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First-order traffic flow models of the LWR (Lighthill-Whitham-Richards) 

type are known for their simplicity and computational efficiency and 

have, for this reason, been widely used for various traffic engineering 

tasks. However, these first-order models are not able to reproduce 

significant traffic phenomena of great interest, such as the capacity drop 

and stop-and-go waves. This paper presents an overview of modeling 

approaches, which introduce the ability to reflect the capacity-drop 

phenomenon into discretized LWR-type first-order traffic flow models; 

and also proposes a new approach. The background and main 

characteristics of each approach are analyzed with particular emphasis on 

the practical applicability of such models for traffic simulation, 

management and control. The presented modeling approaches are tested 

and validated using real data from a motorway network in the U.K.   

 
 

 

1. Introduction 

Among numerous phenomena characterizing traffic flow behavior, one of the most known and puzzling is 

the so-called capacity drop. This phenomenon breeds the reduction in the mainstream flow of a motorway 

when a queue starts forming upstream of a bottleneck location (Banks, 1991; Hall and Agyemang-Duah, 

1991). Bottleneck locations can be motorway merge areas, areas with particular infrastructure layout (such 

as lane drops, strong grade or curvature, tunnels, etc.), areas with specific traffic conditions (e.g., strong 

weaving of traffic streams), areas with external capacity-reducing events (e.g. work-zones, incidents) etc. 

(Chung et al., 2007; Dixon et al., 1996; Smith et al., 2003). If the arriving demand is higher than the 

bottleneck capacity, i.e., the maximum flow that can pass during a certain time period, the bottleneck is 

activated, i.e., congestion is formed at the bottleneck location and spreads upstream. Empirical observations 

show that, whenever a bottleneck is activated, the maximum outflow that materializes (also called 

discharge flow) may be some 5 to 20 percent lower than the nominal bottleneck capacity. The capacity drop 

is then defined as the difference between these two values of flow, i.e., the capacity and the discharge flow. 

Certainly, the capacity drop reflects infrastructure performance degradation, leading to increased 

congestion space-time extent and accordingly longer vehicle delays. To avoid or delay the activation of a 

bottleneck, and the related capacity drop phenomenon, various traffic control measures have been proposed 

and applied (Cassidy and Rudjanakanoknad, 2005; Papageorgiou et al., 1991, 2003). 
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Designing and testing efficient traffic control strategies, or assessing their performance, require 

the usage of traffic flow models that are able to reproduce the motorway traffic conditions with satisfactory 

accuracy, specifically to reproduce infrastructure degrading phenomena such as the capacity drop. 

Macroscopic first-order traffic flow models of the Lighthill-Whitham-Richards (LWR) type (Lighthill and 

Whitham, 1955; Richards, 1956), where the dynamics are described by the conservation equation of 

vehicles only, represent a valuable tool for the study of traffic behavior, as they are simple, yet effective in 

reproducing not only free-flow conditions, but also wave formation and propagation under congested 

conditions. However, they do not allow for capturing more complex traffic phenomena, such as the capacity 

drop. In order to incorporate this important feature, different approaches have been proposed, which include 

higher-order extensions and first-order extensions; the former include second-order traffic flow models, 

while the latter are formulated via introduction of complex fundamental diagrams (Zhang, 2001). 

Various second-order macroscopic traffic flow models have been proposed (e.g., Payne, 1971; 

Messmer and Papageorgiou, 1990; Aw and Rascle, 2000; Zhang, 2002; Whitham, 2011; Delis et al., 2014), 

which contain an additional dynamic equation to describe the speed evolution, being thereby capable to 

reproduce traffic instabilities, such as stop-and-go waves, as well as the capacity drop phenomenon at active 

bottlenecks. Second-order models have been consistently found in diverse calibration exercises to reflect 

more accurately real traffic data (Cremer and Papageorgiou, 1981; Papageorgiou et al., 1989; 

Michalopoulos et al., 1992; Frejo et al., 2012; Spiliopoulou et al., 2014; Fan and Seibold, 2012; Fan and 

Seibold, 2013). On the other hand, also second-order traffic model present some drawbacks, such as: (i) 

they may (under rare circumstances, as shown by Helbing and Johansson (2009)) produce negative speeds 

or flows (see Daganzo (1995a)); (ii) they usually include a higher number of parameters (some of which 

without clear physical significance), that need to be appropriately calibrated; and (iii) any optimization 

problem built upon second-order models is characterized by a nonlinear formulation, which implies a 

higher computation effort and the impossibility to guarantee convergence to a global optimum (Kotsialos 

and Papageorgiou, 2004). With respect to the last drawback, also first-order models include non-linearities, 

which, however, may be more efficiently tackled, while defining an optimization problem, by using 

computationally-efficient mixed-integer linear formulations (Ferrara et al., 2015) or, under specific 

assumptions, by using only linear or piecewise linear constraints (Ziliaskopoulos, 2000; Roncoli et al., 

2015a).  

The LWR model is composed by a single partial differential equation reflecting the conservation of 

vehicles and a steady-state flow-density relationship known as the Fundamental Diagram (FD) of traffic 

flow. While analytical solutions of the LWR model can be obtained for simple traffic settings using the 

method of characteristics, a significant amount of literature proposes and extends discrete approximations 

of the continuous LWR model applying the Godunov discretization scheme (Godunov, 1959), where the FD 

is transformed into two flux functions known as the demand (flow that can be sent from upstream) and the 

supply (flow that can be received downstream) functions (Lebacque, 1996). The most referenced among 

these discretized models is the Cell Transmission Model (CTM) (Daganzo, 1994), where the flow is 

expressed as a function of density via the definition of a triangular FD, and the space and time increments 

are selected according to the free speed. Remarkably, CTM realistically predicts shockwave propagations, 

while all the parameters have a physical interpretation, which also implies that they can be easily calibrated 

using real traffic data (Munoz et al., 2004). Furthermore, it has been employed for the study of different 

applications, such as dynamic traffic assignment (Lebacque et al., 1996; Ziliaskopoulos, 2000), traffic 

prediction, signal control and ramp metering (Alecsandru et al., 2011; Gomes and Horowitz, 2006; Zhang et 

al., 1996). Finally, CTM is characterized by relatively low computational requirements (Gomes and 

Horowitz, 2006; Lo, 2001) and it can be easily employed for large-scale motorway and urban network 

simulation (Lebacque et al., 1996).  

It should be noted that CTM is not the only computationally efficient and reasonably accurate 

discretized first-order model. Models such as the Point-Queue (PQ) model, proposed by Smith (1983) and 

Kuwahara and Akamatsu (1997), as well as the Link Transmission Model (LTM), proposed by Yperman et 

al. (2006), have been seen as effective tools for traffic flow representation. As discussed by Nie and Zhang 

(2005), although the PQ model results in less computational cost and leads to equivalent results for a 

number of initial/boundary conditions, compared to CTM, its solutions differ in cases of queue spill-backs, 
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since the PQ model does not consider the physical length of the queue. Moreover, as discussed by Jin 

(2015b), LTM, in which the demand and supply functions are defined from cumulative flows, appears to be 

less computationally demanding but more memory consuming, in comparison with CTM.  

Despite the increasing interest from the research community in integrating capacity drop in 

LWR-type first-order models, a limited number of effective approaches have been proposed, and only a few 

are actually tested using real traffic data to evaluate their behavior in case a bottleneck is activated. This 

study, as an extension of the work by Kontorinaki et al. (2016) in various respects, aims to fill this gap, 

gathering the state-of-the-art related to capacity drop modeling within LWR-type models (first-order 

extensions), contributing with further insights about their implications, and testing their capability to 

reproduce correctly the desired traffic pattern at an active bottleneck due to on-ramp merging. In particular, 

a discretized space-time modeling framework, which comprises CTM as a special case, is used. This is 

because CTM (and its extensions) serves as basis for most of the proposed capacity drop approaches, which 

use a discretized space-time framework. It should be noted that each approach introduces additional terms 

and parameters to the original CTM, and that the computational efficiency of all approaches remains 

virtually unaltered. 

The selection criteria for the CTM-based approaches that are described and analyzed in this paper 

are two: First, the selected models should include a low number of parameters, which implies a limited 

effort in calibration and easier application; second, the selected models should be capable of reproducing 

the capacity drop for a typical on-ramp merge scenario. In addition, based on the above considerations, a 

new modeling approach is introduced, which extends also the discretized LWR model to reflect capacity 

drop. An analysis that links this model with the continuous LWR model is also provided in the Appendix. 

The rest of the paper is structured as follows: Section 2 presents a literature review of first-order 

models that reflect capacity drop. Section 3 describes in more detail the selected approaches, highlighting 

the necessary modifications of a basic discretized-LWR formulation; in addition, a first-order model that is 

not of LWR-type is included for comparison. In Section 4, the approaches are tested using real traffic data 

from a motorway network in UK. Finally, in Section 5 some concluding remarks are provided.  

 

2. Literature review on capacity drop in LWR models 

Several modeling ideas have been proposed in the research community with the purpose of incorporating 

the capacity drop phenomenon into LWR-type models using different assumptions. In this section, 

aliterature review of the proposed approaches is presented, along with an attempt to categorize them 

according to their underlying basic ideas and the qualitative issues arising from their implementation. 

From a theoretical viewpoint, several issues might arise from including capacity drop, mainly in the 

continuum LWR model, via lower-order extensions. Some of them are briefly presented here since they 

might be useful in the following, but the reader is encouraged to read Zhang (2001) for a more detailed 

discussion. A first issue may be whether or not the considered extensions  violates the anisotropic property; 

roughly speaking, the anisotropic property imposes that vehicles are only affected by the traffic conditions 

downstream of their location. Furthermore, in many cases, behavioral assumptions must be taken into 

account in order to consider one out of multiple mathematical solutions imposed by the extended model. 

More specifically, since lower-order extensions target also the consideration of the so-called 

non-equilibrium phase transitions, one should restrict the range of solutions by introducing intermediate 

states (additional conditions) on the model and selecting the preferable solution using specific criteria, such 

as, for example, assumptions on driver behavior. It is also important to investigate whether or not the 

extended model can indeed be reduced to an equivalent kinematic wave model, but with a special 

(“effective”) FD. Although these issues are not of major importance in the utilized discrete environment, 

this study also contributes with a theoretical analysis that discusses the latter issue (reduction of a model to 

a kinematic wave model) for the new proposed capacity drop approach (see Section 3.8 and Appendix).  

Since the pioneering work by Edie (1961), it has been observed that the flow-density relation can 

be discontinuous, featuring a sharp speed drop within a small density range, when a critical density value is 

exceeded. Specifically, this discontinuity in the FD generally arises when congestion appears in the area of 

an active bottleneck and reflects the capacity drop phenomenon. The resulting particular shape of the FD 
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has sometimes been referred as “inverse lambda”, see Koshi et al. (1983). This behavior can be 

theoretically modeled via definition of two flow values for a specific range of densities around the critical 

density, where the different flows appear in dependence of the current and past traffic conditions. 

Nevertheless, some research works suggested that it is more appropriate to employ a continuous FD rather 

than a discontinuous one, since the latter may cause (in a continuous environment) infinite shock-wave and 

characteristic wave speeds, as discussed by Jin et al. (2015a); moreover such a discontinuity differs from 

observations in the field (Cassidy, 1998). 

Various approaches to enable the description of the aforementioned behavior have been proposed in 

different works. Muralidharan and Horowitz (2015) and Li et al. (2015) proposed to reduce the outflow of a 

cell to a fixed value (lower than its nominal capacity) by modifying the demand function when the density 

of the cell becomes  overcritical, leading to a FD of the “inverse lambda” shape. More specifically, 

Muralidharan and Horowitz (2015) proposed an augmented Link-Node Cell Transmission Model 

(LN-CTM), which is utilized in the formulation of an optimization problem; while Li et al. (2015) utilized a 

CTM variation accompanied with a stochastic component (added in order to reproduce stop-and-go waves) 

and proposed a methodology to reduce crash risks via Variable Speed Limits (VSL). Furthermore, Jin 

(2010) proposed a model that takes into account lateral and longitudinal movements of vehicles, in order to 

study the aggregated traffic dynamics of a motorway, including lane-changing effects. More specifically, a 

modified FD using an “inverse-lambda” shape is proposed by adding a parameter, which captures the 

intensity of lane-changing effects. 

Other works considered the capacity drop mechanism being produced as a consequence of 

microscopic phenomena, such as lane-changing maneuvers, slow vehicles entering a merge cell, and 

heterogeneous lane behavior due to the variations of traffic states at merges, which prevent the system to 

reach the full motorway capacity before the breakdown (Cassidy and Ahn, 2005; Laval and Daganzo, 2006; 

Treiber et al., 2006). Again, Muralidharan and Horowitz (2015) proposed an additional weaving parameter 

affecting the supply function within the LN-CTM in order to capture the intensity of lane changing 

maneuveurs. As previously mentioned, a similar feature is also present in the model proposed by Jin (2010). 

Moreover, Wong and Wong (2002) presented an extension of the LWR model incorporating the distribution 

of heterogeneous road users. The developed multi-class model assumes the existence of drivers with 

different speed choice behaviors and is capable to reproduce capacity drop, hysteresis of traffic flow and 

platoon dispersion as well.  

Other studies incorporated the ability of reproducing capacity drop into LWR-type models by 

considering explicitly its phenomenological aspects, which consists in the appearance of the capacity drop 

immediately after queues are forming upstream of the bottleneck location, by letting the downstream supply 

be smaller than the upstream demand. Torné et al. (2014) proposed a modeling approach, within a so-called 

Capacity-Lagged CTM (CL-CTM), which modifies the FD from a triangular to a trapezoidal shape in case 

VSL are applied. This is materialized via definition of appropriate rules to switch from capacity to a 

reduced discharge flow, where the two flow values (capacity and discharge flow) are chosen a priori. 

Similarly, Jin et al. (2015a) modifies the supply function by introducing an exogenously specified reduced 

capacity which is activated when the demand of the cell is lower than its supply. Han et al. (2016) and Han 

et al. (2017) employed a similarly modified FD, with the difference that the capacity of the bottleneck cell 

reduces (linearly) as the density of the upstream cell (the congested one) increases. Furthermore, Landman 

et al. (2015) employed the macroscopic first-order multilane model proposed by van Lint et al. (2008), 

which enables capacity drop by decreasing the supply function of the cells located downstream of a 

congested one, using a pre-specified factor. Srivastava and Geroliminis (2013) proposed a memory-based 

methodology, where two different values of density are chosen in order to determine whether a cell is in 

free-flow or congested state; whenever a cell is congested, the corresponding supply function is bounded by 

a pre-specified flow lower than its capacity. Thus, in this formulation, (at least) two additional parameters 

need to be specified: one (or two) density threshold(s), characterizing the interval where flow capacity drop 

is appearing, and the discharge flow. The main disadvantage of this approach is the generation of 

high-frequency fluctuations between congested and uncongested states that does not allow a cell to remain 

in congested state for a long period. The authors suggest using moving averages to smooth the density 

variations while applying the switching logic; however, this may not be sufficient to eliminate the 
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aforementioned problem, since fluctuations with lower frequency and larger amplitude may be still 

observed. 

Other researchers have tried to incorporate capacity drop within the LWR framework by 

accounting for the bounded acceleration of vehicles entering a bottleneck location. These models predict 

the same trajectories with LWR in some areas of the computational domain, while satisfying kinematic 

constraints (imposed by bounded acceleration) in other areas. For instance, Lebacque (2003) proposed a 

two-phase traffic flow model, where the first phase corresponds to the LWR model, while in the second 

phase the acceleration of vehicles is constant and equal to a maximum value; this model results in a 

higher-order model which is difficult to analyze and calibrate. Moreover, also a simplified approach that 

proposes only a modification of the FD is presented in the same study, while similar assumptions have been 

made by Monamy et al. (2012) for a link-node model that has been also partially validated with real data for 

a merging scenario. Moreover, Srivastava et al. (2015) proposed a modified CTM with a different demand 

function, which linearly decreases under over-saturated density conditions. In addition, Khoshyaran and 

Lebacque (2015) extended the model proposed by Monamy et al. (2012) by considering an internal state 

node model in order to account with the bounded acceleration and the introduction of a simple mechanism 

for modeling hysteresis cycles. 

The simplified model proposed by Lebacque (2003) and the models proposed by Monamy et al. 

(2012), Srivastava et al. (2015) and Khoshyaran and Lebacque (2015) utilize a decreasing demand function 

for densities beyond a critical value to reflect bounded acceleration of vehicles, while the supply function 

remains the same. However, this model feature is capable to reproduce the capacity drop phenomenon in 

on-ramp merges only for specific cases; in fact, if the flow that the merge cell can receive is smaller than its 

capacity (due to the unchanged supply function), the desired effect is cancelled, because the merge cell 

cannot become congested and continues operating at capacity. Following the above concept, Karafyllis et 

al. (2016) introduced generalized versions of discrete approximations of the LWR model, allowing for a 

wide range of demand functions to be taken into account, where the capacity drop can be included through 

the definition of linearly decreasing or even discontinuous demand functions for overcritical densities; 

while Roncoli et al. (2015a) included the possibility of capacity drop into a multi-lane first-order traffic 

flow model in order to define a quadratic programming optimization problem (Roncoli et al., 2015b); a 

modified FD is used, similar to the one proposed by Lebacque  (2003), and the capacity drop is triggered by 

lateral and on-ramp flows. 

Furthermore, Leclercq et al. (2011) proposed to quantify capacity drop as a consequence of 

bounded acceleration of merging vehicles. The capacity drop is defined as a function of the on-ramp 

demand considering two possibile demand scenarios (low/high demand) and a set of different model 

parameters. The basis of this work is the Newell-Daganzo (ND) model (Newell, 1982; Daganzo, 1995b), 

enhanced by the introduction of different formulas and rules to compute the capacity of the merge cell 

depending on the on-ramp and mainstream demands. However, this approach focuses mainly on 

determining the value of the capacity drop, without advising on any methodology for its implementation 

into discretized LWR-type models. Extending the previous concept, Leclercq et al. (2016) developed a 

methodology for estimating the effective capacity (discharge flow), i.e., the observed flow downstream of 

freeway merges. The authors focused on the impact of merging process, combined by bounded 

acceleration, with heterogeneous vehicle characteristics. They concluded that for the estimation of the 

effective capacity, a proper estimation of vehicles mean characteristics would be sufficient.  

Models that count for the uncertainty of the FD have also been considered. Li et al. (2012) analysed 

the potential influences caused by the inaccurate specification of the FD by developing a numerical 

procedure to evaluate how the uncertainty of the FD would affect the output of the LWR model. Moreover, 

Jin and Amin (2017), based on the uncertain nature of capacity, proposed a modified CTM incorporating a 

Markov chain-based model for the saturation regimes; however, their work is mainly focused on the 

calibration method rather than analyzing the qualitative behavior of the proposed model.   

Last but not least, some researchers have tried to incorporate the capacity drop phenomenon into 

LWR-type models through the hysteresis phenomenon of traffic flow (see, e.g. Alvarez-Icaza and Islas, 

2013; Yuan et al., 2015), which was first reported by Treiterer and Myers (1974) and derives from the fact 

that the acceleration and the deceleration of vehicles are not symmetric procedures. This means, that, 
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whenever the traffic is moving from free-flow to congested regime, the observed flow reaches the 

bottleneck capacity; while, the transition from congested regime to free-flow occurs via a maximum flow 

which is lower than the capacity. Thus, two different branches may exist in the FD, whereby the 

deceleration branch lies above the acceleration branch. It is worth noting that second-order models 

employing a continuous FD may naturally produce the hysteresis behavior of traffic flow and the capacity 

drop, thanks to the included dynamic speed equation (see e.g. Papageorgiou et al., 1990, Fig. 14). 

 In this study several of the proposed approaches are tested in order to provide further insights 

about their implications and their capability to reproduce correctly the desired traffic patterns at an active 

bottleneck due to on-ramp merging. The selected modeling approaches are those that are simple in terms of 

the number of parameters and can be formulated within a simple general, discretized LWR (CTM-like) 

model framework. In particular, the following modeling approaches are selected to be tested in the next 

section: i) the “inverse lambda” shape FD modeling approach proposed by Muralidharan and Horowitz 

(2015) and Li et al. (2015) in Section 3.6; ii) the model, which introduces a weaving parameter for 

lane-changing effects, proposed by Muralidharan and Horowitz (2015) in Section 3.5; iii) the modeling 

approach proposed by Torné et al. (2014) with appropriate modifications for the case of an on-ramp merge 

in Section 3.4; iv) a similar modeling approach with the one proposed by Han et al. (2016) (and further 

utilized by Han et al. (2017) for traffic control purposes) which utilizes linearly decreasing capacity for the 

downstream supply in Section 3.7; and finally, v) a new modeling approach extending the ones proposed by 

Lebacque (2003) and Monamy et al. (2012) in Section 3.8. 

 

3. Model formulations 

For the subsequent description and testing of different capacity-drop approaches, a simple formulation of a 

discretized LWR model is utilized. Despite the fact that some of the considered approaches are originally 

introduced for more sophisticated models, their implementation is here based on a common formulation, 

which also permits a clearer understanding and a fairer result comparison. Also the notation (see Table 1) is 

kept consistent throughout the paper for all the described approaches. Moreover, a simple illustrative 

example is constructed, which demonstrates the qualitative behavior of the different approaches that are 

tested hereafter. 

 

3.1. Basic discretized-LWR model formulation 
 

A discretized LWR model considers, apart from the discretization of time, the discretization of the network 

in a finite number of cells and the definition of rules for sending and receiving traffic flow. To this end, a 

motorway stretch is divided into n  cells as shown in Fig. 1. The 
thi  cell (where 1,...,i n ) is characterized 

by a single state variable i , which corresponds to the density of vehicles, namely the number of vehicles 

divided by the length of the cell, implying that the state of the motorway is entirely described by the n

-dimensional vector  1,..., n    evolving according to a n -dimensional nonlinear difference equation. 

The movement of vehicles from one cell to the next is governed by the steady-state relation between flow 

and density, i.e. the corresponding FD. This relation is characterized by its concave branches, where the 

demand part and the supply part reflect, respectively, its increasing and decreasing branches (Godunov, 

1959; Lebacque, 1996). The density value (unimodal FDs) or values (multimodal FDs), for which the 

maximum flow is attained, is defined as the critical density of the cell. The general model is entirely 

described by Eqs. (1), (2), (3), and (4), while the definitions of the variables and parameters are given in 

Table 1. 
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Notice that, according to this formulation, ir  is the factual on-ramp flow, which may be only a 

portion of the corresponding on-ramp demand. This portion may reflect any applying priority rules at the 

junctions of the freeway and can be fully determined using appropriate existing priority models (see, for 

example, Karafyllis et al., 2016; Daganzo, 1995). However, in this study, we are focusing on capturing the 

capacity drop at the mainstream region and we dispose of factual (measured) on-ramp flows, hence, there is 

no need and, in fact, no possibility, in lack of internal ramp data, to explicitly consider a specific priority 

 

Fig. 1. The space-discretization of a hypothetical motorway stretch. 

 

Table 1 

Models’ variables and parameters. 

Symbol  Name  Units  

T  simulation time step h 

k  discrete time index 0,1,2,… 

il  number of lanes in the 
thi  cell dimensionless 

iL  length of the 
thi  cell km 

( )i k  density of the 
thi  cell at time kT  veh/km/lane 

max,i  storage capacity of the 
thi  cell veh/km/lane 

,cr i  critical density of the 
thi  cell veh/km/lane 

))(),(),(( 11 krkkf iiii 

 
actual outflow from the 

thi  to the thi )1(   cell during Tkk ]1,(   veh/h 

))((, kf iiD   demand part of the FD of the 
thi  cell during Tkk ]1,(    veh/h 

))((, kf iiS   supply part of the FD of the 
thi  cell during Tkk ]1,(   veh/h 

iQ  capacity flow of the 
thi  cell veh/h 

( )ir k  factual on-ramp flow at the cell during Tkk ]1,(   veh/h 

ip  
percentage of the actual flow exiting from the off-ramp of the 

thi  

cell (exit-rate of the 
thi  cell) 

dimensionless 

,f iv  free-flow speed of the 
thi  cell km/h 

iw  congestion wave speed of the 
thi  cell km/h 
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scheme. Thus, the factual on-ramp flow is not restricted by the amount of vehicles within the cell , while 

restrictions (the supply part of the FD) apply for the flow coming from the upstream cell. Note also, that for 

the first cell, the entering mainstream flow is modeled as an on-ramp, thus considered as 1r ; this implies 

that any appearing congestion in the stretch should never reach the upstream boundary. Finally, the 

downstream end of the freeway is assumed uncongested. 

Finally, notice that in (3) and (4) the demand and supply functions are completed by assuming 

capacity flow values iQ  for overcritical and undercritical densities, respectively. Consequently, the model 

predicts capacity flow even when congestion is created (no capacity drop), in accordance with the 

non-discretised LWR model. Note also, that the right-hand side of the FD in (4) is described by a linear 

function (with a negative slope iw ); while the left-hand side of the FD in (3) is assumed to be a 

non-decreasing function ( )i ig  . 

 

3.2. Different shapes for the FD 
 

Different functions ( )i ig   can be used for the demand function in (3). The original CTM formulation by 

Daganzo (1994) considers a triangular-shaped FD (Fig. 2(a)), where ,( )i i f i i ig v l  , ,( )i cr i ig Q   and 

 max, ,( )i i i cr i iw Q l   (with ifi vw ,  and TLv iif /,  ). This formulation has two main drawbacks: first, 

when using realistic free-flow and congestion-wave speeds, it may lead to high (and sometimes unrealistic) 

capacity flow; second, only one speed value is considered for all under-critical densities, which is often not 

compatible with traffic observations. To overcome the first issue, a trapezoidal FD can be used, where 

,( )i i f i i ig v l  , ,( )i cr i ig Q   and  max, ,( )i i i cr i iw Q l   , as illustrated in Fig. 2(b). In this case, the 

critical density, instead of being unique for both the FD parts, can be selected within an interval of densities, 

thus increasing also the degree of freedom for model calibration. Nevertheless, in real traffic, the observed 

speed may be characterized by a decreasing-behavior also for undercritical densities, which can be reflected 

by using a nonlinear concave function ig  (Fig. 2(d)), where ,( )i cr i ig Q   and  max, ,( )i i i cr i iw Q l   . 

An opportune calibration of such function may lead to more realistic results. As an example, a nonlinear 

exponential function, as proposed by Messmer and Papageorgiou (1990), can be employed (see, Eq. (17)). 

A similar behavior can also be obtained, with similar accuracy, considering a piecewise-linear 

approximation of the nonlinear function (Fig. 2(c)), which is helpful, for instance, in case linear constraints 

are needed for the formulation of an optimization problem (see e.g., Ziliaskopoulos, 2000; Roncoli et al., 

2015a). 

 

 

Fig. 2. Different choices for the left-hand side of the fundamental diagram corresponding to: (a) a triangular FD 

(CTM), (b) a trapezoidal FD, (c) a piecewise linear FD and (d) a nonlinear FD. 
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3.3. Illustrative example 
 

In order to illustrate the behavior of each approach, a simple hypothetical motorway stretch is considered, 

consisting of a set of 15n   homogeneous cells of equal length (500 m) and common FD parameters. The 

motorway stretch includes an on-ramp which is located at the upstream boundary of the cell 13i  . The 

parameters that characterize the network are shown in Table 2. For the sake of simplicity, in all the 

following tests, the function ig  utilized in the Eq. (3) is selected to be ,( )i i f i i ig v l   (for 1,...,15i  ), 

leading to triangular-shaped FD (Fig. 2(a)). A hypothetical trapezoidal traffic demand scenario is applied to 

the network (see Fig. 3), which, for some time period, generates a flow higher than the capacity at the merge 

area, thus generating congestion that spills back for some cells, however without reaching the network 

origin. In order to initialize the system from a steady state, the density for every cell at the very first time 

instant is set (0) 11.7i  veh/km/lane for 1,..,12i   and (0) 13.3i  veh/km/lane for 13,14,15i  . The 

simulation time horizon is 4horT  h for all the following tests. 

 

 
Fig. 4 (a), (b), (c) illustrates some significant characteristics of the CTM in case congestion is 

created at an on-ramp merge. Once the total demand (in this case, the sum of mainstream and factual ramp 

flows) exceeds the bottleneck’s capacity, only a portion of the available mainstream flow is allowed to 

access the 13th cell. This causes an increase of density in the upstream cell (the 12th cell) (see Fig. 4(a), red 

line), which eventually enters into a congested state, generating a congestion wave that propagates to 

further upstream cells. During this period, the density in the merge cell remains at its critical value (see Fig. 

4(a), blue line), allowing an outflow equal to capacity (Fig. 4(c)). As a consequence of the observations 

above, the speed at the 12th cell decreases (Fig. 4(b), red line), while the speed at the merge cell (13th) 

remains constant and equal to the free speed. Note that, in contrast to this modeled behavior, the merge cell 

is typically congested in real traffic; while the exit flow is reduced upon the onset of congestion due to 

capacity drop. 

 

3.4. Approach 1: Switching logic for maximum flow 
 

One effective way to implement a FD characterized by the inverse-lambda shape is via the definition of an 

opportune switching logic to define dynamically the current maximum flow. An example can be found in 

the study proposed by Torné et al.  (2014), where a set of rules is proposed to impose capacity drop in case 

VSL are applied in a certain area of the network. The concept is based on the coexistence of two FDs for the 

Table 2 

Parameters characterizing the utilized hypothetical network (same for all approaches). 

T  n  iL  il  ,cr i  ,f iv  max,i  iQ  iw  

5 / 3600  15  0.5  3  20  100  120  6000  20  

 

 

Fig. 3. Traffic demand scenario for the mainstream motorway (blue line) and the on-ramp (red line). 
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same location: a triangular-shaped one, active in case VSL are not applied (and, thus, no congestion is 

present); and a trapezoidal-shaped one, characterized by lower capacity that materializes in case congestion 

is present. This method can be extended straightforwardly to the case of bottlenecks due to lane drops, 

tunnels, etc.; in addition, it is shown here that it is also effective in case congestion is generated because of 

a merging on-ramp. The formulation is described by (1), (2), and: 

 

 )()),((min))((, kRkgkf iiiiiD    for 1,...,i n , (5) 

  111max,1111, )(),(min))((   iiiiiiiS lkwkRkf   for 1,..., 1i n  , (6) 

where 

 

11 )( QkR  , 22 )( QkR  , (7) 

max, 1, 11
1

1

( ( )) min( ( ( )), ( ))
( 1)

. .

i i i i i D i ii
i

i

if w k l f k R kQ
R k

o wQ

   




  
  



 for 2,..., 1i n  . (8) 

iR  are auxiliary variables that define the maximum flow for cell i , and iQ  corresponds, for this modeling 

approach, to the queue discharge flow observed after the congestion onset. iQ  can also be viewed as 

i iQ Q , i.e., a portion 1   of the capacity flow. For this simulation test, this portion is constant and 

equal to 0.95  . Eq. (7) reflects the assumption that the backspilling congestion does not reach the 

entrance of the network. Moreover, all cells are initially uncongested, thus (0)i iR Q , for every 1,...,i n . 

Fig. 4 (d), (e), (f), illustrates the behavior resulting from the application of this approach. The 

main idea lies in decreasing the capacity of the cell located immediately downstream of a congested one. 

More specifically, when the total flow (on-ramp and mainstream) exceeds the capacity of the merge cell, the 

density of the upstream cell starts increasing (see Fig. 3(d), red line), while at the same time its speed starts 

decreasing (see Fig. 3(e), red line); consequently, after some time, its supply function becomes smaller than 

the demand function of the upstream cell; this, according to (8), triggers a reduction of the maximum flow 

for the downstream cell (see Fig. 3(f)), which persists until the overall demand is sufficiently decreased. As 

a drawback, the flow reduction appears with some delay after the congestion starts, since this reduction 

materializes only when both the demand flow of the 11th cell and the maximum flow of the 12th cell become 

higher than the supply of the 12th cell. Furthermore, it is interesting to point out that, despite the flow-drop, 

there is no congestion, i.e. no over-critical density (Fig. 3(d), blue line), and therefore also no speed-drop 

(Fig. 3(e), blue line), at the merge cell. 

 

3.5. Approach 2: Introduction of a weaving parameter 
 

Another option to achieve a reduced outflow at a merge cell is via the introduction of a weaving parameter 

that essentially affects the supply function at the merge cell, as proposed by Muralidharan and Horowitz 

(2015). The purpose of this parameter is to take into account the “intensity” of lane changing maneuvers 

performed by vehicles just entered from the on-ramp, imposing a reduction of the available space for 

vehicles coming from upstream. The mathematical formulation consists of (1), (9), (3), and (4) where 

 

  )())(()),((1min))(),(),(( 111,,11 krkfkfpkrkkf iriiSiiDiiiii    , for 1,...,1  ni ,  (9) 

 

where 1r  is the weaving parameter that aims to reduce the available space at the merge cell, thus 

limiting farther the mainstream flow entering the cell. For a given r , the resulting outflow from the merge 

cell, namely the queue discharge flow, is a function of the on-ramp flow. It can be seen from Fig. 4(i) (where 

2.1r  is used), that the capacity flow is never reached even in case of low factual on-ramp flow; for this 

reason, the flow reduction is barely visible. Notice also that, similarly to Approach 1, the merge cell is not 

congested (Fig. 4(g), (h), blue line). 
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3.6. Approach 3: Reduction of the demand function 
 

Another formulation, also utilized by Muralidharan and Horowitz (2015) and Li et al. (2015), consists of 

the definition of a discontinuous demand part of the FD at bottleneck locations. More specifically, a flow 

lower than the capacity is defined, which materializes once the density of the cell becomes overcritical. In 

particular, the model can be described by (1), (2), (4), and: 

 

..

)())((
))((

,
,

wo

kif

Q

kg
kf

icri

i

ii
iiD










  for 1,...,i n . (10) 

 
This approach produces the normal behavior of LWR model when the density of the upstream of the merge 

cell (here the 12th cell) is undercritical (Fig. 4(j)), leading the merge cell to reach properly capacity flow; 

then, whenever the density becomes overcritical, the outflow from the upstream of the merge cell drops to a 

value corresponding to iQ  which in turn leads the outflow from the merge cell (discharge flow) to a value 

equal to )(1 krQ ii   (Fig. 4(l)); in this case, i iQ Q , and 0.7   are employed. The flow drop can be 

observed only if the value of the parameter alpha is selected to ensure that 11 )(   iii QkrQ . The main 

drawback of this approach is that traffic congestion persists longer than in the other cases, because, once 

formed, its disappearance can only be triggered by a sufficient decrease of the arriving demand (that must 

become smaller than iQ ), irrespectively of any variation of the ramp inflow. Again, no congestion appears 

at the merge cell (Fig. 4(k), (j), blue line).  

 

3.7. Approach 4: Linear reduction of maximum flow 
 

As previously mentioned, the presence of capacity drop within traffic flow models plays a key role for the 

design and testing of motorway traffic control strategies. Among others, model-based control problems 

have been widely exploited in recent years because of the possibility to explicitly consider system dynamics 

and physical constraints. In some works, the classic formulation of first-order models was implemented via 

use of integer variables and opportune switching rules (see e.g. Ferrara et al., 2015; Muralidharan and 

Horowitz, 2015; Sun and Horowitz, 2005). In other works, (see e.g. Roncoli et al., 2015a; Ziliaskopoulos, 

2000), linear inequalities (derived from the piecewise linear FD) were considered as constraints in the 

optimization problem; hereafter, some variants of these models are presented, which allow to define 

linearly constrained formulations for corresponding optimization problems. Here, a similar formulation as 

the one proposed by Han et al. (2016) is presented. 

A concept similar to Approach 1 is considered, albeit with the introduction of an additional linear 

term that reduces the supply function of a downstream cell. Specifically, when congestion starts in cell i  

( ,i cr i  ), the maximum flow materialized within the supply term of the downstream cell 1i   is linearly 

decreased as a function of i , according to the following equations: 

  

  111max,1111, )()),((min))((   iiiiiiiiS lkwkFkf   for 1,..., 1i n  , (11) 

where 1( ( ))i iF k  is given by: 

 

 

1 ,

1 1 1
1 max,

, max,
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( ( ))
( )

. .

i i cr i

i i i i
i i i

cr i i

Q if k

F k Q Q
Q k

o w

 


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 



  





 
  

 for  1,..., 1i n   (12) 

with i iQ Q ; where in the illustrative example 0.9  . The proposed formulation is thus given by (1), 

(2), (3), (11), and (12). For under-critical densities, iF  is constant and equal to the capacity flow; however, 
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in case the density of the 
thi  cell increases beyond its critical value (Fig. 4(m), red line), the maximum flow 

of the supply function of the ( 1)thi   cell is reduced linearly (Fig. 4(o)). Therefore, the queue discharge flow 

from the bottleneck’s cell depends on the factual on-ramp flow which imposes higher density values for the 

upstream cells. It should be mentioned here that in case there is no particular need for linear formulations, 

other functions can also be considered for the above reduction of the maximum flow. This approach appears 

to work appropriately also for bottlenecks due to capacity reduction (e.g., lane drops, tunnels). Differently 

from Approach 2, the model is capable of reaching capacity before congestion starts, and the capacity drop 

appears with a shorter delay with respect to the one observed in Approach 1. On the other hand, the merge 

cell remains uncongested, similarly to all previous approaches. 

 

3.8. Approach 5: Increased space for vehicles entering a bottleneck location 

Yet another approach may be conceived, which, in contrast to all previous approaches, allows for the 

bottleneck (e.g. merge) cell to become congested (as in real traffic observations), while producing a reduced 

outflow from the merge cell as well. Two different mechanisms are employed in order to achieve this 

behavior.  The first one is activated in case of high on-ramp flow and imposes that the merge cell is able to 

receive more flow than its nominal capacity. To this end, in case a cell contains an external on-ramp, the 

flux function if  is modified via the introduction of the parameter 1r . In the basic discretized LWR 

formulation, the supply function of a cell becomes active (smaller than the demand function of the previous 

cell), when the density of this cell is equal or exceeds its critical value. The introduction of r  acts as a 

delay in the activation of the supply function by reducing it, in terms of the on-ramp flow, less than the real 

on-ramp flow would otherwise impose (in contrast to Approach 2, where the parameter r  hastens the 

activation of the supply function). Essentially, this contributes to the increase of the available space for the 

upstream mainstream flow entering the merge cell. As a result, the density at merge cell is allowed to 

increase beyond the critical ( ,i cr i  ), and therefore become congested. Notice that the inflow of the 

merge cell can exceed its nominal capacity, but the same does not hold for its outflow, since the latter is 

determined by its demand function. However, this cannot produce any reduced outflow (capacity drop) by 

itself. The second mechanism consists in the introduction of a decreasing demand function for overcritical 

densities, similar to the one proposed by Lebacque (2003) and Monamy et al. (2012). Due to the fact that 

the density of the merge cell can now be overcritical (thanks to the application of the first mechanism), the 

decreasing demand function imposes smaller outflow, i.e. a capacity drop. There is a large range of 

decreasing functions that can be considered. Here, for simplicity, a linearly decreasing function is selected. 

Notice that the proposed demand functions are continuous, in contrast with the demand functions employed 

in Approach 3. The mathematical formulation consists of (1), (13), (14), and (4) where: 

 

  )())(()),((1min))(),(),(( 111,,11 krkfkfpkrkkf iriiSiiDiiiii     for 1,..., 1i n  ,  (13) 
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  for 1,...,i n .
 (14) 

In the illustrative example, 7.0r and i iQ Q  are used, where 0.4   . Fig. 4(p), (q), (r) illustrates the 

above considerations. Specifically, by the time the merge cell becomes congested (Fig. 4(p), blue line), 

producing also the corresponding speed drop (Fig. 4(q), blue line), and the corresponding capacity drop is 

observed for the flow exiting the merge cell (Fig. 4(r)). The magnitude of this drop and the resulting queue 

discharge flow are determined by the combination of the values of parameters a , r  and the on-ramp flow. 

At the same time, r  affects also the magnitude of the increase of the density at the merge cell, i.e., 

reducing r  produces a higher density increase at the merge cell, resulting in a higher speed. Finally, it is 

interesting to point out that the congestion is first created at the merge cell and the flow drop occurs 

immediately after the maximum flow is reached, in accordance with real traffic observations. 



  13 

 

 

 

This behavior can be alternatively obtained with different formulations (instead of using the 

parameter r ). For instance, such an effect can be also obtained by considering an increased upper bound 

(capacity) in (4) for undercritical densities, e.g. increasing capacity by 5% and increasing accordingly the 

resulting from the common FD wave speed (e.g. increased similarly by 5%) (Kontorinaki et al., 2016.). 

Again, a decreasing demand function for over-critical densities (14) has to be considered so as to achieve 

the desired capacity drop. This alternative modeling approach acts in the same way as parameter r  does 

(delay the activation of the supply function), but it may also be applied for bottlenecks due to lane drops, 

tunnels etc., and not only for on-ramp merges. 

 This new modeling approach has also been examined regarding its relation and consistency with 

the Partial Differential Equation (PDE) of the LWR model (see Appendix). Among others, this analysis 

enables to assess how the introduced parameters of Approach 5 affect the solution of the discretized model 

when the discretization parameters (cell length and simulation time step) tend to zero. However, in order to 

 

Fig. 4. The time-series of the density of the 12th and 13th cell, the speed of the 12th and 13th cell and the outflow 

from the 13th cell for the application of (a),(b),(c) CTM, (d),(e)(f) Approach 1, (g),(h),(i) Approach 2, (j),(k),(l) 

Approach 3, (m),(n),(o) Approach 4, (p),(q),(r) Approach 5. 
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conduct such an analysis, it is important to determine the two ways the on-ramp flow term may be treated 

within the disretization: first by assuming that the on-ramp flow term is distributed flow within specific 

space bounds (Section A.1 of the Appendix); second by assuming the on-ramp flow is a concentrated (Dirac 

function) flow at a given space point of the freeway (Section A.2 of the Appendix). From the analysis it 

follows that, when treating the on-ramp via the first way, the proposed discretized model is consistent with 

the LWR PDE, while simulation results reveal that in some cases the solution of the discretized model 

converges (as the discretization parameters tend to zero) to the solution of the CTM (which in turn 

converges to the LWR PDE solution). However, following the second way for treating the on-ramp flow, 

one can only define the integral form of the PDE at the point where the on-ramp is implemented (due to the 

apparent singularity introduced by the Dirac function). The analysis is then performed by means of the 

resulting shock speed of the proposed model (following from the Rankine-Hugoniot condition) and by 

comparing it with the shock speed of the CTM following the methodology described by LeVeque (2002). In 

this case, the analysis indicates that the solution of the discretized model converges (as the discretization 

parameters tend to zero) to a different solution with a different shock speed from the one imposed by CTM. 

However, the model is still consistent with the PDE of LWR everywhere else except the point where the 

on-ramp is implemented. Therefore, it can be concluded that Approach 5 can be reduced to a kinematic 

wave model endowed with an appropriate FD (Zhang, 2001).  The reader should be transferred to the 

Appendix for a more detailed justification of the above analysis.  

 

3.9. First-order model with drivers’ anticipation 
 

Other first-order models, which are not of LWR-type and do not utilize the demand-supply method, have 

been proposed in the past. For comparison purposes in the calibration procedure of the next section, an 

alternative first-order model, which was first proposed by Lighthill and Whitham (1955) in order to 

represent the diffusion of kinematic waves, is introduced. The following discretized formulation is a 

variation of Model E presented and tested by Papageorgiou et al. (1989), with the difference that the model 

is formulated here in terms of flow, instead of speed. The complete model is described by (1), (15), (16) and 

(17): 

 

    )())(),((1))(),((1))(),(),(( 1211121 krkkqkkqpkkkf iiiiiiiiiiii     

for 2,...,1  ni   (15) 
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where 10    and v~  are model parameters, iq  represents the total outflow from the thi  cell and 
e
iQ  

represents the FD of the thi  cell. This model includes an anticipation term that influences the total outflow 

from a cell according to the downstream prevailing conditions. This mechanism, included in (16), suggests 

that drivers adjust their speed, by also taking into account the downstream density. Moreover, in the 

space-discretised version, the traffic volume from a cell to another is a convex combination of the total 

traffic volume of the current and the next cells (15).  

Thanks to the anticipation term, this model is capable to reproduce the capacity drop 

phenomenon. The utilized mathematical formula for the FD for the calibration test below is an exponential 

concave function of density attaining its maximum at the critical density (see (17)). However, it should be 

noted that in case, for some specific reasons (e.g., the formulation of an optimization problem), linear 

constraints are needed, this formula may be replaced by a piecewise-linear concave function. 

Finally, it is worth highlighting that all the presented approaches have the same computational 

complexity, virtually equivalent to the basic implementation of CTM. On the other hand, Approach 1 

requires a higher amount of memory than the rest of the approaches due to the need to store additional 

auxiliary variables iR , which is similar to the case of second-order models.  
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4. Calibration results 

In this section the approaches described in Section 3 are validated and compared regarding the accuracy of 

reproducing traffic conditions in a real motorway stretch with particular emphasis on the reproduction of 

the capacity drop phenomenon. 

 

4.1. Motorway network and calibration set-up 
 

The considered motorway stretch of 9.5 km in length is part of the M56 motorway in the United Kingdom, 

direction from Chester to Manchester. This three-lane motorway stretch includes an off-ramp and a 

two-lane on-ramp, which, before entering the motorway, is divided into two separate lanes. The 

corresponding on-ramp flows of each lane enter the motorway at two different locations, as shown in Fig. 5. 

Fig. 5 displays the locations of the on-ramps and off-ramp and the locations of the available detector 

stations. In order to apply the selected traffic flow models, the examined motorway stretch is divided into 38 

model cells of about 250 m each, as shown in Fig. 5. Using this representation, the motorway cells are 

well-defined, and the model equations presented in the previous section are directly applicable. 

 The real traffic data used in this study were obtained from the MIDAS database (Highways 

Agency, 2007). The traffic data include flow and speed measurements at each detector location, with a time 

resolution of 60 s. The traffic data analysis showed that, within this motorway stretch, recurrent congestion 

is created during the morning peak hours due to the high on-ramp flow. In particular, Fig. 6(a) displays the 

space-time diagram of the real speed measurements for 03/06/2014. It is observed that congestion is created 

upstream of the second on-ramp during 7–8 a.m. which spills back several kilometers. Moreover, 

downstream of the second on-ramp, there is an area characterized by low speed, due to the acceleration of 

vehicles exiting the congestion area. Fig. 7 presents the time-series of the flow measurements (black line) 

from detector station D 8180 which is located downstream of the congestion creation area (see, also, Fig. 5). 

It is observed that a capacity drop is present there, as the merge area outflow drops visibly when congestion 

sets in (between 7:10 a.m. and 8:10 a.m.).  

 In order to apply the examined models to this motorway stretch and achieve a fair comparison, it 

is important to first calibrate the models using the available real traffic data. The model calibration 

procedure aims to specify the model parameter values, so that the representation of the network traffic 

conditions is as accurate as the model structure allows. This can be achieved by employing a suitable 

optimization methodology which aims at minimizing the discrepancy between the model estimations and 

the real traffic data. More details on the utilized model calibration procedure are provided by Spiliopoulou 

et al. (2014). 

 In the current study, the Nelder-Mead optimization method is employed for the calibration of the 

examined traffic flow models. The models are fed with boundary data (inflows at the upstream boundary 

 

 
Fig. 5. Representation of the considered freeway stretch. 
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and the on-ramps and exit rates at the off-ramp) and produce the stretch-internal traffic states according to 

the respective equations and parameter values. The utilized performance index (PI) under minimization is 

the Root-Mean-Square Error (RMSE) of the real versus the model-predicted speed values at all detector 

locations. The models are calibrated using real traffic data from 03/06/2014 and a simulation time step 

equal to T = 5 s. It should be stressed that all cells of the modeled motorway stretch are characterized by the 

same parameters of the FD for each model. After the calibration procedure, the accuracy and robustness of 

the resulted models is evaluated by validating the produced models with different traffic data (from the 

same motorway site) than the data used for their calibration. In this study, the models are validated using 

real traffic data from 19/06/2014. 

 

4.2. Basic discretized-LWR formulation 

As mentioned before, the investigated capacity drop approaches are based on the discretized LWR model. 

This basic first-order model cannot reflect the capacity drop phenomenon; however, different shapes of the 

FD may improve the model’s accuracy. To investigate this, four different shapes of the FD are examined, all 

applied to the basic discretized LWR model, i.e. triangular FD, trapezoidal FD, piecewise linear FD, and 

nonlinear exponential FD (see, Fig. 2). 

Table 3 includes the calibrated model parameter values and Table 4 the corresponding PI values 

for the calibration and the validation datasets. It is interesting to see that all four variations (Triang. FD, 

Trapez. FD, PWL FD, NL FD) produced a similar value for the Q  (capacity) parameter. Moreover, as it 

was expected, the use of a triangular FD results in a low cr  value, lower than in the other formulations. 

Fig. 6(a)-(e) displays the space-time diagrams of the real speed measurements and the corresponding 

models’ predictions of speed for the calibration date. It is observed that the models using a triangular or a 

trapezoidal FD predict free flow conditions at all areas outside congestion. In contrast, the use of a 

piecewise linear or non-linear FD allows for mean speed variations also outside of the congestion area, thus 

achieving higher accuracy at lower densities, compared to the first two formulations. Considering the above 

results, first-order LWR-type models with nonlinear FD are used in the subsequent investigations of 

capacity drop approaches, i.e., the function g , used in the demand function, is an exponential increasing 

function. More specifically, function g
 
is defined as 
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where   icrifiii vlQc ,,/ln/1  . 

 

4.3. Capacity drop approaches 

Five capacity drop approaches, which were described in Section 3, are implemented for this simple, but 

typical, motorway stretch. Table 3 includes the estimated model parameter values for all five approaches. It 

should be mentioned that in all examined approaches the maximum capacity flow Q  was fixed at 6900 

veh/h, which is close to the highest flows observed in the network. This was done in order to achieve a fair 

comparison of the models regarding the reproduction of the capacity drop phenomenon.  

 Table 3 shows that in all five approaches similar values were estimated for the fv  and cr  

parameters, while quite different values were obtained for the parameters w  and max  due to the different 

formulations adopted for the reproduction of the capacity drop phenomenon. Moreover, it should be noted 

that, although in all approaches the parameter αlpha is related to the magnitude of the capacity drop, the 

impact on the resulting capacity drop is substantially different, and for this reason the value of α varies in 

the different approaches. Table 4 presents the PI values for the calibration and the validation datasets. It is 

observed that the models achieve similar PI values, which implies that they are all able to reproduce the 

traffic conditions in this network with reasonable and comparable accuracy. More specifically, all 

approaches, except for Approach 3, improve the PI value compared to the basic LWR model with NL FD.  
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Fig. 6. Space-time diagrams of speed for (a) the real traffic data; (b) the LWR model with triangular FD; (c) the LWR 

model with trapezoidal FD; (d) the LWR model with picewise linear FD; and (e) the LWR model with nonlinear FD; (f) 

Approach 1; (g) Approach 2; (h) Approach 3; (i) Approach 4; (j) Approach 5; (k) FOM with anticipation; and (l) 

METANET model for 03/06/2014. 
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Table 3 and Table 4 also include the calibration results for the first-order model with anticipation (presented 

in Section 3.9) and the second-order model METANET (Messmer and Papageorgiou, 1990), which are 

applied to this motorway stretch for comparison purposes. Note that Table 3 presents only some of the 

Table 3 

Calibrated parameter values for all examined models. 

Model 
vf 

(km/h) 

ρcr 

(veh/km/lane) 

w 

(km/h) 

ρmax 

(veh/km/lane) 

Q 

(veh/h) 

ρα 

(veh/km/lane) 

α 

 

ηr 

 

θr 

 

Triang. FD .0 18.7 21.2 117.4 6282 - - - - 

Trapez. FD 112.0 - 21.8 145.0 6192 - - - - 

PWL FD 110.5 24.7 14.8 165.5 6258 4 - - - 

NL FD 113.5 25.3 12.2 195.4 6225 - - - - 

Approach 1 123.2 36.4 25.9 124.9 6900 - 0.89 - - 

Approach 2 123.4 35.9 21.9 139.2 6900 - - 1.56 - 

Approach 3 122.8 33.5 21.4 149.1 6900 - 0.72 - - 

Approach 4 23.0 5.6 25.9 131.2 6900 -  - - 

Approach 5 8 5.6 33.4 5 6900 - 34 - 0.71 

FOM with 

anticipation 
119.7 29.4 - - 6402 - - - - 

METANET 114.2 28.9 - - 6525 - - - - 

 

Table 4 

Performance indices for the calibration and validation days for all examined models. 

Model 

03/06/2014 19/06/2014 

Speed Error (PI) 

(km/h) 

Flow Error  

(veh/h) 

Speed Error (PI) 

(km/h) 

Flow Error  

(veh/h) 

Triang. FD 18.0 625.7 23.4 477.8 

Trapez. FD 18.0 651.8 24.2 473.9 

PWL FD 12.6 626.6 19.0 479.9 

NL FD 12.6 653.4 19.0 487.8 

Approach 1 1.6 603.0 19.0 425.8 

Approach 2 11.9 606.7 18.9 485.8 

Approach 3 12.8 685.1 18.9 439.3 

Approach 4 11.3 584.3 18.6 425.9 

Approach 5 10.9 576.0 18.4 431.4 

FOM with anticipation 9.9 598.6 17.2 446.2 

METANET 7.9 471.2 14.8 420.6 
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estimated parameters of these two models while the rest parameters were estimated equal to: ~  = 6.4 km2/h 

and  = 0.76 for the first-order model with anticipation and τ = 26.8 s, ν = 45.6 km2/h, δ = 0.1 h/km, κ = 10 

veh/km/lane, vmin = 7 km/h for METANET model. 

Fig. 6(f)-(j) presents the space-time diagrams of the corresponding speed estimations for all five 

capacity-drop approaches for the calibration date. It is observed that the estimations of all five approaches 

are close to the real speed data and are actually similar to each other. Fig. 6(k)-(l) dispays the corresponding 

speed estimations of the first-order model with anticipation and the second-order model METANET. It is 

shown here that the first-order model with anticipation achieves a remarkably high accuracy in representing 

the prevailing traffic conditions thanks to the included anticipation term (Eq. (16)) On the other hand, 

METANET model produces, as expected, the most realistic representation of the traffic characteristics, 

thanks to the fact that it accounts also the vehicle acceleration capabilities and the driver reaction time. 

Regarding the reproduction of the capacity drop phenomenon, Fig. 7 displays the time-series of 

the real flow measurements and the corresponding models’ estimations at the location of detector station D 

8180 (see, Fig. 5), which is placed about 800 m downstream of the merge area. It is observed that, except for 

the basic LWR model with nonlinear FD, all five approaches produce a reduced merge area outflow during 

the congestion period. Moreover, all approaches, except for Approach 2, are capable to estimate a high 

merge area outflow (close to capacity) just before the onset of congestion, which is in accordance with the 

real flow values observed. Fig. 7 (g) shows that the first-order model with anticipation also produces a 

 

Fig. 7. Time-series of the real flow measurements at the location of detector station D 8180 and the corresponding flow 

estimations of (a) the basic LWR model; (b) Approach 1; (c) Approach 2; (d) Approach 3; (e) Approach 4; (f) Approach 

5; (g) FOM with anticipation; and (h) METANET model; for 03/06/2014. 
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reduced merge area outflow, however with a smaller flow drop than the real observed flow drop. Finally, 

Fig. 7(h) presents the flow estimations of the second-order model METANET which are very close to the 

real traffic measurements. 

In order to evaluate quantitatively the accuracy of the five approaches in reproducing the capacity 

drop phenomenon, the RMSE of the real flow measurements and the corresponding model estimations of 

flow is calculated, for the motorway cell where the detector station D 8180 is located and for a time window 

around the time when capacity drop appears (i.e. between 7–7:15 a.m.). Table 4 includes the corresponding 

flow error for all examined models for the calibration and the validation datasets. It is observed that all 

approaches, except for Approach 3, for the calibration day, and Approach 2, for the validation day, achieve 

a lower error compared to the basic LWR formulation without capacity drop. Furthermore, the first-order 

model with anticipation, although reproducing correctly the propagation of congestion (as it can be also 

deduced from the low PI value), seems less capable to create a satisfactory capacity drop. As Table 4 shows, 

the flow error in Approach 4 and Approach 5 is noticeably smaller than the flow error of the first-order 

model with anticipation.  

Finally, it is noted that the second-order model METANET achieves the highest accuracy in 

reproducing the capacity drop compared to all employed first-order models. This confirms previous 

consistent findings on the higher accuracy of second-order models compared to first-order ones. 

Specifically, Cremer and Papageorgiou (1981) used traffic data from a German Autobahn and found that, 

after calibration, a discretised form of the LWR model had a 226% higher standard deviation of the 

 

Fig. 8. Flow-densitydiagram at the merge cell using (a) the basic LWR model; (b) Approach 1; (c) Approach 2; (d) 

Approach 3; (e) Approach 4; (f) Approach 5; (g) FOM with anticipation; (h) METANET model; and (i) real data at 

detector D 8180, for 03/06/2014. 
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modelling error compared to a second-order model; similarly, Papageorgiou at al. (1989) used data from the 

Boulevard Périphérique in Paris and found the standard deviation of the mean speed error to be 17.5 km/h 

for the discretised LWR model versus 8.3 km/h for a second-order model; it should be noted that these 

works were conducted prior to the introduction of the Godunov scheme for LWR model discretization 

(Lebacque, 1996) and used a simple discretization equation for calculating the flow between cells. 

Michalopoulos et al. (1992) used a Lax discretisation of the LWR model and concluded that “When there is 

downstream congestion, all high-order models performed substantially more accurately than the simple 

continuum model”. Spiliopoulou et al. (2014) compared CTM and the METANET second-order model 

used here while modelling a congested off-ramp area on a Greek motorway; Frejo (2015) compared the 

same models using data from freeway I-210 West in Southern California; both studies reported a better 

match of METANET to real data. Finally, Fan and Seibold (2013) concluded that the second-order ARZ 

model (Aw and Rascle, 2000; Zhang, 2002) is significantly more accurate than the LWR model. Clearly, 

this increased accuracy of second-order models comes at the expense of higher computational effort and 

complexity, as discussed in Section 1. Therefore, the development of LWR-type models with more realistic 

behaviour is a valid research endeavour. 

Fig. 8 displays the flow versus density diagram (i.e., the FD) at the merge cell (cell 29th , Fig. 5)  

for the basic LWR model (again, using a nonlinear demand part of the FD) and all five approaches. It is 

observed that, as expected, the basic LWR model is not able to reproduce the capacity drop phenomenon 

(see Fig. 7(a) and Fig. 8(a)). Comparing the five examined approaches, it is observed that actually only 

Approach 1, Approach 4 and Approach 5 produce a capacity drop at the merge cell, resulting though in 

different FD shapes (due to their different formulations).  

In particular, in Approach 1 the merge area discharge flow corresponds exactly to the 

pre-specified value 6141Q aQ  veh/h (see Fig. 8(b)). In Approach 4 (see Fig. 8(e)), the magnitude of the 

observed capacity drop varies according to the density of the upstream cell; i.e. in case of stronger 

congestion, characterized by a lower speed, a stronger capacity drop is observed, which is in accordance 

with some traffic observations. Finally, in Approach 5, the capacity drop observed follows the shape of the 

demand function of the merge cell while the magnitude of the observed capacity drop also depends on the 

magnitude of the applied on-ramp volume (see Fig. 8(f)). On the other hand, Approach 2 and Approach 3 do 

not produce a capacity drop at the merge cell (see Fig. 8(c) and Fig. 8(d)) although they manage to produce 

a reduced outflow from the merge area during congestion period (see Fig. 7(c) and Fig. 7(d)). In particular, 

in Approach 2 the observed merge area outflow never reaches capacity, even before the onset of congestion, 

in accordance with the behavior described in Section 3. Moreover, regarding Approach 3, the discharge 

flow that materializes is also dependent on the on-ramp flow entering the merge cell (which causes the 

fluctuations that can be observed in the corresponding plot), whereas the mainstream flow exiting the cell 

upstream of the merge cell, during the congestion period, is constantly equal to 4968Q aQ  veh/h. Fig. 8 

also includes, for comparison, the flow versus density diagram at the merge cell for the first-order model 

with anticipation (Fig. 8(g)) and the second-order model METANET (Fig. 8(h)); as well as the 

corresponding real-data diagram at the location of the detector station D 8180, which is about 800 m 

downstream of the merge area (Fig. 8(i)). As a result, Fig. 8(i) cannot be directly compared to the other 

plots, but it is included here as it corresponds to the closest measurement point downstream of the 

bottleneck location. Notice that the density in Fig. 8(i) has been estimated from flow and speed 

measurements by )(/)()( tvtqt  . 
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 While examining the presented five approaches, a question was raised regarding the sensitivity of 

the models to variations of the parameters α or ηr and/or θr (depending on the approach) which are involved 

in the reproduction of the capacity drop phenomenon. To investigate this issue, different values were fixed 

for these parameters and the models were calibrated again (with respect to the rest parameters) for each 

examined value. Fig. 9 displays all the related results. As an example, Fig. 9(a) presents the best obtained PI 

values after calibrating Approach 1 for different fixed values of the parameter αlpha within the range [0.5, 

1]. It is observed that the model achieves lowest PI values for α close to 0.9. Similarly, in Approach 2 the PI 

is minimized for ηr in the range [1.4, 1.5] (Fig. 9(b)), in Approach 3 for α close to 0.7 (Fig. 9(c)) and in 

Approach 4 for α close to 0.6 (Fig. 9(d)). Regarding Approach 5, which includes two parameters related to 

the capacity drop, α and θr, the investigations include different coupled values of these two parameters and 

the model was calibrated again for each one of these couples. Fig. 9(e) presents the best obtained PI value 

for each investigated couple. It may be seen that different coupled values of the two parameters lead to 

equally low PI values. This means that these two parameters are strongly correlated. Considering the above 

investigations, it is concluded that the models are sensitive to the value of the parameters related to the 

capacity drop. Finally, note that for α = 1, in Approach 1, 3 and 4, and for ηr = 1 and θr = 1, in Approach 2 

and Approach 5, respectively, the basic LWR model is obtained. 

 

5. Conclusions 

This study presents an overview of modeling approaches to include capacity drop into LWR traffic flow 

models. The presented approaches are first described and tested for a hypothetical network and traffic 

demand scenario to highlight their principal behavior and qualitative properties; eventually, the models 

were rigorously calibrated and validated using real data from a motorway in the U.K. The obtained results 

show that, although the tested models employ different mechanisms to reflect the capacity drop 

phenomenon, they all manage to produce a flow reduction at the merge area whenever traffic congestion is 

present.The obtained results were found to be quantitatively similar with respect to the achieved PI values, 

which is mainly attributed to a traffic situation with limited complexity and few internal comparison data. 

Moreover, some of the approaches that incorporate the capacity drop into LWR-type models produced a 

lower flow error (better reproduction of capacity drop) than the one obtained by the FOM with anticipation.  

 

Fig. 9. Sensitivity investigations in chages to the models’ parameters related to the capacity drop, in terms of PI value 

for (a) Approach 1; (b) Approach 2; (c) Approach 3; (d) Approach 4; and (e) Approach 5 for 03/06/2014. 
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 Regarding the proposed model (Approach 5), the performed theoretical analysis (presented in the 

Appendix) indicates that the formal underlying PDE is the LWR model, but with a source term present (i.e. 

a non-homogeneous PDE). More specifically, by considering the on-ramp flow as a distributed flow within 

specific bounds of the freeway stretch, we have shown that the discretization scheme is consistent with the 

PDE of LWR. This implies that, as the discretization grid becomes denser, the impact of the parameters of 

Approach 5 (  and r ) tends to fade out. On the other hand, by treating the on-ramp flow as a singular 

source, i.e., a Dirac function, at a specific point of the freeway stretch, we have shown that the solution of 

the discretized model converges (as the discretization parameters tend to zero) to a different solution with a 

different shock speed from the one imposed by CTM. However, in this case, the model is still consistent 

with the PDE of LWR everywhere else except the point where the on-ramp is implemented. 

Future investigations involving more complex traffic situations and richer data might shed more 

light on the comparative quantitative accuracy of different approaches. Moreover, it would be interesting to 

test and evaluate the behavior of the described models in case traffic control strategies are applied. 
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Appendix 
 

The analysis of the proposed new discretized model (Approach 5) with respect to its relation with the 

continuous-space and continuous-time PDE of the LWR is presented here. More specifically, we investigate 

how the introduced parameters of Approach 5 affect the solution of the discretized model when the 

discretization parameters (cell lengths and simulation time step) tend to zero. However, in order to conduct 

such an analysis, it is important to determine the way the on-ramp flow term is treated. There are two main 

ways to treat the on-ramp: first by assuming that the on-ramp flow term is distributed flow within specific 

space bounds; second by assuming the on-ramp flow is a concentrated (Dirac function) flow at a given 

space point of the freeway. Sections A.1 and A.2 present the analysis for the two respective cases. 

 In any case, we consider the difference-equation state-space model described by equations (1), 

(13), (14) and (4), which describe the proposed model (Approach 5) for which this analysis is performed. 

Notice that, in case 1r  (in (13)) and iiiD Qf )(,   for cri    (in (14)), the basic discretized LWR 

model is obtained. Additionally, if iiifi lvg  ,)(   (in (14)), then we end up with the CTM. The 

discretization time step is denoted as previously with T h. In order to simplify the present analysis, we 

consider that the above equations describe a single-lane homogeneous freeway cell with no off-ramps 

(which are not considered important in the present analysis). Thus, we assume that 0ip , LLi  , 

DiD ff , , SiS ff ,  and ff i   
for ni ,...,1 . Let A km and B km be the starting and ending points of the 

freeway stretch, respectively. Then the total freeway length is AB  km, and the proposed model is 

described by 

 

 )())(),(),(())(),(),(()()1( 111 krkrkkfkrkkf
L

T
kk iiiiiiiii     (A.1) 

where 

 

 )())(()),((min))(),(),(( 1111 krkfkfkrkkf iriSiDiii    , (A.2) 

 

and Df , Sf  are given by (14), (4) and 10  . 

https://doi.org/10.1016/S0965-8564%2801%2900042-8
https://doi.org/10.1016/S0191-2615%2800%2900050-3
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A.1. Distributed on-ramp flow 

 
In this case we assume that each on-ramp has an acceleration lane of length equal to rmpL km. We consider 

the following definitions 
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(A.4) 

where 1C  ([veh/km]) corresponds to the density and 
0Cu  ([veh/time/space]) corresponds to the 

inflow per unit space at a given time instant. Notice that, by definitions (A.3) and (A.4), we have considered 

average density and inflow values, respectively, for every cell. Since a uniform distribution of the entering 

flow from the on-ramp to a number of cells is assumed, we have for each such cell 
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where  kTrrmp is the total on-ramp inflow. Moreover, we consider arbitrary 
1C  functions )(Df  and )(Sf  

that satisfy )()(  SD ff   for cr  , )()(  SD ff   for cr  , )()(  SD ff   for cr  , 

0)0( Df   and 0)( max Sf . Notice that the above requirements are satisfied for the demand and supply 

functions considered in (14) and (4) respectively. Substituting (A.3) and (A.4) in (A.1) we obtain 
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Set kTt   and xiL  . Then, using the Mean Value Theorem (MVT) for 0T , it follows from (A.6) that 
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We use the following definition  
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where 1a , 2a , 3a  have been introduced as auxiliary variables to ease the analysis corresponding to the 

arguments of the flux function f . Combining (A.7) and (A.8) we obtain 
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Then, we make the following substitution 
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which combining with (A.9) yields the following relation, which holds for every 0L   
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Then, using the fact that (A.10) holds for every 0L  and the MVT for  0L  we have that 
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Now, in order to obtain the flux function F  in terms of the demand and supply functions, we follow the 

next steps. For constant 0L  we have that 
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Thus, using the Mean Value Theorem (MVT) for  0L  and using (A.2) we obtain 

 

   
 

),(
),(),(

),(0

),(0

),(),(
0,, xt

xxtifxtf

xtif

xtif

xtifxtf
xt

x

F

crS

cr

cr

crD











































 








 (A.13) 

 

which in turn corresponds to the following PDE 
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The above analysis proves the consistency of the discretized model (A.1), (A.2) with the LWR model 

(A.14). The result has been obtained by considering smooth functions Df , Sf , f , as well as the fact that 

),( xt  lies within appropriate intervals. However, a similar analysis as above can be made even for 

piecewise differentiable functions. In such cases the solution converges to generalized (weak) solutions of 

(A.14). Therefore, the discrete-time model is consistent to the LWR model (A.14). 

This result is supported by some conducted numerical experiments (Fig. 10 (a), (b), (c)). The 

simulation results depicted in these figures have been obtained using the same illustrative scenario of 

Section 3.3. More specifically, density and flow for the complete freeway stretch at the same time instant 

(i.e., 9.1t h) are depicted for the two different schemes (CTM and A5) and for three different spatial 

discretizations ( 5.0L , 1.0L , 05.0L km). The numerical results indicate that, as L tends to zero, both 

schemes converge to the same solution. 

 

A.2. Concentrated on-ramp flow as a singular source 

 
In this section, we show that, when the on-ramp is incorporated as a singular source (for both CTM and 

Approach 5 model), the effect of the on-ramp contribution is more pronounced, independently of the spatial 

discretization, and a modified shock speed is derived for the model described by Approach 5 in comparison 

with CTM. We point out here that, in the case where the on-ramp contribution is incorporated as a singular 

source (i.e., as a Dirac function), the differential form of the conservation law is not valid in the position 

where the on-ramp is implemented; only the integral form of the conservation law is valid there. 

Consequently, the comparison between the CTM and Approach 5 is materialized on this base. 

Referring again to the model (A.1) - (A.2), we use the compact forms )(ki
k
i   , )(krr i

k
i  , 

k
iDiD fkf ,))((   and k

iSiS fkf ,))((  . Assuming that the on-ramp is implemented only at a distinct point of 

 

 

Fig. 10. (Distributed on-ramp flow) The density (left) and the flow (right) at ht 9.1  in the freeway stretch 

for (a) 5.0L km, (b) 1.0L km and (c) 05.0L km. 
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the thi  computational cell, and there are no other similar sources within the freeway (i.e., 0jr  for ij  ), 

we obtain from (A.1) with (A.2) that 
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where    kTrtrr rmprmp
k

i  . We recall again here that the differences between the CTM and Approach 5 

lie on the parameter r  and the right part of the demand function. Thus, referring to Fig. 11(i) and by 

denoting with s  the speed of the left moving shock, we have that sTL  . Then, we obtain from (A.16) 

that  
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(A.17) 

 

We will compute jump conditions at the location of the on-ramp using the procedure proposed by 

(LeVeque, 2002).  Fig. 11(i) depicts a small rectangular region in which a shock wave is present. The 

Runkine-Hugoniot jump conditions will be derived using this illustrative example. In this case, (A.17) 

becomes  
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(i) 

 
(ii) 

 
Fig. 11. (i) The Rankine-Hugoniot jump conditions are determined by integrating over an infinitesimal rectangular 

region on the tx   plane, (ii) Characteristic Riemann problems. 
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We assume that the on-ramp flow cannot exceed the capacity of the network and therefore irQ  . Moreover, 

in order to simplify the present analysis, we consider ifi vg  )( . Thus, we have that fcr vQ , 

 crwQ   max  and, therefore,   crf wv  1max  . The two considered illustrative cases, which we 

intent to examine here, are shown in Fig. 11(ii). Then, (A.18) imposes that the resulting speed of the shock 

wave depends on the intervals in which R  and L  
lie. Therefore, we distinguish points   fi vrQ1 , 

  fir vrQ  2 and wri max3  . Notice that max3210   cr .  

 Table 5 shows the resulting speed and sign of the shock for case (A), for both CTM and Approach 

5. As it can be clearly seen, the intensity of the shock clearly depends on the magnitude of the on-ramp flow. 

For that reason, there are cases ( cr
L  2 ) where the intensity of the shock is larger for Approach 5 

due to the effect of the parameter r . For the case (B) the shock speed is negative (the shock wave moves to 

the left), no matter what are the values of  R and L . However, as it is shown in Table 6, the intensity of 

the shock is higher for Approach 5, depending again on the selection of the parameter . 

 

Table 5  

Speed and sign of the shock for CTM and Approach 5 for case (A). 

(A) CTM Approach 5 
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Table 6 

Sign and intensity of the shock for CTM and Approach 5 for case (B). 

(B) CTM Approach 5 
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The previous theoretical observations are illustrated by the numerical experiments shown in Fig. 

12 using the same illustrative scenario of Section 3.3. More specifically, density and flow for the complete 

freeway stretch at the same time instant (i.e., 9.1t h) are depicted for the two different schemes (CTM and 

Approach 5) and for three different spatial discretizations ( 5.0L , 1.0L , 05.0L km). The numerical 

results indicate that, as L tends to zero, the two schemes converge to a different solution; the scheme of 
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Approach 5 results in a higher (negative) shock speed and a higher density at the congested region 

compared to the shock genereated by CTM. 

Following from the previous analysis, it is clear that the proposed scheme (Approach 5) with its 

modified supply and demand functions introduces a modified jump condition in the Riemann problems 

depicted previously, when the on-ramp flow is considered as a concentrated singular source term in a single 

cell. In this case, the proposed modifications to the supply and demand functions are always present as L 

tends to zero. These modifications can be viewed as imposed inhomegeneities in the on-ramp cell which 

result in a generalized Riemann problem solved by a modified Godunov scheme similar to those presented 

by (Jin et al., 2009; Lebacque, 1996). On the contrary, when a distributed on-ramp entering flow is 

considered (as in Section A.1), the corresponding modifications to the supply and demand functions vanish 

as L tends to zero. 

 

 

 

Fig. 12. (Concentrated on-ramp flow) The density (left) and the flow (right) at ht 9.1  in the freeway stretch 

for (a) 5.0L km, (b) 1.0L km and (c) 05.0L km. 

 


