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Abstract— We introduce and solve the stabilization problem
of a transport PDE/nonlinear ODE cascade, in which the
PDE state evolves on a domain whose length depends on the
boundary values of the PDE state itself. In particular, we
develop a predictor-feedback control design, which compensates
such transport PDE dynamics. We prove local asymptotic
stability of the closed-loop system in the C1 norm of the PDE
state employing a Lyapunov-like argument and introducing a
backstepping transformation. We also highlight the relation of
the PDE-ODE cascade to a nonlinear system with input delay
that depends on past input values and present the predictor-
feedback control design for this representation as well.

I. INTRODUCTION

Nonlinear systems with input delays that depend on the
input itself can describe the dynamics of numerous physical
processes. Among several other applications, such systems
may model the dynamics of automotive engines [16], [20],
batch processes [8], [9], blending processes [14], water
heating processes [32], production systems [17], chemical
processes [19], [34], crushing mills [30], solar collectors
[31], cooling systems [18] (where input-dependent delays
appear due to the time required for the coolant to reach
the consumers), and of vehicular traffic flow [21]. For this
reason, it is of significant importance to develop control
design methodologies for nonlinear systems with input-
dependent input delays.

Prediction-based techniques have been successful in solv-
ing the stabilization problem of nonlinear systems with input
delays that vary with time. In particular, prediction-based
techniques are developed for the stabilization of systems with
time-varying delays [3], [10], [25], [27], nonlinear systems
with state-dependent delays [4], [5], [6], [7], [13], wave
PDE/nonlinear ODE cascades with state-dependent moving
boundaries [11], [12], and of nonlinear systems with input-
dependent delays [8], [9], [17]. However, the problem of
stabilization of a transport PDE/nonlinear ODE cascade in
which the PDE state evolves on a domain whose length
depends on the boundary values of the PDE state itself has
never been addressed.

In this paper, we consider the stabilization problem of
nonlinear systems with actuator dynamics governed by a
transport PDE that evolves on a domain whose length
depends on the boundary values of the PDE state itself.
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We develop a predictor-feedback control design methodology
for the compensation of this type of actuator dynamics. The
closed-loop system, under the predictor-feedback control law,
it is shown to be locally asymptotically stable, in the C1

norm of the PDE state, via the employment of a Lyapunov-
like argument and the introduction of a backstepping trans-
formation. Our stability result is local due to an inherent
limitation of the class of transport PDEs under consideration,
which ensures the well-posedness of the given transport
PDE. More specifically, this restriction guarantees that, in
an equivalent formulation of the transport PDE that employs
a constant PDE domain and a transport speed that depends
on the boundary values of the PDE state as well as its first-
order spatial derivative, the transport speed remains always
strictly positive as well as uniformly bounded from above
and below by finite constants.

Furthermore, we demonstrate that a special case of the
considered transport PDE/nonlinear ODE cascade may be
viewed as a nonlinear system with an input delay that
is defined implicitly through a nonlinear equation, which
involves the input value at a time that depends on the delay
itself. This class of systems is different than the classes of
systems considered in [9] and [17], in which, the input delays
are defined implicitly via an integral equation that involves
past input values. Note that the latter form of input delay is
the result of the explicit dependency of the transport speed
(rather than of the controlled boundary) on the boundary
values of the PDE state.

Notation: We use the common definition of class
K, K∞ and KL functions from [24]. For an n-vector,
the norm | · | denotes the usual Euclidean norm. For
scalar functions u ∈ L∞[0, D(t)] or v ∈ L∞[0, 1]
we denote by ‖u(t)‖∞ or ‖v(t)‖∞ their respective
supremum norms i.e., ‖u(t)‖∞ = supx∈[0,D(t)] |u(x, t)|
or ‖v(t)‖∞ = supz∈[0,1] |v(z, t)|. For scalar functions
ux ∈ L∞[0, D(t)] or vz ∈ L∞[0, 1] we denote by
‖ux(t)‖∞ or ‖vz(t)‖∞ their respective supremum
norms i.e., ‖ux(t)‖∞ = supx∈[0,D(t)] |ux(x, t)| or
‖vz(t)‖∞ = supz∈[0,1] |vz(z, t)|. For vector valued
functions p ∈ L∞[0, D(t)] or pv ∈ L∞[0, 1] we denote by
‖p(t)‖∞ or ‖pv(t)‖∞ their respective supremum norms,
i.e., ‖p(t)‖∞ = supx∈[0,D(t)]

√
p1(x, t)2 + . . .+ pn(x, t)2

or ‖pv(t)‖∞ = supz∈[0,1]
√
p1(z, t)2 + . . .+ pn(z, t)2.

For vector valued functions px ∈ L∞[0, D(t)] or
pvz ∈ L∞[0, 1] we denote by ‖px(t)‖∞ or ‖pvz(t)‖∞
their respective supremum norms, i.e., ‖px(t)‖∞ =
supx∈[0,D(t)]

√
p1x(x, t)2 + . . .+ pnx(x, t)2 or



Fig. 1. Nonlinear system with actuator dynamics governed by a transport
PDE, which evolves on a varying domain whose length depends on the
boundary values of the PDE state itself.

‖pvz(t)‖∞ = supz∈[0,1]
√
pv1z(z, t)

2 + . . .+ pvnz(z, t)
2.

We denote by Cj(A;E) the space of functions that take
values in E and have continuous derivatives of order j on
A.

II. PROBLEM FORMULATION AND
PREDICTOR-FEEDBACK CONTROL DESIGN

We consider the following system (see Fig. 1)

Ẋ(t) = f (X(t), u(0, t)) (1)
ut(x, t) = ux(x, t) (2)

u (D (t) , t) = U(t), (3)

where X ∈ Rn is the ODE state, t ≥ 0 is time, x ∈ [0, D(t)]
is spatial variable, U is a scalar control input, u is the
PDE state of the actuator dynamics, f : Rn × R → Rn
is a continuously differentiable vector field that satisfies
f(0, 0) = 0, and D is a moving boundary that is defined
as

D(t) = F (u (D(t), t) , u(0, t)) . (4)

The following assumptions are imposed on system (1)–(4).
Assumption 1: Function F : R2 → R is twice continu-

ously differentiable and satisfies

F (u1, u2) > 0, for all (u1, u2) ∈ R2. (5)
Assumption 2: System Ẋ = f (X,ω) is strongly forward

complete with respect to ω.
Assumption 3: There exists a twice continuously differ-

entiable feedback law κ : Rn → R, with κ(0) = 0, which
renders system Ẋ = f (X,κ(X) + ω) input-to-state stable
with respect to ω.

Assumption 1 is a mild assumption on the moving bound-
ary function F , which ensures that the transport equation (2),
(3) is meaningful. Assumption 2 (see, e.g., [1]) guarantees
that for every initial condition and every locally bounded
input signal, the corresponding solution of (1) is defined for
all t ≥ 0. Hence, it implies that the state X of system (1)
doesn’t escape to infinity before the control signal U reaches
it, no matter the size of the delay (see, e.g., [5], [25], [26]).
Assumption 3 (see, e.g., [33]) guarantees the existence of
a nominal feedback law that renders system (1) input-to-
state stable in the absence of the transport actuator dynamics
(i.e., in the absence of the input delay). This assumption is a
standard ingredient of the predictor-feedback control design
methodology (see, e.g., [5], [25], [26]).

The predictor-feedback control law for system (1)–(3) is
given by

U(t) = κ (p (D(t), t)) , (6)

where for all x ∈ [0, D (t)] and t ≥ 0

p (x, t) = X(t) +

∫ x

0

f (p(y, t), u(y, t)) dy. (7)

For the implementation of the predictor-feedback law (6),
(7) it is required that the ODE state X(t) and the PDE state
u(x, t), x ∈ [0, D(t)], are measured for all t ≥ 0. Note that
the position of the moving boundary D(t), for all t ≥ 0,
can be computed at each time instant t employing the right-
hand side of expression (4) and the boundary measurements
of the PDE state, unless it is directly measured. It is
worth mentioning here that the implementation problem of
predictor-feedback control laws is tackled in several works,
such as, for example, [22], [23], [28], [35].

For the subsequent analysis it turns out that it is useful
to transform the PDE (2), (3), which evolves on a varying
domain, to a PDE that evolves on a constant domain.
Defining

x = D (t) z (8)
v(z, t) = u (D (t) z, t) , (9)

we re-write (1)–(3) as

Ẋ(t)=f (X(t), v(0, t)) (10)

vt(z, t)=

1 + z
∇F (v(1,t),v(0,t))

(vz(1,t),vz(0,t))T

F (v(1,t),v(0,t))

1−Fu1 (v(1,t),v(0,t))
vz(1,t)

F (v(1,t),v(0,t))

F (v(1, t), v(0, t))
vz(z, t),

z ∈ [0, 1] (11)
v(1, t)=U(t). (12)

In order to guarantee the well-posedness of the transport PDE
(11), (12) the transport speed must be strictly positive as
well as uniformly bounded from above and below. Since
the transport speed depends on the PDE state itself the
following conditions on the closed-loop solutions and the
initial conditions it is needed to be satisfied for all t ≥ 0

1− ε1 <
vz(1, t)Fu1

(v(1, t), v(0, t))

F (v(1, t), v(0, t))
< 1− ε2 (13)

ε3 − 1 <
vz(0, t)Fu2

(v(1, t), v(0, t))

F (v(1, t), v(0, t))
< ε4 − 1 (14)

ε5 < F (v(1, t), v(0, t)) < ε6, (15)

for some positive constants ε1, ε2, ε3, ε4, ε5, and ε6.

III. STABILITY ANALYSIS

Theorem 1: Consider the closed-loop system consisting
of the plant (1)–(4) and the control law (6), (7). Under
Assumptions 1, 2, and 3, there exist a positive constant δu
and a class KL function βu such that for all initial conditions
X(0) ∈ Rn and u(·, 0) ∈ C1 [0, D(0)] which satisfy

|X(0)|+ ‖u(0)‖∞ + ‖ux(0)‖∞ < δu, (16)

as well as the compatibility conditions

u (D(0), 0) = κ (p (D(0), 0)) (17)

ux (D(0), 0) =
∂κ (p (D(0), 0))

∂p
×f (p (D(0), 0) , u (D(0), 0)) , (18)



the following holds

Ω(t) ≤ βu (Ω(0), t) , for all t ≥ 0 (19)
Ω(t) = |X(t)|+ ‖u(t)‖∞ + ‖ux(t)‖∞. (20)

The proof of Theorem 1 is based on the following lemmas.
Sketches of the proofs of these lemmas are provided in
Appendix A. The first two lemmas introduce a backstepping
transformation, together with its inverse, which transforms
the original closed-loop system (10)–(12), (6), (7) into a
“target system” whose stability properties are established.

Lemma 1: The control law (6), (7) is expressed in terms
of the v variable as

U(t) = κ (pv (1, t)) , (21)

where, for all z ∈ [0, 1],

pv(z, t) = X(t) + F (v(1, t), v(0, t))

×
∫ z

0

f (pv(s, t), v(s, t)) ds. (22)

Lemma 2: Consider the backstepping transformation

w(z, t) = v(z, t)− κ (pv(z, t)) , (23)

together with its inverse

v(z, t) = w(z, t) + κ (πv(z, t)) , (24)

where

πv(z, t)=X(t) + F (κ (πv(1, t)) , w(0, t) + κ (X(t)))∫ z

0

f (πv(y, t), w(y, t) + κ (πv(y, t))) dy. (25)

Transformation (23) together with the control law (21), (22)
transform system (10)–(12) to the following target system

Ẋ(t) = f (X(t), κ (X(t)) + w(0, t)) (26)
wt(z, t) = ξ(z, t)wz(z, t) (27)
w(1, t) = 0, (28)

where

ξ(z, t) =

1 + z
∇F (v(1,t),v(0,t))

(vz(1,t),vz(0,t))T

F (v(1,t),v(0,t))

1−Fu1
(v(1,t),v(0,t))

vz(1,t)
F (v(1,t),v(0,t))

F (v(1, t), v(0, t))
, (29)

with v(0, t) expressed in terms of w(0, t) and X(t) using
(24), (25) for z = 0 and v(1, t) expressed in terms of πv(1, t)
using (24), (25) for z = 1 and (28).

The next lemma shows that the target system (26)–(28) is
asymptotically stable.

Lemma 3: There exists a class KL function βw such
that for all solutions of the system satisfying (13)–(15) the
following holds

Ωw(t) ≤ βw (Ωw(0), t) , for all t ≥ 0 (30)
Ωw(t) = |X(t)|+ ‖w(t)‖∞ + ‖wz(t)‖∞. (31)

Lemmas 4–6, establish the norm equivalency between the
original system (10)–(12) and the target system (26)–(28).

Lemma 4: There exists a class K∞ function ρ1 such that
the following holds for all t ≥ 0

‖pv(t)‖∞ + ‖pvz(t)‖∞ ≤ ρ1 (|X(t)|+ ‖v(t)‖∞) . (32)

Lemma 5: There exists a class K∞ function ρ2 such that
the following holds for all t ≥ 0

‖πv(t)‖∞ + ‖πvz(t)‖∞ ≤ ρ2 (|X(t)|+ ‖w(t)‖∞) . (33)
Lemma 6: There exist class K∞ functions ρ3 and ρ4 such

that the following hold for all t ≥ 0

Ωw(t) ≤ ρ3 (Ωv(t)) (34)
Ωv(t) ≤ ρ4 (Ωw(t)) . (35)

where Ωw is defined in (31) and

Ωv(t) = |X(t)|+ ‖v(t)‖∞ + ‖vz(t)‖∞. (36)
The next two lemmas show the equivalency of the C1

norm of state (X,u(x)), x ∈ [0, D(t)], to the state (X, v(z)),
z ∈ [0, 1].

Lemma 7: There exists a class K∞ function ρ5 such that
the following holds for all t ≥ 0

Ωv(t) ≤ ρ5 (Ω(t)) , (37)

where Ωv and Ω are defined in (36) and (20), respectively.
Lemma 8: There exists a class K∞ function ρ6 such that

for all solutions of the system satisfying (15) the following
holds for all t ≥ 0

Ω(t) ≤ ρ6 (Ωv) , (38)

where Ω and Ωv are defined in (20) and (36), respectively.
In the last three lemmas an estimate of the region of

attraction of the predictor-feedback control law (6), (7) is
provided.

Lemma 9: There exists a positive constant δ1 such that
for all solutions of the system that satisfy

|X(t)|+ ‖v(t)‖∞ + ‖vz(t)‖∞ < δ1, for all t ≥ 0, (39)

they also satisfy (13)–(15).
Lemma 10: There exists a positive constant δv such that

for all initial conditions of the closed-loop system (10)–(12),
(21), (22) that satisfy

|X(0)|+ ‖v(0)‖∞ + ‖vz(0)‖∞ < δv, (40)

the solutions of the system satisfy (39), and hence, satisfy
(13)–(15).

Lemma 11: There exists a positive constant δu such that
for all initial conditions of the closed-loop system (1)–(3),
(6), (7) that satisfy (16) they also satisfy (40).

Proof of Theorem 1: Theorem 1 is proved combining
Lemmas 3, 6, 7, and 8 with

βu(s, t) = ρ6 (ρ4 (βw (ρ3 (ρ5(s)) , t))) . (41)

IV. RELATION TO A SYSTEM WITH
DELAYED-INPUT-DEPENDENT INPUT DELAY

Consider the following system

Ẋ(t) = f (X(t), U (φ(t))) , (42)

where the delayed time φ is defined implicitly through
relation

φ(t) = t− F (U (φ(t))) , (43)



and F : R → R+ is a delay. In fact, system (42), (43)
is an equivalent delay system representation of system (1)–
(4), where for simplicity of presentation we consider only
the dependency of F from U (φ). To see this note that the
solution to (2), (3) is given for all x ∈ [0, D(t)] and t ≥ 0
by

u(x, t) = U (φ(t+ x)) , (44)

where the prediction time σ, i.e., the inverse function of φ,
is given by

σ(t) = t+D(t)

= t+ F (U(t)) . (45)

The predictor-feedback control law for system (42) with
an input delay defined via (43) is given by

U(t) = κ (P (t)) , (46)

where the predictor P is given for all t ≥ 0 by

P (θ)=X(t) +

∫ θ

φ(t)

(
1 + F ′ (U(s)) U̇(s)

)
×f (P (s), U(s)) ds, for all φ(t) ≤ θ ≤ t. (47)

The predictor-feedback control law is implementable since
it depends on the history of U(s) and U̇(s), over the window
φ(t) ≤ s ≤ t, as well as on the ODE state X(t), which
are assumed to be measured for all t ≥ 0. Moreover, the
implementation of the predictor-feedback design requires the
computation at each time step of the delayed time φ. This
can either be performed by numerically solving relation (43)
or by employing the following integral equation

φ (θ) = t−
∫ σ(t)

θ

ds

1 + F ′ (U (φ(s)))U ′ (φ(s))
,

for all t ≤ θ ≤ σ(t), (48)

where σ is defined in (45). Note that the key condition for
the well-posedness of system (42), (43) and the predictor-
feedback control design (46), (47) is reflected by the need
to keep the denominator in (48) positive.

V. CONCLUSIONS

We introduced a predictor-feedback control design
methodology for nonlinear systems with transport actuator
dynamics, which evolve on a varying domain whose length
depends on the boundary values of the transport PDE sate.
We proved local asymptotic stability of the closed-loop
system under predictor-feedback in the C1 norm of the
actuator state, employing a Lyapunov-like argument and a
novel backstepping transformation. The relation of the PDE-
ODE cascade to a nonlinear system with input delay that
depends on past input values was also highlighted and the
predictor-feedback control design for this representation was
also presented.

APPENDIX A

Proof of Lemma 1

Performing in the integral in (7) the change of variables
y = D(t)s and using the fact that F is positive (Assumption
1), with definitions (8), (9), and

pv(z, t) = p (D(t)z, t) , for all z ∈ [0, 1], (A.1)

the proof is completed.

Proof of Lemma 2 (Sketch)

The function p satisfies

pt(x, t) = px(x, t), x ∈ [0, 1], (A.2)

which can be shown by noting that u satisfies (2). Therefore,
using (2), (A.2) and definitions (9), (A.1) we get that

wt(z, t) =
zḊ(t) + 1

D(t)
wz(z, t), (A.3)

where from (2), (4) it follows that

1 + zḊ(t)

D(t)
=

1 + z
∇F (v(1,t),v(0,t))

(vz(1,t),vz(0,t))T

F (v(1,t),v(0,t))

1−Fu1 (v(1,t),v(0,t))
vz(1,t)

F (v(1,t),v(0,t))

F (v(1, t), v(0, t))
.(A.4)

Proof of Lemma 3 (Sketch)

Under (13)–(15) it holds that

min
{

1, ε3ε1

}
ε6

≤ ξ(z, t) ≤
min

{
1, ε4ε2

}
ε5

, (A.5)

for all z ∈ [0, 1] and t ≥ 0, where ξ is defined in (29).
Moreover, from (27), (28), and (A.5) it follows that

wzt(z, t) = ξz(z, t)wz(z, t) + ξ(z, t)wzz (A.6)
wz(1, t) = 0. (A.7)

Consider now the following Lyapunov functional

Lc,m(t) =

∫ 1

0

e2(c+λ)zmw(z, t)2mdz

+

∫ 1

0

e2(c+λ)zmwz(z, t)
2mdz, (A.8)

for any c > 0 and any positive integer m. Taking the time
derivative of (A.8) along the solutions of (26)–(28), (A.6),
(A.7) and using definition (29) together with (13)–(15), we
conclude that there exists λ > 0 such that

L̇c,m(t) ≤ −2mcεLc,m(t), (A.9)

where ε = min{ε2,ε3}
ε1ε6

. From (A.8) this implies that

Ξc,m(t) ≤ 2e−cε(t−s)Ξc,m(s), (A.10)

where

Ξc,m(t)=

(∫ 1

0

e2(c+λ)zmw(z, t)2mdz

) 1
2m

+

(∫ 1

0

e2(c+λ)zmwz(z, t)
2mdz

) 1
2m

.(A.11)



Taking the limit of (A.11) as m goes to infinity, with
the definition of the supremum norm, i.e., with relation

‖θ(t)‖∞ = limm→∞

(∫ 1

0
|θ(z, t)|2mdz

) 1
2m

, we obtain

‖w(t)‖∞ + ‖wz(t)‖∞≤2e−cε(t−s)e(c+λ) (‖w(s)‖∞
+‖wz(s)‖∞) . (A.12)

Under Assumption 3 (see, e.g., [33]) we obtain from (26)

|X(t)| ≤ β1 (|X(s)|, t− s) + γ1

(
sup
s≤τ≤t

‖w(τ)‖
)
, (A.13)

for all t ≥ s ≥ 0, some class KL function β1, and
some class K function γ1. Mimicking the arguments in the
proof of Lemma 4.7 from [24] and using (A.12) we get
(30) with βw (s, t) = β1

(
β1 (s, 0) + γ1

(
2e(c+λ)s

)
, t2
)

+

2e−cεte(c+λ)s+ γ1

(
2e−cε

t
2 e(c+λ)s

)
.

Proof of Lemma 4 (Sketch)

From (22) it follows that

pvz(z, t)=F (v(1, t), v(0, t)) f (pv(z, t), v(z, t)) .(A.14)

Under Assumption 2, the ODE in z (A.14), and under
Assumption 1 (continuity and positiveness of F ), which
allows us to conclude that

F (v(1, t), v(0, t))≤F (0, 0)+α̂ (|v(1, t)|+|v(0, t)|),(A.15)

for some class K∞ function α̂, we get

‖pv(t)‖∞ ≤ α4 (|X(t)|+ ‖v(t)‖∞) , (A.16)

for some class K∞ function α4. Since f is continuously
differentiable with f(0, 0) = 0, using (A.14) and (A.16), we
arrive at

|pvz(z, t)|≤α6 (|X(t)|+ ‖v(t)‖∞) , ∀z ∈ [0, 1],(A.17)

for some class K∞ function α6. The proof is completed by
taking a supremum in both sides of (A.17).

Proof of Lemma 5 (Sketch)

From (25) it follows that

πvz(z, t)=F (κ (πv(1, t)) , w(0, t) + κ (X(t)))

×f (πv(z, t), w(z, t) + κ (πv(z, t))) ,(A.18)

and thus, defining

π(x, t) = π (D(t)z, t) ≡ πv (z, t) , (A.19)

and

wu(x, t) = wu (D(t)z, t) ≡ w (z, t) , (A.20)

we get using (28) and (24) that for all x ∈ [0, D(t)]

πx(x, t) = f (π(x, t), wu(x, t) + κ (π(x, t))) . (A.21)

Under Assumption 3 (see, e.g., [33]), with definitions (A.19)
and (A.20) we obtain

‖πv(t)‖∞ ≤ β̂ (|X(t)|, 0) + ζ (‖w(t)‖∞) , (A.22)

for some class KL function β̂ and some class K function ζ.
Under Assumption 3 (continuity of κ and the fact that κ(0) =
0) and Assumption 1, from (A.15), (A.18), and (A.22) we
obtain

|πvz(z, t)| ≤ α7 (|X(t)|+ ‖w(t)‖∞) , (A.23)

for some class K∞ function α7, which completes the proof.

Proof of Lemma 6 (Sketch)
Under Assumption 3 (continuous differentiability of κ),

using (32) we get from (23) estimate (34). Similarly, com-
bining (24) with (33), estimate (35) follows.

Proof of Lemma 7 (Sketch)
From (A.15) we get that

sup
z∈[0,1]

|vz(z, t)|= sup
x∈[0,D(t)]

|ux(x, t)F (u(D(t), t), u(0, t))|

≤‖ux(t)‖∞ (F (0, 0)+α̂ (2‖u(t)‖∞))(A.24)

and thus, we also get (37).

Proof of Lemma 8
Utilizing the fact that

|ux (D(t)z, t)| = |vz(z, t)|
F (v(1, t), v(0, t))

, (A.25)

from the left-hand side of inequality (15) we obtain

‖ux(t)‖∞ ≤
1

ε5
‖vz(t)‖∞. (A.26)

Therefore, relation (38) is obtained with ρ6(s) =
(

1 + 1
ε5

)
s.

Proof of Lemma 9 (Sketch)
Under Assumption 1 and (A.15) one can conclude that

F (0, 0)−α̂ (|v(1, t)|+|v(0, t)|)≤F (v(1, t), v(0, t)) .(A.27)

Taking any constant δ1 such that

δ1 < α̂−11 (F (0, 0)) , (A.28)

where α̂1(s) = α̂ (2s), it follows from (A.15) and (A.27)
that (15) is satisfied with any choice of ε5, ε6 such that

0 < ε5 < F (0, 0)− α̂ (2δ1) (A.29)
ε6 > F (0, 0) + α̂ (2δ1) . (A.30)

Moreover, under Assumption 1 (continuous differentiability
of F ) there exists a class K∞ function ρ̂ such that

|∇F (v(1, t), v(0, t))|≤|∇F (0, 0)|
+ρ̂ (|v(1, t)|+ |v(0, t)|) .(A.31)

Thus, from (A.27), (A.28), (A.31), and (39) we have that

Γ (δ1)≥|Γ1 (v(1, t), v(0, t), vz(0, t))|
+ |Γ2 (v(1, t), v(0, t), vz(1, t))| (A.32)

Γ=
2δ1 (|∇F (0, 0)|+ ρ̂ (2δ1))

F (0, 0)− α̂1 (δ1)
(A.33)

Γ1=
vz(0, t)Fu2

(v(1, t), v(0, t))

F (v(1, t), v(0, t))
(A.34)

Γ2=
vz(1, t)Fu1

(v(1, t), v(0, t))

F (v(1, t), v(0, t))
. (A.35)



Hence, (13), (14) hold with any choice ε1, ε2, ε3, ε4 such that

ε1=ε4 > 1 +
2δ1 (|∇F (0, 0)|+ ρ̂ (2δ1))

F (0, 0)− α̂1 (δ1)
(A.36)

ε2=ε3 < 1− 2δ1 (|∇F (0, 0)|+ ρ̂ (2δ1))

F (0, 0)− α̂1 (δ1)
, (A.37)

whenever,

δ1 < ᾱ−1 (F (0, 0)) , (A.38)

where ᾱ ∈ K∞ is ᾱ (s) = α̂ (2s)+2s (|∇F (0, 0)|+ ρ̂ (2s)).
Note that (A.28) holds if (A.38) holds.

Proof of Lemma 10

Combining (30) with (35) and (34) we arrive at Ωv(t) ≤
ρ4 (βu (ρ3 (Ωv(0)) , 0)), where Ωv is defined in (36). The
proof is completed choosing δv ≤ γ̄−1 (δ1), where γ̄ is the
class K function γ̄ (s) = ρ4 (βu (ρ3 (s, 0))).

Proof of Lemma 11

From Lemma 7 the lemma is proved with δu ≤ ρ−15 (δv).
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