ρ

∑
j∈Np

xkj

)T
xp +

ρDp

2
‖xp‖22 , (3.41)

We conclude from (3.41), that problem (3.39) is decomposed into C1 problems that

can be solved in parallel. Working in the same way, we can compute the minimization

steps for the other colors. For that, we should define

γkp =
∑
j∈Np

sign(j − p)λλλkpj,

3.13. Distributed Alternating Direction Method of Multipliers 36

where sign(a) = 1, if a ≥ 0, and sign(a) = −1 otherwise.

The resulting algorithm is called Distributed-ADMM.

Initialization: for all p ∈ V, set γγγ1p = x1
p = 0 and k = 1

1: repeat

2: for c = 1, ..., C do

3: for all p ∈ Cc [in parallel] do

vkp = γγγkp − ρ
∑

j∈Np

j<p
xk+1
j − ρ

∑
j∈Np

j>p
xkj

4: and find

xk+1
p = argmin fp(xp) + vkTp xp + ρDp

2
||xp||2

subject to xp ∈ Xp
5: Send xk+1

p to Np
6: end for

7: end for

8: for all p ∈ V [in parallel] do

γγγk+1
p = γγγkp + ρ

∑
j∈Np

(xk+1
p − xkp)

9: end for

10: k = k + 1

11: until some stopping criterion is met

D-ADMM algorithm is an asynchronous algorithm, because all nodes operate in

a color-based order. Node p works in parallel with the nodes that belong to the

same color, and when it receives the updated xk+1 from all its neighbors in the

lower colors, it continues to operate, since steps 4 and 5 from the algorithm can be

executed.

37

Chapter 4

Message Passing Interface

As we discussed in the previous chapter, D-ADMM algorithm is applicable to ev-

ery network topology, and has steps that can be performed in parallel. For that

reason, we will introduce a communication library for both parallel computers and

workstation networks, Message Passing Interface (MPI). It is a portable, standard

interface for writing parallel applications, in all branches of science and engineering,

on systems of all sizes, from laptops to clusters of the largest and most powerful

supercomputers in the world. MPI is a library of subprograms that can be called

from C, C++ or Fortran 90. This chapter is based on [7] and [8].

4.1 Multiple Instruction-Multiple Data Systems

Multiple instruction-multiple data systems (MIMD) is a technique employed to

achieve parallelism. Machines using MIMD have a number of processors that func-

tion asynchronously and independently. At any time, different processors may be

executing different instructions on different pieces of data. MIMD systems can be

of either shared memory or distributed memory systems, but we will focus on dis-

tributed memory machines.

4.1.1 Distributed-Memory MIMD

In distributed-memory systems, each processor has its private memory and a generic

one is illustrated in 4.1. Also, it can be seen as a graph, where the edges are

communication wires. Now, the vertices could be a pair of processor and memory

(nodes), which this type of network is called static. On the other hand, vertices could

correspond to nodes and the rest to switches, and this is called dynamic network.

An example of both type of networks can be seen in Figure 4.2.

4.2. Message Passing 38

. . .CPU CPU CPU

Inteconnection Network

Memory Memory Memory

Figure 4.1: Generic distributed-memory system.

The ideal interconnection network is a fully connected network, from a performance

and programming perspective, where each node can communicate directly with every

other node in the network. With a fully connected network, the communication

presents no delay, and every node can exchange messages with other nodes, while

other communications are taking place. But, its drawback is that, due to high cost

of building such a network, makes it impractical to construct a machine with more

than a few nodes.

. . .

. . .

. . .

...
...

...

(a)

. . .

. . .

. . .

...
...

...

(b)

Figure 4.2: Static network (a) and Dynamic Network (b).
Round vertices are nodes and squares are switches.

4.2 Message Passing

Before talking about message passing, we should define the term process. It is an

instance of a program or subprogram that is executing essentially autonomously on

a physical processor. In a parallel program, there is the possibility of more than one

processes coexist.

For programming in distributed-memory MIMD machine, the most common way

is by message passing. With message passing, processes coordinate their activities

by sending and receiving messages. The standard functions in MPI that are used

4.2. Message Passing 39

for that purpose are:

int MPI Send(void∗ buffer /* in */,

int count /* in */,

MPI Datatype datatype /* in */,

int destination /* in */,

int tag /* in */,

MPI Comm communicator /* in */)

int MPI Recv(void∗ buffer /* out */,

int count /* in */,

MPI Datatype datatype /* in */,

int source /* in */,

int tag /* in */,

MPI Comm communicator /* in */,

MPI Status* status /* out */)

At the beginning of the program execution, the processes are set from the user,

so that no more processes can be added, which is really useful, because D-ADMM

algorithm is suited for static networks. After that, a unique integer, called rank, is

assigned to each process, from 0 to p− 1, with p denoting the number of processes.

We will present an example, for both functions, so that the reader could have

a better understanding on them. Consider two processes, with ranks 0 and 1, that

try to communicate. First process 0, sends the double variable x to process 1. Then

process 1 wants to receive this message, with valid data. In order to do that, process

0 calls the first function and process 1 calls the second one with the same tag and

communicator arguments. Also, the buffer should be of the same type and size as

the message sent, meaning datatype and count parameters, respectively. Note that

the commands that both processes are using are different, without implying that

they should be two separate programs. A possible part of a program that executes

the above functionality could be the following:

if (proc rank == 0)

MPI Send(&x, 1, MPI DOUBLE, 1, 0, MPI COMM WORLD);

else

MPI Recv(&x, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD, &status);

4.2. Message Passing 40

The final argument status in MPI Recv contains information, such as the actual

size of the message received.

We should mention also that there are many MPI Datatype, such as MPI CHAR,

MPI INT, MPI LONG, etc, but in our thesis we will use only MPI DOUBLE and

MPI INT.

The approach to program MIMD systems is called single-program-multiple-data

(SPMD). In SPMD programs, the capability of executing different programs is ob-

tained by the conditional branches within the source code.

4.2.1 Buffering

We will continue with the example from the previous section, that we have two

processes running on different nodes, A and B respectively. But in this case, process

1 will not call MPI Recv immediately. By this, process 0 has two “choices”. One

is to send a “request to send” to the other process and wait until it responds with

a ”ready to receive”, so that they can exchange the message. The other “choice”

is the system software to buffer the message. The contents of the message can

be copied into a system-controlled block of memory, and process 0 can continue

its execution. Now, whenever process 1 is ready to receive, the system software

just copies the buffered message into the memory location process 1 has allocated.

The first “choice” is called synchronous communication, while the second buffered

communication.

The great advantage of the buffered communication is that it does not stall the

sending process from executing other work. But on the other hand, it uses up system

resources that otherwise it would not be needed and if the receiving process is ready,

then it would take more time to finish, because system has to buffer the message

and then copy it to the user program memory location.

4.2.2 Blocking Communication

There is a situation that occurs if we reverse the arrival at communication points,

that should be mentioned. Consider now that process 1 executes the MPI Recv, but

process 0, does not executes the MPI Send until some later time. The function being

used for receive, MPI Recv, is blocking, meaning that process 1 remains idle until

the message becomes available. In blocking communication, process 0 can continue

with the send function, without waiting a “ready to receive” from process 1, unlike

synchronous communication.

4.3. Communicators and Distributed Graph Topologies 41

4.3 Communicators and Distributed Graph

Topologies

4.3.1 Communicators

To begin with, we define the concept of a communicator. In general, a communicator

can be a subset of processes as a communication universe. The default communicator

in MPI is MPI COMM WORLD, where it includes every process that the user

declared at the beginning of the execution of the program.

Furthermore, in MPI there are two types of communicators: intra-communicators

and inter-communicators. Intra-communicators are essentially a set of processes that

communicate through collective communication/operations. On the other hand,

with inter-communicators the processes exchange messages between disjoint intra-

communicators. In our thesis, we focused on intra-communicators because the way

inter-communicators work they do not suit our problem. Nevertheless, we stated

them for better completeness.

Generally, a communicator is consisted of a group and a context. A group is an

ordered collection of processes. Consider a group of p processes, then each process

is attached with a unique, positive number from 0 to p − 1 called rank. A con-

text is a system-defined object that uniquely defines a communicator. In case of

multiple communicators, each one has a distinct context, even if they have identical

underlying groups. Contexts are used to insure that the messages received correctly.

In order to get a better understanding on how to create communicators and work

with them, we will make a simple implementation. Assume a network with P=4

processes with ranks = 0,. . . ,3, that we want to divide in four groups. Suppose that

in this network, both processes 0 and 1 are connected with processes 2,3. This is an

example based on the work we did in our thesis, so that we can adapt D-ADMM on

MPI. So in each group we have the root process and their neighbor-processes, with

whom they communicate. This implementation is illustrated in Figure 4.3.

At the beginning we set an array, in which the neighbors of each process will

be stored, so that we assign it to the new communicator. Then we create a group

consisting of these processes. In order to do that, we use two commands. First we

associate MPI COMM WORLD with a group, world group, since this is the group

from which the processes in the new groups will be taken. Then we create the groups

with MPI Group Incl. In the end, we create the new communicators neigh comm[i],

with i = 0, . . . , 3, by calling MPI Comm create, which associates the context with

the new group. After creating the new communicators, the processes that belong in

them can perform collective communication operations.

4.3. Communicators and Distributed Graph Topologies 42

0

1

2

3

0

2

3

1

2

3

2

0

1

3

0

1

(a) (b)

Figure 4.3: Network with one communicator (a) and same
network with four communicators (b).

int* neighbors;

int size;

MPI Group group world;

MPI Group neigh group[P];

MPI Comm neigh comm[P];

/* Get ”neighbors” of a process, including the root process */

find neighbors(N, P, num links, &neighbors);

/* Get the size of array neighbors */

find size(neighbors, &size);

/* Get the group underlying MPI COMM WORLD */

MPI Comm group(MPI COMM WORLD, &group world);

for(i=0; i<P; i++)

{
/* create the new group */

MPI Group incl(group world, size, &neighbors, &neigh group[i]);

/* create the new communicator */

MPI Comm create(MPI COMM WORLD, neigh group[i], &neigh comm[i]);

}

4.3. Communicators and Distributed Graph Topologies 43

The syntax of the commands we used are the following. The first command

int MPI Comm group(MPI Comm comm /* in */,

MPI Group* group /* out */)

which simply returns the group underlying the communicator comm. The second

command

int MPI Group incl(MPI Group old group /* in */,

int new group size /* in */,

int ranks in old group[] /* in */,

MPI Group* new group /* out */)

creates a new group from a list of processes in existing group old group. The number

of processes in the new group is new group size, and the processes to be included,

are listed in ranks in old group. The final command

int MPI Comm create(MPI Comm old comm /* in */,

MPI Group new group /* in */,

MPI Comm* new comm /* out */)

associates a context with the group new group and creates the communicator new comm.

All of the processes in new group belong to the group underlying old comm.

We should mention here, that the first two commands are local operations, while

the last one is a collective operation. As for collective operations, we will look deep

into them in the next section.

4.3.2 Distributed Graph Topologies

MPI offers the developer the facility to associate further information, beyond the

group and the context with the communicator. Such information, like communi-

cation relationship between processes, is cached to the communicator and is called

process topology. This mechanism simplifies the management of communication re-

lations for the programmer, but also provides information about the application’s

communication behavior to the MPI implementation.

The interface that provides MPI-2.2 to specify the process communication topol-

ogy, is the distributed graph topology, which is highly scalable to large communi-

cators. It offers two interface variants the “adjacent” and the “general”. The first

interface requires each process to specify all its neighbors, while with the other, each

4.3. Communicators and Distributed Graph Topologies 44

process can specify an arbitary edge in the graph. For our thesis, we used the “adja-

cent” interface, due to the third assumption we made for D-ADMM in section 3.13,

that our network is static and does not vary with time. So when the applications

start each process knows its neighbors.

The adjacent interface specifies each edge at two processes, once at the source

process as an outgoing edge and once at the target process as an incoming edge. That

may seem as a disadvantage, because it requires double memory during topology

creation, but it does not require any communication in the creation routine. The

syntax of the command, that creates the distributed graph communicator, is

int MPI Dist graph create adjacent(MPI Comm comm old /* in */,

int indegree /* in */,

const int sources[] /* in */,

const int sourceweights[] /* in */,

int outdegree /* in */,

const int destinations[] /* in */,

const int destweights[] /* in */,

MPI Info info /* in */,

int reorder /* in */,

MPI Comm* comm dist graph /* out */)

This method receives comm old and returns comm dist graph, which is a copy of

the first, meaning that it includes the same processes, but with the topology infor-

mation attached. It also has six parameters that refer to the calling process’s local

adjacency list. Parameters, indegree and outdegree, specify the number of incom-

ing and outgoing edges respectively. The arrays sources and destinations are the

lists with source and destination processes. Also, sourceweights and destweights are

arrays defining the edge weights. Parameters sources and sourceweights are of size

indegree, while destweights and sourceweights are of size outdegree. We should note

here that, since D-ADMM can be seen as an undirected graph, when we create the

distributed graph communicator, the parameters’ values from sender’s perspective

are equal to the ones from receiver’s perspective. As for the arrays sourceweights

and destweights, they are all equal to 1, because every edge has the same weight.

The alternative way is to replace these arrays with MPI UNWEIGHTED. The pa-

rameter reorder can be used to point out whether the processes may be renumbered

in the new communicator. Finally, parameter info can be used to provide additional

information to the MPI implementation, but in our case there is no need for further

information, so we set this parameter as MPI INFO NULL.

4.4. Collective Communication 45

Consider the topology we showed in section 4.3.1 with the four processes. In this

case, the values for MPI Dist graph create adjacent would be

process indegree sources sources destinations

0 2 2,3 2 2,3

1 2 2,3 2 2,3

2 2 0,1 2 0,1

3 2 0,1 2 0,1

Figure 4.4: Adjacent distributed graph example, with 4
processes.

Furthermore, we set comm old as MPI COMM WORLD, info as MPI INFO NULL,

reorder as 1, and the weight parameters as MPI UNWEIGHTED.

4.4 Collective Communication

The main functions for sending and receiving messages with MPI are MPI Send

and MPI Recv. But their disadvantage is that, at some point, there might exist idle

processes, due to blocking communication. In order to avoid that, we can divide the

load of work evenly among the processes and also have functions which are able to

send or receive, to or from, multiple processes. So, a communication pattern that

involves every process in a communicator is a collective communication. There are

many collective operations, with different functionalities, but we will focus on those

that had been used in our applications.

4.4.1 Broadcast

One really useful collective operation is MPI Bcast. It is a function which includes

a single process, with rank root, sending a copy of the same message to every other

process that “lives” in the same communicator. Its syntax is

int MPI Bcast(void∗ message /* in/out */,

int count /* in */,

MPI Datatype datatype /* in */,

int root /* in */,

MPI Comm communicator /* in */)

As seen in the syntax of MPI Bcast, the message is both an in and out parameter.

That is because, in collective communication, the functions have to be called from

4.4. Collective Communication 46

all processes in the same communicator. Assume that process 0 calls this function,

so that it can send a message in the communicator. Then, every other process

should also call the same function, in order to receive the message, using root = 0

and the same count and datatype. In order to make it clear, an implementation of

MPI Bcast with 4 processes, where process 0 sends the message, can be seen in the

Figure 4.5.

0

1 2 3

Figure 4.5: MPI Bcast with 4 processes.

A possible code is the following,

// Process 0 sends double variable x to the other processes in MPI COMM WORLD

if(world rank == 0)

MPI Bcast(&x, 1, MPI DOUBLE, 0, MPI COMM WORLD);

// Rest processes receive from 0, double variable x and store it in double variable y

else

MPI Bcast(&y, 1, MPI DOUBLE, 0, MPI COMM WORLD);

4.4.2 Allreduce

Another important collective operation is MPI Allreduce. In many cases there is

the need, every process in a communicator, to collect a result-message that occurred

from an operation. Then MPI Allreduce is being used with syntax

int MPI Allreduce(void∗ operand /* in */,

void* result /* out */,

int count /* in */,

MPI Datatype datatype /* in */,

MPI Op operator /* in */,

MPI Comm communicator /* in */)

In our case, as we will see in the next chapter with the applications, we used this

function in order to compute a termination condition. In general, some of the oper-

ations that are supported are MPI MAX, MPI MIN, MPI SUM, MPI PRODUCT,

etc.

4.4. Collective Communication 47

In order to explain better, consider again 4 processes (circles) that need to oper-

ate (sum) over a variable (red rectangular) and keep the result on the same variable.

As illustrated in Figure 4.6, the result of the sum is 18 and it is stored in the same

memory allocation, on each process.

0 1 2 35 2 7 4

MPI SUM

0 1 2 318 18 18 18

Figure 4.6: MPI Allreduce with 4 processes.

There are more collective operations, if the reader wishes to look up in [7].

4.4.3 Neighborhood Collectives

The latest version of MPI, MPI-3, provides communication functions suitable for

graph topologies, which are called neighborhood collective operations. The two basic

methods are MPI Neighbor allgather and MPI Neighbor alltoall. There are also the

extended versions of the above functions, that support different buffer sizes for each

outgoing and incoming process’s messages. These are MPI Neighbor allgatherv and

MPI Neighbor alltotallv. They are vector neighborhood collectives and they allow

users to specify different numbers of elements of the same type. Finally, there is the

function MPI Neighbor alltoallw, that enables user to specify different datatypes for

each incoming and outgoing neighbor and it can be used to enable efficient zero-copy

communication in process neighborhoods.

Each neighborhood allgather function collects a message from every incoming

neighbor and stores them in a contiguous buffer. These functions work in the same

way as the MPI Bcast in 4.4.1, but in a neighborhood, from a sender’s perspective.

On the other hand, in a neighborhood alltoall, each process specifies a different

message buffer for each outgoing process and it receives into a different buffer from

each incoming process.

For our applications we used only the MPI Neighbor allgather, but for bet-

ter understanding on how graph topology works, we represent the syntax of both

MPI Neighbor allgather and MPI Neighbor alltoall.

4.4. Collective Communication 48

int MPI Neighbor allgather(const void* sendbuf /* in */,

int sendcount /* in */,

MPI Datatype sendtype /* in */,

void* recvebuf /* in */,

int recvcount /* in */,

MPI Datatype recvtype /* in */,

MPI Comm comm /* out */)

int MPI Neighbor alltoall(const void* sendbuf /* in */,

int sendcount /* in */,

MPI Datatype sendtype /* in */,

void* recvebuf /* in */,

int recvcount /* in */,

MPI Datatype recvtype /* in */,

MPI Comm comm /* out */)

Their functionality is illustrated in 4.7, based on the same scheme with the four

processes.

sendbuf

recvbuf

to 1st neighbor

to 2nd neighbor

from 1st neighbor

from 2nd neighbor

sendbuf

recvbuf

to 1st neighbor

to 2nd neighbor

from 1st neighbor

from 2nd neighbor

(a) (b)

Figure 4.7: MPI Neighbor allgather (a) and
MPI Neighbor alltoall (b).

49

Chapter 5

Experimental Results

In this chapter we present results, that were obtained from the MPI programs,

implementing important optimization problems that have been recast as (3.31). We

note that, in all the problems that will be examined, except consensus, none of the

functions fp is strongly convex. Therefore, D-ADMM is only guaranteed to converge

under the first condition of Theorem 1 in section 3.13.4.

5.1 Performance Measure

As performance measure, we take the communication step, which occurs when all

nodes have transmitted a vector of size n to their neighbors. The communication

step increases until an arbitrary node converges. By converge, we mean that the

relative error reduces to a small amount,
∥∥xk+1 − xk

∥∥ / ∥∥xk∥∥ ≤ ε, or a maximum

number of iterations have been reached.

5.2 Setup

The programs are executed on Aris, a Greek supercomputer, deployed and operated

by Greek Research and Technology Network(GRNET) [10]. Aris provides 44 nodes,

where each node has 4 Intel(R) Xeon(R) CPU E5-4650v2 processors at 2.4 GHz and

also each processor has 10 cores. Every node has memory of 512Gb.

For many matrix/vector operations we used routines of the Eigen library, which

is a C++ template library for linear algebra [9].

Furthermore, for all optimization problems we used all three communicators that

we discussed in chapter 4. Meaning that, in the first implementation, all processes

communicate in the MPI COMM WORLD by using the basic Message Passing func-

tions, MPI Send and MPI Recv. For the next implementation we created as many

intra-communicators, as the number of processes we want to communicate. The

exchange of messages in the intra-communicators was achieved through collective

operations. As for the last implementation, we created a distributed graph topol-

ogy, using the adjacent interface, where the communication was managed with the

neighborhood collective operation MPI Neighbor allgather.

In our work all of the networks that have been used, have a coloring scheme of

5.3. Consensus 50

C = 2 colors. But, we generated two types of networks. One is a fully connected

network and the other a partially connected network, with “random” neighbors. In

addition, we examined our implementations for different number of P nodes at each

network type. The set for P is {2, 10, 20, 50, 100}.
Parameter ρ affects strongly ADMM-based algorithms. Hence, to make a fair

comparison, we tested our implementations with several values of ρ, taken from the

set {10−3, 10−2, 10−1, 1, 10, 102}. In the end, we picked the one that yields the best

result.

We should note that, all data were created in Matlab, but the way that were

created will be discussed in the upcoming sections. Also, in the following figures x∗

denotes the solution of the problems we examined, obtained by CVX [11].

5.3 Consensus

Given a network of P nodes we want to solve:

minimize
x∈Rn

f(x) =
1

2
‖Ax− b‖2 , (5.1)

which is clearly an unconstrained version of 3.31. A ∈ Rm×n full column-rank and

b ∈ Rm, with elements drawn from the standard normal distribution. We will solve

the problem with row partition visualized in Figure 5.1,

...

A1

AP

Figure 5.1: Row partition of A of P blocks, where a block is
a set of rows.

So in each node p a row-block of A and b will be stored, Ap and bp respectively.

The number of rows each node will have is m/P . To be more specific, node 1 will

have rows from 1 to m/P , node 2 will have rows m/P + 1 to 2m/P and so on. Also,

fp(x) = (1/2) ‖Apx− bp‖2. Thus, it can be solved with D-ADMM. The problem of

5.3. Consensus 51

step 4 of D-ADMM algorithm, in this case, is the following

h(xp) = fp(xp) + vkp
T
xp +

ρDp

2
‖xp‖2

=
1

2
‖Apxp − bp‖2 + vkp

T
xp +

ρDp

2
‖xp‖2

=
1

2
(Apxp − bp)

T (Apxp − bp) + vkp
T
xp +

ρDp

2
xTp xp

=
1

2
xTp AT

p Apxp − bTp Apxp +
1

2
bTp bp + vkp

T
xp +

ρDp

2
xTp xp

=
1

2
xTp (AT

p Ap + ρDpI)xp + (vkp −AT
p bp)

Txp +
1

2
bTp bp

=
1

2
xTp Qpxp + qk

T

p xp +
1

2
bTp bp

where Qp = AT
p Ap + ρDpI, and qkp = vkp − AT

p bp. When each node learns its

private variables, they cache matrix Qp and vector AT
p xp, in order to speed up the

algorithm. Furthermore, the minimization step has a closed-form solution, which is

computed with KKT conditions with no constraints.

∇xph(xp) = 0⇒

Qpxp + qp = 0

Qp is invertible, since Ap is a full-column rank. So the x-update at (k+ 1)-iteration

is

xk+1
p = (AT

p Ap + ρDpI)−1(AT
p bp − vkp).

In Figure 5.2 and Figure 5.3, we illustrate the convergence we have reached for

both types of networks. Matrix A and vector b, have dimensions m = 15000,

n = 5000, relative error ε = 10−6 and maximum iterations = 3000 and all variations

for variables P and ρ.

5.3. Consensus 52

(a) Distance of f from f∗.

(b) Relative error from x∗.

Figure 5.2: Fully connected networks.

5.3. Consensus 53

(a) Distance of f from f∗.

(b) Relative error from x∗.

Figure 5.3: Partially connected networks.

5.4. Lasso 54

5.4 Lasso

Finding sparse solutions of linear systems is important in many areas, including

statistics, compressed sensing etc. A common approach to tackle this problem is by

solving Lasso, as discussed in section 3.11.1.

minimize
x∈Rn

(1/2) ‖Ax− b‖22 ,

where A ∈ Rm×n full column-rank, b ∈ Rm, and parameter λ > 0 is known to

every node. We will solve the problem again with row partition. In substance, our

problem can be rewritten as

minimize
x∈Rn

1

2

P∑
p=1

(
‖Apx− bp‖22 +

λ

P
‖x‖1

)
,

which is also an unconstrained version of 3.31. Also, fp(x) = (1/2) ‖Apx− bp‖22 +

(λ/P) ‖x‖1. Now, the minimizations problem of step 4 of D-ADMM algorithm, is

h(xp) = fp(xp) + vkp
T
xp +

ρDp

2
‖xp‖2

=
1

2
‖Apxp − bp‖2 +

λ

P
‖xp‖1 + vkp

T
xp +

ρDp

2
‖xp‖2

=
1

2
(Apxp − bp)

T (Apxp − bp) +
λ

P
‖xp‖1 + vkp

T
xp +

ρDp

2
xTp xp

=
1

2
xTp AT

p Apxp − bTp Apxp +
1

2
bTp bp +

λ

P
‖xp‖1 + vkp

T
xp +

ρDp

2
xTp xp

=
1

2
xTp (AT

p Ap + ρDpI)xp + (vkp −AT
p bp)

Txp +
λ

P
‖xp‖1 +

1

2
bTp bp

=
1

2
xTp Qpxp + qk

T

p xp + r +
λ

P
‖xp‖1

with Qp = AT
p Ap+ρDpI, qkp = vkp−AT

p bp, and r = (1/2)bTp bp. So it is still a Lasso

problem, with a quadratic and an l1 term. The minimization of this problem has no

closed-form solution, so we will find x∗p, using ADMM algorithm.

So the minimization problem in ADMM form, applied to each node, can be

written as follows

minimize
xp,zp

φ(xp) + g(zp)

subject to xp − zp = 0,

where φ(xp) = (1/2)xTp Qpxp + qk
T

p xp + r and g(zp) = (λ/P) ‖zp‖1. As we saw in

section 3.3, we will form the augmented Lagrangian in scaled form for our problem.

We refer to ρ parameter of ADMM algorithm as ρ′, to avoid conflict with the ρ

5.4. Lasso 55

parameter of D-ADMM.

Lρ′(xp, zp,up) = φ(xp) + g(zp) + (ρ′/2) ‖xp − zp + up‖22 − (ρ′/2) ‖up‖22
= (1/2)xTp Qpxp + qk

T

p xp + r + (λ/P) ‖zp‖1 +

(ρ′/2)(xp − zp + up)
T (xp − zp + up)− (ρ′/2)uTp up

= (1/2)xTp (Qp + ρ′I)xp +
(
qkp + ρ′(up − zp)

)T
xp + r + (λ/P) ‖zp‖1 +

(ρ′/2)zTp zp − ρ′uTp zp

The xp−update,

∇xpLρ′(xp, z
k
p,u

k
p) = 0⇒

(Qp + ρ′I)xp + qkp + ρ′(up − zp) = 0

and because matrix Qp + ρ′I is invertible, we have,

xk+1
p = (Qp + ρ′I)−1

(
ρ′(zp − up)− qkp

)
.

For the zp−update, because l1 norm is not differentiable, we will use subgradient

and the soft thresholding operator.

∇zpLρ′(x
k+1
p , zp,u

k
p) = 0⇒

∂
(
(λ/P) ‖zp‖1

)
+ ρ′zp − ρ′(xp + up) = 0⇒

∂
(
(λ/Pρ′) ‖zp‖1

)
+ zp − xp + up = 0

The scalar zip−update

(λ/Pρ′)∂(|zip|) + zip − xip + uip = 0

zip =


uip + xip − λ/Pρ′, if zip > 0

uip + xip + λ/Pρ′, if zip < 0

|uip + xip| ≤ λ/Pρ′, if zip = 0

So, we can use the soft thresholding operator for the zp−update as,

zk+1
p = Sλ/ρ′P (xk+1

p − ukp)

Finally, the up−update,

uk+1
p = ukp + xk+1

p − zk+1
p

5.4. Lasso 56

In Figure 5.4 and Figure 5.5, we plot the convergence we have reached for both types

of networks, with matrix A and vector b having dimensions, m = 500, n = 2000. We

generate the data as follows. We first choose Aij from N (0, 1) and then normalize

the columns to have unit l2 norm. A ‘true’ value xtrue ∈ Rn is generated with 3%

nonzero entries, each sampled from an N (0, 1). The labels b are then computed

as b = Axtrue + w, where w corresponds to a signal-to-noise ratio, drawn from

N (0, 10−3I). Furthermore, relative error ε = 10−4, maximum iterations = 1000,

λ = 0.3 and ρ′ = 1. Take into consideration that we used the same data for all

variations of P and ρ.

5.4. Lasso 57

(a) Distance f from f∗.

(b) Relative error from x∗.

Figure 5.4: Fully connected networks.

5.4. Lasso 58

(a) Distance f from f∗.

(b) Relative error from x∗.

Figure 5.5: Partially connected networks.

59

Chapter 6

Conclusion

In this thesis, we consider convex optimization problems that can be expressed as the

sum of P convex functions, where each function is associated with a private convex

set and the optimal vector lies in the intersection of these sets. We examined the

D-ADMM algorithm, which solves this type of convex optimization problems, and

developed three implementations for parallel applications with MPI. It was shown

that D-ADMM converges for all types of network we tested, in a relatively small

number of iterations.

60

Bibliography

[1] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “Distributed basis

pursuit”. IEEE Transactions on Signal Processing, 60(4), 1942-1956. 2012.

[2] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “D-ADMM: A

communication-efficient distributed algorithm for separable optimization”. IEEE

Transactions on Signal Processing, 61(10), 2718-2723, 2013.

[3] S. Boyd, L. Vandenberghe, “Convex optimization”. Cambridge university press,

2004.

[4] A. P. Liavas ,“Convex Optimization Lecture Notes,” 2015.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers”.

Foundations and Trends in Machine Learning, 3(1), 1-122, 2011.

[6] D. Han, and X. Yuan, “A note on the alternating direction method of multipli-

ers”. Journal of Optimization Theory and Applications, 155(1), 227-238, 2012.

[7] P. S. Pacheco,“Parallel programming with MPI”. Morgan Kaufmann, 1997.

[8] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk,“Using advanced MPI: Modern

features of the message-passing interface”. MIT Press, 2014.

[9] “Eigen Library”, http://eigen.tuxfamily.org.

[10] “Greek Research and Technology Network”, https://grnet.gr/.

[11] M. Grant and S. Boyd, “Matlab Software for Disciplined Convex Programming,

version 2.1”, http://cvxr.com/cvx, 2014.

[12] F. Morbidi, “The deformed consensus protocol”. Automatica, 49(10), 3049-3055,

2013.

	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Notation
	Thesis Outline

	Convex Optimization
	Basic Optimization Concepts
	Convex Sets
	Convex Functions
	Gradient and Subgradient
	Convex Optimization Problem
	Lagrangian Duality
	Lagrange Dual Function
	Dual Problem
	Optimality Conditions

	ADMM and D-ADMM
	Dual Ascent
	Augmented Lagrangians and Method of Multipliers
	Augmented Lagrangian
	Method of Multipliers

	Alternating Direction Method of Multipliers
	Algorithm
	Scaled Form
	Proximity Operator

	Convergence
	Optimality Conditions
	Stopping Creteria
	Over-relaxation
	Soft Thresholding
	Constrained Convex Optimization
	Linear and Quadratic Programming
	TEXT Norm Problems
	Lasso

	Consensus
	Global Variable Consensus Optimization
	Global Variable Consensus with Regularization

	Distributed Alternating Direction Method of Multipliers
	Introduction to the Algorithm
	Notation
	Problem Reformulation
	Extended ADMM
	Laplacian Graph
	Applying Extended ADMM

	Message Passing Interface
	Multiple Instruction-Multiple Data Systems
	Distributed-Memory MIMD

	Message Passing
	Buffering
	Blocking Communication

	Communicators and Distributed Graph Topologies
	Communicators
	Distributed Graph Topologies

	Collective Communication
	Broadcast
	Allreduce
	Neighborhood Collectives

	Experimental Results
	Performance Measure
	Setup
	Consensus
	Lasso

	Conclusion
	Bibliography

