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Abstract. In this work the development of a partitioned FSI coupling procedure is reported, 
aiming to facilitate interaction between an open-source CSD (Computational Structural Dy-
namics) and an in-house academic CFD (Computational Fluid Dynamics) code. Attention is 
mainly directed towards the efficient and accurate transfer of predicted displacements, veloci-
ties (by CSD) and loads (by CFD). More precisely, spatial coupling is achieved using Radial 
Basis Functions (RBFs) interpolation, which enables point-based interaction, needing there-
fore no information for connectivities and, consequently, allowing for the utilization of different 
type or even intersecting structural and flow grids. Although RBFs method seems to be partic-
ularly attractive for both data transfer and mesh deformation, it suffers from a significant draw-
back; it calls for relatively excessive memory and computation time requirements (in its initial 
formulation). In case of data transfer the Partition of Unity (PoU) approach is adopted as a 
remedy of the aforementioned deficiency, which regards the decomposition of the examined 
problem into several smaller ones, to be solved independently and hence more efficiently. In 
mesh deformation though, improvement of computational performance is succeeded with a sur-
face point reduction technique, based on the agglomeration of the adjacent boundary nodes, 
i.e., on the fusion of the RBFs centers. Despite the notable reduction of RBFs base points, the 
proposed method preserves sufficiently the quality of the initial grid. The proposed algorithm 
is evaluated against a benchmark (for FSI solvers) test case, considering the analysis of the 
wind action over a standard tall building model. The obtained numerical results confirm its 
potential for such simulations, highlighting additionally the radically improved computational 
performance of data transfer and grid deformation procedures.  
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1 INTRODUCTION 

During the past decades the analysis of Fluid-Structure-Interaction (FSI) with numerical 
methods gained significant popularity, mainly due to the broad range of its applications, e.g., 
in aerodynamic shape optimization, aeroelastic analysis, etc. Although several FSI solvers, 
commercial, industrial or academic, have already been developed, the need for more accurate 
and more efficient methodologies is still on the run, making FSI a continuously evolving sci-
entific field. One of the most widely applied techniques to deal with this kind of problems is 
the partitioned coupling approach. According to this method the fluid and structural physical 
systems are solved independently, while interaction between them is obtained via the exchange 
of appropriate variables on boundary surfaces [1, 2]; as a result, it allows for the integration of 
separately developed CSD (Computational Structural Dynamics) and CFD (Computational 
Fluid Dynamics) applications. Nevertheless, the aforementioned solvers’ combination is raising 
several issues in terms of information transfer, considering the main task of accurate as well as 
efficient FSI simulations. 

For the numerical solution of FSI problems, the Dirichlet-Neumann domain decomposition 
coupling approach is usually followed [3]. It begins with the flow prediction, while at next the 
obtained pressure field at the flow side of the CFD/CSD interface is transferred to the corre-
sponding structural one. Subsequently, a CSD analysis is performed, deriving the deflections 
of the structure and a new flow grid is generated incorporating the new interface location. In-
formation transfer across the fluid-structure interface has to be performed with respect to a 
kinematic condition (Dirichlet), assuring the continuity of the velocity field, and a dynamic 
condition (Neumann) satisfying the requirement for conservation of normal stresses [4]. Hence, 
the most important criteria to be fulfilled over the interface, concern the consistency between 
the structural and the flow solver and the instabilities that may occur due to the partitioning 
process as well as the strategy followed for the data transfer. Similarly to stresses’ conservation, 
an energy one has to be succeeded at the common interface [1] to ensure the stability of the 
whole numerical solution, i.e., the virtual work of the flow forces and this of the structural ones 
must be equal. The aforementioned conservation requirements across the fluid-structure inter-
face depend strongly on both the employed temporal and spatial coupling schemes [5]. 

This study focus is mainly towards the spatial coupling and information transfer between the 
CFD and CSD solvers. The computational nodes of the structural and flow grids do not coincide 
usually at their interfaces, since their underlying resolutions can significantly differ. This non-
matching interface may lead to gaps and intersections between them, necessitating thus for an 
extra interpolation step to enable information transfer. Numerous methods can be found in the 
literature to deal with this problem, varying from the simplistic neighbor interpolation method 
[6] to more sophisticated approaches, such as the weighting ones [7, 8]. More elaborate attempts 
include the use of projections and integrations of elements from one mesh to the other [9], while 
popular among researchers are the Constant Volume Tetrahedra [10, 11] and the Boundary 
Element (BEM) [12] methods. In this work information transfer is achieved via an interpolation 
scheme based on Radial Basis Functions (RBF) [13, 14], the appealing properties of which have 
been extensively analyzed by Beckert and Wendland in [15], e.g., the ability to inherently con-
serve total force and moment. RBFs methodology has another significant advantage; it does not 
require any connectivity information, as it relies only on arbitrary point data. As a result, it can 
cope both with structured and unstructured grids.  

Apart from the data transfer, in FSI problems a new volume flow mesh has to be generated, 
depending on the boundary displacements and, consequently, on the new interface location; this 
procedure is typically implemented several times during an FSI simulation, necessitating thus 
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to be versatile, efficient, and accurate, as well as to sufficiently preserve the initial mesh topol-
ogy [16]. A considerably appealing method for mesh deformation is based on the extension of 
RBFs interpolation, used to transfer data across the interface, in the context of mesh motion 
[16]. Nevertheless, the method, in its initial formulation, calls for relatively excessive memory 
and computation time requirements. For the alleviation of the aforementioned shortcoming the 
Partition of Unity (PoU) [17] approach is adopted in data transfer, which regards the decompo-
sition of the interfacing boundary into several smaller regions, where local interpolations are 
performed independently and hence more efficiently. Although this method ensures energy 
conservation and offers physical distribution of the forces on the interfacing area [17, 18], it is 
revealed to be inappropriate for mesh deformation, as the dependence matrix takes into account 
all the flow mesh nodes, entailing significantly increased computational cost . In order to miti-
gate this inadequacy, a relatively recently developed by the authors methodology is followed, 
considering agglomeration of the surface nodes, and as such reduction of the dimensions of the 
pre-mentioned matrix [19]; it is based on the fusion strategy, developed for a corresponding 
CFD agglomeration multigrid method [20]. The method achieves significant acceleration of the 
deformation procedure, without downgrading the quality of the derived meshes [19]. 

In this work a partitioned FSI coupling procedure was developed to facilitate interaction 
between an open-source CSD [21] and an in-house academic CFD [20] code. Attention is 
mainly directed toward the efficient and accurate transfer of predicted displacements (by CSD) 
and forces (by CFD). Therefore, spatial coupling is obtained by a RBFs interpolation scheme, 
employing the aforementioned PoU approach [18] to accelerate the exchange procedure. For 
mesh deformation a corresponding RBFs interpolation process is applied; its efficiency is sig-
nificantly improved with a surface point reduction technique, based on the agglomeration of 
adjacent boundary nodes. The proposed algorithm is evaluated against a benchmark (for FSI 
solvers) test case, considering the analysis of the wind action over a standard tall building model 
[22, 23]. The obtained numerical results confirm its potential for such simulations, highlighting 
additionally the radically improved computational performance of data transfer and grid defor-
mation procedures. 

The rest of the paper is organized as follows: In Section 2 the coupling procedure, concerning 
exchange of displacements and forces, is described in detail, while in Section 3 the incorporated 
mesh deformation process is outlined. Section 4 includes a brief description of the flow and 
structural models. In Section 5 the validation results of the proposed methodology over a bench-
mark test case are presented, while Section 6 contains some conclusions, based on the afore-
mentioned results. 

2 COUPLING PROCEDURE 

The spatial coupling procedure can be mainly divided in two stages, namely, (a) the transfer 
of the displacement vectors from the structural to the flow grid and (b) the transfer of nodal 
forces from the flow mesh back to the structural one. The coupling scheme, for both aforemen-
tioned steps, can be expressed in a unified fashion by defining a coupling matrix H, which 
associates the interface boundary nodes of the two grids (flow and structural). Then, interpola-
tion of the displacements can be performed according to: 

 ݀௦ =  , (1)	௙݀ܪ	

where, ds and df denote the displacements at the structural and flow interface side, respectively. 
For forces' association, the transpose matrix HT is used as 

 ௦݂ = ୘ܪ	 ௙݂	, (2) 
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where fs and ff are the forces acting on the structural and flow sides of the interface, respectively. 
With the adoption of this scheme the virtual work can be effectively conserved over the inter-
face [24, 25]; nevertheless, the conservation of total force and moment depends mainly on the 
choice of the coupling matrix H, and hence on the corresponding method applied to obtain it. 

2.1 Radial Basis Functions (RBFs) interpolation 

In this work, the RBFs technique is implemented to construct the interpolation matrix, which 
is used for exchanging information between the structural and the flow solver. According to the 
RBFs theory [15], the interpolation function is defined as a weighted sum of the evaluations of 
the basis functions: 

(࢞)ݏ  = ∑ ࢞ฮ)ߔܑܽ − ฮ௡೎௜ୀଵ࢏ࢉ࢞ ) +  (3)  , (࢞)݌

where ܽ i  are the weight coefficients, p(x) a polynomial, and ࢏ࢉ࢞ = ,௖೔ݔ] ,௖೔ݕ  ,୧] the RBFs centersݖ
e.g., the coordinates of the boundary mesh nodes; nc is the number of those centers and Φ is the 
basis function. The use of the linear polynomial term ensures the exact recovery of translations 
and rotations [15]. The polynomial term in x direction can be expressed as follows 

௖೔൯࢞௫൫݌  = ଴௫ߛ + ݔଵ௫ߛ + ݕଶ௫ߛ +  (4)  , ݖଷ௫ߛ

while the coefficients ܽ௜ and ߛ௜ are computed by interpolation conditions, fulfilling Equation 
(3) requirements at the centers of the basis functions, along with an additional condition, de-
scribed as 

௖೔൯࢞൫ݏ  = ௖೔ࢁ = ௖೔௫ݑൣ , ௖೔௬ݑ , ௖೔௭ݑ 	൧் ,  (5) 

 ∑ ܽ௜(࢏ࢉ࢞)ݍ௡೎୧ୀଵ = 0	,  (6) 

where ࢁ௖೔ are the known boundary displacements of the structural side of the interface.  
Several examples of different basis functions can be found in the literature [13, 15, 26], 

which can be broadly classified to functions with global and local support. In the first case the 
functions influence the whole domain, while in the latter ones the variable to be interpolated is 
scaled with a support radius R (ξ=x/R), indicating the region of influence of the function from 
each center [26]. Moreover, it should be noted that smoother basis functions result in more 
realistic deformations, which in turn provoke dense matrix systems entailing numerical insta-
bility. In this work Wendland's C2 basis function with local support radius was adopted, due to 
its robustness and accuracy [16]. 

To construct the coupling matrix H, the structural mesh displacements of the boundary sur-
faces are used; combining Equations (5) and (6), the coefficient vectors	ࢠ,࢟,࢞ࢇand ࢠ,࢟,࢞࢈ can be 
evaluated by solving the following linear system in each spatial direction (expressed in matrix 
notation in the x direction) 

 ቂ0ܠࢁ ቃ = ൤ࢉࢉࡹ ࢀࢉࡼࢉࡼ 0 ൨ ቂ࢞࢈࢞ࢇቃ = ௖௖࡯ ቂ࢞࢈࢞ࢇቃ , (7) 

where 

࢞ࢇ  = ێێۏ
௖భ௫ܽ௖మ௫⋮ܽ௖೙௫ܽۍ ۑۑے

ې , ࢞࢈ = ێێۏ
ۑۑےଷ௫ߛଶ௫ߛଵ௫ߛ଴௫ߛۍ

ې
 , (8) 

and 
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ࢉࡼ  = 	 ൦ 1 ଵ1ݔ ଶݔ ଵݕ ଶݕଵݖ ⋮ଶݖ ⋮1 ୡ೙ݔ ⋮ ୡ೙ݕ⋮ 	ୡ೙൪ݖ , ࢉࢉࡹ = ێێۏ
ۍ ଵଵߔ ଶଵߔଵଶߔ ଶଶߔ ⋯ ⋯ଵୡ೙ߔ ⋮ଶୡ೙ߔ ୡ೙ଵߔ⋮ ୡ೙ଶߔ ⋮ ⋮⋯ ۑۑےୡ೙ୡ೙ߔ

 (9)   ,	ې

with ߔ௜௝ = ௜ݔ൫ฮߔ −  .௝ฮ൯ݔ
The required approximation of displacements at the flow side of the interface are calculated 

by applying the following equation for each spatial direction: 

(௔ݔ)ݏ  = ௖ݔ௖௖ିଵ࡯௔௖࡭ =  ௖,  (10)ݔࡴ

where  

௔௖࡭  = 	 ێێۏ
ۍ 1 ఈభ1ݔ ఈమݔ ఈభݕ ఈభݕఈభݖ ⋮ఈభݖ ⋮1 ఈೲഀݔ ⋮ ఈೲഀݕ⋮ ఈೲഀݖ

ఈభ௖భߔ ఈమ௖భߔఈభ௖మߔ ఈమ௖మߔ ⋯ ⋯ఈభ௖೙ߔ ⋮ఈమ௖೙ߔ ఈೲഀ௖భߔ⋮ ఈೲഀ௖మߔ ⋮ ⋮⋯ ۑۑےఈೲഀ௖೙ߔ
ې
 ,  (11) 

with ai being the i-th flow mesh node of the boundary and Nα the total number of  boundary 
nodes of the same grid. If the following term is additionally set 

෩௖௖ܯ  = ( ௖ܲܯ௖௖ିଵ ௖்ܲ )ିଵ,  (12) 

then the coupling matrix H can be expressed as: 

ࡴ  = ௔௖࡭ ቈ ෩௖௖ܯ ௖ܲܯ௖௖ିଵܯ௖௖ିଵ − ௖௖ିଵܯ ௖்ܲ ෩௖௖ܯ ௖ܲܯ௖௖ିଵ቉.  (13) 

Following the coupling process described above, it is evident that the computation of the 
coupling matrix is obtained by solving the linear systems described in Equation (7), while the 
interpolation of displacements and forces from the one mesh to the other involve only matrix-
vector multiplications. However, the method suffers from excessive computational and memory 
requirements, especially when large-scale problems are encountered, since the coupling matrix 
H is of size Ns x Nα, where Ns denotes the number of the structural mesh surface nodes and Nα 
the number of the flow mesh surface nodes. Computational efficiency is further degraded due 
to the necessity to invert the (nc+4)x(nc+4) matrix Ccc. A thorough literature review of methods 
that deal with the aforementioned deficiency can be found in [19]; the boundary node coarsen-
ing [19, 27, 28] technique seems to be particularly attractive for the mesh deformation process 
(as it will be analyzed in the next section). However, it is considered inappropriate for the data 
transfer one, as it might result in loss of information and, as such, jeopardize the requirement 
of force conservation over the interface.  

Another approach, also focusing on the efficiency improvement of the method, is the Parti-
tion of Unity (PoU) scheme, according to which the initial problem is divided into several 
smaller ones by grouping base points into sets to be processed separately; it resembles the do-
main decomposition approach, employed for the parallelization of complex numerical methods. 
It has been successfully implemented against FSI problems in [17, 18] with very promising 
results. Besides reducing computational cost, it avoids the undesirable influence of support ra-
dius into the interpolation process.  

2.2 Partition Of Unity (PoU) 

The basic concept of the PoU method regards the degradation of the initial problem into 
several smaller ones to be solved independently, while the global solution arises by a weighted 
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combination of the local ones. Given this condition, the term “unity” refers to the summation 
of the weighting coefficients of the entire domain that must be equal to one. The process begins 
by dividing the set Ω of the boundary nodes, including the nodes of the interface of both com-
putational meshes (structural and flow) into a K number of mutually overlapping regions, in a 
way to ensure that each Ωj patch includes only a small number of points. For each of these 
patches a local displacement is computed by solving a local interpolation problem with the 
RBFs method. Subsequently, the global interpolation is obtained by summing all local interpo-
lations, weighted by their respective coefficients, as 

(࢞)ݏ  = ∑ ௄௝ୀଵ(࢞)௝ݏ(࢞)௝ݓ ,					∑ (࢞)௝ݓ = 1௄௝ୀଵ ,  (14) 

where ݓ௝(࢞) represents a non-negative weighting function, which comes into effect only for its 
associated patches Ωj, while it is zeroed for the rest. Using the transpose of the global matrix, 
formed by the local interpolants, assures that the conservation criteria are also met in the PoU 
approach [17]. 

A variation of the pre-described method, proposed by Rendall and Allen [18], concerns the 
application of the PoU method on each boundary flow node separately, instead of decomposing 
the set of nodes into overlapping patches. Following this strategy, the complex step of decom-
posing the structural grid into overlapping regions is evaded, and thus the possibility of facing 
discontinuities between the patches due to the partitioning process is diminished. In order to 
calculate the local interpolants, an association of each flow mesh node with a pre-defined num-
ber of its closest structural boundary ones has to be defined. Therefore, the use of sophisticated 
data structures appears to be mandatory in order to link the boundary nodes of the two grids 
(flow and structural) in an efficient manner. Octree data structures are a common tactic for 
addressing these kind of problems. After the definition of the local interpolants, their merging 
back to a global one is essential in order to avoid distortion and non-realistic deformations, 
which may occur in applications involving computational meshes with different resolutions. In 
addition, the implementation of such a local strategy ameliorates the force distribution over the 
interface; the area of influence of each flow node is limited only to its nearby ones of the struc-
tural grid, unlike the corresponding area used with the complete method. 

3 MESH DEFORMATION 

The formulation of RBFs in case of mesh motion is different from this of data transfer, since 
the two problems have different requirements. In case of data transfer the inclusion of polyno-
mial terms of at least first order is mandatory to ensure conservation of total force and moment, 
while for mesh deformation these functions are omitted to avoid its undesirable global coverage, 
which can cause the whole domain to move rather than deform. Hence, the dependence matrix ࡯௖௖ is reduced to ࡹ௖௖, and the weighting coefficients are obtained via the following expression 

௫ࢇ  =  ௖೔ ,  (15)࢞௖௖ିଵࡹ

with ࢇ௫,௬,௭ denoting the vector containing the scalar coefficients in each direction and ࢉࢉࡹ the 
matrix defined in Equation (9). 

The required displacements of the volume mesh nodes are calculated according to those of 
the boundary points. As such, the deformation of the volume mesh can be computed as follows 

(௔ݔ)࢙  = ௖೔࢞௖௖ିଵࡹ௖௩࡭ =  ,  (16)	௖೔࢞ࡴ

where index v represents the volume nodes of the flow grid, and ࢜ࢉ࡭ a nv × nc matrix, described 
as: 
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࢜ࢉ࡭  = ێێۏ
ۍ ૚૚ࢶ ૛૚ࢶ૚૛ࢶ ૛૛ࢶ ⋯ ⋯ࢉܖ૚ࢶ ⋮ࢉܖ૛ࢶ ૚࢜ܖࢶ⋮ ૛࢜ܖࢶ ⋮ ⋮⋯ ۑۑےࢉܖ࢜ܖࢶ

ې
 .  (17) 

In order to overcome the increased computational cost of the method, a relatively recently 
developed by the authors methodology is followed, which considers the agglomeration of the 
adjacent boundary nodes [19]. The idea behind this strategy is the generation of successively 
coarser grids via the fusion of adjacent control volumes of the finer ones. The construction of 
the control areas of the boundary nodes is based on a node-centered scheme, where each node’s 
control area is defined by connecting the barycenters of surrounding triangles with the mid-
points of triangle edges. It is this fusion process that can be implemented on the deformed solid 
boundary control cells, along with an RBFs-based mesh deformation technique, to successively 
reduce the set of surface points and, consequently, the dimensions of equation systems to be 
solved. 

4 COMPUTATIONAL METHODS 

4.1 Flow Solver 

The simulation of unsteady incompressible flow phenomena is performed with the use of a 
recently developed academic code, named Galatea-I [20, 29, 30], which employs the Navier-
Stokes equations, coupled with the artificial compressibility method [31-33]. The discretization 
of the governing equations is succeeded with a node-centered finite-volume scheme on unstruc-
tured hybrid computational grids, comprised of tetrahedra, prisms and pyramids [20, 29]. The 
calculation of the inviscid fluxes is performed with the Roe’s approximate Riemann solver [34], 
along with a second-order spatial accurate scheme based on the MUSCL approach [35]. For the 
calculation of the viscous fluxes the gradients of velocity components have to be evaluated at 
the interfaces of the control cells. Two methodologies have been incorporated in Galatea-I; an 
element-based approach, utilizing the edge-dual control volume scheme and a simpler nodal-
averaging one [20, 29]. For turbulence prediction the RANS (Reynolds-Averaged Navier-
stokes) approach is implemented, along with the SST (Shear Stress Transport) turbulence model 
[36]. At the inlet and outlet regions characteristics-based boundary conditions are applied [30], 
while at the solid walls free-slip or no-slip conditions can be applied depending on the type of 
the encountered flow (inviscid or viscous). For the time accurate computation a dual-time step-
ping scheme has been included [31]. According to this scheme the relaxation of the governing 
equations is achieved with a four-stage Runge-Kutta (RK(4)) method over pseudo-time [37], 
while the time accurate solution is obtained with the use of a second-order finite-difference 
scheme over real-time [31]. Besides using edge-based data structures and a local time-stepping 
technique [35], Galatea-I solver has incorporated the capability of parallel processing, based 
on the domain decomposition approach [20], and the implementation of an agglomeration mul-
tigrid scheme, based on the FAS (Full Approximation Scheme) approach [20], for the acceler-
ation of the solution procedure. With the first method the initial computational grid is divided 
into smaller sub-domains, each of which is attributed on a single computer core [20]. Interaction 
between neighboring partitions is achieved with the MPI (Message Passing Interface) library 
functions. With the latter methodology successively coarser grids are generated, derived by the 
fusion of adjacent control volumes. The relaxation of the governing equations is performed on 
all meshes in a V-cycle type that accelerates solution convergence [20]. 
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4.2 Structural Solver 

As far as the structural computations are concerned, the open-source software package Cal-
culix [21] is utilized, which employs Finite-Element Method (FEM) for linear or non-linear 
calculations on structured or unstructured three-dimensional computational grids. The solver 
has the capability to encounter a variety of mechanical, thermal, coupled thermo-mechanical 
and contact problems in a serial or parallel computational environment; for the latter one either 
MPI (Message Passing Interface) or OpenMP library functions can be used. 

5 NUMERICAL RESULTS 

The assessment of the pre-described methodologies was performed with the Commonwealth 
Advisory Aeronautical Research Council (CAARC) Standard Tall Building Model, which is in 
fact a specification for wind tunnel experiments on tall building geometries [22, 38]. The full-
scale geometry of the building is specified as a rectangular shaped prism with base size equal 
to 100ft (30.8m) by 150ft (45.72m) and height 600ft (183.88m). It is described as a flat-topped 
building without parapets; its external walls are flat without any geometric disturbances [22]. 
The case has been encountered by several researchers, who have performed numerical tests of 
wind flow around the building, as well as FSI simulations [23, 39-41]; the proposed geometry 
has been tested in wind tunnel experiments too [22, 42]. A sketch of the geometric model that 
was prepared for use with the Galatea-I solver is shown in Figure 1. 

 
Figure 1: Sketch of CAARC test case setup. 

 
 Figure 2: Computational mesh around the CAARC standard tall building model. 

The computational mesh, generated for the simulation of wind flow around the CAARC 
building, is presented in Figure 2. As the flow around the building develops in three-dimen-
sional fashion and is unsteady in nature, the whole building geometry had to be meshed. In 
order to reduce computation time a relatively coarse mesh was generated that consisted of 
434,082 nodes, 623,801 tetrahedra and 640,685 prisms. Prismatic inflation was applied on the 
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building walls, as well as at the base of the geometry that represents the ground around the 
building, in order no slip boundary conditions to be applied at these areas and the corresponding 
boundary layer to be effectively predicted. The prismatic inflation consisted of 20 layers with 
the first layer height equal to W/2500. At the top and side walls of the geometry free slip con-
ditions were imposed. 

The Reynolds number was set equal to 380,000, based on the building height H and the 
velocity cH at height z=H [40]. In order to simulate wind flow at such a low height, the velocity 
profile at the inlet was defined by the following relation 

|௖Ԧ|௖ಹ = ቀ௭ுቁ௔ ,                                                             (18) 

where α is the power law exponent, which in this case was set equal to 0.3. Moreover, the 
turbulence boundary conditions had to be calculated, based on the turbulence intensity in the 
approaching flow, as it has a significant effect on the accuracy of the numerical results [23, 39, 
40]. In Figure 3 the velocity profile at the inlet, as well as the turbulence intensity profile are 
presented. The values of turbulence intensity at the inlet of the computational domain were 
interpolated from those presented in Figure 3 [39]. Finally, all values were normalized with H 
and cH for use with the dimensionless solver. 

 
Figure 3: Inlet velocity profile (left) and turbulence intensity profile (right). 

The simulation was performed on a workstation with an AMD FX™ 8150 Eight-Core pro-
cessor at 3.62 Ghz. Acceleration via parallel processing was applied by partitioning the initial 
mesh into six sub-domains, while due to the small size of the computational mesh the multigrid 
method was not used. The time-accurate equations were solved over a total of 1300 real time 
iterations, with a dimensionless real time step equal to 0.05. In each real time step 50 pseudo-
time iterations were performed, with a CFL number equal to 0.5. The artificial compressibility 
parameter was set equal to 10.0. For the quantitative evaluation of the extracted results the 
mean-pressure coefficient on the wall of the building was calculated from the obtained time-
accurate results. In Figure 4 the distribution of the mean-pressure coefficient along the building 
wall at height z=2/3H is compared with the corresponding ones found in the literature [39, 40]. 
While a very good agreement is achieved between the current and reference data at the wind-
ward and leeward sides of the building, there seems to be some disagreement between numeri-
cal and experimental results at the side of the building. This is attributed to the method of 
turbulence evaluation; a more accurate method (e.g., LES-Large Eddy Simulation) could pro-
vide more accurate results at these regions. 
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Figure 4: Mean pressure coefficient on the CAARC building wall at z=3/2H. 

In Figure 5 the mean pressure coefficient distribution on the building walls and the “ground” 
around it is presented. The maximum pressure value is located near the building top at the 
windward side, while under-pressure is developed at the leeward side of the building. 

  
Figure 5: Mean pressure coefficient distribution on the CAARC building walls and surrounding “ground”. 

The force field around the CAARC standard tall building model was then calculated from 
the dimensionless results provided by the Galatea-I solver with regard to the flow conditions, 
reported by Braun et al. [23]. These properties of the flow can be found in Table 1. In order to 
use them with the CSD code, the exported force field had to be interpolated between the two 
different grids, i.e., the unstructured and the structural one. For the coupling of the two grids 
with the RBFs PoU method, the nearest nodes of the structural mesh have to be identified for 
each aerodynamic grid point at the building wall surface. Nevertheless, such an identification 
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is not a straightforward procedure; a brutal linear search method would require an enormous 
amount of time to perform, especially in the case of very dense meshes. Therefore, custom 
Octree data structures were developed to find the nearest structural grid point to each aerody-
namic one, while at next the remaining nodes required by the proposed methodology were gath-
ered with the aid of the structural mesh topology. Applying this approach, whereby the number 
of structural points is given a priori, ensures the sparseness of the coupling matrix, as the user 
can specify the number of these points according to the problem needs. Due to this PoU method, 
a support radius needs not be defined; it is set equal to the distance of each aerodynamic grid 
point from the uttermost in the specific patch.  

Specific mass – ρ [Kgr/m3] 1.25 
Dynamic viscosity – μ [N·s/m2] 7.03·10-2  
Reference velocity – cH [m/s]  100 
Reference length – H  180 

Table 1: Flow field properties. 

 
 

 
Figure 6: Comparison of force component distribution between CFD (left) and CSD (right) meshes. 

The utilized structural grid is composed of 38,675 nodes and 43,048 hexahedral eight-node 
brick elements, fully integrated (2x2x2 integration points). For each boundary node of the CFD 
mesh the 20 closest points of the CSD mesh, were used, while for each set of CSD nodes a 
RBFs problem was set deriving the corresponding required coefficients. While the coupling of 
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the CFD with the CSD mesh may be a rather tedious procedure, it only has to be completed 
once (at the beginning of the FSI simulation) even for a dynamic problem. The computational 
cost of the coupling procedure is slightly affected by the size of the structural mesh, as the 
number of RBFs problems to be solved remains the same; only the nearest nodes identification 
process will differ. Comparisons between the force components distributions over the boundary 
surfaces, for the flow and structural computational grids, are illustrated in Figure 6. 

These qualitative results reveal the ability of the proposed methodology to provide accurate 
transfer of the force field in an efficient manner though. As it can be observed, the PoU approach 
offers the advantage of physical distribution of forces over the interface, as opposed to the full 
method, where the transpose of the coupling matrix would destroy the local character of the 
force distribution [17]. 

With the loading (i.e., the force distribution) provided by the CFD code, a modal analysis 
was performed with the CalculiX open source software. The structural properties of the model 
were based on the CAARC standard tall building specifications [22], while the Young’s mod-
ulus was set equal to that reported by Braun et al. [23]. All the employed structural properties 
are given in Table 2.  

Specific mass – ρ  160 Kg/m3 
Natural frequency – n  0.2 Hz 
Young’s modulus – E  2.3 ·108 N/m2 
Poisson’s ratio - m  0.25 
Structural damping - ξ 1% 

Table 2: Mechanical properties of the structure. 

In Figure 7 the von Mises stresses and the stresses at the three main axes are presented, while 
in Figure 8(a) the deformation of the structural mesh according to the results of the aforemen-
tioned analysis is illustrated (magnified x10) along with the un-deformed boundary surface of 
the fluid mesh. The maximum displacement was 46.9 cm on the y axis (as expected) because 
of the influence of the first bending mode. Moreover, in Figure 8(b) the deformed boundary 
surface of the CFD mesh obtained by transferring the displacement field from the CSD one, is 
depicted; no distortion was observed on the boundary surface of the flow grid, resulting in a 
smooth deformed surface. The normalized along-wind displacement (ߪ௬ ⁄ܮ ) as a function of the 
reduced velocity (ܿு/ܹ݊), obtained with the proposed methodology, is compared to the corre-
sponding results of other reference works in Table 3; a satisfactory agreement is observed. 

 
Current 0.015633
Braun et al. [23] 0.011595
Thepmongkorn et al. [43] 0.013835
Melbourne [22] 0.048892

Table 3: Comparison of normalized maximum displacement as a function of reduced velocity. 
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Figure 7: Von Misses, SXX, SYY, SZZ stresses of the CAARC standard tall building model. 
 

      
                                 (a)      (b) 

Figure 8: Deformation of the structural grid (a) and corresponding deformation of the CFD boundary grid (b). 

          
Initial (9,724 nodes)       Level 1 (3,494 nodes)  Level 2 (2,199 nodes) Level 3 (1,995 nodes) 

Figure 9: Fine and coarser grids generated with the agglomeration procedure. 

Since this stage was accomplished, the deformation of the flow grid had to be performed, 
according to the deflections of the boundary. For the acceleration of the procedure four coarser 
grids were obtained, implementing the proposed agglomeration process on the surface nodes 
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[19]. In Figure 9 the boundary control areas of each level are depicted. For all of them the node 
with the minimum distance from their area-weighted centers is selected to be used as the base 
point for the RBFs method [19].  These basis points form the interpolant, required for the final 
deformation of the volume grid. In Figure 10, the flow grid prior and after the implementation 
of the deformation procedure is illustrated.  

          
                                       (a)                  (b) 

Figure 10: Before (a) and after (b) deformation states of the CFD grid. 

The deformed CFD grid was subsequently used with the Galatea-I solver for a new flow 
simulation with the same flow conditions as with the original one. The derived mean pressure 
coefficient distribution around the CAARC standard tall building, along with the velocity 
streamlines are illustrated in Figure 11. The successfully performed simulation demonstrates 
the deformation methodology capabilities in providing quality grids. 

 
Figure 11: Mean pressure coefficient and velocity streamlines around the deformed CFD grid. 
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The aforementioned analysis was based on a specification for a tall building model which 
however differs a lot from a realistic one. For the completion of the current work, the results 
from a dynamic analysis of a similar 45-storey building are presented. The building has the 
same external geometry as the CAARC standard tall building model, but the interior is not solid. 
It is consisted of beams, slabs, columns, walls, and a lift core. Moreover, two different materials, 
steel for the structural members (green color), and glass for all the outer walls (red color) were 
used (Figure 12). Table 4 presents the properties of the steel and glass material.  

 
 Glass Steel 

Specific mass – ρ  2500 Kg/m3 7850 Kg/m3 
Natural frequency – n  0.2 Hz 0.2 Hz 
Young’s modulus – E  7·1010  N/m2 2.1·1011  N/m2 
Poisson’s ratio - m  0.25 0.25 
Structural damping - ξ 1% 1% 

Table 4: Mechanical properties of the structure. 

 
 

Figure 12: Realistic CAARC building model (structural members: green color, walls: red color). 
 
In this case a dynamic analysis takes place, in which the wind loading is considered the same 

to the previous one (Figure 6). The deformation is also similar to the previous case but the 
displacements are much smaller, an expected, taking into account that the elements properties 
are stiffer. Figure 13 presents the extracted von Mises stresses as well as the three main stresses. 
Additionally, comparing to the previous problem, the stresses appear to be more realistic. The 
columns produce larger stresses than the walls, because of their larger stiffness, while as the 
height increases the stresses get smaller. In general, larger stresses were extracted (comparing 
to the previous case) as the same force was imposed at a smaller surface though.  
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Figure 13: Von Misses, SXX, SYY, SZZ stresses of the CAARC realistic building model. 

6 CONCLUSIONS  

In this paper a recently developed partitioned FSI methodology was reported. The whole 
procedure involved the coupling of an in-house academic CFD code, named Galatea-I [20], 
with the Calculix open source CSD software [21], which was succeeded employing the Radial 
Basis Functions (RBFs) based Partition of Unity (PoU). With this approach the conservation of 
energy, momentum and force is ensured over the interface of the flow and structural mesh as a 
result of the radial functions properties. The use of the PoU methodology improves the effi-
ciency of the data transfer procedure providing simultaneously a physical formulation of the 
force distribution. The FSI methodology was applied on the CAARC standard tall building 
model, which was specified for similar procedures [22, 23]. The effect of the obtained pressure 
field around the building was successfully transferred to the structural mesh with the PoU pro-
cedure, deriving subsequently the desired deformation; the latter agreed sufficiently with the 
corresponding experimental and numerical results, being available in the literature. As a result, 
the capabilities of the proposed methodology for such test cases in terms of accuracy and effi-
ciency were demonstrated. A mesh deformation approach, based on the RBFs methodology but 
improved though by a fusion procedure, resembling the agglomeration procedure used in ag-
glomeration multigrid methodology [19], was applied on the initial CFD mesh. The resulting 
deformed mesh, was subsequently imported in the Galatea-I solver, successfully providing a 
new flow field and hence demonstrating the deformation method’s capabilities of generating 
quality meshes. 
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