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Abstract 

A fast computational code is presented that is dedicated for the elastic analysis of three-dimensional excavations and cracks in 
rocks. The problem is solved on the boundaries that are discretized with a new triangular leaf constant displacement discontinuity 
element with one collocation point. The creation of the new triangular element was inspired from Mindlin’s special version of 
grade-2 or strain-gradient elasticity theory (second gradient of displacement, g2). This element is characterized by a much better 
measure of the average stress at the center of gravity of the triangular element compared to that of the classical elasticity element 
close to regions with stress or strain gradients (e.g. notches, cracks etc). In a verification stage, the accuracy of the computational 
algorithm for the pressurized penny-shaped and mixed-mode elliptical crack problems that have analytical solutions is 
demonstrated. More specifically, it is shown that the average error of the crack tip Stress Intensity Factor predicted by 
the gradient modified method for nine discretizations of varying density is around 3.5 % with a máximum error of 5 %, while 
the constant displacement discontinuity element displays errors varying around 14 %. Moreover, the new method preserves 
the simplicity and hence the high speed of the constant displacement discontinuity with only one collocation point per element, 
but it is far more efficient compared to it, especially close to the crack tips and corners of excavations where the displacement 
and stress gradients are highest. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of EUROCK 2017. 
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Nomenclature 

ij  Kronecker’s delta function 

ij  second-order Cartesian strain tensor 

E  Young’s modulus 
, G Lamé constants 
 Poisson’s ratio 

ij
 second-order Cartesian stress tensor 

2  Laplacian operator 

iD  displacement discontinuity vector 

2  strain-gradient term with dimensions of length squared 

iu  displacement vector 

1. Introduction 

It is almost certain that any planned underground excavation in the scale of 101 m or more will transect a fault or 
persistent joint. The problem in the design phase is to examine the effect of the faults on the behavior of the rock 
mass during excavation and then to optimize the design of the underground openings and pillars. In Geophysics 
there remains the reasonable trend to explain earthquake mechanisms by means of dislocation or fracture mechanics 
models. Also, in petroleum engineering as well as in Rock Mechanics, the hydraulic fracturing technique where 
a pressurized mode-I crack propagates from a shallow or deep borehole, is widely used for permeability 
enhancement and measurement of in situ stresses, respectively. There many more problems involving three-
dimensional excavations and fractures that should be attacked with computational methods capable to tackle in 
a formal and accurate manner crack tip or corner singularities. 

This paper is concerned with the upgrade of the classical Constant Displacement Discontinuity Method (CDDM) 
developed by Crouch [1] and Crouch and Starfield [2] and later nicely extended in three-dimensions by Kuriyama 
and Mizuta [3]. It is worth noting that this is essentially a boundary element method in order to avoid employing 
the cumbersome two-dimensional singular integral techniques [4] or three-dimensional finite element methods to 
solve crack and rock excavations problems. This is achieved, in a first phase of research, by developing a new 
triangular leaf (extremely thin) element for more accurate shape approximation of excavation and fault boundaries 
in three-dimensions of space. The element has one collocation point located at its centre of gravity for the fast 
solution of three-dimensional elastostatic problems of fractured rock masses. Kuriyama and Mizuta have already 
presented such an analytic solution based on Green’s function or “influence function” approach [14]. Their work is 
extraordinary since they give the solution of the influence functions and their derivatives in closed form (instead of 
using numerical integration); however, one may note the following two intricate points in this paper: 

 
 as is shown in Section 3, this solution overestimates the Stress Intensity Factors (SIF’s) at the crack tips with at 

least an error of 6 % depending on the density of the grid,  
 as is demonstrated in Fig. 1a below, the analytical expressions for the influence function and its derivatives given 

in the Appendix in [3], yield infinite values when the field point x is located on any extension line of an edge of 
the triangular element on which integration is performed. 
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(a)                                                                                                              (b) 

Fig. 1. Normal stress distribution around a uniformly pressurized triangular dislocation (a) singularities along the extension lines of the three 
edges; (b) elimination of singularities. 

To overcome the first bullet above, in contrast to CDDM, the stress at the centre of gravity of a triangular 
dislocation is derived from the strain-gradient elasticity theory in its simplest possible grade-2 (second gradient of 
displacement or g2 theory) variant extracted from the milestone work by Mindlin [5]. This was already 
demonstrated for plane crack problems, in a series of three papers [6–8]. There, the g2 constant displacement 
discontinuity method (G2CDDM) was presented for the solution of mode-I, -II and -III crack problems in a plane or 
half-plane isotropic elastic body. This g2 formulation applies only on the elements close to crack tip or other type of 
geometric singularities and not outside them, where it is assumed that the classical stresses are valid and CDDM 
gives accurate results; furthermore, it does not alter the nature of the classical elasticity problem of a cracked body 
we are aiming to solve. That is to say, no extra boundary conditions along the crack are imposed that are necessary 
for the solution of a strain-gradient elasticity problem, apart from those prescribed by classical elasticity theory. 
Then, the value of the strain gradient coefficient or length-scale  is found once, in such manner to achieve 
minimization of the discrepancy between the numerical and analytical solutions of crack tip opening displacements 
for the benchmark problem of the penny-shaped crack. As is expected the calibrated length scale is not a constant, 
but rather it depends on the element size and aspect ratio, as well as on the distance from the crack tip. This length 
scale being calibrated once, is subsequently used to solve any other crack or corner problem. 

The second bullet is also of concern, that is annihilated here by finding analytically the limits of these terms of 
the g2 solution that give infinite values along the extension lines of the triangle’s sides. The result of this approach is 
illustrated in Fig. 1b. The algorithm of the numerical code is then based on the established algorithm of the CDDM 
already presented in [2, 3]. 

The accuracy of the computational algorithm created using the new element is demonstrated for the cases of 
the uniformly pressurized penny-shaped crack in Section 3 and the mixed-mode elliptic crack in Section 4.  

2. Derivation of the elementary solutions for the opening and sliding triangular dislocations 

2.1. Governing equations of G2 theory 

The fundamental concept of the CDDM is that the mid-element displacements and stresses adequately represent 
the displacements and stresses over the face of a dislocation or element [1, 2]. Use is made of the concept of 
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displacement discontinuity – that is the difference in displacement between the two sides of the dislocation – 
occurring over the area of a given discontinuity (i.e. crack, joint, fault, bedding plane) positioned with respect to 
a given Cartesian coordinate system Oxyz, i.e.: 

zyxiuuD iii ,,,    (1) 

where the (+) and (-) superscripts refer to the sides directed along the positive and negative sides of the 
coordinate axis, respectively. The strain tensor in the linear theory is given by: 

ijjiij uu ,,2

1    (2) 

The equations of equilibrium of g2 theory, with vanishing body force, are the usual Cauchy’s equations: 

0,iij    (3) 

However, the constitutive equations are different. In a first place it is assumed that the stresses are derived from 
a simplified form of the strain energy density ansatz of an elastic solid with microstructure that has been postulated 
by Mindlin [5]. Based on an appropriate and simple strain energy expression the constitutive relations linking 
stresses with strains have the following form [9]:  

ijkkijij G21 22    (4) 

2.2. Influence coefficients for opening mode dislocation 

We seek the fundamental solutions for the stresses and displacements outside a planar triangular dislocation 
normal to Oz-axis with prescribed uniform opening (aperture). For this purpose let us consider a triangular leaf 
(planar) element BCD representing the dislocation that is lying on a plane perpendicular to Oz-axis and exhibiting 
a uniform opening displacement discontinuity 2εz = Dz as is shown in Fig. 2, that is: 

otherwise

cyandybxdyif
yxu z

z ,0

0cotcot,
0,,   (5) 

Applying the direct two-dimensional (2D) Fourier transform on the displacements at the horizontal plane  
(i.e. z = 0) one obtains the induced displacements in the transformed coordinates (ξ, η) due to triangular dislocations 
BOC and DOC, respectively:  
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(a)                                                                                                             (b) 

Fig. 2. Triangular leaf element: (a) Dimensions of the triangular element that is perpendicular to Oz-axis; and (b) Yoffe’s sketch for the triangular 
disclocation. 

Based on this splitting scheme of the original triangular element, as well as on the superposition principle, it is 
sufficient to solve first for the orthogonal triangle BOC and then from this solution to find the solution for 
the triangle DOC based on the following transformation: 

dbuu BOC
i

DOC
i

   (7) 

From Eq. (6) it may be observed that the final solution in the transformed domain will be the superposition of 
the following three solutions of the respective wedges with apexes at O, B and C, respectively, (e.g. Fig. 2a): 
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  (8) 

It is worth noticing that the above decomposition exactly agrees with Yoffe’s [10] approach for the triangular 
dislocation BOC obtained from the superposition of solutions of three angular dislocations (i.e. dislocations 
composed of two semi-infinite straight arms meeting at the origin), namely: (a) the orthogonal wedge with an apex 
at origin of coordinates O, (b) the wedge with angle β with an apex at Β, and (c) the wedge with apex angle 90-β 
with apex at C, as is illustrated in Fig. 2a. Yoffe has shown that these disclocations form exterior angles to 
the triangle indicated by shading in Fig. 2b, with their infinite segments cancelling one another. The influence 
coefficients for the mode-I, -II and -III triangular dislocations have been found analytically using the Fourier 
transform. For brevity of the presentation the analytical expressions and method of solution of the dislocations are 
not shown here. 

As is known the SIF’s at the crack tip are found from the opening, shear and anti-plane shear displacement of 
the later based on the following relations and using a cylindrical coordinate system Or θz: 
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where rtip denotes the distance from the crack tip. 

3. The penny-shaped crack under uniform internal pressure 

The natural and essential boundary conditions for the circular (penny-shaped) crack of radius c  subjected to 
uniform pressure w.r.t. a cylindrical coordinate system zOr  are the following:  

0,00

0,0

0,0

zru

zcrp

zr

z

ozz

rz

   (10) 

In addition, it is required that the stresses and displacements vanish at infinity (radiation condition). This 
axisymmetric mixed boundary value problem has been solved exactly with the opening discontinuity and 
the stresses to be given by the following relations [11] (as is expected all the shear stresses are null): 
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40, 2
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v
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                                                                                                       (11) 

where ρ = r / c denotes the scaled radial distance from the center of the crack. The calibration of the only free 
parameter of the problem, namely the length scale  of the g2 elasticity theory, is performed next in such a manner 
to minimize the error between the analytical solution for opening displacement along the half penny-shaped crack 
and the numerical solution. The best-fitted relationship of the normalized length scale dr/ with the radial scaled 
distance rtip / c measured from the tip of the crack and the geometry of the element (e.g. Fig. 3a) has the following 
form:  

457.0328.1311.0261.9;175.01/
2

8

c

dt

c

dr

c

drdt

drdrc

r
dr tiptiptip   (12) 

By setting the internal length equal to zero the numerical solution corresponds to the classical solution presented 
by Kuriyama and Mizuta. Fig. 3b and Fig. 3c, as well as Fig 4a and Fig. 4b display the distribution of the normal 
displacement discontinuity on the crack surfaces for the two discretizations at hand, and for E = 20 GPa, 3.0 , 
internal pressure p0 = -1 MPa and crack radius c = 1 m. Also Table 1 displays the mode-I SIF predicted by 
the classical and G2 DDM and the error of each method with regards to the analytical solution of  
KI = 1.128 MPa m . 
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                               (a)                                                                     (b)                                                                                (c) 

Fig. 3. Geometry of the leaf element and numerical solution for the normal displacement discontinuity for two grids for the penny-shaped crack  
at hand; (a) element geometry (C.G. is center of gravity); (b) grid with 180 elements; (c) grid with 870 elements. 

 
(a)                                                                                                              (b)           

Fig. 4. Distribution of normal displacement discontinuity along the half-penny-shaped crack; (a) sparse grid with 180 elements; (b) dense grid 
with 870 elements. 

Table 1. Comparison of CDDM and G2DDM with the analytical solution  KI = 1.128 MPa m . 

 SIF Error (%) 

Number of grid elements CDDM G2DDM CDDM G2DDM 

108 1.166 1.089 -3.3 3.5 

180 1.314 1.090 -16.4 3.4 

216 1.346 1.081 -19.3 4.2 

270 1.377 1.071 -22.0 5.1 

380 1.231 1.107 -9.1 1.9 

456 1.281 1.106 -13.6 2.0 

570 1.329 1.096 -17.8 2.8 

580 1.163 1.072 -3.1 5.0 

870 1.285 1.088 -13.9 3.6 
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4. The elliptic crack under far-field tension 

In a subsequent stage the numerical method is compared with the closed form solutions [12] of mode-I, -II and 
-III SIF’s around an elliptic crack subjected to tension loading along an oblique direction with the normal to 
the crack, as is illustrated in Fig. 5a. The aspect ratio of the crack is b / a = 0.5, the loading angles are  = 0.25  and  

 = 0, the far-field tension is σ = 1 MPa and the rest of parameters as they given for the example of the penny-
shaped crack. The values of the gradient parameter estimated from Eq. (12) on the crack surface discretized with 
340 elements are shown in Fig. 5b. Also the comparison of the analytical solution with CDDM and G2DDM 
numerical solutions, are illustrated in Fig 6 (a–c). 

 

    
(a)                                                                                                      (b) 

Fig. 5. Comparison of analytical solution for the mixed-mode elliptic crack with numerical model predictions; (a) geometry and loading 
configuration; (b) distribution of the gradient length scale on the crack surface. 

 
(a)                                                                       (b)                                                                        (c)  

Fig. 6. Comparison of analytical solution for the mixed-mode elliptic crack with predictions of CDDM and G2DDM (a) angular distribution of 
mode-I SIF; (b) angular distribution of mode-II SIF; and (c) angular distribution of mode-III SIF. 

5. Conclusions 

A computing algorithm for 3D elastic analysis of cracks and excavations in rocks by virtue of the boundary 
element method was developed and is outlined here. In order to minimize significantly the overprediction of 
the crack opening displacements at the crack tips and hence the SIF’s by using the classical CDD method, a new 
trianglular element was constructed that is based on a simple version of the grade-2 elasticity theory. In this manner 
a significantly better average stress measure is achieved which gives accurate solutions in regions with high 
gradients of stress and crack displacements. The higher accuracy of this G2CDD element compared to the CDD 
elements was demonstrated with the uniformly pressurized penny-shaped crack and elliptic crack problems for 
which exact solutions exist. It was shown that the use of this element allows accurate analysis of a crack tip without 
recourse to a special crack tip element or elements with more than one collocation points (e.g. linear, quadratic etc). 
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Here the study of more elaborate problems like 3D interaction between cracks or cracks and excavations are not 
presented due to limited space of the paper. This will be done in a shortcoming publication. 
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