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Abstract

This paper provides necessary conditions and sufficient conditions for the
(global) Input-to-State Stability property of simple uncertain vehicular-traffic
network models under the effect of a Pl-regulator. Local stability properties for
vehicular-traffic networks under the effect of PI-regulator control are studied as
well: the region of attraction of a locally exponentially stable equilibrium point
is estimated by means of Lyapunov functions. All obtained results are illustrated
by means of simple examples.
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1. Introduction

There are a number of relatively simple controlled processes within vehicular-traffic networks or water networks (and
possibly in farther application areas), which share the following characteristics:

e The kernel of the process is some sort of “reservoir” (e.g. an urban road network, a freeway stretch, a water
reservoir or basin) which accumulates inflows and outflows; the reservoir features a limited storage capacity.

e There is a controllable but constrained inflow; the inflow may be released at some distance from the
reservoir, in which case it reaches the reservoir with a corresponding time-delay.

e  There may be additional uncontrollable inflows.

e The outflow depends on the reservoir storage in a nonlinear way; there may be some modeling uncertainty in
the related function.

e The control goal is to operate the system near a pre-specified storage level.

Examples of such controlled processes include local freeway ramp metering [13], gating control of urban network
parts [9], merging traffic control [14], variable speed limit control on freeways [4], water level and water flow control
[11,12]. In some cases, these elementary systems may be interconnected to form bigger composite systems, as, e.g., in
the cases of multiple urban network parts [1] or irrigation networks [3].

The mentioned characteristics indicate that these elementary processes may be modeled as discrete-time time-
delayed constrained nonlinear first-order systems. A Pl-type regulator is usually employed for system control in
practice; whereby the regulator parameters are selected after model linearization around the desired set-value, using
classical linear sample-data concepts. It should be noted that, in the case of traffic systems, the nonlinear function
connecting the outflow with the reservoir storage is typically a concave uni-modal function featuring a maximum,
which usually corresponds to the desired operation state.

Although these systems are usually operating reasonably well in practice, it is interesting to have a second look at
them from a nonlinear analysis point of view. Specifically, we are interested in deriving local and global stability
results for the PI-controlled nonlinear models, which is the main scope of this paper. Eventually, we are interested in
deriving nonlinear stabilizers and, finally, in considering control of bigger composite systems.

More specifically, the contribution of this paper is threefold:



1) The derivation of conditions that guarantee the global Input-to-State Stability (ISS) property with respect to
external disturbances for the closed-loop system under the effect of a PI regulator;

2) The derivation of conditions that guarantee local exponential stability for the closed-loop system under the
effect of a PI regulator in the disturbance-free case; and

3) The explicit estimation of the region of attraction for the closed-loop system under the effect of a PI

regulator in the disturbance-free case.

Description _of the Problem: Consider the following I-dimensional discrete-time control system, which is
representative for all examples of elementary practical systems mentioned earlier (without input delay):

x* =x— f(d,x)+min(u+v,a—x)

(1.1)
x€[0,al,u €[byn,bpax].d €D, veR,
where D c R is a compactset, a >0, 0<b,;, <b,,, are constants and
£ eC’(Dx[0,a];R) with 0< f(d,x)<x forall (d,x)e Dx[0,a]. (1.2)

System (1.1) describes the time evolution of a traffic (or water) system, where x €[0,a] is the current number of
vehicles (storage) in the network, f(d,x) is the (uncertain) outflow function, a >0 is the storage capacity of the

network, u €[b ] is the part of the inflow that can be manipulated (controlled) and v e R, is the input that

min7bmax
reflects the uncontrollable inflow. System (1.1) under assumption (1.2) is a well-defined control system which

satisfies x* €[0,a] for all (x,u,d,v) €[0,a]x[b IxDxR, .

min » bmax

In order to state the control problem, we assume that:
(H1) There exists (x",u",v") € (0,a) X (byin »Dax ) X R, such that f(d,x")=u"+v" <a—x" forall deD.

In other words, we assume that x* € (0,a) is an equilibrium point for system (1.1) with v=v* and u=u". The
above inequality simply requires that the physical system is not overloaded at the desired equilibrium point. The
values (u*,v") € (b, b

)xR_ are the nominal values for the variables (u,v) € (b ,bmax ) X R, , respectively. For

max max
many traffic and water systems, the variable v € R, is not constant and the selection of a nominal value v* € R, for
the uncontrollable inflow can be made with two possible ways: (i) either by setting the nominal value to be the
expected (mean) value of v e R, over a suitably chosen time interval, (ii) or by choosing the nominal value to be the

value that corresponds to the desired values of (x",u") € (0,@) % (byin »Dyax ) -

The PI regulator is the dynamic feedback law that is given by the equation:
u(t) = max(b,y, - min(By, (e 1)~ ky (x(6) = x(t =)~k [x(6) = x” )) (13)

where k,,k, are constants. The closed-loop system (1.1) with (1.3) is described by the 3-dimensional discrete-time
system:

x* =x—f(d,x)+min(u+v,a—x)
yh=x
w'=u

u= max(bmm , min(w— Iy (x—y)—Fk, (x -x* ), binax ))

(1.4)

with state space S=[0,a]* xR (ie., (x,y,w)e[0,a]x[0,a]xR) and inputs (v,d)e R.xD. The point

(x*,x",u") € (0,a)* x (b, ,byay ) is an equilibrium point of system (1.4).



The problem that is studied in the present work is the derivation of conditions involving
e the function f e C’(Dx[0,a];R),
e the constants k,k, of the PIregulator and

e the parameters @ >0, 0< b, <bpax > (x5,u",v") € (0,a)x (b »byax ) X R, of the system,

which guarantee useful stability properties for the closed-loop system.

Results of the Paper: In this work, we answer the following questions concerning the PI regulator:

1) What are the conditions that guarantee the (global) Input-to-State Stability (ISS) property with respect to the
external input v e R, uniformly in d € D for system (1.4)?

2) What are the conditions that guarantee local exponential stability for the equilibrium point
(x*,x",u") e (0,a)* x (b

and v=v"?

min>Pmax ) 101 the disturbance-free case, i.e., when f(d,x) is independent of d € D

3) What is the region of attraction when the equilibrium point (x*,x*,u*) € (0,a)* X (b b ) 18 locally
exponentially stable in the disturbance-free case?

As expected, the answers to the above questions are related. The notion of ISS for discrete-time systems was
studied in [7] and this notion is adopted here, although the system that we study (namely system (1.4)) evolves in a

restricted state space (in S =[0,a]* xR ) and not in R> (all the results in [7] are for discrete-time systems evolving in
R"). When the ISS property is applied to system (1.4) with v=v", then it becomes identical to the notion of the

Robust Global Asymptotic Stability (see [8]). Stability properties for discrete-time systems with restricted state
spaces are studied in [17].

Organization of the paper: The structure of the paper is as follows: Section 2 is devoted to the answer of questions (2)
and (3) above, while Section 3 addresses question (1) above. All obtained results are illustrated by means of some
simple examples in Section 4. Finally, the concluding remarks of the present work are provided in Section 5.

Notation. Throughout this paper, we adopt the following notation:

* R, =[0,+00).
* By C%(4;Q), we denote the class of continuous functions on A4 — R”, which take values in Q< R"™. By
ct (4;9Q), where k=1 is an integer, we denote the class of functions on 4 < R" with continuous derivatives of

order &, which take values in Q < R™ .

2. Local Results

This section is devoted to the analysis of local exponential stability for the disturbance-free version of the closed-loop
system (1.1) with (1.3). The local stability analysis of the disturbance-free version of the closed-loop system (1.1)
with (1.3) is equivalent to the stability analysis of the following system:

x" =x— f(x)+min(w+v",a—x)

w+:P(w+q’(x)—o-min(w+v*,a—x)—kz(x—x*)) 2.1)
(x,w) €[0,a]xN

where f e C'([0,a];R) satisfies (H1), o =k, +k, and

P(x) = max( b, ,min(x,by,,, ), forall xeR (2.2)

>~ max

Indeed, it should be noticed that the solution (x(z), y(z),w(¢)) of (1.4) satisfies equations (2.1) for #>1, since the
equations



Yt +1) = y(t) — £ () + min(w(t) +v",a - y(1))
w(t +1) = Plw(t) + of (3(0)) — o min(w(t) +v",a— (0)) —ky (1(0) - x°))

hold for ¢>1. The equilibrium point (x*,u*) of (2.1) is in the interior of the region
{(x, w)e[0,a]lxR:w+x<a—v' b, <(I-o)w+of (x)—ov" —k,(x—x") < bmax} (recall (H1); notice that the right
hand side of (2.1) is continuously differentiable on the interior of the previously mentioned region), and therefore it
follows that the equilibrium point (x*,u”) of (2.1) is locally exponentially stable if and only if all roots of the
equation

s2—Q2-f'(x)=0)s+(1-f'(x)—o+k,) =0 (2.3)

are strictly inside the unit ball (see Chapter 5 in [16], Chapter 4 in [10] and the necessary extensions to the case of
local exponential stability). In other words, one of the following conditions is equivalent to local exponential stability

of the equilibrium point (x*,u*) of (2.1):

M 2-f'(x")-0)? <4(- f'(x*)— o +k,) <4 (complex roots)
(11 2—f’(x*)—o" <2 and ‘2—f'(x*)—a —1<1-f'(x")—o+k, sw (real roots).

In order to give an estimation of the region of attraction of the equilibrium point (x*,u”) of (2.1), we need to
perform a Lyapunov analysis. Any two dimensional linear discrete-time system with characteristic polynomial
s? +bs+c=0 and real roots strictly inside the unit ball (i.e., b € (-2,2) with b*>4c and 1+c¢> |b| ) is equivalent to

the system x;” =x,, x; =—cx; —bx,. A Lyapunov function for the system x; =x,, x; =—cx; —bx, can be the

function V' (x) :|x1|+M , where M > is a constant with M (b2 —4c)< 2(2—|b|) (the existence of

e+l 2
277 2-p|

such a constant is guaranteed by the facts that b e (-2,2) with b*>4c and l+c¢> |b| ): to see this, notice that

L N
max| M +?,?+M 7 <1 and that the following inequality holds for all (x;,x,)eR":

V(x,x3) :|x2|+M

b
—cx; —bx, +Ex2

b b ) b -4

=|x, +5x1 _Exl +M‘E[x2 +§x1j— 2 cx1

b b b b b* -4
<|x, +Ex1 +g|xl|+M%x2 +5x1 +MTC|x1|

2
< lJrMH]x2+2xl +l(|b|+Mb _4CJ|x1|
2 2 2 2
2
< max[M_l +H,H+MﬂJV(x)
2°2 4
Notice that the function V(x)=|x1|+M x2+%xl can be written as V(x)=|x1|+M x; Jr%x1 (in an almost

coordinate-free form) and by selecting x; = x —x" , we are inspired to select the following function

V(x,w) = ‘x—x*‘+M‘w+v* () + (1= g)x—x"), forall (x,w)e[0,a]xR 2.4)




where M >1 and g € R with | g| <1 are constants to be determined, as a candidate Lyapunov function for (2.1). An

estimation of the region of attraction 4 < [0,a]xR of the equilibrium point (x*,u”) of (2.1) is the sublevel set

Q, = {(x,w) €[0,a]xR:V (x,w) < pf = 4 (2.5)
where p >0 is a constant, for which the inequality ¥ (x*,w") <¥(x,w) holds for all (x,w)eQ » (see Chapter 4 in
[10] and [5]).

The following proposition gives an estimation of the region of attraction for regions in the parameter space k,k, .

Proposition 2.1: Suppose that the equilibrium point (x*,u*) of (2.1) is locally exponentially stable. Moreover,

suppose that ‘kz —qz‘ < (Il —q| —1)2, where q = % €(0,2) and o=k +k,. Let >0 be a constant for

which maxﬂ £ () :xe[O,a],‘x—x*‘Sn}zL and such that |f'(x)— f'(\ <L, for all xe[0,a] with

(ll—q|-1)2-‘kz—q2‘

‘x—x ‘<77,where L= |q|+l—|1—q| . Define
. minlp,, —u"u"—b,, ) a—v' —u"—x"
p =mi 77’ max > min s (2'6)
[1-2q+ £(c") MR EAEECS
may - L[k, +(1-29)g-+ (- /(")
gl +1-[1-4

where M = Consider the solution (x(t),w(t)) €[0,a]xR of (2.1) with initial condition

i-h-a)f o]

(x(0),w(0)eQ, = {(x, w) €[0,a]x ‘R:‘x —x"

+M‘w+v* - f(x)+q(x—x*)‘ < p}. Then lim (x(£), w(t)) = (x",u’) .

Proposition 2.1 does not provide an estimation of the region of attraction for all pairs of values of the parameters
ki,k, , for which the equilibrium point (x*,u*) of (2.1) is locally exponentially stable. This is clearly shown in
Figure 1 below.

Proposition 2.1 provides a conservative estimation of the region of attraction. In order to obtain a less
conservative estimation of the region of attraction, we can also use the following proposition. Proposition 2.2, which
delivers a different region of attraction. Specifically, Proposition 2.2 can be applied to values of the parameters
ki,k, , for which Proposition 2.1 can be applied as well, and the overall estimation of the region of attraction

corresponds to the union of the regions of attraction resulting from each proposition (see Example 4.2 below).

Proposition 2.2: Suppose that the equilibrium point (x*,u*) of (2.1) is locally exponentially stable. Moreover,

suppose that 0<ky,<2 and ‘f’(x*)—l+k1‘<ﬂ. Let 1n>0 be a constant for which
Jey +1=[1= k|
max{|f'(x)—1+k|-xe[o al ‘x—x* < }:ﬂ and such that |f’(x)—1+k|<ﬂ for all
A G-k

x €[0,a] with ‘x—x*‘ <n . Define



| ’ma halt— 1]l +|1- o)k, - 1) ’l+ﬂ+|a—l| | '
ley +1=[1=ky|” by + 1|1 =5y 2 key +1-|1= k)|
Consider the solution (x(),w(t)) €[0,a]xR of (2.1) with

initial

(x(0),m(0)) € Q, = {(x, w) € [0, a]x SR:‘x—x*

condition
ky +1-1-k
+2k—|2|‘w+v*—f(x)+k2(x—x*)‘<p}. Then
2
lim (x(6), w(©)) = (x",u”).
t—+00

-3 -2.5 -2

-05 .p5d 0.5

Fig. 1: The triangle in the parameter space s —k, , where s =1— f'(x") -k, —k, , for which the equilibrium point

(x*, u*) of (2.1) is locally exponentially stable. The grey region is the region in the parameter space s —k, for which
Proposition 2.1 can be applied.

The proofs of Proposition 2.1 and Proposition 2.2 are based on the following facts.

FACT 1I: Suppose that there exist constants >0, FeR, L>0, such that |f(x) —f(x*)—F(x—x*)‘ < L‘x—x*‘,
for all  xe[0,a] with ‘x—x*‘ <n. Let geNR

and M =1 be constants and define
V(x,w):= ‘x—x*‘ +M‘w+ Vi— () +(1-g)(x—x")

(x,w) €[0,a]xR.

for all If

minb_ —u"u"—b_. ) a—v —u"—x"
V(x,w) <min 7, max > mmn

> th bmins 1- —ov' + —ky (x—x" Sbmax
ma{|1_o1 Lk, +(1-0)(1- )‘HJ LrLai-Fg] | " Pn Sz r Gl
M 2 8

and min(w-i—v*,a—x) =w+y"




Proof of Fact I: Indeed, the inequality ¥ (x,w)<min|7, mm(bnllax+v aACIVACH _bmin)
-0
max[' 7 |,L+|k2+(1—a)(1—g)—F|)

implies the

inequality:

|1—0'”w+v* — () +A=-g)(x—x")|+ (L +ky +(1-0)(1-g) —Fux—x*‘ < min(bmax V= (), f(x) =V —bmm).

The above inequality in conjunction with the fact that ‘ fx)- f(x*)—F(x—x*)‘ < L‘x—x*‘, for all x e[0,a] with

‘x - x*‘ <7, implies the following inequality:

(1=~ £+ 1)) £~ 16"~ Fla—x") (b +(1-0)1—g) - For—1)
<mi bmax+V* _f(x*)af(X*)_V* _bmin)

which directly gives:
BV — () A= w+v" = F(0)+ (1= @) x—x" )+ (0~ f )~y +(1 =)= @)W —x) <Dy +V — [

The above inequality is equivalent to the inequality b, <(1—c)w—ov* +of (x) —ky (x = x") < by -

* * *
a—-v —u —Xx

On the other hand, the inequality ¥ (x,w) < min| , ———
1+L+|1-F—g]

] implies the inequality:

w+v = f(xX)+(1-g)(x—x")

+(1+L+|1—F—g|1x—x*‘ﬁa—v*—x*—u*.

The above inequality in conjunction with the fact that ‘ f()-f(x)-F (x—x*)‘ < L‘x—x*‘, for all x€[0,a] with

‘x - x*‘ <n , implies the following inequality:

‘w+v* —f(x)+(1—g)(x—x*)‘+‘x—x*‘

+‘v* — SO S )+ F(x—x)+(1-F-g)(x—x")<a—v —x*
which directly gives:

.
|W|+‘x—x*‘ﬁa—v —-x".

The above inequality implies the inequality w+x <a— v, or equivalently, min(w+ vi,a- X)=w+v'. <

FACT 1I: Suppose that there exist constants >0, FeR, L>0 such that |_f'(x) —_f'(y)—F(x—y)| < L|x—y|, for
all x,y €[0,a] with ‘x—x*‘ <n, ‘y—x*‘ <n. Let geR with |g| <1 and M 21 be constants and define

V(x,w)::‘x—x*‘+M‘w+v*—f(x)+(1—g)(x—x*) for all (x,w) €[0,a]xR. If
V(x’w) <mi 7 min(bmax—u ,M* _bmin) i a—v* _u* _x* hen
1-of 1+L+[1-F-g]
ma 7,L+|k2+(1—o—)(1—g)—1ﬁ1



a S(l+M|2—o-—g—F|+ML1w+v*—f(x)+(1—g)(x—x*)‘
) (2.8)
+ (| + Mk, +(1—F—o—g)(1—g)|+ML|1—gux—x ‘

where V't = V(x—f(x)+min(w+v*,a—x),P(w—o-min(w+v*,a—x)+of(x)—k2(x—x*))).

Proof of Fact II: First notice that, by virtue of Fact I, we get
P(w+of(x)—0'min(w+ vi,a-x)—k, (x—x*)): (1-o)w—ov' +of (x)—k,(x—x") and min(w+v",a—x)=w+v".

Using the definition V (x, w) == ‘x - x*‘ +M ‘w +v = f(X)+(1-g)(x—x")| and the triangle inequality, we get:

Vv :‘x+v*—f(x)+w—x*‘

+M|2=0-gw (4 g =D () -v)+ (=g =ky)(r=x)+v" = f(x= f(x) +wev")

. ) 2.9)
S‘w+v* —f(x)+(1-g)x—x )‘+|g”x—x ‘
+M|2-0-g)z, +(1-g—ky ~2=0- @)1=z + [ +2) = [(x"+ g7 +2,)
for all (x,w)e[0,a]xR with V(x,w)<min 7, lmin(bmax—u e _bmin) ’1a+;v+|IuF—x | ,  Wwhere
ma{' ;/IO-I,L+|k2+(1—O')(1— g)—F1J £l

zlzx—x*, 22:w+v*—f(x)+(l—g)(x—x*). Since |g|£1, M=>1, it follows from definition

V(x,w) = ‘x—x*‘+M‘w—f(x)+(1—g)(x—x*)‘ :
|gz1 +22| S|g||zl|+|22| < |Zl|+M|ZZ| =V(x,w)<n and |Zl| < |Zl|+M|Zz| =V(x,w)<n.

Consequently, it follows from the fact that |/(x)— ()~ F(x—y)| < Ljx—=3{, for all x,ye[0,a] with ‘x - x*‘ <7,

‘y—x*‘ <n:
F(xX"+gz +2,)— f(x" +z)-F(g—1)z, —Fzz‘ <I|(g -1z, +2,|. (2.10)

Inequality (2.8) is a direct consequence of (2.9) and (2.10). <«

FACT III: Suppose that there exist constants n >0, F eR, L>0, such that |f(x) -f(»)-F(x —y)| < L|x—y| , for

all x,y€[0,a] with ‘x—x*‘ﬁﬂ, ‘y—x*‘Sn. Let geR with |g|<1 and M >1 be constants with

! <M < l—|g| and define
1-L-|2-c-g-F| b, +(1-F-o-g)(1-g)|+Lj1-g|
Vix,w):= ‘x—x* +M‘w—f(x)+(1—g)(x—x*) for all (x,w) €[0,a]xR. If
V(. w) < min 7, min(bmax—u*,u* —bmin) ’ a-v' —u"—x" then
1-of 1+ L+[1-F-g|
ma 7,L+|k2+(1—c;)(1—g)—ﬁ1
V<AV (x,w) 2.11)



where vt = V(x—f(x)+min(w+v*,a—x),P(w—O'min(w—i-v*,a—x)+of(x)—k2(x—x*))) and

A=max(M ™ 42— — g~ F+ L]+ Mk, + (1= F— o — )1 - g)| + ML|1 - g])<1.

Fact I11 is a direct consequence of Fact I1.

We are now ready to provide the proofs of Proposition 2.1 and Proposition 2.2.

1=[1—k,|

Proof of Proposition 2.2: Selecting F =1-k;, we notice that the assumption ‘ f ’(x*)—1+k1‘<kl—|lk|
2 Hi=l=hy

guarantees that |f(x)—f(y)—F(x—y)|£k 1_|l_k2| ||x—y|, for all x,ye[0,a] with ‘x—x*‘ﬁn, ‘y—x* <n,

2 +1=[l=k,
1=[1—k,|

=——=— and
by +1=|1=k, |

where 7>0 is the constant that satisfies max{|f’(x)—1+k1|:x €[0,a], x—x*‘ < 7]}

|f%m—4+kJ<k1‘“‘k4

2+1_—|1_kz|,f0rall xe[O,a] with ‘X—X ‘<77

ky +1=[1=ky|
k2

Let (x(0),w(0)eQ, = {(x, w) € [0,a]x ‘R:‘x e ‘w+ V= f()+ ey (x —x*)‘ < p} , where p s

defined by (2.7). Since f € Cl([O,a];‘.R) and since |f'(x) -1+ k1| < %, for all x €[0,a] with ‘x—x*‘ <7, there exists

Le|0 M such that L= max{|f’(x)—1+k |:xe[0 al ‘x—x*‘ﬁﬁ} where
o H1-]1=k) - reifhal ’

K +1=[1=ky|
ky

|f(x)—f(y) —F(x—y)| < L|x—y| , for all x,y €[0,a] with ‘x—x*‘ <7, ‘y—x*‘ <77 . Proposition 2.2 follows directly

7 = ‘x(O) X

‘W(O) +v" = f(x(0) + k (x(0) — x7)

<p. Consequently, we get

ley +1=[1= k|

from Fact IIl with M = and 1-g =k, . Indeed, by using induction and (2.11) we get:

2
V (x(t),w(1)) < A V' (x(0), w(0)), for all >0

where A= max(M’1 + L,|g| +ML|1 - g|)< 1. <

Proof of Proposition 2.1: The proof of Proposition 2.1 is the same with the proof of Proposition 2.2, with the only
gl +1-[1-4]
(-1~ g))+ [t ~ o

difference that we use Fact IIl with F = f'(x"), g=1—¢g and M =

3. Global Results

This section is devoted to the study of the (global) Input-to-State Stability (ISS) of system (1.4) with respect to the
input v € R, (uncontrollable inflow). More specifically, we study system (1.4) under the assumption:

x +vi+b . <a (3.1)

max

We also assume that the uncertain function f(d,x) satisfies the following assumption:



(H2) There exist constants r < *mi“ —*u i with 0<k +k, +r<2, 4,€[0]), y;,€0]1-4,) (i=12),
a—v —x" =D

Le[0), ge(0,1], M €(1,+x), such that the following inequalities hold:

Ck+LM (x_x*)+ b +u—(1+ /1)maxl(bmin,a —_— —x)
p+M

forall (d,x)e Dx[a—Vv" —b,

< f(d,x)+x —a<0

a] (3.2)

max >

(Fd.x)+x" —a)g-m )< (Lm ™ =k Jo—x" Jru” = by — (1= Dby
forall (d,x)e Dx[a—v" —b,,,a] 3.3)

— (g )= x) < Pl (- x))- £(dox) v < (4 —D(x-x")

for all (d,x)e Dx[x",a—v" —by ] (3.4)
(0-p)P" + =2+ ()= " (k)2 )| < 7 ).
for all (d,x) e Dx[x",a—v" —b,; ] (3.5)
(A =Dlx=x")< Plu” +r(x=x"))- f(d,x) 7" < =g+ Dlx—x"), ¥(d,x) € Dx[0,x"] (3.6)
‘(l—ﬂ)P(u* =) )+ B dox) - B —(ﬂ—kl)(x—x*)—u*‘ < }/zq‘x—x*‘ , Y(d,x) € Dx[0,x"] (3.7)

where =k +k,+r and P:R —> R is defined in (2.2).

Assumption (H2) is a set of sector-like conditions for the uncertain function f(d,x). Figure 2 shows the allowable
values for the uncertain function f(d,x), as determined by assumption (H2) for x* =10, u =1, v* =2.678794,
a=168, pf=q=1, r=-098, k=09, k, =108, L=099, M=1.025, 1,=0.6, y,=039, 4 =0.82,
71 =017, b, =0 and b, =3.1.

max

Assumption (H2) allows us to prove the following technical result.

Lemma 3.1: Let a>0, 0<b,;, <b,.. be constants and let f € CO(DX[O,a];iR) be a function satisfying (1.2) for
which assumptions (H1), (H2) and inequality (3.1) hold. Let V :[0,a]x[byin»Bmax ] = R, e the function defined by

max

V(y,w) = g(y—x*)+M‘w—P(u* +r(y—x")

(3.8)
where M >1 is the constant involved in assumption (H2) and g:R — R, is the function defined by g(x):=x for
x>0 and g(x)=—gx  for x<0. Then  the  following  inequality — holds  for  all
(d,V,y,W) € ng{-# X[Oia]x[bminﬂbmax] ;

V(y—f(d,y)—kmir{w—i—v,a—y),P(w+(k1 +k2)(f(d,y)—mir{w+v,a—y))—kz(y—x*)))

leV(y,w)ﬁ-]/‘v—v*‘ G-

where A= max(M1 +|1—,B|,L,mlal>2<(/1i+M7i)) and ;/::1+M|k1 +k2|+M|r|.
i=l,
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Fig. 2: The grey area shows the allowable values for the uncertain function f(d,x), as determined by assumption
(H2) for x" =10, u" =1, v =2.678794, a =168, f=q=1, r=—0.98, k=09, k, =1.08, L=0.99,
M=1.025,4,=0.6, y,=039, 1,=082, , =0.17, b, =0 and b,,, =3.1.

Proof: Let arbitrary (d,v, y,w) € DxR_, x[0,a]X[bin>Pimax ] and define:

vt =Wy—£(d, )+ misw+v,a—y) Pk +k)(f(dy)-mirw+v,a— )~k (y—x"))

7 =y f(d.y)+midwv” .a—y) Plws (ky +k)(£d.p) ~minho+v" a—y)- by (r—x)) G0
In what follows, we make extensive use of the inequalities:
|P(x)= P(y)| <|x— ], forall x,yeR (3.11)
|min(u,a - y)—min(w,a - y)| <|u— |, for all u,w,y e R (3.12)
lg(x)— g(»)|<|x—y], forall x,yeR. (3.13)

Definitions (3.8), (3.10) imply that:

Ve =Vy—f(d.y)+mirw+v,a—y) P+ +k)(f(d, y)-mirw+v,a— )~k (—2"))
:g(y—f(d,y)+mir{w+v,a—y)—x*)+ (3.14)
MIP(w—i-(kl +k2)(f(d,y)—mi1{w+v,a—y))—kz(y—x*))—P(u* +r(y—f(d,y)+mi1(w+v,a—y)—x*)]

I7=V(y—f(d,y) +mi1{w+v* ,a—y),P(w+(k1 +k2)(f(d,y)—mi1{w+ v ,a—y))—kz(y—x*)))
=g(y—f(d,y)+mir‘w+v* ,a—y)—x*)+
M‘P(th(kl +k2)(f(d,y) —mir‘w+v* ,a—y))—kz(y—x*))—P(u* +r(y—f(d,y)+mir<w+v* ,a—y)—x*)}

(3.15)
Using (3.12) and (3.13) we obtain:
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gly—f(d.y)+mirw+v,a—y)-x')
< g(y—f(d,y) +mir(w+v* ,a —y)—x*)+‘mir(w+v,a —y)—mir(w+v* ,a —y] (3.16)
< g(y—f(d,y) +mir(w+v* ,a —y)—x*)+‘v—v*‘.

Using (3.11), (3.12) and (3.13) we obtain:

A+ +)£(d.y) ~mithw+v,a =)~k (=)~ Hu' +r{y—£(d, )+ mithw+v,a—y) x|

<[ w4k, +h ) f(d.y)—mithw+v" a—y)) ke (v—x)) Al +y—f(d, )+ i+ ,a—y)-x")
Pl ) £, )~ v,a— )~y (=) =Pl +6 ) /() ~midow .0~ (=)
A +y—f(d, )+ mitwrv,a—y) ' )~ A +y—f(d, )+ mithw v a—y)-x )|

<[ A+ +h )\ f(d.y)—mithw+v" a—y)) ke (y—x)) Al +y— £, ) +miw+v',a—y)-x)

+(]k1 +h| +|;ﬂmi1(1w+v* ,a— y)—mil(1w+v,a— y)(

<[ A+ +h ) f(d.y)—mithw+v" a—y)) ke (y—x)) Al +y— £, )+ i+ ,a—y)-x)

+([k1 +h| +|ruv—v*‘.
(3.17)

Combining (3.14), (3.15), (3.16) and (3.17) we get:

Vo<V (e M+ ko + M| o= (3.18)

We next evaluate V. We distinguish three different cases.

CASE1: w+v' 2a—y.

Consider first the case w+v" > a—y, which necessarily implies y >a—v*—b__ . Since min(w+v",a-y)=a—-y,

we obtain from (3.15) (using (3.11)):

max *

V< g(a—f(d,y)—x*)+M‘w+(k1 +hy +1)(f(d.y)+y—a)-(ky +r)(y—x)—u|. (3.19)

Since r < min — and y>a—v"-b,,, , we get u +r(y-x)<b By virtue of (3.1) and the fact that

% % min *
a-v —x —by..

y>a—-v"—b,,. , we conclude that y > x  and consequently g(y —x*): ‘ y- x*‘ . The two previous observations in

conjunction with definitions (2.2), (3.8) imply that:
V(y,w)=y=x"+Mw-by, ). (3.20)
The right hand side inequality (3.2) directly implies that
gla-f@»-x')=a-r@.»-x". (3.21)

By virtue of (3.20) and (3.21), the inequality

g(a—f(d,y)—x*)+M‘w+(k1 +hy +7)(f(d,y)+y—a)—(hky + 1)y —x")—u"| <LV (y,w) (3.22)
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is equivalent to the two following inequalities:
we B1(d )+ y—-a)~(B-k)y-x)=u" < LM y—x" )+ Low=b) - M a - f(d.y) - )
and
we B/ (d )+ y—a)~(B—k)y-x")—u" 2 LM (y=x" )~ Low=b) + M a f(dy)-x").

a—v' -y)<w<h
following inequalities hold:

Since max(b we conclude that the two above inequalities hold, provided that the two

min » max

(1= Dby + B(F(d, )+ y—a)=u" < (Bt + LM fy=x" )= Loy, - M a= f(d.)=x")  (3.230)
and
1+ Lymax(byi.a—v' =y )+ B (d, )+ y—a)—u" > (B—ky— LM |y =x" )+ Lbyyy + M (a= f(d, y)~x") (3.23b)

The fact that inequalities (3.23) hold, is a direct consequence of inequalities (3.2) and (3.3). Thus inequality (3.22)
holds. Combining inequalities (3.19) and (3.22), we obtain:

V<LV(y,w). (3.24)
CASE2: w+v <a-y and y>x".

Inequality w+v* <a—y necessarily implies y<a-v"-b Since min(w+v*,a—y)=w+v", we obtain from

(3.15) (using (3.11)):

min *

7 <ely—fd.p) oy’ =2 J M- prws (o) -k —x) ], (3.29)
Inequality (3.13) in conjunction with (3.25) implies the following inequality:

Vég(y—x* —f(d,y)+v +P(u* +r(y—x*)))
+ MU= YPU +r(y =3+ F(doy) = = (B-k)(y—x") | (326)
+(1+M|1—,B|XW—P<M* +r(y—x*)1.

Using inequality (3.5) in conjunction with inequality (3.26), we obtain:

Y

Sg(y—x* —f(d,y)+v' +P(u* +r(y—x*)))+M}/1‘y—x*‘
+(1+]\4|1—ﬂ|]w—P(u* +r(y—x*)l. (3.27)

Inequality (3.4) in conjunction with the fact that y > x*, directly implies that
g(y—x* —f(d, )+ +P(u* +r(y—x*)))S ll‘y—x*‘ . (3.28)

Using inequalities (3.27), (3.28) in conjunction with the fact that y > x" (which implies that g(y—x*)z‘ y—x*‘) and
definition (3.8), we get:

7 <mad, + My, M7 +[1- Al (o). (3.29)
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CASE3: w+v'<a-y and y<x".

Since min(w+v*,a—y)=w+v", we obtain (3.25) from (3.15) (using (3.11)). Inequality (3.13) in conjunction with
(3.25) implies inequality (3.26). Using inequality (3.7) in conjunction with inequality (3.26), we obtain:

<

Sg(y—x* — f(d,y)+V +Plu’ +r(y—x*)))+M}/2q‘y—x*‘

. (3.30)
+(l +A/[|l—ﬂ|XW—P(u +r(y—x*)].
Inequality (3.6) in conjunction with the fact that y < x*, directly implies that
g(y—x* —fd,y)+v +Pu’ +r(y—x*)))ﬁ ﬂzg(y—x*). (3.31)

Using inequalities (3.30), (3.31) in conjunction with the fact that y < x* (which implies that g(y—x*)=q‘ y—x*‘) and

definition (3.8), we obtain:
7 <mad i, + My, M7 1= AW (). (3.32)

Combining inequalities (3.18), (3.24), (3.29) and (3.32), we obtain inequality (3.9) with
A= max(M_1 + |l - ﬂ| ,L, max (ﬂi + My, )) and y =1+ M|kl + k2| +M|r| . The proof is complete. <«
i=0,1,2

The following result provides sufficient conditions for the ISS property with respect to the external input ve R,

uniformly in d € D for the closed-loop system (1.4). Notice that the gain of the external input v € R, is linear and is

explicitly given. Moreover, for v=v" we have exponential convergence with rate which is explicitly estimated.

Theorem 3.2: Let a>0, 0<b,;, <b,.. be constants and let f e c’ (D x[0, a];?R) be a function satisfying (1.2) for
which assumptions (H1), (H2) and inequality (3.1) hold. Consider system (1.4) and suppose that

14 min| =2 |1- B <min =4 , L M <min 24 (3.33)
=12y, =12y, 1—|1—ﬂ| =12y,

where =k, +k,+r. Then the following estimate holds for the solution of (1.4) corresponding to arbitrary inputs
{d(i) e D}iZy and {v(i) e R, } -

max(q(x* —x(2)),x(t)— x*)S
‘ * - ,\,forall =1 (3.34)
A M(1+|r|+|k1|+|k2|)Qx(0)—x )+£i_r()??i10v(l)—v )

+HyO = +|w(0) -

where A= max(M_1 +|l—ﬂ|,L,mic1§(/1i+M7/i)) and 7/::1+M|k1 +k2|+M|r|.

Proof: Consider the solution of (1.4) corresponding to arbitrary inputs {d(i) € D}, and {v(i) e R, }7,. It follows
that the following equations hold for all #>1:

y@)=x(t-1) , w@)=u-1) (3.35)
y(t+)=y(t)— f(d(-1),y(t))+min(u( —1)+v(t =1),a — y(t)) (3.36)
w(t+1) = P(W(f) +(ky + ko )(f (d (2 = 1), y(2)) — min(w(t) + v(t = 1),a = y(1))) =k (y(1) = x*))~ (3.37)
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Using the results of Lemma 3.1, we conclude that the following inequality holds for #>1:

V(e Dt +D) S AV GO0+ 7 e =1) = (3.38)
with A := max(Ml +1- B[, L max(4; + My, )j and y =1+ M|k, +k,|+ M|r|. Inequalities (3.33) imply that
i=1,2
A= max(Ml +[1- B[, L, max(4; + My, )j <. (3.39)
i=1,2
Using induction and inequality (3.38), we conclude that the following inequality holds for all N >1:
N-1
PO+ +D) <2 V0, wm)+ 7Y AN i) -] (3.40)
i=0

Equations (3.35) in conjunction with definition (3.8) and inequality (3.40) imply the following estimate for all N >1:

glvv)—x")< 2" V(x(O),u(O))+ﬁi:(r)?%(_lq%i) —v*‘) . (3.41)

Inequality (3.34) is a direct consequence of estimate (3.41) and definition (3.8). The proof is complete. <

Remark 3.3: Theorem 3.2 guarantees the ISS property for system (1.4) with respect to the input v € R, uniformly in

d € D . However, since we are most interested in the component x of the solution of (1.4) we have provided only
estimate (3.34). Similar Sontag-like estimates hold for all components of the solution of (1.4).

Remark 3.4: Saturation of traffic systems is a very important phenomenon, which must be avoided. It is reasonable
to adopt the following definition for the saturation phenomenon of the traffic system (1.1) under the effect of the PI-
regulator (1.3):

“We say that the traffic network becomes saturated for inputs {d(i) € D}2,, {v(i)eR, }~, and
initial condition (x(0), (0), w(0)) €[0,a]* xR if for every N >1 there exists £ > N such that the

corresponding solution of (1.4) satisfies x(¢)=a.”

Estimate (3.34) guarantees that:

“for every pair of inputs {d(i)e D}, {v(i)eR,}~, with suva(i)—v*‘)< a and for every

20
initial condition (x(0), y(0), w(0)) [0,a]* xR, the traffic network cannot become saturated, provided
that the assumptions of Theorem 3.2 hold.”

Thus, Theorem 3.2 allows us to estimate the range of values for the uncontrollable inflow {v(i) e R, };,, for which

the traffic network cannot become saturated for any initial condition and for any uncertainty {d(i) € D},

Finally, we end this section by providing a set of necessary conditions for the input-to-state stabilizability by means
of the PI regulator.

Theorem 3.5: Let a>0, 0<b,,;, <b,.« be constants and let [ e C’ (Dx[O,a];iR) be a function satisfying (1.2).
Suppose that (3.1) holds and that there exist constants M >0, A€ (0,1) and y >0, such that inequality (3.34) holds
Jor the solution of (1.4) corresponding to arbitrary inputs {d(i) e D}, and {v(i)e R, }~,. Then k, >0 and the
following properties hold for every d € D :

“either the equation f(d,y)=min(h,, +Vv",a—y) has no solution y €[0,a]

max

or all solutions y €[0,a] of the equation f(d,y)=min(b, . +v*,a—y) arein (x ,a]” (3.42)

max

“all solutions y €[0,a] of the equation f(d,y)=min(h,,;, +v*,a—y) are in [O,x*) .” (3.43)
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Proof: As in the proof of Theorem 3.2, we consider the solution of (1.4) with v=v" corresponding to constant input
d(i)=d € D . It follows that the following equations hold for all #>1:

y@)=x@t-1) , w@®)=u(-1) (3.44)
y(t+1) = y(0) = f(d, y(1)) + min(w(t) +v*,a - y(1)) (3.45)

w(t+1) = P(W(t) +(ky +ky)(f (d, y(6)) = min(w(t) + V", a = (1)) =k, (1(1) —x*)) (3.46)

Suppose that the system of equations
fd.y)=min(w+v'.a-y): w=Plv—ky(y-x") (3.47)

admits a solution (y,w)=(y*,w") €[0,a]x[byi>bma ] Other than (x*,u"). Then the solution of (1.4) with v=v"*
corresponding to constant input d(i/)=d € D starting from any initial condition (x(0), (0),w(0)) €[0,a]* xR with
2(0) =y, w" =max(by, . min(w(0) + &, 3(0) = (k, + k) y" +kpx" by )] would satisfy x(r)=y" for all >0,
which contradicts (3.34) (which implies limx(¢) = x* ). However, notice that, for each fixed y(0) €[0,a], there exists
at least one w(0)e R for which w" =max(by, ,min(w(0)+ & y(0)= (K, +ky)y" +kpx" b, )). Therefore, the

system of equations (3.47) must have a unique solution, which necessarily is the equilibrium point
(y,w)= (x*au*) € [Ora]x[bminﬂbmax] :

Consequently, we cannot have a solution (y,w)€[0,a]x[b ] of the system of equations (3.47) for which

min > Dmax
w= b, . This means that either the equation f(d,y)=min(b,;, +v",a—y) has no solution y €[0,a] or that every
solution y €[0,a] of the equation f(d,y)=min(b,,;, +v",a—y) satisfies k,(y—x")<0. Clearly, the latter means
that k, =0 and that all solutions y €[0,a] of the equation f(d,y)=min(h,;, +v*,a—y) must be either in [O,x*)
or in (x*,a] . However, there exists at least one solution y e (O,x*) of the equation f(d,y)=min(b,, +v*,a—y):
the existence of such a solution follows from the inequalities f(d,x")=u"+v">b_. +v" and
f(d,0)=0<b,;, +v*, which imply that there exists y € (0,x*) for which f(d,y)=b,;, +v" (and since (3.1) holds,
we get v'+b . <a—x <a—y and consequently ye(0,x") is a solution of f(d,y)=min(b,;, +v*,a—y)).
Therefore, we conclude that all solutions y €[0,a] of the equation f(d,y)=min(b,,, +v",a—y) must be in [O,x*)
and that £k, >0.

Similarly, we cannot have a solution (y,w)€[0,a]X[byin,bmax] Of the system of equations (3.47) for which

w = b, - This means that either the equation f(d,y)=min(b,,, +v",a—y) has no solution y €[0,a] or that every

solution y €[0,a] of the equation f(d,y)=min(b,,,, +v",a—y) satisfies k,(y—x")>0. Since k, >0, the latter

means that all solutions y €[0,a] of the equation f(d,y)=min(b , +v*,a—y) mustbe in (x*,a] .

max

The proof is complete. <

Remark 3.6: The existence of a solution y* e (x*,a] of the equation f(d,y)=min(b,, +v*,a—y) for certain
d € D implies the existence of an equilibrium point for system (1.4), which cannot be removed by the control action

of the PI-regulator, no matter what the values of k;,k, are (namely the equilibrium point (y*,y",b,.;,) ). The reader
should notice that the existence of a solution y* € (x*,a] of the equation f(d,y)=min(b,;, +v",a—y) depends

only on the properties of the outflow function f(d,y) and the parameters v*,x",a,b Therefore, since the control

min *
practitioner cannot change the properties of the outflow function f(d,y) and the parameters v*,x",a,b . (they are
characteristic of the given traffic system), global stabilization (in the sense of [6[) cannot be achieved in this case, no

matter what the values of k,k, are.

min
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4. Illustrative Examples

All examples in this section assume that the outflow function f(d,x) is not uncertain (i.e., f(d,x)= f(x)) and is of
the form:

()= prexpl-ex’)

where p €(0,1], ¢,0 >0 are constants. This is the most usual form for the outflow function f(d,x) for traffic
systems.

Example 4.1: Consider system (1.4) with f(x)=xexp(-x/10), x =10, u =1, v' =2.678794, a=168,
k=09, k, =108, b, =0 and b,,, =3.1. The regions of attractions of the corresponding system (2.1) as

predicted by Propositions 2.1 and 2.2 are shown in Figure 3. The size of the resulting region of attraction may be not
sufficiently big for particular application; in this case, the estimated region of attraction may provide the necessary
basis for a numerical elaboration of the exact region of attraction, see [2,5,15] for details.

2,5 -
w
2 4
1,51

1 4

Fig. 3: The red line and the black line show the boundaries of the regions of attraction for system (2.1) with

=0 and

min

f(x):xexp(—%), x=10, u" =1, v =2.678794, a=16.8, k, =0.9, k, =1.08, b

bax =3.1, as predicted by Proposition 2.2 and Proposition 2.1, respectively.

On the other hand, we can use Theorem 3.2 and check whether we have global exponential stability. Indeed, the
allowable values for the outflow function f(x), as determined by assumption (H2) for x =10, u" =1,
V' =2.678794, a=168, B=q=1, r=-098, k; =09, k, =1.08, L=0.99, M =1.025, A, =0.6, y, =039,
4, =082, y,=0.17, b, =0 and b,,, =3.1 was shown in Figure 2. Figure 4 shows that in this case the graph of
f(x)= xexp(—x/ 10) lies completely in the area of the allowable values for the outflow function f(x). Therefore,
Theorem 3.2 guarantees global exponential stability of system (1.4) with f(x)= xexp(—x/lO), x =10, u" =1,
v=v"=2.678794, a=16.8, k;, =09, k, =1.08, b, =0 and b, =3.1.

min
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Fig. 4: The graph of f(x) = xexp(—x/ 10) is shown in red color.

In this example, the estimation of the region of attraction by means of Propositions 2.1 and 2.2 is very
conservative. The reason of the conservatism lies in the saturation effects of the input and the inflow: in this example
the saturation effects of the input and the inflow are strongly stabilizing. On the other hand, Propositions 2.1 and 2.2
are based on estimates for which no saturation effects of the input and the inflow are present and, consequently,
cannot take advantage of the nonlinear stabilizing nature of the saturation effects. <

Example 4.2: Consider system (1.4) with f(x) = xexp(-x2/10), x" =3, u" =0.219709, v* =1, a =20, b, =0

and b_,, =3 . For this system one cannot hope for global stabilization by means of the PI-regulator, since there exists

max
a solution y* €(3.5,3.6) of the equation f(y)=min(1,20—y) (recall Remark 3.6). However, we can apply the PI-
regulator for local stabilization. Indeed, the selection k; =k, =1 guarantees local exponential stabilization. The
regions of attractions of the corresponding system (2.1) as predicted by Propositions 2.1, 2.2 are shown in Figure 5.

2

X
0,27 3,5

0,4 1

0,6 -

Fig. 5: The red line and the black line show the boundaries of the regions of attraction for system (2.1) with
£(x)=xexpl-x2/10), x" =3, 4" =0219709, v =1, =20, ky =k, =1, by, =0

and b, =3 as predicted by Proposition 2.2 and Proposition 2.1, respectively.

max

In this case, the estimate of the region of attraction for system (2.1) provided by Proposition 2.2 is not
conservative: the existence of a solution y* € (3.5,3.6) of the equation f(y)=min(1,20—y) (and consequently the

existence of the equilibrium point (y*,0) for system (2.1)) implies that the constant p >0 involved in the estimate
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ky +1-|1-k

kel
ky

exceed the number 0.6, while the constant p >0 computed by (2.7) is 0.439418 . <

of the region of attraction Q , = {(x, w) e [O,a]xiﬁ:‘x—x* ‘w-i—v* - f(X)+k, (x—x*)‘ < p} cannot

5. Concluding Remarks

This work has provided necessary conditions and sufficient conditions for the (global) Input-to-State Stability
property of simple uncertain vehicular-traffic networks under the effect of a PI-regulator controller (Theorem 3.2 and
Theorem 3.5). We have also studied the local stability properties for vehicular-traffic networks under the effect of PI-
regulator control: the region of attraction of a locally exponentially stable equilibrium point was estimated by means
of Lyapunov functions (Proposition 2.1 and Proposition 2.2). The obtained results were illustrated by means of two
simple examples.

More remains to be done. One research direction is the application of PI-regulator control to traffic systems with
uncertain input delays. Another research direction is the application of nonlinear feedback stabilizers to traffic
systems. Both research directions will be the topic of future works.
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