
Abstract— The paper presents results for a class of 2x2 
systems of nonlinear hyperbolic PDEs on a 1-D bounded 
domain, inspired by second-order traffic flow models. The 
model consists of two first-order hyperbolic PDEs with a 
dynamic boundary condition that involves the time derivative 
of the velocity. The developed model has features that are 
important from a traffic-theoretic point of view: is completely 
anisotropic and information travels forward exactly at the 
same speed as traffic. It is shown that, for all physically 
meaningful initial conditions, the model admits a globally 
defined, unique, classical solution that remains positive and 
bounded for all times. Furthermore, a nonlinear, explicit 
boundary feedback law is developed, which achieves global 
stabilization of arbitrary equilibria. The stabilizing feedback 
law depends only on the inlet velocity and consequently, the 
measurement requirements for the implementation of the 
proposed boundary feedback law are minimal. The efficiency 
of the proposed boundary feedback law is demonstrated by 
means of a numerical example. 

I. INTRODUCTION 

The study of vehicular traffic flow utilizing hyperbolic 
Partial Differential Equations (PDEs) goes back to the 
1950s with the appearance of the LWR first-order model 
(see [27,32]). In order to describe more accurately the 
velocity dynamics, second-order models were later studied 
(see [1,29,37]). All 1-D traffic flow models were developed 
for unbounded domains (usually the whole real axis). 
Researchers working on second-order models as well as 
critics of second-order models (see [11]) have agreed that a 
valid traffic flow model must: (i) include the vehicle 
conservation equation, (ii) admit bounded solutions which 
predict positive values for both density and velocity, (iii) 
obey the so-called anisotropy principle, i.e., the fact that a 
vehicle is influenced only by the traffic dynamics ahead of 
it, (iv) not allow waves traveling forward with a speed 
greater than the traffic speed. Recently, researchers have 
developed two phase models (see [7,25]), which agree with 
experimental results that report strong differences between 
the free and congested vehicular flow.   

Recent advances in the boundary feedback control of 
hyperbolic systems of PDEs (see for instance 
[2,3,6,8,9,10,12,13,18,22,23,30,31,35,36]) as well as 
advances in the control of discrete-time, finite-dimensional 
traffic flow models (see [16,17,19,28] and references 
therein) have motivated the study of well-posedness and 
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control of traffic flow models on bounded domains. Both 
issues (well-posedness and control) for first-order models in 
bounded domains were studied in [4,5,33] by means of 
boundary conditions at the inlet and outlet that may or may 
not become active at certain time instants. The stabilization 
of equilibrium profiles for second-order models in bounded 
domains by means of boundary feedback was also studied 
in [24,38].   

In the present work, a novel, hyperbolic, nonlinear, 
second-order, 1-D traffic flow model on a bounded domain 
is proposed. The arguments leading to the derivation of the 
model are based on the assumption that the road is 
relatively crowded. It consists of two quasilinear first-order 
PDEs with a dynamic nonlinear boundary condition that 
involves the time derivative of the velocity, which may be 
viewed as boundary relaxation, analogously to in-domain 
relaxation in second-order traffic flow models [1,37]. The 
presence of this dynamic boundary condition makes the 
model non-standard, and thus, the existence and uniqueness 
of its solutions cannot be guaranteed by using standard 
results (see [2,20,25]). The existence and uniqueness issues 
are studied in the present work. Specifically, it is shown that 
for all physically meaningful initial conditions the model 
admits a globally defined, unique, classical solution that 
remains positive and bounded for all times. As a result, we 
can guarantee that the proposed model has all of the four 
features mentioned in the first paragraph that are important 
from a traffic-theoretic point of view. The second 
contribution of the present work is the study of the control 
problem for the proposed model. Specifically, we design a 
simple, nonlinear, boundary feedback law, adjusting the 
inlet flow (via, e.g., ramp metering). The boundary 
feedback law employs only measurements of the inlet 
velocity, and consequently, the measurement requirements 
for implementation of the proposed controller are minimal. 
Moreover, it is shown that the developed control design 
achieves global asymptotic stabilization of arbitrary 
equilibria, in the sup-norm of the logarithmic deviation of 
the state from its equilibrium point. The efficiency of the 
proposed feedback law is demonstrated by means of a 
numerical example. 

The structure of the present work is as follows: Section 
II is devoted to the presentation of the model and the 
statement of the first main result (Theorem 2.1) which 
guarantees, for all physically meaningful initial conditions, 
the existence of a globally defined, unique, classical 
solution that remains positive and bounded for all times. 
The control design and the statement of the second main 
result, which guarantees global stabilization of arbitrary 
equilibria of the model (Theorem 3.1) are given in Section 
III. A simple illustrating example is presented in Section IV. 
The proofs of the main results are omitted due to space 
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limitations, but they can be found in [21] (Section 5). The 
concluding remarks are provided in Section IV.  

Notation. Throughout this paper, we adopt the following 
notation.  

 ℜ+ := [0,+∞) . For a real number ,  denotes 
the integer part of , i.e., the greatest integer which is less 
or equal to . 

 Let  be a set with non-empty interior and let 
 be a set. By , we denote the class of 

continuous mappings on , which take values in . By 
, where , we denote the class of continuous 

functions on , which have continuous derivatives of 
order  on  and take values in . When  is omitted, 
i.e., when we write , it is implied that .  

 Let  and u :[0,T ]× [0,1]→ ℜ  be given. 
We use the notation  to denote the profile at certain 

, i.e., (u[t])(x) = u(t, x)  for all . For a 
bounded w :[0,1]→ ℜ  the sup-norm is given by 
w ∞ := sup

0≤x≤1
w(x)( ) .    

  is the Sobolev space of  functions on 
 with Lipschitz derivative. 

 By K  we denote the class of strictly increasing 
continuous functions a :ℜ+ → ℜ+  with a(0) = 0 .  By K∞  
we denote the class of functions  with 
lim
s→+∞

a(s) = +∞ .  By KL  we denote the set of all functions 

σ ∈C 0 (ℜ+ × ℜ+ ;ℜ+ )  with the properties: (i) for each 
t ≥ 0 , σ ( ⋅, t)  is of class K ; (ii) for each s ≥ 0 , σ (s, ⋅)  is 
non-increasing with lim

t→+∞
σ (s, t) = 0 .   

II. A NON-STANDARD TRAFFIC FLOW MODEL 

A. Model Description 
Second-order traffic flow models involve a system of 

hyperbolic PDEs on the positive semiaxis. The state 
variables are the vehicle density ρ(t, x)  and the vehicle 
velocity v(t, x) , where t ≥ 0  is time and  is the spatial 
variable. All traffic flow models involve the conservation 
equation 

 
∂ρ
∂ t
(t, x) + v(t, x) ∂ρ

∂ x
(t, x) + ρ(t, x) ∂ v

∂ x
(t, x) = 0  (1) 

and an additional PDE for the velocity. In a relatively 
crowded road, the vehicle velocity depends heavily on the 
velocity of downstream vehicles. Therefore, the following 
equation may be appropriate for the description of the 
evolution of the velocity profile: 

 ∂ v
∂ t
(t, x) − c ∂ v

∂ x
(t, x) = 0  (2) 

where  is a constant related to the drivers’ speed of 
adjusting their velocity. Equation (2) may also arise as a 
linearization of the equation of the Aw-Rascle-Zhang model 
(see [1,37]) without an in-domain relaxation term. Here, we 
consider the model (1), (2) on a bounded domain, i.e., we 
assume that . The full model requires the 
specification of two boundary conditions. One boundary 
condition describes the inlet conditions and more 
particularly the effect of the inlet demand  and 
takes the form 

 ρ(t, 0) = h q(t)
v(t, 0)

⎛
⎝⎜

⎞
⎠⎟

, for  (3) 

where  is a non-decreasing function that 
satisfies  

h(s) = s  for s ∈[0,ρmax − ε]  and   for  

  (4) 

where ρmax > 0  is a constant related to the physical upper 
bound of density in the particular road and ε ∈(0,ρmax )  is a 
sufficiently small constant. Notice that (3) implies that the 
inlet demand  is equal to the vehicle inflow 

, provided that q(t) ≤ ρmax − ε( )v(t, 0) . The 
boundary condition (3) as well as the rest of the model (1), 
(2) comes together with the following requirement:  

  and , for all (t, x)∈ℜ+ × [0,1]  (5) 

Condition (5) is an essential requirement for traffic flow 
models and it should be noticed here that some second-
order traffic flow models do not meet this requirement. In 
what follows, we show that the proposed model meets this 
requirement.  

In order to have a well-posed hyperbolic system, we 
also need a boundary condition at the outlet . 
Assuming that the flow downstream the outlet is 
uncongested (free), it is reasonable to assume that the 
relaxation term becomes dominant. So, we get 

 
∂ v
∂ t
(t,1) = −µ v(t,1) − f ρ(t,1)( )( ) , for  (6)  

where  is a constant and  is a positive, 
bounded, non-increasing function that expresses the 
fundamental diagram relation between density and velocity.  

B. Traffic-Theoretic Features of the Model 
Equations (1), (2), (3), (6) form a non-standard system 

of nonlinear hyperbolic PDEs. The reason that system (1), 
(2), (3), (6) cannot be studied by existing results in 
hyperbolic systems (see [2,20,25]) is the non-standard 
boundary condition (6). However, in what follows, we show 
that system (1), (2), (3), (6) exhibits unique, positive, 
globally defined  solutions for all positive initial 
conditions. Moreover, we show that density and velocity are 
bounded from above by certain bounds that depend only on 
the initial conditions and the physical upper bounds of the 



density and velocity, i.e.,  and vmax = f (0) , 
respectively. Before we show this, it is important to 
emphasize that (1), (2), (3), (6): 

• is a traffic flow model that can be applied to bounded 
domains, i.e., , without imposing a boundary 
condition with no physical meaning or assuming knowledge 
of the density/velocity out of the domain, 

• is completely anisotropic, i.e., the velocity depends 
only on the velocity of downstream vehicles, 

• is a hyperbolic model with two eigenvalues  and 
; consequently, information travels forward exactly in 

the same speed as traffic, 

• allows only equilibria which satisfy the fundamental 
diagram law , i.e., when  then the 

equilibrium profiles are given by ρ(x) ≡ ρeq ,  
v(x) ≡ f (ρeq ) , where  is a solution of 

.  

All the above features are important for a traffic flow 
model.  

C. Characteristic Form of the System 
Let ρeq ∈ 0,ρmax( )  be a given constant. The nonlinear 

transformation of the density variable 

 ρ(t, x) = ρeq exp(w(t, x))
c + f (ρeq )
c + v(t, x)

 (7) 

gives the equation 

 
∂w
∂ t
(t, x) + v(t, x) ∂w

∂ x
(t, x) = 0  (8) 

with the boundary conditions  

w(t, 0) = ln ρeq
−1h q(t)

v(t, 0)
⎛
⎝⎜

⎞
⎠⎟
c + v(t, 0)
c + f (ρeq )

⎛

⎝⎜
⎞

⎠⎟
,   

∂ v
∂ t
(t,1) = −µ v(t,1) − f ρeq exp(w(t,1))

c + f (ρeq )
c + v(t,1)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 (9) 

The hyperbolic system (2), (8), (9) is nothing else but 
the hyperbolic system (1), (2), (3), (6) in Riemann 
coordinates. Provided that the initial conditions are positive, 
i.e., , , for , we are in a 
position to construct a unique solution to (1), (2), (3), (6) by 
constructing a unique solution to (2), (8), (9) and employing 
the nonlinear transformation (7).  

 

 

 

 

 

D. First Main Result 
The solution of (2), (8), (9) is constructed by the 

following theorem. Its proof can be found in [21] (Section 
5).  

Theorem 2.1: Let a ∈C 2 ℜ+ × ℜ+( )  be a given 
function and let ,  be given constants. Let 
g ∈C1 ℜ+ × ℜ( )  be a given function for which there exists 
a constant  such that the following inequality 
holds 

 0 < g(0,w) ≤ g(v,w) ≤ vmax , for all v ∈ℜ+ ,w ∈ℜ   (10) 

Let θ,ϕ ∈W 2,∞ [0,1]( )  be given functions with  for 
all , for which the equalities  

θ(0) = a 0,ϕ(0)( ) ,  

∂a
∂ t
(0,ϕ(0)) + c ∂a

∂ v
(0,ϕ(0)) ′ϕ (0) = −ϕ(0) ′θ (0) ,  

′ϕ (1) = −µ c−1 ϕ(1) − g ϕ(1),θ(1)( )( )   

hold. Then the initial-boundary value problem  

∂w
∂ t
(t, x) + v(t, x) ∂w

∂ x
(t, x) = ∂ v

∂ t
(t, x) − c ∂ v

∂ x
(t, x) = 0 , 

 for all (t, x)∈ℜ+ × [0,1]  (11) 

w(t, 0) − a(t, v(t, 0)) = ∂ v
∂ t
(t,1) + µ v(t,1) − g v(t,1),w(t,1)( )( ) = 0

  for all  (12) 

   w(0, x) −θ(x) = v(0, x) −ϕ(x) = 0 , for all  (13) 

admits a unique solution w, v ∈C1 ℜ+ × [0,1]( ) . Moreover, 

the solution w, v ∈C1 ℜ+ × [0,1]( )  has Lipschitz derivatives 
on every compact S ⊂ ℜ+ × [0,1]  and satisfies the 
following inequalities for all (t, x)∈ℜ+ × [0,1] : 

 w[t] ∞ ≤ max Bt , θ ∞( )  (14) 

min min
0≤x≤1

ϕ(x)( ),min g(0,w):w ≤ max Bt , θ ∞( ){ }( ) ≤ v(t, x)
  ≤ max max

0≤x≤1
ϕ(x)( ), vmax( )  (15) 

where  

 
Remark 2.2: Theorem 2.1 shows that the appropriate space 
(state space) for studying the hyperbolic system (1), (2), (3), 
(6) is the space 



 

X = (ρ, v)∈ W 2,∞ ([0,1])( )2 :{
min(ρ(x), v(x)) > 0 for all x ∈[0,1],

c ′v (1) = −µ v(1) − f (ρ(1))( ),
∃a1 > 0,a2 ∈ℜ such that ρ(0) = h(a1 ),
v(0) ′ρ (0) + ρ(0) ′v (0) = a2 ′h (a1 )

⎫

⎬

⎪
⎪

⎭

⎪
⎪

.  (16) 

In order to construct a solution ρ[t], v[t]( )∈X  of (1), (2), 
(3), (6) with initial conditions in (ρ0 , v0 )∈X , we apply 
Theorem 2.1 with  

a(t, v) :=

ln ρeq
−1h q(t)

v
⎛
⎝⎜

⎞
⎠⎟

c + v
c + f (ρeq )

⎛

⎝⎜
⎞

⎠⎟
if v > 0

ln ρeq
−1ρmax

c + v
c + f (ρeq )

⎛

⎝⎜
⎞

⎠⎟
if v = 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

, 

g(v,w) := f ρeq exp(w)
c + f (ρeq )
c + v

⎛
⎝⎜

⎞
⎠⎟

, vmax := f (0) , 

θ(x) = ln
ρ0 (x) c + v0 (x))( )
c + f (ρeq )( )ρeq

⎛

⎝
⎜

⎞

⎠
⎟ , ϕ(x) = v0 (x) for all 

 

and we consider q ∈C 2 ℜ+ ; (0,+∞)( )  to be the input of the 
model. The set of admissible inputs consists of all functions 
q ∈C 2 ℜ+ ; (0,+∞)( )  that satisfy the compatibility 
conditions  

  

 

 

v0 (0) ′ρ0 (0) + ρ0 (0) ′v0 (0) + ′h q(0)
v0 (0)

⎛
⎝⎜

⎞
⎠⎟
!q(0)
v0 (0)

=

c ′h q(0)
v0 (0)

⎛
⎝⎜

⎞
⎠⎟
q(0)
v0
2 (0)

′v0 (0)
 

The solution ρ[t], v[t]( )∈X  of (1), (2), (3), (6) is found by 
using the solution  of (11), (12), (13) in 
conjunction with formula (7). Notice that if v0 (x) ≤ vmax  for 
all , then estimate (15) implies that 
0 < v(t, x) ≤ vmax  for all (t, x)∈ℜ+ × [0,1]  and for all 
admissible q ∈C 2 ℜ+ ; (0,+∞)( ) . Similarly, by performing 
more detailed calculations than those in the proof of 
Theorem 2.1, we are in a position to verify that if 

ρ0 (x) ≤ ρmax
c + vmax

c
 for all , then the estimate 

0 < ρ(t, x) ≤ ρmax
c + vmax

c
 holds for all (t, x)∈ℜ+ × [0,1]  

and for all admissible q ∈C 2 ℜ+ ; (0,+∞)( ) . When 

, the previous estimate implies that the upper 
bound for density is approximately .   

III. CONTROLLING THE TRAFFIC FLOW MODEL 

A. Motivation for Control Design 
The fact that for the case  the equilibrium 

profiles for (1), (2), (3), (6) are given by , 

v(x) ≡ f (ρeq ) , where  is a solution of 

, implies that there may be multiple 

equilibria. For example, for the case f (ρ) = A exp(−bρ) , 
where  are constants (that corresponds to the so-
called Underwood model; see for instance [34]) if 

qeq ∈ Aρmax exp −bρmax( ), A
b
exp(−1)⎡

⎣⎢
⎤
⎦⎥

 and then 

there are (at least) two solutions of the equation 

: one solution in the interval  and 

. Consequently, it is not possible to guarantee that for 
every initial condition (ρ0 , v0 )∈X  with  

, 

v0 (0) ′ρ0 (0) + ρ0 (0) ′v0 (0) = c ′h q(0)
v0 (0)

⎛
⎝⎜

⎞
⎠⎟
qeq
v0
2 (0)

′v0 (0) ,  

the solution ρ[t], v[t]( )∈X  of (1), (2), (3), (6) with 
 will converge to a specific equilibrium 

profile as . This implies lack of global asymptotic 
stability. Moreover, such cases are the ones that ideally one 
would like to have: for the case f (ρ) = A exp(−bρ) , where 

 are constants, the ideal operation of the freeway 
would be exactly where the flow becomes maximized, i.e., 
when . Notice that in this case and if 
1 ≤ b(ρmax − ε) , where ε ∈(0,ρmax )  is the constant involved 

in (4),  and we have (at least) two 

equilibria:  and . In such cases, global 
stabilization of a specific equilibrium profile may be 
achieved by boundary feedback control. 

B. Collocated Boundary Control Design and Stability 
Analysis 
The following theorem, whose proof can be found in 

[21] (Section 5), shows that stabilization of the equilibrium 
profile for a given desired equilibrium density  can 
be achieved by controlling the inlet flow. It is important to 
notice that the stabilizing feedback law depends only on the 
inlet velocity. Therefore, the measurement requirements for 



the implementation of the proposed boundary feedback law 
are minimal.    

Theorem 3.1: Consider the nonlinear traffic flow model 
(1), (2), (3), (6) and let  be the desired equilibrium 

density. Suppose that ρeq ≤
c

c + f (ρeq )
ρmax − ε( )  and that 

the following inequality holds: 

v − f ρeq

c + f (ρeq )
c + v

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
v − f ρeq( )( ) > 0 , for all , 

   (17) 

Then there exists a function  such that for every 
(ρ0 , v0 )∈X  for which the equalities 

, ′ρ0 (0) = − −ρ0 (0)
c + v0 (0)

′v0 (0)  hold, 

the initial-boundary value problem (1), (2), (3), (6) with  

 q(t) = ρeqv(t, 0)
c + f (ρeq )
c + v(t, 0)

 (18) 

  ρ(0, x) − ρ0 (x) = v(0, x) − v0 (x) = 0 , for all  (19) 

admits a unique solution ρ, v ∈C1 ℜ+ × [0,1]( ) , with 

ρ[t], v[t]( )∈X  for all  satisfying the following 
estimate for all : 

max
0≤x≤1

ln ρ(t, x)
ρeq

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ +max

0≤x≤1
ln v(t, x)

f (ρeq )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ ≤  

 Q max
0≤x≤1

ln ρ0 (x)
ρeq

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ +max

0≤x≤1
ln v0 (x)

f (ρeq )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ , t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (20) 

Remark 3.2: Notice that inequality (17) holds 
automatically for  and . Thus, inequality (17) 
is equivalent to the following implications 

ρeq > ρ > ρeq

c + f (ρeq )
c + f (0)

⇒ ρeq c + f (ρeq )( ) > ρ(c + f (ρ))

ρeq < ρ < ρeq

c + f (ρeq )
c

⇒ ρeq c + f (ρeq )( ) < ρ(c + f (ρ))

Therefore, a sufficient condition for (17) is the assumption 
that the function F(ρ) := ρ c + f (ρ)( )  is increasing on the 

interval ρeq

c + f (ρeq )
c + f (0)

,ρeq

c + f (ρeq )
c

⎛
⎝⎜

⎞
⎠⎟

. Consequently, 

(17) holds automatically when c + f (ρ) + ρ ′f (ρ) > 0  for 

all ρ ∈ ρeq

c + f (ρeq )
c + f (0)

,ρeq

c + f (ρeq )
c

⎛
⎝⎜

⎞
⎠⎟

. For example, 

when f (ρ) = A exp(−bρ) , where  are constants 
(Underwood model), we guarantee that (17) holds when the 
inequality c exp(bρ) + A > Abρ holds for 

 ρ ∈ ρeq

c + A exp(−bρeq )
c + A

,ρeq

c + A exp(−bρeq )
c

⎛
⎝⎜

⎞
⎠⎟

.  

It should be noticed that in this case (17) holds 
automatically when the velocity ratio  is sufficiently 
small no matter what  is: when c exp(2) ≥ A  the 

function F(ρ) := ρ c + A exp(−bρ)( )  is increasing on .  

Remark 3.3: When the compatibility conditions 

, ′ρ0 (0) = − −ρ0 (0)
c + v0 (0)

′v0 (0)  do not 

hold, then we satisfy the compatibility conditions implied 
by Theorem 2.1, namely we find  and  so that  

  

 v0 (0) ′ρ0 (0) + ρ0 (0) ′v0 (0) =
ac ′v0 (0) − bv0 (0)

v0
2 (0)

′h a
v0 (0)

⎛
⎝⎜

⎞
⎠⎟

.  

In such a case, we must modify the control input so that the 
compatibility conditions hold; the control input can be 
given by the formula 

q(t) = 1− gT (t)( ) a + bt( ) + gT (t)ρeqv(t, 0)
c + f (ρeq )
c + v(t, 0)

 

where  is a small constant that satisfies  
and  is defined by  for , 

 for  and 

 gT (t) =
exp(−t −1 )

exp(−t −1 ) + exp(−(T − t)−1 )
 

for .  

Remark 3.4: Estimate (20) is a stability estimate in the sup-
norm of the logarithmic deviation of the state from its 
equilibrium values. The use of logarithmic deviation 
variables is customary for systems with positive state values 
(e.g., biological systems, see [18]).  

IV. ILLUSTRATIVE EXAMPLE 

We consider model (1), (2), (3), (6) with 

 (Underwood model), , , 

ρmax = 27 /10 , , h(s) = s(1− g(s)) + ρmaxg(s)  for 
, where , for s ∈[0,ρmax − ε] , , for 

 and 

g(s) =
exp −(s + ε − ρmax )

−1( )
exp −(s + ε − ρmax )

−1( ) + exp −(ρmax − s)
−1( ) , 

for s ∈(ρmax − ε,ρmax ) . 



The objective is to stabilize the equilibrium point that 
maximizes the vehicle flow ρ(x) ≡ ρeq = 1 , 
v(x) ≡ f (ρeq ) = 2 / 5 . It should be noticed that the open-
loop system (1), (2), (3), (6) with q(t) ≡ qeq = 2 / 5  has two 
equilibria: one is the desired equilibrium, and the other one 

is the fully congested equilibrium , 

v(x) ≡ f (ρmax ) =
2
5
exp − 17

10
⎛
⎝⎜

⎞
⎠⎟ . Numerical experiments 

show that the fully congested equilibrium attracts the 
solution of the open-loop system (1), (2), (3), (6) with 

 for many initial conditions. We choose the 

initial conditions  for x ∈[0, 9 / 20] , , 
for , 

ρ0 (x) = 1+
exp −(x − 9 / 20)−1( )

exp −(x − 9 / 20)−1( ) + exp (x −1 / 2)−1( ) ,  

for , and v0 (x) = f (ρ0 (x)) , for . For 

this particular initial condition (but also for many others) 
the solution of the open-loop system (1), (2), (3), (6) with 
q(t) ≡ qeq = 2 / 5  converges to the fully congested 
equilibrium  

ρ(x) ≡ ρmax =
27
10

, v(x) ≡ f (ρmax ) =
2
5
exp − 17

10
⎛
⎝⎜

⎞
⎠⎟ .  

The deviation of the solution from the desired equilibrium is 
shown in Fig. 1, where the evolution of the sup-norm of the 
logarithmic deviation from the desired equilibrium 

X(t) := max
0≤x≤1

ln ρ(t, x)
ρeq

⎛

⎝⎜
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⎛

⎝
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0≤x≤1
ln v(t, x)

f (ρeq )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟  is shown 

for the open-loop system (1), (2), (3), (6) with 
q(t) ≡ qeq = 2 / 5 .  

In this case we can apply Theorem 3.1, since the 

condition ρeq ≤
c

c + f (ρeq )
ρmax − ε( )  as well as condition 

(17) hold (recall Remark 3.2). Fig. 1 and Fig. 2 show the 
evolution of the sup-norm of the logarithmic deviation from 
the desired equilibrium for the open- and closed-loop 
systems, respectively. 

 
Fig. 1: Evolution of the sup-norm of the logarithmic deviation from the 
desired equilibrium 

 X(t ) := max
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for the open-loop system (1), (2), (3), (6) with q(t ) ≡ qeq = 2 / 5 . 

Fig. 3 and Fig. 4 show the convergence of the solution to 
the equilibrium profile ρ(x) ≡ ρeq = 1 . It should be noted 
that at time , the solution has become identical (up 
to numerical accuracy) to the desired equilibrium. This is 
clear from Fig. 2, where it is shown the evolution of the 
sup-norm of the logarithmic deviation from the desired 
equilibrium  

X(t) := max
0≤x≤1

ln ρ(t, x)
ρeq
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for the closed-loop system (1), (2), (3), (6) with (18). Fig. 5 
shows the time evolution of the control input . The 
control input tries to keep the inlet density close to 1, while 
the heavy congestion belt is “washed out” slowly (due to 
small vehicle velocity in the congestion belt).    

 
Fig. 2: Evolution of the sup-norm of the logarithmic deviation from the 
desired equilibrium  
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for the closed-loop system (1), (2), (3), (6) with (18). 



 

 
Fig. 3: Density profiles at various time instants for the closed-loop  system 
(1), (2), (3), (6) with (18).  

 

 
Fig. 4: Density profiles at various time instants for the closed-loop system 
(1), (2), (3), (6) with (18).  

 
Fig. 5: The evolution of the control input q(t )  for the closed-loop system 
(1), (2), (3), (6) with (18).  

V. CONCLUDING REMARKS 

The paper provides results for a non-standard, 
hyperbolic traffic flow model on a bounded domain. The 
model has been developed for relatively crowded roads and 
consists of two first-order, hyperbolic PDEs with a dynamic 
boundary condition, which involves the time derivative of 
the velocity. Although simple, the proposed model has 
features that are important from a traffic-theoretic point of 
view: it is completely anisotropic, i.e., the velocity depends 
only on the velocity of downstream vehicles, and is a 
hyperbolic model for which information travels forward 
exactly at the same speed as traffic. It has been shown that 
for all physically meaningful initial conditions the model 
admits a globally defined, unique, classical solution that 
remains positive and bounded for all times (Theorem 2.1 
and Remark 2.2). Moreover, it has been shown that global 
stabilization in the sup-norm of the logarithmic deviation of 
the state from its equilibrium point can be achieved for 
arbitrary equilibria by means of an explicit boundary 
feedback law which adjusts continuously the inlet flow 
(Theorem 3.1). It is important to notice that the stabilizing 
feedback law depends only on the inlet velocity. Therefore 
the measurement requirements for the implementation of 
the proposed boundary feedback law are minimal. The 
efficiency of the proposed boundary feedback was 
demonstrated by means of a numerical example.  

Future work may involve the development of more 
complicated models, retaining the important characteristics 
of the proposed model, to capture secondary features of 
traffic flow dynamics. Another direction for future research 
is the use of sampled-data boundary feedback boundary for 
the stabilization of unstable equilibria.  
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