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Abstract 
In broad terms, Demand Response refers to the operational, regulatory and technical 

framework for inducing changes in the power demand of buildings or settlements 

during the day. Time of Use (ToU) pricing can be vital to leverage advancements in 

building or district energy management systems to shift loads, exploit storage 

capabilities, increase renewable energy penetration and ultimately relief stress from 

the grid. This is an important feature of the smart grid and a step closer to the 

necessary open and transparent market framework according to which energy 

consumption costs reflect actual costs of production, transmission, distribution, 

infrastructure maintenance and upgrade etc. In this paper Neural Network power 

predictions are performed and a genetic algorithm based framework for energy 

management in a group of buildings is developed and tested on real data.    

According to the results ToU pricing could be exploited by the industry using ANN 

based day ahead prediction to perform load shifting and minimize associated costs.  
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1.Introduction 
Scope: exploitation of day-ahead power predictions and unit energy pricing 

information for the optimization of power consumptions at building and district level.    

      

      Environmental serious challenges, put the environment in jeopardy, which has a 

significant impact to the society. To solve this serious worldwide problem, many 

approaches from researchers are created to develop new energy management 

methods concerning renewable and sustainable energy systems that will reduce the 

energy consumption and the carbon dioxide footprint.   

     Apart from the emissions, it is necessary to have a balance in electrical power 

between demand and response. It is a fact that the stability of the power is highly 

dependent on the frequency in the electricity grid.  As long as the electricity 

generation and consumption is balanced, the frequency of the grid is not affected.  

Demand Response is a particular intelligent tactic to manage the electrical load of 

users. The continuous increase of energy demand created serious problems to the 

traditional grid in keeping the reliability in the load energy supply, since renewable 

energy sources intermittency and variations in consumption and others technology 

specific issues are linked to reliability and power quality problems. The main purpose 

of the grid is to keep perfect balance between the demand and the supply of energy 

every time.[1]  Nowadays, the increasing of renewable sources, such as solar and wind 

power, created an uncertainty in their behavior because they are directly dependent 

on the weather conditions. Demand Response programs was the solution in storage 

services in order to manage the production and to resolve the uncertainty. [2]In other 

words, in an industry it is a substantial advantage if this equality is being ensured, due 

to the fact that if there is a gap between generated power and consumption, technical 

problems will be created to the network.[3] To achieve the balance in the network, a 

great variety of approaches to forecast the loads are used worldwide varying 

according to the time horizon. Obviously, no one can deny that the forecasting of 

electricity demand is a very difficult task using high advanced techniques for capacity 

planning and maintenance scheduling. To come across with the forecasting, several 

methods are used like fuzzy logic, statistic models and Artificial Neural Network. There 

is not a model or algorithm that is preferable from the others, and many times the 

researchers use them in parallel or in combination. [4]  

Load prediction is important for microgrid to have Demand Response in order to have 

the ability to detect the demand and the supply in an industry, for ensuring the 

stability of the network.[5] A microgrid consists of renewable sources, energy storage 

and energy consumption, operating in low voltages. A microgrid can connect to the 

main grid, but also has the advantage to be independent in case of problem.[6] Apart 

from the benefit of independence, the operation of a microgrid is often linked to 

economic benefits. [7] The optimization is the brain in Energy Management Systems 

(EMS). The problem of the effective energy management can be reached by 
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optimization-stimulation using Genetic Algorithms for multi-objective problems, 

minimizing the microgrid’s operational costs. [8]  

1.1 Aim and objectives 

The aim of this work is to develop and evaluate a novel demand response approach 

for the management of distributed energy resources at building and district level using 

power prediction and optimization techniques  

The objective of the thesis is presented below: 

1.Create Artificial Neural Network models to conduct day ahead reliable prediction of 

power consumption using power and weather measurements.  

    2. Develop a multi objective GA optimization framework taking into account cost of 

energy and shifting of power loads. 

  3. Assess the implementation of the developed approach at building and district 

level. 

 

 

1.1Methodology  
The methodology followed consists of the following steps:  

• Data collection from MyLeaf[1] smart monitoring platform, analysis and 

selection of test samples 

• Definition of neural network input/output parameters and structure 

• Training, testing and validation of neural network prediction models 

• Development of Genetic Algorithm optimization approach 

• Testing of Genetic Algorithm optimization at building and district level 

• Sensitivity analysis 

• Evaluation of results 

[1] https://myleaf2.loccioni.com/beta/Account/LogOn 
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2.Literature Review 
2.1Energy management systems  
Energy management systems (EMSs) allow to monitor, to control and to analyze 

systems and equipment using sensors, switches and algorithms.[9] This system can be 

used to buildings, too. Building energy consumption can be reduced by efficient 

Building Energy Management Systems (BEMS). This system collects information 

concerning the operation of the building, using them to reduce building consumption 

and total energy cost. 

 

                          Figure 2.1 The levels of control in BEMS [10]  

Figure 2.1 depicts the different levels of a BEMS from the field service, and becoming 

step by step more intelligent to the head management PC. This technology is a board 

concept of building control, having many characteristics. The BEMS differ from other 

control systems in the communication. To be more specific, in BEMS the processes 

and the functions of the building will be received and be controlled by a central 

operating unit. The advantage of the BEMS is that it has the opportunity to optimize 

the system. For example, the central and the operating unit will receive information 

about the temperature and the building occupancy. Having in mind this information, 

the BEMS will decide if it is necessary to lower the temperature in parts of the building 

where there are not occupied. In this way, building energy efficiency will be achieved. 

As far as their function is concerned, analogue or digital input signals inform the 

system, as temperature and humidity. Apart from these, inputs will include 

information about the equipment like pumps, fans and boilers, if this equipment 

operates or not. After that, analogue or digital outputs send to the central PC to 

control their settings, to switch them, as result to the thermal comfort.[11]  

Moreover, there is a big variety of models that can be used, putting time input 

parameters as weather data and energy prices to improve building energy 

performance by saving energy or reducing peak demand.[12]  
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According to the IEA [13] using BEMS has advantages and disadvantages, too.  

The main benefits are: 

• improved energy efficiency 

• monitor building status and improved environmental conditions  

• Improved management of the building 

• Remote monitoring and control of services and functions from a head PC 

• Improved fire, security and other emergency procedures 

The main drawbacks are: 

• High cost for design and installation 

• Operation and maintenance of BEMS maybe is higher than other simpler 

systems 

• A skilled and professional operator is needed 

 

It is significant to mention that energy management system is not only applicable to 

huge industries and establishments, but, it is equally beneficial and validated for 

houses as well to monitor energy consumption.  Home Energy Management Systems 

(HEMS) are the technologies that have the ability to respond to alter conditions 

independently, even if there is no human intervention. To be more specific, these 

systems can shift the demand in response to the price of electricity without intervene 

to human comfort but optimizing the load peak.[14]  

 

2.2 DR capabilities 
                The Management of Electricity Demand, known as Demand Side 
Management (DSM), is a methodology developed between the 1980s and 1990s in 
Canada and the USA by Electric Power Research Institute (EPRI), and then rapidly 
spread to Europe [15]. The DSM can be divided into two main parts, which are Energy 
Response and Demand Response (DR). 
           In the one hand, Energy Response aims to lowering power consumption and in 

the other hand DR is defined as changes in electrical consumption patterns in response 

to the price of electricity or other incentives during periods of critical system 

conditions or periods of high market power costs.[16]  
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                     Figure 2.2: Power consumption during the day [16]  

Figure 2.2 represents the Power consumption during the day. Is it obvious that during 

the day there is substantial difference in demand than in the night. Demand is a 

measure of the rate at which energy is consumed.  

Demand Response consists of dependent program activities that have the ability to 

reduce the use of electricity of shift the use to another time period. DR programs can 

reduce or shift the electrical load when the price of electricity is high. In this way, DR 

can manage the electricity costs of a building and improve the reliability of the 

network.  

 

Control strategies & techniques for DR  
 

There is a big variety of strategies, concerning DR, that can be implemented using 

manual or automated systems. These control strategies concern air-conditioning, 

ventilation and lighting systems.[10]  

Levels of Automation for DR 

Manual DR: is a labor approach. In this case, turning off manually or change the 

comfort set point at each equipment.  

Semi DR: Is a preprogrammed load shedding strategy that starts from a person using 

centralized control system. 

Fully automated DR: In this case, there is not human intervention but Energy 

Management Systems are used in a home or in a commercial building.  

Strategies that are based on HVAC systems differ from each other at the type of 

building, at the mechanical equipment, and at the EMSs. The best DR strategies are 

those which minimize the electricity demand, minimizing at the same time the 

negative impacts on the occupants of the building and on the processes, that they 

perform. Some of the main DR strategies are presented below: 
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HVAC systems 

1. Global temperature adjustment (GTA) 

This strategy allows to change easily the temperature points from one location. To be 

more specific, with this strategy control the temperature set point throughout the 

building. It is the most effective strategy of HVAC systems, due to the fact that it 

reduces the ventilation and the cooling load uniformly across to all zones of the 

building.  

2. Duct static pressure decrease (DSP) 

In this case, the fan power is reduced from the reduction of the duct static pressure 

setpoints that will bring saving power to the fan. The main drawback is that in the 

zones with less air flow, there is a reduction in ventilation rates below the desirable.  

 

 

3. Cooling valve limit 

This strategy reduces the cooling valve in order to limit the cooling load, without 

setting the cooling valve limit lower than the threshold of the chiller.  

4. Chilled water temperature increase 

In this strategy, there is a temperature increase of chilled water, helping reduce the 

cooling load and increase the chiller efficiency.  

Lighting systems  

5. Zone switching  
 
The main role of this strategy is to switch all the luminaires in all zones, 
increasing/decreasing the cooling load and the heating load. The main drawback in 
this strategy is that it may annoy the employers of the building.  
 

6. Luminaire/ lamp switching  
 
Luminaire switching: In this case, a percentage of luminaires of the building is switched 
off.  
Lamp switching: In the other case, a part of lamps in the luminaire is switched off.  
The main disadvantage is that it may annoy the employers.  

electromechanical equipment 

7. Fountain pumps 

The pums are used mainly for visual comfort, and they are situated in common place 
in the building. Switching off the fountain pumps can save energy without have effect 
on the thermal comfort of the occupant.  



13 
 

 

Benefits of DR 
 

     There is a majority of DR resource types as distributed generation, dispatchable 

load, storage and many other sources that can contribute to change the power system 

in the main grid. Moreover, DR programs use difficult mechanism to urge the 

consumers to reduce the demand for limiting the peak demand. [9] Demand Response 

is going to become a significant part of the system operations in the smart grid driven 

restructured power system and carbon dioxide reduction policies around the world in 

the near future. More specifically, DR systems have a big variety of advantages as 

shown below [15]: 

• As it was presented before, the peak of load in an industry can be reduced by 

DR. In this way, an environmental benefit is being created for the society, 

reducing the carbon dioxide emissions 

• Transmission System Operators take advantage of DR systems, due to the fact 

that the transmission of energy can be more reliable. Increased reliability of a 

network is a result of the reduction of the possibility of forced outages when 

the reserves of the systems are below of the desired level. 

• DR encourage new technologies to take part in the network. Penetration of 

Renewable energy sources (RES) technologies such as solar, wind, geothermal 

and storage require DR as a significant resource in the management of the 

smart grid. For example, when there is a high speed of wind, the generation is 

substantial in operation. When the wind generation stops to work, economic 

problems will be created in the wind farm, making the period of payback high. 

Hence, the DR are useful to increase the demand in these periods. 

 Demand Response in HVAC systems is usually performed in individual building level. 

However, few studies, concerning the DR in district level have been done in order to 

evaluate the system’s performance and their limitations are unclear in electricity 

pricing. Some researchers tried to bridge this gap. [17] 

 
 

Figure 2.3 DR in group-level buildings [17]  
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Figure 2.3 illustrates the DR in district level. In [17] the researchers used Genetic 

Algorithms to optimize HVAC system in order to achieve the maximum energy 

efficiency without focusing in economic benefits of one building, but in s group level 

of buildings. To deal with this problem, typical energy prices and cooling loads of 

individual HVAC system were added as inputs, to obtain the total cooling load. Then, 

they compare the total load profile after the DR with the baseline case without DR. 

These comparisons are focused on the reduction of energy consumption in group 

level, helping the grid to relief.  

 
 

 

2.3 Forecasting for DR 
 

     Load forecasting is important for reliable power system operation, and significantly 

affects the industry and the participants. The Energy Management System uses the 

historical data and other outputs like the weather to forecast the loads, and can be 

performed in different time scales. Subsequently, these data will be used later as 

inputs to the optimization. There is no single model or algorithm that is superior for 

all utilities and several load forecasting methods sometimes are used in parallel or 

combination.[18] There is a separation in load forecasting in terms of the planning 

horizon’s duration:  

a) up to 1 day for short-term load forecasting (STLF), 

 b) 1 day to 1 year for medium-term load forecasting (MTLF), and 

 c)1±10 years for long-term load forecasting (LTLF).[19] 

 

2.4 Theory of Artificial Neural Networks 
 

               In the literature, two methods have been recognized for load prediction, 

which are statistic models and Artificial intelligence models like artificial neural 

networks, fuzzy logic and hybrid systems. Artificial intelligence models have the ability 

to model the nonlinearity of the electricity demand variation and the complex 

relationship that exists between the load and the other parameters (like the weather, 

etc.) that have influence on it. [3]  

                Artificial Neural Network (ANN) is an attempt to approach the human brain 

using mathematical functions, providing the ability to perform calculations on high 

numbers of parallel streams. The architecture of ANN is based on biological neural 

network, which is found in the human brain. The main part of an ANN is a number of 

artificial neurons organized into human brain like structure 
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Figure 2.4.1: The structure of an Artificial Neural Network [20]  

Figure 2.4.1 illustrates the structure of an Artificial Neural Network, which consists of 
many neurons. Each neuron has many inputs but only one output, and the connection 
between the neurons differs due to the weight factors. Two basic properties define 
the architecture of a network [20]:  
1)the number of layers and  
2)the connections between neurons 
Apart from these, the learning algorithm is a significant property associated with the 

training and performance of the network.   

             Artificial Neural Networks (ANN) are artificial intelligence models widely used 
for forecasting providing high accuracy. There are two categories concerning the load 
forecasting. The first option treats the load pattern as a time-series signal and predicts 
the future load using the already mentioned time-series analysis techniques. In the 
second option, the load depends on weather variables as temperature and humidity 
and previous load patterns.[19]  
              Many techniques have been proposed during the last few decades regarding 
STLF. [21], develop a short-term load forecasting model based on ANN. to forecast the 
electrical loads of individual consumers (households). They collected anthropologic 
and structural data from 205 houses in Sweden and observed a significant correlation 
between the characteristic of consumers and their consumption. To train the STLF 
model, they use a tuple consisting of global variants (hour of day, day of week, 
temperature, etc.), house variants (number of occupants, number of school going 
children, wall types, etc.), and load value for that households. Each input corresponds 
to a neuron of first layer. The trainer associates weights with each neuron. 
          Hao Quan and Abbas Khosravi in [22], also use an ANN technique to forecast the 
load of renewable energy process concerning wind power, using day data as inputs 
and electrical load data as outputs from SG and New South Wales in Australia. 
          In [20], the researchers were interested in Urban Heat Island (UHI), that causes 
differences in thermal comfort between rural and urban settlements. In this case, an 
ANN was used to predict the air temperature in Athens for 1h and 24h prediction 
respectively. As inputs to the ANN were the date, the time, the temperature and the 
solar radiation. The performance of one to three hidden layers with 20-40 neurons 
each, using a variety of training functions were explored.  
       In [23], refers to the wind power forecasting. In this topic, researchers use a short-
term load forecasting (STLF) model to forecast wind power up to 48 hours ahead in 
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seven wind farms. To be more specific, historical data (as wind power data) were used 
to provide accurate wind forecasts with ANN.  
        In 1995, Kreider [24] used ANN without knowing the historic data of building’s 
energy consumption. In this approach, the model provided an accurate method for 
predicting hourly energy use when only weather data is known. During the training of 
the network, actual measured data from a few past hours were used as inputs and a 
cyclical process was started. Finally, the error of this research was significant leading 
to conclusions for real measurements being necessary to improve network’s 
efficiency.   
     In [25] used ANN to conduct forecasting in electric power systems. To start this 
approach, only historical load data were considered as inputs, without knowing the 
weather data. As outputs of the network was load forecasting for the next hour.  
         In [26]researchers trained an ANN using recent load data to forecast a load with 
substantial accuracy, with no weather data input. In this process, they identified a load 
model with neural network that reflects the hourly load demand of Crete.  
       The authors [27] used ANN to examine the forecast of a 24h excess production of 
a microgrid in Loccioni Leaf Community. In the present paper, for prediction of PV and 
Hydro power different inputs were used in each case. In the first case, day of week, 
time of day, temperature and radiation were considered as inputs. In the second case, 
river water level and machine water level were the inputs for the network. Finally, an 
accurate prediction for different seasons was made using irradiance and temperature 
as inputs to the network. 
    In 2004 [28], M Beccali used ANN to forecast total electric consumption in an urban 

area of Palermo, in Italy. Load and weather data (as temperature, relative humidity, 

global solar radiation), from 2001 to 2004, were used as inputs to the network. The 

output of the forecast was the daily urban electric load profile. The results of the 

forecast, could provide a significant accuracy at so small a spatial scale as the suburban 

on2.5 Genetic Algorithm based optimization. 

 

 

 
 

2.5 Genetic Algorithm based optimization 
 

        A Genetic Algorithm (GA) belongs to the larger class of evolutionary algorithms 

(EA), and tries to mimic the metaphor of natural biological evolution. Each and every 

genetic algorithm operate on a large population of potential solutions which follow 

the principle of survival of the most capable for solving the problem.[29]  

      Genetic algorithms (GA) differ from the traditional approaches of existing 

optimization techniques. The fitness function is evaluated for each solution, and the 

solutions are consequently ranked.[30] Firstly, a Genetic Algorithm codes the decision 

variable set describing a trial solution named string or ‘’chromosome’’, and then uses 
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a binary alphabet for the coding. After that, the GA evaluates the trial solution and 

computes a value of worth or "fitness" for the string. The new collection of solutions 

is known as ‘’population’'. The new populations are created from the older. Every 

Genetic algorithm has the basic functions as shown below: 

 

Figure 2.5.1 Genetic Algorithm flow chart [31]  

These operators are necessary in order to optimize the fitness function, and find the 

optimal solution for the problem. The process is repeated until a termination criterion 

is satisfied.[32]  

 

More specifically, ‘’selection’’ is the function with witch the GA chooses the parents 

for the next generation. Selection determines the number or trials where an individual 

is chosen as a parent. This function is substantial in GA, since good parents drive to 

individuals that have ever better solutions.  

Fitness Proportionate Selection: is the most common selection for parents’ 

generation. In this case, each individual has the possibility to become a parent 

according to its fitness.  In this way, fitter individuals have higher chance to mate and 

propagate their features to the next generation. In this case, there is a wheel which is 

separated into n pies and each individual gets a portion of the circle which is analogue 

with its Fitness Value. 

Roulette Wheel Selection: In this case, there is a circle of wheel as before. In the wheel 

there is a fixed point as the wheel is rotated. The region of the wheel which comes in 

front of the fixed point is chosen as the parent. For the second parent, the selection is 

repeated as before.  
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Figure 2.5.2 Example of roulette wheel selection [2] 

 

Stochastic Universal Sampling (SUS): This is similar as the roulette wheel selection. 

however instead of having one fixed point, we have many fixed points as shown in 

Figure 2.5.3. 

 

 

Figure 2.5.3 Example of Stochastic Universal Sampling [2] 

 

 

[2] https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm 

 The basic operation for producing new chromosomes in the GA is the function 

‘’crossover’’. In crossover, new individuals are produced by both parents’ genetic 

material.[29]  

One-point crossover: The simplest crossover is the as it is shown in the example 

below: 
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Figure 2.5.4 Example of one-point crossover [3] 

Multi point crossover: is a generalization of the one-point crossover where the 

segments alter and swapped to get new off-springs. 

 

Figure 2.5.5 Example of multi-point crossover [3] 

Uniform Crossover: In this case, a coin is flipped to decide where or not it will be 

included in the off-spring. Moreover, in this function the child can have more genetic 

material from one parent than the other.  

 

 

Figure 2.5.6 Example of uniform crossover [3] 

Mutation is the operator that maintain the genetic diversity from one generation of 

chromosomes to another. In other words, this function helps the GA to make small 

random changes in the individual population to create mutation children, helping the 

GA to search a border space. There are many different functions of mutation as it is 

shown in Figure 2.5.6. 

 

 

 

[3] https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_crossover.htm 
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         Figure 2.5.7 Example of mutation [29]  

 

In literature, there is a significant variety of problems concerning energy management 

systems, in which optimization using genetic algorithms to solve constrained mixed 

integer (Nonlinear) programming (MINLP) problems, is preferred. This kind of 

problems often arise in the field of building and HVAC design.  

       In [30], Genetic algorithm was developed to control the HVAC loads with a hybrid-
renewable generation and energy storage system. In this approach, the authors used 
historical hourly data for cooling loads, wind and PV penetration. In order to create 
the function, system energy cost, and system power were needed, too. Finally, they 
compared the results of minimization of GA with other methods and the optimization 
with GA demonstrated better efficiency.  
        In 2009, [33] Matti Polonen, used Genetic Algorithms to solve a single-objective 
optimization and a multi-optimization of life cycle cost of a house. In the first case, the 
goal is to minimize the difference between the investment cost for the construction 
(windows, insulation) with the ventilation heat recovery. In the second case, an 
optimization with GA was needed in two cost functions. The first function concerns 
the investment cost for the construction and the second concerns the annual space 
heating energy of the heating system. 
      In 2004, [6], an optimization problem was created in order to minimize the cost of 
Leaf Community microgrid, in Italy. The GA in the microgrid has significant benefits as 
the reduction of energy cost, the optimization of revenues, the minimization of carbon 
dioxide emissions, without changing user’s thermal comfort.  
     In reference [32], the authors developed a GA model for a pipe network, due to the 
fact that the construction and the maintenance of pipelines for water supply cost 
millions of dollars every year. In this topic, the minimization of the cost is a result for 
a given layout of pipes and specific demands at the nodes.  
     M.H. Moradi and M. Abedini in [34], propose a Genetic Algorithm for optimal 
location and sizing of Distributed generation (DG) on distribution systems, in order to 
minimize the network power losses, and to improve the voltage regulation of the 
system operation and security constraints in radial distribution systems. 
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   In [35], Jonathan A. Wright created a multi-objective GA in order to find the 

minimum pay-off between the HVAC system energy cost in a specific building and the 

thermal discomfort. Finally, the optimization of GA illustrates results with substantial 

accuracy.  

 

 

 

 

3.Case study 
3.1 Description of the Leaf Community 
 

     Leaf Community is situated in Angeli di Rosora at Italy and was established in 1968 

by Enrico Loccioni. In this community, there is a combination of ideas, people and 

technology in order to develop measurements and control automatic systems for 

improving products and buildings quality, efficiency and sustainability. Figure 3.1.1 

illustrates Leaf Community.  

The main field of research are presented below: 

• Energy: solutions and energy production from renewable sources 

• Environment: Environmental monitoring 

• Human care: Quality control solutions for human care 

• Industry: Quality control solutions for industrial buildings 

• Mobility: test and quality control systems for automotive components 

• Train & Transport: solutions for transport and railways network 

• Aerospace: Measure, automation and quality control solutions for aeronautic 

and aerospace processes, systems and components 
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Figure 3.1.1: Leaf Community  

Leaf Lab is an industrial building which is located in the Leaf Community. In Leaf Lab, 

there is reduction to minimum of energy needed, covering the demand for heating, 

cooling, ventilation and lighting due to the latest technology they are using. Leaf Lab 

is a Near-Zero Energy Building since it consists of passive systems, energy efficient 

technologies and renewable energy consumption. After this production, PV systems, 

heat pumps and thermal storage are used to optimize the HVAC system.[36]  

 

          Figure 3.1.2. Leaf Lab [36]  
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3.2 Data analysis 
 

Power and weather data were collected from MyLeaf platform. In this platform the 

user has the opportunity to find measurements for every building of Loccioni. In this 

study, we decided to deal with the electrical consumption of 3 buildings: Loccioni L4 

Leaf Lab, L5 Kite Lab and L2eL3. Figures 3.2.1 and 3.2.2 depict how we collected the 

data for each building. 

 

         Figure 3.2.1: MyLeaf Platform  

 

    Figure 3.2.2: Power measurements  
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      Figure 3.2.3: Weather measurements  

 From the platform, power and outside temperature were collected from 1/1/2017 to 

1/3/2018, having measurements per 15 minutes. Τhis is the first step of the study as 

the data are useful thereafter in the predictions with Artificial Neural Network.  

 

3.3 Model development  
3.3.1 Power prediction using ANN 

      The first step of the optimization at building and district level was the prediction 
of electrical power 24h ahead. In this study, we decided to use Artificial Neural 
Network as it is the most preferable method concerning short-term load forecasting. 
It is known that the load depends on weather variables like humidity and temperature, 
and previous loads. For this reason, we decided to use day, time and external 
temperature as input and power as output from 1/5/2017 to 1/8/2017.  

      In order to have the power forecast, we should first create the structure of the 

ANN. The network consists of an input layer, which is the external temperature in our 

case. Apart from that, 3 hidden layers with 1 delay were used to connect the input 

layers with the output layers. However, weights were modified inside the network 

automatically. To build an Artificial Neural Network from the beginning, we had to use 

specific functions to create the net, to prepare the data and to train the model, as it is 

shown in Figure4.  
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Figure 3.3.1.4: the structure of Artificial Neural Network in MATLAB 

   This Methology was tested many times changing the delays and the hidden layers 
before having the final output y(t). Moreover, this method was used firstly for the L4 
Leaf Lab, the Kite Lab and the Education Lab and after that for district level, changing 
the inputs x(t) and the targets y(t). At the end of each process, we used main statistic 
indicators in order to test the reliably of the result, how close are the predicted values 
to the baseline values. More specifically, firstly Pearson test R (correlation coefficient) 
was used to analyze how strong is the relationship between the variables. The range 
is 0 to 1..(Kampelis et al. 2017) where: 
 

• 1 indicates a strong positive relationship. 

• -1 indicates a strong negative relationship. 

•  0 indicates no relationship at all 
To calculate this statistic indicator, ANN use this function as it is shown in eq.1: 

𝑅 =
𝑛 ∗ ∑ 𝑥𝑖 ∗ 𝑦𝑖 − ∑ 𝑥𝑖 ∗ ∑ 𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2 ∗ (∑ 𝑥𝑖

2) ∗ √𝑛 ∑ 𝑦𝑖
2 ∗ (∑ 𝑦𝑖

2)

 (1) 

 
Apart from the R, two other statistic indicators where used to test the reliability of the 
network. Mean bias error (MBE) was the second indicator and it is calculated as it is 
shown in eq.2. MBE shows the direction of the error with positive and negative results. 
 

𝛭𝛣𝛦 =
∑ (𝑃𝑖 − 𝑂𝑖)

𝑁
𝑖=1

𝑁
(2) 

 
Finally, Mean Average Percentage Error (MAPE) was calculated too. This indicator 
shows the percentage of predictions that differ from the baseline.  

MAPE =
100

𝑁
∗ ∑

𝑂𝑖 − 𝑃𝑖

𝑂𝑖

𝑁

𝑖=1

(3) 

Where 
N: the number of samples 
Pi: the predicted valueOi: the baseline value 
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3.3.2 Optimization using Genetic Algorithms 
    

 Two optimization models have been created to minimize energy operating costs 

based on day-ahead hourly unit (kWh) energy prices.  The first one concerns the 

optimization at one building and the second one the optimization at district level. Two 

criteria are used to evaluate the trade-off between the optimization of cost and load 

shifting. Load shifting is considered a competitive criterion as it is related with changes 

in the operation of systems in the building including HVAC, lighting, industrial loads 

etc. In other words, load shifting needs to be minimized to avoid significant 

intervention in the building’s operation. Weighting coefficients are applied to both 

criteria to allow consideration of several alternatives depending on the decision 

maker’s preferences. The optimization function displayed in eq.1 includes the criteria 

of the cost of energy 𝐶𝑜𝑠𝑡𝛦 and a penalty function which is related to load shifting. 

The two criteria are normalized based on theoretical estimates of maximum values as 

presented in equations 6 and 10. 

𝑓 = min (𝑤1

𝐶𝑜𝑠𝑡𝐸

𝐶𝑜𝑠𝑡𝐸𝑚𝑎𝑥

+ 𝑤2

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝑚𝑎𝑥
) (1) 

3.3.2.1 Optimization in building level 
3.3.2.1.1 Cost of electricity in L4 Leaf Lab 
 

The first part of this function concerns the cost of electrical energy in one building (L4 

Leaf Lab).  Due to the fact that HVAC power consumption measurements are not 

available in the platform for all buildings, the total electrical power consumption of 

each building was taken into account. Hence, the CostE denotes: 

𝐶𝑜𝑠𝑡𝐸 = 𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 (2) 

Where: 

𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 is the daily energy operating costs of Lab building(€) 

The calculation of 𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 is presented below: 

𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 = ∑ 𝑋𝐸__𝐿𝑎𝑏
ℎ24

ℎ=1 ∗ 𝐶𝐸_𝑢𝑛𝑖𝑡
ℎ  (2.1) 

where: 

𝐶𝐸_𝑢𝑛𝑖𝑡
ℎ  is the day-ahead hourly unit cost of energy (€/kWh) 

𝑋𝐸__𝐿𝑎𝑏
ℎ   is the hourly average o𝑓total energy consumption (kWh) 

 
In order to evaluate the results of the optimization we compare them with the 

baseline consumption as obtained by the Artificial Neural Network day ahead 

prediction model. In this case the cost of baseline (predicted) scenario is given by: 
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𝐶𝑜𝑠𝑡𝐸_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∑ 𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ ∗ 𝐶𝐸𝑢𝑛𝑖𝑡

ℎ

24

ℎ=1

(3) 

Where:  

𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ  : Baseline hourly average of total electrical power in kWh for each building 

based on day-ahead Neural Network based energy prediction. 

Afterwards, we calculate the daily optimized energy consumption as: 

𝐸_𝑐𝑜𝑛𝑠𝑑𝑎𝑦_𝑎ℎ𝑒𝑎𝑑 = ∑ 𝑋𝐸__𝐿𝑎𝑏
ℎ

24

𝑖=1
(4) 

Also, we can calculate the daily baseline consumption as shown in eq.5: 

𝐸_𝑐𝑜𝑛𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∑ 𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ
24

𝑖=1
(5) 

Finally, the criteria must be normalized. Obviously, the majority of problems have 

objective functions with different measure values units as Cost (€) and Load shifting 

(kW). For this reason, normalization is required in order to have values between [0,1] 

and be comparable. The criterion of cost was normalized, divided his value with the 

maximum daily cost (𝐶𝑜𝑠𝑡𝐸𝑚𝑎𝑥
 ) that each of the buildings is going to have.  

 

3.3.2.1.2 Load shifting in L4 Leaf Lab 

The second criterion of function (1) is Loadshift It is a measure of deviation from the 

ideal (baseline) day ahead energy consumption profile. The concept behind this 

criterion is to integrate in the optimization a competitive criterion which reflects the 

fact that load shifting can be related to inconvenient changes in the way a building 

operates. Such inconvenience may be related to some form of intervention in the way 

HVAC, lights or industrial loads operate. Therefore, a penalty is introduced to account 

for this trade off. In eq.6, 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡 is analyzed in the corresponding terms for L4 Leaf 

Lab building. 

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡 = 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡𝐿𝑎𝑏
(6) 

where 

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝐿𝑎𝑏 = ∑ 𝑎𝑏𝑠(𝑋𝐸_𝐿𝑎𝑏
ℎ − 𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ )(7)

24

ℎ=1

 

Constraint below is applied to make sure there is no deviation in the total energy 

consumed every day by the building. 

∑ 𝑋𝐸𝐿𝑎𝑏

ℎ − ∑ 𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ

24

ℎ=1

= 0(8)

24

ℎ=1
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Finally, we follow the same procedure for the normalization of the second criterion. 
In this case, we divided his value with the maximum daily Loadshift 
(𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝑚𝑎𝑥)that the building may has.  

 
In the objective function, each criterion is multiplied by the relative weight coefficient 

w1 and w2 which are constrained by eq. 9 and 10 below: 

𝑤1+𝑤2 = 1 (9) 

𝑤1, 𝑤2 ∈ [0,1] (10) 

Exactly the same process was followed for L5 Kite Lab and L2eL3.  

 

3.3.2.2 Optimization in Building group level 
3.3.2.2.1 Cost of electricity in district level  

 

The same methodology with 1.1 was used for the cost of electrical energy in district 

level. In this case, we deal with the power consumption of three buildings. In 

particular, we used data from L5 Kite Lab, L2eL3 and L4 Leaf Lab, that were taken from 

the platform, and the same procedure was started. Hence, the CostE denotes: 

𝐶𝑜𝑠𝑡𝐸 = 𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 + 𝐶𝑜𝑠𝑡𝐸__𝐾𝑖𝑡𝑒 + 𝐶𝑜𝑠𝑡𝐸𝐸L2eL3
(13) 

Where: 

𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 is the daily energy operating costs of Lab building(€) 

𝐶𝑜𝑠𝑡𝐸__𝐾𝑖𝑡𝑒 is the daily energy operating costs of Kite building(€) 

𝐶𝑜𝑠𝑡𝐸_𝐸L2eL3: is the daily energy operating costs of Leaf Education building (€) 

Terms in eq.13 are calculated based on equations 13.1, 13.2, 13.3 as shown below: 

       𝐶𝑜𝑠𝑡𝐸_𝐿𝑎𝑏 = ∑ 𝑋𝐸__𝐿𝑎𝑏
ℎ24

ℎ=1 ∗ 𝐶𝐸_𝑢𝑛𝑖𝑡
ℎ  (13.1) 

                   𝐶𝑜𝑠𝑡𝐸_𝐾𝑖𝑡𝑒 = ∑ 𝑋𝐸_𝐾𝑖𝑡𝑒
ℎ24

ℎ=1 ∗ 𝐶𝐸_𝑢𝑛𝑖𝑡
ℎ  (13.2) 

                   𝐶𝑜𝑠𝑡𝐸_L2eL3 = ∑ 𝑋𝐸_L2eL3
ℎ24

ℎ=1 ∗ 𝐶𝐸_𝑢𝑛𝑖𝑡
ℎ  (13.3) 

where: 

𝐶𝐸_𝑢𝑛𝑖𝑡
ℎ  is the day-ahead hourly unit cost of energy in each building (€/kWh) 

𝑋𝐸
ℎ  is the hourly average o𝑓total energy consumption in each building (kWh) 

In order to evaluate the results of the optimization we compare them with the 

baseline consumption as obtained by the Artificial Neural Network day ahead 

prediction model. In this case the cost of baseline (predicted) scenario is given by: 
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𝐶𝑜𝑠𝑡𝐸_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∑ 𝑋𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ ∗ 𝐶𝐸𝑢𝑛𝑖𝑡

ℎ

72

ℎ=1

(14) 

𝑋𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ  : Baseline hourly average of total electrical power in kWh for all buildings 

based on day-ahead Neural Network based energy prediction. 

Afterwards, we calculate the daily total optimized energy consumption as: 

𝐸_𝑐𝑜𝑛𝑠𝑑𝑎𝑦_𝑎ℎ𝑒𝑎𝑑 = ∑ 𝑋𝐸
ℎ

72

𝑖=1
(15) 

Also, we can calculate the daily total baseline consumption as shown in eq.16: 

𝐸_𝑐𝑜𝑛𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∑ 𝑋𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ
72

𝑖=1
(16) 

As for the normalization in district level, the criterion of cost was divided with the 

maximum daily cost that the three building are going to have. So, we considered: 

𝐶𝑜𝑠𝑡𝐸𝑚𝑎𝑥
= € (17) 

3.3.2.2.2. Load shifting in district level 

In this case, the second criterion concerns the Loadshift of three buildings. Following 

the same approach, Loadshift is calculated as it is shown in eq. 18: 

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡 = 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝐿𝑎𝑏 + 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝐾𝑖𝑡𝑒 + 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡L2eL3
(18) 

where 

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝐿𝑎𝑏 = ∑ 𝑎𝑏𝑠(𝑋𝐸_𝐿𝑎𝑏
ℎ − 𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ )

24

ℎ=1

(19) 

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝐾𝑖𝑡𝑒 = ∑ 𝑎𝑏𝑠(𝑋
𝐸_𝐾𝑖𝑡𝑒
ℎ − 𝑋𝐸𝐾𝑖𝑡𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ )

24

ℎ=1

(20) 

and 

 

𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛
= ∑ 𝑎𝑏𝑠(𝑋𝐸_L2eL3

ℎ − 𝑋𝐸L2eL3𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ )

24

ℎ=1

(21) 

Constraints below are applied to make sure there is no deviation in the total energy 

consumed every day by each building: 

∑ 𝑋𝐸𝐿𝑎𝑏

ℎ − ∑ 𝑋𝐸𝐿𝑎𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ

24

ℎ=1

= 0(22)

24

ℎ=1
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∑ 𝑋𝐸𝐾𝑖𝑡𝑒

ℎ − ∑ 𝑋𝐸𝐾𝑖𝑡𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ

24

ℎ=1

= 0

24

ℎ=1

(23) 

∑ 𝑋𝐸_L2eL3
ℎ − ∑ 𝑋𝐸L2eL3𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

ℎ

24

ℎ=1

= 0

24

ℎ=1

(24) 

As for the normalization, the criterion of Loadshift was divided with the maximum 
daily 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝑚𝑎𝑥that the three building are going to have. 

 
Finally, the same group of weight coefficient are used as in eq. 9 and 10.  
 

3.3.3 Sensitivity analysis 
 

The two optimization models ended, giving the optimized hourly power consumption, 

minimizing the objective function. To test the final results, a sensitivity analysis was 

made in order to check their reliability. In other words, if we change some values, we 

will have different final results. Population size and other options of ga in Matlab as 

Tolerance fraction and migration fraction, 𝐶𝑜𝑠𝑡𝐸𝑚𝑎𝑥
, and 𝐿𝑜𝑎𝑑𝑆ℎ𝑖𝑓𝑡_𝑚𝑎𝑥  were the 

variables that were used and changed in order to test the sensitivity analysis.  

 

 

 

 

 

 
 

 

 

4.Results 
4.1 Artificial Neural Network  
In this chapter there are presented the results of ANN for the summer, which is the 

first step of this study. The first case is L4 Leaf Lab building, whose predictions are 

shown below. For the forecast, data from 1/5/2017 to 1/8/2017 were used.  
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Figure 4.1: Prediction of electrical power with temperature and power input for L4 Leaf Lab 

According to Figure 4.1 the forecast for the building is close to the real power 

consumption since the correlation coefficient R is 0.98.  
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Figure 4.2: Plot with actual and predicted loads 

Due to the fact that the chart of the results of ANN has a big variety of data, and it is 

not clear enough, we decided to depict a part of these predicted loads concerning one 

week of June and one day of July. Figure 4.2 depicts the load of power for 1 week 

(12/6/2017 to 16/6/2017), for actual and predicted load from ANN. In this plot, we 

can observe that there is not significant difference in the fluctuation of loads during 

the peak hours.  

More specifically, for these 3 months we will focus in one day of the summer, which 
the daily temperature is significant high, in 21/7/2017, using the forecast data to the 
optimization later. Figure 4.3 represents the baseline and the predicted load in this 
day. As we can observe, the actual and the forecast load are very close during the day.  
 

 
 

Figure 4.3 The prediction in 21/7/2017 

Moreover, apart from the correlation coefficient R, we decided to calculate two other 

statistical indicators which are Mean Bias Error and Mean Average Predicted Error.  
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Mean Bias Error (MBE) =
9091 − 9044

96
= 0. 49 

Mean Average Predicted Error (MAPE) =
1

96
∗

|9044 − 9091|

9044
= 0. 005 

=> MAPE = 0. 005% 

MBE shows that we have managed to get a good approach since the value is only 0.49 
and from bibliography it should be near zero. MAPE indicates that only the 0.005% of 
the predicted loads differ from the actual load in this day.  
After the Leaf Lab, we should forecast the loads in L2 e L3 Angeli the same day as 

before (21/7/2017). The predictions are shown below in Figure 4.4, having the 

correlation coefficient R=0.97 which denotes good relationship between predicted 

and actual load.  
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 Figure 4.4: Prediction with temperature and power input for L2 e L3 Angeli  

 

  Figure 4.5: Plot with actual and predicted loads 

As in the Figure 4.2, the same procedure was followed in Figure 4.5 for 12/6/2017 to 

16/6/2017. In this figure, the actual and predicted load from ANN are depicted. In this 

plot, we can observe that there is not significant difference in the fluctuation of loads. 

Apart from the 3 months, and in this case, we would like to focus to a specific day due 

to the fast that we will use this forecast later, in the optimization. Figure 4.6 illustrates 

the relationship between the data before and after the forecast.  

 

Figure 4.6 The prediction in L2 e L3 Angeli in 21/7/2017 

Moreover, apart from the correlation coefficient R, we decided to calculate two other 

statistical indicators which are Mean Bias Error and Mean Average Predicted Error.  

Mean Bias Error (MBE) =
1215. 5 − 1207. 7

96
= 0. 08 

Mean Average Predicted Error (MAPE) =
100

96
∗

abs(1207. 7 − 1215. 5)

1215. 5
= 0. 007 

MAPE = 0. 007% 
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MBE shows that we have managed to get a good approach since the value is only 0.48 
and from bibliography it should be near zero. MAPE indicates that only the 0.007% of 
the predicted loads differ from the actual load in this day, in which is the difference is 
negligible. 
After the L2 e L3 Angeli, we should forecast the loads in L5 Kite Lab the same day as 

before. The predictions are shown below in Figure 4.7, having the correlation 

coefficient R=0.98 which denotes good relationship between predicted and actual 

load.  

 

                Figure 4.7: Prediction with temperature and power input for L5 Kite Lab 
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                  Figure 4.8: Plot with actual and predicted loads 

As in the Figure 4.2 and in the Figure 4.5, the same procedure was followed in Figure 

4.8 for 12/6/2017 to 16/6/2017. In this figure, the actual and predicted load from ANN 

are depicted. In this plot, we can observe that there is not significant difference in the 

fluctuation of loads. 

Apart from the 3 months, and in this case, we would like also to focus to a specific day 

due to the fast that we will use this forecast later. Figure 4.9 depicts the relationship 

between the data before and after the forecast.  

 

Figure 4.9 The prediction in L5 Kite Lab in 21/7/2017 

Mean Bias Error (MBE) =
5664. 3 − 5785

96
= −1. 3 

Mean Average Predicted Error (MAPE) =
100

96
∗

(5785 − 5664. 3)

5785
= 0. 002 => 

MAPE = 0. 002% 
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The statistical indicators in this forecast are good, having in mind that the value of 
MBE should be near zero in the case of having good approach. The MAPE illustrates 
that only the 0.002% of the forecast differs from the baseline, and this is negligible 
difference. 
 

The second step of this study is the forecast of loads using ANN for the winter. The 

predictions are shown below in Figure 4.10, having the correlation coefficient R=0.96 

which denotes good relationship between predicted and actual load.  

 

        Figure 4.10: Prediction with temperature and power input for L4 Leaf Lab 
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    Figure 4.11: Plot with actual and predicted loads 

Figure 4.11 depicts the load of power for 1 week (12/2/2018-16/2/2018), for actual 

and predicted load from ANN. In this plot, we can observe that there is not significant 

difference in the fluctuation of loads, apart from the peak hours in Thursday and 

Friday where the actual load is higher than the predicted load.  

 

 

Figure 4.12 The prediction in L4 Leaf Lab in 16/2/2018 

Apart from the 3 months, and in this case, we would like also to focus to 16/2/2018 

due to the fast that we will use this forecast later. Figure 4.12 depicts the relationship 

between the actual data and the 24hour day ahead data. From this figure we can 

observe that there is not significant difference between the power data. Then, the 

statistical indicators were calculated as it shown below.  

Mean Bias Error (MBE) =
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Mean Average Predicted Error (MAPE) =
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MAPE = 0. 05% 
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The statistical indicators in this forecast are good, having in mind that the value of 
MBE should be near zero in the case of having good approach, and we have -1,58. The 
MAPE illustrates that only the 0.05% of the forecast differs from the baseline, and this 
is negligible difference. 
 

After the L4 Leaf Lab, we should forecast the loads in L5 Kite Lab for the winter. The 

predictions are shown below in Figure 4.13, having the correlation coefficient R=0.98 

which denotes good relationship between predicted and actual load. 

 

        Figure 4.13: Prediction with temperature and power input for L5 Kite Lab 
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                      Figure 4.14: Plot with actual and predicted loads 

Figure 4.14 depicts the load of power for 1 week (12/2/2018-16/2/2018), for actual 

and predicted load from ANN . In this plot, we can observe that there is not significant 

difference in the fluctuation of loads. 

 

 

Figure 4.15 The prediction in L5 Kite Lab in 16/2/2018 

We would like also to focus to 16/2/2018 due to the fast that it has very low 

temperature. Figure 4.12 depicts the relationship between the actual data and the 

24hour day ahead data. From this figure we can observe that there is not significant 

difference between the power data. Then, the statistical indicators were calculated as 

it shown below.  
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MAPE = 0. 023% 

The statistical indicators in this forecast are very good, having in mind that the value 

of MBE should be near zero and in our case, is -1.63. The MAPE illustrates that only 

the 0.023% of the forecast differs from the baseline power, and this is negligible 

difference. 

The final forecast concerns the loads in L2 e L3 Angeli the same period as before. The 

predictions are shown below in Figure 4.16, having the correlation coefficient R=0.92 

which denotes good relationship between predicted and actual load.  

 

 

Figure 4.:16 Prediction with temperature and power input for L2 e L3 Angeli 
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Figure 4.17: Plot with actual and predicted loads 

Figure 4.17 depicts the load of power for 1 week (12/2/2018-16/2/2018), for actual 

and predicted load from ANN . In this plot, we can observe that there is not significant 

difference in the fluctuation of loads. 

 

Figure 4.18: The prediction in L2 e L3 Angeli in 16/2/2018 

We would like also to focus to 16/2/2018 due to the fast that it has very low 

temperature. Figure 4.18 depicts the relationship between the actual data and the 

24hour day ahead data. From this figure we can observe that there is not significant 

difference between the power data. Then, the statistical indicators were calculated as 

it is shown below, showing the same result.  
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The statistical indicators in this forecast are very good, having in mind that the value 

of MBE should be near zero and in our case, is -0.54. The MAPE illustrates that only 

the 0.03% of the forecast differs from the baseline power, and this is negligible 

difference. 

Finally, all the forecast for each building concerning the summer and the winter will 

be used to the chapter 4.2.  

 

 

 
 

4.2 Genetic Algorithms optimization 
In this chapter there are presented in detail all results that concern each building and 

district level. To begin with the building level, for each of the three buildings the same 

Methology was followed. Firstly, one day of the summer and one day for the winter 

are set by using the daily predicted power values that are shown in chapter 4.1. Then, 

a flat energy price (0.07 €/kWh) was used to calculate the baseline cost. For the 

optimized cost were used data from AEA that were divided into two categories. The 

first one concerns the energy price during the peak period (0.0675 €/kWh), and the 

second one concerns the energy price during the off-peak period (0.0525 €/kWh), as 

it is shown in Figure 4.2.1. 

 

 

  Figure 4.2.1: Energy pricing in Italy  

According to the Figure 4.2.1 as peak hour, 07.00-18.00 was set. Apart from that, many 

weight coefficients were used in Genetic Algorithms, but only the results for the 

weight w1=0.5 and w2=0.5 will be represented in detail.  
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    Figure 4.2.2: Optimized and baseline power (kW) in L4 Leaf Lab in the summer 

The analysis of the results started with the building L4 Leaf Lab, concerning the 

summer period, as it is shown in Figure 4.2.2. This figure depicts the variance of power 

before and after the optimization during the day. We can observer that the variance 

of power has changed significantly, since we have not accumulated power during the 

peak hours (8.00-18.00). It should be mentioned that the total power has not been 

reduced, but only shifted.  

 

    Figure 4.2.3: Optimized and baseline cost (€) in L4 Leaf Lab in the summer 

Figure 4.2.3. illustrates the difference between the baseline cost that L4 Leaf Lab has 

during a summer day, and the optimized cost from the GA.  We can notice that there 

is a substantial difference concerning the cost during the peak, especially in 11.00-

13.00. Apart from that, the baseline daily cost is 174.90 € and the optimized daily cost 

is 147.40 €, achieving a reduction rate of 15.7%.  
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    Figure 4.2.4: Optimized and baseline power (kW) in L5 Kite Lab in the summer 

Figure 4.2.4 refers to the daily power in L5 Kite Lab during the summer. We can 
observe many changes to the variance of power before and after the optimization, as 
the power has shifted from the peak hours to the morning hours (2.00-7.00) and to 
the night, without reducing the total power consumption. In order not to lose energy 
in the morning, which may not be needed, an idea is to dispose of energy on batteries 
for future use.  
 

 

Figure 4.2.5: Optimized and baseline cost (€) in L5 Kite Lab in the summer 

Figure 4.2.5. depicts the difference between the baseline cost that L5 Kite Lab has 

during a summer day, and the optimized cost from the GA. From this figure, we can 

notice that the optimized cost differs from the baseline, and the main advantage is 

the reduction of cost during the peak hours, when the energy cost is high. Although, 

there is an increase of the cost during the morning and the night when the energy cost 

is significant lower. To be more specific, in this case, the baseline cost is 101.9 € and 

the optimized total cost is 93 €, achieving a reduction rate of 8.7%. 
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Figure 4.2.6: Optimized and baseline power (kW) in L2eL3 in the summer 

Figure 4.2.6 refers to the daily power in L2eL3 during the summer. As we can see, the 

power consumption in this building is significant lower from L4 Leaf Lab and L5 Kite 

lab. Although the optimized power is close enough to the baseline power, we can 

observe some differences at the peak hours, concerning a small shift before and after 

the peak.  

 

Figure 4.2.7: Optimized and baseline cost (€) in L2eL3 in the summer 

Figure 4.2.7. illustrates the difference between the baseline cost that L2eL3 has during 

a summer day, and the optimized cost from the GA. It is a fact that we observe 

difference between the baseline and the optimized cost during 8.00-18.00, having in 

mind that in this building we do not have high price in the cost. In this case, the 

baseline daily cost is 20 € and the optimized daily cost is 17 €, achieving a reduction 

rate of 15%. 

Apart from the optimization in each of 3 buildings, a new optimization model was 

developed for the group of buildings. To create the model, the baseline power 
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consumption for each building was added, having the same pricing as before, and the 

results are presented below.  

 

Figure 4.2.8: Optimized and baseline power (kW) in the group of buildings in the summer 

To create Figure 4.2.8, the hourly power consumption was added for the three 
buildings. As we can observe, the optimized power differs enough from the baseline. 
According to the baseline power, there is high power consumption only in the peak 
period. In the other hand, the optimized power is uniformly distributed during the day. 
In the morning the power is high as it is closed to 200 kW and it may not be necessary. 
One idea is to it is to store this energy in batteries or to use it for charging electric cars. 
 

 
 
Figure 4.2.9: Optimized and baseline cost (€) in the group of buildings in the summer 

The final figure for the summer is the figure 4.2.9 and depicts the total daily cost that 

the 3 buildings have, before and after the optimization. As we can notice, before the 

peak time and after the peak time the optimized cost is higher that the baseline. 

Although, during the peak period is significant reduced especially in 13.00 pm where 
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the optimized cost is 6,7 € and the baseline cost is 20 €. Apart from that the total 

baseline cost in district level is 293 € and the total optimized cost is 252 €, achieving a 

reduction rate of 14%. 

 

 Figure 4.2.10: Optimized and baseline power (kW) in L4 Leaf Lab in the winter 

The analysis of the winter results started with the building L4 Leaf Lab, as it is shown 

in Figure 4.2.10. Comparing this Figure, with Figure 4.2.2, it is obvious that the summer 

load is higher that the winter. Moreover, the variance of power before and after the 

optimization during the day does not differ, apart from 11.00-13.00 when the 

optimized power is higher than the baseline.  

 

 Figure 4.2.11: Optimized and baseline cost (€) in L4 Leaf Lab in the winter 

Figure 4.2.11. illustrates the difference between the baseline cost that L4 Leaf Lab has 

during a winter day, and the optimized cost from the GA. We can notice that there is 

not difference during all day, apart from the peak period 10.00-14.00 where the 
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baseline cost is few higher than the optimized. Apart from that, the baseline daily cost 

is 48 € and the optimized daily cost is 44 €, achieving a reduction rate only 8%.  

 

Figure 4.2.12: Optimized and baseline power (kW) in L5 Kite Lab in the winter 

Figure 4.2.12 refers to the daily power in L5 Kite Lab during the winter. We can observe 

many changes to the variance of power before and after the optimization, especially 

in the morning, when in 3.00am and in 19.00pm the optimized power is higher than 

the baseline.  

 

Figure 4.2.13: Optimized and baseline cost (€) in L5 Kite Lab in the winter 

Figure 4.2.13. depicts the difference between the baseline cost that L5 Kite Lab has 

during a winter day, and the optimized cost from the GA. From this figure, we can 

notice that the optimized cost differs from the baseline, and the main advantage is 

the reduction of cost during the peak hours, when the energy cost is high. Moreover, 

the baseline daily cost is 118 € and the optimized daily cost is 101 €, achieving a 

reduction rate of 14,4%.  
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Figure 4.2.14: Optimized and baseline power (kW) in L2eL3 in the winter 

As we can see in Figure 4.2.14, L2eL3 has lower power consumption than the other 

buildings. Apart from that, comparing the optimized and the baseline power we can 

notice that they are close enough during all day, except the peak hours 9.00am and 

13.00pm when the optimized power is higher than the baseline.   

 

Figure 4.2.15: Optimized and baseline cost (€) in L2eL3 in the winter 

Figure 4.2.15. illustrates the difference between the baseline cost that L2eL3 has 

during a winter day, and the optimized cost from the GA. Although in the case of peak 

period the baseline cost is lower than the baseline cost, during all the other day the 

optimized cost is lower than the baseline, due to the fact that we have different 

pricing. Also, the baseline daily cost is 28€ and the optimized daily cost is 24€, 

achieving a reduction rate of 14%. 
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Figure 4.2.16: Optimized and baseline power (kW) in the group of buildings in the winter 

To create Figure 4.2.16, the hourly power consumption was added for the three 

buildings. As we can observe, the optimized power differs from the baseline only in 

the peak period, during 10.00am-18.00pm where the optimized power is lower than 

the baseline.  

 

Figure 4.2.17: Optimized and baseline cost (€) in the group of buildings in the winter 

Finally, figure 4.2.17 depicts the total daily cost that the 3 buildings have, before and 

after the optimization. As we can notice, during all day the optimized cost is higher 

than the baseline. Apart from that the total baseline cost in district level is 195 € and 

the total optimized cost is 153 €, achieving a reduction rate of 21%. 

In table 4.2.1, are presented the results of optimization for each pair of weigh 

coefficient in building and district level, for the summer.  
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Weight 
coefficient 

L4LeafLab 
cost(€) 

L5KiteLab 
cost(€) 

L2eL3 
cost(€) 

District level 

cost(€) 

w1=0 w2=1 153.97 98.50 19.47 181.82 

w1=0.1 w2=0.9 149.80 108.99 19.46 205.54 

w1=0.2 w2=0.8 152.15 92.83 18.49 222.13 

w1=0.3 w2=0.7 145.71 94.24 18.46 197.93 

w1=0.4 w2=0.6 148.44 111.96 18.47 225,61 

w1=0.5 w2=0.5 147.37 93.41 17.46 252.48 

w1=0.6 w2=0.4 151.51 97.94 17.56 220.14 

w1=0.7 w2=0.3 152.21 91.24 17.52 211.43 

w1=0.8 w1=0.2 149.69 95.95 18.45 193.00 

w1=0.9 w1=0.1 144.40 109.67 16.28 223.18 

w1=1 w2=0 142.24 102.01 16.46 191.99 

   Table 4.2.1 Results of the optimization during the summer 

According to Table 4.2.1, for L4 Leaf Lab the results for each case shows that the 

optimization is successful having in mind that the baseline cost is 174.90 € and the 

second maximum optimized cost is 152.21 € (the first maximum optimized cost is 

153.97 € where the cost criterion has not been taken into account). Secondly, the 

optimization for L5Kite Lab showed that the genetic algorithm gain cost optimization 

in all the pair of weights apart from the case where the criterion of cost is w1=0.4. As 

for the previous buildings, as well for L2eL3, the optimized cost in each pair of weight 

is lower than the baseline cost which is 20 €. The last column represents the optimized 

cost in the group of buildings which is lower than the baseline cost (293 €). Comparing 

this column with the other, we can observe, that the optimization in the group of 

buildings achieve better results than each and every building, having lower optimized 

total cost in every pair of weight coefficient.  

weight 
coefficient 

L4LeafLab 
cost(€) 

L5KiteLab 
cost(€) 

L2eL3 
cost(€) 

District level 
Cost(€) 

w1=0 w2=1 47.41 111.10 26.73 155.36 

w1=0.1 w2=0.9 46.41 112.46 26.73 154.96 

w1=0.2 w2=0.8 46.41 102.78 25.83 155.25 

w1=0.3 w2=0.7 46.40 113.81 24.73 155.47 

w1=0.4 w2=0.6 46.42 108.97 24.85 155.91 

w1=0.5 w2=0.5 42.41 101.15 24.86 155.37 

w1=0.6 w2=0.4 44.88 107.78 24.66 154.87 

w1=0.7 w2=0.3 44.41 109.44 23.89 156.16 

w1=0.8 w1=0.2 45.41 110.27 23.67 154.63 

w1=0.9 w1=0.1 46.41 104.53 20.69 153.62 

w1=1 w2=0 46.41 120.51 21.04 152.37 

Table 4.2.2 Results of the optimization during the winter 

In table 4.2.2, are presented the results of optimization for each pair of weigh 

coefficient in building and district level, for the winter. The results of L4 Leaf Lab, 

depict the optimized cost for all weights. As we can observe, in all cases, the optimized 
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cost is lower than the baseline, which is 48€. Moreover, in L5 Kite Lab, the optimized 

cost is lower than the baseline (118€), apart from the last row where the criterion of 

Loadshift has not taken into account (120€). Secondly, the optimization for L2eL3 Lab 

showed that the genetic algorithm gain cost optimization in all the pair of weights, 

having in mind that the baseline cost in this building is 28 €. The last column represents 

the optimized cost in the group of buildings in the winter which is lower than the 

baseline cost (195 €). Comparing this column with the other, we can observe, that the 

optimization in the group of buildings achieve better results than each and every 

building, having lower optimized total cost in every pair of weight coefficient. 

 
 

5. Conclusions and Future Prospects 
The environment serious challenges that put the environment in jeopardy, made the 

researchers to investigate new approaches in order to develop new energy 

management systems that will be friendly to the environment, reducing the energy 

consumption and the carbon dioxide foot print.  

In this study, buildings of Leaf Community in Loccioni are modelled in order to achieve 

an optimum operational cost for the industry.  

The first step of this study was to predict the power consumption 24hours ahead in 

each of these buildings (L4 Leaf Lab, L5 Kite Lab, L2eL3) using Artificial Neural Network. 

This prediction is achieved for plenty of reasons using power and weather 

measurements of weather and day-time as inputs. The results showed that a 

significant approach was achieved during the summer and the winter period, tested 

with correlation coefficient R, and two other statistical indicators which are Mean Bias 

Error (MBE) and Mean Average Predicted Error (MAPE).  

The second step was to create a cost function using the appropriate components and 

constraints. Thus, this function was used to develop an optimization approach using 

Genetic Algorithms in order to minimize the total cost in building level. Some pairs of 

weight coefficient were used in optimization to achieve many different results. The 

final results showed that the three buildings achieved lower cost without reducing the 

total daily power, in the summer and in the winter period.  

Apart from the building level, exactly the same approach was followed to optimize the 

cost in the group of buildings having optimistic results for the industry. The results 

showed that the industry have better results and gain enough money every month, 

when the optimization is made in district level than in each building separately.  

In conclusion, this study has significant possibilities for future research, that will 

benefit the industry and relief the stress from the grid.  
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While this thesis examines and evaluates a demand response approach at building and 

district level, using power prediction and optimization techniques, there are still 

possibilities for further study.  

1. In this survey, power data were used from each building for the optimization. 

One step is to replace the electrical load with RES that the industry has already, 

as PV, when the energy pricing is high during the peak hours.  

2. The priority of loads is a significant part of this study. During the peak hours, it 
is substantial to have priority in loads. To be more specific, in every building 
this priority changes, according to the necessities. Power data concern HVAC, 
lighting and the operation of the mechanical equipment. Thus, in every 
building it has to evaluate which loads must be present and which must be 
moved without causing any problems to the user. 
 

3. In this study, we dealt with the prediction of data 24h ahead. In some cases 
where the power is not necessary, one idea is to it is to store this energy in 
batteries or to use it for charging electric cars, that the industry has already.  
 

4. One idea is to connect this algorithm with a BEMS, that will have the ability to 
change the set point of HVAC when the energy pricing is high, taking into 
account the operation of the building and the user’s thermal comfort.  
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Appendix A 
 

Code of Artificial Neural Network 

Aw=Aw'; %%temperature for input 
B=B'; %%power for output 
X=con2seq(Aw); %%accept big variety of data 
T=con2seq(B); 
net=narxnet(1,1,20); %%create Νarx network 
[Xs,Xi,Ai,Ts]=preparets(net,X,{},T); %%prepare the data  
net=train(net,Xs,Ts,Xi,Ai); %basic train of the network 
view (net); %%displays the image of the network 
y=net(Xs,Xi,Ai);%%target y/load prediction 
m=cell2mat(y); %%convert cell to double 
%%upload date.xlx in column vector 
datenumber=datenum(VarName1); %%convert datetime to double  
figure(2) %%create a plot with date(x axis), m-T1(y axis) 
plot(datenumber,abs(m)); 
datetick('x','dd-mm-yyyy');  
hold on 
plot(datenumber,abs(k)); 
hold off 
 

 

Appendix B 
 

Code for Genetic Algorithm  

for i=1:11 
 W1(i)=(i-1)/10 
 W2(i)=1-((i-1)/10) 
FitnessFunction = @(x)[W1(i)*(sum(Cost.*x(1,:))/450)+(W2(i)*sum(abs(x(1,:)-
xpredicted))/590)];   
numberOfVariables=24 
lb = []; % Lower bound 
ub = []; % Upper bound 
A = []; % No linear inequality constraints 
b = []; % No linear inequality constraints 
Aeq = []; % No linear equality constraints 
beq = []; % No linear equality constraints 
nonlcon = @unitdisk; 
options = 
optimoptions('ga','MigrationFraction',0.1,'MaxStallGenerations',150,'FunctionTolerance',1e-
1,'PopulationSize',150); 
tic; 
[x,fval]=ga(FitnessFunction,24,[],[],[],[],lb,ub,nonlcon,options); 
toc; 



56 
 

for y = 1:24 
      p(i, y) = abs(x(y)-xpredicted(y)) 
      c(i,y)=Cost(y).*x(y)' 
      xxx(i,y)=x(y) 
end 
end 
where  

function [c,ceq] = unitdisk(x) 

ceq=sum(x)-2272.753 
; 
c=[]; 
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