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Abstract

In recent years, face recognition systems have reached mainstream popularity through
smartphones and social networking sites. At the same time, the general field of image
recognition has been boosted by the revitalization of neural networks in the form of deep
neural networks (deep learning). Thus, the need to study and understand their implications in
subfields of image processing, such as face recognition, becomes of particular importance. In
this thesis, we examine both areas of classic methods and state-of-the-art deep learning
networks, for a deeper and more complete understanding of the application area. More
specifically, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and
Independent Component Analysis (ICA) were tested under the additional twist of Discrete
Wavelet Transform (DWT) as a form of preprocessing. This proposed combination of wavelet
decomposition for feature extraction and statistical data organization for feature reduction
proves to be an efficient prospect in face recognition. DWT is a prominent method in digital
image processing as it is utilized by the JPEG compression standard but also in the security
field through steganography. Regarding the current state-of-the-art in deep learning, we
tested transfer learning as an option for reutilizing already trained networks on big datasets.
A high-performing network, pre-trained on a different dataset than the test one was used and
managed to achieve accurate results, thus confirming that deep neural networks form the
future in the field. Furthermore we attempt a conceptual association of the two
methodologies tested. In particular, the classic methodology is based on rigorous statistical
concepts, whereas deep learning is still using network modules as black boxes. Through our
study, we can provide concrete associations of processing modules that enable the rigid
justification of deep neural network units.
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1 Introduction - Motivation

In recent years there has been a boom in the usage of body or behavioral characteristics as a
means of improving security in systems and applications [1], replacing the classic password
authentication approach. These characteristics are called biometrics. Biometrics however, are
not a new concept. As early as the 14" century, merchants used ink to take children’s
fingerprints. More recently, in the late 19" century, Alphonse Bertillon, a French criminologist,
proposed a method of verifying criminals using their body measurements. This method was
called the Bertillon system, or bertillonage [2]. It was widely used until fingerprint analysis was
proven to be more robust.
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Figure 1-1: Arrest card utilizing Bertillon's method [2]

Although fingerprinting is still used in many biometric applications, the availability of more
resources (computational power, cameras) has led to the increase in popularity of more



complex methods, like iris and face recognition. The term recognition usually refers to two
similar but at the same time very different tasks. In the context of faces, face identification is
the task of assigning an identity to an unlabeled face image presented to the recognition
system. Face verification is the task of confirming or denying that a face image and an identity
presented to the system, match. As face verification can be seen as a yes or no question, face
identification is considered to be a more complex and demanding task. Naturally, it also
handled differently. Faces are considered to be the primary biometric characteristic by the
International Civil Aviation Organization and are now used in all passports, while fingerprint
analysis is a secondary and not mandatory biometric. Even the FBI actively uses and maintains
a face recognition database comprised of half the US population [3]. One advantage of face
recognition is that it is more flexible, in the sense that images from different angles or sources
(e.g. CCTV) can be used and without the subject complying, as is the case with iris and
fingerprint analysis.

In this thesis, the problem of face identification (referred to as face recognition from now on)
will be tackled. A face recognition system generally looks like the figure below.
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Figure 1-2: An example of a face recognition system

First, images containing examples of known identities are gathered (labeled images). These
images can range from portraits, to full body images and be taken under varying conditions.
As such, there is a need to somehow “normalize” them. A first step is to actually locate the
faces in the images and crop them, to minimize the unrelated information (non-face pixels).
Afterwards, more preprocessing steps can be applied, like alignment and filtering (to increase
contrast for example). Alignment is very important when using methods that are not
translation invariant in the following step. When the images are ready, a wide range of
methods can be used to extract valuable information suited for classification. This information
has the form of coefficients called features and the process is called feature extraction. We
don’t want to represent the images by simply using their pixel values, because they can
contain redundant or unwanted information. By applying feature extraction methods, we wish
to generate data from our original images that can be used to better discern between
identities when using the computer (in contrast to when we use our eyes, where pixels are
obviously more useful). After the features from our labeled images are extracted, a classifier
is trained using the features and their labels. A trained classifier can be seen as a function with
input an unlabeled sample and output one of the training labels. After the classifier is trained,
unlabeled images to be classified can enter the system. The same preprocessing and feature
extraction steps are applied to extract the unlabeled feature vector. Sometimes, the feature
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extraction method requires information from the labeled data and that is represented by the
dashed line. Such methods can for example project both labeled and unlabeled images to a
common space defined by the labeled data to extract the features. In the last step, the
unlabeled features are presented to the classifier and it produces a label as an output.

Moving forward, we will focus on feature extraction methods, their performance through
classification accuracy (mostly) and possible associations between them. More specifically, we
will study some global statistical and non-statistical methods. The term global refers to the
handling of the image during feature extraction. Local methods handle different regions on an
image separately (e.g. Local Binary Patterns) while global methods handle the image as a
whole. We will examine the potential of new approaches regarding feature decomposition in
order to attempt to organize and cluster those features. For this purpose, we process features
obtained in the wavelet domain through data dimensionality methodologies such as Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component
Analysis (ICA). Following this analysis, we explore the issues of deep neural networks in
preserving and organizing useful features for face recognition. Thus, we use deep networks
pre-trained with large databases and tested the efficiency in face recognition problems, a
process called transfer learning. For this purpose, we remove the classification layer and
replace it with our own which is then trained on a new dataset, based on the features of the
previous layers.

The motivation behind the choice of these methods is simple. PCA, LDA and ICA are popular
linear dimensionality reduction techniques utilized in many different domains, as well as face
recognition, so studying them provides a much needed solid foundation. The wavelet
transform is another versatile technique, used in digital signal and image processing. More
notably, the image compression standard JPEG utilizes the wavelet transform [4]. It has also
been proven useful in security applications through steganography [5]. Deep Learning, which
is the use of deep neural networks, has been proven to be the current state-of-the-art in many
applications and as such can’t be ignored.

Through our analysis, we recognize certain similarities of deep neural networks and data
decomposition and reduction schemes such as those in our first approach and based on that
we propose specific explanation and justification for the various layers of deep neural
networks which at this point are mainly used in a black box form.

1.1 Related Work

Face recognition via deep leaning and face recognition in general is an active research area
with rising popularity.

It is becoming so widespread that it is even offered “on the cloud”. Kairos is a Software as a
Service (SaaS) provider, specializing in face recognition and emotional analysis [6]. It even
offers free access to its API for personal (limited) use. Google’s Vision APl [7] and Amazon’s
Rekognition [8] also offer face recognition capabilities, among other things. The two major
pros of using a Saa$S are that we only need to worry about providing the data and treat the
rest of the system as a black box that returns an output and that any computations are
executed remotely, without burdening the local hardware.
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Facebook has also implemented a face recognition scheme. It creates biometric templates
based on face characteristics (e.g. distance between the eyes) from tagged pictures and
suggests identities in untagged pictures that match that template. [9]

Additionally, commercial handheld devices have started including biometric recognition
schemes, albeit not always with the desired degree of success, as we will see in the second to
last section of this thesis [10]. MasterCard is ready to start verifying online payments using
faces [11]. In a more obscure case, face recognition algorithms have also been implemented
experimentally in comedy clubs in Spain with positive results. The system detects how many
times a customer laughs and increases the ticket price accordingly [12].

Research-wise, the effects of wavelet decomposition and statistical dimensionality reduction
techniques have been tested before. In [13], the authors combined PCA with wavelet
decomposition and attempted to find the most suitable wavelet for the task of face
recognition. In [14], the dimensionality reduction technique used was ICA. LDA was used in
[15]. Since the resurgence of deep neural networks, many deep architectures have been
proposed for face recognition. DeepFace [16] is a popular architecture by the Facebook
research team. DeeplID [17] is another architecture that is in development since 2014 that
already has two revisions (DeeplD2 and DeeplD3) and has achieved record setting
performance.

1.2 Contributions and Outline

This thesis is a study of both “classic” linear statistical methods and the current non-linear
state-of-the-art. Even though dimensionality reduction methods have been combined with
wavelet decomposition for face recognition, most studies focus on only one method. The
difference in our approach is that we will implement all three major algorithms and compare
their results directly. We will also make comparisons about the wavelet choice, as it is still up
to debate which the optimal one is and make associations with deep learning.

The next chapters are organized as follows. In the second chapter, we briefly describe our
process for selecting datasets and present the two that we will be using. The third chapter,
provides the needed theoretical background on the statistical methods used and on the
classification process. The fourth chapter is comprised of an introduction to the state-of-the-
art, deep learning, some problems commonly faced and the approach we will be taking.
Among other things, popular layer architectures are explained and related bibliography is
presented regarding the concept of transfer learning. Chapter 5 goes into detail about the
specific combinations of methods proposed, libraries used and the training scheme. Chapter
6 contains our results and comparisons with recent bibliography. In chapter 7, we include
examples of threats in machine learning-assisted face recognition. Even though in this thesis
we didn’t study countermeasures, it is very important to be security-aware as we engineers
have a responsibility to build not only working but also secure systems. Lastly, in chapter 8,
further avenues of related studies are mentioned and we provide some associations between
the two face recognition approaches we implemented, as a possible means of understanding
neural networks better.
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2 Face Database Selection

To actually try face recognition, we need a set of data first. There is a (not complete) list of
available datasets at face-rec.org/databases/. The specifications of each dataset can vary
greatly. Some can contain occlusions, significant rotations of the face or expression variations,
others were shot in a controlled environment or were taken from video frames etc. They also
differ in how easy they are to access. Due to the sensitive nature of the data, some databases
will ask you to sign an agreement before you download them. There exist some that require
you to be a professor (not a student or an employee) or even a member of a university’s legal
department. Naturally, there also some that charge for a license. We preferred to avoid any
licensing procedures and luckily there are such databases available. Another constraint we
imposed was that there shouldn’t be a need for significant preprocessing before using a
dataset, as we want to focus our study on feature extraction. In our case, that means that the
images should be cropped around the face, with not much of the background showing.
Furthermore, occlusions or heavy lighting variations should not be present. We also favored a
pre-centered dataset. Centering the images is a vital preprocessing step because the methods
we will be testing (or most of them) are not translation invariant. That means that differences
in the positions of the faces would reduce the effectiveness of those methods (as would the
other characteristics we “boycotted”), making it more difficult to extract valuable conclusions
about face recognition. A not uncommon way to solve the centering problem, would be to
manually select the pixels where the centers of the eyes are in each image and process the
images accordingly so that they match. However, we would need to do that for each wavelet
level. It certainly would not be impossible to do or even that time consuming, but since we
found pre-centered datasets, there was no reason not to use them. Perhaps the most
important constraint was that the database should have already been widely used for face
recognition related studies. This makes sure that we are working on a high quality dataset and
of course makes it easy to make comparisons with other scientific work that utilizes it.

2.1 The ORL Database of Faces

The ORL Database of Faces [18] seemed to be a good match for our needs. It contains 400
images of 40 individuals (10 per person) that were taken between 1992 and 1994. The
resolution is 112 x 92. The background used is the same in all pictures and homogenous. Some
differences in lighting are present but are not major. Small face rotations can be present. The
facial expressions are varied and include closed eyes, smiling etc. and such variations are not
consistent across all individuals. Also, some wear glasses in some of their pictures. All of the
above are desirable properties that make the recognition problem not trivial. In research, it
has been used by over 900 papers in IEEE alone, with a variety of local and global
methodologies, including neural networks and wavelets.
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Figure 2-1: Sample from the ORL Database of Faces

Even though the variations mentioned above are present, this dataset is not exceptionally
difficult to work with and we wouldn’t choose it if we wanted to benchmark a new proposed
state-of-the-art face recognition system. Our focus is the study of feature extraction
algorithms in the past and now. For that purpose, both its content and its size (with a notable
exception we will see later) are satisfactory. A more appropriate dataset for competitive
benchmarking is Labeled Faces in the Wild (LFW) [19].

2.2 Georgia Tech Face Database

As its name suggests, this dataset was created in the Center for Signal and Image Processing
at Georgia Institute of Technology [20]. It contains 15 images of 50 subjects (750 images total)
of varying lighting, expression and most importantly, scale and background. Their dimensions
vary from slightly to significantly larger than those in the ORL database (e.g 270 pixels vs 92).
The subjects were not photographed in a totally controlled environment like in the ORL
Database and thus were photographed from not the same distance or in the same place. Some
resized samples can be seen below. A few more extreme than in the ORL database pose
variations can be seen.

14



Figure 2-2: Scaled samples from the Georgia Tech
database

Even though some datasets provide proposed splits for a training and a testing set, both of
the datasets mentioned above allow any split.

15



3 Classical Decomposition, Feature Extraction and Classification
Approaches

3.1 Wavelet Transform (WT)

The Wavelet Transform is a powerful tool when we need to gain information about the
frequency of a signal (like the Fourier Transform), while also keeping the information about
the time domain (unlike the Fourier Transform). This is especially useful when dealing with
non-stationary signals, i.e. signals whose frequency varies in time.

15
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Figure 3-1: A non-stationary signal

To better understand the significance of WT, we should briefly take a look at an earlier
technique, the Short-Time Fourier Transform (STFT). In STFT, the signal is divided into small
enough segments, where these segments of the signal can be assumed to be stationary
(constant frequency). For this purpose, a window function w is chosen. The width of this
window must be equal to the segment of the signal where its stationarity is valid. This function
is shifted in time by an arbitrary interval, beginning at t = 0 (the beginning of the signal). For
every shift, the product of the signal and the window is computed and then Fourier Transform
is applied. Here’s an example (ignore the axes, they are normalized)

400 g00 200 1000
Time

Figure 3-2: A signal and its STFT [81]
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We can clearly see four peaks at four different times (and their symmetric counterparts). So,
why do we need WT? This becomes obvious as we vary the window size. A narrow window
gives better time resolution (basically it becomes easier to separate the peaks in time) and
worse frequency resolution, while a wider window does the opposite.

AMPLITUDE

Figure 3-3: An example of really bad time resolution [81]

WT gives us the ability to achieve different resolutions for different frequencies. In the
continuous signal case, it is defined by

t—t1
CWT,(t,s) = x(OY*(— ) dt

=/
|s
where T represents the shifting in time,  is the mother wavelet function (equivalent to the
window in STFT) and s, called scale, corresponds to the inverse of the frequency and
compresses or dilates the wavelet. The term wavelet, means a small wave, small in the sense
that is of finite length and wave because it is oscillatory. So, in WT the window/wavelet is not
only shifted in time but also compressed or dilated, before interacting with a signal.

Figure 3-4: Visual example of CWT for two different scales [81]
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When the wavelet is narrow (high scale — low frequency) the CWT is computed over a small
portion of the signal (in the time domain), resulting in better time resolution, but bad
frequency resolution. When the wavelet is wide (low scale — high frequency), however, the
wavelet can cover most of the signal. That makes it difficult to discern information in time, but
easier to do so in frequency. For the example above, when s = 20, the oscillation in the middle
is only represented with 3 CWT values (coefficients) because the signal and the wavelet only
overlap 3 times. Fortunately, in practical applications, low scales (high frequencies, like noise)
appear in short bursts while high scales (low frequencies) last the duration of the signal.

In the discrete case the WT (DWT) is applied through a filter bank, which is an array of filters
with different bands.

W, -3
w20 1 2 O FO "
W, -1 | (0 W, [1-3K] oD 50t
= ol loEd ol

W, [1K1=x[K] Et’® W, 0-2K] @’ Et*
E® Wy 0-1K] D 6~

Decomposition/Analysis Reconstruction/Synthesis
DWT Wavelet IDWT
Coefficients

Figure 3-5: DWT and Inverse DWT filter bank [82]

At each level (or scale) of the filter bank, the signal is filtered using the same high and low pass
filters and then is downsampled (or upsampled, in Inverse DWT) by a factor of two.

Downsampling reduces the sampling rate of a signal by keeping only every Xth sample (X=2
when downsampling by 2).
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Figure 3-6: Effect of downsampling on the frequency domain [83]
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When our signal is 2-D (like an image) DWT is generalized by the below architecture
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Figure 3-7: 2-D DWT filter bank

The rows and the columns are filtered with both the high pass and the low pass filters. The
result is four filtered and downsampled bands/signals the Low Low (LL), Low High (LH), High
Low (HL) and the High High (HH) band. Similarly to the 1-D case, DWT can be applied for
multiple levels.

LL HL

LH HH

Figure 3-8: 1-level DWT from the ORL database

It is obvious that the LL band retains the most information and that is why it is also called the
‘approximation’ band. The other bands contain vertical, horizontal and diagonal details.

We should address the choice of wavelet function. Up to this point, we have purposefully
ignored it, as there in no golden rule, the choice is application specific. We will, however, very
briefly mention one of the most popular wavelet families, the Daubechies wavelets [21]. As
the name suggests, they were based on the work of Ingrid Daubechies and each wavelet type
consists of two sets of a high and a low pass filter, one for DWT and one for Inverse DWT.
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Figure 3-9: Low and high pass filter coefficients for Daubechies 4 (db4) DWT

Before we close this section off, we need to stress that the above are just some basic points
of the Wavelet Transform. WT is a big part of Digital Signal Processing and as such, has a very
strong and complicated mathematical basis. A proper introduction that would do more than
just scratch the surface would be tens of pages long. Any further interested individual is
encouraged to check another piece of Daubechies’ work [22] for an in-depth look at wavelets.
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3.2 Principal Component Analysis (PCA)

The idea behind PCA originated in a 1901 paper by Pearson [23]. In 1931, Hotelling [24] gave
another definition to this method, based on maximum variance. In this thesis, we are going to
adapt the maximum variance approach [25]. But first, we should briefly mention what
eigenvectors and eigenvalues are.

Given an n x n square matrix A, an eigenvector v is a vector of size n x 1 that satisfies
Av = v

where A is a scalar and is called an eigenvalue. The eigenvalues can be computed by solving
the determinant of (A — Al) where | is a unit vector. With that in mind, we can proceed to PCA.

Given a set of observations x,,, n = 1 .. N, our goal is to project these observations onto a
lower dimensionality space, that maximizes the variance of the projected data. That means,
that if each of our data vector x,, is a vector of size 1 x K, after the projection we wish to have
observations of size 1 x M, where M<K. As to why we would want to do something like that,
the reasoning is simple. Any observation can have redundant data. For example, a face image
can contain background pixels. By reducing the original dimensionality, we hope to minimize
the redundant information, so that our classifiers won’t be affected as much by it. From a
computational perspective, it is also quicker to process less data. That can make a huge
difference when using more complex methods, like Support Vector Machines (SVM) [26].

For simplicity, let M=1. The direction of this space is a K-dimensional vector u; that we

consider to also be unitary (ulule, T denotes transpose) without loss of generality. The

projection of a data vector to this space is defined as u{xn and the dimensionality of the data

is(I1xK)x(Kx1)=1x1.

The variance is given by

L
— z{ufxn —ulx' 2 =ulsu,
N4

where x’ is the mean of the projected data and S is the covariance matrix defined as

N
=1 Z(xn — )ty =2

Notice that S should be a K x K square matrix. As we stated before, our goal is to maximize the
variance u! Su;. This can be done utilizing Lagrange multipliers (just A in our case), while also
taking into account the unitarity constraint we demanded earlier. The problem to be
maximized can be formally described as

ufSuy — A1 (1 — ufxy)

By setting the derivative with respect to u, to zero we get

Su1 = Alul
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which means that u; must be an eigenvector of S and obviously of size K x 1. By multiplying
with ul, the variance is then given by

ul'Su; = 44

So, in order to maximize the variance, 1; must be the largest eigenvalue of S and u, the
corresponding eigenvector, which is called the first principal component. To increase the
dimensionality of the subspace we need to find a new direction that is orthogonal to
u, (additional constraint ulu; = 0 ). By induction it can be shown that in order to find M
principal components, we just have to find the M eigenvectors that correspond to the M

largest eigenvalues.
" /' w
.i"'?

|

Figure 3-10: A visual example of PCA with one principal component [25]

At this point, we have understood the basics of PCA, but some points still need to be clarified.
For example, this thesis is about images (2-D observations) but in the above explanation the
observations are one-dimensional. Luckily, in order to apply PCA to a dataset of images we
just have to concatenate all rows of an image, resulting in observations of size 1 x (K*N),
assuming out images have a K*N resolution. This approach was also used in 1991 by Turk and
Pentland [27] for face recognition, dubbing the method ‘Eigenfaces’. To understand this name,
we need to take a look at the eigenvectors of S. We have shown that they share the same
dimensionality as the observations. In the case of images, if we reshape them from 1-D to 2-
D (the reverse of what we did to the dataset in order to apply PCA) we get

Figure 3-11: Eigenfaces from the ORL database (1-level DWT was applied first)
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However, that is not the only way of applying PCA to 2D data. One alternative is presented in
[28] but we will not go into detail, as it is beyond the scope of this thesis.

Another issue that arises, is how many principal components to select, i.e. how few and which
directions are sufficient to project our data. Remember that the variance in each direction is
equal to an eigenvalue. We sort the eigenvalue-eigenvector pairs in descending order, so that
the first eigenvalues and their respective eigenvectors represent the most amount of variance.
The standard as far as face recognition is concerned is to then select the first X number of
eigenvectors and discard the rest. We assume that they do not offer meaningful —for
classification purposes- variation to the data, like noise. An example where this is not the case
is presented here [29]. We can select X by trial and error by trying an increasing amount of
eigenvectors until the recognition rate plateaus or decreases. If that is not possible because
of time or other constraints, [30] mentions two simple alternatives. The first, is to set a desired
threshold e in total variance (typically over 90%), calculate

W
and then choose X as the number of eigenvalues needed to surpass the threshold. The second
is to choose a threshold s for the “stretch” of an eigenvalue, defined as

e

with A, being the largest eigenvalue.

Sometimes, however, some eigenvalue-eigenvector pairs are discarded first. It has be shown
that changes in illumination can contribute more to the total variance than changes among
faces of different people [31]. Thus, it may be advisable to remove up to 5-6 pairs, depending
on the dataset to account for variations in lighting conditions.

Before we close this section, we need to address one of the more serious questions. Can PCA
always be used with the desired results? The answer is no. A visual example can help us see
why:
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Feature 1
Figure 3-12: A cute example where PCA doesn't help [79]

23



Using the first projection, we can’t separate where the feature spaces of cats and dogs lie,
even though before projecting, it was very easy to linearly distinguish them.

Despite the example showcased above not being very common, it is always important to not
blindly apply methods to our data, without first understanding the problem at hand and what
the end goal is.
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3.3 Linear Discriminant Analysis (LDA)

While PCA might be a good method for dimensionality reduction, we must not forget that our
end goal is actually classification. PCA doesn’t use any kind of class information and ideally,
we would like to take into account that different observations (face images in our case) come
from different sources (people) when we try to find an appropriate reduced sub-space. It turns
out that that there is such a method, Linear Discriminant Analysis (LDA), that originates from
a 1936 paper by Fischer [32]. In 1996, it was applied in face images for face recognition [33]
[34].

First, let’s define the between-class variance as

Sp = ) il — 1) (g — )7
1

and the within-class variance as

c

Sw = 2 z Co = 1) (e — )"

i=1 xR€Ex;

where c is the number of classes, y; is the mean image of class x; and |x;| is the number of
observations in class x;. Note the similarities with the covariance matrix we mentioned in PCA.

If Sy, is nonsingular the optimal projection W, is given by

(WTssW|
Wope = arg max =

0 = W, Wy ... W,
W WTSgw| T TR Tm

where w;, i=1...m is the set of the generalized eigenvectors of Sz and Sy, defined as
Spwi = A Sww;

The need for a non-singular Sy, is evident here, as we want to find its inverse to solve the
above equation (singular matrices are not invertible). Unlike PCA, where the number of
chosen eigenvectors is dependent on the dataset, a good upper bound for miis c-1 [33] so that
we can keep Sy, non-singular, which also is especially convenient when we have a small
number of classes.

In face recognition, Sy, can be singular (mostly due to the high dimensionality of the problem)
so [33] proposed a different approach for W,,;. Instead of performing LDA on the original
data, PCA is used first to reduce the dimensionality. The upper bound mentioned above still
holds, fortunately. In this thesis, we choose to follow this approach.

Similarly to PCA, the eigenvectors of LDA have a distinct look dubbing the method Fisherfaces.
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Figure 3-13: Fisherfaces from the ORL database

Lastly, we should mention that even though LDA should seemingly outperform PCA for
classification purposes that is not always the case. In [35], it is shown that when the number
of observations per class is small, PCA can outperform LDA.
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3.4 Independent Component Analysis (ICA)

Independent component analysis aims to perform Blind Source Separation (BSS). An
explanation can be given using the cocktail party problem. Let’s imagine a room where two
people are speaking simultaneously and are being recorded through two microphones in
different locations. Each of the two recorded signals (s1, s2) is a weighted sum of the speech
signals emitted by the two speakers. This can be expressed as

xl = allsl + a1252
Xy = a2151 + azzsz

where aqq, aq2, ay1, Ay are parameters that depend on the distance of the microphones
from the speakers. We want to recover the two speech signals even if we don’t know the
values of the parameters. If we assume that s1 and s2 are statistically independent it turns out
that the parameters can be estimated. This assumption is not as restrictive as it may seem
[36]. ICA tackles the estimation of these parameters. To better describe the problem let’s
define the random vector x whose elements are the mixed signals x; ... x,,, the random vector
s whose elements are the original signals and A, a matrix containing the parameters a;;, called
mixing matrix

x = As

After we estimate A and find its inverse W, the original estimated signals (called components)
are given by

s'=Wx

As we mentioned above, our assumption is that the elements of s’ will be independent.
Formally, signals are statistically independent when [37]

fuls) = | Fus

where f;, is the pdf of s’. As sometimes there is no matrix W that fully satisfies the
independence condition and it is difficult to maximize the independence condition above, ICA
algorithms iteratively optimize a smooth function whose global optima occur when the
vectors in s’ are independent. The InfoMax algorithm [38] uses the entropy defined as

HG) == [ fo(slogfo()as

The JADE algorithm [39] minimizes the kurtosis of f;,(s") while the FastICA algorithm [40]
maximizes

JO) = c[E{G} — E{G)}]?

where y is a random variable with zero mean and unit variance (white), G is a non-quadratic
function, v is a Gaussian random variable and c is a positive constant. The official FastICA
implementation (that we will be using) offers four choices for G. It also uses PCA to whiten the
data. Thus, it is worth emphasizing that both LDA and ICA still use PCA for its desirable
properties (and that’s the reason we described it in more detail). For more information about
the math behind ICA, one should check [36].

27



Can ICA be used on 2-D signals, like images? The answer is yes.
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Figure 3-14: A 2-D case of ICA (JADE) [80]

But how can it be applied to face recognition? Recall that in PCA, we found a set of
uncorrelated and orthogonal vectors and then projected our data onto them. ICA finds a set
of independent vectors instead that can also be used for projection. Another major difference
is that in PCA (and LDA), we had a way of ordering the eigenvectors (using the eigenvalues),
but that doesn’t apply to ICA. Instead, [41] uses a ranking metric based on between-class and
within-class variance.
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3.5 Classification

After applying any of the above methods on our data, we are left with a number of values per
original image. These values are the features and the process of getting them is called feature
extraction. We notice that we started working with 2-D images and their features were the
pixels, that is, their features had an easy to interpret physical meaning. Feature extraction
changes that, our features can no longer be interpreted that easily (if at all). Our goal,
however, was never to just get a different interpretation, that could be achieved by using a
transform like FT. What we want is to be able to distinguish between face identities (or classes,
in the general case) using those features. That is called classification. More formally,
classification is defined as “the action or process of classifying something according to shared
qualities or characteristics”! .

Naturally, many algorithms have been created that handle classification. They can mostly be
divided into two categories, supervised and unsupervised learning [42]. In supervised learning,
a classifier first uses a-priori information about a known set of data (training) and then makes
a decision about another set of data, based on that information. In face recognition, our data
is feature vectors and the a-prioriinformation is the class labels, i.e. the identity corresponding
to each feature vector. A feature vector of an unknown identity is presented to the classifier
and it decides in which class it fits better. When the class labels are not available, unsupervised
learning takes place. The algorithm tries to cluster the feature vectors into groups based on
similarities they share. The number of groups is determined by the algorithm and it
corresponds to the predicted number of classes.

It is obvious that the problem of face recognition is solved through supervised learning. The
methods available range from easy to implement and lightweight to really complex and
computationally demanding. The majority of the bibliography examined for the methods up
to this point, opts for a lightweight approach and more specifically k-NN, which we will
describe in the next section.

If the bibliography favors simple solutions, why ever use the more complex ones? It's a matter
of convenience and scope. When introducing or evaluating methods for feature extraction,
the focus is on how the methods perform compared to others. Why waste time fine-tuning
and running a heavyweight algorithm, when differences in performance can be shown more
easily? Also, by avoiding fine-tuning, results are more reproducible.

3.6 k—Nearest Neighbors (k-NN)

As we mentioned above, k-NN is one of the simplest but at the same time most widespread
classification algorithms. Given a set of training features and an unidentified probe feature
vector, it can be described in three steps [42]:

= |dentify the k closest training feature vectors to the probe vector, using a distance
measure

=  Find in which label most of those vectors belong

= Assign this label to the probe vector

1 Google definition
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Figure 3-15: Visualization of k-NN

K is usually an even number to reduce the chance of a tie, because in those cases, the label
choice is made at random. Some popular distances are:

Euclidean:

Zn:(qi - pi)?
i=1

City block:

n
z lq; — pil
i=1

Cosine (similarity):

l 149iP1

\/Zl 19 \/Zl 1P}

max(|p; — q:l)

Chebyshev:

Pearson Correlation of random variables (used in face recognition in [13]):

covariance(A, B)

A B) =
p(4,B) 510

In [30] a modified Mahalanobis family distance is proposed, especially for PCA-based face
recognition
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Mahalanobis (Yambor):

d(x,y)=—z .

_x.y.
: \/A_l [t

where 4; is the eigenvalue corresponding to the ith largest eigenvector. A reported drawback
of this metric is that it underperforms for small numbers of eigenvectors.

Additionally, there are ways in which we can introduce further complexity into the algorithm,
if we need to. For example, in weighted k-NN, the neighbors are given a weight so as to favor
the closest ones to the probe, during the label assignment.

3.7 Evaluating a Classifier

There exist some metrics that help us quantify how well our classifier works. Accuracy
(number of correct predictions over total test number), at first thought, seems to be the most
important one. Isn’t our goal to maximize the correct predictions? Unfortunately that is not
enough. Take for example the case where a dataset has two classes, let’s call them positive
and negative. We can build a classifier and get a 70% accuracy. Depending on the task, that
might be satisfactory. But, if the positive class takes the 80% of the dataset, we can change
the classifier to a “dumb” one that makes no meaningful predictions, every class is classified
as positive. The accuracy would then jump to 80% and the second classifier, although useless,
would appear to be better. This is called the accuracy paradox. So, instead of just calculating
the accuracy, we will also calculate two other metrics, recall and precision. First, let’s define
the confusion matrix.

Predict 1 Predict 2 Predict 3
Class 1 13 1 1 Total 1: 15
Class 2 1 14 0 Total 2: 15
Class 3 3 1 11 Total 3:15

Predicted 1: 17 Predicted 2: 16 Predicted 3: 12

The confusion matrix tells us in the main diagonal how many samples of each class were
correctly labeled (true positives). In the rest of the cells in each row, it tells us how many
samples of a class were given wrong predictions (false negatives). In the rest of the cells in
each column, it tells us how many predictions of each class were wrong (false positives). For
each class, the recall is calculated by

tp  _ tp
tp+ fn  Total

and the precision by

tp _tp
tp+ fp Predicted
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We have as many pairs of precision-recall as the number of classes in our classification
problem. To simplify things a bit, because we can have a large number of classes, we take the
mean of these pairs that we get one value for recall and one for precision. This is called
“macro” averaging.
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4 Deep Neural Networks (Deep Learning)

In the last few years, the term deep neural networks or deep learning has exploded in
popularity. This can probably be attributed to the availability of more computational resources
compared to the past and some very promising results in recognition problems, like the more
than 10% decrease in error rate (compared to the second best algorithm at that time) in the
ImageNet object recognition database in 2012 [43]. However, the foundations of shallow
neural networks, or simply neural networks, were laid decades ago.

In 1957, Frank Rosenblatt [44] created the perceptron, an artificial neuron (named after the
neurons in our brain). Its function was simple. Given a number of inputs, weights and a
threshold, its output would be one if the summed weighted inputs were larger than the
threshold, or zero if they were not. Alternatively, the output is one if the weighted input minus
the threshold (now called bias) is larger than zero and zero if it is not.

Figure 4-1: Graphical representation of a perceptron with three inputs [45]

A simple way to understand what perceptrons where supposed to do is this. Let’s say you
want to make a decision about going to a party. The output can be interpreted as going (one)
or not going (zero). The inputs are factors affecting your decision, like the weather or the
location. If the most important factor is the location, then that input will have a larger weight
that the rest. A varying threshold would change the output accordingly, if it is big then most
of the positive factors would need to be present for you to go. In that sense, we could say it
corresponds to your general mood that day. As we will see, neurons like the perceptron can
be layered to make harder decisions. We will focus on layers whose outputs always feed a
next layer, not a previous one, forming networks that are called feed-forward. The “learning”
part of neural networks, is finding appropriate weights and thresholds that give a desirable
output. The “deep” part, refers to the number of layers. Modern deep neural networks usually
have more than 10 layers, but the term technically refers to networks with two or more hidden
layers, which means layers that are neither input nor output layers.

The need to learn, is the reason that eventually the perceptron was replaced. To allow
learning, any small change in the weights, should produce a small change in the output. In a
perceptron however, a small change can shift the output from the lowest (zero) to the highest
(one) value. We need a neuron whose output is smoother. The sigmoid neuron with a bias b
has output (also referred to as activation function) given by

1
1+ exp(—Xjwjx; — b)
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Its shape should be something like the figure below

Figure 4-2: Sigmoid neuron output

Notice that it is a non-linear function. If it was linear, then the output of a neural network
could be described by a linear transformation of its input. That limits the complexity and
learning ability of the model. We can now take a closer look on learning, or training. Assume
that we have somehow built a network that for example classifies digits.
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Figure 4-3: A network that can classify digits [45]

Notice how in the above network, every input neuron is connected to every neuron in the
hidden layer. That type of layer is called fully connected. The output layer has ten neurons,
one for each digit. When a digit (in the form of pixels) is fed through the network, we want
the corresponding output to be one and the rest to be zero, ideally. First, we define a cost
function like

1
Cw,b) =5 > lly() — al?
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where a is the output of the network (expressed through weights and biases) and y(x) is the
desired output for input x. Our goal is now to minimize this function. This is achieved by
gradient descent. Assume that C was a function of only two variables, vl and v2, instead of
the many weights and biases. Then, C could look like this

Figure 4-4: A cost function of two variables [45]

To find the global minimum we can imagine a ball rolling down the graph. The change in C for
a change in vl and v2, as the ball rolls would be
dc

AC Avl + dCAZ
T dvl v dv2 v

If we manage to find changes in vl and v2 so that the change in Cis negative, then that means
that the ball rolls down, towards the minimum. If we rewrite the above equation to

AC = VC. Av

where VC( is the gradient of C, then the change in direction 4v can be proven to be

Av = —nAC

where n is a small, user defined parameter called learning rate. In practice, because the
number of weights is generally enormous and training requires many samples, instead of
computing Av for each training sample and then updating the weights, a variation is used. In
stochastic gradient descent, the gradient is computed for a number of random samples,
instead of just one. The update to the weights is performed by averaging over this sample set,
called batch, instead for each sample individually. A common term in neural networks,
backpropagation, is the way in which we compute the gradient. We will not go into detail
about how it works, but one can check the resource most frequently referenced in this
chapter, Michael Nielsen’s introductory webpage to neural networks [45].
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4.1 Improvements on the methodology

Sigmoid neurons are not perfect. Their output gets almost flat when it is near the minimum
or the maximum. That means that the changes in the cost function will be very small during
training, if we fall into in these regions. This can be solved by using a different cost function,
called cross-entropy. It is defined by

1
C= __Z E[yjlnaj + (1 —y)n(1 - aj)]
J

n
x

where j sums over all the output neurons. The reasons why this change is beneficial are not
obvious, but we will not delve deeper.

We can also help the network avoid these regions during initialization. Before training starts,
the weights and biases need to have some initial values. Instead of just picking any random
values, using a Gaussian distribution with mean zero and standard deviation 1/\/n
where n is the number of inputs in a neuron

Another improvement on the cost function, is called regularization. It is an extra term that
gets added and can look like this
A
2
— ) w
2nz

w

where A is a positive user defined regularization parameter. What this does, is make the
network prefer smaller weights when training and it has been shown to improve the
recognition rate by helping against overfitting. Overfitting is a term used in machine learning
algorithms and describes the phenomenon where these algorithms either memorize patterns
or get affected by noisy samples, instead of learning general characteristics of the data. That
can lead to high success rates on the training but poor results in the test set.

4.2 Popular Hidden Layer Architectures

We mentioned that neurons can be layered in different ways. Over the years, specific layer
designs have shown desirable properties and have taken the field of neural networks to the
next level.

Convolutional layers, are the MVP of image processing. Given a 2-D image, convolutional
layers mimic the convolution of a kernel filter across it, creating a filtered output called feature
map. An n x n region of the image is connected with weights to a neuron in the convolutional
layer. These weights and the bias are the same for the whole feature map and represent the
kernel (parameter sharing). In practice, convolutional layers have many kernels/filters and
compute a feature map for each one.
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first hidden layer

Figure 4-5: How a convolutional layer works [87]

Additionally, the kernels can be three-dimensional with each 2-D kernel part handling a
different 2-D part of the input. The values calculated by the 2-D parts of a kernel are
aggregated to produce the final kernel output. The example below shows a layer with two 3-
D kernels acting upon a 3-D input (RGB channels of an image).
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Figure 4-6: Convolution with 3-D filters [88]

Generally, a convolutional layer can be defined using four parameters. The number of filters,
their size (n x n x m), the stride which defines the step of the “convolution” (one for classic
convolution, higher values skip pixels) and the type of padding used (zero padding in the above
example). The size of its output is dependent on those parameters.
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Convolutional Filters Output

—

Figure 4-7: Block diagram of convolution

The networks that utilize them are called Convolutional Neural Networks (CNNs). The first
successful convolutional network was LeNet-5 [46], proposed in 1998 and applied to the task
of digit recognition.In that network, the convolutional layers don’t have activation functions.
They are followed by averaging subsampling, that reduces the dimensionality of the feature
maps. In the same paper it is theorized that the combination of connecting nearby pixels (local

receptive fields), parameter sharing and subsampling can help achieve some degree of shift,
scale and distortion invariance.

Fully Connected Fully Connected Softmax

. Classification
4
Score

Figure 4-8: Typical modern convolutional architecture

It turns out that the weights of the first layer, when visualized, often do resemble real filters.
This is an interesting property, as it is shared among most (if not all) deep convolutional
networks, regardless of architecture and target task (e.g. object recognltlon face recognition)

Figure 4-9:AlexNet convolution filters [88]
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Figure 4-10: Gabor filters

Modern deep convolutional networks are used in conjunction with an activation function. This
is handled by a rectification layer (ReLU) which is a layer comprised of neurons whose output
is calculated by the function y=max (0,x). They are designed so as to not alter the input
dimensionality. They are reported to also speed up training when used [33].

A layer that goes hand in hand with convolutional layers and performs a form of subsampling,
is the pooling layer which generally performs max-pooling. It is connected in the same way as
convolutional layers, but its outputs are the max values of an m x m window, instead of the
average value like in LeNet5..

16 32 22 26

49 21 23 19 49 26
24 12 36
36 29

Figure 4-11: How a max-pool layer works

Its main goal is to reduce the high dimensionality of the data and help with invariance, but
some researchers suggest that they may not be necessary [47]. Invariance is achieved by
discarding the values where the filters’ outputs were small, which means they didn’t detect
the trained pattern in that area. At the final level of pooling, many areas are discarded, keeping
mostly the detected patterns, regardless of their original spatial position.

Dropout layers, are another method to guard against overfitting. During training, some
neurons in a fully-connected layer, different each time, are temporarily disabled.
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(a) Standard Neural Net (b) After applying dropout.

Figure 4-12: Example of dropout [48]

They can make the overall features learned more robust, as they reduce co-adaptation
between neurons [48]. Each neuron is forced to learn “good” features by itself, without relying
as much on others.

Last but not least, the Softmax layer seen in Figure 4.7 is often used as the output layer of a
network. It is a fully connected layer, meaning that every input is connected to every neuron,
i.e. the input to the activation function of each neuron can be described by ) w;x; — b. Its size
(number of neurons) is the same as the number of classes in our classification problem. The
output values always sum to one (using the softmax function), so they can be viewed as the
probabilities of an input belonging to a certain class. This means that classification in handled
within the network, there is no need for external classifiers.

Typically, a modern convolutional neural network will have multiple blocks of a convolutional,
ReLU and max-pooling layer connected in a series, followed by a smaller number of fully
connected layers, the last of whom is a softmax.

Due to the fact that in deep networks a convolutional layer is almost always used with a ReLU
activation, the term convolutional layers most of the time also includes the activation.

4.3 Training a Deep Neural Network

Let’s assume that we have constructed a deep neural network, it's now time to train it. This
can be a daunting task. Apart from the structural parameters, like the weights or the filter
sizes, we also need to optimize the so-called hyperparameters of our network. These include
the number of epochs, i.e. how many times the data set go through the network, the batch
size, learning rate, momentum and possibly others.

Training may also involve data augmentation. The training set is augmented by adding
cropped and/or rotated copies of the original images to boost generalization ability. A more
advanced technique is triplet loss, where the last layer of the networks is trained using an
“anchor” image, one positive and one negative example of classification [49].

The structural parameters are learned using the training set. Afterwards, using a smaller and
different set than the training one, called validation set, the hyperparameters are tuned. This
is done to combat overfitting.
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This may not sound so bad. After all, there exist other complex techniques with
hyperparameters. That may be true, but in the case of deep neural networks, the more
challenging part can be training. State of the art architectures take many days to complete
training on multiple high-end GPUs [49] [50]. That is because of the high number of
parameters that need to be learned and the consequently large datasets required to do so.
For example, [50] has more than 120 million parameters [51].

It is, therefore, apparent that training a state of the art deep network can’t be reasonably
accomplished by the common user.

4.4 Designing a Deep Neural Network

Wait, shouldn’t this section precede the last one? We need to have a network design first in
order to train it. That is correct. However, describing how difficult can it be to train a network
helps us understand why it also difficult to design one.

We know how each layer works independently, more or less. So, designing a network using
these layers shouldn’t be much of a problem, right? Unfortunately, it is. The field is still very
new and under intensive study. While there exist networks that achieve record-setting results,
there aren’t many insights provided about how or why they work better than others. They just
do. In modern bibliography, architectures are presented without any mention on
architectures that did not perform as well and possible explanations.

In [51] this problem is acknowledged. They report some inferior architectures they came up
and described how they handled the design process. However, most of their work is based on
trial and error. They began from a small convolutional network and kept adding neurons and
layers until the results were unsatisfactory. It is safe to assume that a large part of the work
on deep neural networks is heavily based on trial and error and of course, experience.

The above might sound a bit grim but there is a silver lining. As the popularity of CNNs rose,
so did the interest to understand them. Visualization techniques such as t-distributed
stochastic neighbor embedding (t-SNE) [52] and especially deconvolution (a reverse network
that produces pixels from feature maps) [53] can help us visualize what a network has learned.
They play will certainly keep playing an important role in deep learning.

Figure 4-13: Deconvolution example [53]

Given the heavy computational costs of training mentioned in the previous section, designing
a new deep neural network as a part of an undergraduate thesis seems to be very
unapproachable.
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Does that mean that we should leave deep learning to researchers for now? Fortunately, there
is another approach to deep learning that was employed in this thesis, and it can be used by

anyone.

4.5 Transfer Learning

Speaking broadly, transfer learning is the use (transfer) of resources from other tasks to
improve prediction accuracy on a given task. Multitask learning [54] was an early form of
transfer learning applied on shallow neural networks. The main idea behind it, is that training
for additional similar tasks can boost the performance on our original task.
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Figure 4-14: Multitask Learning example [54]

In the example above, the original goal is to predict the mortality rank of a patient based on
his physical characteristics and symptoms. When training a bigger network for more related
predictions, like the results of certain blood tests, however, it was found that the originally
wanted prediction became more accurate.

In 2007 the idea of self-taught learning [55] was introduced. The authors theorized that
“...many randomly downloaded images will contain basic visual patterns (such as edges) that
are similar to those in images of elephants and rhinos. If, therefore, we can learn to recognize
such patterns from the unlabeled data, these patterns can be used for the supervised learning
task of interest, such as recognizing elephants and rhinos”. They projected their original
images with bases generated from an optimization problem on the foreign data, with
promising results.

In 2008, multitask learning was applied to shallow CNNs [56].
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Figure 4-15: Multitask learning in shallow CNNs [56]

In this case, the related tasks are generated from our input images by selecting a random
patch from the input and using it to filter the whole image.

It is obvious that there isn’t just one way to implement transfer learning and the term doesn’t
refer to just one technique. So, what does transfer learning mean in the context of deep CNNs?

First of all, one could consider data augmentation as a form of transfer learning however the
term generally refers to transferring (or more accurately, reusing) trained networks to other
similar or dissimilar tasks. Soon after deep CNNs, rose into prominence, studies were made to
test if and how well trained networks handle new tasks and datasets.

Naturally, some changes need to be made to the network. The last (softmax) layer generally
can’t be kept, as its output is seen just as probabilities for an input to belong to a class in the
original problem. We can either add a few fully connected layers or just a softmax layer
tailored to our data and retrain the network, or simply take the output of one of the previous
fully connected layers and use it as features in a classifier (SVM seem to be very popular). Note
that the outputs of convolutional layers are never used directly due to their number and
dimensionality, they also tend to underperform [57]. For example, in the network we ended
up using, the output of the last convolutional layer has 7 x 7 x 512 = 25088 neurons, while the
fully connected layers that follows it, only 4096. Retraining only one or few layers is not only
computationally easier than training a whole network, but also allows the use of deep learning
on smaller datasets, as we need less data to prevent overfitting due to the smaller number of
parameters. This is very important, as deep learning can be used in more practical or rare
applications, where the number of available labelled data is limited. So, transfer learning
makes deep learning more approachable, but how well does it work? Numerous papers have
been published, testing state-of-the-art pre-trained networks on various tasks [53] [58] [59]
[60]. Two factors are common among these publications. They all use networks pre-trained
on object recognition and they all get amazing results. The choice of object recognition is not
unexpected. Itis a very general and difficult task and it is logical to think that a network trained
on a more general task could transfer better. As we can see below, object recognition covers
a wide range of objects and animals. The complexity of the task is evidently very high.
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Figure 4-16: Typical object recognition images [61]

Other than the source task of the transferred network, there are not much else to worry
about. Due to data augmentation, any network can be used, regardless of minor differences
between its input size and our dataset. Some selected results are presented below.

Source Network Target Task Previous Transfer
state-of-the- | Learning
art

Overfeat [62] + augmentation Scene classification | 64% 69%

Overfeat + augmentation Fine-grained 56.8% 61.8%

recognition

AlexNet [63] Fine-grained 56.8% 58.75%

recognition

AlexNet Object recognition | 40.5% 65.7%

For more detailed results, one should read the papers mentioned above. Transferred
networks can not only beat (or come close to) the previous state-of-the-art in the same
domain but also on very different domains than the one the network was initially trained for.
Of course, the closest the original dataset is to the new one, the better the results [57].
Unfortunately, comparisons among the networks used regarding their transferability cannot
be made as the researchers used mostly different datasets and tricks (e.g. data augmentation).
The same goes for the comparison between retrained layers vs no retraining.

A more in depth study on transfer learning was done in [64]. The researchers built two
identical networks with 8 convolutional layers. The networks were trained on two random (A
& B) but similar splits of an object recognition database. They then defined different transfer
scenarios. In BnB, n layers are transferred from the network trained on B. These layers are
locked (not trained) and the rest of the network is trained on split B. In BnB+, the whole
network is retrained. AnA and AnA+ are the same but for split A. AnB, BnA, AnB+ and BnA+
test the transfer between different splits. Their results are summarized below.
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Figure 4-17: Transfer results [64]

We will put emphasis on two significant results. First, the drop in accuracy for n=4 and the rise
for n=6, suggest that convolutional layers deeper in the network, may form co-adaptions,
meaning that the feature maps they produce are more dependent on each other than in
earlier layers and that they should be retrained or kept as a whole. Second, it appears that a
network trained on a similar dataset and then trained again on the original dataset it was
supposed to be trained on, achieves better accuracy. That implies that transfer learning is not
only beneficial when there is a restriction of resources (computational or lack of enough data)
but also to regular deep learning applications.

Fully Connected Fully Connected

— Extracte
| |>:ajd_.

Figure 4-18: Transfer learning scheme
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4.6 Visual Geometry Group - Face (VGG-Face)

VGG-Face is a deep convolutional neural network developed in the University of Oxford in
2015 [49]. It is comprised of 23 hidden layers (excluding Keras-only layers) and a softmax
output layer. The Keras [65] breakdown of the model (minus the softmax layer) can be seen
below. The activation function used in all layers is ReLU.

Layer (type) Output Shape Param #
permate_l_input (Inputlayer) (MNone, 224, 224, 3) o]
permute_l1 (Permute) {Hone, 224, 224, 3) a
convl_ 1 (ConwiD) {None, 224, 224, &4) 17482
convl_Z (ConwviD) {None, 2Z4, 224, ©4) 36928
max pooling2d 1 (MaxPoolingZ (None, 112, 112, &4) 0]
convi_1 (ConwvwiD) {None, 112, 112, 12%) 73856
convi_2 (ConviD) {None, 112, 112, 128) 147534
max_pooling2d Z (MaxPoolingZ (None, 56, 56, 128) 1]
convi_Ll (ConviD) {Mone, 56, 56, 25&) 295168
convi_Z (ConwiD) {None, 56, 56, 25&) 590080
convi_3 (ConwvwiD) {None, 56, 56, 25&) 5490080
max_poolingZd_ 3 (MaxPoolingZ (None, 28, 28, 256) [u]
convd_1 (ConwiD) {Hone, 28, 25, 51Z) 1130160
convd_Z (ConwvwiD) {None, 28, 28, 51Z) 2359208
convd_3 (ConwvwiD) {None, 28, 28, 512) 2359808
max_poolingZd 4 (MaxPoolingZ (None, 14, 14, 51Z) 1]
convi_1 (ConviD) {None, 14, 14, 51Z) 2359808
convi_Z (ConwiD) {Hone, 14, 14, 51Z) 2359808
convi_3 (ConwvwiD) {Hone, 14, 14, 51Z) 2359808
max pooling2d 5 (MaxPoolingZ (None, 7, 7, 51Z2) a

fcé (ConvID) {None, 1, 1, 409&) 102764544
dropout_1 (Dropout) {None, 1, 1, 409g) a

fcT7 (ConviD) {None, 1, 1, 409&) 16781312
dropout_Z2 (Dropout) {Hone, 1, 1, 40%§) o]

fc8 (ConvzD) (None, 1, 1, 2622) 10742334
flatten 1 (Flatten) {None, 2622) (]

Total pagpamg: 145,002,878
Trainable params: 145,00Z,878
Hon-trainable params: 0

Figure 4-19: Breakdown of the VGG-Face CNN
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We note two important things. First, the network takes images of resolution 224 x 224 (50176
total pixels) extracts 2622 features per image. That’s a considerable dimensionality reduction.
Second, the network has more than 145 million parameters! That imposes considerable
restrictions to training time and training set size. The researchers created a dataset of 2.6
million images and used data augmentation to further increase its size during training and
implemented triplet loss. As far as hardware is concerned, 4 very high end GPUs were used

(NVIDIA Titan Black).

At the time of its release, it managed very competitive performance on the LFW benchmark
and outperformed every other method on the Youtube Faces Dataset [66]

No. Method Images|Networks | Acc. | | No. Method Images | Networks | 100%- EER | Acc.
! | Fisher Vector Faces [CT] | - - 19310 ' Video Fisher Vector Faces [[3) - - 87.7 83.8
i D“"f““éﬂ"—"' 54-":4 ; 97~-:§ 2 DeepFace (03] aM 1 91.4 914
> A e e o N DeeplD-2,2+3 200 - [932
5 FaceNet [[J] 200M 1 08.87 4 FaceNet [u] + Allgnrﬂcn[ 200M 1 - 95.1
6 |FaceNet [[3] + Alignment| 200M 1 99.63 5 Ours (K = 100) 2.6M 1 92.8 91.6
7 Ours 2.6M 1 98.95 6 | Ours (K = 100) + Embedding learning | 2.6M 1 974 97.3

Figure 4-20: VGG-Face results [49]
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5 Proposed methodology and Technical Details

In the following sections, we will propose methodologies and implement the above algorithms
for the task of face recognition, primarily on the ORL database. For transfer learning, Keras
was used. Keras is a python library for deep learning and works as an intermediate for other
very popular libraries like Tensorflow, CNTK [67] and Theano [68]. The code written with Keras
is independent of the backend library, meaning that the same Keras code can be run
regardless of chosen backend. Switching from running on the GPU to the CPU and vice versa
is also very easy. As such, Keras is an ideal choice for prototyping. For the rest, the MATLAB
environment was used with the appropriate toolboxes. It should be noted that the MATLAB
toolbox for CNNs was also tested, but required more memory than the Keras implementation,
making it impossible to run with our resources (8 GB of memory).

5.1 Classic methods

Based on the presented statistical methods, we propose to use combinations of wavelet
decomposition, feature extraction, clustering of features and classification in the following
form. First, DWT will be implemented up to a desirable level that is task specific, for feature
extraction. DWT provides dimensionality reduction through subsampling and low-pass
filtering improves the quality of the image by removing noise and improves the properties of
the image histogram. As far as the wavelet choice is concerned, we will be using the db4
wavelet on the LL sub-band, as proposed in [13]. In each repetition, a range of chosen
eigenvalues is used, in steps of 10. A statistical method is then applied to the decomposed
features in the LL sub-band, to further reduce dimensionality, discard redundant information
and reorganize the features. PCA provides an orthogonal basis that maximizes total variance,
LDA maximizes between-class variance and minimizes within-class variance and ICA uses
higher order statistics to achieve statistical independency of the basis. This process creates
features of low dimensionality and appropriate for use in a classifier, which is trained using
labeled data and then assigns labels to unlabeled data. We make the assumptions that the
decomposed features perform better in classification purposes and that the statistical
reorganization of these features results in a further boost in recognition accuracy

n—> DWT-db4 METEINEE 2 PCA, LDA, ICA Bas'sJ:Ltcs—bg*\gFegtms+ 1-NN Training

Training Set
Basis Vectors

l —  Predicted Identity
ﬁ g DWT-db4 LL sub-band D Test Features T

Test Set

Figure 5-1: Block diagram of our statistical approach

5.2 Experimentation on Deep Learning
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Instead of training the entire deep neural network, which requires the formation of a big
dataset of images, we will experiment on the concept of transfer learning, which assumes that
a network trained on such a big dataset covering the peculiarities of many application areas
can also address the feature needs of a specific face recognition application. The chosen pre-
trained network will be treated as a black box that provides the relevant features for our own
image dataset. These features will be then used to train a k-NN classifier outside of the
network. There is an interest to this approach, as it enables the use of deep learning
architectures to fields were the size of available data is small (an example could be a rare
animal or disease case) or in cases were the computational resources available do not suffice
to support the taxing process of training, as the cost of just classification is many times smaller.

Pre-trained Deep Neural

Input Images————»| Extracted Features—— Classifier

Network

Pre-trained section

Fully Connected  Fully Connected

T T N Extracted "
. Features
|

Figure 5-2: Transfer Learning approach

5.3 Validation

In every scenario, we choose a random 70/30 dataset split for training and testing. We do not
impose a restriction on a minimum or maximum number of pictures per person. That means
that there can be splits where a person is not present in the training or test set or is heavily
under/overrepresented. The “experiments” are run 128 times and the mean accuracy,
standard deviation (presented only for the top scores), recall and precision are calculated. The
multiple runs and data splits are performed to ensure the generalizability of our results. 1-NN
is used for classification, in all cases apart from transfer learning.

To summarize, our proposed methodology for feature extraction, using DWT and statistical
methods is:

1. Split the dataset into testing and training subsets using a 70/30 random split
Apply DWT using the db4 wavelet function on both sets, to generate four level 1
wavelet bands per image

3. If needed, keep applying DWT on the highest level LL band

4. Discard all other bands apart from the last LL band
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Use a statistical method on the training set to calculate a new basis for the data
Project all the data using an increasing number of basis vectors (steps of 10)
Train a k-NN classifier with the training data

Prompt the classifier with the test data

Calculate the accuracy, precision and recall

10. Repeat 128 times and calculate the standard deviation

W o NoU,

In the case of transfer learning, the network replaces steps 2 through 6 in the proposed
methodology with statistical methods implementing feature mapping in orthogonal or
independent directions, as well as feature reduction.

As a baseline, the “naive” approach of not applying any transformation to our ORL images and
just calculating the distance between the original pixels instead of features, yields an accuracy
of 93.1% using Pearson Correlation, standard deviation of 0.02%, recall of 94% and precision
of 94.5%, using 112 x 92 = 10304 features per image. These results are indicative of the
database’s good characteristics (aligned faces, same background, same scale etc.). The use of
transformations induces further improvement on the classification accuracy.

The next section indicates the classification accuracy that can be achieved by the various
modules of processing operations proposed in this thesis.
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6 Evaluation

6.1 PCA

First, PCA is applied without DWT. The distance measures mentioned in [30] [13] are used to
check how much accuracy can be affected by the choice of distance metric. Recall and
precision are only reported for the top performing metrics.

PCA, no DWT

_— 1 1 I 1 I

100
Number of Eigenvectors

Figure 6-1: PCA, no DWT, accuracy

The cyan horizontal line is provided for comparison purposes. At a first glance, we are able to
verify that Mahalanobis distance severely underperforms for small numbers of eigenvectors.
This could be attributed to the fact that the first eigenvectors can be several times bigger than
the rest. Using only large values in the Mahalanobis distance, shrinks the features and makes
them more prone to noise. By taking a closer look, we see that the maximum accuracy is given
by Mahalanobis distance, 95.33% at 100 eigenvectors/features. The second best accuracy is
95.2% at 80 features, given by Pearson Correlation. Those metrics not only score the highest
accuracy but also low standard deviation.
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Figure 6-2: PCA, no DWT, recall and precision

Precision and recall also score highly, at 96.03% and 95.9% for Mahalanobis and 96.13% and

96% for Pearson Correlation.

What can be noted is that after a metric reaches its peak, the accuracy, precision and recall
plateau, and they vary minimally for each following batch of 10 eigenvectors. That is why we
omit results past the 200 eigenvector mark, as the plots are already not very easy to read.
This doesn’t come as a surprise. As we showed earlier, the first/highest eigenvalue-
eigenvector pairs contribute the most variance in the data. The eigenvectors that follow offer
lower and lower variance and thus affect classification in a small manner. The biggest
deviation in accuracy between distances in the plateau region is at 100 eigenvectors where
the lowest accuracy is 94.77% and the highest is 95.3%, if we ignore Citiblock distance.

Next, DWT is applied for levels one through four, using the db4 wavelet.
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PCA, 4-level DWT
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Figure 6-3:PCA, DWT levels 1-4, accuracy

DWT affected accuracy in a positive manner. Mahalanobis and Pearson Correlation still
perform very well, with the exception of level 4, where the accuracy decreased from level 3.
This does not agree with [13], where level 4 outperforms level 3. However, it can be explained
by the fact that we use images with resolution 112 x 92 instead of 128 x 128 that they used.
After a certain level, dependent on the image size, decimation can remove too much
information, making the task of recognition harder. Maximum accuracy (97.3%) is achieved at
80 eigenvectors using Pearson Correlation or Angle distance and level 3 DWT. Mahalanobis
distance follows with an accuracy of 97.07%. Another positive results is that the difference
between the metrics, even if we consider Citiblock, is reduced to 0.32% at level 3 DWT.
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The boost in performance is also evident in the recall and precision metrics. We summarize
the results in the table below.

PCA, 1-DWT  PCA, 2-DWT  PCA, 3-DWT | PCA, 4-DWT

Pearson Mahalanobis Mahalanobis Mahalanobis Pearson Citiblock

10394 100 90 80 80 50

93.10% 95.30% 95.6% 96.74% 97.27% 97.04%
2.42% 2.20% 2.00% 1.88% 1.80% 1.82%
94.50% 96.03% 96.58% 97.16% 97.80% 97.57%
94.00% 95.9% 96.53% 97.23% 97.66% 97.37%

6.2 PCA and LDA

Next, we will evaluate the combination of PCA and LDA. In our experiments, cosine distance
outperformed all others. To avoid clutter, only the results using that distance will be
presented. Due to the upper bound imposed by the desired non-singularity, the number of
eigenvectors starts at nine (instead of ten) and we hope to find the maximum accuracy at c-1
=39 eigenvectors. First, PCA and LDA are performed without the aid of DWT.

LDA, no DWT
0.98 -

| | 1 1 | l
0 10 20 30 40 50 80 70
Number of Eigenvectors
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Figure 6-5: LDA, no DWT

It is obvious that LDA outperforms PCA in our case, even when no DWT is applied. At 39
eigenvectors, we reach maximum accuracy when compared to fewer eigenvectors, as
expected. For eigenvalue choices greater than 39, the results should be ignored, as non-
singularity doesn’t stand. Next, the effect of DWT is going to be presented for levels 1-3 as we
have already established that at level 4 there is a drop in performance due to the input size.
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The results are summarized below.

PCA, LDA PCA, LDA, 1-DWT PCA, LDA, 2-DWT PCA,LDA, 3-DWT

Cosine Cosine Cosine Cosine
39 39 39 39
97.91% 98.07% 98.28% 98.32%
1.62% 1.5% 1.49% 1.6%
98.34% 98.56% 98.66% 98.72%
98.02% 98.41% 98.60% 98.49%

Even though level 3 DWT seems to be the best in this case also, the difference between level
3 and level 2 is too small to make any assumptions.

Because the combination of PCA, LDA and DWT is the highest scoring statistical method we
implemented, we would like to see how it performs against similar methods on the ORL
dataset. The results from three papers will be compared to ours [70] (2016), [15] (2012) and
[69] (2009). Because they favored a 50/50 dataset split, which understandably can cause a
performance drop, we will rerun our experiment with the same split but without ensuring that
each class will be represented by 5 images, the choice of images will be completely random.

Method PCA, LDA, LDA, 1- PCA, RBF LPP[70] OLPP[70]  OELDA [70]
3-DWT Haar DWT SVM [69]
[15]

96% 83% 98.50% 89.30% 90.40% 91.40%

2.20% : : 5.58% 5.85% 6.28%

Our method outperforms all methods in [70], however it scores significantly lower than PCA
+ SVM. Our 70/30 split result comes closer, but it still is not enough. It should be noted
however that SVM is a computationally intensive classifier and can run many times slower
than k-NN. Even though tests were made, we were not able to reproduce that result. To try
and boost our accuracy we draw influence from [5] . In that paper, the researchers used higher
order statistics from wavelet sub-bands to try and classify images that had been digitally
tampered. Among other more complex ones, these statistics included variance, skewness and
kurtosis. In our case, we took the variance and kurtosis of each level 2 and level 3 sub-band
and appended them as extra features at the end of the DWT feature vector (before the
application of PCA and LDA).

PCA, LDA, DWT + statistics

Cosine
39
98.70%
1.50%
99.10%
99.00%




There is an improvement in error rate, from 1.78% to 1.30%, a 22.5% decrease. Also, precision
and recall were boosted. The result might not be significant, but calls for further testing of
higher order statistics mentioned in the paper.

6.3 PCAandICA

ICA was also tested. As mentioned earlier, the FastICA implementation was used, with
skewness as the G function. In this case, the bibliography agreed that cosine is the most
appropriate distance metric [41] [37].

PCA, ICA PCA, ICA, 1-DWT PCA, ICA, 2-DWT PCA, ICA, 3-DWT | PCA, ICA, 4-DWT

Cosine Cosine Cosine Cosine Cosine
40 50 60 110 70

94.17% 94.80% 95.57% 96.30% 96.07%

2.71% 6.5% 7.4%% 3.5% 3.1%

95.32% 95.67% 96.49% 96.97% 96.66%

95.32% 95.60% 96.25% 96.81% 96.69%

Even though ICA is reported to achieve good results, in our experiments there is an obvious
drop in performance. An earlier study [71] also finds that ICA is inferior to PCA and theorizes
that preprocessing may be the culprit.

To compare our results with a more recent study [14], we again recalculate our accuracy using
a 50/50 dataset split. Their experiments are very similar to ours, as they test the FastICA
algorithm on a range of wavelets on different sub-bands. However they did not test the db4
wavelet. Their top results are reported below, along with ours.

Wavelet db4 db3 sym8 rBio3.5

Distance Cosine Euclidean Euclidean Euclidean
Level 3 4 3 3
Accuracy 92.27% 84% 91% 91.50%

Our choice of db4 wavelet and cosine distance performs better than the sym8 and rBio3.5
wavelets with Euclidean distance. Because the difference in accuracy isn’t very large it’s not
clear whether the increase in accuracy is due to the choice of wavelet and/or the distance
metric. In the case of PCA, we saw that the difference between metrics was in the range of
0.30%-0.50% so the rrBio3.5 wavelet could be equal to db4 in terms of accuracy, if a different
metric was used.

6.4 Transfer Learning

The VGG-Face network is loaded in Keras. The softmax layer is removed from the network.
The last layer has 2622 neurons so that’s the number of extracted features. Because the input
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is supposed to be 224 x 224 x 3 (RGB), our grayscale images are resized using interpolation
and duplicated across each missing channel. Using 3-NN with Chebyshev as the distance
metric, we achieve accuracy of 99.60%, standard deviation of 0.7%, recall of 99.69% and
precision of 99.79%. Even with a 50-50 split, the achieved accuracy is 99.07% using 1-NN.,
higher than PCA with SVM. Because it is not clear how many layers to remove from the top (if
any) apart from the softmax, we first performed tests with a varying number of removed
layers. Removing only the softmax resulted in higher accuracy. The accuracy when taking
features from the dropout or the previous fully connected layer drops to 99.25% and the
number of features is almost doubled.

The above experiment doesn’t really show the power of deep neural networks and transfer
learning. First, we will use a network trained for object recognition. VGG-16 [72] is a network
that won a 2014 object recognition benchmark. It is comprised of 16 ReLU activated layers,
the first of which convolutional, topped by 3 fully connected and a softmax layer. Max-pooling
is also present between some of the convolutional layers. We again remove the softmax layer
and use 1-NN with Euclidean distance for classification. Even though it was never trained using
face images, it achieves accuracy of 97.14%, standard deviation of 1.6%, recall of 97.25% and
precision of 96.97%. The decrease when compared to VGG-Face is expected but could become
even smaller when using data augmentation for example. Next, we will present some results
using the Georgia Tech database. Because of the differences in scale, the images don’t share
the same size so the naive approach is to use interpolation again. We interpolate them to 224
x 224 and for every iteration we randomly choose a subset of 10 (out of 15) pictures of each
subject and then use a 70/30 training/testing split. Also, because the ORL database was in
grayscale, we will be using a grayscale version of the Georgia Tech database, even though it is
originally available in RGB. The results are summarized below.

PCA, 3-DWT PCA, LDA, 3-DWT PCA, ICA, 3-DWT

Pearson Cosine Cosine
80 49 50

75.00% 81.03% 69.17%
3.61% 3.78% 3.59%
75.64% 82.58% 68.90%
77.33% 82.55% 71.85%

There is an obvious drop in performance even though we kept the methods, the split and the
number of images per person the same. This can be attributed to the following factors. First,
there are more subjects present in the Georgia Tech database and as such more ways for a
classifier to make a mistake. Second, there are noticeable variations in the backgrounds. Third,
the interpolation process is not the suggested way to handle images of different scales, there
are other methods not examined in this thesis (e.g. SIFT [73]). The values added to the images
can influence their statistical properties and affect related methods.

However, deep CNNs are trained to recognize patterns anywhere in an image and are also
generally more powerful. We expect that things that hinder statistical methods, are not going
to affect deep networks that much. Indeed, VGG-Face achieves accuracy of 99.82%, standard
deviation of 0.3%, recall of 99.83% and precision of 99.79%, using a weighted 1-NN classifier
with Euclidean distance. What seems bizarre is that even though the Georgia Tech dataset is
more difficult to work with, VGG-Face achieves higher accuracy, recall and precision. This
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could be attributed to the fact the images in the ORL database need to be interpolated more
due to their smaller size.
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7 Conclusions and Loopholes in Face Recognition Systems with
Machine Learning

In this work we tackled the problem of face recognition and more specifically the task of
feature extraction. Two distinct approaches were tested, classic statistical dimensionality
reduction with the added twist of wavelet decomposition and state-of-the-art transfer
learning. By choosing to study both the past and the present of face recognition, valuable
insight has been gained about the field and recognition problems in general. Regarding our
results, we were able to show that the db4 wavelet can outperform other recently used
wavelets and more studies should include it in their research, as none of the papers used for
comparisons utilized it, and also that LDA combined with PCA and 3-level DWT can outperform
other statistical approaches. However, utilizing a deep CNN provided astounding results
proving why most recent advancements in image recognition fields revolve around deep
learning.

However, since this thesis is about a security related topic, not mentioning any attack vectors
would be a mistake. In this section, we will talk about known and possible vulnerabilities that
any face recognition system designer must have in mind.

Let’s start with thinking how a face recognition system would work in practice. An individual
would walk up to a camera that would take a picture of their face which would then be
preprocessed (aligned, possibly converted to grayscale etc.) and fed to a face recognition
algorithm like the ones shown above. What could go wrong? No need to think about crazy
scenarios from movies! The system mentioned above, comprised of complex algorithms, can
be fooled by a kid with a printer. All someone needs to do is to print a picture with the victim’s
face clearly visible and the system will be fooled. In the age of social media, finding an
appropriate picture is certainly an easy task. This is not mere speculation. Thankfully (for the
sake of this example, not its customers) Samsung decided to ignore the need for a secure
implementation and made the headlines earlier in 2017, when its flagship and very expensive
smartphone, got fooled by a piece of paper [10]. What is more disconcerting is that they added
an extra layer of security, that required users to blink, but completely missed the point again.
An attacker just needs two pieces of paper now instead of one! One could argue that
biometrics on everyday mobile devices are just a gimmick. Or that the limited resources they
have can limit how secure the implementations can be. It is true that a mobile phone for
example, is expected to be very fast. Any delays can decrease user satisfaction and of course,
sales. However, that cannot excuse badly implemented security. Any security feature must be
implemented with the users’ data privacy and integrity as the top priority. If a feature cannot
ensure those two, then it should not be implemented at all. Security is not just a buzzword.
An unsuspecting user can suffer dire consequences when a feature advertised as “secure”, is
nothing but. The leak of personal and professional data is a common phenomenon.
Fortunately, there is relevant research on how to secure face recognition. One example is a
recent (2014) paper [74] that utilizes motion analysis to detect attacks as the one mentioned
above.

Something a bit more general concerns how deep neural networks actually recognize images.
In a 2015 paper [75], researchers were able to create artificial images using evolutionary
algorithms or gradient ascent that were mostly unrecognizable by humans but popular neural
networks identified them with high certainty.
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ringneck pool table peacock bee garter snake
snake

Figure 7-1: Artificial images and their recognized labels [75]

A year earlier, researchers managed to make deep networks to misclassify almost identical
images

13

Figure 7-2: Correctly identified(left), incorrectly
identified(right) and the amplified difference
between the two(center) [91]

These studies could possibly help us achieve a better understanding of neural networks in the
future, but also helps us keep in mind that any technique, no matter how powerful can have
blind spots. It is not certain whether something similar will or can be used in face (or any
biometric) recognition but the possibility should not be ignored easily.
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8 Future Work

As this thesis covers a wide spectrum, there are many avenues for future work. First and
foremost, the effects of the db4 wavelet should be further explored in more datasets and
methods and certainly not be ignored in related studies, as well as the higher order statistics
generated with it. An extension of the wavelet transform, the curvelet transform [76] could
also be considered. Regarding transfer learning, the transferability of features should be
tested on more obscure and limited datasets, possibly in the biomedical field for diagnostic
purposes. As far as network visualization is concerned, DeepVis [77] is a library that allows
easy visualization of neurons’ outputs at runtime. This tool can provide insights to how
networks learn and expand our understanding of them.

8.1 Proposed Associations

To further expand upon our previous work and derive useful links among the classic and
modern approaches, we attempt to associate the black box operations within a deep
convolutional neural network with classic feature extraction, dimensionality reduction and
classification. In this way we can explain and justify the layers of a network based on statistical
analysis methodologies. In addition, we can also exploit the wavelet transform within the
network, an approach that was recently presented in [78], a work that proceeded in parallel
to this thesis.

First, we will explore deeper the concept of 2-D DWT. We saw that in the 2-D case DWT is
computed with a filter bank comprised of two different filters, a low-pass filter ¢ and a high-
pass filter . This structure is derived from a filter property called separability. A separable
filter f(x,y) can be written as the product of two filters, i.e. f(x,y) = h(x)k(y). In the case of DWT
we can define four filters, one for each sub-band, as

fu(y) = ex)e)
fin(,y) = @)Y ()
fur(x,y) =Y x)e(y)
fun(x,y) = ()P )

The above filters are 2-D kernels, like the filters used in a convolutional layer. Then, these
filters are convolved across the input image for the derivation of the DWT, in a way that looks
identical to the use of convolutional layers in convolutional neural networks. After
subsampling, the generated values are the wavelet coefficient sub—bands at decomposition
level one. This can be repeated until the desirable level of decomposition is reached.
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Figure 8-1: Block diagram of 2-D DWT

In our methodology, only the LL band is kept. By using f;; filters of multiple wavelets we
directly associate the 2-D DWT in the form of a convolutional and a pooling layer and vice-
versa.

Separable Filters Output
fLL
fLL
fLL
fLL

Figure 8-2: Proposed association (DWT —Convolutional layer)

Each generated feature map is the LL sub-band of a DWT using different filters. This
association describes one of the most popular deep neural network layer architectures and
raises the question whether such associations are not just conceptual but also practical. In the
parallel work of [78], Gabor filters were used to successfully decrease the time and energy in
the training step of a deep convolutional neural network. Given this result and the associations
provided above, the use of other separable filters, that have been extensively employed in 2-
D DWT, could be examined as future work, as there is a rich selection of them in wavelet
related studies.

We will now attempt to justify the use and the need of the last building block of convolutional
neural networks, the fully-connected layer. To briefly reiterate, a fully-connected layer in the
context of deep CNNs, combines and reduces the dimensionality of its input data and can be
used with any activation function (e.g. ReLU, Softmax) or even extended (e.g. dropout).
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Input

Fully Connected

Figure 8-3:A fully-connected layer

Every input value is multiplied with a weight value for every neuron in the fully-connected
layer and the output is calculated using the neuron bias and the chosen activation function.
Mathematically, the multiplication step can be seen as the projection of the 1 x N input with
the N x M weights, where M<N. In that sense, the weights can be seen as basis vectors for the
fully-connected subspace.

Input Projection Activation

Figure 8-4: Proposed association (Fully-connected layer - Subspace projection)

As more than one fully-connected layers are usually used, the deeper layers perform an even
further dimensionality reduction up to the last one, the Softmax layer, which has the size of
the classes present in the data. We propose that this multiple-step projection to a
predetermined dimension (the number of classes) can be associated with the statistical
reduction and reorganization of the data, achieved using the subspace projection methods
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presented in this thesis, PCA, LDA, and ICA. The first stages can be associated with projections
to orthogonal spaces, while the late steps achieve further decomposition onto independent
feature subspaces.

Thus, through our joint study of the state-of-the-art, the statistical foundations and DWT, we
are able to provide associations and justifications for the structures comprising deep
convolutional neural networks, using already established and well documented concepts.
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