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Abstract 

The wide-spread availability of consumer grade virtual reality head mounted 

displays, has transformed virtual reality to a commodity available for everyday 

use. Nowadays, nearly everything with a display can be used to immerse the user 

in a VR world. From Smart phones to game consoles, everything now has VR 

extensions such as the Samsung Gear VR and the PlayStation VR.  

All this constant evolution around the VR world demands constantly better and 

more detailed head mounted displays. With the increasing use of 4K-8K Ultra 

High Definition displays and the push towards higher pixel densities for head-

mounted displays, the industry is pressured to meet market demands for intensive 

real-time rendering. Since the current processors cannot deal with the increased 

demands for excessive resolution on the head mounted displays, new techniques 

of rendering must be implemented. 

The human visual system is often assumed to be perfect despite limitations arising 

from a variety of different complexities and phenomena. Humans have two 

distinct vision systems: foveal and peripheral vision. Foveal vision is sharp and 

detailed, while peripheral vision lacks fidelity. This lack of fidelity in the 

peripheral vision system is what new techniques of rendering, the so called 

foveated rendering techniques, are trying to exploit. Perceptually lossless foveated 

rendering systems and methods, seek to increase rendering performance by 

lowering image quality in the periphery, while maintaining the user’s perception 

of full HD rendering.  

In this thesis, we are trying to gather insights on how beneficial may the adoption 

of these methods at a commercial level be, by implementing and evaluating our 

own foveated rendering approach. To do so, we are using a Head Mounted 

Display unit [the Nvis SX 111] and an eye-tracking device [the Arrington 

Viewpoint-EyeTracker]. The foveated rendering technique developed in this 

thesis renders at three different layers of resolution. Apart from the foveal layer, 

which surrounds the area that the user is looking at and has full HD resolution 

capabilities, and the peripheral layer, which contains everything that is in the 

user’s peripheral vision and renders at 40% of the full HD resolution, we 

implement another layer which functions as a transition layer between them. This 

last layer renders at 60% of the full HD resolution, and it was added so that the 

user doesn’t notice the massive difference in resolution at the border between the 

other two layers. 

In order to have a more accurate picture of the results and the functionality of the 

algorithm created, we conducted a number of experiments involving 19 students 

from the institution. The users were asked to enter a virtual world and complete a 

small game. While the users were immersed in the virtual environment, we were 
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monitoring the performance of the algorithm. During these experiments, a 57% 

decrease in the number of pixels shaded was recorded. Most of these pixels 

belonged to the peripheral layer. This decrease leads to a maximum increase of 

18.3% regarding the number of rendered frames per second.  

This increase in FPS is the fundamental objective of this dissertation. Since we 

have achieved such an increase in FPS, it is safe to assume that foveated 

rendering algorithms are capable of large reductions in rendering cost using the 

latest technologies. 
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Chapter 1 Introduction 

1.1 Scope 

It is an undeniable fact that Virtual Reality (VR) is soon to become ubiquitous. 

The widespread availability of consumer grade VR Head Mounted Displays 

(HMDs) such as the Oculus RiftTM (Oculus, 2017) and the new Samsung gear 

VR (Samsung Electronics CO, 2017) transformed Virtual Reality to a commodity 

available for everyday use. Virtual reality has a wide range of applications which 

range from gaming and entertainment to medicine, engineering, military training, 

scientific visualization and business. Nowadays, even smart phones can easily be 

used in order to immerse the user in a virtual environment such as the galaxy S6, 

S6 edge, S7 and S7 edge. 

 
Figure 1: Samsung Gear VR with controllers1 

However, this new 3D environment is way different than the environment used 

the years before, which is no other than the simple 2D environment such as the 

environment depicted on the screen of a computer. User interaction in a 3D spatial 

context introduces constraints due to the multiple degrees of motion freedom, 

requiring novel interaction metaphors such as “fly” and “zoom”. In addition, 

traditional input methods such as a keyboard and mouse are hard to manipulate 

when the user wears a HMD. Using a keyboard and a mouse while immersed in a 

VR HMD is an erroneous extension of the desktop paradigm to VR, constituting a 

fundamental challenge that needs to be addressed. These days, the most common 

input methods for VR apps are hand-tracking or head-tracking hardware, while 

also eye-tracking hardware is sometimes used but mostly their use has been 

confined to laboratory experiments. However, nowadays, companies try to 

                                                 
1
 Figure 1 was retrieved from the following site : http://www.samsung.com/global/galaxy/gear-vr/ 
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enhance HMDs with eye-tracking software, like the brand new F0VE (FOVE,Inc, 

Late 2017), which is the first eye-tracking VR headset and which seems to be a 

great success. Additionally, Fove is compatible and easy to use with the most 

common game engines like Unity (Unity Technologies, 2017) and Unreal Engine 

and more. 

 
Figure 2: FOVE numbers2 

Eye trackers have existed for a number of years, but their use has largely been 

confined to laboratory experiments. The equipment is gradually becoming 

sufficiently robust and inexpensive to consider use in real user-computer 

interfaces. For example Fove starts at 599 USD and Oculus rift at 399 USD while 

Samsung Gear can be found for only 100 Euros. However, one needs to attach a 

Smartphone on the Samsung Gear in order to experience VR.  

Even though eye tracking software and eye tracking technologies have existed for 

many years, their use has been limited, and for a number of years these 

technologies had even been abandoned. The reason behind this abundance is that 

they needed computational resources that some years ago were unachievable from 

the current CPUs – GPUs. Recently, CPUs have experienced spectacular growth 

that has unlocked new processing speeds that covered the numerous needs of eye-

tracking software. As a result, new methods of rendering are starting to be 

developed. By using the information generated from the eye-tracking software, it 

is possible to create an algorithm that exploits the human visual system’s 

                                                 
2
 Figure 2 was retrieved from the following site : https://www.getfove.com/ 
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imperfection in order to provide the user with a visual result rendered based on his 

focal point.  

The human visual system is often assumed to be perfect without limitations. This 

assumption leads to the idea that a single render will be fully appreciated at any 

single point in time (Cosker & Swafford, 2015). The truth is that humans have 

two distinct vision systems, which are called, foveal and peripheral vision. Foveal 

vision is sharp and detailed and the only part of the retina that permits 100% 

visual acuity, while peripheral vision lacks fidelity. (Patney, et al., 2016) 

In this thesis, we present a rendering technique that takes advantage of the limited 

peripheral vision system of the human eye in order to achieve higher CPU 

performance in terms of frames per second rates. This technique is called foveated 

rendering. The idea behind foveated rendering is that we can create an algorithm 

that exploits the user’s perception of a fully highly rendered scene. Since the 

human eye is unable to understand and fully appreciate a single full HD 

rendering, it would be beneficial, for the CPU and the GPU, to have a way to 

render critical parts of the HMD’s screen in high resolution, while keeping other 

parts in lower resolution. In different words, we determine the critical parts of the 

scene based on the user’s focal point in order to create a personalized rendering 

result for every frame. To determine the user’s focal point a HMD and eye-

tracking software is needed. In this thesis, we are using the Nvis SX111 HMD 

combined with the Arrington’s eye-tracking software. 

We exploit the falloff of acuity in the visual periphery to accelerate graphics 

computation on a HMD display (1280 x 1024). Our method tracks the user’s gaze 

point and renders three image layers around it at progressively higher angular size 

but lower sampling rate. The three layers are then magnified to display resolution 

and smoothly composited. The result looks like a full-resolution image but 

reduces the number of pixels shaded by a factor of 2,5 in our first approach while 

in our second and more aggressive approach this factor increased to 4,5. This 

means that instead of sampling 1.759.232pixels, with the implementation of the 

foveated rendering algorithm, we only shaded 755.419 in our 1
st
 approach and 

only 403.569 in the 2
nd

. These results were achieved with a HMD with a display 

resolution of just 1280 x 1024px. Image if we were to use the new Fove HMD 

with a display resolution of 2550 x 1440px, where in order to produce a full HD 

result it would be necessary to shade 492.851.250pixels instead of just 1.759.232. 

Moreover, our algorithm led to a 19% performance boost. 

Nowadays, with the increasing use of 4K – 8K Ultra High Definition (UHD) 

displays and the push towards higher pixel densities for head-mounted displays 

(HMDs) alongside with the demands for intensive real-time rendering, the 

adoption of perceptually lossless foveated rendering methods is a must. (Cosker & 

Swafford, 2015) 

https://en.wikipedia.org/wiki/Retina
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Perceptually lossless foveated rendering methods exploit human perception by 

selectively rendering at different quality levels, based on eye gaze, at a lower 

computational cost, while still maintaining the user’s perception of a full quality 

render (Swafford, Iglesias-Guitian, Koniaris, & Moon, 2016). In other words 

perceptually lossless foveated rendering systems seek to increase rendering 

performance by lowering image quality in the periphery while making sure that 

degraded renders are indistinguishable from their non-degraded counterparts. 

Providing high-quality image synthesis on high resolution displays in real-time is 

an ultimate goal of computer graphics. However, it remains a challenging 

problem even with full utilization of GPU hardware, as rendering operations are 

expected to perform in increasingly shorter time-frames (90 Hz and even higher). 

This thesis aims to develop an algorithm that ideally works without being noticed 

by the naked human eye. The general idea is that the user gets immersed in a 

virtual reality environment in order to play a game. While playing, the algorithm 

is running in the background and constantly (in real time) checks the position of 

the user’s eye. By doing so it calculates were the user is looking at 60 times per 

second. This information is very important. We are using this information to 

provide the user with a rendering result which has a full high definition rendering 

layer around his focal point. This “perfect” rendering area is the first layer of 

rendering, which is also the smallest. Additionally, there are two more layers with 

lower resolution (less samples / pixel) than the first layer and which are a lot 

bigger than it (number of pixels). That means that this algorithm generates an 

image which is rendered in more than one rendering levels by changing the 

number of samples per pixel depending on the layer. Of course there are other 

ways to implement a foveated rendering algorithm. For example, instead of 

changing the number of samples per pixel for every layer like we did in out 

approach, others use sampling maps (Pohl, Zhang, & Bulling, 2016), others 

change the probability that a pixel has to be rendered depending on its position on 

the monitor (Roth, Weier, Hinkenjann, Li, & Slusallek, 2016) etc. Furthermore, 

the number of layers can vary from on algorithm to another. For example, 

(Swafford, Cosker, & Mitchell, 2015) render their scene in two different layers of 

resolution while in our approach and the technique developed by (Guenter B. , 

Finch, Drucker, Tan, & Snyder, 2012) we are rendering three layers of resolution. 

The minimum number of layers of course is two, one for the foveal and one for 

the periphery, however, there is not really an upper limit to it. The more layers 

one uses the harder it is for the user to understand the loss of resolution but the 

harder it is for GPU to create the final result. So there is a trade-off between the 

efficiency of the algorithm and the user’s perception. We will further discuss 

about the various ways of implementing foveated rendering algorithms, in the 

next chapter. 
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Figure 3 : Example of Foveated Rendering Algorithm3 

To test the foveated rendering algorithm created in this thesis, a user experiment 

was conducted, with 19 participants. For the needs of this experiment, a game was 

implemented. The user enters a specific virtual environment in which he takes the 

role of a gondolier. Right when the game starts, the user meets his first customer 

approaching him slowing from his right side. When the customer boards the 

gondola, he asks the user-gondolier to take him to one of the two possible 

destinations. The destination is chosen randomly every time. When the customer 

informs the user/gondolier of “his” choice golden coins pop–up on the map in 

order to help the user locate the correct destination area. The user simply has to 

take the customer to the correct area. Meanwhile, the user can freely enjoy the 

ride and the view. The ride takes about 2 minutes to be completed and for the 

whole duration we check the number of frames per second that are rendered. At 

the end of every phase of this experiment we save the highest number of FPs, the 

lowest number of FPs as well as the average number of FPs. Every user has to 

complete the same ride four times because we want to test the FPS results on four 

different sets of parameters.  

Set Foveal Central Cycle Periphery 

1 102
o
 0

 o
 0

 o
 

2 5
 o
 10

 o
 102

 o
 

3 10
 o
 20

 o
 102

 o
 

4 15
 o
 30

 o
 102

 o
 

                                                 
3
 Figure 3 was retrieved from the following site : https://baijia.baidu.com/s?old_id=762069 
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The first set of parameters indicates that the foveal cycle of the foveated rendering 

technique that is going to be applied will be 102
 o

. The Nvis SX 111 HMD has a 

field of view of 102
 o 

that means that the whole screen will be covered by the 

foveal cycle, which means that the result won’t be a foveated rendered result, but 

a full high resolution one. On the second set of parameters the algorithm will 

create a result where the Foveal cycle will cover 5
 o

, the central cycle (which is 

between the foveal and the periphery) will cover 10
 o

 and finally the periphery 

cycle will cover of course 102
 o

.  Sets 3 and 4 are created accordingly.  

The algorithm implemented achieves to reduce the number of pixels rendered by 

57 per cent. This reduction leads to a maximum increase of 18.3% and average 

increase of 7.4% in terms of FPS. 

1.2 Thesis structure 

In the following subchapter the framework that was followed is thoroughly 

explained.  

The 1
st
 chapter soon comes to an end and the 2

nd
 chapter is about to begin. The 2

nd
 

chapter has an introductory and educative purpose, in order to introduce the 

reader to the scientific fields that this thesis is seated and relevant. Scientific fields 

such as Virtual Environment, Virtual Reality, the human eye’s anatomy, eye and 

head-tracking software as well as the most popular game engines are discussed.  

The second chapter also includes a subchapter regarding the foveated rendering 

techniques and the methods commonly used for its implementation. It also 

contains a comparison of the technique implemented in this thesis with these 

techniques. 

The third chapter presents the software that was used to develop the application to 

be utilized for the experiments. A detailed description of the Unity 3D software 

platform is provided including the most important components of it, mainly 

focusing on its capabilities of programming geometry behaviors, UIs and 

integration for multiple hardware components. Moreover, the software use for the 

eye tracking and the head tracking devices is also presented. 

The User Interface (UI) as presented to the participant during the user trials is 

described in chapter number 4. As user interface we refer to the main menu scene 

created in order for the user to be able to choose his next action, and the 3D 

virtual scene that the user is immersed to. After loading the scene the user enters 

the virtual environment in which the user takes the role of a gondolier. Right 

when the game starts, the user meets his first customer approaching him slowly 

from his right side. When the customer boards the gondola, a message appears on 

the screen notifying the user about the customer’s desired destination. The user 

has to transfer the customer to the correct area. Everything that the participant is 
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able to see and interact with within both the virtual scene and the main menu 

scene is explained in detail. Furthermore, the way that the objects used were 

modeled and animated is contained in this chapter.  

The 5
th

 chapter focuses on the implementation process. In this chapter, we analyze 

the ways in which we meet the specifications of our hardware. In particular, we 

will explain how we achieve stereoscopy and how we generate the partially 

overlapping effect needed. This chapter also includes a detailed analysis of the 

communication between both the head tracker and the eye tracker with our 

application. Moreover, the foveated rendering technique that we created and the 

way we process the information received from the trackers are both explained in 

detail. 

The 6
th

 chapter describes the user trials that were made in order to check the 

accuracy of our eye-tracking software. More importantly, during these 

experimental procedures, we gather data regarding the FPS rates of the 

application, which will be discussed in the final chapter. Also, the procedure that 

was followed during these trials is described.  

Finally, a chapter is dedicated to a detailed discussion on the results that have 

emerged from our user trials. This chapter will contain not only the quantitative 

results but also the way that they were calculated and how they differ from the 

best to the worst case scenario.  
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Chapter 2 Background 

2.1 Virtual reality 

The definition of the term “virtual reality” comes, naturally, from the definitions 

for both ‘virtual’ and ‘reality’. The definition of ‘virtual’ is near and reality is 

what we experience as human beings. So the term ‘virtual reality’ basically means 

‘near-reality’. This could, of course, mean anything but it usually refers to a 

specific type of reality emulation. 

We humans, we know the world through our senses and perception systems. In 

school we all learned that we have five senses: taste, touch, smell, sight and 

hearing. These are however only our most obvious sense organs. The truth is that 

humans have many more senses than this, such as a sense of balance for example. 

These other sensory inputs, plus some special processing of sensory information 

by our brains ensures that we have a rich flow of information from the 

environment to our minds. 

Everything that we know about our reality comes by way of our senses. In other 

words, our entire experience of reality is simply a combination of sensory 

information and our brains sense-making mechanisms for that information. It 

stands to reason then, that if you can present your senses with made-up 

information, your perception of reality would also change in response to it. You 

would be presented with a version of reality that isn’t really there, but from your 

perspective it would be perceived as real. Something we would refer to as a 

virtual reality. 

So, in summary, virtual reality entails presenting our senses with a computer 

generated virtual environment that we can explore in some fashion. 

Virtual reality is the term used to describe a three-dimensional, computer 

generated environment which can be explored and interacted with by a person. 

That person becomes part of this virtual world or is immersed within this 

environment and whilst there, is able to manipulate objects or perform a series of 

actions. 
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2.1.1 History of virtual reality 

 
Figure 4: Battle of Borodino, 181. The beginning of VR4 

Early 19
th

 Century – Panoramic paintings 

By focusing more strictly on the scope of virtual reality as a means of creating the 

illusion that we are present somewhere we are not, then the earliest attempt at 

virtual reality is surely the 360-degree murals (or panoramic paintings) from the 

nineteenth century. These paintings were intended to fill the viewer’s entire field 

of vision, making them feel present at some historical event or scene. 

1838 – Stereoscopic photos & viewers 

In 1838 Charles Wheatstone’s research demonstrated that the brain processes the 

different two-dimensional images from each eye into a single object of three 

dimensions. Viewing two side by side stereoscopic images or photos through a 

stereoscope gave the user a sense of depth and immersion. The later development 

of the popular View-Master stereoscope (patented 1939), was used for “virtual 

tourism”. The design principles of the Stereoscope is used today for the popular 

Google Cardboard and low budget VR head mounted displays for mobile phones. 

1929 – Link Trainer the First Flight Simulator 

In 1929 Edward Link created the “Link trainer” (patented 1931) probably the first 

example of a commercial flight simulator, which was entirely electromechanical. 

It was controlled by motors that linked to the rudder and steering column to 

modify the pitch and roll. A small motor-driven device mimicked turbulence and 

disturbances. Such was the need for safer ways to train pilots that the US military 

bought six of these devices for $3500. In 2015 money this was just shy of $50 

000. During World War II over 10,000 “blue box” Link Trainers were used by 

over 500,000 pilots for initial training and improving their skills.  

                                                 
4
 Figure 4 was retrieved from the following site : https://www.vrs.org.uk/virtual-

reality/history.html 
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Figure 5: Link Trainer5 

1930s – Science fiction story predicted VR 

In the 1930s a story by science fiction writer Stanley G. Weinbaum (Pygmalion’s 

Spectacles) contains the idea of a pair of goggles that let the wearer experience a 

fictional world through holographics, smell, taste and touch. In hindsight the 

experience Weinbaum describes for those wearing the goggles are uncannily like 

the modern and emerging experience of virtual reality, making him a true 

visionary of the field. 

1950s – Morton Heilig’s Sensorama 

In the mid 1950s cinematographer Morton Heilig developed the Sensorama 

(patented 1962) which was an arcade-style theatre cabinet that would stimulate all 

the senses, not just sight and sound. It featured stereo speakers, a stereoscopic 3D 

display, fans, smell generators and a vibrating chair. The Sensorama was intended 

to fully immerse the individual in the film. He also created six short films for his 

invention all of which he shot, produced and edited himself. The Sensorama films 

were titled, Motorcycle, Belly Dancer, Dune Buggy, helicopter, A date with 

Sabina and I’m a coca cola bottle! 

                                                 
5
 Figure 5 was retrieved from Wikipedia 
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Figure 6: Sensorama6 

1960 – The first VR Head Mounted Display 

Morton Heilig’s next invention was the Telesphere Mask (patented 1960) and was 

the first example of a head-mounted display (HMD), albeit for the non-interactive 

film medium without any motion tracking. The headset provided stereoscopic 3D 

and wide vision with stereo sound. 

1961 Headsight – First motion tracking HMD 

In 1961, two Philco Corporation engineers (Comeau & Bryan) developed the first 

precursor to the HMD as we know it today – the Headsight. It incorporated a 

video screen for each eye and a magnetic motion tracking system, which was 

linked to a closed circuit camera. The Headsight was not actually developed for 

virtual reality applications (the term didn’t exist then), but to allow for immersive 

remote viewing of dangerous situations by the military. Head movements would 

move a remote camera, allowing the user to naturally look around the 

environment. Headsight was the first step in the evolution of the VR head 

mounted display but it lacked the integration of computer and image generation. 

1965 – The Ultimate display by Ivan Sutherland 

Ivan Sutherland described the “Ultimate Display” concept that could simulate 

reality to the point where one could not tell the difference from actual reality. His 

concept included: 

                                                 
6
 Figure 6 was retrieved from the following site: https://www.vrs.org.uk/virtual-

reality/history.html 
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 A virtual world viewed through a HMD and appeared realistic through 

augmented 3D sound and tactile feedback. 

 Computer hardware to create the virtual word and maintain it in real time. 

 The ability of users to interact with objects in the virtual world in a 

realistic way 

“The ultimate display would, of course, be a room within which the computer can 

control the existence of matter. A chair displayed in such a room would be good 

enough to sit in. Handcuffs displayed in such a room would be confining, and a 

bullet displayed in such a room would be fatal. With appropriate programming 

such a display could literally be the Wonderland into which Alice walked.” – Ivan 

Sutherland 

1968 – Sword of Damocles 

In 1968 Ivan Sutherland and his student Bob Sproull created the first VR / AR 

head mounted display (Sword of Damocles) that was connected to a computer and 

not a camera. It was a large and scary looking contraption that was too heavy for 

any user to comfortably wear and was suspended from the ceiling (hence its 

name). The user would also need to be strapped into the device. The computer 

generated graphics were very primitive wireframe rooms and objects. 

1969 – Artificial Reality 

In 1969 Myron Kruegere a virtual reality computer artist developed a series of 

experiences which he termed “artificial reality” in which he developed computer-

generated environments that responded to the people in it. The projects named 

GLOWFLOW, METAPLAY, and PSYCHIC SPACE were progressions in his 

research which ultimately led to the development of VIDEOPLACE technology. 

This technology enabled people to communicate with each other in a responsive 

computer generated environment despite being miles apart. 

1987 – Virtual reality the name was born 

Even after all of this development in virtual reality, there still wasn’t an all-

encompassing term to describe the field. This all changed in 1987 when Jaron 

Lanier, founder of the visual programming lab (VPL), coined (or according to 

some popularised) the term “virtual reality”. The research area now had a name. 

Through his company VPL research Jaron developed a range of virtual reality 

gear including the Dataglove (along with Tom Zimmerman) and the EyePhone 

head mounted display. They were the first company to sell Virtual Reality 

goggles (EyePhone 1 $9400; EyePhone HRX $49,000) and gloves ($9000). A 

major development in the area of virtual reality haptics. 

1991 – Virtuality Group Arcade Machines 
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We began to see virtual reality devices to which the public had access, although 

household ownership of cutting edge virtual reality was still far out of reach. The 

Virtuality Group launched a range of arcade games and machines. Players would 

wear a set of VR goggles and play on gaming machines with realtime (less than 

50ms latency) immersive stereoscopic 3D visuals. Some units were also 

networked together for a multi-player gaming experience. 

1992 – The Lawnmower Man 

The Lawnmower Man movie introduced the concept of virtual reality to a wider 

audience. It was in part based on the founder of Virtual Reality Jaron Lanier and 

his early laboratory days. Jaron was played by Pierce Brosnan, a scientist who 

used virtual reality therapy on a mentally disabled patient. Real virtual reality 

equipment from VPL research labs was used in the film and the director Brett 

Leonard, admited to drawing inspiration from companies like VPL. 

1993 – SEGA announce new VR glasses 

Sega announced the Sega VR headset for the Sega Genesis console in 1993 at the 

Consumer Electronics Show in 1993. The wrap-around protoype glasses had head 

tracking, stereo sound and LCD screens in the visor. Sega fully intended to 

release the product at a price point of about $200 at the time, or about $322 in 

2015 money. However, technical development difficulties meant that the device 

would forever remain in the prototype phase despite having developed 4 games 

for this product. This was a huge flop for Sega. 

1995 – Nintendo Virtual Boy 

The Nintendo Virtual Boy (originally known as VR-32) was a 3D gaming console 

that was hyped to be the first ever portable console that could display true 3D 

graphics. It was first released in Japan and North America at a price of $180 but it 

was a commercial failure despite price drops. The reported reasons for this failure 

were a lack of colour in graphics (games were in red and black), there was a lack 

of software support and it was difficult to use the console in a comfortable 

position. The following year they discontinued its production and sale. 

1999 – The Matrix 

In 1999 the Wachowski siblings’ film The Matrix hits theatres. The film features 

characters that are living in a fully simulated world, with many completely 

unaware that they do not live in the real world. Although some previous films had 

dabbled in depicting virtual reality, such as Tron in 1982 and Lawnmower Man in 

1992, The Matrix has a major cultural impact and brought the topic of simulated 

reality into the mainstream. 

Virtual reality in the 21st century 
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The first fifteen years of the 21st century has seen major, rapid advancement in 

the development of virtual reality. Computer technologies, especially small and 

powerful mobile technologies, have exploded while prices are constantly driven 

down. The rise of smart phones with high-density displays and 3D graphics 

capabilities has enabled a generation of lightweight and practical virtual reality 

devices. The video game industry has continued to drive the development of 

consumer virtual reality unabated. Depth sensing cameras sensor suites, motion 

controllers and natural human interfaces are already a part of daily human 

computing tasks. 

Recently companies like Google have released interim virtual reality products 

such as the Google Cardboard, a DIY headset that uses a smart phone to drive it. 

Companies like Samsung have taken this concept further with products such as 

the Galaxy Gear, which is mass produced and contains “smart” features such as 

gesture control. 

Developer versions of final consumer products have also been available for a few 

years, so there has been a steady stream of software projects creating content for 

the immanent market entrance of modern virtual reality. 

2.2 How is virtual reality achieved? 

2.2.1 Technology 

Today virtual reality is usually implemented using computer technology. There 

are a range of systems that are used for this purpose, such as Virtual glasses or 

goggles, data gloves, HMDs, data suits, workbenches, joysticks, keyboards, but 

also haptic devices which enable the sense of touch when manipulating an object 

in the virtual environment (VE). These are used to actually stimulate our senses 

together in order to create the illusion of reality. 

2.2.2 Immersion 

This is more difficult than it sounds, since our senses and brains are evolved to 

provide us with a finely synchronized and mediated experience. If anything is 

even a little off we can usually tell. 

Immersion into virtual reality is a perception of being physically present in a non-

physical world. The perception is created by surrounding the user of the VR 

system in images, sound or other stimuli that provide an engrossing total 

environment. 

To create a sense of full immersion, the 5 senses (sight, sound, touch, smell, taste) 

must perceive the digital environment to be physically real. Immersive technology 

can perceptually fool the senses through: 

 Panoramic 3D displays (visual) 
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 Surround sound acoustics (auditory) 

 Haptics and force feedback (tactile) 

 Smell replication (olfactory) 

 Taste replication (gustation) 

The level of immersion provided by a system is determined by the following 

“constraints”: the ability of the technology, the ability of the senses, and 

perception, which is made through interpretation. Two are the main components 

of virtual reality immersion, depth of and breadth of information. The depth of 

information is the amount and quality of data the user is given during interacting 

with the virtual environment. This can refer to the display resolution, the 

complexity of graphics, and the clarity of audio output. Breadth of information is 

the number of sensory dimensions that are presented. To have a wide breadth of 

information, the virtual reality immersion must stimulate all the senses. Virtual 

reality immersion experiences prioritize audio and visual components over the 

other sensory factors. 

The most out of immersion is gained when the user explores life-size VR 

environments and thus forgets about his real world scenario, forgets his present 

identity, situation and life and immerses him in a world of imagination, adventure 

and exploration. He gets more focused about his newly created identity inside the 

VR world. 

2.2.3 Immersive environment 

An immersive digital environment is an artificial, interactive, computer-created 

scene or "world" within which a user can immerse himself. 

Immersive digital environments could be thought of as synonymous with virtual 

reality, but without the implication that actual "reality" is being simulated. An 

immersive digital environment could be a model of reality, but it could also be a 

complete fantasy user interface or abstraction, as long as the user of the 

environment is immersed within it. The definition of immersion is wide and 

variable, but here it is assumed to mean simply that the user feels like they are 

part of the simulated "universe". 

2.3 Equipment  

2.3.1 The nvis SX111 

Since this project was based on a HMD we will show emphasis on that VR input 

device. As an input device or sensor we refer to those devices that capture the 

participant’s actions and send this information to the computer/system which is in 

charge of the interactive simulation. An input device is considered as a virtual 

input device or VR gear when they use the paradigm of the implicit interaction or 

they give 3D input to the system. 
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A typical HMD has one (monocular HMD) or two (binocular HMD) small 

displays, with lenses and semi-transparent mirrors embedded in eyeglasses, a 

visor, or a helmet. Mostly all HMDs consist of a screen for individual eye and that 

is what creates a sense any images the user looks at has some depth. The display 

units are miniaturized and may include cathode ray tubes (CRT), liquid crystal 

displays (LCDs), liquid crystal on silicon (LCos), or organic light-emitting diodes 

(OLED). Some vendors employ multiple micro-displays to increase total 

resolution and field of view. This is included to make sure both audio and video 

output is received. Most HMDs are attached to the CPU of the VR systems 

through cables but also there are wireless systems. However wireless systems do 

not have the eligibility to avoid lag. 

The NVIS SX111 is the Head Mounted Display (HMD) used in this thesis. One of 

its significant characteristics is the wide field-of-view of a total 102
o
 for both 

eyes. A 3-degree of freedom (rotational) head-tracker was attached to this HMD 

acquiring the user’s head rotational direction. The HMD makes use of partial 

overlap stereoscopic method in order to produce stereoscopic vision. 
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Figure 7: The NVisorTM SX111 HMD7 

2.3.2 State of the art HMDs 

FOVE is the first virtual reality headset that utilizes eye tracking. It was created 

by a Tokyo-based startup founded by Yuka Kojima (CEO) and Lochiainn Wilson 

(CTO) and was announced in 2014. FOVE's technology uses infrared to track eye 

movements with accuracy (less than 1 degree) and low latency. The sensors 

within the device track the user's pupils. It allows the user to target and interact 

with objects by making eye contact with them.  

                                                 
7
 Figure 7 was retrieved from the following site : https://est-kl.com/manufacturer/nvis/nvisor-

sx111.html 
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Figure 8: F0VE 8 

 
Figure 9: F0VE Specs9 

2.3.3 FOVE vs. HTC Vive, Oculus Rift and PlayStationVR 

Compared to the 2160×1200 displays of the HTC Vive and Oculus Rift, the 

2560×1440 display of the FOVE 0 has 42% more pixels, on par with Samsung’s 

Gear VR headset. Unfortunately the display only has a refresh rate of 70Hz, 

which comes in significantly below the 90Hz of the Rift and Vive (not to mention 

the 120Hz of PlayStation VR), and slightly lower than the 75Hz of Oculus’ Rift 

DK2 development kit. A lower refresh rate means more latency and less smooth 

motion inside the headset. However, with the success of Gear VR, even with its 

                                                 
8
 Figure 8 and 

9
 Figure 9 were retrieved from the following site : https://www.getfove.com 
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60Hz refresh rate, 70Hz ought to work fine as a starting point for FOVE 0, though 

it’s an area we expect to see improve in future versions of the headset. 

 
Figure 10: F0VE10 

 

 
Figure 11: HTC Vive - OCULUS Rift - PlayStasion VR11 

2.3.4 SMI’s 250Hz eye tracking 

At the CES 2016, SensoMotoric Instruments (SMI) demoed a new 250 Hz eye 

tracking system and a working foveated rendering solution. It resulted from a 

partnership with camera sensor manufacturer Omnivision who provided the 

camera hardware for the new system. 

                                                 
10

 Figure 10 was retrieved from the following site: https://www.getfove.com 
11

 Figure 11 was retrieved from the following site: Google.com 

https://en.wikipedia.org/wiki/OmniVision_Technologies


XX:32                                                                                                                         N. Marianos 

 

Figure 12: SMI Logo12 

“Getting over the 240Hz mark was important,” says Villwock 
13

, “it allows us to 

track the saccadic motion of the eye.”  

Saccadic motion being the unnoticed and involuntary motion of your eye as it 

moves between planes of focus. 

2.4 The human eye 

“The eye is the window of the soul... The eye is the window of the human body 

through which it feels its way and enjoys the beauty of the world.” (Da Vinci, 1452-

1519) 

It is obvious that our visual system is an essential human factor to be taken into 

account when designing VR hardware and software. The Eye has been called the 

most complex organ in our body. It accommodates to changing lighting 

conditions and focuses light rays originating from various distances from the eye. 

Light is converted to impulses and conveyed to the brain where an image is 

perceived. 

                                                 
12

 Figure 12 was retrieved from the following site: https://uploadvr.com/smi-hands-on-250hz-eye-

tracking/ 
13

 Christian Villwock SensoMotoric Instruments’ director of OEM technology 



Foveated Rendering Algorithm                                                                                                XX:33 

2.4.1 Anatomy of the Eye 

In order to understand how eye tracking works, we must understand the human 

eye’s anatomy, its components and operation. The eye is made up of three coats, 

enclosing three transparent structures. The outermost layer, known as the fibrous 

tunic, is composed of the cornea and sclera. The middle layer, known as the 

vascular tunic or uvea, consists of the choroid, ciliary body, and iris. The 

innermost is the retina, which gets its circulation from the vessels of the choroid 

as well as the retinal vessels, which can be seen in an ophthalmoscope.  

Within these coats are the aqueous humor, the vitreous body, and the flexible lens. 

The aqueous humor is a clear fluid that is contained in two areas: the anterior 

chamber between the cornea and the iris, and the posterior chamber between the 

iris and the lens. The lens is suspended to the ciliary body by the suspensory 

ligament (zonule), made up of fine transparent fibers. The vitreous body is a clear 

jelly that is much larger than the aqueous humor present behind the lens, and the 

rest is bordered by the sclera, zonule, and lens. They are connected via the pupil. 

 
Figure 13: The human eye14 

The cornea is the transparent, outer "window" and primary focusing element of 

the eye. The outer layer of the cornea is known as epithelium. Its main job is to 

protect the eye. The epithelium is made up of transparent cells that have the 

ability to regenerate quickly. The inner layers of the cornea are also made up of 

transparent tissue, which allows light to pass.  

                                                 
14

 Figure 13 was retrieved from the search engine Google 
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The pupil is the dark opening in the center of the colored iris that controls how 

much light enters the eye. The colored iris functions like the iris of a camera, 

opening and closing, to control the amount of light entering through the pupil.  

The part of the eye immediately behind the iris that performs delicate focusing of 

light rays upon the retina, is called the lens. In persons under 40, the lens is soft 

and pliable, allowing for fine focusing from a wide variety of distances. For 

individuals over 40, the lens begins to become less pliable, making focusing upon 

objects near to the eye more difficult. This is known as presbyopia.  

Retina is the membrane lining the back of the eye that contains photoreceptor 

cells. These photoreceptor nerve cells react to the presence and intensity of light 

by sending an impulse to the brain via the optic nerve. In the brain, the multitude 

of nerve impulses received from the photoreceptor cells in the retina are 

assimilated into an image.  

The fovea is the most central part of the retina. This area is responsible for the 

clearest vision with sharpest colors and details. 

2.4.2 Vision: the eye’s functionality 

The human eye works much like a digital camera. Light rays reflected off an 

object enter the eye through a transparent layer of tissue known as the cornea. As 

the eye’s main focusing element, the cornea takes widely diverging rays of light 

and bens them through the pupil, the dark, round opening in the center of the 

colored iris.  

The lens of the eye is located immediately behind the pupil. The purpose of the 

lens is to make the delicate adjustments in the path of the light rays in order to 

bring the light into focus upon the retina, the membrane containing photoreceptor 

nerve cells that lines the inside back wall of the eye. The central part of the retina 

is named the macula and the most central part of the macula is the fovea. The 

fovea is the area at which we have the sharpest vision. When looking directly at 

an object, the light form it is projected onto the fovea. Although light is admitted 

through the pupil it is attenuated by the iris, which controls the level of light 

falling on the retina. The lens of the eye changes its shape to focus the light it 

passes through towards the retina. The outer, white part, of the eye is the sclera. 

The photoreceptor nerve cells of the retina change light rays into electrical 

impulses and send them through the optic nerve to the brain where an image is 

perceived. 



Foveated Rendering Algorithm                                                                                                XX:35 

 
Figure 14: Parts of the human eye 

The entire eye is rotated by six muscles allowing it to move (up, down, side to 

side, rotate) with great flexibility. An inner muscle, the Medial Rectus, an outer, 

the Lateral Rectus, an upper, the Superior Rectus, a lower, the Inferior Rectus, an 

upper and running obliquely, the Superior Oblique, and a lower and running 

obliquely , the Inferior Oblique. 

 
Figure 15: Muscles of the human eye15 

2.4.3 Vision types 

There are two types of vision, binocular and monocular vision. Binocular is the 

vision in which both eyes are used together and on the other hand, monocular 

vision is the vision in which each eye is used separately.  

                                                 
15

 Both figures 14 & 15 were retrieved from the search engine Google 
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Humans have a maximum horizontal FoV of approximately 180-190 degrees with 

both eyes, 120 degrees that make the binocular FoV (seen by both eyes) flanked 

by two monocular fields (seen by only one eye) of 40 degrees. One basic 

advantage of binocular vision is that it gives stereopsis; in which binocular 

disparity (or parallax) provided by the two eyes’ different positions on the head 

precise depth perception. As for the vertical FoV, it is approximately 120-130 

degrees. 

 

Figure 16: Visual Limits16 

Stereopsis is used to refer to the perception of depth and 3-dimensional structure 

obtained on the basis of visual information deriving from two eyes by individuals 

with normally developed binocular vision. Binocular vision results in two slightly 

different images projected to the retinas of the eyes because of the different lateral 

positions the eyes are located on the head. These positional differences are 

referred as binocular disparities. These disparities are processed by the brain to 

yield depth perception. While binocular disparities are naturally present when 

viewing a real 3-dimensional scene with two eyes, they can also be simulated by 

artificially presenting two different images separately to each eye using the 

method of stereoscopy. 

 

                                                 
16

 Figure 16 was retrieved from Google 
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Figure 17: Binocular Vision17 

 

On the other hand using the eyes separately, monocular vision, the FoV is 

increased while depth perception is limited. Monocular vision implies that only 

one eye is receiving optical information, the other one is closed. The perception of 

depth and 3-dimensional structure is, however, possible with information visible 

from one eye alone, such as differences in object size and motion parallax 

(differences in the object over time with observer movement), though the 

impression of depth in these cases is often not as vivid as the obtained from 

binocular disparities. 

 

 
Figure 18: Monocular Vision & Depth18 

Therefore, the term stereopsis can refer specifically to the unique impression of 

depth associated with binocular vision; what is colloquially referred to as “seeing 

in 3D”. 

                                                 
17

 Figure 17 was retrieved from Google 
18

 Figure was retrieved from Google 
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2.4.4 Eye movement and control 

As eye movement both voluntary and involuntary movement of the eyes that help 

acquiring, fixating and tracking visual stimuli are considered. The human eye has 

numerous parts that must be controlled. Below, there will be a simple reference of 

the most major types of eye movements and only the most commonly used in past 

research and in this thesis will be described. The main types of eye movements 

are the following saccade, pursuit, smooth, compensatory, and blink. 

The main measurements used in eye-tracking research are fixations and saccades.  

A saccade is a rapid eye movement, a jump, which is usually conjugate and under 

voluntary control but ballistic; once they are initiated, the path of motion and 

destination cannot be changed. It takes about 100 to 300 milliseconds to initiate a 

saccade, i.e. from the time a stimulus is presented till the eye starts moving, and 

another 30 to 120 milliseconds to complete the saccade. The purpose of these 

movements is to bring images of particular areas of the visual world to fall onto 

the fovea which is only about 1-2 degrees of vision. Saccades are therefore a 

major instrument of selective visual attention. It is often convenient to consider 

both that a saccadic eye movement always occurs in a straight line and also that 

we do not ‘see’ during these movements. (Sacade - Wikipedia, 2018) 

Fixation is the moment, in average 218 milliseconds, when the eyes are relatively 

stationary, between saccades, taking in or encoding information. Fixation duration 

provides an index of the speed with which information is processed. Increasing 

fixation duration is associated with tasks that require more detailed visual 

analysis. Frequency of fixations often serves as a measure of sampling quantity. 

They can reveal the amount on processing being applied to objects and therefore 

studying them can tell us about the complexity or salience of an object in an 

interface. (Wikipedia, Fixation - Wikipedia, 2017) 

A scanpath describes a complete saccade-fixate-saccade sequence. In a search 

task, for example, an optimal scan path is viewed as being a straight tile to a 

desired target, with relatively short fixation duration at the target. For both long-

lasting and long scanpaths, when detected, less efficient scanning is indicated. 

Also, comparing saccade times to fixating times helps in research.  

Blinking is the automatic rapid closing of the eyelid. If detected can be used as an 

input device, for example as a mouse click. Blink rate can be used as an index of 

cognitive workload. A lower blink rate is assumed to indicate higher workload 

and a higher blink rate fatigue. However, blink rate may be determined by other 

factors such as ambient light levels. (Wikipedia, Blinking, 2017) 

Drifts are slow movements away from a fixation point. Flicks or micro saccades 

reposition the eye on the target. Predominantly these are corrective movements, 



Foveated Rendering Algorithm                                                                                                XX:39 

correcting for the off-center foveal position produced by a drift eye movement. 

Irregular slow movements of the eye also occur. High frequency tremor causes 

the image of an object to constantly stimulate cells in the fovea. 

 

2.4.5 Perception in an immersive virtual environment 

Perception of our immediate environment is not based on what we actually see or 

what is there. It is based upon little actual sensory information and is for the most 

part illusory. Theoretically everything we ‘see’ around us exists as a model in our 

minds. We rely upon our perceptive system so much that it enables us to be 

fooled.  

When immersed in a VE our compelling senses are presented with an alternative 

view of our local environment whilst the real world is shut out. Our perceptual 

system is trained over many years to recognize our everyday reality, thus has no 

experience to distinguish it from the VR. An IVE simply provides cues that are a 

sufficient match for our inner conceptual models of what it is to be in an 

environment. For instance, stage magicians rely upon this fact by providing basic 

cues that purposely misinform our perceptual system and leave us wondering how 

we have apparently jumped from one world-state to another. Just as when we see 

an illusion and are able to accept the perhaps ‘odd’ perspective that is implied, 

when we view an IVE we can accept the virtual world perspective implied over 

the real world. 

 

2.5 Eye tracking 

Eye tracking is a technique whereby an individual’s eye movements are measured 

so that the researcher knows both the point of gaze (“where a person is looking”) 

at any given time and the sequence in which their eyes are shifting from one 

location to another. Gaze is the externally-observable indicator of human visual 

attention, and many have attempted to record it, dating back to the late eighteenth 

century [14]. Today, a variety of solutions exist (many of them commercial) but 

all suffer from one or more of the following: high cost (e.g., Tobii X2-60), custom 

or invasive hardware (e.g., Eye Tribe, Tobii EyeX) or inaccuracy under real-

world conditions. (Krafka, Khosla, Kellnhofer, & Kannan, 2016) 

 Eye tracking can be used in two main ways, to improve UIs and to understand 

human behavior. Tracking people’s eye movements can help Human Computer 

Interaction (HCI) researchers understand visual and display-based information 

processing and the factors that may impact upon the usability of system 

interfaces. In this way, eye-movement recordings can provide an objective source 

of interface-evaluation data that can inform the design of improved interfaces. 
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Eye movements can also be captured and used as control signals to enable people 

to interact with interfaces directly without the need for mouse or keyboard input, 

which can be a major advantage for certain populations of users such as disabled 

individuals. 

Eye trackers are used in visual system research, in psychology, in cognitive 

linguistics and in product design. There are a number of methods for measuring 

eye movement. The most popular variant uses video images from which the eye 

position is extracted. Other methods use search coils or are based on the electro-

oculography. (Bruneau, Sasse, & McCarthy, 2002) 

The HMD employed in this research included embedded binocular eye tracking 

by Arrington Research. 

2.5.1 History & Methods  

Many methods have been used for eye tracking. Eye trackers measure rotations of 

the eye in several ways, but principally they fall into three categories:  

One type uses an attachment to the eye, such as a special contact lens with an 

embedded mirror or magnetic field sensor, and the movement of the attachment is 

measured with the assumption that it does not slip significantly as the eye rotates. 

Measurements with tight fitting contact lenses have provided extremely sensitive 

recordings of eye movement, and magnetic search coils are the method of choice 

for researchers studying the dynamics and underlying physiology of eye 

movement.  

The second broad category uses some non-contact, optical method for measuring 

eye motion. Light, typically infrared, is reflected from the eye and sensed by a 

video camera or some other specially designed optical sensor. The information is 

then analyzed to extract eye rotation from changes in reflections. Video based eye 

trackers typically use the corneal reflection (the first Purkinje image) and the 

center of the pupil as features to track over time. A more sensitive type of eye 

tracker, the dual-Purkinje eye tracker, uses reflections from the front of the cornea 

(first Purkinje image) and the back of the lens (fourth Purkinje image) as features 

to track. A still more sensitive method of tracking is to image features from inside 

the eye, such as the retinal blood vessels, and follow these features as the eye 

rotates. Optical methods, particularly those based on video recording, are widely 

used for gaze tracking and are favored for being non-invasive and inexpensive.  

The third category uses electric potentials measured with electrodes placed around 

the eyes. The eyes are the origin of a steady electric potential field, which can also 

be detected in total darkness and if the eyes are closed. It can be modeled to be 

generated by a dipole with its positive pole at the cornea and its negative pole at 

the retina. The electric signal that can be derived using two pairs of contact 

electrodes placed on the skin around one eye is called Electrooculogram (EOG). 
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If the eyes move from the center position towards the periphery, the retina 

approaches one electrode while the cornea approaches the opposing one. This 

change in the orientation of the dipole and consequently the electric potential field 

results in a change in the measured EOG signal. Inversely, by analyzing these 

changes in eye movement can be tracked. Due to the discretisation given by the 

common electrode setup two separate movement components – a horizontal and a 

vertical – can be identified. A third EOG component is the radial EOG channel, 

which is the average of the EOG channels referenced to some posterior scalp 

electrode. This radial EOG channel is sensitive to the saccadic spike potentials 

stemming from the extra-ocular muscles at the onset of saccades, and allows 

reliable detection of even miniature saccades. (Wikipedia, Eye tracking, 2017) 

The Eye-tracker from Arrington Research, Inc. that was used in this thesis is 

based on an optical method and relies on two infrared video cameras for the 

estimation of eye motion and position by detecting saccades, fixations, drifts. 

2.6 Rendering 

Rendering or image synthesis is the automatic process of generating a 

photorealistic or non-photorealistic image from a 2D or 3D model or models in 

what collectively could be called a scene file by means of computer programs. A 

scene file contains objects in a strictly defined language or data structure; it would 

contain geometry, viewpoint, texture, lighting, and shading information as a 

description of the virtual scene. The data contained in the scene file is then passed 

to a rendering program to be processed and output to a digital image or raster 

graphics image file.  

Though the technical details of rendering methods vary, the general challenges to 

overcome in producing a 2D image from a 3D representation stored in a scene file 

are outlined as the graphics pipeline along a rendering device, such as a GPU. A 

GPU is a purpose-built device able to assist a CPU in performing complex 

rendering calculations. If a scene is to look relatively realistic and predictable 

under virtual lighting, the rendering software should solve the rendering equation. 

The rendering equation doesn't account for all lighting phenomena, but is a 

general lighting model for computer-generated imagery. 'Rendering' is also used 

to describe the process of calculating effects in a video editing program to 

produce final video output. 

Rendering is one of the major sub-topics of 3D computer graphics, and in practice 

is always connected to the others. In the graphics pipeline, it is the last major step, 

giving the final appearance to the models and animation. With the increasing 

sophistication of computer graphics since the 1970s, it has become a more distinct 

subject. 
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Figure 19 : A variety of rendering techniques applied to a single 3D scene19 

2.6.1 Real time rendering 

Rendering has uses in architecture, video games, simulators, movie or TV visual 

effects, and design visualization, each employing a different balance of features 

and techniques. As a product, a wide variety of renderers are available. Some are 

integrated into larger modeling and animation packages, some are stand-alone, 

some are free open-source projects. On the inside, a renderer is a carefully 

engineered program, based on a selective mixture of disciplines related to: light 

physics, visual perception, mathematics, and software development. 

In the case of 3D graphics, rendering may be done slowly, as in pre-rendering, or 

in real time. Pre-rendering is a computationally intensive process that is typically 
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 Figure 20 was retrieved from Wikipedia 
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used for movie creation, while real-time rendering is often done for 3D video 

games which rely on the use of graphics cards with 3D hardware accelerators. 

Rendering for interactive media, such as games and simulations, is calculated and 

displayed in real time, at rates of approximately 20 to 120 frames per second. In 

real-time rendering, the goal is to show as much information as possible as the 

eye can process in a fraction of a second. The primary goal is to achieve an as 

high as possible degree of photorealism at an acceptable minimum rendering 

speed (usually 24 frames per second, as that is the minimum the human eye needs 

to see to successfully create the illusion of movement).  

2.6.2 Foveated rendering 

Foveated rendering is an upcoming graphics rendering technique which uses an 

eye tracker integrated with a virtual reality headset to reduce the rendering 

workload by greatly reducing the image quality in the peripheral vision ( outside 

of the zone gazed by the fovea).  

Ideally, the graphics card would be able to render at full display resolution where 

the gaze is centered and continuously decrease resolution outward from there. 

However, this is extremely difficult, meaning that it needs extreme amounts of 

process power, to be achieved.  

A more efficient method on current graphics hardware is to approximate this idea 

by rendering several overlapped rectangular regions, called eccentricity layers. 

All except the outer eccentricity layer cover only part of the total display area. 

After all layers are rendered they are interpolated to the final display resolution 

and finally blended together. 

 

2.6.3 Research on foveated rendering 

Since the topic discussed is very recently developed by big companies as 

NVIDIA, SMI, and Google, the code that they are using is not to be accessed by 

the public. The research that has been done focuses on presentations and papers 

submitted on two of the biggest technological conferences in the world; the IEEE 

and ACM conferences. 

2.6.4 Techniques of Foveated Rendering 

One of the first techniques of foveated rendering was implemented by (Levoy & 

Whitaker, 1990) which varied image resolution as a function of the Euclidean 

distance from the fovea’s fixation point. To achieve the foveated result, discrete 

levels of detail (LODs) were used. Another technique, proposed by (Ohshima, 

Yamamoto, & Tamura, 1996), was using pre-computed object meshes at varying 

level of details. More than ten years later, (Murphy, Duchowski, & Tyrrell, 2009) 

designed a foveation method based on Contrast Sensitivity Function (determining 
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the contrast detection thresholds as a function), and varied image degradation 

according to the respective angular frequency, without modifying underlying 

scene geometry. Recently, (Guenter B. , Finch, Drucker, Tan, & Snyder, 2012) 

used three layers that include a different resolution and blended these layers to 

provide a high-quality foveated rendering result. (Swafford, Iglesias-Guitian, 

Koniaris, & Moon, 2016). 

For other experiments, techniques that are using sampling maps have been used. 

Sometimes the sampling maps get updated before every frame depending on the 

current eye gaze. It should be noted that the general concept of using a sampling 

map, either static or dynamic, requires a rendering architecture in which the 

amount of supersampling can be chosen on a per-pixel level (Pohl, Zhang, & 

Bulling, 2016). 

Another way to achieve foveated rendering is by using ray-based methods. Ray-

based methods allow for fully adaptive sampling of the image plane. Therefore, it 

is possible to dynamically adjust the sampling probability of each individual pixel 

by accounting for its angular distance to the user’s gaze. This yields a decreased 

coverage of the image with pixel information towards the outer regions, making it 

necessary to fill in the gaps. To do so, it is necessary to save the last image 

produced in order to be able to process parts of it to fill in the gaps of the new 

image (Roth, Weier, Hinkenjann, Li, & Slusallek, 2016). 

Additionally, in another approach, (Swafford, Cosker, & Mitchell, 2015) used two 

different layers one for the foveal rendering (around the user’s gaze) and one for 

the peripheral rendering. On this experiment the foveal diameter was rendered at 

approximately ¼ of the screen. Despite the high system latency the algorithm ran 

at nearly 24.3 FPS while the scene without the foveation algorithm renders at 14 

FPS on 4K UHD. 

A different technique renders three different image layers with different sampling 

rates. The three layers are then magnified to display resolution and smoothly 

composited. An additional code was needed in this technique to minimize 

twinkling artifacts in the lower-resolution layers. (Guenter B. , Finch, Drucker, 

Tan, & Snyder) 

Another technique which has been widely adopted within the graphics industry is 

Tessellation. Geometry tessellation is a vertex processing stage that adaptively 

subdivides coarser geometry patches on-the-fly into smaller geometric primitives 

to generate nicer and smooth-looking details. (Swafford, Iglesias-Guitian, 

Koniaris, & Moon, 2016). In order to determine the appropriate level of 

tessellation, if a tile falls within either the foveal or peripheral field of view, the 

level of tessellation is set statically to the appropriate level. If the tile falls 

between the two regions (on the blending border) the level of tessellation is 

linearly interpolated between the two levels. This method is presented in the 
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image below, in which the inner circle is the foveal region, between circles is the 

inter-regional blending, and outside the circle is the peripheral region. 

 
Figure 20: Wireframe view of the foveated Tessellation method 

In the case of 360 degrees of immersive virtual reality content, the method that 

was originally developed by (Policarpo & Oliveira, 2006), is using different 

number of per-pixel ray-casting steps across the field of view depending on the 

depth layer detected. In case of too low number of steps many dis-occlusion errors 

occur. But since those pixels are placed in the peripherally field of view they are 

unnoticed by the user and provide high performance (Swafford, Iglesias-Guitian, 

Koniaris, & Moon, 2016). 

2.6.5 Comparison with our technique 

 

After describing the various techniques used in the past to produce a foveated 

rendering result, it is useful to compare these techniques with the technique 

applied in this thesis. 

In our approach, the desired foveated rendering result is produced by changing the 

resolution in which we render the scene based on the Euclidean distance from the 

fovea’s fixation point. In order not to render each pixel in a different resolution 

we are dividing the screen into three distinct layers. The rendering resolution of 

each pixel depends on the layer in which it belongs to. In other words, our 

technique is a combination of the techniques implemented by (Levoy & Whitaker, 

1990) and (Guenter B. , Finch, Drucker, Tan, & Snyder, 2012).  

Although we did consider using pre-computed object meshes at varying level of 

details like (Ohshima, Yamamoto, & Tamura, 1996), when we implemented the 

technique, our scene’s rendering latency increased dramatically. Αs a result, this 

method was excluded. The same problem did emerge when we tried to sample our 

scene using rays. After carefully studying the results of (Roth, Weier, Hinkenjann, 

Li, & Slusallek, 2016) research, the idea of being able to dynamically adjust the 

sampling probability of each individual pixel by accounting for its angular 

distance to the user’s gaze was very tempting. Unfortunately, this approach 
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needed high computational power and would not run on a standard PC. Our goal 

was that the foveated rendering technique proposed would run on a mid-range PC. 

Even though we could not implement the technique that (Roth, Weier, 

Hinkenjann, Li, & Slusallek, 2016) implemented, we did create 4 different 

versions of our algorithm just like they did. Each version of the algorithm had a 

different set of parameters, which in our case, defined the size of the three 

rendering layers. By doing so, we were able to compare the performance benefits 

in terms of FPS provided by our foveated rendering technique by adjusting the 

foveal layer’s dimensions to zero, small, medium, and large. Setting the foveal 

layer’s dimension to zero is equivalent to rendering the scene at full resolution. 

 



Chapter 3 Software architecture and development  

3.1 Game engines 

A game engine is a software framework designed for the creation and 

development of video games. Developers use them to create games for consoles, 

mobile devices and personal computers. The core functionality typically provided 

by a game engine includes a rendering engine (renderer) for 2D or 3D graphics, a 

physics engine, a collision detection (and collision response) system, sound, 

scripting, animation, artificial intelligence, networking, streaming, memory 

management, threading, localization support, scene graph, and may include video 

support for cinematics. The process of game development is often economized, in 

large part, by reusing/adapting the same game engine to create different games, or 

to make it easier to "port" games to multiple platforms. 

 
Figure 21: Parts of a Game Engine20 

The beauty and power of game engines, is that they speed-up the development 

process, by providing a suite of visual development tools, reusable software 

components and simplification of frequently used tools, elements and processes. 

Game Engines are usually built upon one or multiple rendering application 

programming interfaces (APIs), such as Direct3D or OpenGL which provide a 

software abstraction of the graphics processing unit (GPU). 

These APIs are commonly used to interact and communicate with the GPU, to 

achieve hardware-accelerated rendering. 

Modern game engines are some of the most complex applications written, which 

is the result of years and years of improvements, experience and development. 

Nowadays they often feature dozens of finely tuned systems interacting to ensure 

a precisely controlled user experience. The continued evolution of game engines 

has created a strong separation between rendering, scripting, artwork, and level 
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design. It is now common, for example, for a typical game development team to 

have several times as many artists as actual programmers.  

Furthermore, due to the constant growth of the Smartphone application market 

and increasing competition, popular high-end Game Engines are proving to be a 

precious tool for developers worldwide, to bring their ideas and games to life, in 

as many platforms as possible. (Wikipedia, Game Engine, 2018) 

3.2 Popular game engines 

It is easy to pinpoint three game engines that stand out from the rest, mostly 

because of their popularity and the fact that they are free to use.  

Unreal Engine: Unreal Engine 4 is a complete suite of development tools 

made for anyone working with real-time technology. From enterprise applications 

and cinematic experiences to high-quality games across PC, console, mobile, VR 

and AR, Unreal Engine 4 gives you everything you need to start, ship, grow and 

stand out from the crowd. A world-class toolset and accessible 

workflows empower developers to quickly iterate on ideas and see immediate 

results without touching a line of code, while full source code access gives 

everyone in the Unreal Engine 4 community the freedom to modify and extend 

engine features. (Game Engine Tecnhology by UE, 2018) 

Unity3D: Unity 3D, initially released on 2005, is a flexible and powerful 

development platform for creating high quality 2D and 3D games. Emphasizing 

on portability, Unity currently supports over 20 platforms, including PCs, 

consoles, mobile devices (iOS and Android) and websites. Additionally, many 

settings can be configured for each platform. As a result, Unity can detect the best 

variant of graphic settings for the hardware or platform the game is running, thus 

optimizing performance and sacrificing visual quality if necessary. Apart from its 

next-generation graphical capabilities, Unity also comes with an integrated 

physics engine (Nvdias PhysX). Much like Unreal Engine, Unity offers 

developers an Asset Store to buy re-usable content and assets for use in their 

project. To sum up, due to its ability to efficiently target multiple platforms at 

once and user friendly environment, this game engine is an ideal choice for a 

large portion of developers. 

CryEngine: CryEngine is a game engine developed by game developer Crytek, 

which has been used in all of their titles. It is known for its ability to produce 

stunning, eye-catching graphics and visuals, featuring advanced shader and 

lightning systems. Because of this, CryEngine clearly targets only powerful PCs 

and high-end consoles. It comes with VR support and a large amount of advanced 

visual features, tools, audio/physics systems and character and animation systems. 

(CryEngine, 2018) 
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3.2.1 Choosing the right engine 

Unreal Engine and Unity are currently ahead of the competition as the two most 

popular game engines available to the public. This is due to the fact that they both 

succeed in providing high-end graphics, a large variety of usable tools, great 

support for platforms and devices, without compromising usability and efficiency. 

It is important to note that these 2 Game Engines offer a large community 

support, which is also something that has to be considered when choosing the 

right Game Engine. CryEngine is also great and powerful engine with remarkable 

capabilities. However its complicated structure and smaller community excluded 

it from our consideration. In conclusion, taking into account the advantages and 

disadvantages of each engine, Unity proved to be the ideal choice for this project, 

mainly due to its efficiency, large community support and ease of use. 

3.3 Unity game engine 

For the purposes of this project, the Unity Game Engine has been selected to 

provide the development environment. Unity was selected because of its ease of 

use, the numerous online guides/tutorial, the ability to create 2D graphics for user 

interfaces, the familiar scripting language (C#), the Unity’s Asset Store, where it 

is easy to find objects without having to create everything from scratch, the 

thriving and supportive community and last but not least the ability to use the full 

range of Game Engine tools and programming capabilities for free. The main 

components/windows of Unity Game Engine are: Hierarchy, Project, Console, 

Scene, Game, Inspector and, most importantly, Scripting mechanisms. A more 

detailed description of each component follows. 

3.3.1 Hierarchy 

The Hierarchy window contains a list of every GameObject in the current Scene. 

Some of these are direct instances of Asset files (like 3D models), and others are 

instances of Prefabs, which are custom objects that make up most of the game. As 

objects are added in and removed from the Scene, they appear and disappear from 

the Hierarchy as well. 

By default, objects are listed in the Hierarchy window in the order they are 

created. Re-ordering of objects can be done easily by dragging them up or down, 

or by making them “child” or “parent” objects.  

3.3.2 Project 

In the project window, one can access and manage the assets that belong to their 

project. It consists of two panels. The left panel of the browser shows the folder 

structure of the project as a hierarchical list. When a folder is selected from the 

list by clicking, its contents will be shown in the panel to the right. The user can 

click to expand or collapse the folder, displaying any nested folders it contains. 
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The individual assets are shown in the right panel as icons that indicate their type 

(script, material, sub-folder, etc.). The icons can be resized using the slider at the 

bottom of the panel; they will be replaced by a hierarchical list view if the slider is 

moved to the extreme left. The space to the left of the slider shows the currently 

selected item, including a full path to the item if a search is being performed. 

Just above the panel is a “breadcrumb trail” that shows the path to the folder 

currently being viewed. The separate elements of the trail can be clicked for easy 

navigation around the folder hierarchy. When searching, this bar changes to show 

the area being searched (the root Assets folder, the selected folder or the Asset 

Store) along with a count of free and paid assets available in the store, separated 

by a slash. There is an option in the General section of Unity’s Preferences 

window to disable the display of Asset Store hit counts if they are not required. 

The Project Browser’s search can also be applied to assets available from the 

Unity Asset Store. If the user selects the option of Asset Store from the menu in 

the breadcrumb bar, all free and paid items from the store that match user’s query 

will be displayed. If they select an item from the list, its details will be displayed 

in the inspector along with the option to purchase and/or download it. Some asset 

types have previews available in this section so the user can, for example, rotate a 

3D model before buying. 

3.3.3 Console 

The Console Window pinpoints errors, warnings and other messages generated by 

Unity, to aid with debugging. The user can also show his own messages in the 

Console using the implemented functions of Unity (Debug.Log, 

Debug.LogWarning and Debug.LogError). 

The toolbar of the console window has numerous options that affect how 

messages are displayed. The Clear button removes any messages generated from 

user’s code but retains compiler errors. The user can also arrange for the console 

to be cleared automatically whenever he runs the game by enabling the Clear on 

Play option. There is also the opportunity to change the way messages are shown 

and updated in the console. The Collapse option shows only the first instance of 

an error message that keeps recurring. This is very useful for runtime errors, such 

as null references, that are sometimes generated identically on each frame update. 

The Error Pause option will cause playback to be paused whenever 

Debug.LogError is called from a script. Finally, there are two options for viewing 

additional information about errors. The Open Player Log and Open Editor Log 

items on the console tab menu access Unity’s log files which record details that 

may not be shown in the console. 
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3.3.4 Scene 

The Scene window is the interactive view into the world that the user is creating. 

Scene View can be used to select and position scenery, characters, cameras, 

lights, and all other types of Game Objects. Being able to Select, manipulate and 

modify objects in the Scene View are some of the first skills somebody will need 

to begin his first steps in Unity. 

 
Figure 22: Scene21 

The Scene Gizmo is in the upper-right corner of the Scene View. This displays 

the Scene View Camera’s current orientation, and allows the user to quickly 

modify the viewing angle and projection mode. 

In order to Move, Rotate, Scale, or Transform individual GameObjects, the user 

can use the four Transform tools in the toolbar. Each has a corresponding Gizmo 

that appears around the selected GameObject in the Scene view. To alter the 

Transform component of the GameObject, the user can use the mouse to 

manipulate any Gizmo axis, or type values directly into the number fields of the 

Transform component in the Inspector. 

The Scene view control bar provides the user with the opportunity to select 

between various options for viewing the Scene and also control whether lighting 

and audio are enabled. These controls only affect the Scene view during 

development and have no effect on the built game. 
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3.3.5 Game 

The Game window is rendered from the Camera in user’s game. It is 

representative of the final, published game. It is necessary for the user to use one 

or more Cameras to control what the player actually sees when they are playing 

the game. 

3.3.6 Inspector 

Projects in the Unity Editor are made up of multiple GameObjects that can 

potentially contain scripts, sounds, meshes, and other graphical elements such as 

lights. The Inspector window displays detailed information about the currently 

selected GameObject, including all attached components and their properties, and 

allows the user to modify the functionality of GameObjects in the Scene. 

The user can use the Inspector to view and edit the properties and settings of 

almost everything in the Unity editor, including physical game items such as 

GameObjects, assets, and materials, as well as in-editor settings and preferences. 

When a GameObject is selected in either the Hierarchy or Scene view, the 

Inspector shows the properties of all components and materials of that 

GameObject. Actually, the Inspector can be used to edit the settings of these 

components and materials. 

3.3.7 Scripting 

Scripting is an essential part of Unity as it defines the entire behavior of the game 

or application. Even the simplest game needs a script to respond to user’s input. 

Scripts can be used for several reasons such as: to create graphical effects, to 

control physical behavior of objects or characters, to trigger effects upon specified 

conditions or even implement a custom A.I. system for characters in the game. 
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Figure 23: Example of Scripting 

The behavior of GameObjects is controlled by the Components that are attached 

to them. Although Unity’s built-in Components can be very versatile, the 

programmer will soon find he needs to go beyond what Unity can provide to 

implement his own gameplay features. Unity allows the user to create his own 

Components using scripts. These allow him to trigger game events, modify 

Component properties over time and respond to user input in any way he wants 

to. Unity supports two programming languages natively, C#, an object oriented 

programming language similar to Java or C++ and the UnityScript, a language 

designed specifically for use with Unity and modelled after JavaScript. The 

scripts can be written and edited in MonoDevelop, which is an integrated 

development environment (IDE) within Unity or in any other IDE like Visual 

Studio. An IDE combines a text editor with additional features for debugging, 

auto-complete and other project management tasks. A script makes its connection 

with the internal workings of Unity by implementing a class which derives from 

the built-in class called MonoBehavior. The reader can think of a class as a kind 

of blueprint for creating a new Component type that can be attached to 

GameObjects. Each time the programmer attaches a script component to a 

GameObject, it creates a new instance of the object defined by the blueprint. The 

name of the class is taken from the name that the programmer supplied when the 

file was created. The class name and file name must be the same to enable the 

script component to be attached to a GameObject. Thus, components can be 

accessed or modified by script at any time to achieve desired behavior and 

functionality. When a script is created, there are two functions automatically 
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declared in it, the Start function and the Update function. The Update function is 

the right place to write code that will handle the frame update for the 

GameObject. This might include movement, triggering actions and responding to 

user input, basically anything that needs to be handled over time during gameplay. 

To enable the Update function to do its work, it is often useful to be able to set up 

variables, read preferences and make connections with other GameObjects before 

any game action takes place. The Start function will be called by Unity when a 

script is enabled and will be called exactly once in its lifetime. The Start function 

is the ideal place where initialization occurs. It is used to initialize an 

object’s position, state and properties or load other scripts and GameObjects for 

later use. 

A script in Unity is not like the traditional idea of a program where the code runs 

continuously in a loop until it completes its task. Instead, Unity passes control to a 

script intermittently by calling certain functions that are declared within it. Once a 

function has finished executing, control is passed back to Unity. These functions 

are known as event functions since they are activated by Unity in response to 

events that occur during gameplay. Unity uses a naming scheme to identify which 

function to call for a particular event. For instance, we have already mentioned 

the Update function (called before a frame update occurs) and the Start function 

(called just before the object’s first frame update). Many more event 

functions are available in Unity; the following are some of the most common 

and important events. 

 Regular Update Events: These events can make changes to position, 

state and behavior of objects in the game just before each frame is 

rendered. The Update function is the main place for this kind of code in 

Unity. Update is called before the frame is rendered and also before the 

animations are calculated. For physics update, like adding force to a 

GameObject, the best option is to place the code in the FixedUpdate 

function which updates more frequently than the Update function. 

Sometimes the best place to write code is the LateUpdate function in order 

to be able to make additional changes at a point after the Update and 

FixedUpdate functions have been called for all objects in the scene and 

after all animations have been calculated. 

 Initialization Events: It is often useful to be able to call initialization code 

in advance of any updates that occur during gameplay. The Start function 

is called before the first frame or physics update on an object. The Awake 

function is called for each object in the scene at the time when the scene 

loads. Note that although the various objects’ Start and Awake 

functions are called in arbitrary order, all the Awakes will have finished 
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before the first Start is called. This means that code in a Start function can 

make use of other initializations previously carried out in the awake phase. 

 GUI Events: Unity has a system for rendering GUI controls over the main 

action in the scene and responding to clicks on these controls. This code is 

handled somewhat differently from the normal frame update and so it 

should be placed in the OnGUI function, which will be called periodically. 

For instance, a set of OnMouseXXX event functions (e.g., OnMouseOver, 

OnMouseDown) is available to allow a script to react to user actions with 

the mouse. For example, if the mouse button is pressed while the pointer is 

over a particular object then an OnMouseDown function in that 

object’s script will be called if it exists. 

 Physic Events: The physics engine will report collisions against an object 

by calling event functions on that object’s script. The 

OnCollisionEnter, OnCollisionStay and OnCollisionExit functions will 

be called as contact is made, held and broken. The corresponding 

OnTriggerEnter, OnTriggerStay and OnTriggerExit functions will be 

called when the object’s collider is configured as a Trigger (i.e., a 

collider that simply detects when something enters it rather than reacting 

physically). These functions may be called several times in succession if 

more than one contact is detected during the physics update and so a 

parameter is passed to the function giving details of the collision (position, 

identity of the incoming object, etc.). 

Except for the functions that Unity provides, the developer can create his/her own 

functions in order to control or determine the behavior of a GameObject, change 

the properties of a component or altering the overall state of the application. In 

order for these custom functions to be executed, they have to be called inside a 

Unity event function, like the Update. The most commonly used functions were 

presented briefly above, as well as the concept of how they are used. The basic 

notion of the Unity scripting is that the scripts are components that can control the 

GameObject. Each component property corresponds to a script variable and the 

scripts can access not only the components of the GameObjects they are attached 

to, but also other GameObjects. 

 

3.4 Overview of eye tracking device’s software 

The software used in this thesis regarding the eye tracking device embedded in 

the HMD is the ViewPoint EyeTracker® of Arrington Research, Inc. This 

software provides a complete eye movement evaluation environment including 

integrated stimulus presentation, simultaneous eye movement and pupil diameter 
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monitoring, and a Software Developer’s Kit (SDK) for communication with other 

applications. Furthermore, it incorporates several methods from which the user 

can select to optimize the system for a particular application and methods of 

mapping position signals extracted from the segmented video image in 

EyeSpace
TM

 coordinates to the participant’s point of regard GazeSpace
TM

. 

3.4.1. Interface  

Only the most basic features of the software will be presented here. As soon as the 

program starts running, it displays several windows arranged as shown in the 

following figure. These windows are: the EyeCamera window, the EyeSpace 

window, the Status window, the Controls window, the GazeSpace and the PenPlot 

window. In order to inform the reader on the capabilities of the software, a brief 

summary of these windows is needed. 

 
Figure 24: Screenshot right after the launch of the application 

The EyeCamera window displays the video image of the eye and the image 

analysis graphics. It provides controls to make the eye tracking results more 

reliable and to extend the range of the trace area. Thus, it makes it easy to limit 

the areas in which the software searches for the pupil and corneal reflection to 

exclude extraneous reflections and shadows. 
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Figure 25: Screenshot of the eye camera that depicts the controls available 

The EyeSpace window corresponds to the geometry of the EyeCamera image. It 

displays an array of the relative locations of the pupil, glint, or difference vector, 

which were obtained during calibration. This provides information about 

calibration accuracy and allows rapid identification and correction of individual 

calibration errors by allowing manual recalibration of individual points or the 

ability to omit problem points. The number, color and presentation rate can be set 

from here. 

 
Figure 26: The eyespace before user calibration 

The Controls window allows the user to adjust the image-analysis and gaze-

mapping parameter settings and to specify the feedback information to be 

displayed in both Stimulus window and the GazeSpace window. Eye Image 

quality adjustments can be made and tacking method can be specified. Also, 

smoothing and other criteria can be applied to data, has parameters to setup the 

regions of interest and calibration regions as well as adjust brightness, contrast, 
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hue, saturation of the scene image and to open, pause, close data files or insert 

markers. 

 
Figure 27: Different controls available to the user 

The Status window gives details about processing performance and 

measurements. Also, shows the applications that share the same .dll of the 

application; thus the threads that ViewPoint communicates with. 

 
Figure 28: Status window 

The Stimulus window is a new window that pops up when calibration starts. It is 

designed to be full screen, preferably on a second monitor. Upon which may be 

displayed the subject’s calculated position-of-gaze information and region of 

interest boxes. 
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Figure 29: Stimulus window 

The Pen Plot window displays plots of X and Y positions of gaze, velocity, ocular 

torsion, pupil width, pupil aspect ratio, drift, etc. in real time. 

 
Figure 30: PenPlot real-time data 

3.4.2 How the software works  

To explain how the Viewpoint EyeTracker® works in a typical head fixed 

configuration, we will need to describe the next figure, Figure 31, which 

summarizes this exact process in thirteen steps.    
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Figure 31: Depiction of how the Viewpoint software works 

The infrared light source (item 1) has two purposes. First to illuminate the eye 

(item 2) and secondly to provide a specular reflection from the surface of the eye. 

In dark pupil mode, the pupil acts as infrared sink that appears as a black hole. In 

bright pupil mode, the “red eye” effect causes the pupil to appear brighter than the 

iris. 

The video signal from the camera (item 3) is digitized by the video capture device 

(item 4) into a form that can be understood by the software. The computer takes 

the digitized image and applies image segmentation algorithms (item 5) to locate 

the areas of pupil and the bright corneal reflection, the glint. Additional image 

processing (item 6) locates the centers of these areas and also calculates the 

difference vector between the center locations. A mapping function (item 7) 

transforms the eye position signals (item 6) in EyeSpace coordinates to the 

subject’s GazeSpace coordinates. (item 8). Because the eye movements are 

rotational, for example the translation of the eye position signal that is apparent to 

the camera is a trigonometric function of the subject’s gaze angle, the best 
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algorithms are non-linear. Next, the program tests to determine whether the gaze 

point is inside of any region of interest (ROI) that the user has defined. 

The calibration system (item 12) can be used to present calibration stimuli via 

(item 10) to the user and to measure the eye position signals for each of the 

stimulus points. These data are then used by the calibration system to compute an 

optimal mapping function for mapping to position of gaze in GazeSpace. 

3.4.3 Binocular and monocular method  

The eye-tracker used in this thesis supports both monocular and binocular eye 

tracking.  

By default, ViewPoint is set for monocular eye tracking. Switching from 

monocular to binocular is easy via the upper menu of the application. Once this is 

done, another EyeCamera window will appear, for the second eye and in the 

GazeSpace window there will be an additional drop down box to specify which 

eye the calibration process is applying to.  

For the needs of this project monocular eye tracking was applied. This happened, 

because the user’s gaze can be calculated accurately from the information 

provided by a single eye. It doesn’t matter which eye we chose in our monocular 

approach. In this thesis, the left eye was used because of some technical 

difficulties with the right display of the HMD. 

3.4.4 Calibration  

In order to know where the participant’s eyes are fixating on the computer screen, 

we must first “teach” the computer, in our situation the ViewPoint software, what 

the eye looks like when the participant’s gaze is fixated on known locations on the 

screen. So, prior to using the eye tracker the user needs to undergo a personal 

calibration process. The reason for this is that each person has different eye 

characteristics, and different head geometry. As a result, the eye tracking software 

needs to model these in order to estimate gaze accurately.  

The tracker operates by tracking the pupil of the eye, the “dark/black” part of the 

eye, which will appears as filled-in with blue in the camera-view of the eye, as 

well as the “corneal reflection”, the reflection off of the cornea that appears in 

yellow on the eye-view. The relative positions and size of these two landmarks 

are measured as the participant looks at specific points on the screen during 

calibration. During the rest of the experiment, the tracker figures out where the 

eye must be looking, depending on the relative size of the pupil as well as the 

relative location of the pupil and corneal reflection. Anything that disrupts the 

pupil capture, or interferes with the corneal reflection will cause calibration to be 

very difficult or even impossible. 
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The calibration process lasts for approximately 1 to 2 minutes to be completed. In 

order for the calibration process to be completed correctly, two major steps must 

be followed. Firstly, it is necessary, for convenience reasons, to start the 

calibration process with the “auto-calibration” button. This button will initiate the 

calibration procedure by clearing everything from the user’s screen, and by 

placing a black background on it. Shortly after that, a text-message will appear on 

the screen. The message will say “Get ready”, and its purpose is to indicate to the 

user that he is about to begin the calibration process. When the get-ready text 

disappears, the eye gaze is calibrated by showing a calibration pattern with a total 

of 16 points, of which one is shown at a time and the user has to focus on it. As 

for the calibration points, it is mandatory to use at least 9 but tests showed that 

best calibration results are provided by using 16 or 20 points; for this thesis we 

used 16 points. Successful calibration will be indicated by a rectilinear and well 

separated configuration of green dots corresponding to the locations of the pupil 

at the time of calibration point capture; the green and yellow dots are show in the 

EyeSpace window. 
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Figure 32: Almost perfect calibration result 

Calibration data points can be identified and re-calibrated or omitted. The 

EyeSpace window allows the user to select individual calibration points to be 

recalibrated. In addition, it provides the user with the opportunity to see the actual 

images that were captured during the calibration process in order to have a full 

understanding of what caused the specific point to be badly calibrated. If a point 

is selected to be re-calibrated, then it will be re-presented in the screen and the 

participant will be asked to look at the center of it. This can be repeated with as 

many calibration data points as necessary. If the calibration points are not 

rectilinear, for example, if there are lines crossing, then complete re-calibration is 

necessary. If a particular point cannot be recalibrated, then that specific point can 

be omitted. 
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Figure 33: Result of bad calibration 

 In the two cases presented in figures 32 and 33, the first one depicts the result of 

an almost perfect calibration process, while the latter one presents a result far 

from perfect. Apart from the EyeSpace window, these figures intentionally 

contain the CalibrationImage window too. By looking at the images in the 

CalibrationImage window it is possible to understand the reasons behind the bad 

second result, which are no other than the loss of detection on the user’s pupil, 

due to bad lighting conditions. 

3.4.5 SDK and communication with Unity3D  

ViewPoint software includes a powerful developer’s kit (SDK) that allows 

interfacing with ViewPoint in real-time, giving real-time access to all ViewPoint 

data. Allowing complete external control of the ViewPoint EyeTracker, the SDK 
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is based on shared memory in a dynamic-linked library (DLL). The SDK is 

event/message driven so there is no CPU load from polling and provides 

microsecond latency.  

So, Unity3D interacts with ViewPoint by compiling the VPX_InterApp.lib file, a 

library file.  

More details regarding how the data from the eye-tracker are retrieved and how 

they are processed in order to be used in our application can be found in 

subchapter 5.4.  

3.5 Head tracking device - software  

3.5.1 Overview  

The head tracking device used in this thesis is the InertiaCube3 and the 

InertiaCube Processor by Thales. It is an inertial three degree of freedom (3-DOF) 

orientation tracking software. It obtains its motion sensing using a miniature 

solid-state inertial measurement unity, which senses angular rate of rotation, 

gravity and earth magnetic field along three perpendicular axes. The angular rates 

are integrated to obtain the orientation (yaw, pitch, and roll) of the sensor. 

Gravimeter and compass measurements are used to prevent the accumulation of 

gyroscopic drift. 

 
Figure 34: The InertiaCube3 

3.5.2 SDK and communication  

The head tracking device has testing software and the InterSense Software 

Development Kit (SDK). The core of all InterSense software that is associated 

with the head tracker is a dynamic-linked library, the isense.dll, which must be 



XX:66                                                                                                                         N. Marianos 

saved in the Windows system directory. This library, along with all other 

InterSense libraries, provides a standard interface for the device.  

Before the tracker is used, it must be configured and a diagnostic tool must be 

run. This testing tool, is the ISDEMO, validates the communication of the 

InertiaCube3 to the PC and tests the performance through the above mentioned 

DLL. In this phase, the compass, perceptual enhancement, sensitivity, prediction, 

and in general all the tracker’s sensor parameters, can be modified and checked so 

that the device is working properly. Also, tools such as self-system test and 

compass calibration. 

 
Figure 35: Iserver App 

There is also the InterSense Server Application, ISERVER, which provides 

multiple services to applications requiring tracker data. It is the link between the 

head tracker’s data output and third party applications, in our case Unity3D. 

ISERVER runs in the system tray, reading the data from the connected device at 

the maximum speed allowed by the operating system. That data is then made 

available to Unity3D through the InterSense DLL. 
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Chapter 4 UI 

Up until this point, the background and all the necessary hardware and software 

that were needed for the implementation of this thesis, have been sufficiently 

explained so that anyone, interested in the subject, can fully understand the 

following chapters. Now, it is time to discuss about this project’s User Interface 

(UI) implementation.  

As mentioned before, this project aims to create a foveated rendering algorithm 

that renders the virtual scene using three layers of resolution and that ideally 

remains unnoticed by the users. By doing so, the algorithm offers a significant 

performance boost to the application in terms of FPS. We have implemented four 

versions of our foveated rendering approach. Each version adjusts the dimensions 

of the rendering layers differently. The application allows users to choose the 

version of the algorithm by clicking on one of the four buttons on the main menu 

scene. Each button corresponds to one of the four available versions of the 

algorithm. 

Regardless of the user's choice, the application is programmed to load the exact 

same scene. Loading the same scene is important in order to apply the same 

rendering load to both the CPU and the GPU every time. 

After loading the scene the user enters the virtual environment in which the user 

takes the role of a gondolier. Right when the game starts, the user meets his first 

customer approaching him slowly from his right side. When the customer boards 

the gondola, a message appears on the screen notifying the user about the 

customer’s desired destination. The destination is chosen randomly every time 

between the two available options. After that, golden coins pop – up on the map 

in order to help the user locate the correct destination area. The user has to 

transfer the customer to the correct area. Meanwhile, the user can freely enjoy the 

ride and the view. The ride takes about 2 minutes to be completed and for the 

whole duration we store data regarding the number of frames per second that are 

rendered. 

In this chapter we will explain how the main menu and the virtual scenes are 

created.  

4.1 Main menu scene 

Even though the menu scene was not created first during the implementation of 

the project, since it is the first scene that the user interacts with right after the 

launch of the application, we will start by describing it first. 

The menu scene consists of four clickable buttons, which work as portals that set 

the dimensions of the rendering layers and that transfer the user to the virtual 
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environment, and a big wall that works as a background. Depending on the button 

clicked by the user the rendering layer’s dimensions are set accordingly. This 

menu scene is created by adjusting the scale of a primitive cube object to meet our 

needs.  

 
Figure 36: Created background wall without any content 

Having created the wall model, a pre-downloaded image is then assigned to it, in 

order for it not to be completely transparent. By assigning an image to the 

properties of the wall, it depicts the image’s context.  

 
Figure 37: Menu scene with no buttons 
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We now have our background ready. We then add four clickable buttons one for 

every algorithmic version needed. These buttons are created by using a void 

button option available in Unity and by adjusting the text to fit our needs.  

 
Figure 38: Complete menu scene 

Moreover, in order to make it easy for the user to understand which button he is 

about to click we add an extra feature that changes the color properties of the 

hovered button from white to yellow.  

Finally, since these four buttons need to be able to transfer the user from the main 

menu scene to another scene, we needed to add an extra feature that would link 

the event of clicking a button with the event of loading a scene. To do so, we first 

needed to create four different applications, each containing one of the four 

needed scenes. As mentioned earlier, although these apps contain the same virtual 

scene, we need to create more than one app because we want to apply a different 

foveated rendering method to each of them. Then we need to link the new 

applications to the menu scene. In order to achieve that, we need to load all the 

four application scenes in the “build options”. This will make it possible for Unity 

to “understand” that this four scenes and the menu scene are somehow connected 

and they need to be build on a mutual application. Finally, we need to add a little 

component in each button with an “on call function()”. This function will be 

called once the button, that it is attached to, is clicked. The script for these 

functions is not complicated since the only thing that it needs to be able do is, 

after the button being clicked, to start loading the scene that matches the given 

scene-name.  

Next we will analyze the scene structure which will be loaded after one of these 

buttons is clicked. 
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4.2 Game scenes 

These four applications that were mentioned in the last subchapter contain the 

exact same virtual world/scene. It is important for the project that these four 

scenes are precisely the same, because we want to be able to compare how 

different sets of parameters given to the same foveated rendering algorithm, affect 

the frame per second rates of the scene. These parameters change the dimensions 

of the rendering layers. However, we will discuss in detail about the reasons that 

we chose to do that as well as how we achieve to do that in the next chapter. 

Since these four scenes are the same we will explain how the first one was created 

only.  

While creating a virtual world using Unity, the start is nearly always the same. 

Everything starts by creating a terrain. The terrain is the map on which everything 

will take place into. At the beginning the terrain is small and empty and flat.  

 
Figure 39: Empty terrain 

The first thing to consider is adjusting the scale of the terrain to fit the project’s 

needs.  Additionally, there are tools that allow us to adjust the height levels of the 

terrain, allowing us to create some low-height mountains and in general the 

different height areas of the map that are needed. Using the so called “brushes” in 

Unity’s terrain toolkit, the terrain is firstly transformed as shown below. 
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Figure 40: Picture right after the first adjustments were made 

It is clear that at this point, there are no colors no objects any textures and 

generally the whole map is empty. So, the next step is to start filling the map of 

our game. Since the general idea for the game was to make the user think that he 

is a gondolier that takes customers in his gondola and transfers them wherever 

they want to go, in his small village, we decided to create a small village that is 

cut in two by some sort of river.  

In order to find the objects needed, we visited many online repositories. We 

searched online for house and tree models that suited our needs and imported 

them to our map.  
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Figure 41: A gondola and a footbridge just imported 

When an object is imported into Unity, most of the times, it looks like the gondola 

and the footbridge that were just imported in the figure just above. In order to 

make the user’s experience more pleasant, we need to add some colors or better 

yet some materials on these objects’ properties. There are two options in order to 

achieve that. Either we create the material on our own, or we download them from 

other developers. In this thesis, most of the materials that were not imported with 

the objects were created manually. By doing so we can chose how sensitive will 

this materials be to light, how much they reflect on water and more. 

 

 
Figure 42: The result of adding materials to the gondola object 

The same thing that was done for the gondola was also done for the rest of the 

objects on the map too. In some cases, we needed to modify some objects because 

of their massive level of detail. When an object is too detailed it slows the whole 
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application down, and that’s why it is necessary to modify or even delete such 

objects. 

Apart from the houses, the buildings, the trees, the water and the bridge we also 

added a customer, a customer’s friend and some golden coins. We added the 

customer because in order for the user to have a purpose on this game he needs to 

board a customer on his gondola and take him to his destination. 

 
Figure 43: The village resident and the User's first customer 

 Moreover, we added a customer’s friend so that the customer can ask from the 

user to take him meet his friend, as a possible desired destination. 
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Figure 44: The one possible target 

 And finally, we added a number of golden coins that appear on the map, after the 

customer has expressed his desired destination, in an attempt to make it easy for 

the user to find the target location.  

 
Figure 45: The Chinese golden coins 

There are two possible destinations that the customer can name. The first, as 

mentioned, is the area that his friend lives and the second one is on the other side 

of the map, and it is where his house is located.  
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Figure 46: The second target area 

The map created is very big and although we have decided to make the gondola 

move quite fast, especially for a gondola, it takes the users two to three minutes to 

complete the ride. 

 
Figure 47: Starting point 

As you may see in the figure above none of the destinations is visible from the 

starting point. This is why small golden coins appear to indicate the correct path 

for the user to follow. 
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Figure 48: View of the virtual environment 

In order to make the game more realistic we added the force of gravity to the 

whole environment. As a result, every object that is not a static object, such as the 

customer, the gondola and the User’s avatar, is getting pulled towards the terrain. 

Unity, applies “physics” or the force of gravity in our case, to every object that 

has a particular component. This component is called Rigidbody. Consequently, 

clear boundaries should be implemented for every object. If we do not indicate 

were exactly every object starts and ends, objects would be able to go through one 

another after being pull from the gravity force. These boundaries are called 

colliders. 
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Figure 49: Example of what would happen if colliders were not implemented 

There are three different ways to create colliders for an object. Firstly, it is 

possible for some object to access their prefab and then generate the colliders 

from there automatically. Secondly, one can add a component on the object called 

mesh collider and link it with an external source that indicates the right shape of 

the collider. Finally, it is sometimes preferable to create a box collider around the 

object. This can be beneficial for some objects which are very detailed but their 

shape is similar to a box. By creating this box collider, it can lead to a significant 

performance boost.  

In our efforts to make the environment as realistic as possible, we chose the 

technique of real time lighting instead of baked lighting. This means that as lights 

and GameObjects are moved within the scene, lighting will be updated 

immediately after every frame. In the case of baked lighting, shadows and 

reflections would be calculated only once, only at the start of the game. 



XX:78                                                                                                                         N. Marianos 

 
Figure 50:  Example of shadows 
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Chapter 5 Implementation 

In this chapter, following to the user interface’s implementation, we will continue 

by explaining the implementation and development of the application and its 

components. 

5.1 Achieving stereoscopy 

The HMD used in this thesis, the Nvis SX 111, uses the partial overlap method in 

order to achieve stereoscopy. This means, that even though the HMD possesses 

two displays with 76 degrees Field of View (FOV) per eye, the total FOV for both 

eyes is not 76 x 2 = 152 degrees FOV but 102 degrees. Consequently, 50 degrees 

FOV is depicted in both displays, in both eyes.  

 
Figure 51: Example of the partial overlap method, where the final result is the combination of Left and 

Right 

However, the HMD does not automatically adjust the input image signal to match 

that requirement. As a result, the computer’s output image signal must be 

formatted based on the HMD’s specifications.  

In order to achieve that, we implemented our application to produce two different 

output signals, one for each display/eye. Furthermore, since the HMD requires 

SXGA resolution to work our implementation should meet this specification too. 

Based on the SXGA format, each camera of the HMD has a resolution of 1280 x 

1024 pixels, amounting to a total of 2560 x 1024 pixels for the display of the 

HMD screens. As a result, we added two cameras on our application too; one for 

each display of the HMD with a resolution of 1280 x 1024 pixels each. This 

change from the default camera resolution was done by adjusting the project’s 

settings within the unity editor.  
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We position these two cameras in front of a plane and their recordings constitute 

our two final video signal outputs from the application to the HMD. A plane is a 

flat model on which materials and textures can be applied on. In our case, the 

plane used contains two smaller inner planes. These two smaller planes are 

necessary in order to depict on each of them the video signal produced for each 

eye from our algorithm. We achieve this projection by adding one material 

component to each plane. Furthermore, we needed to create two render textures 

and link them with these two added materials. These render textures are special 

types of textures that can be created and updated at runtime. By using the render 

textures on these two materials and by updating them per frame, the render 

textures depict the two video signals on the planes. Exactly the same method is 

currently used in closed monitoring systems. 

 
Figure 52: Snapshot of the two cameras recording the render texture panels 

These two render textures that are applied on the two inner-planes, despite having 

a high resolution of 1280 x 1024 pixels and maximum anti-aliasing and color 

depth formats, do deliver the desired foveated rendering needed. The way we 

achieve this will be explained later on in this chapter. 

 

5.2 Generation of the partial overlapping effect 

As we mentioned before, the HMD used in this thesis uses the partial overlap 

method in order to achieve stereoscopy but it does not adjust the image 

automatically. As a result, it is up to the developer to generate the appropriate 

input. Furthermore, we explained that, in our approach, we are using two cameras 

in order to deliver to distinct video signal inputs for the HMD’s displays. These 

two cameras are located in front of a panel which has applied to it two render 

textures and the cameras record its content. In this subchapter we will explain 
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how we create the necessary feed that the two render textures on the panels are 

projecting. 

In order to be able to deliver the video signal formatted based on the 

specifications of the HMD, we use a camera with a massive FOV. We are using 

one camera that provides the information needed for both eyes, instead of using 

two cameras, one for each eye. The benefits of this approach will be explained 

later on. This camera is attached to the user’s avatar and follows its every move in 

the virtual scene. By doing so, we are able to simulate what would the user’s FOV 

be, if the user was really immersed in the virtual environment. 

Since the HMD used offers a FOV of 102 degrees, we created the camera 

simulating the user's eyes, to have the corresponding FOV. Once the camera was 

created, we wanted to store the data gathered from it, in order to process them. In 

order to be able to store the camera’s feed we attached a render texture to it. In 

Unity, if a camera is not attached to a target texture, in our case the render texture, 

before the start of the application, its feed will try to be projected immediately to 

the screen. In our case, it was necessary to store the data, firstly, in order to 

process them and create the feed for both eyes and secondly, because we want to 

further process them so that we can deliver the desired foveated result. 

In addition to the render texture attached to the camera, we need to create another 

render texture. This secondary render texture is necessary, because the data of the 

camera constantly change, giving inadequate time for the algorithm to process 

them. Consequently, we copy the data from the first render texture to the second. 

By processing the data of the secondary render texture only, we neglect some 

frames of the video signal generated from the camera, which go unnoticed by the 

users, creating enough time to process the data. Since performance is of course 

very crucial for our application, we do not use common methods of copying the 

first render texture to the latter. Instead we are using a function that assigns this 

process to the GPU instead of the much slower CPU. 

As mentioned before, by carefully examining the specifications of the HMD, we 

were able to produce the video signals needed for both the displays of the HMD 

from a single camera. This was achieved by calculating the FOV that each display 

can depict on its own. We calculated that every display has a FOV of 76 degrees, 

and since the overlap of the two displays is 50 degrees, having a sole camera of 

102 degrees was enough. 102 degrees are indeed enough to include both of the 

camera’s FOVs (76 x 2 = 152 degrees) minus the overlap FOV (152-50=102 

degrees). 
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Figure 53: Stereoscopic cameras' field of view based on the partial overlap method used by the Nvis SX 

111 

However, having one render texture that includes data for 102 degrees of FOV 

was not enough. Finally, it was necessary to transfer these data into two smaller 

render textures. This two smaller render textures are the ones applied on the panel 

that the two HMD cameras are looking at. In order to copy parts of the 

concentrating render texture to the two smaller render textures, we had to 

calculate how many pixels correspond to a FOV of 26 degrees. This was needed 

for stimulating the user’s right eye’s feed. We needed to omit the pixels that 

correspond to the first 26 degrees of the concentrating render texture, because the 

right eye is not able to detect further left of the overlapped area. Respectively, the 

feed for the user’s left eye was stimulated by omitting the last 26 degrees of FOV. 

In order to calculate the pixels that correspond to a FOV of 26 degrees, the 

following code was created. 

 
Figure 54: The code that calculates the pixels needed to depict a FOV of 26 degrees 

This code takes under consideration the field of view of the main camera and the 

height in pixels of the same camera to firstly calculate the distance in which the 

camera renders. Afterwards, by using this result it calculates the height, in pixels 

again, needed to correctly depict a different FOV from the same camera or 



Foveated Rendering Algorithm                                                                                                XX:83 

another. Finally, it calculates the width in pixels needed in order to maintain the 

camera’s aspect ratio.   

By implementing the approach that is using one camera instead of two, we are 

saving processing power and system latency, because we are creating two less 

render textures than if we were to use two cameras, one for each eye. In addition, 

we will explain later in this chapter that in order to create the desired foveated 

result, we will add two more cameras to the left eye. If we were to use the 

approach with separated camera for each eye, we would need to use two extra 

cameras. Two extra cameras means that we would need two extra render textures 

for each. In other words, this approach reduces the number of render textures 

needed by six. 

Of course, in the framework of this diploma thesis, we did not come up with the 

optimized algorithm at once. At first, the algorithm implemented used a different 

camera for each eye.  

5.3 Foveated rendering  

After having explained how we can send the necessary information for both eyes 

to the HMD, according to its specifications and how we achieve the 

implementation of the partial overlapping method, we can now begin to describe 

the implementation of the foveated rendering algorithm. 

In order to be able to create a foveated rendering algorithm, we must first have the 

capability to recognize precisely on what point the user’s gaze focuses on. In 

order to do so, we must first assign to the eye-tracking application the area that we 

are interested in recording the user’s movements. Once this has been done, we 

must calculate the user's focal point using the information obtained from the 

tracker. Finally, we create the foveated rendering result, based on the calculated 

focal point. 

5.3.1 Setting the region of interest 

As we mentioned before, we are using the Arrington’s eye-tracking software to 

provide us with the exact location of the user’s focal point. How the connection 

between the eye-tracker and unity is achieved will be explained in the next 

subchapter 5.4. 

One of the most important parameters that need to be customized for the software 

to work effectively is to define the area of interest. As an area of interest we refer 

to the area, that we manually indicate, in which the software will be recording the 

user's pupil movements. 
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Figure 55: Binocular Field of View 

The region of the display that we characterized as important to the application 

was the area in which we anticipated the user’s gaze to be most of the times. In 

order to decide on the region of interest, we had to run several experiments 

because the way this HMD works in addition to the extremely big field of view 

that it offers, made it impossible for any user to detect a small part of the screen 

located in front of their noses. Furthermore, since we are using monocular vision 

detection we omitted a small FOV of 26 degrees to the far left of the monitor that 

the right eye could never detect. As a result, we characterized almost 60 per cent 

of the display’s width as important. This translates to a field of view of 40 degrees 

horizontal. As far as the height of the screen is concerned, we omitted 30% of the 

screen, because of its position at the far top and bottom of the screen.  

Users are anticipated to slightly move their heads and not just their eyes, in case 

they want to focus on something that is located further away than this FOV of 40 

degrees in front of them. In the following figure we present the region of interest 

for our experiments the way the eye-tracker presents it, while in the figure after 

the next one we try to estimate the region of interest while the application is 

running so that it is easier for anyone to understand it.  
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Figure 56: The region of interest is adjusted to our needs and parts of the display are left out of it 

 
Figure 57: Estimation of the region of interest on the left eye's feed 

Any movement of the user’s gaze that is inside the marked area, in the figure 

above, will be recorded from the Arrington’s eye-tracking software and will be 

sent to our application at a frequency of 60 Hz. If the user looks at the lower left 
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edge of the tagged area, the eye tracking software will send the value pair (0.1) 

indicating that the user's gaze is located at the beginning of both the X axis and 

the Y axis. Respectively, the top right corner is denoted by the value pair (1.0). 

5.3.2 Calculating the user’s focal point 

Since the scale 0 to 1 matches only part of the screen, to find the user's focal point 

on the whole screen we must apply some kind of normalization of the scale. This 

normalization can be seen on the following figure. 

 
Figure 58: Normalization of the scale provided by the eye-tracking software in screen resolution 

Apart from adding the excluded area of the screen to the equation, we multiply 

the final result with the screen resolution. This is how we convert a simple 

number between 0 and 1 into a location on the screen. Furthermore, regarding the 

Y axis we need to also reverse the scale, in order to make it easier to process the 

data afterwards. 

After we calculate the coordinates in the screen that the user's gaze focuses on, we 

compare them with the last coordinates obtained. If these two coordinates do not 

differ more than the minimum acceptable threshold, then we do not perform any 

action and give the user the same picture as on the previous frame. With this little 

inertia of the permissible motion we manage to eliminate the unnoticeable 

movements that the human eye constantly makes. 

5.3.3 The foveated rendering technique 

At this point we have clarified that the eye-tracking software is detecting the 

user’s pupil and sends us a pair of values to indicate the position of the user’s 

gaze. The next step is to use these values in order to calculate the exact position of 

the user’s focal point on the screen.  

Depending on the location of the user’s gaze we decide if we are going to apply 

the foveated rendering algorithm or we will provide the user with a full HD result. 

If the user's gaze is located outside the area of interest the foveated rendering 

effect is not applied. The user will be then presented with a full resolution 

rendering. We are able to do that by creating another render texture and by 

assigning it to the main camera. By doing so, we are replacing the foveated render 

textures (we will explain shortly after why we have more than one render textures 

for the foveated rendering) with the newly created one. This new render texture 

has totally different parameters regarding the resolution, the anti-aliasing value 

and the depth of colors. When the user’s gaze returns inside the marked region of 

the screen, we have to assign the foveated rendering texture back to the main 

camera so that the foveated rendering algorithm can be applied again. 
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In the case that the user focuses on an area which is inside the tagged area, we use 

the information provided to us by the eye-tracking software in order to render 

three different layers of resolution around his gaze. We will explain thoroughly 

how the information is delivered to the application from the eye-tracking software 

in the next subchapter. 

It is now time to describe how the different layers of resolution are created, as 

well as how they are combined together in order to deliver the desired result for 

the user to see. 

Setting the dimensions of the inner layers 
So far, we have explained that in order to store the image “seen” by the user in the 

virtual environment, we use the so-called "render textures". This specific type of 

texture has the ability to store the information produced by the whole FOV of the 

camera in which it is attached to, in a certain given number of pixels. In our 

approach, in order for the three layers that make up the image to have a different 

quality of analysis, we should initially calculate the dimensions each texture 

should have, in order to be able to blend perfectly with one another. If these 

dimensions are not correctly calculated, for each render texture, then the final 

result presented to the user would not be on a common scale. As a result the 

objects in the user's focus center would be deformed. 

 
Figure 59: Incorrect dimensions were set on the render texture 

It is obvious from the above figure that calculating the dimensions of the render 

textures correctly is very important for the application and the user’s experience. 

In the example presented in figure 60, the pixels dedicated for the depiction of the 

camera’s FOV are way fewer than they should be. As a result, the render texture 

assigned to the camera included all the information in a small area by changing 

the scale of the scene. Blending two images rendered in two different scales leads 

to disastrous effects. 
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In our script, we are set these dimension by firstly calculating the distance at 

which the main camera renders (as main camera we refer to the camera with the 

biggest field of view; the peripheral camera). 

 
Figure 60: Calculating the main camera's rendering distance 

Then we calculate the exact amount of pixels needed to depict a different FOV at 

the same distance from the camera. And finally, we calculate the width needed in 

order to respect the camera’s aspect ratio. 

 
Figure 61: Calculating the dimensions of the inner layer 

These last two variables represent the dimensions that the render texture, which is 

attached to the central camera, must have, in order to blend perfectly with the 

other two render textures. By doing so, we ensure that the user is provided with a 

result attributed to the same scale.  

Resolution reduction  
In our approach, we are aiming to deliver a result rendered at three different 

quality layers based on the user’s eye gaze. These three layers are the foveal layer, 

the middle layer, and the outer layer. In order to do so, we need three cameras that 

each one somehow renders at a different resolution than the other two. The first 

step in creating a layer that has a lower resolution than the foveal layer is by 

setting the dimensions of the render texture, which is attached to the rendering 

camera, at a decreased set of values than the ones calculated in Figure 62. This 

way, we force the camera to save the image received at a lower size – scale than it 

actually has on the virtual scene. The next step is copping the data stored on this 

texture to another texture which has the correct dimensions. In order to fully cover 

the dimensions on the new render texture the application copies the data stored on 

one pixel of the 1
st
 texture to multiple pixels on the 2

nd
 one. This technique is 

called oversampling. 

By using this technique we decrease the number of samples per pixel used to 

shade one pixel on our layer. The layers that we use this technique on are two. 

The first one is the “central layer” which is the layer between the foveal layer and 

the peripheral layer, while the second one is the peripheral layer itself. The foveal 

layer is the layer directly around the user's eye, and as a result, it is attributed to 

the highest resolution available from HMD. The central layer, which is 

implemented in order for the user to be unable to detect the massive resolution 
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reduction between the foveal layer and the peripheral layer, has 40 per cent fewer 

pixels that its dimensions require to depict at 100% of the resolution. This 

automatically translates to 40% decrease to the number of samples per pixels. As 

for the peripheral layer, the decrease rises to 60%. 

Finding the appropriate content for the layers 
Up until this point, we have explained firstly, that a set of parameters is sent from 

the eye-tracking software to our application. Furthermore, we have seen that 

because of the way that this set of values is formatted it needs further process in 

order for it to depict the exact point that the user focuses on. Additionally, we 

have explained in which way the algorithm manages to render at different quality 

levels. Now it is time to discuss, how this layers get the appropriate content from 

the cameras. 

As mentioned already before, we are using three different cameras on our 

approach. The first camera, which contains the whole FOV that the HMD is 

capable of depicting, is the peripheral camera. The FOV on this camera never 

changers no matter what version of the algorithm the user wishes to experience. 

The other two cameras, that stimulate the user’s eyes, have a different FOV 

depending on the user’s choice. Depending on the version of the algorithm, these 

cameras can have 3 different sets of FOV. Either 5 degrees and 10 degrees, or 10 

degrees and 20 degrees or finally 15 degrees and 30 degrees. As the FOV of the 

cameras changes so does the size of the render textures. This of course happens 

because a camera with a larger FOV needs a larger render texture in order not to 

change the scale of the rendering.  

These three cameras are being rotated all together when the user moves his head, 

while only the two of them move when the user moves his eyes. This happens 

because one can change the spot that they are looking at, either by moving their 

eyes, or by moving their head. So, both of these possibilities have been 

implemented on our application. 

The head tracker does inform us about the user’s head movements by sending us 

the degrees that he rotated his head. So in order not to complicate things we 

decided to add a component which would play the role of the parent of our three 

cameras. This component stimulates the user’s head and so it is seemed only 

logical to name it “Head”. When the head-tracker sends us data regarding the 

rotation of the user’s head, we rotate the head component. As a result, all three 

cameras are also being rotated as children of the head component. 

Unfortunately, the eye-tracking software does only inform us about the user’s 

focal point. So, it is up to us to calculate how many degrees did the user’s eyes 

move after every frame.  



XX:90                                                                                                                         N. Marianos 

To be able to calculate the distance that the user’s eyes travelled in one frame we 

need to process the current set of values provided to us by the eye-tracking 

software in order to calculate the position of the user’s gaze on the HMD screen 

and not just on the region of interest. Then we need to compare that position with 

the center of the axis. This difference in price will show us the distance to pixels 

that the user's eyes have traveled in a frame. In addition, by checking whether the 

distance value is positive or negative on both axes, we can also understand the 

direction of the movement. Then we have to convert the distance from pixels to 

degrees because a rotation in pixels cannot be defined. To do this, we use the 

same technique described earlier. Lastly, we set the cameras to look at the same 

direction that the main camera looks minus 13 degrees because the left eye is 13 

degrees left of the center plus the value in degrees that we calculated that the 

user's eyes moved. Whether we add or subtract this value, it depends on the 

direction we want the cameras to rotate. 

By doing so, we ensure that the two inner cameras always follow the user’s gaze.  

Combining to deliver the final result 
After having created three render textures, with the correct dimensions and the 

correct content, the final piece missing from the puzzle is to correctly combine 

these three render texture into one and to finally present the user with the desired 

foveated result. 

In order to do so, we need to use again the pre-calculated position, in pixels, of 

the user’s gaze. We use this location in order to correctly copy the two inner 

render textures on the larger render texture, which is attached on the peripheral 

camera. We start copping from the pixel that the user’s gaze is located minus half 

of the texture’s width or height. By doing so we position the render textures 

around the user’s gaze. 

Finally, in order to transfer two video signals to the HMD, one for the left eye and 

one for the right eye, we separate the large texture of the 102 degrees into to 

smaller textures of 76 degrees. The first 76 degrees correspond to the left eye’s 

feed and the last 76 degrees correspond to the right eye’s feed. Of course there is 

a partial overlap of 50 degrees according to the HMD specifications already 

discussed in a previous chapter.  

5.4 Communication with the eye-tracker 

In previous chapters, for reasons of shortness, we simply reported that the eye 

tracker sends the information we need directly to our program. This is not entirely 

true. In this chapter we will explain precisely how the data is delivered to our 

program.  
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In order to make the communication of the eye-tracker with third parties 

applications possible, the Arrington Research Company provides a software 

developers kit (SDK). Specifically, that comes along with a dynamic link library 

(DLL) named VPX_InterApp.dll which allows any third party application to 

interact with the eye –tracking device data. The VPX_InterApp.dll file must be 

stored in the same folder as the eye-tracking application, in order for the 

application to correctly connect with the library.   

In order to interact with the eye-tracking device, our application needed to register 

with the dynamic link library. After the registration, the application obtains a 

unique message identifier used by ViewPoint for inter-process communication. 

Since the source code of the dynamic linked library is already precompiled, and 

written in C++, we had to add a new class MyVPX in C# that will bind the library 

with our application.  

C# allows calls to native code from managed applications, in our case Unity3D, 

through the DLLImport attribute. The DLLImport attribute leads the compiler to 

declare a function residing in the VPX_InterAPP.dll. So, in our case the code 

below finds the needed functions from the dynamic linked library.  

 
Figure 62: Declaration of functions using the DllImport function 

As we can see above, there is an unsafe command in front of each function 

declaration. C# allows using pointer variables in a function code block when it is 

marked by the unsafe modifier. The unsafe code or the unmanaged code is a code 

block that uses a pointer variable. However, unsafe code cannot be compiled by 

Unity 3D. This was solved by adding three files in our Unity3D project folder, the 

smcs.rsp file, the gmcs.rsp and the mcs.rsp file, containing only the command 

shown below. 

 
Figure 63: The sole command that the three files need to contain 

After the successful registration with the Eye-tracking software, myVPXScript.cs 

class defines a callback function which is stored in the DLL VPX_InterApp.dll. 

Inside the callback functions limited coding can be used. Since it interacts with 
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native code written in other programming language, C++, only common types 

such as integers or characters can be defines and used. Otherwise the application 

will crash. Since, for example, c# tolerates strings in a different way than C++ 

does, using a string in c# and sending it to a library written in C++ will cause 

inter-process communication to fail since these languages understand string data 

types in different ways. Below is the function that establishes Unity and 

ViewPoint inter-process communication. 

 
Figure 64: The function that establishes Unity and ViewPoint inter-process communication 

The theCallBackFunction function is responsible for the data exchange between 

the library and the UI’s executable file and will be described later on. When a new 

connection is established the attribute of DLL Sharing, which can be found in the 

Status Window of the ViewPoint software, increases by 1. This attribute shows 

the number of third party applications that are registered to the software. 

 
Figure 65: DLL Sharing 

Every time “fresh” data arrive in the ViewPoint application from the frame 

grabber, the application sends it to all the programs that are registered to it. This 

happens because the VPX_InterApp.dll calls every function that was defined as 

callback on each application, passing the “fresh” data. As “fresh” data we refer to 

the message which informs the applications that new data are available regarding 

a change on the eye fixations or data produced by an infrared camera, and 

generally useful data regarding the eye. In our algorithm, every time “fresh” data 

are available quality checks are made using the VPX_GetDataQuality2() function 

of the VPX_InterApp.dll, and depending on the quality code returned, gaze data 

are fetched using the VPX_GetGazePoint2 () function or not. 
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Figure 66: Possible quality check results 

Depending on quality code, data is either fetched or discarded. Quality codes “0”, 

“1” and “2” are considered as good data and fetched. On the other hand codes 

“3”,”4”,”5” are discarded. Possible reasons creating these errors are either the 

user’s blinks, or inappropriate eye movements that possibly were made, or that the 

infrared camera was instantly shaken due to sharp spin of the HMD. 

 
Figure 67: The Code that checks if it is okay to receive gaze data 

In the end, when we exit the application, we must end the binding that was made 

with the dynamic linked library of the ViewPoint software. This action is 

mandatory because every time we close our application without ending the 

connection, the tracker keeps sending data causing it to crash. 

 
Figure 68: Smoothly closing the app 

5.5 Communication with the Head-tracker 

In a similar way, data is passed from the head tracking device through the 

InterCube3 software’s SDK using a link with the tracker’s dynamic linked library; 

isense.dll. The DLL file must be saved inside the System32 Windows directory. 
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The two main classes that are responsible for the communication between the two 

applications are the StereoCamLook and the HeadTracker classes. Below we will 

explain how connection is established and how data is retrieved from the device. 

The HeadTracker class is responsible for establishing the communication 

between the two applications and retrieving the data from the tracker while the 

StereoCamLook class is responsible for passing the data to our application.  

The dynamic linked library is accessed with C#’s DLLImport attribute, exactly as 

described previously. Below, the function declaration is shown: 

 
Figure 69: Declaration of functions 

In order to seek for trackers connected to the computer we are using the 

ISD_OpenTracker function. If a tracker is detected then a timer is set to count the 

connection duration and via the ISD_ResetHeading function synchronization to 

the tracker is achieved. After a successful connection, head tracking data are 
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passed from the device to our application by calling the ISD_GetTraackingData 

function once per frame. Once the user decides to exit the application, 

ISD_CloseTracker is called to terminate smoothly the connection without 

crashing.  

The data are passed from one class to another by using the PlayerPrefs attribute 

that is allowed in Unity3D. 

 
Figure 70: Setting the data in order to be ready for the next class 

Respectively, the yaw, pitch and roll orientation data that are received from the 

tracker, are then used by the StereoCamLook Class as inputs in order to adjust the 

head models’ orientation, using the PlayerPrefs’ Get method 

 
Figure 71: Retrieving the data from the head-tracker 

In the end, when we exit the application, the ISD_CloseTracker function is 

responsible to terminate the connection. 

 
Figure 72: Smoothly terminating the connection with the head tracker 

5.6 Audio 

“Sound is what truly convinces the mind that is in a place; in other words, hearing 

is believing.”- The Art of Game Design, Jesse Schell. Based on the previous quote 

it is perfectly clear that a game without audio would be totally incomplete, it 

would lose the connection between the player and the environment. So, audio is a 

valuable and necessary part of a game. 
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 In real life, sounds are emitted by objects and heard by listeners. The way a 

sound is perceived depends on a number of factors. A listener can more or less tell 

which direction a sound is coming from and may also get some sense of its 

distance from its loudness and quality. A fast-moving sound source (like a falling 

bomb or a passing police car) will change in pitch as it moves. 

Also, the surrounding environment will affect the way sound is reflected, so a 

voice inside a cave will have an echo but the same voice in the open air will not. 

To simulate the effects of position, Unity requires sounds to originate from Audio 

Sources attached to objects. The sounds emitted are then picked up by an Audio 

Listener attached to another object, most often the main camera. Unity can then 

simulate the effects of a source’s distance and position from the listener object 

and produce them to the user accordingly.  

For the purposes of this project, the audio listener is attached in the main camera, 

which constantly follows the user’s avatar, and the sound is produce from a 

location close to the start of the river. 
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Chapter 6 User trials  

In order to test the foveated rendering algorithm implemented, we decided to 

conduct a user study in order to monitor the FPS rates that is virtual scene is 

rendered at. This thesis’ main goal is to prove that the method used can provide 

beneficial performance results, in terms of frames per second, meaning that it can 

make the user’s experience more pleasant and the game experience smoother than 

when the algorithm is not running in the background, by increasing the number of 

frames rendered per second.  

6.1 Experimental procedure 

When the experiment starts, the user is asked to wear a specific head mounted 

display machine, the Nvis SX 111. The first step is to calibrate the machine and 

the eye tracking software (Viewpoint) specifically according to the user’s head 

geometry and his eye movements. To do so, the user is asked to concentrate on 

sixteen different locations on the screen, consecutively. Every few seconds, a 

green square pops in the user’s screen and the user must simply look at it. After, a 

few moments, the program takes a quick photo of the user’s pupil. By doing so at 

every different focal point it keeps in its “memory”, data regarding the status of 

the user’s pupil in every different position.  

After the calibration is done, the user enters a specific virtual environment in 

which the user takes the role of a gondolier. Right when the game starts, the user 

meets his first customer approaching him slowing from his right side. When the 

customer boards the gondola, a message appears on the screen notifying the user 

about the customer’s desired destination. The destination is chosen randomly 

every time between the two available options. After that, golden coins pop-up on 

the map in order to help the user locate the correct destination area. The user 

simply has to transfer the customer to the correct area on the map. Meanwhile, the 

user can freely enjoy the ride and the view.  

The user will have to make the same ride four times because we want to test the 

results on four different sets of parameters.  

Set Foveal Central Cycle Periphery 

1 102
o
 0

 o
 0

 o
 

2 5
 o
 10

 o
 102

 o
 

3 10
 o
 20

 o
 102

 o
 

4 15
 o
 30

 o
 102

 o
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The first set of parameters indicates that the foveal cycle of the foveated rendering 

technique that is going to be applied will be 102
 o 

big. The Nvis SX 111 HMD has 

a field of view of 102
 o

. That means that the whole screen will be covered by the 

foveal cycle, which means that the result won’t be a foveated rendered result, but 

a full high resolution rendered one. On the second set of parameters the algorithm 

will create a result where the Foveal cycle will cover 5
 o

, the central cycle (which 

is between the foveal and the periphery) will cover 10
 o

 and finally the periphery 

cycle will cover of course 102
 o

.  Sets 3 and 4 are created accordingly.  

At this experiment we want to test if the foveated rendering algorithm created 

helps the users have a more pleasant experience by providing more FPs than when 

the algorithm is not used. Furthermore, we want to gather data, regarding the 

maximum number of FPs, the minimum number of FPs as well as the average 

number of FPs, in order to have a statistical representation of the results that we 

managed to achieve. Finally, the users will be asked to fill a sort questionnaire to 

rate their experience and help us even more with some suggestions they may 

have.  

Also, when the users swap from one set of parameters to another, they will be 

asked if they cannot anymore detect the boundaries of every cycle or if they 

couldn’t before but now they can. According to scientific research, the foveal 

cycle can be as small as 5
o
 and stay undetected from the user if the software and 

the hardware are ideal. Since, in this experiment, we don’t have the ideal software 

or an ideal hardware, we want the users to inform us on how much bigger the 

foveal cycle must be in order to be undetected. Of course, the bigger the cycle 

becomes the less beneficial the algorithm will be. 

6.2 Exported parameters 

The ride takes about 2 minutes to be completed and during the whole duration we 

check the number of frames per second that are rendered. At the end of every 

phase of this experiment we save the highest number of FPs, the lowest number of 

FPs as well as the average number of FPs. In addition, we export a different file 

which contains the prices number of FPS for every frame. This metrics will help 

us calculate, after the experiments are completed, how beneficial our approach is. 

6.3 Participants & Apparatus 

A total of 19 students from the Technical University of Crete, 12 males and 7 

females with an average age of 23.9 years, participated in the experiment. All 

participants had normal or corrected to normal vision. The experiments took place 

in a dedicated experimental space on the campus, which was darkened to remove 

any periphery disturbance during the exposure. 
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The rendered scenes were displayed on an NVisor
TM

 SX111 HMD, having a 

resolution of 1280x1024 and a Field of View of 102 degrees horizontal and 64 

degrees vertical. Participants wondered around the VE using an InterSense
TM

 

InertiaCube3
TM

 with 3 Degrees of freedom head tracker attached to the HMD. 

Eye-tracking data was recorded using a monocular eye-tracker by Arrington 

Research
TM

 also attached to the HMD updating at a frequency of 60Hz. 

6.4 Simulator sickness  

A potential side effect of all HMDs is simulator sickness. As simulator sickness 

we refer to fatigue, headaches, dizziness, visual discomfort and nausea that appear 

while someone is immersed in a VE. Another side effect that was met during the 

experiments is eyestrain. Usually, the eyestrain effect is caused due to system 

latency, limitations to Field of View (Dizio & Lackner, 1997) etc. 

Nevertheless, the experiments reported here were conducted without any 

participant interrupting of the scheduled procedure because of simulator sickness. 

Only fatigue, as expected, was an issue since all the users never had past 

experience with eye-tracking and gaze control systems and since the HMD is 

quite heavy. 

6.5 Questionnaire 

After completing the experiments, every participant was asked to fill in a 

questionnaire about his experience. The questions aim to gather information about 

the background of each user, how familiar is he with VR, what is his opinion so 

far on VR, if he ever owned a VR machine, while also to test if the user was 

content with the result provided by our algorithm. 

The questions that the users were asked to answer are the following: 

1.  Gender:  

o Male 

o Female 

2.  Age:  

 

3.  Usage of VR: 

o 1
st
 Try 

o Less than 5 tries 

o 5 to 10 

o Frequent Use 

o I am an Expert 

4.  What of these devices do you own and use Regularly? 

o Smart Phone 
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o Tablet 

o Laptop 

o PC 

o Games Console 

o Smart TV 

o None 

5.  What (if any) of these virtual reality devices have you used before? 

o Google Cardboard 

o Microsoft Oculus Rift 

o Samsung Gear VR 

o HTC Vive 

o Playstation VR 

o None 

6.  General opinion on VR?  

o Positive 

o Negative 

o so and so 

7.  Did you have any problems understanding where you should go next 

while immersed in the game? 

o Yes 

o No  

8.  Did you get dizzy while immersed?  

o Yes 

o No  

9.  If you got dizzy, how bad would you say it was? 

 

 

10.Did you manage to complete the whole game? 

o Yes 

o No  

11.Did you notice any pop-up effects like objects appearing out of nowhere? 

o Yes 

o No  

12.Do you get motion sickness in real life? 

o Cars  

o Cars (backseat/passenger)  

o Boats  

o Planes 

13.Were you not able to detect the foveated boundaries at any of the 

following experimental techniques? 

o Brutal Foveated Rendering (5
o
 Technique) 
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o Normal Foveated Rendering (10
o 
Technique) 

o Large Foveated Rendering (15
o 
Technique) 

o It was clear in every case 

14.Regarding the whole duration of the game, would you say that the 

foveated rendering technique used made the game experience better??  

o Yes 

o No  

o Same 

15.Regarding the duration of the game considered as “Hard to be rendered”, 

would you say that the foveated rendering technique used made the game 

experience better??  

o Yes 

o No  

o Same 
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Chapter 7 Results & Conclusion 

7.1 Users’ feedback 

Apart from two users that declared that they frequently use VR systems to 

immerse themselves in different VE, all the other participants were trying virtual 

reality for the first time (53%) or they had used VR in the past but less than 5 

times (37%). As a result, we can say that 90% of the participants were new VR 

users. Out of all the participants only two stated that they got a little bit dizzy 

while immersed in the VE and even those two did manage to complete the whole 

process without any problems.  

All users did understand when the foveated rendering algorithm was applied but 

this was mainly because the eye tracker used lacks accuracy the further the user’s 

gaze moves from the center of the screen, while also due to the latency added 

from the computer used and the HMD, which is an old model with a latency of 

18ms which is more than triple comparing to the state of the art HMDs. In 

subchapter 7.4 we are presenting snapshots of the users’ displays to further 

discuss the resulted rendering.  

7.2 Statistical results 

Overall, all of our three versions of the algorithm enjoyed significant success. 

After ensuring that the algorithm created indeed improves the application’s 

performance, we also wanted to calculate this performance boost. The most 

effective way to represent such results is by displaying them in common charts. In 

the diagram below, we present the average of the FPS values recorded during our 

experiments in all three versions of the algorithm tested as well as in the full HD 

version during which our algorithm is not applied. 
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Table 1: Table containing the average values of the FPS recorded in all four versions of the algorithm22 

By comparing the average FPS recorded during the Full HD version, which 

appears on the table just above blue, with the other versions of our algorithm, it is 

clear that even in the less beneficial version, there has been some improvement in 

performance. In order to understand the beneficial effect of adopting such an 

algorithm by the VR community, it is important to portray it in percentage scale. 

                                                 
22

 FR_5_10 stands for Foveated rendering with inner foveal layers of 5 and 10 degrees. 

53.91454263 

57.81766266 

56.77681035 
57.25361077 

Average FPS 

Full HD FR_15_30 FR_10_20 FR_5_10 
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Table 2: Quantitative depiction of the algorithm's improvement in its three different versions 

As depicted above, the version with the largest foveated inner layers is our most 

efficient approach. This came as a surprise to us, since it uses larger inner layers 

than the others. As a result, more pixels on the screen are rendered at a higher 

quality. We believe this is due to the fact that our machine is not very accurate 

and often makes repeated misconceptions of the user's focal point. As a result, the 

algorithm is bound to render the wrong results again and again. 

Apart from calculating the average performance boost of our rendering technique, 

we also recorded the most effective experimental process. Since the results of our 

approach depend on the user's gaze movements, specific users have recorded 

higher FPS rates than others. The table below shows the highest FPS growth rates 

recorded during our experiments. 

7.239456831 

5.30889735 

6.193260639 

Average Perfomance Boost (%) 

FR_15_30 FR_10_20 FR_5_10 
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Table 3: The most beneficial experimental trials 

As a general conclusion, we could conclude that all three forms of our algorithm 

show significant performance improvements. More specifically, this approach 

leads to an improvement of the average of 7.23%, while in some cases it can 

reach 18.3%. Also, let's not forget that we achieved these results with 1K low-

resolution screens, while in our days the screens reach up to 4-8K UHD 

resolution. 

7.3 Single participant’s results 

In order for the reader to obtain a more accurate image of the algorithm's 

performance, we present the results as recorded during a typical experimental 

process. In the following graphs, the FPS value for each frame that the user was 

immersed on the VE will be sown. The selected user is a woman, due to the 

ideally accurate estimation of her gaze. 

18.29580444 

17.99755701 

18.19791779 

Best recorded performance boost (%) 

FR_15_30 FR_10_20 FR_5_10 
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Table 4 : Full representation of the FPS values recorded in relation to each frame that experimental 

process lasted while our algorithm was not applied 

 
Table 5: Full representation of the FPS values recorded in relation to each frame that experimental 

process lasted, while our algorithm was set to have 5 and 10 degrees foveated inner layers 
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Table 6: Full representation of the FPS values recorded in relation to each frame that experimental 

process lasted, while our algorithm was set to have 10 and 20 degrees foveated inner layers 

 
Table 7: Full representation of the FPS values recorded in relation to each frame that experimental 

process lasted, while our algorithm was set to have 15 and 30 degrees foveated inner layers 

By examining the tables in this subchapter, we can conclude that at the start of the 

game, where the scene has no massive rendering needs, the foveated rendering 

approach with inner layers of 15 and 30 degrees (FR_15_30) does perform worse 

than the all the other approaches. This happens because, as mentioned before, this 

approach renders more pixels in a higher resolution than the other two 

approaches. However, after the first half of the scene is completed, as the user 
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enters an area of the map that contains a lot of trees and a lot of depth of view, all 

three foveated rendering approaches tend to perform a lot better than the Full HD 

approach. In this part of the scene we believed that the approach with the 5 and 10 

degrees of layers would be performing the greatest due to the massive decrease of 

resolution. However, probably due to the lack of accuracy of our eye tracker, the 

FR_15_30 does deliver better results.  

 
Figure 73: Shot of the female participant during the experimental process. 

7.4 Rendering results 

During the experiments several photos and videos have been taken. In this chapter 

we will make use of some photos in order to depict the difference between our 

three versions of our algorithm. Moreover, we will discuss about the fact that 

during some users’ experiments the algorithm was undetectable. 

In the first figure presented, the user’s gaze is located close to the center of the 

screen. As a result, the Eye-tracker has a very good view on the user’s eye. This 

leads to a rendering result, around the user’s focal point, which is hard for the user 

to distinguish from a Full HD result.  
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Figure 74: A frame of the user's view while using FR_15_30 

The difference in resolution is very easily detected while looking at the picture, 

but we need to bear in mind that the user’s field of view is covered by this image. 

As an external observer one can focus his attention on the point where the change 

of analysis takes place. For the user, this is not possible as it moves with his eyes. 

In the next figure, one can understand how much smaller the inner layers are in 

the foveated rendering approach that is set to 5 and 10 degrees of layers 

(FR_5_10), compared to FR_15_30. 
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Figure 75: FR_5_10 

FR_5_10 can be undetected only when using state of the art HMDs and eye 

tracking software in addition to a PC built for VR use. In our case, this hardware 

and software were not available so in all our experiments we did expect the users 

to be able to understand the decrease of resolution in this version of the algorithm. 

 
Figure 76: A user is unable to detect if the algorithm is applied or not. The algorithm FR_10_20 is 

applied! 

In the figure 77 the user is using the FR_10_20. It is clear that the eye tracking 

software did track the user’s pupil and the rendered layers are perfectly blended 

together to deliver a very good result. 
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7.5 Conclusion & Future work 

In this dissertation, we wanted to create an algorithm that uses the user's gaze in 

order to create a rendering result based on it. In this way, the algorithm would 

enable the application to run at FPS rates higher than it would without it. 

Furthermore, we tried to make the rendering result as close as possible to the 

same result rendered at full resolution. 

We have succeeded in increasing the number of frames per second on average by 

over 7%. In some cases, we have even recorded increases even greater than 18%. 

These increments in FPS differ from experiment to experiment due to different 

eye movements made by different participants. In addition, we believe that using 

the same algorithm on different hardware would offer even higher increases in 

FPS. 

Finally, the rendering result delivered to the users, depending on their gaze 

position, can be undistinguished from a similar result delivered in full HD 

resolution. We would also like to study problems specific to foveated rendering in 

virtual reality, such as accounting for eye tracking failure and system latency in 

order to maintain perceptual losslessness. This also extends to exploring novel 

foveated rendering methods. 
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