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Abstract. In this paper, we address the problem of vibrations of intelligent structures. Stimuli 

may come from external perturbations of the system, disturbances or excitation that may 

cause structural vibrations, such as wind loading or earthquake. First, an accurate model of 

a piezocomposite intelligent structure with special boundary conditions is derived by using of 

FEM analysis. Then the robustness of the uncertain closed-loop model performances has 

been investigated. Obtained results show the higher performance of Hinfinity design approach 

in rejection of disturbances. 
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1   INTRODUCTION 

 The study of algorithms for active vibrations control in intelligent structures became an area 

of enormous interest, mainly due to the countless demands of an optimal performance of me-

chanical systems. Many researchers are investigated in the field of intelligent structures [1, 2, 

3, 4, 5, 6 ].  A smart structure in one that monitors itself and its environment in order to re-

spond to changes in its conditions. [7,8] Smart structures, formed by a structure base, coupled 

with piezoelectric actuators and sensor are capable to guarantee the conditions demanded 

through the application of several types of controllers. This article shows some steps that 

should be followed in the design of a smart structure. In our paper a cantilever slender beam 

with rectangular cross-sections is considered. Thirty six pairs of piezoelectric patches are em-

bedded symmetrically at the top and the bottom surfaces of the beam. The beam is from 

graphite- epoxy T300 − 976 and the piezoelectric patches are PZT G1195N. The top patches 

act like sensors and the bottom like actuators. The resulting composite beam is modelled by 

means of the classical laminated technical theory of bending. Let us assume that the mechani-

cal properties of both the piezoelectric material and the host beam are independent in time. 

The thermal effects are considered to be negligible as well [8, 9]. 

The beam has length L, width W and thickness h. The sensors and the actuators have 

width bS and bA and thickness hS and hA, respectively. The electromechanical parameters of 

the beam of interest are given in the table 1. 

Parameters Values 

Beam length, L 0.7m 

Beam width, W 0.07m 

Beam thickness, h 0.0096m 

Beam density, ρ 1800kg/m
3

Young s modulus of the beam, E 1.5 Χ 10
11

 N/m
2

Piezoelectric constant, d31 254 Χ 10
−12

 m/V

Electric constant, ξ33 11.5 Χ 10
−3

 V m/N

Young’s modulus of the piezoelectric element 1.5 Χ 10
11

 N/m
2

Width of the piezoelectric element bS= ba= 0.07m 

Thickness of the piezoelectric element hS= ha= 0.0002m 

Table 1:  Parameters of the composite beam. 

In order to derive the basic equations for piezoelectric sensors and actuators [1, 2], 

we assume that: 

 The piezoelectric sensors actuators (S/A) are bonded perfectly on the host beam;
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 The piezoelectric layers are much thinner then the host beam;

 The piezoelectric material is homogeneous, transversely isotropic and linearly elastic;

 The piezoelectric S/A are transversely polarized [1, 2, 7].

2   SYSTEM MODELLING 

This classical finite element procedure leads to the approximate discretized variation problem. 

For a finite element the discrete differential equations are obtained by substituting the discre-

tized expressions into the first variation of the kinetic energy and strain energy [8, 10]. Inte-

grating over spatial domains and using the Hamiltons principle [8], the equation of motion for 

a beam element are expressed in terms of nodal variable q as   follows, 

          ( ) ( ) ( ) ( ) ( )m eMq t Dq t Kq t f t f t                                         (1) 

where M is the generalized mass matrix, D the viscous damping matrix, K the generalized 

stiffness matrix, mf  the external loading vector and ef the generalized control force vector 

produced by electromechanical coupling effects. The independent variable q(t) is composed of 

transversal deflections 1 and rotations 1 , i.e., [10, 12] 

Furthermore n is the number of nodes used in analysis and vectors ω and mf  are positive up-

wards. To transform to state-space control representation, let (in the usual manner), 

( )
( )

( )

q t
x t

q t

 
  
 

(2) 

Furthermore to express ( )ef t  as ( )Bu t  we write it as *

ef u where *

ef the piezoelectric force is 

for a unit applied on the corresponding actuator, and u represents the voltages on the actuators. 

Furthermore, ( ) ( )md t f t  is the disturbance vector [10]. 

Then, 

2 22 2 2 2 2 2
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( ) ( ) ( )
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e
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      

     
(3) 

 
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

u t
Ax t Bu t Gd t Ax t B G Ax t Bu t

d t

 
       

 
    (4) 

The previous description of the dynamical system will be augmented with the output equation 

(displacements only measured) [5,11], 

 1 3 1( ) ( ) ( ) ( ) ( )
T

ny t x t x t x t Cx t            (5) 

The units used are compatible for instance m, rad, sec and N. [7,8] 
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3   DESIGN OBJECTIVES AND SYSTEM SPECIFICATION 

The structured singular value of a transfer function matrix is defined as, 











exists structuredsuch  no if,0

}1)Δ(,0)Δ{det(min

1

)(  MkIM m
km

(6) 

In words it defines the smallest structured Δ (measured in terms of )Δ( ) which makes 

det(I−MΔ)=0: then )Δ(/1)(   .  It follows that values of μ smaller than 1 are desired 

(the smaller the better: a larger variation is allowed) [13, 14]. 

4  SYSTEM UNCERTAINTY 

The main sources of uncertainty are: 

* Nonlinearity and/or dynamic aspects of the system that are ignored at the modeling phase.

The error introduced in modal analysis by using only a few significant eigenmodes leads to an 

uncertainty of the type discussed here. [15, 16] 

* Incomplete knowledge of model values and parameters and/or natural fluctuation of those

values during system operation. 

* Influence of the system's environment, in the form of disturbances.

Assume uncertainty in the M  and K matrices of the form, 

     K=K0(I+kpI2n×2nδK)                (7) 

M=M0(I+mpI2n×2nδM) (8) 

Also, since, D=0.0005(K+M), an appropriate form for D is, 

D=0.0005[K0(I+kpI2n×2nδK)+M0(I+mpI2n×2nδM)]= 

D0+0.0005[K0kpI2n×2nδK+M0mpI2n×2nδM]           (9) 

Alternatively, by adopting the well-known Rayleigh damping assumption, 

D=αK+βM      (10) 

D could be expressed similarly to K, M, as, 

D=D0(I+dpI2n×2nδD)      (11) 

In this way we introduce uncertainty in the form of percentage variation in the relevant matri-

ces.  Uncertainty is most likely to arise from terms outside the main matrices (since length can 

be adequately measured). 

Here it will be assumed, 
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║Δ║∞
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hence mp, kp are used to scale the percentage value and the zero subscript denotes nominal 

values. 

(it is reminded that for matrix Αn×m the norm is calculated through ║A║∞= 




n

j

ij
mj

a
1

1
max ) 

With these definitions Eq. 3 becomes, 

M0(I+mpI2n×2nδM) )(tq + K0(I+kpI2n×2nδK)q(t)+

 +[D0+0.0005[K0kpI2n×2nδK+M0mpI2n×2nδM]] )(tq =fm(t)+fe(t)         (13) 

M0 )(tq +D0 )(tq +K0q(t)=

     −[M0mpI2n×2nδM )(tq +0.0005[K0kpI2n×2nδK+M0mpI2n×2nδM] )(tq

 +K0kpI2n×2nδKq(t)]+fm(t)+fe(t)   (14) 

     M0 )(tq +D0 )(tq +K0q(t)= )(
~

tqD u +fm(t)+fe(t)   (15) 

where, 
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Writing  in state space form, gives, 
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In this way we treat uncertainty in the original matrices as an extra uncertainty term. 

To express our system consider in the frequency domain Fig. 6 
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Fig. 6   Uncertainty block diagram 

This diagram is the weighted block diagram in the frequency domain. Wd, We, Wu, Wn are 

the weight of the disturbances, errors, control, noise. H(s) is our system, K(s), is the controller 

and Δ define the uncertainties. [16, 17]  

The matrices E1, E2 are used to extract, 
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Since, 
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appropriate choices for E1, E2 are, 
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The idea is to find an N such that, 


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or in the notation of Fig. 6,  

8670



Amalia J. Moutsopoulou, Georgios E. Stavroulakis, Anastasios D. Pouliezos 


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We’ll use a methodology known as “pulling out the Δ’s”.  To this end, break the loop at 

points pu, qu (which will be used as additional inputs/outputs respectively) and use the auxilia-

ry signals α, β and γ. [18,19] 

To get the transfer function 
uwqd

N (from dw to qu): 

  qu= G2(E2β+Ε1γ)= G2(E2
s

1
+Ε1)γ         (24) 
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N , 
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N ,
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N  with GWd replaced by Gu, i.e., 
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Finally to find 
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Collecting all the above yields N: 
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Having obtained N for the beam problem, all proposed controllers K(s) can be compared using 

the structured singular value relations. [18, 19] 

5    INPUTS 

A typical wind load (Fig. 7) acting on the side of the structure. The wind load is a real life 

wind speed measurements in relevance with time that took place in Estavromenos of Heraklion 

Crete. We transform the wind speed in wind pressure with, 

 Loading corresponds to the wind excitation. The function fm(t) has been obtained from the 

wind velocity record, through the relation 

21
( ) ( )

2
m uf t C V t       (31) 

 where V=velocity, ρ=density and Cu=1.2. 

Fig.7 External load 

Moreover, in all simulations, random noise has been introduced to measurements at system 

output locations within a probability interval of ±1%.  Due to small displacements of system 

nodal points, noise amplitude is taken to be small, of the order of 5 × 10
–5

. On the other hand,

the signal is introduced at each node of the beam by a different percentage, that percentage 

being lower at the first node due to the fact that the beam end point is clamped. The controller 

obtained by applying H∞ control has an order equal to 36. For this controller, γ = 0.074<1. 

6   RESULTS 

Robust analysis is carried out through the relations: 
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  1)j(sup 11Δ 





N


for  robust stability, and, 

  1)j(sup Δ 





N
a



for robust performance 

For the H∞ found, robust analysis was performed for the following values of mp,kp. 

1. mp = 0, kp = 0.9. This corresponds to a ±90% variation from the nominal value of the stiff-

ness matrix K.  In Fig.8  are shown the bounds on the μ values. As seen the system remains 

stable and exhibits robust performance, since the upper bounds of both values remain below 1 

for all frequencies of interest. This result is validated in Fig.9, where the displacement of the 

free end and the voltage applied are shown at the extreme uncertainty. Comparison with the 

open loop response for the same plant shows the good performance of the H∞ controller. Re-

sults are very good, and the beam remains in equilibrium even under realistic wind conditions. 

Reduction of vibrations is observed, while piezoelectric add-ons produce voltage within their 

tolerance limits (±500volt) 

Fig. 8 μ-bounds o H∞ the controller for mp=0, kp=0.9 
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Fig.9   Displacement and control at free end for the H∞ controller with mp = 0, kp =0.9 

2. mp = 0.9, kp = 0. This corresponds to a ±90% variation from the nominal value

of the mass matrix M. 

In Fig. 10  are shown the bounds on the μ values. As seen the system remains stable and ex-

hibits robust performance, since the upper bounds of both values remain below 1 for all fre-

quencies of interest. This result is validated in Fig. 11, where the displacement of the free end 

and the voltage applied are shown. 

Comparison with the open loop response for the same plant shows the good performance 

of the controller. By employing the H∞ control, vibration reduction is achieved, while the 

voltage applied is significantly lower that 500 V. 

. 

Fig. 10 μ-bounds of the H∞ controller for mp =0.9, kp =0. 
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Fig. 11   Displacement and control at free end for the H∞ controller with mp =0.9, kp =0 

3. mp = 0.9, kp = 0.9. This corresponds to a ±90% variation from the nominal values of both

the mass and stiffness matrices M, K. 

In Fig. 12 are shown the bounds on the μ values. As seen the system remains stable and exhib-

its robust performance, since the upper bounds of both values remain below 1 for all frequen-

cies of interest. This result is validated in Fig. 13, where the displacement of the free end and 

the voltage applied are shown. 

Comparison with the open loop response for the same plant shows the good performance of 

the controller. Results are very good, and the beam remains in equilibrium even under realis-

tic wind conditions. Reduction of vibrations is observed, while piezoelectric add-ons produce 

voltage within their tolerance limits. 

Fig. 12  Displacement and control at free end for the H∞ controller with mp =0.9, kp =0 
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Fig.13   Displacement and control at free end for the H∞ controller with mp =0.9, kp =0 

Furthermore, we control the structure with variations of the nominal values of the 

mass matrix M, stiffness matrix K and matrices A and B. We take into consideration nonline-

arities and system dynamics neglected in modeling, incomplete knowledge of disturbances, 

environment influence in the form of disturbances, and unreliability of system sensor meas-

urements.  

7 CONCLUSIONS 

This paper describes an integrated approach to design and implement robust controllers for 

intelligent structures. The mathematical model derived using robust control is compared with 

models obtained by more conventional and well known methods. Using this model, a Hinfinity 

(H∞ ) controller is designed for vibration suppression purposes. This robust controller accom-

modates the limited control effort produced by actuators. These designs are all then realized 

as digital controllers and their closed-loop performances have been compared. In particular, 

the robustness properties of the controller have been verified for variations in the mass of the 

test article and the sampling time of the controller. Complete vibration reduction was 

achieved even for variations of beam mass and stiffness up to 90%. H∞ controller results were 

very satisfactory and prove that H∞ control can reduce smart structures vibrations and deal 

with modeling uncertainty, external disturbances, and noise in measurements. 
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