
Technical University of Crete

Diploma Thesis

A Recommendation System for

Personalized Reviews in

Apache Spark

Nektaria Mariolou

THESIS COMMITTEE :

Supervisor: Associate Professor Antonios Deligiannakis
Professor Minos Garofalakis

Associate Professor Michail G. Lagoudakis

A thesis submitted in fulfillment of the
requirements for the degree of Diploma in

Electrical and Computer Engineering

October, 2018

Abstract

Personalized recommendation systems play an increasingly growing role in customer’s
decision making process. The various e-commerce sites differ in their objectives,
functions and characteristics but their common primary goal is to efficiently identify
user decisions. The most frequent approach is the selection of the reviews with the
highest percentage of helpfulness’ votes by users who have read the reviews. Thus,
they end up with a selection derived from a limited scope of criteria. In this work,
we focus on retrieving a subset of reviews, using personalized criteria. In order to
determine which set of reviews may correspond to individual users’ preferences, we
focus on the importance of product aspects for each user. Our system is built on
Apache Spark enabling the processing of reviews, we evaluate it with a dataset from
Amazon and the results are indexed in the distributed search engine, Elasticsearch.

i

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Antonios
Deligiannakis for the continuous support for my thesis, for his patience, motivation
and immense knowledge. Besides Mr Antoni Deligiannaki, I would like to thank the
rest of my thesis committee for their insightful comments and their time to evaluate
this work. And especially my family and friends for their support and patience.

iii

Contents

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Layout . 2

2 Background 3
2.1 Related Work . 3
2.2 Recommendation Techniques . 3
2.3 Machine Learning . 7

2.3.1 Text Mining . 7
2.3.2 User-Based Similarity Computation 7

2.4 Big Data . 8
2.4.1 Apache Spark . 10
2.4.2 Elasticsearch . 15

3 Approach 17
3.1 LARA algorithm . 18
3.2 Personalized Top Reviews Set . 19

3.2.1 Notations . 19
3.2.2 Defining Ground Truth . 19
3.2.3 Prediction of Personalized aspect-importance distribution . . 20
3.2.4 Selection of Personalized aspect-importance distribution . . . 22

4 System Design 23
4.1 Data Source . 23

4.1.1 Data Preprocessing . 24
4.1.2 Defining Ground Truth . 24
4.1.3 Prediction of aspect-importance distribution 25
4.1.4 Writing to Elasticsearch . 26

4.2 System Architecture . 27

v

5 Experiments 29
5.1 Evaluation of the proposed method 29
5.2 Recommendation of top reviews set 29
5.3 Selection of top reviews set . 30

6 Conclusion 33

Bibliography 34

vi

1 Introduction

The outbreak of information has lead to the exponential explosion in the amount of
data. Big Data is used to describe large amounts of data (structured, unstructured
and semi-structured) which are being continually generated and analyzed in many
fields such as Internet search, business social networks, social media, streaming
services. By observing and comparing more data points, relationships will begin to
emerge that were previously hidden, and these relationships enable us to learn and
inform our decisions.
The all-encompassing term of big data refers to data that are characterized by gigantic
volume, great variety and ubiquitous nature of its sources. Conventional databases
cannot handle these large datasets neither individual machines support efficient
processing capabilities. Thus, scalability and performance are key issues concerning
large-scale data collection as much as its store and mining. Machine learning includes
extremely useful data management tools for retrieving valuable information and also
there is a proliferation of large-scale commodity clusters with distributed system
architectures that are able to store and use the large datasets effectively.
This thesis presents a distributed and scalable system for streaming textual data
analysis using Natural Language Processing (NLP) strategies which aim at aim at
making personalized recommendations through supervised ML methods.

1.1 Motivation

With the tremendous growth of users, products made available on the web has become
more difficult for users to handle the information overload problem. The emergence
of e-commerce websites like Amazon, CNet and ebay has further boosted the volume
of online information resources since they allow users to post their experience with
products, and share information contents such as images, texts. Thus it has been
possible to easily search for purchasing related advice given by other consumers. On
one hand, the abundance of online information may virtually guarantee that users
are able to find what they are looking for. On the other hand, the same abundance

1

makes it more difficult to handle and find the useful one.

User-generated reviews may contain a wide range of both objective and subjective
product-related information, including features of the product, evaluations of its
positive and negative attributes and various personal experiences. However, when a
user will have to, in pages like Amazon for example, go through a couple of dozens
of pages, he likely will not have the patience to read all of them. Therefore, the
majority of users will read only the top reviews and their decision will be influenced
from a small set of reviews. The problem is that the set that is going to determine
the user’s purchase is not adapted in his needs and interests. The reviews displayed
in Amazon for example, are the ones that were highly rated by customers as the
most helpful ones which may not include some important aspects of the reviewed item.

1.2 Thesis Layout

The rest of the thesis is composed by the following chapters, organized as follows:
Chapter 2 is a study of related work that is of importance to the work described
in this thesis and it is presented and explained. Also it describes the theoritical
background of each component of our designed system. Specifically we explain the
fundamental concepts about recommender systems and its main approaches. Also we
present the concepts of the big data technologies that were used. In Chapter 3 we
introduce the approach we followed for the recommendation of the top reviews set. In
Chapter 4 we introduce our system, the architecture and communication between the
different components are expounded, design and technological choices are justified.
Chapter 5, presents the system’s evaluation. The data is examined and experiments
and statistics are illustrated and explained. Chapter 6 forms the conclusion of the
work described. Finally Chapter 7, describes suggestions for possible future work.

2

2 Background

In this chapter, a brief description of the the related work as well as the theoritical
work that we have mostly relied on is presented. A short background of the most
well-known techniques used in recommendation systems until to date, as well as
specific tools and components used for the implementation are analyzed in order to
make the work presented comprehensible to the reader.

2.1 Related Work

Recommender systems have attracted attention in both academia and industry area.
They became an independent research area in the mid-1990’s when researchers started
addressing recommendations relying on the ratings structure. However, the roots
of recommender systems derive from an extensive work even earlier in the cognitive
science [1], information retrieval [2] and also user choice modeling in marketing [3].
Amazon launched item-based collaborative filtering in 1998, and since 2003 [4]

when the algorithm was presented in IEEE Internet Computing, it has been widely
used by other popular web services too, like YouTube and Netflix. The main idea
of Amazon’s approach [5] is to define the item that will be unusually bought by a
user who bought one item. However, the system does not rely just on the building of
related items’ table. Amazon by using e-mails, browse pages, product detail pages,
user’s past interests but also time’s proximity between two purchases of items by a
user has succeeded at making more and more successful recommendations.

2.2 Recommendation Techniques

In order to implement its core function the system must predict an item but mainly
its utility. Some recommendation systems do not fully estimate the utility before
making a recommendations but they may apply some heuristics to hypothesize that
an item is of use to a user or other they estimate the utility based on other variables
called "contextual". The basic models deal with two kinds of data which are the

3

user-item interactions, such as ratings or users purchase history or either the attribute
information about the users and items such as textual profiles or relevant keywords.
In the following, the basic models of recommendation systems are presented and
analyzed.

Content-Based Recommender Systems

This type of system recommends items based on a comparison between the content of
them and a user profile. The similarity derives from the data which are available from
the user, either explicitly (rating) or implicitly (clicking on a link), any past activity
of user and is calculated based on the features associated with the compared items.
Based on that data, a user profile is generated, which is then used to make suggestions
to the user. A problem arises in case where the quality has to be distinguished and
for example two items may have the same characteristics but their quality is not.

Collaborative Filtering Systems

One of the most widely implemented and used is the one of collaborative. The basic
concentration of this type of system is on finding similar users preferring similar
items or a user expressing similar preferences for similar items. Collaborative filtering
methods are often classified as memory based (user-based) or model-based (item-
based) models. Their main difference with the content-based ones is shown in Figure
1

Memory-Based Collaborative Filtering Systems: This type of approach can be
divided into two main sections: user-item filtering and item-item filtering. A user-
item filtering takes a specific user and finds users that are similar to the target user.
Users’ similarity is calculated based on similarity of ratings and thus recommendations
are items that similar users liked. Item-item filtering systems match item purchased or
rated by the target user to similar items and combines those similar items and thus to
makes the recommendation to the user. This approach is popular due to its simplicity,
efficiency and ability to produce accurate and personalized recommendations. However
an issue comes with this technique, the one called a "cold start" problem. When a
new item is added to the system or a new user, there is no rating info so this approach
is unable to generate a user profile.

Model-Based Collaborative Filtering Systems: Model-based collaborative filtering
algorithms provide item recommendation by first developing a model of user ratings.
These methods use a probalistic approach and envision the collaborative filtering

4

process as computing the expected value of a user prediction based on user’s rating
history on the rest remaining item list. In case the model is parametrized, the
parameters of this model are learned within the context of an optimization framework.
Known methods used for this type of systems are decision trees, rule-based models,
Bayesian methods, Singular Value Decomposition and latent factor models. Model-
based systems are less sensitive than the memory-based ones to some common
problems like sparsity, cold-start problems, reliability (spam attacks for misleading
recommendations).

Figure 1: Collaborative filtering and Content-based filtering approach

Demographic Recommender Systems

In demographic recommender systems, the demographic information about the user
is leveraged to learn classifiers in order to generate their recommendations, sometimes
with the help of pre-generated demographic rules. The assumption is that different
recommendations should be produced for different demographic areas. Many Web
sites adopt simple and effective personalization solutions based on this type of method.
For example, users are dispatched to particular Web sites depending on their language
or country. Although in this type of systems the best results are not achieved on
a stand-alone basis, they tend to improve the performance of other recommender
systems as a component of hybrid systems.

5

Knowledge-Based Recommender Systems

The main goal of this method is to recommend items by using prior knowledge on how
the item responds to user needs and preferences. Knowledge-based recommenders
are divided in two subcategories: case-based and constraint-based recommenders.

Case-Based Recommendation: In case of case-based systems, their accuracy is
judged based on a similarity function which estimates how much the recommended
item responds to the user needs.

Constraint-Based Recommendation: Despite the fact that an association of prod-
uct’s features and user needs is generated too, in this approach of recommendation
this association works as a constraint. This type of systems encourages the purchasing
of the less frequently preferred items.

Community-Based Recommender Systems

This method is fully described by the epigram "Tell me who your friends are, and
I will tell you who you are" [6], [7]. The recommendations are produced based on
user’s friends preferences. Open social-networks have invaded in people’s lives and
one could call them as a digital "reflection" of society. Thus, due to the fact that
users tend to be influenced by friends’ suggestions, this approach has been followed
in recommendations in social-networks. In community-based method data referred to
the social relation of the users and the preferences of the user’s friends are required,
in order to produce recommendation based on ratings that were provided by the
user’s friends.

Hybrid Recommender Systems

Hybrids systems are a very promising type of approach, as they are able to exploit
the strengths of all the above types of systems and combine them to gain better
performance and to mutually eliminate their weaknesses. For instance, collaborative
filtering methods face the cold-start problem and so in cases for example where
there is no knowledge of new-item ratings, it can use a content based method since
the recommendation is based on items features. Some of the hybrid techniques are
weighted, switching, mixed, feature combination, cascade, feature augmentation and
meta-level.

6

2.3 Machine Learning

2.3.1 Text Mining

There is a wide range of technologies and focus areas in Human Language Technology
(HTL) which consists of areas such as Natural Language Processing (NLP), Speech
Recognition, Machine Translation, Text Generation and Text Mining. Natural Lan-
guage Processing (NLP) and Text mining are Artificial Intelligence (AI) technologies
that allows users to make fast transformation from the key content in text documents
into quantitative, actionable insights.

NLP is a component of text mining that performs special kind of linguistic analysis
that essentially helps a machine "read" text. A variety of techniques are developed to
decipher the ambiguities in human language, including automatic summarization, part-
of-speech tagging, disambiguation, natural language understanding and recognition.
It includes a wide range of methods used such as stemming (removing suffixes) or a
related technique, lemmatization (replacing an inflected word with its base form),
synonym normalization, multiword phrase grouping.
Text mining is the process for analyzing large collections of written resources to

generate new information, and to transform the unstructured text into structured.
Text Mining includes areas such as automatic text classification according to a fixed
collection of categories, text clustering, automatic summarization, extraction of topics
from texts, documents, aspect segmentation and the analysis of topic trends in text
streams.

2.3.2 User-Based Similarity Computation

In collaborative filtering where the recommendation is based on the users similarity the
system a vast number of computations must be made in order to have the final rating
predictions. Several different similarity functions have been proposed and evaluated
in the literature such as Pearson Correlation, Cosine Similarity, Adjusted Cosine
Similarity, Jaccard Similarity, Mean Squared Differences, Spearman Correlation etc.

Correlation: Correlation represents the extent to which two variables/vectors tend
to change together. The coefficient describes both the strength and the direction of
the relationship.

Pearson Correlation: This method [8] is one of the most commonly used and it
finds the linear correlation between two vectors. A relationship is linear when a
change in one vector is associated with a proportional change in the other. The range
of the results’ valued are between -1 and 1, where -1 represents a negative correlation

7

whereas 1 represents high positive correlation.
Cosine Similarity : A method [9] also used in collaborative filtering in recommender

systems. Cosine similarity finds how two vectors are related to each other using
measuring cosine angle between two vectors. The limit with cosine similarity is that
it considers null preferences as negative preferences.

Spearman Correlation: Spearman Correlation evaluates the monotonic relationship
between two continuous or ordinal vectors. In a monotonic relationship the vectors
tend to change together, but not necessarily at a constant rate. Its limit is in case of
partial orderings. Weak orderings occur when there are at least two items in ranking
such that neither item is preferred over the other. When the system ranks same rated
items at different levels, then Spearman correlation will be penalized for every pair of
items rated same by the user.

Adjusted Cosine Similarity : Similarity computation in user-based collaborative
filtering and item-based collaborative filtering differ in the computation. To be more
specific, in the case of user-based the similarity is computed along the rows of the
vector whereas in the case of item-based is computed along the columns. Basic cosine
measure has one drawback while computing the similarity in item-based, as the rating
scale between users are not taken into account. Thus, adjusted cosine similarity deals
with that, by subtracting the corresponding user average from each co-rated pair.

Jaccard Similarity : The Jaccard similarity is estimated by comparing the members
of the vectors and see which are shared and which are distinct. The similarity gets a
range from 0

2.4 Big Data

Today’s data deluge is largely due to the rise of computers and technology’s ability
transforming physical information into digital. Practically everything on the Internet
is recorded. When a search occurs on Google or Bing, queries and subsequent clicks are
recorded. Also when a purchase occurs on Amazon or eBay every click is captured and
logged. Users read online newspaper, watch videos, track their financial transactions
and this behavior is recorded too. The recording of individual behavior does not
stop with the Internet: text messaging, cell phones and geo-locations, scanner data,
employment records and electronic health records are all part of the data footprint
that every user leaves behind.
Big data is used as a term referring to large amounts of those digital data. The

term was introduced in 1997 [10], when the difficulty of taxing the capacities of

8

main memory, local or remote disks appeared, which lead to the need acquiring
more resources. Globally, 98 percent of all today’s stored data is in digital form
compared to 2000 when only a quarter of the world’s information was, while the rest
was preserved on paper and other analogue media like film [11].

An aspect that has been noted as being a core resource when dealing with big data,
pertains to the 3Vs: Volume, Velocity, Variety, a designation originally developped by
Gartner [12]. Within the course of the following years, a variety of new dimensions
were added such as Veracity, Variability, Value, Viability.

Volume concerns the exponential increase in the amount of data generated and
stored. It’s estimated that 2.5 quintillion bytes of data is created each day, and as a
result, there will be 40 zettabytes of data created by 2020 which highlights an increase
of 300 times from 2005. Velocity refers to the speed at which data is processed. The
size of big data is overwhelming and today its volume is described by petabytes (PB),
exabytes (EB), zettabytes (ZB) or even yottabytes (YB). What may be seemed big
data today may not be the threshold in the future because storage capacities will
increase and technologies will be evolved. However brontotype (BB) is expected to
be the future data measurement unit.

Velocity refers to the speed at which data is generated, stored and streamed for
analysis. The increase of integrated sensors in all types of devices contribute to the
continuous influx of data. In terms of velocity and Big Data, it is easy to deal with
the increased speed in which data is flowing into most organizations today, especially
from data sources such as social media. However it is not just the incoming data that
is important, but mainly the speed of real or near real processing data.

Variety corresponds to the structural heterogeneity in a dataset like structured,
semi-structured and unstructured. Data may be derived from both internal and
external data sources and adopt various formats such as transaction and log data
from various applications, structured data as database table, semi-structured such as
XML or even unstructured data such as text, images, video streams, audio and more.
These different representations of data, various origins or complex problems such as
high dimensionality that may be included, can cause difficulty in processing. Thus, a
strong computational and comprehensive technology, which enable organizations to
leverage data in their business process it is not just a challenge but a need too.

The industry leaders and academics agreed on the 3Vs as a standard but other
dimensions, like the ones referred in the beginning of the section, characterize big
data. Also important is the fact that these dimensions are not independent of each
other. As one dimension changes, the likelihood increases that another dimension

9

will also be affected, too.
Big data combines all the features of data discussed before. Quite often data is

produced at high velocity and need to be processed and analyzed in real-time but
also sometimes data expires at the same high velocity. Data can be ambiguous, which
makes its interpretation quite challenging. Traditional technologies of analyzing like
Data Warehouses, relational databases can handle data defined by large volumes,
various data types and from versatile data sources. The key to success is distributed
parallelization based on a "share nothing" architecture and non-blocking networks
ensuring a smooth communication among servers.

2.4.1 Apache Spark

Apache Spark is a fast, high-performance, distributed and general - purpose cluster
computing system for large scale data processing. It has been built on top of Scala
and can run in a standalone cluster mode that simply requires the Apache Spark
framework and a JVM on each machine in your cluster. It was developed in 2009, at
the university of California, Berkeley’s AMPLab for processing data on large scale. In
2013 it was donated to Apache Software Foundation, which has maintained it since.

Spark has become the framework of choice when it comes in the processing of big
data, overtaking the old MapReduce paradigm that brought Hadoop to prominence.
The purpose of his initial design was to cover the gaps and limits encountered in
specific applications that required repeated data access. MapReduce has proven
to be a suitable platform to implement complex batch applications as diverse as
sifting system log, running ETL, computing web indexes and powering personal
recommendation systems. However, its reliance to persistent storage to provide
fault tolerance and its once-pass computation model make MapReduce a poor fit for
low-latency application and iterative computations.
Hadoop was initialized as a Yahoo project in 2006, becoming a top-level Apache

open-source project later on. It consists of several components: the Hadoop Dis-
tributed File System named as HDFS, which are responsible for storing files in
Hadoop-native format and parallelizing them across a cluster; YARN, a schedule
that is responsible for the coordination application runtimes; and last but not least
MapReduce, the algorithm that processes the data in parallel. Hadoop is built on
top of Java but is also accessible through many programming languages like Python
through a Thrift client.
Whereas Hadoop reads and writes files to HDFS, Spark processes data in RAM

using a concept known as an RDD which stands for Resilient Distributed Dataset.

10

Spark can run either in stand-alone mode, with a Hadoop cluster serving as the
data source, or in conjunction with Mesos. Spark keeps track of the data that each
of the operators produces, and enables applications to reliably store this data in
memory. This is the key to Spark’s success, as it allows applications to avoid costly
disk accesses.

Figure 2: Low-latency computations (queries)

Figure 3: Iterative computations

Apache Spark is more suitable for batch based processing and real time processing,
It offers the flexibility, a single unified framework and a programming approach to
handle both batch based as well as real time. Whereas Storm focuses on stream
or complex event processing. So it’s a very powerful tool address different kind of
processing needs.
The Spark Core engine uses RDD, as its basic data type which contains the

collection of records which are partitioned. The RDD is designed in such a way so as
to hide much of the computational complexity from users. It aggregates data and
partitions it across a server cluster, where it can then be computed and either moved
to a different data store or run through an analytic model. Each partition is one

11

logical division of data which is immutable and created through some transformation
on existing partitions. However it comes with limitations regarding structured data
as RDDs cannot take advantage of Spark’s advanced optimizers including catalyst
optimizer but also they don’t infer the schema and must be declared from the user.

Like an RDD, a DataFrame is an immutable distributed collection of data. Unlike
an RDD, data is organized into named columns, like a table in a relational database,
or more suitable comparison is with Pandas dataframes in Python. It can process
both structured and unstructured data efficiently. DataFrames allow the Spark to
manage schema. Designed to make large data sets processing even easier, DataFrame
allows to impose a structure onto a distributed collection of data, allowing higher-level
abstraction.

Datasets takes on two distinct APIs characteristics: a strongly-typed API and an
untyped API, as shown in the table below. DataFrame can be considered as an alias
for a collection of generic objects Dataset[Row], where a Row is a generic untyped
JVM object. Dataset, by contrast, is a collection of strongly-typed JVM objects.

Spark has been found to run 100 times faster in-memory compared to Hadoop for
large scale data processing by exploiting in memory computing and other optimizations
and 10 times faster on disk. It primarily achieves this by caching data required for
computation in the memory of the nodes in the cluster. An important benefit that
comes with this is that once in-memory, the data can be shared between the streaming
computations and historical (or interactive) queries. It’s also been used to sort 100
TB of data 3 times faster than Hadoop MapReduce on one-tenth of the machines.

Spark comes packaged with higher-level libraries including support for SQL queries,
streaming data, machine learning and graph processing. These components increase
the productivity and can be combined in order to create workflows. Spark Ecosystem
has evolved since 2010, with the integration of various libraries and frameworks which
allow faster and more advanced analytics than Hadoop and thus gaining popularity.

Spark comes with Spark SQL which is focused on the processing of query structured,
using a dataframe approach like in R or Python (Pandas dataframes). It provides
a standard interface for reading data and writing to other datastores like csv, son
files or even a SQL like repository, HDFS, Apache Hive, JDBC, Apache Parquet.
Other popular stores are NoSQL Databases like Cassandra, MongoDB, Apache HBase.
Spark SQL also provides a SQL2003-compliant interface for querying data and this is
the reason why it a powerful too for both analysts as well as developers.

Spark Streaming was an early addition to Apache Spark and is used to process
data streams in real-time or near real-time. It uses micro batching which gives low

12

latency and integrates with a variety of popular data sources like HDFS. Previously,
batch and stream processing in Apache Hadoop were separate things. Running on top
of Spark, Spark Streaming enables powerful interactive and analytical applications
across both streaming and historical data, while inheriting Spark’s ease of use and
fault tolerance characteristics. It really integrates with a variety of popular data
sources like HDFS, Flume, Kafka and Twitter.
Machine learning has quickly emerged as a critical piece in mining Big Data for

actionable insights. Built on top of Spark, MLlib includes a framework for creating
machine learning pipelines that delivers both high-quality algorithms (e.g., multiple
iterations to increase accuracy) and blazing speed (up to 100x faster than MapRe-
duce). MLib comes with distributed implementations of clustering and classification
algorithms such as k-means clustering and random forests that can be swapped in
and out of custom pipelines with ease. Models can be trained in Apache Spark using
Java, Scala, and Python as part of Spark applications.

GraphX is a graph computation engine built on top of Spark that enables users
to interactively build, transform and reason about graph structured data at scale.
It comes complete with a library of distributed algorithms for processing graph
structures including an implementation of Google’s PageRank. These algorithms
use Spark Core’s RDD approach to modeling data; with the GraphFrames package
graph operation on dataframes can be performed taking advantage of the Catalyst
optimizer for graph queries, too.
The ecosystem of Apache Spark described is displayed in Figure 4

Figure 4: Apache Spark ecosystem

13

Apache Spark MLib

MLib which stands for Machine Learning Library is Apache Spark’s machine learning
and provides with Spark’s scalability and ease-of-use when the users has to work with
machine learning problems. The library includes an extensive collection of features
regarding machine learning algorithms such as Regression (Linear, Generalized Linear,
Decision Trees, Random Forests etc), Classification (Logistic, Decision Tree, Gradient-
boosted tree, Linear Support Vector Machine etc.), Clustering (K-means, Latent
Dirichlet allocation etc.), Collaborative Filtering. It also provides Featurization such
as Feature extraction, transformation, dimensionality reduction and also selection
but also Pipelines (tools for constructing, evaluating and tuning ML Pipelines),
Persistence (saving and load algorithms, models, and Pipelines), Utilities (Linear
Algebra, Statistics,Data handling).

It also includes Basic Statistics which includes the most basic machine learn-
ing techniques such as summary statistics (mean, variance, count, max, min and
numNonZeros), correlations, Statified Sampling (these include sampleBykey, sam-
pleByKeyExact), Hypothesis Testing (Peason’s chi-squared test) and Random Data
Generation (RandomRDDs, Normal and Poisson for random data generation).

One of the major advantage of Spark is the ability to scale computation massively
which is necessary for machine learning algorithms. However the limitation is that
all machine learning algorithms cannot be effectively parallelized as each algorithm
has its own challenges for completing this, whether it is task parallelism or data
parallelism.

John Snow Labs

Spark ecosystem includes also Spark Natural Language Processing library. The John
Snow NLP Library is under Apache 2.0 license, written in Scala with no dependencies
on other NLP or ML libraries. It basically extends the Spark ML Pipeline API. The
framework provides the concepts of annotators, like NLTK, and comes out of the
box with: Tokenizer, Normalizer, Stemmer, Lemmatizer, Entity Extractor, Date
Extractor, Part of Speech Tagger, Sentiment analysis, Named Entity Recognition,
Sentence boundary detection, Spell checker.
Additionally, given the tight integration with Spark ML, it offers more options

when building NLP pipelines which includes word embeddings, topic modeling, stop
word removal, a variety of features engineering functions like tf-idf, n-grams, similarity
metrics...) and using NLP annotations as features in machine learning workflows.

14

Figure 5: Spark ML and John Snow Labs

2.4.2 Elasticsearch

Elasticsearch is real-time open-source, broadly-distributed, readily-scalable, full-text
search and analytics engine that is built on top of Apache Lucene. A platform
designed by the Elastic company, alongside Logstash and Kibana, which are all
designed to operate as an integrated package. It is suitable for storing, searching and
analyzing large volumes of data in near real-time.

Elasticsearch uses Lucene as the core search engine but provides many features
which are not part of Lucene. It is open source developed in Java, like Lucene, and
licensed under the Apache license version. It is a cross platform and can operates
in many systems. Elasticsearch was designed from the beginning to be scalable -
distributed from the ground up. Also, it is designed to take data from any source,
analyze it and make it searchable. Accessible through an extensive and elaborate
API, Elasticsearch can power extremely fast researches, that support data discovery
applications. It is near real-time, from the point in time that one adds, modifies or
deletes a document the changes are propagated through the entire cluster within one
or two seconds.

The communication with the search server is done through a HTTP REST API.
The documents that are stored in Elasticserch are schema-less JavaScript Object
Notation (JSON) documents much like NoSQL databases. This means that there is

15

no need to define fields and datatypes before adding data like in case of relational
databases. Each document is inserted into an index, an abstraction which can be
associated with the common databases of RDBMS, therefore an index consists of a
collection of documents (e.g. product, account, movie) that denote marked similarity
based on a characteristic.
The key concepts of Elasticsearch are the following. Cluster is a collection of

nodes (servers) and consists of one or more nodes depending on the scale. A cluster
provides indexing and search capability across all nodes. Node refers to a single
running instance of Elasticsearch It stores searchable data and in case there are
multiple nodes it stores part of it and not all data. Single physical and virtual
server accommodates multiple nodes depending upon the capabilities of the physical
resources like RAM, storage and processing power. Indexes are used when indexing,
searching, updating and deleting documents within the index. There is no limit in
the number of indexes that can be defined within a cluster depending on the scale
of the project. Type/Mapping represents a set of documents sharing common fields
present in the same index. An index can have one or more types defined, each with
their own mapping. Document is a basic unit of information which can be indexed
and defined in JSON format. Each document is associated with a unique identifier,
called the UID. An index can be divided into multiple pieces called shards. A shard
is a fully functional and independent index and can be stored in any node in a cluster.
Shard allows to scale horizontally by content volume (index space) and to distribute
and parallelize operations across shards, that is why it provides high performance.
Finally, replica is a copy of shard and provides high availability in case of failure but
also improves the performance of searching by carrying out a parallel search operation
in these replicas.

16

3 Approach

With the advent and popularity of social network, more and more users choose to
share their experiences, such as ratings, reviews and blogs. Users are overloaded and
cannot have access to the information desired straight away. That happens in case of
Amazon, the most popular e-commerce website. Users have to scroll down thousands
of reviews in order to find the reviews which correspond to their preferences and they
contain the information they are looking for.

Plenty of approaches for the web personalization have been proposed in the literature.
We implement this [13] approach which tries to solve this problem. This methods
recommends reviews not only of high quality and coverage of a variety of aspects
but also focus more on the product aspects that are important to the user. Its goal
is to improve the quality of the top reviews set displayed to the user by predicting
which products aspects reflect the needs and preferences of the user. The problem
that arises as shown in in Figure 6 and Figure 7 is that user cannot find quickly
the reviews that address his/her needs due to the huge amount of reviews. Also the
top reviews set includes the reviews which have the highest rating helpfulness.

Figure 6: Graphical illustration of the problem definition and method’s motivation

17

Figure 7: Graphical illustration of the problem definition and method’s motivation

3.1 LARA algorithm

Latent Aspect Rating Analysis (LARA) is a novel text mining problem used to
analyze opinions expressed in online reviews at the level of topical aspects. The
goal is to map the sentences in a reviews subsets corresponding to each aspect. It is
assumed that a few keywords describe each aspect and a boot-strapping algorithm is
used to obtain more related words for each aspect. The algorithm takes a set of review
texts with overall ratings and a specification of aspects as inputs, and discovers each
individual’s latent ratings on the given aspects and the relative emphasis a reviewer
has placed on different aspects.

Figure 8: LARA algorithm

For identifying product aspects, the methodology proposed in [14] is used. The

18

aspects that they declared by the user is shown in Figure 9.

Figure 9: Product aspects and aspect-related terms

After applying latent rating aspect analysis algorithm, we obtained the related
product aspects Figure 10.

Figure 10: Extracted product aspects

3.2 Personalized Top Reviews Set

3.2.1 Notations

In order to formulate the problem some notations in necessary to be set. We assume
a set U of users, a set R of reviews and a set P of products. All products come from
the same category of products in case of Amazon data, and share a set of product
aspects A. Users write reviews to products. A review rji is written by a user ui for a
product pj .

3.2.2 Defining Ground Truth

The goal is that when a user ui searches for a product pj , a set of reviews for
describing product pj needs to be displayed. The aspect-importance distribution is a
m-dimensional vector F = f i,j1 , f i,j2 ,, f i,jm which represents the importance level of

19

the review for the user. Based on the aspect set A = a1, a2,, am each value f i,jl

corresponds to the importance level al of product pj to user ui.

The assumption that is made by the writers is that the number of words that a
user uses to describe an aspect of the problem indicates that this aspect is in high
importance to him/her. Thus the percentage of the words in the review rji used for
describing aspect al, corresponds to the importance level of aspect al for user ui on
product pj . Supposing that Si,j

l indicates the sentences that are included in rji and
mention aspect al each F

j
i can be defined as follows:

f̂ i,jl =
∑

s∈Si,j
l

Nw(s)

Na(s)
(1)

and,

f i,jl =
f i,jl′∑

al′∈A
f̂ i,jl′

(2)

f̂ i,jl equals to the number of words used for describing aspect al in reviews rji , N
w(s)

denotes the number of words contained in the sentence s and Na(s) is the number
of aspects mentioned in s. In case that in the sentence more than one aspects are
mentioned then the total words in the sentence is divided by the number of aspects
contained. Finally f̂ i,jl is normalized so that the final f i,jl sum to unity.

3.2.3 Prediction of Personalized aspect-importance distribution

The method proposed is based on a user-based collaborative filtering framework
Figure 11. The limit of this approach as many of other approaches proposed in
research community is the cold-start problem which occurs when there is a new user
that has been registered to the system, in our case in Amazon website. In that
case there is no prior information - history for the user and thus a personalized
recommendation cannot be generated. Providing recommendations to users with
no history record is a difficult problem for collaborative filtering techniques as their
learning and predictive ability is restricted and in some cannot exist. Multiple
researches have been developed approaching this problem with hybrid models.

20

Figure 11: Used-based collaborative filtering framework used for the recommenda-
tion

When a new user ui registers to the system and searches for a product pj , there is
no history record of the user reviews in other products. Therefore the real-aspect
importance distribution cannot be predicted in order to retrieve a set of reviews based
on a current F j

i .

This approach focuses on the case where user’s history is provided. By applying
user-based collaborative filtering [15] , [16] it can be retrieved preferences from ui’s
similar users regarding to target item to infer the preferences from wi,v to target item.
Therefore when a user searches for a product, we aggregate all aspect-importance
distribution F v

i for each user uv who has commented on the target product pj ; during
the aggregation each F v

j is weighted depending on the similarity between users uv
and ui.

In order to evaluate similarity between users’ preferences, we make the assumption
that two users are similar if they always agree with each other regarding which
aspects of products in P weigh more to them. The following equations describe the
assumption referred.

wi,v = cos(li, lv) (3)

li =
1

|P i|
∑
pj∈P i

F v
i (4)

21

lv =
1

|P v|
∑

pj∈P v

F v
j (5)

In the above equations li describes the average of aspect importance distributions
of ui’s derived from user’s historical reviews. In the same way lv states for the average
of historical aspect distributions of each user who has commented on product pj .
Thus wi,v is the user similarity between users ui and uv. Then we predict the

F i
j =

∑
Uv∈Uj

wi,vF v
j∑

Uv∈Uj

wi,v
, (6)

where Uj includes the users who have reviewed pj .
The time complexity of the prediction of the aspect importance distribution is

O(mn), assuming that the requests from users for products that they are interested in
are m and the average number of user, for each product, that have commented is n.

3.2.4 Selection of Personalized aspect-importance distribution

The next step after the prediction of the aspect importance distribution is to retrieve
the top reviews set. The goal is that aggregation of the set should not only have
high quality but also a big number of aspects which indicated high coverage of
aspects. However it’s necessary that selection corresponds to the personalized criteria.
Therefore it is suggested that the weight of each product aspect will be adjusted to
the scoring function Fp(R)

Fp(R) =
∑
al∈A

(f i,jl + δ)f(R, al) (7)

f(R, al) = max
r∈Ral

q(r) (8)

where f i,jl is the predicted importance distribution of aspect al of product pj to a
user ui. The parameter δ gets a very small value. The addition of δ helps the reviews
whose the prediction of aspect importance distribution is zero, to have a chance to
be aggregated. Thus, the selection results avoid to suffer from data sparsity.

22

4 System Design

4.1 Data Source

For the evaluation of the algorithm, the experiments were conducted in real public
datasets provided that have also been used in previous research in review mining.
Due to the limitation of the definition of the aspects by the user, they were used
only the reviews of "Cell phones and Accessories" category. The data used for the
experiments come from Mr. Julian McAuley’s lab [17] where a variety of datasets for
recommender systems research are provided.

This dataset available contains product reviews and metadata from Amazon,
including 142.8 million reviews spanning from May 1996 - July 2014. This dataset
includes reviews (rating, text, helpfulness votes), product metadata (descriptions,
category information, price, brand and image features). For the experiments the
dataset which contains reviews of the category "Cell phones and Accessories" is used.
As one can understands the aspects for cell phones and the aspects of accessories are
different so a threshold in price is defined in order not include the reviews for cell
phones’ accessories. So metadata were used in order not to retrieve the reviews id
after applying the price threshold. The total size of the reviews in category "Cell
Phones and Accessories" is 2 GB and the number of the number is 3.447.249 reviews.
The metadata is 346.794 products of size 410 MB. After applying the price threshold
in metadata in order to exclude the reviews referring to Accessories, the dataset
ended with 225.720 reviews.

The reviews includes the following fields: reviewerID : the ID of the reviewer, asin:
product’s ID, reviewerName: name of the reviewer, helpful : review’s helpfulness
rating, reviewText : review’s text, overall : product’s rating, summary : review’s
summary, unixReviewTime: time of the review in unix format, reviewTime: time of
the review(raw).

The metadata includes the following fields: asin: product’s ID, title: name of the
product, price: poduct’s price in US dollars (at time of crawl), imUrl : url of the
product image, salesRank : sales rank information, brand : brand name, categories:

23

list of categories the product belongs to.

4.1.1 Data Preprocessing

In order to process the reviews and find the aspect terms, it is necessary to apply text
cleaning. All the transformations that need to be applied, exist with NLTK which
stands for Natural Language Toolkit, a free library for text-mining in Python which
is included in SparkMLib too.

After loading the data into a pyspark dataframe,the column helpful that contains
information about the helpfulness, is transformed into float number as it is provided in
array format. This field is useful for the evaluation of the recommendation afterwards.
Also the field unixReviewTime is transformed from unix format into date time in
order to be able to apply recommendation afterwards. The final pyspark dataframe
that is processed is shown in Figure 12

Figure 12: Data to be processed in pyspark dataframe

The cleaning of the reviews text is applied. Each review is splitted into sentences
and each sentence is splitted into words (tokenizing). All tokens are filtered out from
standalone punctuation after they have been converted into lowercase. In addition
we remove stopwords which do not contribute to the meaning of the text and NLTK
provides a list of commonly agreed upon stop words for a variety of languages, English
in our case.

4.1.2 Defining Ground Truth

After text mining, and loading the product aspect terms, LARA algorithm is applied
for the aspect segmentation. After extracting the aspects from the algorithm,for each
review r of each user u for each product p, the ground truth of the aspect importance
distribution is estimated for each row.

24

Figure 13: The dataframe of the ground truth transformed in Pandas dataframe
for better display

4.1.3 Prediction of aspect-importance distribution

In order to make our prediction we remove the review from the dataset and use
the methodology described. We compare our prediction with the ground truth
which is already computed, in order to test the accuracy of the approach. Each
step described in the previous section in order to get the prediction of the aspect
importance distribution, are seen in the figures below.

25

4.1.4 Writing to Elasticsearch

After computing the aspect importance distribution for each user, which is going to be
used as the ground truth for the evaluation of the algorithm. The pyspark dataframe
is converted into json format in order to be stored in elasticsearch. Each tuple includes
the following fields: reviewerID, asin, helpful, reviewText, unixReviewTime and the
weight for each aspect. The data are organized in indexes and their type is defined
when creating the index.

26

Figure 14: Load aspect importance distribution to Elasticsearch

4.2 System Architecture

Every recommender system needs data for both items and users in order to work and
provide recommendations of the user. Recommender systems have some drawback
regarding latency which is a key factor in any personalization service but also cost.
Calculating recommendations just-in time are very expensive and slow. Thus the best
approach is to pre-calculate recommendations and when a recommendation request is
received the only need will be to read the DB for the pre-calculated recommendations.

In our system, we load the reviews and calculate the aspect importance distribution.
We consider a part of the dataset as train set in order to be able to evaluate the
approach. As we mentioned the limit of the approach is that address non-cold start
users. The results are stored in Elasticsearch. The rest of the dataset which includes
the last reviews of the users (we consider that they have not written reviews for the

27

specific product yet) become the requests to our system.
The request to the system is formed as a user who wants a recommendation of k

top reviews set for a specific product. Apache Spark computes the prediction for the
user which is stored then to Elasticsearch too.

Figure 15: System architecture

28

5 Experiments

In this chapter we describe the results obtained after taking several experiments
regarding. In the beginning the evaluation of the approach followed is described and
it is compared regarding. Also the time processing and the time of top reviews set
retrieval is examined. It should be mentioned that all experiments were performed
on a single computer.

5.1 Evaluation of the proposed method

The set of the reviews that is used as a ground truth is the historical reviews for each
pair of (ui, pj) and as test the most recent ones. In order to evaluate the method
discussed, we use Cosine Similarity, Pearson and Spearman average correlations as a
prediction accuracy in order to see how close is the prediction with the ground truth
that we have already computed and store in Elasticsearch.

Table 1: Performance of predicting personalized aspect-importance distributions
Method On Amazon
Cosine 0.61
Pearson 0.59
Spearman 0.57

5.2 Recommendation of top reviews set

There is a request from a user for a specific product that he/she is interested in and
after defining the number of reviews that are going to be displayed to the user, the
desired number of reviews is shown. We can see in Figure 16 and Figure 17 below
the recommendation of the reviews for a target product requested from a specific user.
In the example below the number of the reviews is set k=2. It is also displayed the
first review which is recommended and some of the aspects mentioned in the review.

29

Figure 16: Recommendation of the top reviews set with k=2

Figure 17: Review display

5.3 Selection of top reviews set

The goal of the recommendation system was to display to users reviews which
contain aspects responding to their profile and preferences. Recall that this was
managed through the aspect importance distribution extracted from a review and
which reveals how much information used is used for each aspect. Thus, we evaluate
the recommended top reviews set regarding to the information provided and to its
importance to the user. For the evaluation we use the Personalized match (Pmat)
metric of the review set Ri,j which is the average correlation values between Fr for
each review in the review set and F i

j

Pmati,j =
1

|Ri,j |
∑

r∈Ri,j

Cor(F i
j , Fr) (9)

30

10−6 10−5 10−4 10−3 10−2 10−1 100

0.18

0.20

0.22

0.24
0.26
0.28
0.30
0.32

δ

P
m
at

On Amazon Dataset

k=1
k=2
k=3

We have conducted some experiments, by changing the values of the delta in
range from 10−6 to 1.0 so at to observe the performance of Pmat. In case the
value of δ is small enough the performance is pretty stably and as it increases it
is observed a sharped change. However, this behavior was expected as there is an
inverse relationship between the aspect distribution and δ. Thus larger values in δ
should be avoided in order to ensure a stable performance.

31

6 Conclusion

In this work, we attempted to implement a recommendation of top reviews set in the
scope of targeting user profile and preferences. It is important for both websites to
provide reliable and targeted collection of reviews and for users to exploit this, in
order to have the desired information needed but also quickly. In order to achieve
this, a prediction of the weight of each aspect for the target user is provided. In
addition besides the high quality and high coverage is taken into consideration during
the retrieval of the collection of the reviews. but also the predicted aspect-importance
distribution. The experiments show that this method provide recommendations
targeted to the user without impair the quality but also the high coverage.

This work could be extended, by addressing the problem of cold-start users having
more information about their past activity like regarding the product they have seen
or bought. Also this method could be tested in the rest categories of Amazon website
but also in other websites which contains users reviews like Yelp, Tripadvisor.
Regarding the architecture that was implemented, an initial improvement would

be that the estimation of the aspect distribution to be implemented in streaming
process too. Also that would be applied in a cluster and conduct the experiments in
order to evaluate its efficiency.

33

Bibliography

[1] E. Rich, “User modeling via stereotypes,” Cognitive science, vol. 3, no. 4, pp. 329–
354, 1979.

[2] G. Salton, “Automatic text processing. addison welsley,” Reading, Massachusetts,
vol. 4, 1989.

[3] G. L. Lilien, P. Kotler, and K. S. Moorthy, “Marketing models,(1992).”

[4] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-item
collaborative filtering,” IEEE Internet computing, vol. 7, no. 1, pp. 76–80, 2003.

[5] B. Smith and G. Linden, “Two decades of recommender systems at amazon.
com,” IEEE Internet Computing, vol. 21, no. 3, pp. 12–18, 2017.

[6] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: introduction and
challenges,” in Recommender systems handbook, pp. 1–34, Springer, 2015.

[7] D. Ben-Shimon, A. Tsikinovsky, L. Rokach, A. Meisles, G. Shani, and L. Naamani,
“Recommender system from personal social networks,” in Advances in Intelligent
Web Mastering, pp. 47–55, Springer, 2007.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: an
open architecture for collaborative filtering of netnews,” in Proceedings of the
1994 ACM conference on Computer supported cooperative work, pp. 175–186,
ACM, 1994.

[9] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions,” IEEE Trans-
actions on Knowledge & Data Engineering, no. 6, pp. 734–749, 2005.

[10] M. Cox and D. Ellsworth, “Application-controlled demand paging for out-of-core
visualization,” in Proceedings of the 8th conference on Visualization’97, pp. 235–ff,
IEEE Computer Society Press, 1997.

35

[11] E. M. Micheni, “Diffusion of big data and analytics in developing countries,”
2015.

[12] D. Laney, “3d data management: Controlling data volume, velocity and variety,”
META Group Research Note, vol. 6, no. 70, 2001.

[13] W. Tu, D. W. Cheung, and N. Mamoulis, “More focus on what you care about:
Personalized top reviews set,” Neurocomputing, vol. 254, pp. 3–12, 2017.

[14] H. Wang, Y. Lu, and C. Zhai, “Latent aspect rating analysis on review text
data: a rating regression approach,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 783–792,
ACM, 2010.

[15] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative filtering
recommender systems,” in The adaptive web, pp. 291–324, Springer, 2007.

[16] W. Pan, “A survey of transfer learning for collaborative recommendation with
auxiliary data,” Neurocomputing, vol. 177, pp. 447–453, 2016.

[17] H. Lakkaraju, J. J. McAuley, and J. Leskovec, “What’s in a name? understanding
the interplay between titles, content, and communities in social media.,” ICWSM,
vol. 1, no. 2, p. 3, 2013.

36

	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Thesis Layout

	2 Background
	2.1 Related Work
	2.2 Recommendation Techniques
	2.3 Machine Learning
	2.3.1 Text Mining
	2.3.2 User-Based Similarity Computation

	2.4 Big Data
	2.4.1 Apache Spark
	2.4.2 Elasticsearch

	3 Approach
	3.1 LARA algorithm
	3.2 Personalized Top Reviews Set
	3.2.1 Notations
	3.2.2 Defining Ground Truth
	3.2.3 Prediction of Personalized aspect-importance distribution
	3.2.4 Selection of Personalized aspect-importance distribution

	4 System Design
	4.1 Data Source
	4.1.1 Data Preprocessing
	4.1.2 Defining Ground Truth
	4.1.3 Prediction of aspect-importance distribution
	4.1.4 Writing to Elasticsearch

	4.2 System Architecture

	5 Experiments
	5.1 Evaluation of the proposed method
	5.2 Recommendation of top reviews set
	5.3 Selection of top reviews set

	6 Conclusion
	Bibliography

