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Abstract— We present a methodology for stabilization of
general nonlinear systems with actuator dynamics governed by
quasilinear transport PDEs. Since for such PDE-ODE cascades
the speed of propagation depends on the PDE state itself (which
implies that the prediction horizon cannot be a priori known
analytically), the key design challenge is the determination of
the predictor state. We resolve this challenge and introduce
a PDE predictor-feedback control law that compensates the
transport actuator dynamics. Due to the potential formation of
shock waves in the solutions of quasilinear, first-order hyper-
bolic PDEs (which is related to the fundamental restriction
for systems with time-varying delays that the delay rate is
bounded by unity), we limit ourselves to a certain feasibility
region around the origin and we show that the PDE predictor-
feedback law achieves asymptotic stability of the closed-loop
system, providing an estimate of its region of attraction. Our
analysis combines Lyapunov-like arguments and ISS estimates.
Since it may be intriguing as to what is the exact relation of
the cascade to a system with input delay, we highlight the fact
that the considered PDE-ODE cascade gives rise to a system
with input delay, with a delay that depends on past input values
(defined implicitly via a nonlinear equation).

I. INTRODUCTION

A. Motivation

Numerous processes may be described by quasilinear,
first-order hyperbolic Partial Differential Equations (PDEs)
cascaded with nonlinear Ordinary Differential Equations
(ODEs), such as, for example, communication networks [21],
blood flow [9], sewer networks [17], production systems
[22], vehicular traffic flow [24], piston dynamics [35], au-
tomotive engines [18], [26], [31], and oil drilling [1], [23] to
name only a few [39]. Despite their popularity, despite the
fact that predictor-based control laws now exist for nonlinear
systems with input delays that may depend on the ODE state
[3], [4], [5], [6], [13], [14] as well as the uncontrolled- or
controlled-boundary value of the PDE state [10], [11], [12],
[19], and despite the existence of several results on boundary
stabilization of quasilinear, first-order hyperbolic PDEs, such
as, for example, [8], [15], [25], [32], [40], [42], [43], no result
exists on the compensation of actuator dynamics governed
by quasilinear, first-order hyperbolic PDEs for nonlinear
systems.
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B. Contributions

In this paper, we consider the problem of stabilization of
nonlinear ODE systems through transport actuator dynamics
governed by quasilinear, first-order hyperbolic PDEs. We
develop a novel PDE predictor-feedback law, which com-
pensates the PDE actuator dynamics. Since the speed of
propagation depends on the PDE state itself, the key idea
in our design is the construction of the PDE predictor state.
This construction is by far non-trivial and cannot follow
in a straightforward way employing the results from [19],
which is perhaps the only available work dealing with the
problem of complete compensation of an input-dependent
input delay (note that the designs in [11], [12], [10], don’t
aim at achieving complete delay compensation). The reason
is that the transport speed in the class of systems considered
in [19] depends only on the uncontrolled-boundary value of
the PDE state rather than on the PDE state itself, as it is the
case here.

Furthermore, we show that the PDE predictor-feedback
design achieves local asymptotic stability in the C1 norm of
the actuator state. The reason for obtaining only a regional
result, restricting the C1 norm of the PDE state, is the
possibility of appearance of multivalued solutions, or, in
other words, the appearance of shock waves, in the solutions
of quasilinear, first-order hyperbolic PDEs. We show, within
our stability analysis, that this issue is avoided, limiting the
C1 norm of the solutions and the initial conditions. This
limitation may alternatively be expressed as the fundamental
limitation in stabilization of systems with time-varying input
delays that the delay rate is bounded by unity–for the class
of systems considered here, giving rise to an input delay
that depends on the actuator state and its derivative, the
satisfaction of this restriction is guaranteed by confining the
size of the actuator state and its derivative. The proof of
asymptotic stability in the C1 norm of the actuator state is
established employing Lyapunov-like arguments as well as
Input-to-State Stability (ISS) estimates.

In order to make the presentation of our control design
methodology accessible to both readers who are experts
on PDEs and readers who are experts on delay systems
we highlight the relation of the PDE-ODE cascade to a
system with input delay that is defined implicitly through a
nonlinear equation, which involves the input value at a time
that depends on the delay itself, and, moreover, we present
the predictor-feedback design in this representation as well.



C. Organization

We start in Section II where we present the class of
systems under consideration as well as the PDE predictor-
feedback control design. We provide an alternative, delay
system representation of the considered PDE-ODE cascade
in Section III. In Section IV we prove the local asymptotic
stability of the closed-loop system under the proposed con-
troller. Concluding remarks are provided in Section V.

The proofs of the various lemmas that lead to the proof
of the main result are omitted due to space limitations, but
they can be found in [7] (Appendix A).

Notation: We use the common definition of class K,
K∞ and KL functions from [30]. For an n-vector, the
norm | · | denotes the usual Euclidean norm. For a scalar
function u ∈ C[0, 1] we denote by ‖u(t)‖∞ its respec-
tive maximum norm, i.e., ‖u(t)‖∞ = maxx∈[0,1] |u(x, t)|.
For a scalar function ux ∈ C[0, 1] we denote by
‖ux(t)‖∞ its respective maximum norm, i.e., ‖ux(t)‖∞ =
maxx∈[0,1] |ux(x, t)|. For a vector valued function p ∈
C[0, 1] we denote by ‖p(t)‖∞ its respective maximum norm,
i.e., ‖p(t)‖∞ = maxx∈[0,1]

√
p1(x, t)2 + . . .+ pn(x, t)2.

For a vector valued function px ∈ C[0, 1] we denote by
‖px(t)‖∞ its respective maximum norm, i.e., ‖px(t)‖∞ =
maxx∈[0,1]

√
p1x(x, t)2 + . . .+ pnx(x, t)2. We denote by

Cj(A;E) the space of functions that take values in E and
have continuous derivatives of order j on A.

II. PROBLEM FORMULATION AND
PREDICTOR-FEEDBACK CONTROL DESIGN

We consider the following system

Ẋ(t) = f (X(t), u(0, t)) (1)
ut(x, t) = v (u(x, t))ux(x, t) (2)
u (1, t) = U(t), (3)

where X ∈ Rn and u ∈ R are ODE and PDE states,
respectively, t ≥ 0 is time, x ∈ [0, 1] is spatial variable,
U is control input, and f : Rn × R→ Rn is a continuously
differentiable vector field that satisfies f(0, 0) = 0.

The following assumptions are imposed on system (1)–(3).

Assumption 1: Function v : R → R+ is twice contin-
uously differentiable and there exists a positive constant v
such that the following holds

v (u) ≥ v, for all u ∈ R. (4)
Assumption 2: System Ẋ = f (X,ω) is strongly forward

complete with respect to ω.
Assumption 3: There exists a twice continuously differ-

entiable feedback law κ : Rn → R, with κ(0) = 0, which
renders system Ẋ = f (X,κ(X) + ω) input-to-state stable
with respect to ω.

Assumption 1 is a prerequisite for the well-posedness of
the predictor state, which is defined in the next paragraph. It
guarantees that transport is happening only in the direction
away from the input, or, in other words (see also the
discussion in the next section), it ensures that the input delay
is positive as well as uniformly bounded. Assumption 2 (see,

e.g., [2]) and Assumption 3 (see, e.g., [41]) are standard
ingredients of the predictor-feedback control design method-
ology (see, e.g., [4], [33], [34]). The former implies that the
state X of system (1) doesn’t escape to infinity before the
control signal U reaches it, no matter the size of the delay
(see, e.g., [4], [33], [34]), while the latter guarantees the
existence of a nominal feedback law that renders system (1)
input-to-state stable in the absence of the transport actuator
dynamics (i.e., in the absence of the input delay).

The predictor-feedback control law for system (1)–(3) is
given by

U(t) = κ (p (1, t)) , (5)

where for all t ≥ 0

p (x, t) = X(t) +

∫ x

0

f (p(y, t), u(y, t))

×Γ (u(y, t), uy(y, t), y) dy, x ∈ [0, 1] (6)

with1

Γ (u(x, t), ux(x, t), x) =
1

v (u(x, t))

−xv
′ (u(x, t))ux(x, t)

v (u(x, t))
2 ,

x ∈ [0, 1]. (7)

For implementing the predictor-feedback law (5)–(7), besides
measurements of the ODE state X(t) and the PDE state
u(x, t), x ∈ [0, 1], for all t ≥ 0, the availability of the spatial
derivative of u, namely, ux(x, t), x ∈ [0, 1], for all t ≥
0, is required. The latter may be obtained either via direct
measurements of ux or by a numerical computation of ux,
employing the measurements of u. The implementation and
approximation problems of predictor-feedback control laws
are tackled, for example, in [29], [37], [44].

In order to guarantee the well-posedness of the predictor
state (6) and the system the following feasibility condition
on the closed-loop solutions and the initial conditions needs
to be satisfied

−M <
v′ (u(x, t))ux(x, t)

v (u(x, t))
< 1,

for all x ∈ [0, 1] and t ≥ 0, (8)

for some M > 0. In the next section we provide some
explanatory remarks on the feasibility condition (8) and
Assumption 1, capitalizing on the relation of the PDE-ODE
cascade (1)–(3) to a system with a delayed-input-dependent
input delay.

Example 1: To illustrate the control design and its im-
plementation we present here a rather pedagogical example,
which results in a predictor-feedback law defined explicitly
in terms of X , u, and ux. Consider an unstable, scalar linear
system with actuator dynamics governed by a quasilinear,

1Note that Γ can be written as Γ (u(x, t), ux(x, t), x) =
∂ x

v(u(x,t))

∂x
.



first-order hyperbolic PDE given by

Ẋ(t) = X(t) + u(0, t) (9)
ut(x, t) =

(
u(x, t)2 + 1

)
ux(x, t) (10)

u(1, t) = U(t). (11)

System (9)–(11) satisfies all of the Assumptions 1–3 and a
nominal control law may be chosen as U(t) = −2X(t).
Thus, the predictor-feedback control law is given by

U(t) = −2p(1, t), (12)

where, exploiting the fact that Γ =
∂ x

u(x,t)2+1

∂x as well as the
linearity of the system, the predictor state p, defined in (6),
may be written in the present case as2

p(x, t) = e
x

u(x,t)2+1

(
X(t) + u(0, t)

+

∫ x

0

e
− y

u(y,t)2+1uy(y, t)dy

)
− u(x, t),

x ∈ [0, 1]. (13)

For the numerical computation of the integral in (13) we
employ a simple composite left-endpoint rectangular rule,
where the spatial derivates of u are numerically computed
utilizing a forward finite difference scheme. We choose the
initial conditions as

u(x, 0) = 1, for all x ∈ [0, 1] (14)
X(0) = −0.7. (15)

In Fig. 1 we show the response of the system, whereas in
Fig. 2 we show the control effort.

III. RELATION TO A SYSTEM WITH
DELAYED-INPUT-DEPENDENT INPUT DELAY

In this section, we highlight the fact that the PDE-ODE
cascade (1)–(3) may be viewed as a nonlinear system with
an input delay. The fact that the transport speed depends
on the PDE state itself, gives rise to a delay that is defined
implicitly through a nonlinear equation, which incorporates
the value of the input at a time that depends on the delay
itself.

The reasons for emphasizing this alternative representation
of system (1)–(3) are not merely pedagogical. Capitalizing on
this relation, enables both, readers who are experts on PDEs
and readers who are experts on delay systems, to digest the
key conceptual ideas as well as the technical intricacies of
our design and analysis methodologies, such as, for example,
to better understand some of the inherent limitations of

2To see this note that, for the case of system (9)–(11), the pre-
dictor state p in (6) satisfies, for each t, the ODE in x given

as px(x, t) = (p(x, t) + u(x, t))
∂ x

u(x,t)2+1

∂x
, with initial condi-

tion p(0, t) = X(t). Thus, solving this initial-value problem

with respect to x we obtain p(x, t) = e
∫ x
0

∂
y

u(y,t)2+1
∂y

dy
X(t) +∫ x

0 e
∫ x
y

∂ r
u(r,t)2+1

∂r
dr

u(y, t)
∂ y

u(y,t)2+1

∂y
dy. Expression (13) then follows

evaluating the integral in the first term of this relation and employing one
step of integration by parts in the integral in the second.
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Fig. 1. Response of system (9)–(11) with initial conditions (14), (15) under
the predictor-feedback law (12), (13).

the stabilization problem for such systems (see Section III-
B). Moreover, this alternative point of view, offers to the
designer two alternative control law representations (see
Section III-C), which may be very useful since, depending
on the specific application, one representation may be more
descriptive of the actual physical process as well as more
suitable for implementation than the other (consider, for
example, the case of control of traffic flow versus the case
of control over a network).

A. Derivation of the Delayed and Prediction Times

Employing the method of characteristics (for details, see,
e.g., [16]), it can be shown, see, e.g., [38], that the following
holds

u(0, t) = U

(
t− 1

v (u(0, t))

)
. (16)

Thus, defining the delayed time φ, i.e., the time at which
the value of the control signal U that currently affects the
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Fig. 2. Control effort (12), (13).

system, namely, u(0, t), was actually applied, as

φ(t) = t− 1

v (u(0, t))
, (17)

we re-write system (1)–(3) as

Ẋ(t) = f (X(t), U (φ(t))) , (18)

where φ is defined implicitly, for all t ≥ 0, through relation

φ(t) = t− 1

v (U (φ(t)))
. (19)

The prediction time σ, i.e., the time at which the value of the
control signal U currently applied, namely, U(t) = u(1, t),
will actually reach the system, is defined as the inverse
function of φ, namely,

σ(t) = t+
1

v (U(t))
. (20)

The invertibility of φ is guaranteed when the derivative of
(19), given by

φ̇(t) =
1

1− v′(U(φ(t)))U ′(φ(t))

v(U(φ(t)))2

, for all t ≥ 0, (21)

is positive for all times, or, equivalently, when the derivative
of (20), given by

σ̇ (t) = 1− v′ (U (t))

v (U (t))
2U
′ (t), for all t ≥ 0 (22)

is positive for all times.

B. Interpretation of Assumption 1 and Condition (8)

From (19) it is evident that the positivity assumption of v
guarantees that the delay is always positive, i.e., it guarantees
the causality of system (18), and thus, also of system (1)–(3).
Moreover, relation (4) guarantees the boundness of the delay,
i.e., it guarantees that the control signal eventually reaches
the plant (18), and thus, also (1).

The interpretation of condition (8) is less obvious. When
the derivative of the prediction (or the delayed) time is
bounded and strictly positive both the prediction and delayed
times are well-defined. Via (3), it is evident from (22) that
this requirement is satisfied when condition (8) holds. In
fact, condition (8) guarantees that the quasilinear first-order
hyperbolic PDE (2), (3) exhibits smooth solutions and that
the appearance of shock waves is avoided.

To see this, note that when the right-hand side of (8)
is violated the derivative of the delayed time becomes
infinite (or, equivalently, the derivative of the prediction time
becomes zero), that is, the delay disappears instantaneously
(with slope approaching negative infinity). This implies that
the delayed time becomes a multivalued function, which in
turn is related to loss of regularity of the solutions to (2), (3)
and the formation of a shock wave.

Moreover, when u is bounded, the regularity assumption
on v implies that the left-hand side of (8) may be violated
when ux reaches negative infinity. In terms of the delay
representation, it guarantees that the time derivative of the
prediction time cannot become infinite, and thus, the predic-
tor state remains well-posed.

C. Predictor-Feedback Control Design for the Equivalent
Delay System

Defining

F (U) =
1

v (U)
, (23)

the predictor-feedback control law for system (18) with an
input delay defined via (19) is given by

U(t) = κ (P (t)) , (24)

where the predictor P is given for all t ≥ 0 by

P (θ) = X(t) +

∫ θ

φ(t)

(
1 + F ′ (U(s)) U̇(s)

)
×f (P (s), U(s)) ds, for all φ(t) ≤ θ ≤ t.(25)

The predictor-feedback control law (25) is implementable
since, for all t ≥ 0, it depends on the history of U(s), over
the window φ(t) ≤ s ≤ t, the ODE state X(t), which
are assumed to be measured for all t ≥ 0, as well as on
U̇(s), over the window φ(t) ≤ s ≤ t, which is assumed to
either be measured directly or computed from the values of
U(s), φ(t) ≤ s ≤ t. Moreover, the implementation of the
predictor-feedback design requires the computation at each
time step of the delayed time φ. This can either be performed
by numerically solving relation (19), using the history of
the actuator state, or by employing the following integral
equation

φ (θ) = t−
∫ σ(t)

θ

ds

1 + F ′ (U (φ(s)))U ′ (φ(s))
,

for all t ≤ θ ≤ σ(t), (26)

where σ is defined in (20). The issue of implementation and
approximation of nonlinear predictor feedbacks is addressed
in detail in [27], [28], [29].



IV. STABILITY ANALYSIS

Theorem 1: Consider the closed-loop system consisting
of the plant (1)–(3) and the control law (5)–(7). Under
Assumptions 1, 2, and 3, there exist a positive constant δ
and a class KL function β such that for all initial conditions
X(0) ∈ Rn and u(·, 0) ∈ C1 [0, 1] which satisfy

|X(0)|+ ‖u(0)‖∞ + ‖ux(0)‖∞ < δ, (27)

as well as the compatibility conditions

u (1, 0) = κ (p (1, 0)) (28)

ux (1, 0) =
∂κ (p (1, 0))

∂p
f (p (1, 0) , u (1, 0))

×Γ (u(1, 0), ux(1, 0), 1) , (29)

there exists a unique solution to the closed-loop system with
X(t) ∈ C1[0,∞), u(x, t) ∈ C1 ([0, 1]× [0,∞)), and the
following holds

Ω(t) ≤ β (Ω(0), t) , for all t ≥ 0 (30)
Ω(t) = |X(t)|+ ‖u(t)‖∞ + ‖ux(t)‖∞. (31)

The proof of Theorem 1 is based on the following lemmas
whose proofs are omitted due to space limitations, but they
can be found in [7] (Appendix A).

Lemma 1: The variable

u(x, t)− κ (p(x, t)) = w(x, t), (32)

where p is defined in (6), satisfies

wt(x, t) = v (u(x, t))wx(x, t) (33)
w(1, t) = 0. (34)

Moreover, system (1) can be written as

Ẋ(t) = f (X(t), κ (X(t)) + w(0, t)) . (35)
Note that, differently with previous work on predictor-

feedback design, the variable w is just viewed as a new
variable, which is expressed in terms of the state (X,u) via
(32), (6), (7), rather than as a transformation of the original
state u. Thus, an inverse transformation is not required,
which doesn’t affect the analysis (see Lemma 4 below). The
reason for this alternative point of view is that the expression
for the potential inverse transformation would require the
definition of an alternative, rather complex representation of
the predictor state p that would depend on the new variable
w, which would add unnecessary complexity in the analysis.

The next lemma establishes an asymptotic stability esti-
mate for state variables (X,w(x)), x ∈ [0, 1], exploiting the
cascade structure of system (33)–(35).

Lemma 2: There exists a class KL function βw such that
for all solutions of the system satisfying (8) the following
holds

Ωw(t) ≤ βw (Ωw(0), t) , for all t ≥ 0 (36)
Ωw(t) = |X(t)|+ ‖w(t)‖∞ + ‖wx(t)‖∞. (37)

In Lemmas 3–5 below, the equivalency of the C1 norm
between the original state variables (X,u(x)), x ∈ [0, 1], and
the state variables (X,w(x)), x ∈ [0, 1], is established. The

proofs of each of Lemmas 3 and 4, utilize different arguments
and employ different assumptions. For this reason, the proof
of the norm equivalency, between the original and the new
state variables, is decomposed into three different lemmas.

Lemma 3: There exists a class K∞ function ρ1 such that
for all solutions of the system satisfying (8) the following
holds

‖p(t)‖∞ + ‖px(t)‖∞ ≤ ρ1 (|X(t)|+ ‖u(t)‖∞) ,

for all t ≥ 0. (38)
Lemma 4: There exists a class K∞ function ρ2 such that

for all solutions of the system satisfying (8) the following
holds

‖p(t)‖∞ + ‖px(t)‖∞ ≤ ρ2 (|X(t)|+ ‖w(t)‖∞) ,

for all t ≥ 0. (39)
Lemma 5: There exist class K∞ functions ρ3 and ρ4 such

that for all solutions of the system satisfying (8) the following
hold

Ωw(t) ≤ ρ3 (Ω(t)) , for all t ≥ 0 (40)
Ω(t) ≤ ρ4 (Ωw(t)) , for all t ≥ 0, (41)

where Ωw is defined in (37) and Ω is defined in (31).
An estimate of the region of attraction of the predictor-

feedback control law (5)–(7) within the feasibility region,
defined by condition (8), is derived in the next two lemmas.

Lemma 6: There exists a positive constant δ1 such that all
of the solutions that satisfy

|X(t)|+ ‖u(t)‖∞ + ‖ux(t)‖∞ < δ1, for all t ≥ 0, (42)

also satisfy (8).
Lemma 7: There exists a positive constant δ such that for

all initial conditions of the closed-loop system (1)–(3), (5)–
(7) that satisfy (27), the solutions of the system satisfy (42),
and hence, satisfy (8).

Proof of Theorem 1: Estimate (30) in Theorem 1 is
proved combining Lemmas 2 and 5 with

βu(s, t) = ρ4 (βw (ρ3 (s) , t)) . (43)

The proof of well-posedness of the system is omitted due
to space limitations, but it can be found in [7] (Section 4).

V. CONCLUSIONS AND FUTURE WORK

We presented a predictor-feedback control design method-
ology for nonlinear systems with actuator dynamics governed
by quasilinear, first-order hyperbolic PDEs. We proved that
the closed-loop system, under the developed feedback law,
is locally asymptotically stable, utilizing Lyapunov-like ar-
guments and ISS estimates. We also emphasized the relation
of the considered PDE-ODE cascade to a system with input
delay that depends on past input values.

A topic of future research may be the problem of boundary
stabilization of general, quasilinear systems of first-order
hyperbolic PDEs coupled with nonlinear ODE systems, as
it is done in [20] for the case in which both the PDE and
ODE parts of the system are linear.
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