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Abstract— We tackle the boundary control problem for a
class of viscous Hamilton-Jacobi PDEs, considering bilateral
actuation, i.e., at the two boundaries of a 1-D spatial domain.
First, we solve the nonlinear trajectory generation problem for
this type of PDEs, providing the necessary feedforward actions
at both boundaries. Second, in order to guarantee trajectory
tracking with an arbitrary decay rate, we construct nonlinear,
full-state feedback laws employed at the two boundary ends. All
of our designs are explicit since they are constructed interlacing
a feedback linearizing transformation (which we introduce)
with backstepping. Due to the fact that the linearizing trans-
formation is locally invertible, only regional stability results are
established, which are, nevertheless, accompanied with region
of attraction estimates. Our stability proofs are based on the
utilization of the linearizing transformation together with the
employment of backstepping transformations, suitably formu-
lated to handle the case of bilateral actuation. We illustrate the
developed methodologies via application to traffic flow control
and we present consistent simulation results.

I. INTRODUCTION

Contrary to linear parabolic Partial Differential Equations
(PDEs), for which explicit boundary control designs are now
largely available, see, for instance, [26], [29], in the nonlinear
case, the design of explicit boundary control schemes is a
more challenging problem. In addition, specific engineering
applications, such as, for example, vehicular traffic [22],
[37], plasma systems [10], fluids [4], [5], [11], chemical
reactors [29], heat exchangers [29], and litium-ion batteries
[36], to name only a few, call for the development of
systematic control design methodologies that, besides being
able to efficiently exploit the capabilities of the available
actuators, they can also be made fault tolerant. Motivated by
scalar, conservation law models for vehicular traffic flow that
include a viscous term, in order to account for drivers’ look-
ahead ability [22], [37], we consider the problem of boundary
control of a certain class of viscous Hamilton-Jacobi (HJ)
PDEs, which constitutes an alternative macroscopic descrip-
tion of traffic flow dynamics [13], [32]. In particular, we
consider the case in which actuation is available at both
boundaries (which we refer to as “bilateral” in our control
approach), aiming at constructing control schemes capable
of utilizing efficiently the available actuators.

Arguably, the most relevant results to the ones presented
here are those dealing with the controller design for viscous
Burgers-type PDEs, which may be viewed as conservation
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law counterparts of the class of viscous HJ PDEs with
quadratic Hamiltonian considered here. The trajectory gener-
ation problem for certain forms of viscous Burgers equations
is considered in [25], [30], [34], whereas full-state boundary
feedback laws are designed in [16], [21], [24], [27]. Explicit
boundary control designs for other nonlinear parabolic PDEs
also exist, see, e.g., [18], [38]. Although it is a different
problem, for completeness, it should be mentioned that the
control design problem of inviscid versions of Burgers or
of specific HJ PDEs is considered in, e.g., [1], [8], [13].
Bilateral controllers for certain classes of linear parabolic
and hyperbolic PDEs are recently developed in [2], [3], [39],
[40]. We should also mention here that, in comparison to [6],
in the present paper we consider, 1) a more general class
of viscous HJ PDE systems, 2) the problems of trajectory
generation and tracking, and 3) the problems of bilateral
control.

Our contributions are summarized as follows. First, we
solve the nonlinear trajectory generation problem for the
considered viscous HJ PDE, providing explicit feedforward
actions at both boundaries. The key ingredient in our ap-
proach is the employment of a feedback linearizing trans-
formation (inspired by the Hopf-Cole transformation [14],
[20]) that we introduce, which allows us to convert the
original nonlinear problem to a motion planning problem for
a linear heat equation. We then establish the well-posedness
of the feedforward controllers for the original nonlinear PDE
system, for reference outputs that belong to Gevrey class (of
certain order) with sufficiently small magnitude.

Second, we design full-state feedback laws in order to
achieve trajectory tracking, with an arbitrary decay rate, as
the system is not, in general, asymptotically stable around
a given reference trajectory. Modifying, in a suitable way,
the introduced feedback linearizing transformation we recast
the original nonlinear control problem to a problem of full-
state feedback stabilization of a linear heat equation, with
Neumann actuation at each of the two boundaries. The
bilateral boundary controllers are designed using the recently
introduced backstepping technique [39]. We then establish
local asymptotic stability of the closed-loop system in H1

norm, employing a Lyapunov functional and we provide
an estimate of the region of attraction of the controller.
Our stability result is local in H1 norm due to the fact
that the linearizing transformation is invertible only locally
and, in particularly, the size of the supremum norm of the
transformed PDE state should be appropriately restricted.

Finally, we apply the developed methodologies to a model
of highway traffic flow and we illustrate, in simulation, the



effectiveness of the proposed control design techniques.
We start presenting the class of viscous HJ PDEs un-

der consideration and introducing the feedback linearizing
transformation in Section II. In Section III we present the
nonlinear feedforward control designs. In Section IV we
present the nonlinear, full-state feedback controllers and in
Section V we prove local asymptotic stability of the closed-
loop system. We present an example of traffic flow control in
Section VI. Concluding remarks are provided in Section VII.

Notation and Definitions: We use the common defi-
nition of class K, K∞ and KL functions from [23]. For
a function u ∈ L2(0, 1) we denote by ‖u(t)‖L2 the norm

‖u(t)‖L2 =
√∫ 1

0
u(x, t)2dx. For u ∈ H1(0, 1) we denote

by ‖u(t)‖H1 the norm ‖u(t)‖H1 =
√∫ 1

0
u(x, t)2dx +√∫ 1

0
ux(x, t)2dx. We denote by Cj(A) the space of func-

tions that have continuous derivatives of order j on A. We
denote an initial condition as u0(x) = u(x, t0) with some
t0 ≥ 0, for all x ∈ [0, 1]. With C

(
[t0,∞);H2 (0, 1)

)
we

denote the class of continuous mappings on [t0,∞) with
values into H2 (0, 1). We denote by C2,1

T ([0, 1]× (t0, T ))
the space of functions that have continuous spatial derivatives
of order 2 and continuous time derivatives of order 1 on
[0, 1]× (t0, T ), and define C2,1

∞ =C2,1.
Definition 1: The function f(t) belongs to GF,M,γ (S),

the Gevrey class of order γ in S, if f(t) ∈ C∞ (S) and there
exist positive constants F , M such that supt∈S

∣∣f (n)(t)∣∣ ≤
FMn (n!)

γ , for all n = 0, 1, 2, . . ..

II. PROBLEM FORMULATION AND FEEDBACK
LINEARIZATION

We consider the following viscous HJ PDE system

ut(x, t) = εuxx(x, t)− aux(x, t) (b+ ux(x, t)) (1)
ux(0, t) = U0(t) (2)
ux (1, t) = U1(t), (3)

where u is the PDE state, x ∈ [0, 1] is the spatial variable,
t ≥ t0 ≥ 0 is time, ε > 0 is a viscosity coefficient,
a 6= 0 and b ∈ R are constant parameters, and U0, U1 are
control variables. We introduce next a feedback linearizing
transformation, which allows us to convert the problems of
trajectory generation and tracking for the nonlinear HJ PDE
(1)–(3) to the corresponding problems for a linear diffusion-
advection PDE.

The following locally invertible transformation

v̄(x, t) = e−
a
ε u(x,t) − 1, (4)

and the control laws

U0(t) = − ε
a
e
a
ε u(0,t)V̄0(t) (5)

U1(t) = − ε
a
e
a
ε u(1,t)V̄1(t), (6)

where V̄0, V̄1 are the new control variables yet to be chosen,

transform system (1)–(3) to

v̄t(x, t) = εv̄xx(x, t)− abv̄x(x, t) (7)
v̄x(0, t) = V̄0(t) (8)
v̄x(1, t) = V̄1(t). (9)

It turns out that in the control design and analysis it is more
convenient to perform an additional transformation, namely

v(x, t) = v̄(x, t)e−
ab
2ε x, (10)

in order to re-write (7)–(9) as

vt(x, t) = εvxx(x, t)− a2b2

4ε
v(x, t) (11)

vx(0, t) = V0(t) (12)
vx(1, t) = V1(t), (13)

where

V̄0(t) = V0(t) +
ab

2ε
v̄(0, t) (14)

V̄1(t) = e
ab
2ε V1(t) +

ab

2ε
v̄(1, t), (15)

and V0, V1 are the new control variables.

III. TRAJECTORY GENERATION

In this section we design the feedforward boundary control
laws that generate the desired reference outputs. We solve
the problem first for the linearized system (11)–(13) and we
then provide the feedforward actions for the original system
(1)–(3). We consider as outputs of the system the values
u (x0, t) and ux (x0, t), where x0 is some fixed point within
the interval [0, 1]. The proof of the following theorem is
omitted due to space limitations, but it can be found in [7]
(Section 3).

Theorem 1: Let yr1(t) and yr2(t) be in GF,M,γ ([0,+∞))
class with 1 ≤ γ < 2. There exists a positive constant µ1

such that if F ≤ µ1 then the functions

ur(x, t) = − ε
a

ln
(
e
ab
2ε xvr(x, t) + 1

)
(16)

U r
0(t) = − ε

a

vrx(0, t) + ab
2ε v

r(0, t)

1 + vr(0, t)
(17)

U r
1(t) = −εe

ab
2ε

a

vrx(1, t) + ab
2ε v

r(1, t)

1 + e
ab
2ε vr(1, t)

, (18)

where

vr(x, t) =

∞∑
k=0

1

εk
(x− x0)

2k

(2k)!

k∑
m=0

(
k

m

)(
a2b2

4ε

)k−m
×yr1,v

(m)(t) +

∞∑
k=0

1

εk
(x− x0)

2k+1

(2k + 1)!

×
k∑

m=0

(
k

m

)(
a2b2

4ε

)k−m
yr2,v

(m)(t) (19)

yr1,v(t) = e−
ab
2ε x0

(
e−

a
ε y

r
1(t) − 1

)
(20)

yr2,v(t) = e−
ab
2ε x0

(
−a
ε
e−

a
ε y

r
1(t)yr2(t)

−ab
2ε

(
e−

a
ε y

r
1(t) − 1

))
, (21)



Fig. 1. Function (22) that solves the nonlinear trajectory generation problem
for system (1)–(3) with a = −1, b = 0, and ε = 0.5, with reference
trajectories yr1(t) = 0 and yr2(t) = 0.25sin(t), for x0 = 1

2
.

satisfy the boundary value problem (1)–(3) and, in particular,
ur (x0, t) = yr1(t) and urx (x0, t) = yr2(t).

Example 1: Consider system (1)–(3) with a = −1, b = 0
and assume that the desired reference trajectories are yr1(t) =
0 and yr2(t) = dsin(t), where d > 0. For sufficiently small
d the conditions of Theorem 1 are satisfied. The reference
trajectory as well as the reference inputs are given by

ur(x, t)=ε ln (1 + g1(x, t)) (22)

g1(x, t)=
d

2
√
ε
e
x−x0√

2ε sin
(
t+

x− x0√
2ε
− π

4

)
− d

2
√
ε
e
x0−x√

2ε sin
(
t+

x0 − x√
2ε
− π

4

)
(23)

U r
0(t)=

d

2

e
− x0√

2ε sin
(
t− x0√

2ε

)
+e

x0√
2ε sin

(
t+ x0√

2ε

)
1 + g1(0, t)

(24)

U r
1(t)=

d

2

e
1−x0√

2ε sin
(
t+ 1−x0√

2ε

)
1 + g1(1, t)

+
d

2

e
x0−1√

2ε sin
(
t+ x0−1√

2ε

)
1 + g1(1, t)

, (25)

where we also used the fact that sin (y) − cos (y) =√
2sin

(
y − π

4

)
, for any y ∈ R. In Fig. 1 we show the

generated trajectory ur.

IV. BILATERAL FULL-STATE FEEDBACK BOUNDARY
CONTROL DESIGN

Having available the reference trajectory for system (1)–
(3), in this section, we design the boundary feedback laws
that stabilize the desired reference trajectory for any initial
condition. We start deriving the dynamics of the error be-
tween the actual and the reference states. We then introduce
a feedback linearizing transformation for the tracking error’s
dynamics, which, in turn, enables us to design full-state feed-
back, boundary control laws utilizing infinite-dimensional
backstepping for linear systems.

A. Tracking error dynamics and motivation for control

We define the error variables

ũ(x, t) = u(x, t)− ur(x, t) (26)
Ũ0(t) = U0(t)− U r

0(t) (27)
Ũ1(t) = U1(t)− U r

1(t). (28)

Differentiating (26) with respect to t and x, using the fact
that ur(x, t) satisfies system (1)–(3) we get that ũ satisfies
the following system

ũt(x, t) = εũxx(x, t)− aũx(x, t) (b+ ũx(x, t))

−2aurx(x, t)ũx(x, t) (29)
ũx(0, t) = Ũ0(t) (30)
ũx (1, t) = Ũ1(t). (31)

A feedback control design is needed to asymptotically sta-
bilize the origin of (29)–(31). To see this note that the zero
solution of (29)–(31) is not asymptotically stable since any
constant could be an equilibrium of (29)–(31).

B. Feedback linearizing transformation for the tracking er-
ror dynamics

Guided from the feedback linearizing transformation (4)
we define

˜̄v(x, t) = e−
a
ε ũ(x,t) − 1, (32)

which it is readily shown that satisfies the following PDE

˜̄vt(x, t) = ε˜̄vxx(x, t)− a (b+ 2urx(x, t)) ˜̄vx(x, t)(33)
˜̄vx(0, t) = ˜̄V0(t) (34)
˜̄vx(1, t) = ˜̄V1(t), (35)

where we choose

Ũ0(t) = − ε
a
e
a
ε ũ(0,t) ˜̄V0(t) (36)

Ũ1(t) = − ε
a
e
a
ε ũ(1,t) ˜̄V1(t), (37)

and ˜̄V0(t), ˜̄V1(t) are new control variables. With the addi-
tional transformation

ṽ(x, t) = ˜̄v(x, t)e−
ab
2ε x−

a
ε u

r(x,t), (38)

and selecting the control variables ˜̄V0(t), ˜̄V1(t) as

˜̄V0(t) = e
a
ε u

r(0,t)Ṽ0(t)

+
a

ε

(
b

2
+ urx(0, t)

)(
e−

a
ε ũ(0,t) − 1

)
(39)

˜̄V1(t) = e
ab
2ε+

a
ε u

r(1,t)Ṽ1(t)

+
a

ε

(
b

2
+ urx(1, t)

)(
e−

a
ε ũ(1,t) − 1

)
, (40)

we arrive at the following system

ṽt(x, t) = εṽxx(x, t)− a2b2

4ε
ṽ(x, t) (41)

ṽx(0, t) = Ṽ0(t) (42)
ṽx(1, t) = Ṽ1(t), (43)



where the control variables Ṽ0(t) and Ṽ1(t) are chosen later
on (in Section IV-C) via the backstepping methodology.

Note that system (41)–(43), besides being linear, does not
incorporate any spatially- or time-dependent terms, which
may be the case when considering trajectory tracking prob-
lems for nonlinear systems. This is possible here because
the overall feedback linearizing transformation (38) may
be expressed as the difference of two nonlinear functions
of u and ur, which both satisfy the linear PDE (11) (or,
equivalently, (41)) since both u and ur satisfy (1). Moreover,
relations (42), (43) are derived differentiating (38) with
respect to x and using (34), (35) as well as defining the
new control inputs Ṽ0, Ṽ1 according to (39), (40).

C. Bilateral boundary control design

Exploiting the fact that the ṽ variable satisfies the linear
diffusion-advection PDE (41)–(43) we design the boundary
feedback laws as [39]

Ṽ0(t) = k (0, 0) ṽ (0, t)−
∫ 1

0

kx (0, ξ) ṽ (ξ, t) dξ (44)

Ṽ1(t) = k (1, 1) ṽ (1, t) +

∫ 1

0

kx (1, ξ) ṽ (ξ, t) dξ, (45)

where the kernel k (x, ξ) is given explicitly, for (x, ξ) in the
domain D = D1 ∪ D2, where D1 =

{
(x, ξ) : 1

2 ≤ x ≤ 1,
−x+ 1 ≤ ξ ≤ x} and D2 =

{
(x, ξ) : 0 ≤ x ≤ 1

2 ,
x ≤ ξ ≤ 1− x}, by

k(x, ξ) = −1

2

√
c1
ε

I1

(√
c1
ε

((
x− 1

2

)2 − (ξ − 1
2

)2))
√(

x− 1
2

)2 − (ξ − 1
2

)2
× (x+ ξ − 1) , (46)

with I1 denoting the modified Bessel function of the first kind
of first order. Combining (36), (37) and (39), (40) with (44),
(45) the boundary feedback laws in the original variables are
written via (32), (38) as

U0(t) = − ε
a
e
a
ε ũ(0,t)

((
k (0, 0) +

ab

2ε

)(
e−

a
ε ũ(0,t) − 1

)
− e aε u

r(0,t)

∫ 1

0

kx (0, ξ) e−
ab
2ε ξ−

a
ε u

r(ξ,t)

×
(
e−

a
ε ũ(ξ,t) − 1

)
dξ
)

+ U r
0(t)e

a
ε ũ(0,t) (47)

U1(t) = − ε
a
e
a
ε ũ(1,t)

((
k (1, 1) +

ab

2ε

)(
e−

a
ε ũ(1,t) − 1

)
+ e

ab
2ε+

a
ε u

r(1,t)

∫ 1

0

kx (1, ξ) e−
ab
2ε ξ−

a
ε u

r(ξ,t)

×
(
e−

a
ε ũ(ξ,t) − 1

)
dξ
)

+ U r
1(t)e

a
ε ũ(1,t), (48)

where U r
0(t) and U r

1(t) are defined in (17) and (18), respec-
tively, with the error variable ũ being defined in (26) and the
reference trajectory ur being defined in (16).

V. TRAJECTORY TRACKING UNDER FULL-STATE
FEEDBACK

In order to show asymptotic stability of the closed-loop
system, under the full-state feedback laws, in the original
variable ũ we have to ensure that the linearizing transforma-
tion (32) is invertible. The inverse of transformation (32) is
given by

ũ(x, t) = − ε
a

ln (˜̄v(x, t) + 1) , (49)

which is well-defined when the initial conditions and solu-
tions of the system satisfy for some c ∈ (0, 1]

sup
x∈[0,1]

|˜̄v(x, t)| < c, for all t ≥ t0. (50)

Due to the feasibility condition (50), only a local stability
result can be obtained, which is stated next.

Theorem 2: Consider a closed-loop system consisting of
the plant (1)–(3) and the control laws (47), (48). Under the
conditions of Theorem 1 for the reference outputs, there exist
a positive constant µ and a class KL function β such that
for all initial conditions u0 ∈ H2(0, 1) which are compatible
with the feedback laws (47), (48) and which satisfy

‖ũ (t0) ‖H1 < µ, (51)

the following holds

‖ũ(t)‖H1 ≤ β (‖ũ (t0) ‖H1 , t− t0) , for all t ≥ t0.(52)

Moreover, the closed-loop system has a unique solution u ∈
C
(
[t0,∞);H2(0, 1)

)
with u ∈ C2,1 ([0, 1]× (t0,∞)).

The proof of Theorem 2 is based on the following three
lemmas whose proofs can be found in [7] (Appendix B).

Lemma 1: There exists a class K∞ function α1 such that
if ũ ∈ H1(0, 1) then ˜̄v ∈ H1(0, 1) and the following holds

‖˜̄v(t)‖H1 ≤ α1 (‖ũ(t)‖H1) . (53)
Lemma 2: For all solutions of the system that satisfy (50)

for some 0 < c < 1, if ˜̄v ∈ H1(0, 1) then ũ ∈ H1(0, 1) and
the following holds

‖ũ(t)‖H1 ≤ ε

|a| (1− c)
‖˜̄v(t)‖H1 . (54)

Lemma 3: Under the conditions of Theorem 1 for the
reference outputs, if ˜̄v ∈ H1(0, 1) then ṽ ∈ H1(0, 1) and
there exists a positive constant ξ1 such that the following
holds

‖ṽ(t)‖H1 ≤ ξ1‖˜̄v(t)‖H1 . (55)

In reverse, if ṽ ∈ H1(0, 1) then ˜̄v ∈ H1(0, 1) and there
exists a positive constant ξ2 such that the following holds

‖˜̄v(t)‖H1 ≤ ξ2‖ṽ(t)‖H1 . (56)
Proof of Theorem 2: See [7] (Section 5).



VI. APPLICATION TO TRAFFIC FLOW CONTROL

A. Model description

Consider a highway stretch with inlet at x = 0 and outlet
at x = 1. We model the traffic density dynamics within the
stretch with a conservation law PDE. In order to account for
drivers’ look-ahead ability, we incorporate in the expression
for the traffic flow, in addition to the term that corresponds to
a conventional fundamental diagram relation between speed
and density of vehicles, an additional term that depends on
the spatial derivative of the traffic density, giving rise to the
following model, see, e.g., [22], [37]

ρt(x, t) + (ρ(x, t)V (ρ(x, t))− ερx(x, t))x=0 (57)
ρ(0, t)=−U0(t) (58)
ρ (1, t)=−U1(t),(59)

where, for Greenshield’s fundamental diagram [17] we have

V (ρ) = a (b− ρ) , (60)

with a, b being free-flow speed and maximum density, re-
spectively, whereas ρ denotes the traffic density. The density
at the boundaries may be imposed manipulating either the
flow or the speed of vehicles, via the employment of ramp-
metering (RM) and variable speed limits (VSL), as well
as exploiting the capabilities of connected and automated
vehicles see, e.g., [12], [33].

In order to bring model (57)–(59) into the form (1)–(3)
we define the following variable

u(x, t) =

∫ 1

x

ρ(y, t)dy +

∫ t

0

Q (ρ(1, s), ρx(1, s)) ds, (61)

where

Q (ρ, ρx) = ρV (ρ)− ερx. (62)

It can be shown, by direct differentiation of (61) with respect
to t and x, and by employing (57), that the variable u satisfies
(1)–(3). The state u represents the so-called Moskowitz func-
tion, which constitutes an alternative macroscopic description
of the dynamics of traffic flow in a highway. In particular, the
value of the Moskowitz function M = u(x, t) is interpreted
as the “label” of a given vehicle at position x at time t, along
a road segment [13], [32].

B. Design and motivation of the feedforward/feedback con-
trol laws

A typical aim of a traffic control scheme is to regulate the
outlet flow to a certain set-point, say q∗, which may be the
point that achieves the maximum flow (capacity flow) [12].
In terms of the u variable this corresponds to u(1, t) tracking
the reference trajectory q∗t. This motivates the trajectory
generation and tracking problems for the class of systems
described by (1)–(3). Moreover, since the value ux(1, t)
could be also assigned, one may choose for reference value
of −ux(1, t) the value of the density that corresponds to the
critical density (i.e., the density at which capacity flow is
achieved) of the nominal fundamental diagram relation (i.e.,
when there is no ρx term in (62)) between flow and density

at the outlet of the considered stretch, which in turn would
guarantee that the obtained desired profile for ux (or, for ρ)
is uniform with respect to space. Setting a=b=1, we obtain
yr1(t)=1

4 t and yr2(t)=− 1
2 . Using (19)–(21) for x0 =1 we get

vr(x, t) = e−
1
2ε

(
e−

1
4ε t − e

1−x
2ε

)
. (63)

Therefore, employing (16)–(18) the reference trajectory and
reference inputs are given explicitly as

ur(x, t) =
1

4
t+

1− x
2

(64)

U r
0(t) = U r

1(t) = −1

2
. (65)

The feedback controllers are given in (47), (48) with c1 = 1.

C. Trajectory tracking

We choose ε = 0.25, whereas the initial condition is
defined as u(x, 0) = ur(x, 0) + 0.1sin (πx) = 1−x

2 +
0.1sin (πx). In Fig. 2 we show the output u(1, t), from which
it is evident that asymptotic trajectory tracking is achieved.

t

0 0.5 1 1.5 2 2.5 3

u
(1
,
t)
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0.8

Fig. 2. Solid: Output u(1, t) of system (1)–(3) with a = b = 1, ε =
0.25, under the feedback laws (47), (48), (16)–(18) with c1 = 1 for initial
condition u(x, 0) = 1−x

2
+ 0.1sin (πx). Dashed: The reference output

ur(1, t) = 1
4
t.

Furthermore, in Fig. 3, we show the density ρ(x, t) =
−ux(x, t) in the highway. One can observe that the density
converges to the desired reference profile, namely, to the
uniform profile ρe(x) = 1

2 , for all x ∈ [0, 1].

VII. CONCLUSIONS

For a class of viscous HJ PDEs with actuation at both
boundaries we, 1) solved the nonlinear trajectory generation
problem, 2) presented nonlinear, bilateral full-state feedback
control designs, 3) established local asymptotic stability of
the closed-loop system, and 4) illustrated our results in
simulation via a traffic flow control example.
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Fig. 3. The density evolution of the highway stretch.
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