TECHNICAL UNIVERSITY OF CRETE
School of Electrical and Computer Engineering

DIPLOMA THESIS

Scaling Text Processing Pipelines
using Apache Spark

by

Merieme Katsani

Thesis Committee:
Associate Professor Antonios Deligiannakis (Supervisor)
Professor Minos Garofalakis
Associate Professor Michail G. Lagoudakis

A thesis submitted in fulfillment of the requirements for the degree of
Diploma in Electrical and Computer Engineering.

December 2017

https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
http://www.ece.tuc.gr/index.php?id=4481

Abstract

Big data, which is derived from humans or machines, starting with social media and extending to
smartphones or sensors, in forms of texts, images or transactions, is a continuously evolving field.
Thus, the ongoing increase of data generated creates a need for knowledge extraction from it,
through data analysis. Several areas are engaged in data mining, and in particular the area of
machine learning which has been well established over the past years. Various techniques and
methods of machine learning are trying to solve big data problems and these two areas consist
now an integral part. This particular combination is the main subject of this study, which aims to
implement a large-scale text processing architecture. More specifically, this architecture focuses
on processing streaming texts derived from Reddit in real-time and the classification thereof as
sarcastic or non-sarcastic through a machine learning model. The architecture uses the latest
technologies in the field of information processing through distributed platforms such as Apache
Kafka and Spark as well as state-of-the-art but also simple and powerful ML algorithms, i.e
Random Forests, Naive Bayes and Logistic Regression. After comparing the methodology and
design of each individual piece forming the final layout, a selection of the most appropriate model
is made followed by the implementation of the framework. Success rates exported were quite close
to the relevant literature and sometimes higher, depending on each technique examined. Finally,
results are indexed in the distributed search engine Elasticsearch and are evaluated through the
Kibana plugin.

IleoiAnyn

To peydha dedouéva (big data), to omota TEOEQyovVTOL OO OVOQMOTOUS N UNYAVES, EEXLVOVY OTTO
To. péoa xowmvixig OwTimong xou emextelvovtor og “éEumva xivntd” (smartphones) 1)
aLoONTNES, 08 Lo REWWEVOY, ELROVOS 1| OUVAAAAYDV, Elvol Eva. oUVEXNDS eEEMOOOUEVO TTEDIO.
Onwg meoxmteL, 1 daexfg atEnon dedopévmv Tov TaQEYOVTOL dNWOVEYEL TNV OVAYRY YO
eEaymyn yvoong and outd, PEom Tng availvong tove. Auddpogol Touels aoyoholvToL pe v
eEO0QVEN yvwong (data mining), ®oL TWO CUYXEXQLUEVO O TOPENS TNG UNYAVIXNS udOnong (machine
learning), o omotog £yeL edoaumbel onuavtind Ta televtaia xeovia. [Towiheg Teyvinés xow péBodot
unyovirns udbnong meoomafolv vo emADOOUV TNTHUATA TOU TQEOYHOTEVOVTOL TO UeYdla
dedopéva xor mAEovV autol ou 000 TOUElS OUVIOTOUV €va avaTOOTOOTO XOUudTl. Avtdg O
OVYXEXQUUEVOS OUVOVAOUOS OTTOTEAEL TO HVQLO QVILXEIUEVO QVTNG TNG UEAETNG, M OTtoldL €)EL WG
0TOY0 TNV VAOTO(NON HLAGS OQYLTEXTOVIXNG eMeEeQyaoiog xewuévwv oe ueyahn xAipoxo. ITo
OUYKREXQLUEVO, CLUTH] 1] OLQYLTEXTOVIXY] ETUKEVIQWVETOL OTNV emeEeQyaoio. oMV dedouévav oe
LOQOT) KEWWEVOU O TTEAYUATIXO XQOVO, OL OTtoleg TEOEQYovTaL amd To Reddit xow tv Ta&vounon
QUTMV G OOQRAOTIXES 1] W OOQXOOTIXES HEOW €VOG MOVIEAOU pnyovixng udbnons. H
OLQYLTEXTOVLXY] YONOLUOTIOLEL TIG TILO VEES TEYVOLOYIES OTOV TOpED emeEeQyaoiag TANQOPoQLag ne
™ X010 RATAVEUNUEVOV OVOTNUATWY OTwS eival oL Thatdpopues Apache Kafka xow Spark aiid
%Ol TELEVTOLOG TEXVOAOYIOG, ®OOMS %Al AAOUS ®aL LOYVEOVS aAYOQLOUOUS unyavirig nadnong
onmwg Random Forests, Naive Bayes »au Logistic Regression. Apov moaypatomombetl ovyxrolon
™c uebodoloylog ®al Tov oYedloopol %®AOe EMUEQOVS HOUMATION TTOV ATaQTiCeL TO TEMKO
oyedLayQaupaL, YIVETAL EMLAOYT TOV TLO ROTAAANAOU HOVTEAOV nal axoAlovBel | vAomoinon tng
dopne. Ta mocootd emitvyiog TOV TEOEXVYPOV NTAV CLQXRETA ®OVTA 0T OYeTIXT) PLALoyQadia xon
peQrES GOQES VYMAOTEQA, avAAOYQ UE TNV exAO0TOTE TEYVWY Tov eEetdletan. Telxd, Tt
OTOTEAECUOTO. EVQETNQLOTTOLOUVTOL OTNV RATAVEUNUEVT pnyavi] avalintnong Elasticsearch »ou
aElorhoyovvtal péom tov Kibana plugin.

Contents

1. Introduction
1.1. Motivation
1.2. Related Work
1.3. Thesis Outline

2. Theoretical Background

2.1. Sarcasm

2.2. Big Data
2.2.1. Apache Kafka
2.2.2. Apache Spark
2.2.3. Elasticsearch

2.3. Machine Learning
2.3.1. Scikit-learn
2.3.2. Naive Bayes
2.3.3. Logistic Regression
2.3.4. Random Forests

3. System Design

3.1. Lambda Architecture

3.2. System Overview

3.3. Data Management
3.3.1. Data Source
3.3.2. Data Preprocessing
3.3.3. Streaming Simulation

3.4. Data Ingestion
3.4.1. Random Line Number Generator
3.4.2. Message Producer

3.5. Data Processing
3.5.1. Real-time Stream Processing
3.5.2. Classification

3.6. Data Visualization

10

11
11
11
12
14
16
17
18
19
19
21

22
22
23
25
25
26
26
28
28
28
29
29
30
32

4. Experimental Study

4.1. Evaluation of Classifiers
4.1.1. Naive Bayes Classifier
4.1.2. Logistic Regression Classifier
4.1.3. Random Forests Classifier

4.2. System Evaluation
4.2.1. Apache Kafka Metrics
4.2.2. Spark Streaming Metrics
4.2.3. Kibana Visualization

5. Conclusion
5.1. Future Work

Bibliography

34
34
34
36
37
39
39
41
42

44
44

46

Chapter 1

Introduction

It is becoming more and more widely perceived that we are living in the Information Age.
Enormous amounts of data are being continually generated and studied in numerous engineering
and science domains. Particularly, due to the huge, unprecedented dissemination of data through
social networks, various social phenomena arise over time, which can be explored and observed in
detail, and informative insights can be provided about it based on these observations. Therefore,
so-called “big data” becomes a hugely important aspect of reality and its management is
considered imperative.

Large-scale data collection and the need to obtain useful information from it necessitates
the development of new and effective techniques to store and mine it. Artificial Intelligence (AI)
and its leading edge Machine Learning (ML) comprise extremely useful data management tools
for retrieving valuable information laying under the “umbrella” of big data by applying high
developed algorithms and techniques.

This work presents a distributed and scalable architecture for streaming textual data
analysis using Natural Language Processing (NLP) strategies which aim at detecting sarcasm
through supervised ML types, including state-of-the-art classification models that improve
existing accuracy and performance.

1.1. Motivation

Sarcasm sentiment analysis is an issue of significant challenge, which started from the field of
human intelligence itself before it even reached the area of NLP [10]. It exhibited a great interest
over the past decade, consisting a combination of both fields of big data and AI. Although there
has been a relevant progress in the field of sarcasm detection in recent years, most researches
focus on studying Twitter [26] texts without exploiting other social media data such as Reddit [24]
comments, that can be proven quite reliable and productive for extracting information, as will be
subsequently demonstrated.

Additionally, big data dominates almost all areas of modern technology, with streaming
data taking the lead and increasing the demand for effective data handling techniques. The
perplexity in this case arises from the fact that amounts of streaming data are becoming illimitable
over time, as well as the various sources from which they are being generated, thus complicating
even more their processing. Over the past years, a variety of distributed technologies and
frameworks has been developed to process and store big data, which should be used appropriately
depending on the requirements and expectations of the systems to be realized. The need to create
such a system in conjunction with the aforementioned reasons constitute the most fundamental
motivation of this study.

1.2. Related Work

Sarcasm detection is integrated with the area of sentiment analysis. In spite of the fact that
sarcasm detection research is still in its infancy, numerous substantial studies have been

conducted concerning either the detection process itself or the creation of accordant data
samples. A time pass on the researches that have been accomplished precedently is presented in
the survey of Joshi et al. [7], as referred below.

Remarkable progress has been observed from the initial steps of sarcasm detection
starting from speech to text and other data forms exported from various sources including social
media, with Twitter being the most prevailing among them. Ptacek et al. [14] performed sarcasm
detection through supervised ML methods on Czech and English Twitter using the Maximum
Entropy (MaxEnt) and Support Vector Machine (SVM) classifiers. Buschmeier et al. [3] presented a
classification approach to irony detection in product reviews, by comparing state-of-the-art
classifiers comprehending Naive Bayes and Random Forest.

Considerable research has been carried out in the case where large-scale data streams
arise, making processing or storing them through efficient frameworks essential. Bharti et al. [1]
proposed a sarcasm detection structure, based on Hadoop. In a more general context, a plethora
of studies has been performed concerning the area of opinion mining (OM) and more specifically
in the subject of emotional analysis. Khuc et al. [11] described a distributed system for Twitter
sentiment analysis, using a MapReduce algorithm. Another method for sentiment analysis of
tweets was introduced in [12], which, unlike preceding works, is based on Apache Spark.

1.3. Thesis Outline

Chapter 2 describes every single component exploited to realize the pipeline. The theoretical
background and the software tools used are principally analyzed. Chapter 3 provides a
comprehensive and detailed synopsis of the approach suggested, focusing on how it was
implemented. Experimental stage is illustrated in Chapter 4, including study and results retrieved
from it. Finally, the conclusion is given in Chapter 5, along with suggestions for future work.

10

Chapter 2

Theoretical Background

This chapter introduces several basic ideas so that the reader can familiarize themselves with the
following work. More precisely, reference is made to the theoretical background in concepts
deemed necessary as well as to specific tools and components used for the implementation.

2.1. Sarcasm

Various versions of the meaning of the term stand, justified by its special nature. Sarcasm consists
“a way of speaking or writing that involves saying the opposite of what you really mean in order to
make an unkind joke or to show that you are annoyed”, according to LDOCE, a definition that
coincides with the use of the term these days. It is worth noting that sarcasm is often used to
perceive a particular position or to make a point in a more abstract context.

A fair amount of confusion that deserves to be noted has surrounded the issue of the
relationship between sarcasm and irony. Two similar definitions of irony are given by the same
dictionary as before, and one of them looks almost identical to the one given for sarcasm: “when
you use words that are the opposite of what you really mean, often in order to be amusing”.
Several cases indicate sarcasm as a subcategory -or a special case- of irony, while others, such as
the OED, consider the opposite resulting in divided views.

2.2. Big Data

The term probably dates back to 1999 [4], where the problem of quite large data sets that were
taxing the capacities of main memory, local or even remote disks, appeared. Despite the
references to the mid nineties, the term became widespread as recently as in 2011, study of
Gandomi & Haider [5] reveals, as an evolving concept that describes “large volumes of high
velocity, complex and variable data that require advanced techniques and technologies to enable
the capture, storage, distribution, management, and analysis of the information”.

A perception around big data that prevails on a large scale is the idea of the three defining
dimensions or the Three V’s: Volume, Variety, Velocity and as technology evolves, other
dimensions are also being mentioned. An interpretation of each of the dimensions follows below,
based on the survey mentioned earlier.

Volume refers to the magnitude of accumulated data. Although big data doesn't equate to
any specific volume of data, as it constantly changes, volume nowadays is often used to describe
petabytes (PB), exabytes (EB), zettabytes (ZB) or even yottabytes (YB), which is one septillion or
10** bytes of data captured over time and in the future, it is estimated that brontobyte (BB) will be
the most suitable data measurement unit.

Variety refers to the diversity in a data set. Different types concerning structured,
semi-structured and unstructured data are being generated and captured from various sources
including social media, Internet of Things (IoT), weblogs, transactions etc. Structured data refers
to any data that is represented according to a strictly defined schema, including data contained in
relational databases and spreadsheets and represents only 5 to 10% of all existing data.

11

Semi-structured data is information that doesn’t reside in a relational database. It may have some
structure but not necessarily the exact same for all data. XML, a language for data encoding on the
web, is a typical example of semi-structured data. Unstructured data is information that is not
organized according to a specified schema. Examples include photos, videos, audio files and it
represents 80 to 90% data that organizations process daily.

Velocity refers to the rate at which data is being produced, stored and analyzed. The
massive and continuous flow of data underscores the need to process it quickly with time
consisting a determining factor, thus real- or near real-time processing and analysis of data raise
an additional challenge. Accordingly, velocity consists the most significant component in the rapid
and immediate transfer of data to the recipient.

Apparently, management and storage of huge amounts of data instantaneously is not
feasible utilizing existing systems, therefore the development of new technologies and
architectures becomes essential. The now commonplace concept of distributed systems consists
the solution to this problem. A distributed system is described [15] as a cluster of autonomous and
collaborative computing machines, called nodes, referring to either the software or the hardware
side, constituting an integrated entity. A few state-of-the-art, open-source distributed frameworks
used to realize this work, are presented below.

2.2.1. Apache Kafka

Apache Kafka [17] is an open-source, distributed messaging system, developed by the Apache
Software Foundation for building real-time data streaming pipelines, written in Scala and Java.
Kafka was originally built by LinkedIn for log data analysis [9] and eventually ended up as an
open-source software in early 2011. Jay Kreps, who was working at LinkedIn at the time, named it
after the acclaimed novelist Franz Kafka. An overview of some basic Kafka components, depicted
in Figure 2.1, will be introduced below.

Kafka is by definition a distributed system, thus it is executed on a cluster of servers
consisting of one or multiple computer units, each of which is called a broker. Kafka takes
advantage of the Apache ZooKeeper synchronization system, for operational services such as
maintaining and coordinating the cluster. It is considered extremely useful as it guarantees
high-throughput combined with low-latency which essentially means hundreds of thousands of
reads and writes per second and a large volume of messages reaching the order of TBs, while
maintaining performance. In what follows below, basic terminology and ideas that need to be
analyzed to better understand Kafka are presented.

12

Producers

App App App

\ v // i

Kafk Stream
Connectors aa

Cluster Pr r
— ,\SCGSSO S
m / \ App
y

y

App App App

Consumers

Figure 2.1: Kafka’s four core APIs

Kafka constitutes a messaging system operating according to the publish-subscribe
model. More precisely, messages sent by Kafka, are organized in categories called topics. Each
topic represents a stream of records and each record consists of a key, a value and a timestamp.
Processes called producers send messages by publishing data to a topic and processes called
consumers read messages by pulling data from a topic they have subscribed to. In other words,
producers push data to brokers without waiting for acknowledgment and consumers read data
from brokers. A topic is accessible to various consumers that subscribe to the data written to it.

Topics are split into partitions, as shown in Figure 2.2. Each message within a partition
acquires a unique, sequential id number called the offset. For each topic, Kafka keeps a minimum
of one partition. Parallelism in Kafka is achieved through the distribution of partitions by splitting
the data over the servers in the cluster. It is also worth noting that each partition is replicated
across a configurable number of servers for fault tolerance.

Anatomy of a Topic

FPartition 1
i 0123456?89{]

” i
Fartiion 1o 11|23 4|5]6|7 (8|9} = Writes

I

I

Partition 111
2 01112

Old = MNew

Figure 2.2: Anatomy of a Topic

13

Among other things, Kafka also offers the ability for real-time stream processing through
the Streams API provided, an excellent tool for generating output data streams to topics and
consuming input streams from topics.

Moreover, later Kafka releases support interacting with external sources and systems such
as databases or key-value stores, through the Connector API, which establishes the connection
between these systems and Kafka topics by utilizing reusable producers or consumers.

2.2.2. Apache Spark

Apache Spark [18] is a high-performance, open-source cluster computing system, written in Scala.
It was developed in 2009, at the University of California, Berkeley's AMPLab for processing data
on a large scale. Spark was donated to the Apache Software Foundation in 2013, which has
maintained it since. It came to complement several previous frameworks related to distributed big
data processing such as MapReduce and was implemented based on already existing data-parallel
processing interfaces such as Dryad [16].

The purpose behind its creation was to cover gaps and difficulties encountered in specific
applications that required repeated data access, in particular as regards speed. Assuming iterative
ML algorithms as an initial point of reference and the query resolution process as another, the
development of Spark, a faster platform which would retain the advantageous properties of
existing systems, was considered imperative.

MapReduce model, the heart of the Apache Hadoop framework, notes some performance
issues related to the above mentioned categories, due to the continued disk accesses performed to
obtain or reload the data needed across multiple parallel operations that cause latency. Spark was
built to expand MapReduce model while preserving important properties such as scalability and
fault tolerance. Spark runs everywhere, including Hadoop, Mesos, standalone or in the cloud and
it can access data in Hadoop Distributed File System (HDFS), Cassandra and any Hadoop data
source.

For a better understanding of the architecture behind Spark, it is worth mentioning the
basic concepts that compose it. Resilient Distributed Dataset (RDD) consists a primary abstraction
which was created to achieve fast computing in a distributed environment. More specifically,
RDDs are collections of elements partitioned across cluster nodes that can perform parallel
operations and can be rebuilt if a partition is lost because of a node failure. They can be created in
four ways: from a file that is inserted in a shared file system, such as the HDFS: by parallelized
collections, resulting from dividing the data into pieces and distribute them across multiple
nodes- by applying deterministic operations called transformations: by interfering with the
persistence of an existing RDD by changing its time duration. They are immutable, that is they
don’t change once created and they are read-only as they can only be transformed.

RDDs perform operations that are divided into two different categories: transformations
and actions. They both contain a set of functions that differ according to how they are executed.
More precisely, transactions are those commands that, as their name implies, transform an
existing RDD into a new RDD, while actions are the functions that return the final value to the
driver program after they have performed all preceding transformations. Behind transformations
lies the idea of lazy evaluation, a determining factor that enables Spark to run efficiently.
According to this idea, the execution of each individual transformation is happening only when an
action is called, thus no separate RDD created through transformations, is returned to the driver
program.

14

As a matter of fact, in order to understand how Spark managed to overcome the speed of
Hadoop, the concept of in-memory processing, as depicted in Figure 2.3, should be introduced.
Spark runs applications up to 100x faster in memory and 10x faster on disk than Hadoop because
Spark caches data in Random Access Memory (RAM) instead of slow disk drives. To wit, Spark
processes the data by storing the intermediate results in memory, unlike Hadoop that stores them
in the disk, given that disk Input/Output (I/O) operations, i.e. moving data from where it is stored
to where it needs to be computed, cause the largest time cost in any computing system.

An application in Spark is expressed in the form of an advanced Directed Acyclic Graph
(DAG), another optimization factor, which exists to ensure the optimal manner of its performance.
DAG is a collection of nodes connected by edges with definite direction and no circular
dependency, where nodes represent the RDDs and the edges represent the transformation
operation to be performed. Since Spark operating key idea is lazy evaluation, nothing actually
happens unless an action operation is applied, as previously noted. When an action operation is
executed, which is the last step before the DAG is formed, Spark goes back to the initial steps that
were chained together from different RDDs connected to each other and, based on that, it figures
out an execution plan or, in other words, it constructs the DAG that will lead to the desired results
optimally.

one-time
__ processin

Figure 2.3: In-memory data-sharing

Below is cited a brief introduction regarding the elements of the Spark ecosystem, as
illustrated in Figure 2.4. Apache Spark Core API is the base of the execution engine for the
development of Spark applications, on top of which is built all other functionality, and provides
Java, Scala, Python and R APIs. A description of libraries running on top of Spark follows
subsequently.

It is a general-use platform, therefore it offers many potentialities, designed to fill gaps in
existing shortcomings. For example, Hadoop offers batch processing rather than real-time
processing and Storm offers exactly the opposite, focusing on stream processing or complex event
processing. Spark covers the gaps of both systems, offering both batch and real-time stream
processing. Spark Streaming is used to process data streams in real-time, which is actually based
on micro-batch processing. It readily integrates with a wide variety of popular data sources,
including HDFS, Flume, Kafka, Twitter and consists the tool that was mainly utilized in this work.

15

MLlib

learning)

Apache Spark

Figure 2.4: Apache Spark ecosystem

As discussed in a previous paragraph, interactive data analysis was a problem that has
been attempted to be resolved by the creation of Spark. Users were used to expressing a query,
waiting for a response to it, then specifying the query based on that response and continuing until
a satisfactory result is reached, i.e. an iterative procedure describing the interactive query
analysis for data exploration. One of the newest pieces added to the puzzle of Spark libraries is the
Spark SQL module, designed to provide an efficient solution to the previous problem of
conventional data warehousing Relational Database Management Systems (RDBMS) users.

The field of ML, which has dominated the modern era, was another significant reason that
led to the creation of Spark. In an attempt to improve the speed in ML models which are mainly
composed of iterative algorithms and overcome the I/0O bottlenecks of MapReduce discussed
earlier, a scalable, ML library called MLlib was designed. MLlib guarantees faster computing in a
fault-tolerant manner by exploiting in-memory data processing. It contains high quality learning
algorithms and utilities and can be used in complete workflows.

Another key element included in the ecosystem of Spark is the GraphX computation
engine. It provides an API to improve performance in iterative algorithms included in graph and
graph-parallel computation problems over traditional MapReduce programs, as mentioned above.
Among other things, GraphX is a growing library of the fastest graph algorithms which simplify
graph analytics tasks, while retaining Spark's flexibility, fault tolerance, and ease of use.

2.2.3. Elasticsearch

Elasticsearch [19] is an open-source distributed search-engine built on top of Apache Lucene,
firstly released in 2010. A platform developed by the Elastic company, alongside Logstash and
Kibana, which are all designed to operate as an integrated package. It is used for storing,
searching and analyzing large volumes of data in near real-time and is mainly preferred for
applications that require complex queries.

Elasticsearch provides the ability to run queries on various kinds of data really fast as it is
based on indexing. More specifically, the idea behind the platform is to store data in the form of
documents, which can be expressed in JavaScript Object Notation (JSON) format. Each document
is inserted into an index, an abstraction which can be associated with the common databases of

16

RDBMS, therefore an index consists of a set of documents that denote marked similarity based on
a characteristic, e.g. an index for a product catalog.

Since it is a distributed system, it enables the ability of partitioning indexes into smaller
pieces called shards in a computing cluster to allow large-data scaling and improve performance
through parallel processing. In a realistic system, there is a great chance that a node will fail,
which is why the concept of replicas of shards or replicas for short, exist, which are created on a
different node than the primary shard to be available for any eventuality. By default, each index in
Elasticsearch is allocated five primary shards and one replica, a number assigned at the time an
index is created.

Among other things, Elasticsearch provides a compelling RESTful API for interacting with
the cluster but also supports many programming languages such as Java, Python etc.
Fundamental features provided by the API include managing and controlling statistics and
information about the nodes and their progress or performing Create, Read, Update and Delete
(CRUD) operations and exceptional tasks and queries against indexes.

The analysis and representation of huge amounts of useful information, which are stored
in Elasticsearch indexes, through attractive and understandable dashboards are supported by
Kibana, a plug-in for interactive data visualization. It is an open-source, browser-based data
exploration engine for searching, analyzing, and presenting data through easy-to-use charts,
tables, and maps. It offers services such as real-time analytics to explore massive amounts of data
really fast and gain intelligence about them.

2.3. Machine Learning

Many definitions have been given to understand the concept of ML, an integral part of modern
computer science, with that of A. Samuels in 1959 as the original but also widely accepted: “Field
of study that gives computers the ability to learn without being explicitly programmed”. It is an
extremely popular and growing field of Al and emerged as a consequence of the big data
development as well as the continuous technological evolution that followed the rising of the
internet.

The massive flow of data produced in recent years and the need to extract intelligence
from it, has urged the development of information exploitation areas such as ML. The idea behind
ML is associated with the masterful functionality of the human brain regarding the learning
process and how it can be imparted to a computing system. Nevertheless, human brain presents
bottlenecks, e.g. the complex task of decrypting it or how time-consuming the human learning
process is by nature, problems wherein ML should provide solutions.

Among other fields, ML is closely connected with NLP, as it is a process of learning and
understanding concepts arising from natural-language perspective utilizing speech and writing
data, tools used for human communication. NLP is an area that deals with the human-computer
interaction, focusing on the computer learning process through natural language data residing on
the internet, to gain insights from it. ML consists of an area that deals with techniques and
methods applied to many NLP related problems, functioning as a complementary element.

17

There are many algorithms developed for modeling problems which can be categorized
depending on input data, as well as the purpose they serve. In general, ML algorithms include
input or training data according to which the model is trained so that it can be able to learn
patterns and subsequently make predictions about future or testing data. Most well-known
categories include supervised, unsupervised, semi-supervised and reinforcement learning.

Supervised is a learning type where the training data has known labels, according to
which functions are produced and afterwards used for testing new data e.g. classification and
regression problems including algorithms as Naive Bayes, Decision Trees, Support Vector
Machines (SVM) etc. Unsupervised methods include unlabeled input data with no expected
outcome, e.g. clustering problems including k-means algorithm. Semi-supervised learning is a
mixture of the two previous categories, where input data consists of both labeled and unlabeled
elements and reinforcement is the learning where the model is called to achieve the most efficient
behavior for it, exploiting signals coming from its environment.

2.3.1. Scikit-learn

Scikit-learn [25] is an open-source python library built on top of NumPy, SciPy and matplotlib
ecosystems, used in medium-scale ML problems. The project was initially started by Cournapeau
in 2007 and made its first public release in 2010 by Pedregosa et al. [13]. It is in its largest part
written in python and is widespread for its ease of use, performance and rich documentation. It
provides a huge range of state-of-the-art algorithms for supervised and unsupervised learning
including the categories of classification, regression, clustering etc. This diploma focuses on the
supervised ML algorithms provided through scikit-learn.

Each algorithm includes an estimator, which consists the main component of it and each
processing method is implemented around him. Since scikit-learn is a package that deals with
supervised and unsupervised learning, what is expected is a model which goal is, given input data
called a training set, to produce a function that has been trained accordingly, so that it becomes a
“predictor” for future data called a testing set. Data and model parameters are presented as numpy
arrays.

Estimators realize the above process through the “fit” method and are able to predict the
final result through the “predict” method, when learning is supervised. Furthermore, an estimator
can provide methods that measure the success rate of the prediction such as the “score” method,
which calculates the accuracy. Some other significant features provided by scikit-learn is the
efficient parametres setting strategy called hyperparameters turning with the “GridSearchCV”
method where the CV stands for “cross-validation iterator”. Parametres are the arguments passed
to the constructor of an estimator and can be optimized depending on the requirements of the
problem.

Cross-validation method provides the ability to divide training data into train set to train
the model and test set to evaluate its performance, which gives a solution to overfitting problems,
occuring when the training set is tested on a model already trained by it. Another capability of
maximal importance provided by scikit-learn is the combination of all of the above in an element
called “Pipeline” and its purpose is to minimize steps and cross-validate them together, while
continuing to behave as an estimator.

18

It should be noted that in ML problems only numeric characters and vectors are used, not
texts. A technique for converting text to numeric characters used in this task is called
Bag-of-Words or BoW. In its simplest version, this technique measures words in documents and
creates a vector which contains numbers that correspond to the frequency with which each word
appears in the document. BoW is implemented by the TfidfVectorizer element.

Finally, once the process of creating an estimator has been completed, it is desirable to be
able to store the model in a way that is reusable but also for its integration into external systems.
Such a way is python’s built-in pickle module, used for serializing and deserializing an object.
During serialization, the structure of the object is converted into a stream of bytes while at
deserialize it returns to its original form.

2.3.2. Naive Bayes

Naive Bayes is one of the most popular but rather simple algorithms based on the Bayesian
theorem with the “naive” assumption that features are independent of each other. It is a fairly easy
and useful method to text classification problems, as it is characterized by high speed even on
massive data amounts, a key reason why it was chosen. This classifier relies on the Bow model
and involves features probabilities. Bayes’ theorem is described by the relationship presented in
2.1, given a feature vector X = {X,, ... , X, } and a class variable y:

Pxp, X, [9) P(Y)
Py|X) = POy |xy x,) = lp(xl,...,x) 2.1)

where:

« Conditional probability P(y|X) is called the “posterior probability” and describes the
probability of an observation belonging to a particular class, given the testing data.

o Conditional probability P(x,..., x,|y)is called the “likelihood” and describes the
frequency of an observation appearing in the training set, given the particular class label,
and, in this case, P(x;|y, X;,..., x,) = P(x;]|).

e Probability P(y)is called the “prior probability” of the label class and describes the
occurrence of a particular label class within the training set.

e Probability P(X) = P(xy,..., x,) is called the “prior probability” and describes the

occurrence of a particular observation within the training set.

Therefore, by applying the Maximum A Posteriori (MAP) estimation and dropping the
denominator, the relationship 2.1 ends up with a solution of the form:

y =argmax, P(y) [T P(x;|y) (2.2)
i=1

19

2.3.3. Logistic Regression

Logistic regression is the oldest and most widespread approach in binary classification problems.
It was developed years ago to solve statistical problems and consists a rather straight-forward
method used in various fields other than ML. This method was chosen to be applied to another ML
model as it was considered suitable for the particular data set used in this work according to [8].
Furthermore it is a fast method that doesn’t require feature scaling.

Assuming y as the label class, y € {0, 1} where 0 is the negative class, i.e. non-sarcastic
text and 1 is the positive, i.e. sarcastic text. What is achieved by this method is the prediction of
the output value by modeling it with a logistic function, which accepts the training data as
arguments.

1

_GT (2.3)

h =
e(x) l+eV <

The standard logistic function is the sigmoid function and that will be the learning
algorithm or otherwise the hypothetical function /g(x) used to model the output, as described in

2.3 and depicted in Figure 2.5, where 0 corresponds to the parameters of the algorithm.

09

0.8

0.7

0.6 -

05

04

03

02

01

Figure 2.5: Sigmoid function

If the conditional probabilities of each class are assumed as:

pOy=1|x:;0) = hy(x) @24
py=0]x;0) = 1 —hy(x) 25

or

20

Py [x:0) = (hg))(1—hg(x)'™ (26)

Assuming that m training examples were generated independently, then the likelihood of

the parameters would be equal to the relationship described in 2.7. For convenience, the
maximization of the log likelihood is then calculated to estimate the regression parameters.

L®) =TT (o) (1 — hy®)'™" 2.1
i=1

2.3.4. Random Forests

Random decision forests or random forests consist a state-of-the-art and powerful ML model for
both classification and regression tasks, firstly introduced by Ho [6] in 1995. Plenty new
algorithms have been built since then, with the study of Breiman [2] in 2001, consisting one of the
most important contributions. Some of its advantages are the speed of execution even on large
amounts of data and the avoidance of overfitting the model thus are widely preferred in various
applications, consisting a great competitor of other state-of-the-art models such as Support Vector
Machines (SVM) etc.

A formal definition [21] given is: “A random forest is a classifier consisting of a collection
of tree-structured classifiers { h(x, ©,), k=1, ..} where the {©,} are independent identically
distributed random vectors and each tree casts a unit vote for the most popular class at input x.”
Bagging is a basic concept behind random forests, which is essentially the combination of many
classifiers and, in this case, the combination of many decision trees to provide therethrough a final
prediction according to the average majority voting. Parameters {©,} include the structure of the
tree by determining which subset of the full dataset is chosen, which variables are split in each
node, etc. and are chosen randomly. Therefore, the form of each classifier for each decision tree
will be described by the relationship:

h(x)=hx|0©,) (2.8

The empirical margin function describes the extent to which the average of the votes of the
first correct class elected exceeds the average of the votes for any other class, a metric indicating
whether the algorithm is reliable and is given by:

m,y) =Py = y) — maxiy, P () = j) (2.9

where P(A) = proportion of classifiers 4, (1 <k < K) for which event A occurs.

21

Chapter 3

System Design

This chapter analyzes extensively the architecture according to which the subject of this work was
realized and each separate stage of it. Initially, a brief introduction to a well-known architecture
that was a source of inspiration is presented, followed by the assembly of the elements discussed
earlier in an integrated pipeline. It is worth noting that all the processes that follow, as well as the
whole architecture, are designed to be applied to large amounts of data, having as reference the
65-GB compressed bz2 testing file, but for reasons of non-access to a cluster of servers, the whole
system is applied to smaller files indicatively.

3.1. Lambda Architecture

Lambda Architecture (LA) consists of a scalable and fault-tolerant structure that combines the
capabilities of batch and real-time processing, introduced by Nathan Marz [22] in 2011. It was
designed to provide answers to complex questions involving large amounts of data efficiently.

The system consists of five different elements, as illustrated in Figure 3.1. Input data is
shared between both the batch and the speed layer for processing at the beginning. The batch
layer is used for storing the entire dataset in a large-scale file system and precomputing queries,
which is a straightforward procedure, so they are already answered when needed. Then, the
results derived from it can be easily stored in a database, a component of the batch serving layer.

At the same time, the speed layer is used for processing the input data in parallel by
utilizing a real-time data processing system that provides low latency and making it a much
simpler procedure as it involves a small percentage of data instead of the entire dataset.
Respectively, data coming out of the speed layer can be incremented in another database or a
real-time serving layer and the last step is to merge the results obtained from each layer to answer
any incoming query.

22

batch layer serving layer

balch view

) o & ,} - - - -
master dataset o -
balch view |---=--==f----"-

& F h o= r

néw data

il s —_

i el = P -
Treal-llmn VIW \\renl-mnc ViaW ’-

Figure 3.1: Lambda Architecture

LA is a ubiquitous solution to a multitude of approaches, although many concerns have
been also expressed due to the complexity it presents. As perceived, it is an approach that
combines two different distributed systems which in itself is relatively complex.

According to the original idea, the proposed batch processing framework was Apache
Hadoop and the corresponding real-time stream processing was Apache Storm, which both are
tools that are not particularly easy to use by themselves, let alone combining these two and
synchronizing them to produce a common result.

This hesitation is the main leading to the selection of Apache Spark framework, which is
an intermediate solution combining the properties of the two above systems, as previously
discussed. Therefore, instead of working on two different and complex platforms, only one could
simply be used. Nevertheless, the subject of this thesis is real-time data processing, thus it focuses
on the speed layer and its corresponding serving layer.

3.2. System Overview

The main objective of this study is the implementation of a distributed system, which receives and
processes large amounts of real-time data streams, aiming at the detection of the sarcasm emotion
by leveraging state-of-the-art supervised ML techniques. The difficulty of this problem lies in the
enormous amounts of data to be used, in real time, or near-real time, and the implementation of
an appropriate ML classifier, which will operate effectively in an integrated framework. The
pipeline depicted in Figure 3.2, shows the approach according to which such a system was
created.

23

Input data e Re::—etm r:‘.'ata J\z
G reddit—> 90 kafka ===y ook +

Streaming

.t’eam

l Store

Visualize
LI Q:D

elasticsearch kibana

Figure 3.2: System architecture

The diagram presents the general idea according to which the final system was created, consisting
all of the tools used as well as the intermediate connection, shown in a more abstract context. As a
matter of fact, six different symbols are distinguished, namely Reddit, Apache Kafka, Spark
Streaming, Scikit-learn, Elasticsearch and Kibana as well as the interaction between them. Each
interaction bears a title relating to the corresponding operation performed. A more detailed
schema is shown in Figure 3.3.

As shown, the system is divided into four stages to better organize each component, which
are based on different operations performed on data: management, which relates to the data
source origin description, the pre-processing procedure, the storage and the representation in a
data structure which is preparing the data for the next stage of ingestion, which concerns the
connection with the previous stage and the data streaming to the next stage of processing and
visualization, i.e. the final data processing phase, the application of the ML models as well as the
data visualization on a dashboard. Each of the stages will be described in detail below.

Furthermore, the system is comprised of the following components: a dataset, which
concerns the data derived from a data source, an inverted indexer storage structure which is
actually a dictionary consisting of keys and values, a random value generator, an Apache Kafka
producer of messages which acts as an input data stream source, a Spark Streaming processing
system which includes a scikit-learn supervised ML model, an Elasticsearch search engine which
is an indexing storage system and a Kibana dashboard for visualization.

24

Third stage:
! Data Processing

' :> Inverted :D "'\ Random ig
: Indexer | Generator Spor

! | Streaming |
" ! O learn |,
Reddit g Iy |
Dataset . oy . !
e s s s s s s s s s s s s s s e : ! Real-time !
First stage: i : . Processing .
Data : |:> i 3 :
Management ! 0 !

. Kafka o b1 !

. _Producer ! - |:> !

Second stage: : :

Data Ingestion ! v i

: Elasticsearch Kibana :

. Search Engine Visualization :

Fourth stage:
Data
Visualization

Figure 3.3: Detailed system architecture

3.3. Data Management

The primary process of implementing the system is to review the input data and manipulate it
accordingly.

3.3.1. Data Source

The main source of the data is the well-known website Reddit, founded in 2005. Reddit is used for
discussions on a variety of issues related to news and areas of interest originating from social
media and employs a large proportion of users. It is essentially a site formed by users as it
consists of user posts or comments, according to which categories called “subreddits” arise,
depending on different topics that comments deal with. Posts can have any form, from texts to
photos and videos. Each user has the opportunity to comment on other posts and vote for or
against another user. The final score determines which posts will appear higher on the subreddit
and eventually on the front page.

Although the original source of the input data is Reddit, as mentioned earlier, the final
dataset which was used in this work is the result of the study of Khodak et al. [8]. Self-Annotated
Reddit Corpus (SARC) was created for the implementation of tasks related to the NLP area and
more specifically to applications focusing on the detection of sarcasm. It mostly focused on the
creation of the corpus and not on the development of sarcasm detection systems, although
methods such as Bag-of-Words and Bag-of-Bigrams were used for training benchmarks
indicatively.

25

The dataset consists of comments from January 2009-April 2017, which have been
processed and filtered appropriately in such a way that they do not contain noise. For each
comment there is a label containing the values 0 and 1, depending on whether or not the comment
is sarcastic, which is determined by the author himself and other context information, which will
be mentioned below.

Reddit was highlighted by the research as a valuable source of data, even more remarkable
than others such as Twitter which is used extensively, as it contains higher quality material. Reddit
comments have no restrictions on their size, contain more “/s” hashtags, according to which users
state that their text contains a sarcastic meaning and are written in a much more comprehensible
and clear way than tweets, making SARC more reliable and realistic than other datasets.

The research came up with a 65-GB file containing raw data of various subreddits which is
used as a testing set in this work. Furthermore, a 4-MB file containing training balanced data is
used as a training set and no other files of data were used. Each entry has the same format in both
files, i.e. label, comment, author, subreddit, score, ups, downs, date, created_utc and
parent_comment. Finally, some ideas and methods suggested in the research for classifying the
balanced data of SARC were considered during implementation.

3.3.2. Data Preprocessing

Regarding the file containing the raw data which was utilized as a testing set, a little
preprocessing was made to facilitate subsequent processes. It is worth emphasizing that this is a
great quality corpus and the data is presented in distinguishable form. However, since it is a large
enough file that goes beyond the capabilities of a single computer machine, it was considered
necessary to reduce it by holding 10 million of the 533 million rows included in the original
dataset. A rather trivial process using scikit-learn in conjunction with the libraries contained in it.
Also, the “label” column, containing values 0 and 1 for non-sarcastic and sarcastic comment
respectively, was removed. One last preprocessing procedure that was performed was the removal
of unnecessary “\n”, “\r”, “\t” (newline and tab) separators for data cleansing reasons.

3.3.3. Streaming Simulation

As mentioned above, data is stored in a 3.54-GB csv file which contains 10 million records. Since
this thesis deals with the processing of streaming data in real-time its simulation into streams is
considered necessary. Although Apache Spark is a general-purpose platform, it was designed for
data processing and not for storage, thus Kafka platform was utilized, as a useful integration
package between Spark Streaming and Kafka has been created for this purpose.

The first step for simulating data in streams, random access must be ensured, i.e. the
ability to access any individual element that exists in a dataset quickly and efficiently, regardless
of its size. Apparently, avoiding sequential search is a one-way solution in these cases and
utilizing random access results in much better performance and higher speed. To fulfill this
requirement a key data structure named “inverted indexer” was created.

An inverted indexer is a data structure that, given a search term, provides the ability to
access all documents that contain that term. It consists the most widely used information retrieval

26

method by well-known search engines for fast full-text searching. It is essentially a dictionary
based on records of the key-value form and its design depends on the specific hardware
characteristics of the operating computer system.

The implementation of the indexer designed is shown in Figure 3.4, although it is worth
noting that the indexer symbol has been zoomed in a bit in that figure for emulation purposes. The
difficulty of creating such a structure concerns the size of the dataset file. In this case, the data
volume is quite small compared to the original, so the process is relatively simple. However, the
algorithm for creating the indexer was designed to work on larger files too, as a function of the
system requirements for fast memory access.

Access to data is faster when it's in memory, rather than disk, which is a determining
factor to be taken into account when implementing the inverted index structure. As discussed
earlier, this architecture is intended for big data and specifically for the original 65-GB file, the
size of which exceeds the capabilities of the computer in which the implementation takes place.
Therefore, using the python language capabilities, an algorithm emerged which, instead of
reading an entire file, reads small blocks of it and creates the corresponding index.

{ Row number: (starting line bytes offset, line width) }

PAN

{

0: (0, 49)
1: (50, 512)
— 2: (563, 190)

Criginal File }

Inverted Indexer
3.54 GB — 192.3 MB

Figure 3.4: Inverted indexer

According to the algorithm, the file is opened, thus made available for reading.
Nevertheless, it is not efficient to read the entire file into memory, so only a small block size of
1024 bytes is read at each iteration until the last bytes of the whole file are read. Each iteration
occurs for each new line found in the block, for which the bytes offset and width are calculated
and stored in the indexer structure. There is no other structure in the implementation than that of
the inverted indexer, as the use of fixed-length arrays or lists would be no memory efficient.

Therefore, a much smaller representation of the original file occurred, by using three
integers instead of alphanumeric characters and which leads to fast random access as needed. The
last step of this phase is the serialization of the indexer using the python pickle module, so that it
can be transferred and utilized to the next step.

27

3.4. Data Ingestion

This stage is the interface between data pre-processing and real-time processing phase. As a
matter of fact, the process of randomly generating data from Apache Kafka to Spark Streaming
occurs.

3.4.1. Random Line Number Generator

A random number generator was created to implement random data access and generation. The
serialized object of the index is initially loaded and then de-serialized. A random number
generator with a range of zero to the size of the inverted indexer lines is then created. Random
search of each line is achieved through the “seek” function, in which the starting line byte offset
or position of the random line is given as an argument and through the “read” function, in which
the line width of the same random line is given as an argument. In this way, the retrieval of
information contained in each line is realized.

3.4.2. Message Producer

Since the data generation has been implemented, what is left is the phase of the data streams to be
sent to the processing stage via the Apache Kafka messaging system. Messages are sent using the
Kafka Producer API asynchronously through the “send” method, which means that when called, it
adds the message to a buffer thus creating a batch of records.

To activate Kafka server, the ZooKeeper server must initially be called. Then a topic is
defined and the number of messages to be sent is set. Kafka is characterized by high performance,
i.e. low latency and high throughput even when running on a standalone mode, although its
capabilities will be better understood in a computer cluster context. What happens when Kafka
produces messages is they are partitioned across Kafka brokers or nodes thus parallelism is
achieved. It is worth noting that the parallelism equals the number of partitioning occurring on a
topic, which in the case of this study equals one.

Another feature of parallelism that could be used in this work is that of multi-producer
calling, i.e. many producers can run in parallel on different nodes of a computer cluster and
publish messages to one or more topics to achieve higher throughput, as depicted in Figure 3.5.
Streams of messages sent from Kafka are in the key-value format where the value field is assigned
with the random line content previously generated while nothing is assigned to the key field as no
specific order of messages across partitions of the topic is required.

28

< <

[l L] L] [[l [
[l L]]] [l [}
[l L]]] [l [}
[l L] L] [[l [
[l L]]] [l [}
: X D X : :
1 1 —_— 1 I — [
: ; Publish . EE? ' Subscribe ! -
' i to topics ! ' to topics ' '
[l L] L] [[l [
[l L]]] [l [}
: A~ A~ -
; | . = :
[l L]]] [l [}
[l L] L] [[l [
[l L]]] [l S k :
' ' ' ' ' par

] Kafka] e i Kafka i s i A i
I Bradiicars | partitions i Chicles i partitions , Streaming |

Consumers

Figure 3.5: Parallelism in the current Kafka architecture and the transition to the next stage.

3.5. Data Processing

At this point, which is the main part of the implementation, the processing of the messages
through Apache Spark and the procedure by which the ML models were created are analyzed.

3.5.1. Real-time Stream Processing

The messages were sent by Kafka are now entering Spark Streaming in the form of streams for
further processing. At first, connections with SparkContext and StreamingContext are made,
which consist the two main entry points for Spark and respectively Spark Streaming functionality.
As in fact, Spark Streaming operates at the base of micro-batch processing, or otherwise in near
real-time processing, therefore a batch interval of one second is defined. Each second Spark
receives a batch of data streams, just in the order they were sent from Kafka producer, as Kafka
provides ordered messaging within a partition. It is worth noting that the order in messages is not
provided between different partitions of the same topic though.

Streams or records of RDDs are entering Spark in the key-value format, so they need to be
processed to get the final form to be applied to the ML classifiers. Initially, the features that are not
used need to be separated from the “comment” field, through the “map” operation, which cuts the
fields that are separated by “\t” tab separators between them. Then follows the application of the
ML model through the “classify_line” function, after the serialized model has loaded

29

sklearn pipeline = pickle.load(open("/path/PIPELINE.pkl", "rb"))

def classify line(line):
return sklearn pipeline.predict proba([line])[:,1]

and the presentation of the final tuples in the form of (comment, author, subreddit,
sarcasm_probability) by calling an output operation for each of the RDDs of the stream(similar to
actions for RDDs) and for each partition of the RDDs.

kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer",

{topic: 1})
values = kvs.map(lambda x: x[1])

line = values.map(lambda comm: comm.split('\t'))

sarcTuple = line.map(lambda item: (item[©], item[1], item[2], item[7],
classify line(item[©])))

sarcTuple.foreachRDD(lambda rdd: rdd.foreachPartition(store to_elasticsearch))

3.5.2. Classification

Assuming sarcasm detection as a binary classification problem, since there are only two distinct
values to be classified, it is considered necessary to model it using ML algorithms. This part
concerns the data used as a training set, that is, the 4-MG file in bz2 format, which includes only
balanced data. For each algorithm used, the same procedure of data preprocessing was applied.

Initially, the compressed file, which contains more than 50.000 rows, is read and a header
with the column names is added and the final training set, which consists of input features
represented by the “X” variable and output or “y” target variable is created. “X” variable
corresponds to the “comment” column while “y” variable corresponds to the “label” column.

In order to define the ML problem that is encountered, it should be considered that given a
“X” incoming dataset, a function or a classifier is trained through a learning algorithm, which will
guess whether each new, unlabeled input sentence is tested is sarcastic or not, as shown in Figure
3.6. In fact, what is estimated is the probability of a testing sentence being sarcastic and it should
be noted that this definition [23] refers particularly to the supervised ML problems, which this

work deals with.

30

Training Set

|

Learning algorithm

|

y
X ——3] Classifier [——>» prediction

incoming
sentence

predict whether it's
sarcastic or not

Figure 3.6: Supervised ML problem definition

Subsequently, the data set is then split up into an 80% training set and a 20% testing set
and a pipeline of transforms is created. The pipeline consists of a TfidfVectorizer and the
classification algorithm implemented.

Split X and y into training and testing sets
from sklearn.model selection import train_test split

Split the dataset the exact same way every single time
X_train, X_test, y train, y test = train_test split(X, y, test_size=0.20,
random_state=42)

TfidfVectorizer stands for Term Frequency - Inverse Document Frequency (TF-IDF) and is
a popular method for measuring word frequencies that appear in a document. “Term Frequency”
refers to the times that a particular word appears in a text to the total number of other words and
“Inverse Document Frequency” refers to the importance of each word, used to highlight more
important words and degrade the unimportant.

However, since BoW does not deal with the order in which the words appear, another
model is introduced, which is a generalization of BoW and is called N-gram. BoW is assumed to be
identical to the N-gam model for N = 1. N-gram model is a sequence of N words and is used as a
parameter of the TfidfVectorizer to clarify meanings or sentiments in pairs of words that as single

31

words are not clear. Furthermore, the max_features variable considers only the (max) terms that
occur more frequently for building the vocabulary.

Finally, the training process follows, through the “fit” function and the final model is
loaded into a pickle object to be applied to the Spark Streaming platform. The creation of ML
models was realized using the scikit-learn package for python.

from sklearn.naive_bayes import BernoulliNB
pipeline = Pipeline([
("train_count vect', TfidfVectorizer(max_features = MAX_FEATURES,
ngram_range=(1,5))),
('clf', BernoulliNB()),
D
start = time()
pipeline.fit(X_train, y_train)

3.6. Data Visualization

This is the last stage of the architecture and perhaps the simplest. Two basic processes take place
at this level: (a) sending the tuples of data calculated to the Elasticsearch system and (b)
displaying them on a dashboard through Kibana.

For the first part a function is created, which converts the data into json format, as this is
the required from elasticsearch. More specifically, “sarcTuple” includes the following fields:
comment, author, subreddit, created_utc and obviously the probability of sarcasm for each
comment that was calculated. The data or the documents are organized in indexes of a specific
type which is defined when creating the index. Each document has a unique id which is created by
encrypting the comment, the author, and the created_utc, all concatenated into a single text. Data
is then stored to elasticsearch via the HTTP PUT request method and verified by checking the
response of the server.

def store_to_elasticsearch(iter):
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}

for record in iter:
comm, auth, subr, prob = record[@], record[1l], record[2], record[4][0]
doc = {
"comment" : comm,
"author" : auth,
"subreddit" : subr,
"sarcasm_prob" : prob

}

utc = record[3]

32

doc_id =
hashlib.sha256((comm+""+auth+""+utc).encode('utf-8"')).hexdigest()

es_record = requests.put(url =
"http://localhost:9200/sarcasm/classified/%s?op_type=create" % doc_id ,
data = json.dumps(doc),
headers = headers)

if es record.status code not in [200,201]:

Error: % es_record)
p'«int("***************** dOC_id: %S K 3k koK K Kk kkok kR sk ki ckk ok 1 % dOC_id)

return es_record

For the second part, some representations were created using Kibana, which are shown in
the next chapter. A complete representation of the distributed system implemented is shown in
Figure 3.7.

ML model loading
Classification

' ' : : ' ' ' '
i ' ' ' ' ' ' i
1] 1] 1] 1] 1] 1]
. E A~ I~ E . . .
' ! —_— i i i i i
! | : : " : : :
[[' ' [[[[
1 = ! ! = : > !
1 P ' —_ 1 RDDs 1 '
: : Publish : : Subscribe : : Indexing : :
! 't totopics ' i+ totopics ' ' ' '
i ' ' ' ' ' ' i
[[' ' [[[[
[[' ' [[[[
[[' ' [[[[
[[' ' [[[[
' Kafk ' 1 1 ' Spark ' JSON 'EI " h'
X r 3 @ | paritions . Kafka | partitions ' Streaming , formatted data | as||csearc '
; Producers | ' cluster ! . Consumers . , Cluster |

Figure 3.7: A comprehensive representation of the distributed architecture

33

Chapter 4

Experimental Study

This chapter is a representation of the results obtained from the experimental processes
conducted. It is divided into two parts: the first concerns the process of creating the ML model and
the corresponding results, while the second concerns the distributed architecture that has been
implemented and, in particular, the real-time data processing procedure along with the associated
outcomes. As already mentioned in the previous chapter, all experiments were performed on a
single computer, as it was unable to exploit a cluster, thus a complete representation of the final
results was not feasible.

4.1. Evaluation of Classifiers

This part concerns the creation of the three ML models and results acquired for each one of them.
Furthermore, a comparison is made between them and the best one is chosen as the final and most
suitable to be added to the architecture. Each algorithm trains about fifty thousand sentences.

One of the metrics used is accuracy, which indicates the values predicted in relation to the
actual values. The baseline is an accuracy of 0.5.

predict the response values for the observations in "X"
y_pred = pipeline.predict(X_test)

from sklearn.metrics import accuracy_ score

testing accuracy : train and test the model on different data
print ('Accuracy score:', accuracy score(y_test, y pred))

Another metric used is f1 scores, which is a more detailed measurement that takes into
account false-true negatives and false-true positives.

from sklearn.metrics import f1_score
print ('F-1 Score:', fl score(y_test, y pred))

Also, the execution time of the algorithm and a learning curve are presented for each model.

4.1.1. Naive Bayes Classifier

The Naive Bayes classifier was created for Bernoulli distribution, since it is the most suitable for
the specific problem of sarcastic text detection. This is a simple implementation without any
special configuration. A partial increment of the alpha smoothing parameter value was performed,

34

which slightly reduced the accuracy of the model, therefore not utilized. Performance is shown in
Table 1.

Accuracy F1-score Time (sec)

Naive Bayes 0.68998 0.67782 11.79

Table 1: Naive Bayes classification

As it seems, the success rate is quite close to the sarcasm detection literature for this
classifier and execution time is too small, which is expected as it is a fast enough algorithm. The
learning curve is presented in Figure 4.1 to determine if there is room for improvement if the
algorithm is trained with more examples.

Learning Curve (NB)

076 - —a— Training score
—a— Cross-validation score
0.74 4
072 -
o
[=]
A 070 L
B =]
068 4
0.66 -
10000 20000 30000 40000

Training examples

Figure 4.1: Learning curve of Naive Bayes

As distinguished, the training score starts at a high value and lowers as examples are
added and the cross-validation score starts at a low value and rises. After some point the two
scores converge at a fairly small value as the examples are added to the training set. As can be
seen, in this case the addition of more examples does not greatly improve the performance of the
algorithm.

35

4.1.2. Logistic Regression Classifier

The Logistic Regression classifier implements regularized logistic regression using the L1
regularization and no other configuration as none contributed to improving performance.
Performance is shown in Table 2.

Accuracy score F1-score Time (sec)

Logistic Regression 0.69683 0.68608 12.34

Table 2: Logistic Regression classification

As it seems, the success rate is slightly better than previously, although the runtime of the
algorithm has increased on a small scale, but the algorithm remained quite fast. The learning
curve is presented in Figure 4.2 to determine if there is room for improvement if the algorithm is
trained with more examples.

Learning Curve (LR)

0.78 - :
—i— TFEIF'IIFII; sCore

—a— Cross-validation score
076 -

074 4

072 4

Score

070

(.68 -

066 -

(64 4

10000 20000 30000 40000
Training examples

Figure 4.2: Learning curve of Logistic Regression
As distinguished, the learning curve is almost similar to previously, therefore follows that

neither in this case the addition of more examples does not greatly improve the performance of
the algorithm.

36

4.1.3. Random Forests Classifier

The implementation of this model is slightly more complicated than previously, as it contains
parameterization, which caused better performance. At the beginning, success rates coincided
with those of previous classifiers, but after the parameterization they increased. The parameters
were set at the optimal values.

from sklearn.pipeline import Pipeline
pipeline = Pipeline([
("train_count_vect', TfidfVectorizer(max_features = MAX_FEATURES,
ngram_range=(1,5))),
('clf', RandomForestClassifier(n_estimators=100, criterion='entropy’,
max_depth=500, min_samples_split=4, n_jobs = 3, random_state = 42)),
D
start = time()
pipeline.fit(X_train,y_train)

It is worth noting that the parameterization can be performed in a distributed environment using
the GridSearchCV function, which is provided through the scikit-learn integration package for
Apache Spark, by changing a single line of code.

from sklearn.model selection import GridSearchCV
from spark_sklearn import GridSearchCV # Use spark_sklearn's grid search instead
Tuning the hyper-parameters indicatively
parameters = {
'clf n_estimators': [50,100,200,500],
'clf__n_max_depth' : [100,200,300,400]
}
grid_search = GridSearchCV(pipeline, param_grid=parameters, cv=3, n_jobs=-1, verbose=1)
grid_search.fit(X_train, y_train)

Otherwise it is an extremely time-consuming process, especially in the case of large datasets with
multiple, different parameter combinations. Performance is shown in Table 3.

Accuracy score F1-score Time (sec)

Random Forests 0.71341 0.70559 50.92

Table 3: Random Forests classification
As it seems, the success rate is better than previously, although the runtime of the
algorithm has increased considerably, which is expected as there are one hundred different

37

classifiers combined for a final result, which is ultimately the optimal. The learning curve is
presented in Figure 4.3 to determine if there is room for improvement if the algorithm is trained
with more examples.

Learning Curve (RF)

N
-—

095 4

090 4

085 4

Score

080 1

075 4

070 - -
//M —&~— Training score
0.65 - —&~— Cross-validation score

5000 10000 15000 20000 25000 30000 35000 40000
Training examples

Figure 4.3: Learning curve of Random Forests

As distinguished, in this case the learning curve is quite different than before. The
training score starts at a high value and lowers slightly as examples are added and the
cross-validation score starts at a low value and rises. The algorithm suffers from high variance,
thus more training examples will most likely increase generalization and improve performance.

This is therefore the most appropriate model which is finally loaded into the system, as it
has the highest performance and margin for a further increase. Finally, the measurements of the
ML model relating the testing data are shown in Table 4.

Accuracy score F1-score Time (sec)

Random Forests 0.71275 0.70288 29.75

Table 4: Random Forests classification (testing data)

Another information derived for this model is the importance of the features, which are
shown in Figure 4.4. Evidently, four features are informative, while the remaining are not. This
can be used to reduce insignificant features thus improve the running time of the algorithm,
which constitutes the case in which it lags behind others.

38

Feature importances (RF)

00000 00025 00050 00075 00100 00125 00150 0.0175
Figure 4.4: Feature importances along with their inter-trees variability

4.2. System Evaluation

The second part of the presentation of the results concerns the system and more specifically the
platforms used for its implementation. The web user interfaces related to the system are presented
and information is analyzed through them. At this stage, 10K entries were sent and processed out
of a total of 10M and the corresponding results are listed below.

4.2.1. Apache Kafka Metrics

Kafdrop [20] was used as a monitoring tool for the processes performed in Kafka. More
specifically, the average sending time of 10K records is equal to 240.723 sec, or almost 4 minutes.
To wit, Kafka producer sent about 42 messages/sec. Figure 4.5 presents a cluster overview, which
in this case consists of a single broker. It also shows the topics and their partitions.

Kafka Cluster Overview

Zookeeper Hosts: localhost:2181

Brokers
1D Host Port IMX Port Version Start Time Controller?
[i] 192.168.1.3 5092 -1 1 2017-12-18 05:46:20.307+0200 Yes
Topics
Name Partitions % Preferred # Under Replicated Custom Config?
__consumer_offsets 50 100% 0 Yes
kafkatopic i 100% 0 No

Figure 4.5: Kafka cluster overview

39

Information about each broker is depicted in Figure 4.6.

Broker Id: 0

Broker Overview

O Host 192.168.1.3:9092

O Start Time 2017-12-18 04:11:44.168+0200
Controller Yes

of Topics 2

of Partitions 51

Topic Detail

Topic cht-al BN,“fer Partition lds
Partitions Partitions
__consumer_offsets | 50 50 01,2,345,6,789,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,30,40,41 4243 44 45,46 474
849
kafkatopic i 1 o]

Figure 4.6: Kafka broker overview

Figure 4.7 shows the messages within the “kafkatopic”.

Topic Messages: kafkatopic

First Offset: O Last Offset: 10000 Size: 10000

Partition | 0 % |Offset 0 Num Messages 10

Offset: 0 Key: Checksum/Computed: 3831179480/3831179480 Compression: none

© The degree of success that the song sees is totally irrelevant. DPSnacks edmproduction 5 1

1 20917-02 148632
Offset: 1 Key: Checksum/Computed: 3516999280/3516999280 Compression: none

©AKA money influencing the election. RespublicaCuriae worldnews 5 1 1 2017-82 1485954859 Austra
Offset: 2 Key: Checksum/Computed: 3278105239/3278105239 Compression: none

©It's like a breakfast club of wastedness. Bet the chick on the left has a good laugh. Rarus FestivalSluts 5
Offset: 3 Key: Checksum/Computed: 878291080/878291080 Compression: none

©You won't know what happens when champ is tanky as fuck and deals dmg ExeusV leagueoflegends

2 1 1 2817-02 14870e

Offset: 4 Key: Checksum/Computed: 835399831/835359831 Compression: none

©not really. most of the changes to humans that make didn't ethnic groups look different occcurred fairly recent EFG TrueAtheism
Offset: 5 Key: Checksum/Computed: 3523886198/3523886198 Compression: none
©Yeah, I like it too. A lot. ThyReformer CivHybridGames 1 1 1 2017-82 1486937819 What I Like So Far Abo

Figure 4.7: Kafka topic messages

Figure 4.8 shows all the messages consumed so far as well as the Spark Streaming
consumer. There is also computed the delay between the consumer and the producer.

40

Topic: kafkatopic

@ View Messages
- -
Overview Configuration
of Partitions 1 No topic specific configuration
Preferred Replicas 100%
Under Replicated Partitions 0
Total Size 5066
Total Available Messages 5066
. .
Partition Detail Consumers
Partit First Of Last Of Size Lea Repli InSyncRe Preferredl Under Replic Group Id Lag Active Instances
ion fset fset der cas plicas eader? ated?
spark-streaming-consumer 354 spark-streaming-consumer_maria-emmas-mbp-1513568851359-d4f924ed
0 0 5066 5066 0O o o Yes No

Figure 4.8: Topic details about partitions and consumers

4.2.2. Spark Streaming Metrics

For the presentation of the processes within the Spark Streaming platform, the web Ul provided by
Spark was used. Figure 4.9 shows Spark jobs running at the moment and already executed jobs
that succeeded or failed. Once the executor driver is added the job is ready to start.

Spor‘]:z a0 Jobs Stages Storage Environment Executors Streaming kafka_spark application Ul

Spark Jobs (7

User: maria-emma
Total Uptime: 37 min
Scheduling Mode: FIFO
Active Jobs: 1
Completed Jobs: 5

+ Event Timeline
Enable zooming

Executors
Added
Removed Executor driver added
Jobs call at /Users/maria-emma‘sg call at AUsers/maria-emma/spark-2.2.0-bin-hay
Succeeded
7 Failed call at /Users/maria-emma/spark-2.2.0-bi «call at /Users/maria-emma/spark-2.2.0-t call at /Us
Running Streaming job running receiver 0 (Job 0)
05:50 05:55 06:00 06:05 06:10 06:15 06:20 06:25

Mon 18 December

Figure 4.9: Spark Jobs

More detailed statistics on the Spark Steaming part are illustrated in Figure 4.10. As
shown, the reading of the messages from the Kafka broker, their processing as well as their writing
to Elasticsearch lasted 36 minutes at a 1 second batch interval with an average input rate of 244
records/sec for each batch. The procedure was completed with 24 batches. Scheduling delay is the

41

time a batch waits in a queue for the processing of previous batches to finish and equals almost 20
minutes.

avacur

Spc"' o Jobs Stages Storage Environment Executors Streaming kafka_spark application Ul

Streaming Statistics

Running batches of 1 second for 36 minutes 24 seconds since 2017/12/18 05:47:26 (24 completed batches, 10000 records)

Timelines (Last 41 batches, 17 active, 24 completed) Histograms

records/sec 0 10 20 30 #batches

3,000.00

» Input Rate 2,000.004
Receivers: 1/ 1 active
Avg: 243.90 records/sec 1,000.001
0.00]

05:47:27 05:48:07

min #batches

o
-
o
n
o
w
[=]

30.007

25.004
Scheduling Delay 20.00+
Avg: 19 minutes 42 15.004

scond 10.004
seconds 5.004

0.00 1
05:47:27 05:48:07

Figure 4.10: Spark Streaming statistics concerning the input rate and the scheduling delay

Figure 4.11 shows the continuation of the above-mentioned statistics, which refers to the
processing time and the total delay time. Processing time is the time to process each batch of data
and equals almost 1 minute and the total delay time is essentially the sum of the scheduling and
the processing time.

min 0 10 20 30 #batches
N

30.004
25.00
Processing Time (7 20.00

Avg: 1 minute 27 15.00+

d 10.00+
seconds 5‘00_/\/\
o004

|
05:47:27 05:48:07

min

(=]
-
o

20 30 #batches

30.004
25.00
Total Delay ? 20.00
Avg: 21 minutes 23 15.00 -

d 10.00
seconds 5.004

0.00 d
05:47:27 05:48:07

Figure 4.11: Spark Streaming statistics concerning the processing time and the total delay

4.2.3. Kibana Visualization

Kibana tool shows the assignment of data to indexes, as depicted in Figure 4.12.

42

El comment: In the comics Kryptonians are generally Xenophobic and supremely arrogant. It's not unimaginable to thi
nk a Kryptonian would say to you: why would I need those powers? I'm already perfect. author: Primesghost
subreddit: superman sarcasm_prob: 0.333 _id: 77390al6087c9fB4e7405a7f7ce3f0cl32Ielab22dfc20af4895el69c9chb288

_type: classified _index: sarcasm _score: 1

Table JSON View single document

t _id aamd 77390a16087c9fB4e7405a7f7ce3f0cl323e3dab22dfc20af4895e169c9cbb288

t _index @am sarcasm

_score m 1

t _type Qaqm classified

t author @ € M % Primesghost

t comment @ € (M % In the comics Kryptenians are generally Xenophobic and supremely arrogant. It's not unima
ginable to think a Kryptonian would say to you: why would I need those powers? I'm alread
y perfect.

sarcasm_prob @ @ (1) % 0.333

t subreddit @ € (1 % superman

Figure 4.12: Documents indexed into Elasticsearch

Through the features of each document, dashboards may arise based on aggregation
metrics. For example, Figure 4.13 shows the total documents contained in the sarcasm index and a
chart with the ranges of the sarcasm probabilities.

10,000 8,000 ®0w05

®051t01

@® Count

- 10,000
sarcasm

6,000

6,000
4,000

Count
Count

4,000
2,000

) |

2,000

6

sarcasm

0ta 0.5
051 to 0.
0611007
0.71t0 0.8
0811009
051t 1

Index Probability ranges

Figure 4.13: Number of documents within the sarcasm index and the range in which the
probabilities of sarcasm vary

For example, in the second diagram, the chances of sarcasm vary. Most of the comments
(7991) have a probability of less than 0.5 being sarcastic, while the remaining 849 comments have
a probability between 0.51 and 0.6, 519 have a probability between 0.61 and 0.7, 259 have a
probability between 0.71 and 0.8, 103 have a probability between 0.81 and 0.9, while no comment
has a probability between 0.91 and 1.

43

Chapter 5

Conclusion

In conclusion, an approach combining the well-known fields of big data and ML, is presented.
This is a system which has the ability to process texts on a large scale and identify sarcasm in
them. Its creation is entirely based on new technologies and their respective combinations and
concerns the field of sarcasm detection which remains quite unexplored. It is also an architecture
that includes completely independent elements that can be replaced by others, starting from each
distributed platform and ending with the ML model. It is worth mentioning that it is based on
easily modifiable code for future extensions.

This study used a different source of data than usual and emphasized the processing of
data streams in real-time, a challenging task of the modern era. It proved why Reddit can be a
reliable source of information compared to Twitter, which prevails in sarcasm detection systems.
It also showed ways to exploit large files through the popular inverted indexer data structure,
which is widely used by search engines.

Furthermore, the concept of messaging systems was introduced, by utilizing the Apache
Kafka platform, which aims at fast and fault-tolerant information transmission to other systems.
The study has demonstrated the operations of Kafka as well as the facilities it offers. It also
suggested the easy-to-use and effective integration of Kafka with the Spark Streaming framework.

In addition, an introduction to the Spark system and its mode of operation was realized, as
well as a brief overview of concepts behind its creation. It has also been compared to other
existing systems and has proven to be the most appropriate for this architecture but also a
particularly useful and promising tool for future big data issues. Among others, an exploitation of
the Spark Streaming extension was carried out, to process data streams in real-time.

An introduction to the scikit-learn library was also accomplished, which was intended to
demonstrate the usefulness of this library and the huge range of algorithms it offers. It has been
shown that the models of this library are reusable in various contexts through pickled serialized
objects. Common and state-of-the-art algorithms were utilized to create ML models for the specific
task of sarcasm detection, easily and efficiently, which are reusable and can operate
independently of the particular architecture, with minor changes.

A different approach to the concept of data storage in conventional databases was
introduced through FElasticsearch, a distributed search engine serving for data analysis and
representations using the Kibana plugin.

This study demonstrated that all of the tools utilized can operate in an integrated parallel
and distributed environment of a computer cluster noting high performance. Finally, there were
performed measurements and experiments that showed the operation and the suitability of each
of the tools used.

44

5.1. Future Work

There are several proposed ideas for future expansion of this work as it deals with elements and
approaches that are constantly evolving. One of them is the extension of the ML model. There
could be added many other methods that will improve its performance, e.g. feature engineering or
feature selection techniques, as already mentioned. Both are categories with a huge range of
options and tests, which could well lead to better results. Moreover, as demonstrated in the
experiments the random forests algorithm can be further improved by adding more training
examples, which will be suitable for the case.

As far as the part of the architecture implemented is concerned, an initial improvement
would be its application into a computer cluster and conduct the experiments in this context, in
order to highlight the efficiency of the system in a distributed environment. Adding a cluster can
make several changes that would lead to a possible improvement, such as saving the initial big
data file into HDFS and process it without using the inverted indexer or the random generator.
Finally, the whole implementation of the ML model could be transferred to the Spark MLIib library,
instead of using scikit-learn.

45

Bibliography

[1] Bharti, Santosh & Vachha, Bakhtyar & Pradhan, Ramkrushna & Babu, Korra & Jena, Sanjay.
(2016). Sarcastic Sentiment Detection in Tweets Streamed in Real time: A Big Data Approach.
Digital Communications and Networks 2.3, 108-121, 2016.

[2] Leo Breiman. 1996. Bagging predictors. Machine Learning. 24, 2 (August 1996), 123-140.
DOIl=http://dx.doi.org/10.1023/A:1018054314350

[3] Konstantin Buschmeier, Philipp Cimiano, and Roman Klinger. An impact analysis of features in
a classification approach to irony detection in product reviews. In Proceedings of the 5th
Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis,
pages 42-49, June 2014.

[4] Michael B. Cox and David Ellsworth. Application-controlled demand paging for Out-of-Core
visualization. In Proceedings of Visualization °97, pages 235-244, October 1997.

[5] Gandomi, Amir & Haider, Murtaza. (2015). Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management. 35. 137-144.
10.1016/j.ijinfomgt.2014.10.007.

[6] Ho, Tin. (1995). Random decision forests. Document Analysis and Recognition, International
Conference on. 1. 278 - 282 vol.1. 10.1109/ICDAR.1995.598994.

[7] Joshi, Aditya & Bhattacharyya, Pushpak & Carman, Mark. (2016). Automatic Sarcasm
Detection: A Survey. arXiv preprint arXiv:1602.03426

[8] Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. 2017. A Large Self-Annotated Corpus
for Sarcasm. arXiv preprint arXiv:1704.05579, 2017.

[9] Kreps, Jay, Neha Narkhede and Jun Rao. “Kafka: a Distributed Messaging System for Log
Processing.” (2011).

[10] Maynard, Diana & Greenwood, M.A.. (2014). Who cares about sarcastic tweets? Investigating
the impact of sarcasm on sentiment analysis. Proceedings of LREC. 4238-4243.

[11] Ngoc Khuc, Vinh & Shivade, Chaitanya & Ramnath, Rajiv & Ramanathan, Jay. (2012). Towards
building large-scale distributed systems for twitter sentiment analysis.

46

[12] Nodarakis, Nikolaos & Sioutas, Spyros & Tsakalidis, Athanasios & Tzimas, Giannis. (2016).
Large Scale Sentiment Analysis on Twitter with Spark.

[13] Pedregosa et al.Scikit-learn: Machine learning in Python. journal of Machine Learning
Research, 12:2825-2830, 2011.

[14] Ptacek, Tomas et al. “Sarcasm Detection on Czech and English Twitter.” COLING (2014).

[15] Maarten Steen and Andrew S. Tanenbaum. 2016. A brief introduction to distributed systems.
Computing 98, 10 (October 2016) 967-1009.

[16] Zaharia, Matei & Chowdhury, Mosharaf & J. Franklin, Michael & Shenker, Scott & Stoica, Ion.

(2010). Spark: Cluster Computing with Working Sets. Proceedings of the 2nd USENIX conference
on Hot topics in cloud computing. 10-10.

Web pages
[17] Apache Kafka. Retrieved from https://kafka.apache.org [Dec.2017]

[18] Apache Spark. Retrieved from https://spark.apache.org [Dec.2017]

[19] Elasticsearch. Retrieved from https://www.elastic.co [Dec.2017]

[20] Kafdrop UI and Monitoring Tool. Retrieved from https://github.com/HomeAdvisor/Kafdrop
[Dec.2017]

[21] Kohn, Mark. Mathematics of Random Forests. Boston University. Department of Mathematics
& Statistics. Retrieved from http://math.bu.edu/people/mkon/MA751/1.19RandomForestMath.pdf
[Dec.2017]

[22] Lambda Architecture. Retrieved from http://lambda-architecture.net [Dec.2017]

[23] Ng, Andrew. CS229 Lecture notes. Stanford University. School of Engineering. Retrieved from
http://cs229.stanford.edu/syllabus.html [Dec.2017]

[24] Reddit. https://www.reddit.com [Dec.2017]

[25] Scikit-learn http://scikit-learn.org/stable [Dec.2017]

[26] Twitter. https://twitter.com [Dec.2017]

47

https://kafka.apache.org/
https://spark.apache.org/
https://www.elastic.co/
https://github.com/HomeAdvisor/Kafdrop
http://math.bu.edu/people/mkon/MA751/L19RandomForestMath.pdf
http://lambda-architecture.net/
http://cs229.stanford.edu/syllabus.html
https://www.reddit.com/
http://scikit-learn.org/stable/
https://twitter.com/

