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Abstract

The purpose of this work was to develop a standalone system that predicts

text and outputs speech synthesis for people with physical disabilities and

reduced fine motor function. A low-cost, infrared hand tracking device was

utilized, typically used in virtual/augmented reality applications. The im-

plemented system offers two basic functionalities. First, a human-computer

interaction (HCI) functionality that is customizable and offers enough fea-

tures that can be tailored to a large number of different users. Second, a way

to predict what the user intends to write in order to reduce the user’s in-

put text as much as possible, speeding up overall communication. The word

prediction task was mainly based on n-grams (and relevant Markov Chains),

abbreviation expansion (and lookup tables) and recurrent neural networks.

Evaluation results confirmed that the simple prediction methods utilized ac-

celerated word typing speed, saving input text by approximately 63%. Future

work could utilize additional eye-tracking or hand-tracking sensors.

Thesis Supervisor: Associate Professor Aggelos Bletsas
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Chapter 1

Introduction

1.1 Problem Description

The task at hand is to give a working solution for text generation and speech

synthesis to people that are unable to write or talk due to certain disabilities.

This work is focused on individuals with physical and not mental disabilities.

These people do not have the ability to talk or the fine motor skills required

to write due to congenital or extrinsic conditions. The most common and

known condition is ALS disease, which mainly causes necrosis of the nerve

cells responsible for controlling voluntary muscle movements. For such an

individual, additionally losing the ability to communicate can be devastating,

it is the medium through which we connect with others, express our feelings

and share our ideas. It is a primal need which our evolution and development

is based on.

A person derived from social interactions, but conscious and fully aware

of their environment, is isolated from human contact and along with being

dependent on somebody else for basic human needs, can make the person feel

imprisoned in their own body and lose interest in life itself. Obviously, this

is catastrophic for the person themselves as well as for the people close to

them. So, this work focuses on giving back to those in need a communication

medium, the ability to write and share their ideas and feelings with others.

All this in a relatively efficient and completely autonomous way.
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1.2 Prior Art

As it will later be explained, the system consists of different elements for

which research had to be done individually and cumulatively. Begining with

the subject of Human-Computer Interaction (HCI) for people with physical

disabilities, many studies and technologies have been developed that follow

different approaches. The method that requires the least physical capabilities

from that user and that has been proposed by many different researchers

[2–5] is based on ElectroEncephaloGraphy (EEG) and their interfases are

named Brain-Computer-Interfaces (BCI). While this is a viable method that

usually requires no physical capabilities, it sometimes depends on intrusive

procedures involving electrodes being implanted on the user’s head. Non-

intrucsive alternatives exist but also require head mounted devices like the

Emotiv Epoc but its effectiveness and accuracy are reduced [6]. The other

problem with this approach is that test have shown that there is a high

variability between subjects. The classification accuracy of such systems is

around 76% with an average communication speed of 46 bits/min, which is

equivalent to writing 8.8 error-free letters per minute [7].

Another category of methods used for HCI, that is being increasingly re-

searched recently due to Virtual-Reality/Augmented-Reality development, is

motion tracking and gesture recognition [8]. According to [9], this method,

along with others, has a big potential because of its similarity with the nat-

ural way humans interact with each other (sight, sound, touch). A specific

method/device for hand-tracking and gesture-based HCI is the Leap Mo-

tion Controller [10]. This device shows potential in this field, is being used

with many AR/VR applications and has been studied in [11–13] for its us-

age and capabilities. Other solutions that are gaining popularity are eye-

tracking/gaze based products like some AR/VR headsets or the non-head-

mounted Tobii eye tracker and others [14, 15]. A more low-cost approach

is implemented using web cameras to track the movement of pupil and de-

tect eye-blinks to make selections [16]. The tests conducted in this work

concluded to an average writing rate of 19 seconds/character while its accu-

racy/success rate can reach 94.75% .The above prior art is indicative, and
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by no means, complete.

Lastly, research has been conducted using Electromyography (EMG).

Sing2Talk [17] is such a system and uses a wrist band with electrodes to

detect signals produces by muscle movement. Using these signals, the soft-

ware can detect certain gestures that are matched with sings of the Ameri-

can Sign Language (ASL). These signs correspond to a number of phonemic

components and enable the user to compose words and sentences. The user’s

sentences are then converted to speech. It is important to note that this sys-

tem offers a two way communication since it can listen to speech and display

the signs that make up that sentence.

As for the NLP task of text prediction, it is a subject that has been greatly

reasearched but still new advancements are made. The current state-of-the-

art methods use Deep Neural Networks with word-level architectures [18].

Other NN architectures are also used and being researched, like character-

level architectures [19] that excel in storage requirements and simplicity.

Other methods face text prediction as a classification task [20, 21]. Another

intresting method that requires a dictionary is abbreviation expansion [22].

A statistical approach expands the Markov Chains to language models cre-

ating the N-grams [23, 24] while incorporating Part-Of-Speech information

created POS-grams [25]. Countless different approaches have been taken to

resolve this task as well as variations or combinations of some of them [26].



Chapter 2

System Design

The system under design consisted of three different components: the Human-

Computer Interaction system (sensor-display-UI), the text prediction engine

and the Text-To-Speech synthesizer. The development stages and decision

making for each individual component as well as the procedure of combining

them together into one system is described in detail in this and the next

chapter.

2.1 Sensor - Leap Motion

The sensor chosen for the user to interact with the system is the Leap Motion,

a hand tracking device that is portable and accurate enough for our needs.

Specifically, the whole devise measures at 7.9 cm in width, 3.0 cm in depth,

1.3 cm in height and weighs about 45 grams (Fig. 2.1).

Figure 2.1: The Leap Motion sensor, banknote for size reference
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The specs claim that it has a sub-millimeter accuracy which for this ap-

plication is more than enough. Indeed, the device proved to be very accurate

and fast based on its use (a more dedicated investigation on the sensor’s

accuracy was conducted by [27]). The sensor is able to identify at least two

hands in a conical area above it which spans at least 60 cm in width (120◦-

150◦angle) and 60 cm in height as can be seen in Fig. 2.2.

Figure 2.2: The Leap Motion sensor range. [1]

In this space, the sensor is able to specify the relative location and rotation

of the hands and their parts in reference to its position. Also, it is capable

of recognizing different gestures like swiping, making circles, taping motions

(vertical or horizontal) and combinations of them. All of these information

provided by the sensor can be used to customize and fit the user interaction

environment to the specific capabilities of many different individuals.

In order to detect all these useful information, the sensor uses a quite

simple method, infrared emitters and cameras are placed inside the device

that track light with a wavelength of 850 nanometers. This makes the device

perfect for low light conditions or indoor environments, where the ambient
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light does not interfere with the sensors. The device can also be used outdoor

but depending on the conditions the IR noise from other sources may affect

its accuracy and functionality. Fig. 2.3 is a snapshot from the device while

in use indoors; at the top part of the picture, small flickers are shown caused

by the laboratory’s fluorescent lights that can sometimes emit IR light. As

it can be seen though, the detection of the hands is not affected at all for

such low interference.

Figure 2.3: A snapshot captured from the Leap Motion sensor while in op-
eration.

Overall, the use of the Leap Motion sensor and its Unity API was very

pleasing because of its stable performance and (for the most part) its compre-

hensive and well-organized documentation. There was some conflict though

with some of the features that are mentioned in the documentation and the

actual features in the API; this is issue is thought to be associated with bad

versioning.
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2.2 User Interface

The user interface for this application was developed in Unity 2017-2018

using C# and Leap Motion’s Unity Assets for the Orion Beta. Unity is a

cross-platform game engine that can be used to create 2D or 3D games and

applications. It was chosen to be the development platform due to Leap

Motion’s extensive API and integration support, as well as its ease of use

when creating 3D graphical user interfaces.

Before jumping into developing the UI for this application it was essential

and very helpful to check out some of the applications developed by the

community of Leap Motion in order to learn about any specific features

and uses of the device, as well as to get familiar with its use and behavior.

Such applications can be found through the “Leap Motion App Home” store

application as well as on Leap Motion’s online app store [28].

The next step was to brush up on our Unity skills since development

in the Unity environment had been done before for other applications. In

order to do this the Unity User Manual [29], the Unity Scripting Manual [30]

as well as the Unity Answers Forum [31] were a great help throughout the

process of development thanks to their comprehensive descriptions of the

inner workings of Unity and the answers provided for a number of issues

that arose.

The final step was to get familiar with the Leap Motion API and test

out the device’s performance and capabilities as well as its limitations. In

order to do this, the Leap Motion’s intergraded visualizer was used (Fig. 2.3

was captured with this software) along with a testing application to fiddle

around with the sensor gesture detection and general usage. In this step, the

API’s documentation provided was very useful [32], as well as support from

the community forum [33].



2.2. User Interface 14

2.2.1 Stages of Development

Version 1

The first stage and version of the UI was more of a test to the Leap Motion’s

accuracy and capabilities but it differed from the previous tests as it was

used to actually type text. It consisted of just a virtual keyboard that the

user could tap the keys using their fingers or palms to tap the different keys

in order to write sentences.

Another input method was also implemented that was inspired by Google’s

swipe keyboard feature; the user could point with their index finger in order

to start a trace originating from the tip of the finger. The user could then

swipe over the characters that their word consisted of and then open their

palm again to signal the end of the word. The system then would try to

guess what the word is according to the trace created by the user.

Both of these methods though are not very useful since the user that this

work is aimed for does not possess the fine motor skill required to accurately

tap or swipe over the right characters. Using such input methods would just

frustrate the users and not yield the efficiency and result intended.

Figure 2.4: The initial version of the User Interface with the virtual keyboard
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Version 2

The second version of the UI (Fig. 2.5) was based more on users with physical

movement difficulties and adopted a four options interface. The environment

was divided in four quadrants, each one of which consisted of a dynamic

choice according to previous selections. The user could use these quadrants

in order to input a character with a very simple method. Each of the 24

of the Greek alphabet could be selected in a three-step process. While this

method requires more input per character, it is way easier to use because of

its reduced need of accuracy.

Figure 2.5: The second version of the User Interface with four selection
options
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At the beginning, three out of four choices contained the whole alphabet

divided into three groups of 8 letters each, {Α-Θ} for the first quadrant, {Ι-
Π} for the second and {Ρ-Ω} for the third one. The user could then select

one of the three groups desired in order to get closer to her desired character.

The contents of the three quadrants would then change into groups of three,

three and two characters from the group selected in the first step and the

user would then make their next selection. At the final stage there would be

left at most a character per quadrant and the user can then select her desired

character, the character is appended to the current word and passed to the

prediction engine. An example of this process can be seen at Fig. 2.6.

(a) First Stage

(b) Second Stage (c) Third Stage

Figure 2.6: The selection process of the character “Ζ” in UI version 2
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The fourth quadrant was created in order to provide the user with word

suggestions; as they type their words, possible word suggestions are displayed

in this area as they are generated from the prediction engine. A number of up

to four words can be displayed here for the user to choose from. If at any point

the user sees the word they want to type in this quadrant, they can select this

option and the four words will be spread out to the four quadrants for the

user to choose from. After the user selects one of the possible suggestions,

the corresponding word is then appended to the current sentence and the

process starts from the beginning again.

Figure 2.7: Here some word predictions from the prefix “πορτοκ” can be seen

The selection process in all of the stages is quite simple and consists of

a two-step procedure. As the user places their hands above the sensor, a

visual representation of them appears in the virtual environment and their

movements are tracked in real-time. The sensor’s effective range was divided

in two by a horizontal plane, perpendicular to the user, creating two separate

areas.

The area closer to the user, named the Hover-Aim Zone, is used in order

to visualize the user’s hand in the virtual environment so they can prepare

and aim their selection better and not having to train and memorize which

areas in the real world correspond to the different choices in the UI.
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After the user has placed their hand in front of the desired option in the

Hover Zone they can then move their hand forwards in the zone further from

them, named the Touch-Select Zone, in order to verify their selection. If

the user’s hand remains in the Touch Zone for more than a predetermined

amount of time, named the Selection Time, the selection is made.

Figure 2.8: A visualization of the different areas in the process of option
selection

Lastly, the default mechanical-looking hand model was replaced with a

natural looking model to make the system more human-like for the user.

(a) Default Hands Model (b) Natural Hands Model

Figure 2.9: Different Hands Models for Leap Motion
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At this stage of the system only the abbreviation prediction method (ex-

plained in section 3.1.1) was integrated into the system.

Version 3

This version focused more on the specific user this work was intended for and

brought some minor improvements to the system in general. More specifi-

cally, after some feedback from the user’s interpreter, the character selection

method was tailored more closely to their specific abilities and their currently

used physical method of communication.

The first change aimed at the layout of the options; the quadrants ap-

proach was dropped due to the user’s difficulty of choosing between different

height options. A new layout was designed; the cubes were placed in a line

perpendicular to the user (Fig. 2.10). Also the Hover Zone expanded over

the top part of the Touch Zone, making it possible to aim for the option

desired in both the areas in front and above the cubes (Fig. 2.11).

Also, some visual and audio feedback was added. While the user’s hand

remains in one of the cubes, the cube’s color would become less transparent

by the time and a sound would be played when the option was finally selected.

Both, the time needed to make a selection (Selection Time) as well as the

volume of the sound, can be adjusted from within the UI during execution

using two sliders at the bottom right edge of the screen. This further enhances

customizability for each user and they can adjust the speed according to their

abilities.

Until now the user did not have the option to write a word outside of the

vocabulary of the system and had to choose a suggested prediction in order

to move to the next word. This changed by adding the space character to the

available set so the user can now enter a new word by selecting three times the

third option (which was blank until now). Then, the currently typed word is

appended to the sentence. Also, in this version the abbreviations prediction

method was dropped and the Unigram model (explained in section 3.1.2) was

adopted.
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Figure 2.10: The rearranged Zones and adjustment options in version 3

Figure 2.11: The rearranged Zones in version 3
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Version 4

For the last and final version of the User Interface in the context of this thesis

some extra cubes/options were added to better control the user’s input as

well as to be able to correct mistakes done by the user. Most importantly

the speech synthesizer was added and the user is provided for an option to

playback the text they generated. The final layout of the UI in this version

can be seen in Fig. 2.12

Figure 2.12: The Final Look of the UI in Version 4

In regards to the input controls, three more cubes were added to the top

of the screen, a Back/Delete option, a Capitalize/Tone option and a Play

option. The Back/Delete option enables the user to go back one step in the

selection stages (Fig. 2.6) as well as delete characters or words already typed.

The Capitalize/Tone option allows the user to capitalize the first letter of

the last word, capitalize or de-capitalize the whole word. Also, this option

enables the user to add accent to the appropriate letters.

The Back option is enabled when the user is in the second, third, or

prediction step of the selection process and when chosen, the user drops back

to the previous stage. If the user is already in the first stage of selection

and there are characters in the current word he is typing, the Delete option
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is enabled. If the user selects it, the last character of the word is deleted.

If there are no characters in the current word, then the first word of the

sentence is deleted.

The Tone option is enabled when there are characters in the current

word and the last character of the current word is able to receive an accent

or umlaut (e.g. ϊ, ΐ). If these conditions are met, then selecting the Tone

option multiple times will cycle through adding accent, umlaut, umlaut with

accent (if applicable) and no punctuation again. If there are no characters in

the current word and there are words in the sentence, then the Capitalization

option is enabled. Selecting this option multiple times will cycle through first

letter capitalization, full capitalization and full de-capitalization of the last

word in the sentence.

At any stage, the user can select the Play option in order to playback their

text in speech using a male or female voice. Although this process is not done

by the Unity engine, it is not required to leave the UI, since communication

between the systems has been implemented. The speech synthesizer and

the communication between the systems will be discussed in more detail in

section 2.3.

In addition to these option, extra measures were taking in order to reduce

false input. The introduction of a Fault Time was added to the UI; this timer

makes sure that if the user selects an option and accidentally move their hand

in and out of that option within the Fault Time specified, the option will

not be activated twice. This timer is also used to avoid accidental activation

of neighboring options. As with the Selection Time, the Fault Time can be

adjusted through a slider added to the same spot.

Another measure taken, while trying to increase accuracy and decrease

false input for users that can and prefer to use both hands, was the ability

to chose which hand (left, right or both) can activate each option. This is a

very important feature as it decreases the number of steps required to make

a selection up to half the amount, possibly making the whole text synthesis

process twice as fast! This speedup can be achieved by splitting the letters in

groups half the original size and assigning them to the same box but making

it possible to select a different subgroup depending on the hand that is used.
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Finally, a menu was added in order to be able to choose from the different

prediction options available so the user can experiment with them and chose

the one that fits her the most. The main motivation behind this menu was

actually for a possible future version of the system that would enable the

user to select a mode like conversation, formal, etc, and the prediction engine

would offer more relevant results.

An example of word completion (a) and next word prediction (c) can

be seen in Fig. 2.13. Having as input the characters “καλη”, the system

provides them with four word completion suggestions (a), the user can then

select the bottom far right option in order to complete their desired word

“καλησπέρα” that is in the list. They are then brought to the suggestion

selection screen (b), where they can chose the blue option to append that

word in the sentence. As soon as the word is appended, the user is provided

with four possible next word suggestions “σας, και, κύριε, κυρία”. If one of

these words are the desired next word, the user can select the bottom far

right option to be brought to screen (b) again and choose which word they

want to append to the sentence.

(a) Word Completion Suggestions (b) Word Suggestion Selection

(c) Next Word Prediction Suggestions

Figure 2.13: An example of word completion (a) and next word suggestion
(c) in the final version of the UI
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2.3 Speech Synthesis

The speech synthesis engine was a little tricky to integrate into the main sys-

tem since free to use, even for non-commercial applications, Text-To-Speech

(TTS) systems with support for the Greek language are not widely available.

Some projects were found across the web but, for most of them, the speech

output was too unnatural or they could not function in cooperation with

other systems or language support was not provided.

In order to overcome this problem, a JavaScript API was found that

is mainly used to voice-enable websites and is free for non-commercial use

by ResponsiveVoice [34]. Using the commands found in the API, a website

developer can dynamically convert text into speech and playback the output

through the browser. The only drawbacks of this method are the required

internet connection, since the TTS process is done at the provider’s end, and

that it is not completely integrated in the system, but an external service

has to be run at the start of the system.

To use this API, a local website had to be created that would act as

medium for the text typed in the application to be played as speech. In

order to exchange data between the system and the website, a text file was

created and was modified when needed by the system. On the system’s end,

when the user selects the Play option through the UI, the current sentence

is appended to the text file along with its time-stamp. On the website’s end,

the text file is ready once per second and if the file contains a sentence with

a new time-stamp, the sentence will be converted to speech and played by

the browser.

Because of security policies, it is not allowed to automatically read a

local file directly without using a browser prompt. In order to bypass this

problem, a local HTTP-server was created locally and the file can then be

read without prompt from the server’s directory. Since this directory is local,

the system can read, write and modify its files. The server was created using

Node.js [35] JavaScript runtime and the http-server package from NPM [36],

with the option of disabling caching.

The whole process can be see at Fig. 2.14.
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Figure 2.14: The process for the Text-To-Speech conversion and playback
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Chapter 3

Algorithms

This chapter describes the different methods used to provide predictive sug-

gestions to the user about the current word they are typing (word completion)

and the words they most likely to type next (word prediction). This is done

to minimize the need for user input in order to relieve them of having to

input every single character/word and also to speed up the text composi-

tion process. This task is most commonly known as word prediction and be

tackled using a wide variety of approaches.

In this work three main methods were implemented, the first two of which

were relatively simple ones used as a baseline, with the last one being rela-

tively more complex and not as established in this field.

3.0.1 Corpora

The corpora and dictionaries that are required for the methods used were

taken from the Leipzig Corpora Collection [37]. The sources of the corpora

used were texts randomly collected from the web as this was the most suit-

ing option compared to the other sources. These sources are less than ideal

for this case, but these corpora were used due to being well structured and

the lack of reliable and big enough data for the Greek language form other

sources. The corpora are automatically collected from carefully selected pub-

lic sources without considering in detail the content of the text. The texts

are processed and most of the foreign material is removed. Then the text

is split into sentences and stored in a file along with each sentence’s unique

ID. Some other useful data are provided like a file that contains a list of

all the word forms in the corpus and their IDs, ordered by their number of

occurrences. Another useful file is the neighborhood co-occurrences file that

contains information about how often two words occurred directly next to
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each other and the number of those occurrences. All the files used were en-

coded in the UTF-8 format in order to support different languages. While

this information was useful to start with, additional info has to be extracted

from the corpus in order to make more accurate predictions.

3.0.2 Tools

The sentences of the corpus contain elements that are not useful and can

interfere with the analysis. These elements can be punctuation marks, num-

bers, dates or foreign characters. In order to remove these elements a tool

was created in Java that takes as input a text document and removes such

elements using regular expressions to find them. This tool can also extract

information like the vocabulary, the count of each word and N-grams but

regarding the latest task our tool was not optimized for large files. For this

task, a tool named “N-Gram Extraction Tools” and provided by the School

of Informatics of the University of Edinburgh [38] was used. This tool im-

plements Nagao ’94 arbitrary N-gram extracting algorithm and can provide

N-grams of higher orders with better efficiency. The output of this process

is then passed through our tool to be brought to a suitable form and to be

organized according to our needs. Even though the tools and algorithms were

implemented based on these corpora, their input can easily be changed if a

more fitting resource is found.
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3.1 Approaches

3.1.1 Using Abbreviations to Minimize Input

The first approach that was implemented is based on [22] and it uses word

abbreviations in order to minimize the characters required as input in order

to type a word. Obviously, this method is not very effective for small words

but can be very effective when it is used for big words or phrases. The Greek

language has many words with prefixes and compound words, so the average

length of words is quite high; thus, making this method suitable for our case.

This method requires a dictionary of all the different the words the user

might want to write; this dictionary was extracted using a corpus of 1.000.000

sentences and consisted of 575.000 words. As the user is typing the charac-

ters, the prediction engine tries to match the input sequence to the whole

dictionary using the longest common subsequence algorithm (LCS) in order

to produce word completion suggestions. From the set of words that matches

the input sequence, the user is displayed four words with priority to smaller

words in length and with matching prefix. If the first criterion was not in

place, relatively smaller words could be left out of the possible suggestions

so the user would have to type the whole word character by character. The

priority given to the small words does not completely count out bigger words

from suggestions, as the user can just keep on typing parts of the words that

will exclude the small words due to the length or the matching differences.

An example of this is shown below:

Let’s say that the user wants to input the word “καλημέρα”. The pre-

diction engine starts working after the first three characters are typed. The

selection of the characters that will be skipped or not is entirely up to the

user. The ideal case would be inputting characters that are characteristic of

the word and can differentiate it from other possible words, but just giving

the consonants of the word and possibly the vowel with the accent works

really well. Especially the latter can reduce the possible suggestion substan-

tially because of the morphology of the Greek language.
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In this case the consonants are “κ - λ - μ - ρ” and as the user inputs the

first three characters “κλμ” the four words suggested are:

κάλμα, κλάμα, κλάμπ, κλήμα.

After the final consonant “ρ” is inputted the suggestions become:

κάλμαρα, κάλμαρε, καλμάρω, κομπλέρ.

Since the desired word still does not show up in the suggestions the user

can input the last remaining character of the word, which is “α”, getting as

the final suggestions:

κάλμαρα, καλαμαρά, καλημέρα, καλήμερα

So the user can then select the third suggestion and append it in the

sentence he is typing. In this example we can also see how the accent can

help differentiate between words with identical possible abbreviations. If the

user wanted to input the word “Καλαμαριά” he could add the accent to the

last character of the abbreviation, making it an “κλμρά”, thus limiting the

possible suggestions to a more desirable set:

καλαμαρά, καλαμαράς, Καλαμαριά, καλαμαριά.

As it can be observed from these examples, there are incorrect forms

of words in our dictionary, since its source is the web, and this can affect

the performance of the system. Increasing the number of suggestions can

partly solve this problem since the words matching the abbreviation and

being incorrect are very few. A more complete solution would be filtering

the dictionary or use a more formal source.

In addition to this problem affecting the performance, there is another

flaw in this method. It is not uncommon for users to type place names, new

words that do not exist in the dictionary or make spelling mistakes. In these

cases, the user might not know that the word they want to type is not in

the dictionary so he might try to input an abbreviation of the word. That

will result in failed prediction attempts and the user will have to delete the
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abbreviation and enter the complete word character by character. Also, the

prediction engine will try to match the abbreviation to the dictionary and

since there will probably be no matches, the system will have to go through

the whole dictionary. Scanning the whole dictionary has some computational

requirements and would make the system sluggish.

The first part of the problem, about the users’ unawareness of the contents

of the dictionary, cannot be solved. To solve the second part of problem, three

measures were put into place. First of all, because the engine is searching

for the smallest words to match, the dictionary was organized based on word

length to make searching faster. As soon as four words were found (they are

the smallest thanks to the sorting) the search was interrupted. Second, if the

input does not match any words from the dictionary, further searches will

not be started if the user keeps on typing characters. Finally, the prediction

engine process was placed in a different thread than the UI system and the

suggestions were provided to the user as soon as they were found. This

avoided delays cause by the searches that would influence the rest of the

system.
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3.1.2 Markov Chains and N-Grams

When trying to make predictions for word completion or next word sugges-

tions, it is important to have a model to base those prediction. In natu-

ral language processing applications like this, a category of such models is

called statistical language models. In general, given a sequence of words

w1, w2, ..., wn they try to assign a probability P (w1, w2, ..., wn) to this se-

quence. Having a way to estimate those probabilities for different sequences

is useful in a range of natural language tasks such as speech recognition,

machine translation, word prediction etc. The models used for this approach

fall under this category.

The second approach implemented was rooted on [23] and it uses Marko-

vian language models based on frequencies. Sentences are seen as a discrete

stochastic process in which the words (or sets of words) are the different

states. Using the Markov assumption, hence the name Markovian models,

future states are only dependent of the current state and completely inde-

pendent from past states. This means that we can make a prediction for

future words without using all the preceding words but just the last state.

This model is also known as a Markov chain.

Formally a Markov chain is a sequence of random variables X1, X2, ..., Xn

such that:

P (Xt+1 = it+1|Xt = it, Xt−1 = it−1, ..., X1 = i1) = P (Xt+1 = it+1|Xt = it)

(3.1)

In general, a Markov chain of order n is a discrete stochastic process in

which future states depend only on the current and the last m − 1 states

(∀n ≥ 2). Formally:

P (Xt+1 = it+1|Xt = it, Xt−1 = it−1, ..., X1 = i1) =

P (Xt+1 = it+1|Xt = it, Xt−1 = it−1, ..., Xt−(m−1) = it−(m−1))
(3.2)
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Our states’ probabilities are independent from time, such a Markov chain

is said to be stationary and it is formally written as:

P (Xt+1 = j|Xt = i0, Xt−1 = i1, ..., Xt−(m−1) = im−1) = pj,i0,...im−1 ∀t (3.3)

In order to use these models for word prediction, the Markov Chains are

applied to sequences of words. If we replace the random variables X1, X2, ..., Xn

with the words of the sentence W1,W2, ...,Wn then the probability of next

word Wt+1 can be calculated given the values of the last N − 1 words

Wt,Wt−1, ...,Wt−(N−2). This is called an N-gram, formally a stationary Markov

chair of order N − 1 (∀N ≥ 2).

Therefore the probability of the next word Wk in a sentence can be given

from an N-gram using only the last N-1 words Wk−1,Wk−2, ...,Wk−(N−1) in-

stead of the whole preceding sentence Wk−1,Wk−2, ...,W1 and can be written

as:

P (wk|wk−1, wk−2, ..., w1) = P (wk|wk−1, wk−2, ..., wk−(N−1)) ∀N ≥ 2 (3.4)

N-grams with N = 1 exist and are called Unigrams but they are a spe-

cial degenerative case. With Unigrams the probability of the next word is

completely independent from the previous words therefore they do not really

constitute a Markov chain.

The most commonly used N-grams are those with N = 2 and N =

3, known as Bigrams and Trigrams. Let’s look at an example to better

understand how N-grams work. The sentence in question will be “Αυτό είναι

ένα παράδειγμα πρόβλεψης κειμένου για κατανόηση”. As mentioned before,

the probability of any word would be dependent on all the preceding words,

so the probability of “κειμένου” being the next word would be:

P (κειμένου|πρόβλεψης,παράδειγμα,ένα,είναι,Αυτό)

Using the Trigram model the probability of the next word in the sentence

“Αυτή είναι μια δοκιμή για πρόβλεψη” being “κειμένου” would be:

P (κειμένου|πρόβλεψης,παράδειγμα)
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Using the Bigram model would further limit the dependency on previous

words:

P (κειμένου|πρόβλεψης)

Knowing that simplifies things and results in reducing the number of

probabilities we need to learn in order to predict the next word. Instead of

having to calculate the probability of every sequence of words (including their

subsequences), calculating the probability of pairs or triplets, depending on

the order of N-gram model we want to use, is enough. This in turn vastly

reduces the computation time and, while trying to predict the next word,

the search time. Also decreased are the requirements for storage space. As

a result, this makes the N-grams a feasible language model for prediction.

In this work implementations using a combination Unigrams, Bigrams

and Trigrams were mainly used, but experimentation with higher order N-

grams was also done. In order to calculate the probabilities of the N-grams

the Maximum Likelihood Estimation (MLE) was used.

For example, calculating the probability of a word wk in the Bigram

model given the previous word wk−1, was done by counting the occurrences,

C(wk, wk−1), of the pair wk−1, wk in a corpus and normalizing by the sum of

all the pairs that have wk as the first word:

P (wk|wk−1) =
C(wk, wk−1)∑n
i=1 C(wk, wi)

, (3.5)

where n is the number of unique words in the corpus.

This can be simplified because of the fact the number of occurrences of

the pairs wk, wi is similar or equal to the number of occurrences of the word

wk−1
1, so 3.5 can be written as:

P (wk|wk−1) '
C(wk, wk−1)

C(wk−1)
(3.6)

1because if wk−1 is in the end of a sentence C(wk−1) > C(wi, wk−1)
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In general for any order of N-gram the ML estimation equivalent of 3.6

can be formally written as:

P (wk|wk−1, ..., wk−(N−1)) '
C(wk, wk−1, ..., wk−(N−1))

C(wk−1, wk−2, ..., wk−(N−1))
(3.7)

In theory a model with N tending to infinite would be a very good model,

but in practice this is impractical due to the large number of possible N-grams

and an issue called the zero-frequency problem. This problem arises because

of the fact that the size of the corpus would also have to be infinite. Even for

relatively small orders of N-grams the transition probability vector is sparse

due to the fact that the corpus does not and cannot contain every possible

N-gram. With a fixed size of vocabulary n there are nN different N-grams.

While most of the N-grams would not be valid in terms of meaning, some of

them just do not exist in the corpus because of their vast number. To solve

this problem different smoothing techniques have been proposed that try

to move some probability from the high frequencies to the zero frequencies

elements of the matrix.

As mentioned before, in this work we used a combination of Unigrams,

Bigrams and Trigrams. Since smoothing was not used, sometimes matching

Bigrams or Trigrams could not be found. In this case Unigrams were used

that were extracted from the corpus in a process almost identical to the

method used for obtaining the dictionary for the abbreviations. Using a

big enough corpus, the ML estimate of the word’s wk probability can be

calculated by counting its occurrences in the corpus and dividing by the

total number of words in the corpus:

P (wk) =
C(wk)∑n
i=1 C(wi)

(3.8)

Considering that the sum of the occurrences of all the words is the same

for any word, the previous expression can be reformed as:

P (wk) ∝ C(wk) (3.9)

Since we are not interested in the absolute value of the probabilities and
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rather in which word is the most probable to follow we can use Eq. 3.9 and

just count the occurrences of each word.

So, a list of all the Unigrams with the number of occurrences for each

one was obtained using our tools. The Java tool was used to remove from

the corpus as much of the unwanted elements as possible and shape the

text to a suitable form for the next process. Then, the N-gram Extraction

tool was used in order to obtain a list with unique words and their number of

occurrences. Finally, the list was organized alphabetically and by occurrences

in order to speed up searching while the prediction engine is in use.

When the user starts typing the first word, there are no preceding words

and Bigrams or Trigrams cannot be used. So as the first character is in-

putted the prediction engine searches the list of Unigrams for the four words

beginning with that character that are the most probable. When and if the

words are found they are displayed as prediction suggestions for the user to

choose from. This goes on as the user keeps on inputting characters until he

selects a word from the suggestions or inputs a blank space. If a suggestion

is selected then the word is appended to the sentence and the user can start

typing the next word. After the user has entered the first word in the sen-

tence the Bigram model is activated. The Unigram model is also used when

there are no Trigrams or Bigrams for the words preceding.

Similarly to the way the Unigrams’ probabilities can be simplified to 3.9,

the probabilities of Bigrams and Trigrams can also be simplified. As already

said before the Bigram probability for wk−1, wk is:

P (wk|wk−1) '
C(wk, wk−1)

C(wk−1)
(3.6)

Because of the fact that wk−1 is stable and given for all the probabilities

of different words wk, the count of wk−1 is independent and same for every

wk. So the expression above can be reformed into:

P (wk|wk−1) ∝ C(wk, wk−1) (3.10)
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This can also be expanded and the equation for the general case of N-

grams 3.7, to:

P (wk|wk−1, ..., wk−(N−1)) ∝ C(wk, wk−1, ..., wk−(N−1)) (3.11)

According to this, the lists of Bigrams and Trigrams were generated

through the Java and the N-gram Extraction tool and then was organized

alphabetically and by count of occurrences.

So, after the first word is entered, the prediction engine searches the list

of Bigrams for the four of them that have the word wk−1 as their first part

and that are the most probable. Then the words wk of those four Bigrams

are displayed to the user as prediction suggestions for the next word they

want to type. If none of these matches what the user wants to type, he can

start typing the characters of the word he wants. While he is doing that, the

engine starts searching those Bigrams that their first word is wk−1 and their

second word starts from the character(s) the user has typed. If at a moment

there are no matches for those criteria, the Bigram model is dropped and the

engine falls back to the Unigram model. The Bigram model is also used if

the preceding words do not match a Trigram.

Lastly the processes described before were used in order to create the

Trigrams list and use it in the prediction engine in the same way as with the

Bigrams.
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3.1.3 Neural Networks - LSTMs

The topics of AI and Neural Networks (NNs) have recently attracted renewed

intrest. These techniques are being applied to all sorts of fields with their

performance being at least to say interesting and results that are sometimes

groundbreaking. This success can be partly accounted to the increasing

computation power of the modern systems and to some innovative techniques

that make deep neural networks and faster training more viable. This method

was inspired by and mainly based on Andrej Karpathy’s post about Recurrent

Neural Networks [39] and his related project char-rnn [40].

Recurrent Neural Networks - LSTM

Unlike traditional NNs, Recurrent Neural Networks (RNNs) introduce the

concept of sequences of data. This is a crucial factor in natural language

processing because the actual meaning of a sentence does not reside in the

words as individual elements but rather depends in the context, the previous

sentences, their order of the words and in their intermediate relations.

The NN model that was decided to be used is a specific variation of a RNN

and its called Long Short-Term Memory (LSTM). LSTMs are very similar

to regular RNNs but with the difference that they have logic to control the

flow of information from state to state. They can forget parts of the previous

state, selectively update state values and control which parts of the current

state will be outputted. Another advantage of LSTMs is that because of their

structure, when using back-propagation, dependencies are based on addition

instead of creating a huge chain rule product (Vanishing Gradient Problem).

The language model chosen for this work was based on [19] and it is a

character-level architecture. Even though state-of-the-art models use word

level prediction, it has been proven that this model can provide state-of-the-

art performance despite having approximately 60% fewer parameters (based

on the work cited). Another advantage of this model is, because the input

and output are just characters and not words, there are no words that are

out of its vocabulary.
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Figure 3.1: Long Short-Term Memory Network Structure

To create the model, the implementation of [41] char-rnn-tensorflow was

chosen, which is basically a replica of Andrej Karpathy’s project but imple-

mented in Tensorflow instead of PyTorch. Tensorflow was chosen because of

its increased popularity as well as its strong visualization tool Tensorboard,

which is useful for debugging and visualization while the model is being

trained.

In Fig. 3.1 we can see a visual representation of the basic structure of

an LSTM. First of all, the recurrency/feedback of the model can be seen as

the output of the previous cell/state ht−1 is used as input for the current

cell/state. Also visible, in this figure, is the inner structure of a cell that

gives the RNNs the ability to forget or remember information of the past

states.

The training was done using the same corpus as the N-grams. Tuning

the model and its parameters is more of an experimental process; multiple

models were trained using different tuning settings for the values: network

size, number of layers, length of the characters window used as input, input

and output dropout. Dropout refers to a technique used during training to

reduce over-fitting to the input data-set by randomly ignoring elements of the

model2. In order to make these decisions some general guidelines provided

2Elements of the model are ignored or not according to a user-defined probability (0
always ignored, 1 always used). Input and output dropout refer to ignoring a certain input
or output of the model during training
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with the library were followed. Some of the main settings were:

Model # Layers Size Input Dropout Output Dropout Sequence Length

1 2 128 1.0 1.0 50

2 3 500 1.0 0.8 50

3 5 500 0.8 0.5 50

4 3 128 0.8 0.5 20

Table 3.1: Different settings used for the training process

The training was done on the laboratory computer’s GPUs (2 x NVIDIA

GeForce GTX 780 Ti) and took from 8 hours for the simplest mode, to 24

hours for the most complex one. In general, due to these long times, tuning

the models is a long and difficult process that requires time and experience.

The models trained were not actually used in the finished system since

there were some difficulties, but some conclusions can be extracted by the

experimentation conducted. First of all, advanced NN models have very

recently started becoming popular and available for the most people. Nat-

urally, there are not many tutorials available with detailed instructions and

explanation of how these techniques work. Also, the tools needed to create

and train such models are not refined to be used by inexperienced users yet.

A decent amount of work has to be done in order to install, use and customize

the tools for certain needs and application. Despite these difficulties, it is

possible to create models that yield respectable performance and if they are

fine-tuned and trained properly, they can provide state-of-the-art results.

The major disadvantage of NNs is that, although the model is designed

by the user, the process through which they produce a result is mostly a

mystery. More specifically, even though the models can provide impressive

results, we cannot understand why or how these results were produced.

Lastly, there are many different types and variants of NNs. On the one

hand, that gives us the capability to use the variant that is most suitable for

our case. On the other hand, the amount of different possibilities and settings

available makes the design process more complicated, experience requiring

and, along with training, very time consuming.
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Chapter 4

Evaluation - Results

4.0.1 Introduction

The evaluation of the system was done on version 4 of the UI and used the

combined N-gram prediction model since it was deemed more appropriate

for inexperienced users than the abbreviation method. The LSTM approach

was not included in the trials with the users since there were difficulties

integrating it into the system, but more importantly there was more work

needed in order to fine tune the models and get the execution environment

to behave as desired.

The trials included five members of the Telecommunications’ Lab and

myself. Four of them had never used the Leap Motion sensor before or any

version of the UI. Two of them had very basic experience with the sensor

and the UI but without the prediction engine. Only myself was experienced

with the sensor and the UI but had not used the system extensively besides

testing, so my results will be listed separately from the others.

The participants were given a brief explanation of how the system works

and a time period of up to five minutes in which they could get familiar with

the UI and the sensor and could adjust the positioning of the sensor and

monitor. After that they were given three sentences to reproduce using the

system as well as one of their own. All of the sentences were chosen randomly

and had never been tested on the system. While they were using the system,

their mistakes, time needed per sentence and comments were recorded. Since

this was a first experience with the system, questions asked about the usage

of the system were answered but there was no outside interference with the

system. Finally there was a brief conversation with the participants and they

were asked to write a short review of their overall experience. A sample of

the evaluation sheet can be found in the appendix (Chap. 6)
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Figure 4.1: The Evaluation and Testing Environment
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4.1 Evaluation

4.1.1 UI

In terms of the UI, what was greatly noted was its simplicity. That was ex-

pected since this work is intended for people with limited physical capabilities

but left regular users wanting more. It was also noted though that it did not

lack in any way in terms of functionality and speed. Positive comments were

noted for the audio feedback and for the ability to change the selection time

because it provided the user with confidence of moving their hand around

without accidentally selecting something they did not want. In general the

UI was described easy/fast to learn, easy-to-use, user-friendly, fast, foolproof,

not tiring to the eyes, not lacking functionality and not demanding on the

user.

On the negative side there was a comment concerning editing words al-

ready appended in the sentence in order to change their endings. This com-

ment came up due to the many grammatical forms being based on the same

linguistic root in the Greek language. In some cases, the desired grammat-

ical case or gender of a word would not appear in the suggestions. That is

because there were other words having the same prefix (root) with higher

probability, making the user type many character before the desired word

appears. A possible solution to this matter is addressed in 5.2. Another

participant noted a similar comment for word endings and suggested that

the system could display more possible predictions.

Another issue mentioned was about punctuation marks and their effect

in the speech synthesis process. A participant with a long enough sentence

noticed that the absence of punctuation marks makes the Speech produced

a little unnatural for those cases. This is true and is more related to the UI

since punctuation is treated accordingly by the TTS system if provided, but

the UI does not provide this option in its latest version. This issue is also

addressed in 5.2.

The last issue with the UI was that sometimes the participants would not

see that the desired word was suggested by the prediction engine (sugges-
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tion neglection) and they would keep on typing characters. This issue was

appointed to the fact that the participants were changing their focus from

the system to the paper the sentences were written and were more focused

trying to find the next character without even looking at the suggestions.

Although this might be the only cause of the issue, further investigation has

to be made regarding the display of the suggestions.

4.1.2 Leap Motion

The Leap Motion sensor and its usage received mixed comments. On the

positive side, the sensor was commented for its seamless response time and

accuracy that provided a very natural feel. On the negative side, the par-

ticipants noted some discomfort from the continuous hovering of the arm,

although some of them adjusted their positioning and movements accord-

ingly making the process less tiring. Finally, observing the capabilities of

the device, the participants noted and gave some suggestion about the cus-

tomization of the interaction process which was partially implemented in

previous version of the UI.

4.1.3 Prediction

Regarding the prediction engine the participants noted that it was fast and

that in most cases they were more than satisfied with the suggestions pro-

vided and sometimes they were surprised with its abilities. What was nega-

tively noted for the prediction system was its difficulty to provide predictions

for the first and second grammatical person and some grammatical cases. An-

other comment was about the number of possible suggestions which is not

really a restriction of the prediction engine but of the UI.

The issue with the grammatical forms was clearly observed during the

trials for the first and second grammatical person (occurred 1.4 times per

participant), this issue was clearly attributed to the nature of the training

corpus, which consisted mostly articles found on the web were the third

person is principally used. Some solutions for this particular problem are

discussed in 5.2.
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Another issue observed was about the accent system. If the user forgets

to add the accent to the right character, then the desired word would not

end up in the predictions. But the use of the accent helps in the prediction

process significantly and the users got used to it very fast. Specifically, the

average number of accent omissions was 1.8 in 48 words (3.75%). These

mistakes were observed mainly on the first time the participant had to enter

an accent and they got accustomed to this process very quickly. This issue

could be avoided by matching words independently of the accent but it would

have a negative effect in the performance of the system. It was decided to

keep the original implementation since the problem can easily be dealt with

by doing very little training. This way, the desired word is predicted faster

and does not stress the user as much since accents require only one step for

insertion.

Finally the participants gave the suggestion for a prediction system that

learns from its user as it is being used.

4.1.4 Text-To-Speech

The Text-To-Speech system’s performance was spot on. Its response time

was unnoticeable and the quality of the audio generated was very natural

and human-like. The only negative comment was about the lack of pauses

during the sentences in places where there should be a punctuation mark.

This issue is actually not related to the TTS system itself, but it has to do

with the lack of punctuation capabilities of the UI, as it was mentioned in

the relative subsection 4.1.1.

4.1.5 Statistics

As it was mentioned in the introduction, these statistics were derived from

the evaluation of inexperienced users. My results are listed separately for the

sake of comparison between a total beginner and a more experience user.

The average time needed to complete the evaluation was 16 minutes, 100

characters were inputted directly and 171 characters were skipped thanks to

the prediction system, reducing the time needed per word by 34 seconds. This
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translates to a 63% reduction in characters/time and brings the time needed

per actual character to 3.53 seconds. The participants generated on average

48 words resulting to 20 seconds needed per word with an average length of

5.66 characters. There were 2.1 characters per word required before the right

prediction was made skipping 3.56 characters per word. In total the amount

of time skipped was 27 minutes and 10 seconds. There were on average

2.6 miss-selections, 1.8 accent omissions and 3.0 prediction neglections per

participant in the whole evaluation with them occurring at the start of the

process.

For reference, my results, as a more experienced user without having done

this particular test, showed that the time needed to complete the test was less

than half that of an untrained user. Specifically, it took me 7 minutes and 24

seconds (54% decrease), typing at 6.00 seconds per character, needing 1.82

seconds per actual character, making 1 miss-selection, 0 accent omissions and

0 prediction neglections.

4.1.6 Overall

The system as a whole was generally described as very functional with fast

and seamless performance. The UI was simple enough without lacking any

core features but needing some extra additions and tweaks. The prediction

engine was described more than sufficient and unexpectedly capable in some

cases but with some complaints that were actually related to the UI. Lastly,

the TTS system was flawless with the exception of the missing punctuation

pause issue.
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4.1.7 Results

#
Time
(sec)

Chars
Typed

Chars
Skipped

Words
Miss
Selections

Grammatical
Misses

Accent
Omissions

Prediction
Neglections

1 960 103 164 48 1 2 1 3

2 1057 118 185 48 2 3 4 1

3 924 109 183 54 2 0 0 1

4 893 91 153 45 5 1 3 4

5 960 82 170 48 3 1 1 6

AVG 958.8 100.6 171 48 2.6 1.4 1.8 3

Table 4.1: The Results of the Inexperienced Participants’ Evaluation

#
Time
(sec)

Chars
Typed

Chars
Skipped

Words
Miss
Selections

Grammatical
Misses

Accent
Omissions

Prediction
Neglections

1 444 74 170 44 1 0 0 0

Table 4.2: Experienced User’s Evaluation Results



Chapter 5

Conclusions

5.1 Conclusion

This work provided a working and viable system, simple enough to be con-

trolled by physically impaired individuals, that relies only in the rough move-

ments of one or both hands, for the purpose of text and speech synthesis,

aided by a word-completion and word-prediction system, without requiring

any expensive/dedicated hardware or any intrusive/obscure equipment. Al-

though having achieved these goals, after the evaluation, some simple and

some complex improvements can be done in order to improve its performance

and expand its capabilities.

5.2 Future Work

As it has already been said, the main goal of this work has been achieved,

but some modifications and investigation can be made in order to improve

its performance. More specifically:

• Further experimentation with the actual user to customize and tailor

the system to their needs and capabilities.

• A way to benchmark and resolve issues concerning the abbreviations

completion method and how it can be incorporated and combined with

the currently used prediction methods.

• Further investigation and work with the character-lever LSTMs in order

to fine tune the models and make use of their increasing capabilities

and potential. Also different kinds of architectures can be studied like

word-level models or Convolutional Neural Networks.
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• Research how having additional knowledge of the vocabulary, like a

Part-Of-Speech tagged dictionary or knowing the root of each word,

can improve the performance of the prediction engine.

• Investigate the use of different kind of sensors for the interface of the

user with the system like, eye-tracking and electroencephalography

technologies technologies or porting the system to a tablet to use a

simple touch interface.

• Incorporate machine learning techniques, so that the prediction engine

can be adjusted to better fit each individual user and their dictionary.

• Introduce big or common phrases set by the user that can be easily

accessed as well as different text synthesis modes like conversation,

formal, math, etc.

Another section of future work that is already being investigated includes

changes to the UI inspired by the evaluation. This includes:

• The possibility of excluding words that were already suggested if the

users keep typing characters. This will provide more possible sugges-

tions also greatly helping with the cases that many words have the

same linguistic root.

• The issue with the roots can also be resolved by modifying the UI to

enable the user to hold their hand inside a word suggestion option in

order to display more words have the same root.

• A way to be able to modify words already appended into the sentence

to provide more flexibility.

• Add capability for punctuation marks. The available character options

in the current 3-step method are 27 (3 ∗ 3 ∗ 3) with 24 of them being

the letters of the alphabet and one being the space character. The two

remaining options can be used to add a dot and a comma. Additional

functionality has to be implemented for other punctuation marks.

• Search for better corpora that better fit the use cases desired.
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Chapter 6

Appendix



Αξιολόγηση του συστήματος κατά την 
χρήση από άπειρους χρήστες. 
 

Δίνεται χρόνος έως 5 λεπτά για την εξοικείωση με το Leap Motion και το UI. 

 

1.Χρησιμοποιήστε το σύστημα για να συνθέσετε τις παρακάτω προτάσεις: 

 

• Η ραδιοφωνική εκπομπή Ελληνοφρένεια παίζει κάθε μέρα  κατά τις απογευματινές ώρες. 

 

• Η τεχνολογική ανάπτυξη της σημερινής εποχής έχει ξεπεράσει κάθε προηγούμενο ρεκόρ. 

 

• Σας ευχαριστώ πολύ για την συνεισφορά σας στην εργασία μου. 

 

2. Γράψτε μια μικρή παράγραφο την οποία θα προσπαθήσετε στη συνέχεια να συνθέσετε 

μέσω του συστήματος. 

             

             

             

              

              

  



 

3. Παρακαλώ γράψτε τα σχόλια σας για το UI, την χρήση του Leap Motion και το σύστημα 

πρόβλεψης (θετικά ή/και αρνητικά). 
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“An analysis of the precision and reliability of the leap motion

sensor and its suitability for static and dynamic tracking,” Sensors,

vol. 14, no. 2, pp. 3702–3720, 2014. [Online]. Available: http:

//www.mdpi.com/1424-8220/14/2/3702

[13] L. E. Potter, J. Araullo, and L. Carter, “The leap motion

controller: A view on sign language,” in Proceedings of the 25th

Australian Computer-Human Interaction Conference: Augmentation,

Application, Innovation, Collaboration, ser. OzCHI ’13. New

York, NY, USA: ACM, 2013, pp. 175–178. [Online]. Available:

http://doi.acm.org/10.1145/2541016.2541072

[14] E. Dalmaijer, “Is the low-cost eyetribe eye tracker any good for

research?” PeerJ PrePrints, vol. 2, p. e585v1, Nov. 2014. [Online].

Available: https://doi.org/10.7287/peerj.preprints.585v1

https://doi.org/10.1371/journal.pone.0172400
hyyps://www.leapmotion.com
http://www.mdpi.com/1424-8220/13/5/6380
http://www.mdpi.com/1424-8220/14/2/3702
http://www.mdpi.com/1424-8220/14/2/3702
http://doi.acm.org/10.1145/2541016.2541072
https://doi.org/10.7287/peerj.preprints.585v1


Bibliography 54

[15] W. Quevedo, A. Santana, G. Vayas, M. Navas, and M. Huerta, “System

of evaluation for reading based on eye tracking,” in Emerging Technolo-

gies for Education: Second International Symposium, SETE 2017, Held

in Conjunction with ICWL 2017, Cape Town, South Africa, September

20–22, 2017, Revised Selected Papers, vol. 10676. Springer, 2017, p.

234.

[16] M. Su, C. Yeh, S. Lin, P. Wang, and S. Hou, “An implementation of

an eye-blink-based communication aid for people with severe disabili-

ties,” in 2008 International Conference on Audio, Language and Image

Processing, July 2008, pp. 351–356.

[17] A. Dikaiou, V. Kosmidou, F. Tzima, A. Valsamidis, and L. J.

Hadjileontiadis, “Sign2talk: a wearable sign language translation

system for deaf or hearing-impaired people,” Microsoft Imag-

ine Cup 2005 Final Report, pp. 1–10, 2005. [Online]. Avail-

able: http://www.microsoftsrb.rs/download/obrazovanje/academic/

imaginecup2005/ImagineCup2005 EE finale.pdf

[18] S. Ghosh, O. Vinyals, B. Strope, S. Roy, T. Dean, and

L. P. Heck, “Contextual LSTM (CLSTM) models for large scale

NLP tasks,” CoRR, vol. abs/1602.06291, 2016. [Online]. Available:

http://arxiv.org/abs/1602.06291

[19] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-Aware

Neural Language Models,” ArXiv e-prints, Aug. 2015. [Online].

Available: http://adsabs.harvard.edu/abs/2015arXiv150806615K

[20] H. Al-Mubaid, “A learning-classification based approach for word pre-

diction.” Int. Arab J. Inf. Technol., vol. 4, no. 3, pp. 264–271, 2007.

[21] Y. Even-Zohar and D. Roth, “A classification approach to word

prediction,” in Proceedings of the 1st North American Chapter

of the Association for Computational Linguistics Conference, ser.

NAACL 2000. Stroudsburg, PA, USA: Association for Computational

http://www.microsoftsrb.rs/download/obrazovanje/academic/imaginecup2005/ImagineCup2005_EE_finale.pdf
http://www.microsoftsrb.rs/download/obrazovanje/academic/imaginecup2005/ImagineCup2005_EE_finale.pdf
http://arxiv.org/abs/1602.06291
http://adsabs.harvard.edu/abs/2015arXiv150806615K


Bibliography 55

Linguistics, 2000, pp. 124–131. [Online]. Available: http://dl.acm.org/

citation.cfm?id=974305.974322

[22] F. E. Sandnes, “Reflective text entry: a simple low effort predictive input

method based on flexible abbreviations,” Procedia Computer Science,

vol. 67, pp. 105–112, 2015.

[23] T. D’albis, R. Blatt, R. Tedesco, L. Sbattella, and M. Matteucci,

“A predictive speller controlled by a brain-computer interface

based on motor imagery,” ACM Trans. Comput.-Hum. Interact.,

vol. 19, no. 3, pp. 20:1–20:25, Oct. 2012. [Online]. Available:

http://doi.acm.org/10.1145/2362364.2362368

[24] S. Bickel, P. Haider, and T. Scheffer, “Predicting sentences using

n-gram language models,” in Proceedings of the Conference on Human

Language Technology and Empirical Methods in Natural Language

Processing, ser. HLT ’05. Stroudsburg, PA, USA: Association for

Computational Linguistics, 2005, pp. 193–200. [Online]. Available:

https://doi.org/10.3115/1220575.1220600

[25] C. Spiccia, A. Augello, and G. Pilato, “A word prediction methodology

based on posgrams,” in Knowledge Discovery, Knowledge Engineering

and Knowledge Management, A. Fred, J. L. Dietz, D. Aveiro, K. Liu,

and J. Filipe, Eds. Cham: Springer International Publishing, 2016, pp.

139–154.

[26] J. Matiasek, M. Baroni, and H. Trost, “Fasty — a multi-lingual approach

to text prediction,” in Computers Helping People with Special Needs,

K. Miesenberger, J. Klaus, and W. Zagler, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2002, pp. 243–250.

[27] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis

of the accuracy and robustness of the leap motion controller,”

Sensors, vol. 13, no. 5, pp. 6380–6393, 2013. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690061/

http://dl.acm.org/citation.cfm?id=974305.974322
http://dl.acm.org/citation.cfm?id=974305.974322
http://doi.acm.org/10.1145/2362364.2362368
https://doi.org/10.3115/1220575.1220600
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690061/


Bibliography 56

[28] “Leap Motion App Store,” Leap Motion, Inc. [Online]. Available:

https://gallery.leapmotion.com/category/app-store/

[29] Unity User Manual, 2017th ed., Unity Technologies. [Online]. Available:

https://docs.unity3d.com/Manual/index.html

[30] Unity Scripting API Manual, 2017th ed., Unity Technologies. [Online].

Available: https://docs.unity3d.com/ScriptReference/index.html

[31] “Unity Answers,” Unity Technologies. [Online]. Available: https:

//answers.unity.com/index.html

[32] Leap Motion Unity SDK Manual, 4.4.0 ed., Leap Motion, Inc. [Online].

Available: https://leapmotion.github.io/UnityModules/

[33] “Leap Motion Community Forum,” Leap Motion, Inc. [Online].

Available: https://forums.leapmotion.com/

[34] “ResponsiveVoice Text To Speech API,” ResponsiveVoice, 2018.

[Online]. Available: https://responsivevoice.org/api/

[35] R. Dahl, “Node.js,” Joyent, Version 8.11.1. [Online]. Available:

https://nodejs.ord/en/

[36] I. Z. Schlueter, “npm,” Verion 5.6.0. [Online]. Available: https:

//www.npmjs.com/

[37] D. Goldhahn, T. Eckart, and U. Quasthoff, “Building large monolin-

gual dictionaries at the leipzig corpora collection: From 100 to 200 lan-

guages.” in Proceedings of the 8th International Language Ressources

and Evaluation (LREC’12), 2012.

[38] School of Informatics, University of Edinburgh, “N-gram extraction

tool,” 2004. [Online]. Available: https://homepages.inf.ed.ac.uk/

lzhang10/ngram.html

[39] A. Karpathy, “The unreasonable effectiveness of recurrent neural

networks,” Andrej Karpathy Blog, 2015. [Online]. Available: http:

//karpathy.github.io/2015/05/21/rnn-effectiveness/

https://gallery.leapmotion.com/category/app-store/
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/ScriptReference/index.html
https://answers.unity.com/index.html
https://answers.unity.com/index.html
https://leapmotion.github.io/UnityModules/
https://forums.leapmotion.com/
https://responsivevoice.org/api/
https://nodejs.ord/en/
https://www.npmjs.com/
https://www.npmjs.com/
https://homepages.inf.ed.ac.uk/lzhang10/ngram.html
https://homepages.inf.ed.ac.uk/lzhang10/ngram.html
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Bibliography 57

[40] ——, “Multi-layer recurrent neural networks (lstm, gru, rnn)

for character-level language models in torch,” Karpathy’s Github

Repository, 2016. [Online]. Available: https://github.com/karpathy/

char-rnn

[41] S. Ozair, “Multi-layer recurrent neural networks (lstm, rnn)

for character-level language models in python using tensorflow,”

Sherjil Ozair’s Github Repository, 2018. [Online]. Available: https:

//github.com/sherjilozair/char-rnn-tensorflow

https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow

	Table of Contents
	List of Figures
	Introduction
	Problem Description
	Prior Art

	System Design
	Sensor - Leap Motion
	User Interface
	Stages of Development

	Speech Synthesis

	Algorithms
	Corpora
	Tools

	Approaches
	Using Abbreviations to Minimize Input
	Markov Chains and N-Grams
	Neural Networks - LSTMs


	Evaluation - Results
	Introduction
	Evaluation
	UI
	Leap Motion
	Prediction
	Text-To-Speech
	Statistics
	Overall
	Results


	Conclusions
	Conclusion
	Future Work

	Appendix
	Bibliography

