

TECHNICAL UNIVERCITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ELECTRONICS LABORATORY

Development of a Software Platform for the Analysis of

Hyperspectral Data

By

Spyros Pouros

Thesis Commitee

Costas Balas, Professor, Supervisor

Vasilis Samoladas, Assistant Professor

George Karystinos, Associate Professor

Chania, March 2019

Abstract

Hyperspectral imaging collects and processes information from

across the electromagnetic spectrum. The goal of hyperspectral imaging is

to obtain the spectrum for each pixel in the image of a scene, with the

purpose of finding objects, identifying materials, or detecting processes. In

hyperspectral imaging, the recorded spectra have fine wavelength

resolution, cover a wide range of wavelengths and measures continuous

spectral bands. The primary advantage to hyperspectral imaging is that,

because an entire spectrum is acquired at each point, the operator needs

no prior knowledge of the sample, and post processing allows all available

information from the dataset to be mined. Hyperspectral imaging can also

take advantage of the spatial relationships among the different spectra in

a neighborhood, allowing more elaborate spectral-spatial models for a

more accurate segmentation and classification of the image.

 In this work, the goal is to create and develop a hyperspectral

imaging processing suite which will be able to work with and provide to the

user a spread set of tools so that hyperspectral images can be processed.

It is about a framework highly equipped, a research tool that can be fully

expandable. It is characterized by its compatibility, flexibility and execution

speed. The suite provides a user interface which, compared to the other

common suites on the market, is easier to work and has more

distinguished and functional environment.

Acknowledgements

It is a great opportunity to bestow my heartful regards to all people

who have been either directly or indirectly involved in the fullment of this

diploma dissertation.

First and foremost, I would like to express my sincerest gratitude to

my professor and supervisor, Professor Constantinos Balas, for giving me

the opportunity to deal with such an interesting topic. Not only did he help

me completing my studies, but also motivated me to work more efficiently

and professionally by conducting a lot of extra research, being familiar with

experimental devices and gaining valuable knowledge.

Besides my supervisor, I would like to thank the rest of my thesis

commitee: Assistant Prof. Vasilis Samoladas and Associate Prof. George

Karystinos, for their insightful comments and encouragement, but also for

the hard question which incented me to widen my research from various

perspectives.

My sincere thanks also goes to the whole team of the

Optoelectronics and Imaging Diagnostics Lab, Vardoulakis Emmanouil

(M.sc Candidate), Tsapras Athanasios (PhD Candidate), Rossos Christos

(PhD Candidate), Papathanasiou Athanasios (M.sc), Gkouzionis Ioannis

(M.sc Candidate), Fragkoulis Logothetis (M.sc Candidate) and Anny

Vastaroucha (M.sc Candidate) for their numerous brainstorming

discussions, and useless advice.

Furthermore I would like to thank my best friends Vaggelis K., Adam,

Vaggelis P., Giorgos, Mathios and Elena for the countless support in

whatever decision I made and of course because they were by my side

whenever I needed it.

Finally, I must express my very profound gratitude to my beloved

parents, Giorgos and Maria for providing me with unfailing support and

continuous encouragement throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would

not have been possible without them.

Table of Contents

Abstract i

Acknowledgements ii

List of Figures v

1 Introduction…….1

1.1 Introduction………………………………………………………………………………………………1

1.2 Thesis Outline……………………………………………………………………………………………1

2 Theoritical Background………………………………………………………………………………………….2

2.1 Imaging…………………………………………………………………………………………………..…2

2.2 Image Processing……………………………………………………………………………………….3

2.3 Electromagnetic Spectrum……………………………………………………………………..…3

2.4 Range of the Spectrum………………………………………………………………………………4

2.5 Spectral Imaging………………………………………………………………………………………..5

2.5.1 Multi-spectral Imaging……………………………………………………………..6

2.5.2 Hyper-spectral Imaging……………………………………………………………6

2.6 Spectral Cube…………………………………………………………………………………………….8

2.7 Hyper-spectral Imaging Applications……………………………………………………….10

2.8 Measures of Spectral Similarity………………………………………………………………..11

3 Creating a Spectral Suite………………………………………………………………………………………14

3.1 Purpose of creating/using a spectral suite………………………………………………..14

3.2 Present Spectral Suites…………………………………………………………………………….14

3.3 Biomedical Applications in Electronics Laboratory …………………………………..14

3.4 Innovations of presented thesis……………………………………………………………….15

4 Basic Information about Workflow………………………………………………………………………16

4.1 Introduction…………………………………………………………………………………………….16

4.1.1 Qt…………………………………………………………………………………………..16

4.1.2 About Compiler and MinGW………………………………………………….18

4.1.3 About language and C++…………………………………………………………18

4.2 Starting with the Suite……………………………………………………………………………..21

4.3 Menu Bar and Options……………………………………………………………………………..22

5 Plugin Logic and Implementation…………………………………………………………………………33

5.1 About plugins…………………………………………………………………………………………..33

5.2 Why to use plugins in this suite…………………………………………………………………34

5.3 Pattern of Plugins – Base Class…………………………………………………………………35

5.4 Pattern in this suite………………………………………………………………………………….36

5.4.1 PreProcess Plugins…………………………………………………………………36

5.4.2 Clustering Plugins…………………………………………………………………..41

5.4.2.1 About Clustering………………………………………………………..41

5.4.2.2 The Goals of Clustering……………………………………………….42

5.4.2.3 Possible Applications………………………………………………….42

5.4.2.4 Requirements…………………………………………………………….42

5.4.2.5 Problems……………………………………………………………………43

5.4.2.6 Well known Clustering Algorithms……………………………..43

5.4.3 Clustering Algorithms in this suite…………………………………………..44

5.4.3.1 K-Means…………………………………………………………………….44

5.4.3.2 DBSCAN……………………………………………………………………..45

5.4.4 Process Plugins………………………………………………………………………45

6 Conclusion and Future Work……………………………………………………………………………….47

6.1 Conclusion……………………………………………………………………………………………….47

6.2 Future Work…………………………………………………………………………………………….48

List of Figures

FIGURE 1 ELECTROMAGNETIC SPECTRUM .. 4

FIGURE 2 HYPER-SPECTRAL CUBES ... 8

FIGURE 3 SCHEMATIC REPRESENTATION OF A HYPERCUBE SHOWING THE RELATIONSHIP BETWEEN SPATIAL

AND SPECTRAL DIMENSIONS. ... 9

FIGURE 4 SCHEMATIC DIAGRAM OF HYPER-SPECTRAL IMAGE (HYPER-SPECTRAL CUBE) FOR A PIECE OF fiSH

fiLLET ... 10

FIGURE 5 QT'S WORKFLOW ... 17

FIGURE 6 GUI'S DESIGNER .. 17

FIGURE 7 HYPERSPECTRAL SUITE GUI ... 22

FIGURE 8 MENU OPTION "CUBE" .. 24

Figure 9 Spectrum Pixel Plot .. 25

Figure 10 Image Histogram ... 25

Figure 11 Plot Profile ... 27

Figure 12 Surface plot.. 27

Figure 13 Addition (Value = 50) ... 28

Figure 14 Substraction (Value = 50)... 29

Figure 15 Multiplication (Value = 2) .. 29

Figure 16 Merged Image ... 30

FIGURE 17 MENU OPTION "OPTIONS" ... 31

FIGURE 18 MENU OPTION "HELP" ... 32

Figure 19 Binning (2*2) ... 36

FIGURE 20 MEAN FILTER .. 37

FIGURE 21 MEDIAN FILTER ... 38

FIGURE 22 DESPECKLE FILTER .. 39

FIGURE 23 SMOOTHING FILTER - GAUSSIAN .. 41

Figure 24 K-Means result ... 44

FIGURE 25 CONTRAST ENHANCEMENT (LIMIT 100) .. 46

FIGURE 26 THRESHOLD (LIMIT = 120) ... 46

1

Chapter 1

Introduction

1.1 Introduction

The scope of this operation is to develop a suite which will be able

to be competitive to other suites which are used in some similar areas.

Nowadays there is a common interest in the fields of image processing and

spectral imaging. More and more scientists, research groups and

laboratories are heading to this areas and trying to develop several

techniques in order to be competitive and ahead from the generation.

Many challenges for a science field which applies in several areas like

biomedical engineering, agriculture, astronomy etc.

So, listening to that concern it follows a framework, a research tool

which comes to fill some gapes of the already existing hyperspectral suites

and aspires to be competitive to them. In order to achieve these goals,

there is a try of developing a suite which will be flexible, ease to be work

with and will be distinguished to others in term of portability, execution

speed and extensibility.

1.2 Thesis Outline

Chapter 2 provides a theoretical background about image

processing and hyperspectral imaging.

Chapter 3 presents what exists nowadays and the main reasons why

there was a specific interest to this suite development.

Chapter 4 provides the basic information about the workflow on

which the suite was developed and also there are some information about

the suite itself.

Chapter 5 provides general information about plugins and their

implementation in this suite.

Chapter 6 presents the summary of what was analyzed before and

provides some suggestions for future work.

2

Chapter 2

Theoritical Background

2.1 Imaging

Imaging is the visual representation or reproduction of an object. At

this time, digital imaging is the most advanced and applicable method

where data are recorded using a digital camera, such as a CMOS.

The amount of information that can be extracted from an image is

determined by the quality of it. Image quality is determined by the

following parameters:

 Spatial resolution determines the closest distinguishable features

in an object. It depends mainly on the wavelength (λ), the

numerical aperture (NA) of the objective lens, the magnification,

and the pixel size of the array-detector. The last two play an

important role because they determine the sampling frequency

which must be sufficiently high to achieve full resolution. Spatial

resolution also depends on the signal quality.

 Lowest detectable signal depends on the quantum efficiency of

the detector (the higher the better), the noise level of the system

(the lower the better), the NA (numerical aperture) of the optics

(the higher the better), and the quality of the optics.

 Dynamic range of the acquired data determines the number of

different intensity levels that can be detected in an image. It

depends on the maximal possible number of electrons at each

pixel and on the lowest detectable signal (basically it is the ratio

of these two values). If, however, the measured signal is low, so

that the CMOS well associated with a pixel is only partially filled,

the dynamic range will be limited accordingly. As an example, if

a CMOS well if fulfilled to only 10% of its maximum capacity, the

dynamic range will be reduced to 10% of its nominal value.

 Field of view (FOV) determines the maximal area that can be

imaged.

3

2.2 Image Processing

In computer science, digital image processing is the use of computer

algorithms to perform image processing on digital images. It allows a wide

range of algorithms to be applied to the input data and can avoid problems

such as the build-up of noise and signal distortion during processing. Since

images are defined over two dimensions (perhaps more) digital image

processing may be modeled in the form of multidimensional systems.

Digital image processing allows the use of much more complex

algorithms, and hence, can offer both more sophisticated performance at

simple tasks, and the implementation of methods which would be

impossible by analog means.

In particular, digital image processing is the only practical technology for:

 Classification

 Feature Extraction

 Multi-scale signal extraction

 Pattern recognition

Some techniques which are used in digital image processing include:

 Image editing

 Image restoration

 Independent component analysis

 Linear filtering

 Neural networks

 Partial differential equations

2.3 Electromagnetic Spectrum

The electromagnetic spectrum is the complete range of

wavelengths of electromagnetic radiation, beginning with the longest

radio waves (including those in audio range) and extending through visible

light (a very small part of the spectrum) all the way to the extremely short

gamma rays that are a product of radioactive atoms. Nearly all types of

electromagnetic radiation can be used for spectroscopy, to study and

characterize matter.

4

FIGURE 1 ELECTROMAGNETIC SPECTRUM

The types of radiation are generally grouped by the kinds of

chemical and physical effects they can produce on matter. For example, in

a magnetic field, exposure to the low-energy radio frequency radiation

only reorients nuclei, while exposure to the slightly higher-energy

microwave region changes electron spin states of molecules with unpaired

electrons. Microwave radiation can also change the rotational energy of

molecules; this effect is used to heat food quickly in a microwave oven. In

the middle regions of the electromagnetic spectrum, absorption of IR

radiation causes changes in the vibrational energy of molecules. Visible

(Vis) and ultraviolet (UV) radiations alter the electron energies of loosely

held outer electrons of atoms and molecules. Higher-energy X-rays can

cause electron transitions between inner electron levels, and gamma

radiation produces changes within atomic nuclei. As all compounds absorb

radiation in multiple regions of the spectrum, the information on

molecular activity in each region provides complementary data for

material characterization.

2.4 Range of the Spectrum

Electromagnetic waves are typically described by any of the following

three physical properties: the frequency f, wavelength λ, or photon energy

E. Wavelength is inversely proportional to the wave frequency, so gamma

rays have very short wavelengths that are fractions of the size of atoms,

5

whereas wavelength on the opposite end of the spectrum can be of

thousand kilometers. Photon energy is directly proportional to the wave

frequency, so gamma ray photons have the highest energy (around a

billion electron volts), while radio wave photons have very low energy

(approximately a femtoelectronvolt). These relations are illustrated by the

following equations:

𝑓 =
𝑐

𝜆
, or 𝑓 =

𝐸

𝜆
, or 𝐸 =

ℎ∗𝑐

𝜆

The behavior of EM radiation depends on its wavelength. When EM

radiation interacts with single atoms and molecules, its behavior also

depends on the amount of energy per quantum (Photon) it carries.

2.5 Spectral Imaging (SI)

Spectral imaging is a combination of spectroscopy and photography

in which a complete spectrum or partial spectral information (such as the

Doppler shift or Zeeman splitting of a spectral line) is acquired at each

position of an image plane. Spectral imaging allows extraction of additional

information the human eye fails to capture with its receptors for red, green

and blue. Applications related to astronomy, solar physics, analysis of

plasmas in nuclear fusion experiments, planetology, and Earth remote

sensing are sparked by the benefits of spectral imaging.

Various distinctions among techniques are applied, based on criteria

including spectral range, spectral resolution, number of bands, width and

contiguousness of bands, and application. The terms include Multi-

Spectral Imaging, Hyper-Spectral Imaging, full spectral imaging, imaging

spectroscopy or chemical imaging.

Important new developments in the field of Biomedical Optical

Imaging (OI) allow for unprecedented visualization of tissue microstructure

and enable quantitative mapping of disease-specific endogenous and

exogenous substances. Spectral imaging (SI) is one of the most promising

OI modalities.

A spectral imager provides spectral information at each pixel of an

image sensor array. The SI Systems acquire a three-dimensional (3D) data

set of spectral and spatial information, known as spectral cube. The

spectral cube can be considered as a stack of images, each of them

6

acquired at a different wavelength. Combined spatial and spectral

information offers great potential for the non-destructive/invasive

investigation of a variety of studied samples.

2.5.1 Multi-Spectral Imaging

Multi-Spectral Imaging (MI) is responsible for capturing image data

at specific frequencies across the electromagnetic spectrum. The

wavelengths may be separated by filters or by the use of instruments that

are sensitive to particular wavelengths, including light from frequencies

beyond the visible light range, such as infrared. MI images are the main

type of images acquired by remote sensing (RS) radiometers. Dividing the

spectrum into many bands, MI is the opposite of panchromatic, which

records only the total intensity of radiation falling on each pixel. Spectral

Imaging with more numerous bands, finer spectral resolution or wider

spectral coverage may be called Hyper-Spectral or Ultra-Spectral.

There are several fields in which Multi-Spectral Imaging is able to be

applied. Some of these are:

 Military Target Tracking

 Land Mine Detection

 Ballistic Missile Detection

 Space-based imaging

 Documents and artworks

2.5.2 Hyper-Spectral Imaging

Hyperspectral imaging (HSI) is an emerging field in which the

advantages of optical spectroscopy as an analytical tool are combined with

two-dimensional object visualization obtained by optical imaging. In HSI,

each pixel of the image contains spectral information, which is added as a

third dimension of values to the two-dimensional spatial image, generating

a three-dimensional data cube, sometimes referred to as hypercube data

or as an image cube. A simple, well-known example of a three-dimensional

data cube is the common RGB color image, where each pixel has red,

green, and blue color. Hyperspectral data cubes can contain absorption,

reflectance, or fluorescence spectrum data for each image pixel. It is

7

assumed that HSI data is spectrally sampled at more than 20 equally

distributed wavelengths. The spectral range in hyperspectral data can

extend beyond the visible range (ultraviolet, infrared). Multispectral

imaging (MSI) is a term that should probably be reserved for imaging that

simultaneously uses two or more different spectroscopy methods in the

imaging mode (eg, wavelength and fluorescence lifetime). The result of

imaging with a couple of color bands/filters should not be termed spectral

imaging, much less multispectral, but unfortunately these terms have been

somewhat misused, especially in the biological literature. With these

reservations, in the following review MSI systems typically record images

at fewer than 20 wavelengths and can include noncontiguous as well as

wide and narrow spectral bands.

HSI applications in industry (machine vision) and remote sensing

(including satellite reconnaissance) are relatively well-known because the

technique was originally defined by Goetz in the late 1980s. However,

within the past decade, a surge of interest in HSI technology has been seen

in life sciences with applications in fields as diverse as agriculture, food

quality and safety, pharmaceuticals, and particularly in healthcare.

The surface of the body is an excellent area for deployment of

optical research methods, and HSI technology is being applied in ever more

applications in dermatology for noninvasively targeting cancer detection,

skin oxygenation mapping for diabetic ulcers, spectral unmixing of

fluorescently labeled antigens, and more. In this chapter, we will introduce

the tissue optics principles used for hyperspectral skin imaging. Different

spectral imaging technologies for a variety of skin imaging applications will

be described.

The several application in which we can use HIS are:

 Agriculture

 Eye care

 Food Processing

 Mineralogy

 Surveillance

 Astronomy

 Chemical Imaging

 Environment

8

2.6 Spectral Cube
The information that is primarily collected by spectral imagers and

then appropriately processed based on the kind of application running, is

stored in 3D data structures for further analysis. This sort of data structures

are known as Spectral Cubes (SC). A spectral cube consists of the three

dimensional projection of a great number of consecutive and registered

sets of hyper-spectral or multi-spectral images. Being more specific, the

first two dimensions respond to spatial dimensions, for account of pixel

coordinates and the third one refers to spectral dimension, meaning a

specific wavelength of the electromagnetic spectrum. A glance at Figure

2.4 can offer profound perception of how a spectral cube does look like.

FIGURE 2 HYPER-SPECTRAL CUBES

Simply put, an imaging spectrometer acquires the spectrum of each

pixel in a two-dimensional spatial scene. As shown in the figure below, the

easiest way to think of such a scheme is as band sequential imaging, in

which multiple images of the same scene at different wavelengths are

acquired. A key point is that the spectra be sampled densely enough to

reassemble a spectrum (commensurate with the need for analysis). There

are many technological means to obtain these data. The images are

typically stacked in a computer, from the lowest wavelength to the highest,

to create an image cube of the data set. The spectrum of a selected pixel

is obtained by skewering it in its third dimension, wavelength, as the inset

in Figure 2.4 shows.

9

FIGURE 3 SCHEMATIC REPRESENTATION OF A HYPERCUBE SHOWING THE RELATIONSHIP BETWEEN SPATIAL

AND SPECTRAL DIMENSIONS.

As an example, the hyper-spectral cube of a fish fillet acquired using

reflectance mode is illustrated in Figure 2.5. The raw hyper-spectral cube

consists of a series of contiguous sub-images one behind each other at

different wavelengths Figure 2.5.a. Each sub-image provides the spatial

distribution of the spectral intensity at a certain wavelength. That means a

hyper-spectral image described as I(x; y; λ) can be viewed either as a

separate spatial image I(x; y) at each individual wavelength (λ), or as a

spectrum I(λ) at each individual pixel (x; y). From the first viewpoint, any

spatial image within the spectral range of the system can be picked up from

the hyper-spectral cube at a certain wavelength within the wavelength

sensitivity Figure 2.5.b. The gray scale image shows the different spectral

intensity of the imaged object at a certain wavelength due to the

distribution of its corresponding chemical components. For example, an

image within the hypercube at a single waveband centered at 980 nm with

bandwidth of 5 nm Figure 2.5.b can relatively show the information of

moisture distribution in the fish fillet, which is difficult to be observed in

RGB image Figure 2.5.c. From the second viewpoint, the resulting

10

spectrum of a certain position within the specimen can be considered as

its own unique spectral fingerprint of this pixel to characterize the

composition of that particular pixel Figure 2.5.d.

FIGURE 4 SCHEMATIC DIAGRAM OF HYPER-SPECTRAL IMAGE (HYPER-SPECTRAL CUBE) FOR A PIECE OF fiSH

fiLLET

2.7 Hyper – Spectral Imaging Applications

As it has already been mentioned, there are numerous applications

emerging from the spectral analysis that is being provided by hyper-

spectral imaging. For nearly a decade, this technology was primarily used

for purposes like surveillance, reconnaissance, environmental and

geological studies. However, the application of hyper-spectral imaging in

the biomedical area has been negligible due to high-instrumentation costs

and problems arising from the clinical use of hyperspectral sensors. With

recent achievements in sensor technology and increasing affordability of

high performance spectral imagers, hyper-spectral imaging systems

constitute one of the most important key areas in medical imaging. The

early diagnosis of cancer, one of the thorniest medical problems, is now

possible, since the evolution of hyper-spectral sensors allows the scanning

of a patient’s body to identify precancerous lesions or to provide critical

11

spectral data through endoscopic procedures. The extension and

improvement of hyper-spectral imaging in biomedical and clinical

diagnosis is within the grasp of researchers. The advantages of this

technology regarding diagnostic health care applications include a high

resolution imaging of tissues either at macroscopic or cellular levels and

the capability to generate highly accurate spectral information related to

the patient, tissue sample, or any other disease condition. In particular, the

vast investment of hyper-spectral imaging in medicine lies on the

generation of wavelength-specific criteria for disease conditions on

spectral features. As a consequence, an ideal technology for high-

throughput patient screening and non-invasive diagnosis is begotten.

Due to their unparalleled ability to reveal abnormal spectral

signatures, hyper-spectral medical instruments hold great potential for

non-invasive diagnosis of cancer, retinal abnormalities and assessment of

wound conditions, for instance diabetes. A portable hyper-spectral imager

could also aid the analysis of human body fluids, such as blood, urine,

saliva, semen and determine blood oxygenation levels of tissues, which

could be of prime importance during surgeries. Yet importantly, it could

perform diagnosis for dental diseases. It is a great advantage for a patient

the fact that not only does an early diagnosis of an ailment can take place,

but also an appropriate treatment may be applied at the same time.

Hyper-spectral signatures when combined with targeting algorithms

would in essence offer unique diagnostic information. There is an

increasing level of interest on the part of health care providers to

investigate possible ways of reducing health care costs by providing timely

treatments for many types of disease conditions. Hyper-Spectral scanning

imaging is expected to contribute a lot in this pursuit.

2.8 Measures of Spectral Similarity

The similarity measure is the measure of how much alike two data

objects are. Similarity measure in a data mining context is a distance with

dimensions representing features of the objects. If this distance is small, it

will be the high degree of similarity where large distance will be the low

degree of similarity.

12

The similarity is subjective and is highly dependent on the domain

and application. For example, two fruits are similar because of color or size

or taste. Care should be taken when calculating distance across

dimensions/features that are unrelated. The relative values of each

element must be normalized, or one feature could end up dominating the

distance calculation. Similarity are measured in the range 0 to 1 [0,1].

In statistics and more generally in common spectral imaging suites

the most well – known and more often used techniques for spectral

similarity measuring are:

 Euclidean Distance: is the most common use of distance. In most

cases when people said about distance, they will refer to Euclidean

distance. Euclidean distance is also known as simply distance. When

data is dense or continuous, this is the best proximity measure. The

Euclidean distance between two points is the length of the path

connecting them. The Pythagorean Theorem gives this distance

between two points.

 Manhattan distance: is a metric in which the distance between two

points is the sum of the absolute differences of their Cartesian

coordinates. In a simple way of saying it is the total sum of the

difference between the x-coordinates and y-coordinates. Suppose

we have two points A and B if we want to find the Manhattan

distance between them, just we have, to sum up, the absolute x-axis

and y – axis variation means we have to find how these two points

A and B are varying in X-axis and Y- axis. In a more mathematical way

of saying Manhattan distance between two points measured along

axes at right angles. In a plane with p1 at (x1, y1) and p2 at (x2, y2).

Manhattan distance = |x1 – x2| + |y1 – y2|. This Manhattan

distance metric is also known as Manhattan length, rectilinear

distance, L1 distance or L1 norm, city block distance, Minkowski’s L1

distance, taxi-cab metric, or city block distance.

 Cosine similarity: finds the normalized dot product of the two

attributes. By determining the cosine similarity, we would effectively

try to find the cosine of the angle between the two objects. The

cosine of 0° is 1, and it is less than 1 for any other angle. It is thus a

judgement of orientation and not magnitude: two vectors with the

same orientation have a cosine similarity of 1, two vectors at 90°

13

have a similarity of 0, and two vectors diametrically opposed have a

similarity of -1, independent of their magnitude. Cosine similarity is

particularly used in positive space, where the outcome is neatly

bounded in [0,1]. One of the reasons for the popularity of cosine

similarity is that it is very efficient to evaluate, especially for sparse

vectors.

 SID: is a measure derived from spectral information measure which

models the spectral bandband variability as a result of uncertainty

caused by randomness. The SID is derived from divergence theory

and calculates the probabilistic behaviors between spectral

signatures. Compared with SAM, which examines the geometrical

characters between two spectral signatures or pixel vectors, SID

computes the discrepancy between the probability distributions

produced by the spectral signatures. Consequently, SID is more

effective than SAM incapturing the subtle spectral ariability.

 SAM: is a popular and widely used spectral similarity measure in

hyperspectral remote sensing. It calculates spectral similarity by

measuring the angle between the spectral signature of two samples,

I’s and j’s The measure determines the similarity between two

spectra by calculating the spectral angle between them, treating

them as vectors in a space with dimensionality equal to the number

of spectral bands used (Kruse et al 1997). The spectral angle has a

lower bound of 0 and has values always greater than 1. Unlike the

distance metrics it is possible to have a zero spectral angle even

when the two vectors are not identical. This technique is relatively

insensitive to illumination and albedo effects because the angle

between two vectors is invariant with respect to the length of the

vectors.

14

Chapter 3

Creating a Spectral Suite

3.1 Purpose of creating/using a spectral suite

While multispectral images have been in regular use since the

1970s, the widespread use of hyperspectral images is a relatively recent

trend. Hyperspectral imaging, also known as imaging spectrometry, is now

a reasonably familiar concept in the world of remote sensing. However, for

many biomedical specialists who have not had the opportunity to use

hyperspectral imagery in their work yet, the benefits of hyperspectral

imagery may still be vague and there is no specialized tool on the market

nowadays to work on it. Undoubtedly, it cannot be specified that it is vitally

important the existence of a hyperspectral suite which will provide specific

tools and features appropriate for biomedical imaging and engineering.

3.2 Present Spectral Suites

Nowadays, there are some spectral suites on the market. ENVI,

MultiSpec, Geomatica, Erdas Image are only a few of them. Although, the

fact that it is very interesting for new scientists to lead to that field of

science and way of data analysis, it is worth to point out that none of them,

or only a small number, is specialized in biomedical data analysis. The

majority of them are used in agriculture fields and geographical analysis.

These suites have many features to analyze and to edit spectral images and

spectral cubes. Although, the occurrence of these spectral suites, it is

obvious that there is a lack of a framework suitable to biomedical needs.

The referred suites provides no tools for biomedical research, so these

field’s specialists are facing difficulties to using these suites. Furthermore,

the existing suites use some old fashioned GUIs which create more

difficulties to the user.

3.3 Biomedical Applications in Electronics Laboratory

Undoubtedly, electronics laboratory has a specific interest in

biomedical applications. And for that reasons, many attempts were made

in order to develop a spectral suite which be able to be used in spectral

data analysis. The effort ,that has been put on that direction, has purpose

to create a universal suite which will be able, in the future, to be 100%

15

functional. Hematology, skin cancer and plenty of others analysis are topics

in which our laboratory is interested in so there was a need of such a suite

development.

3.4 Innovations of presented thesis

As I mentioned before, from a large and extended research in the

field of spectral suites, it is obvious that the majority of the well-known and

most popular suites for spectral data analysis are specialized in

geographical and agriculture fields. Because of that, many features from

these suites are not specialized for bio data. So, it is important to develop

a platform which will be able to handle and analyze spectral data from

biomedical staff. Except for that, this suite has the advantage of

compatibility. Its design gives the opportunity of anyone else wants to use

and add any feature, to follow the plugin pattern I made and finally add

anything he wants. It is a very easy and useful way to expand this work,

make it bigger and even more functional in order to be equal or even

better compared to what is used until now. At last but not at least, after

the research and checking the user interface from all of the platforms I

refed before, obviously there is a need of change how UIs are set and how

they looks like to the user. For sure, the environment in which someone

works, is important to be friendly and considering that nowadays there are

programs able to be used and design your UI quite more presentable and

good-looking, it is imperative to use any access to do so. This suite is so

easy to be used and gives the user the opportunity to handle all the

information which extracts from the data he inserts.

16

Chapter 4

Basic Information about workflow

4.1 Introduction

Starting with the basic points of how I built this suite, it is very important

to explain the tools which I used to construct the suite.

4.1.1 Qt

Qt is much more than just a cross-platform SDK - it's a technology

strategy that lets you quickly and cost-effectively design, develop, deploy,

and maintain software while delivering a seamless user experience across

all devices.

Too many people, young scientists and pro engineers decides to go with

Qt for 3 very specific reasons. The first one is that it’s fast. In software

development, time really is money. That’s why Qt gives you a highly

productive framework complete with cross-platform libraries, APIs and

tools for faster time to market. Second one it’s easy. It is very important

that with Qt’s easy – to – use and flexible IDE and design tool include ready-

made controls and out-of-the box functionality for efficient UI design using

drag and drop tools, declarative programming with QML or imperatively

with c++. At last but not at least, it’s definitely future-proof. Due to

requirements changes from time to time, Qt’s open extensible and

modular c++ framework supports a cost-efficient software development

life cycle.

In the end, Qt has many fields in which is already used. Some of them

are shown below:

 Embedded Devices

 Application UIs and Software

 Internet of Things

 Mobile

 Automotive

 Automation

 Medical

17

FIGURE 5 QT'S WORKFLOW

FIGURE 6 GUI'S DESIGNER

18

4.1.2 About Compiler and MinGW

MinGW (Minimalist GNU for Windows), formerly mingw32, is a free
and open source software development environment to create Microsoft
Windows applications. The development of the original MinGW project
was halted in 2013, but an alternative called MinGW-w64 has been
created by a different author to include several new APIs and provide 64-
bit support.

MinGW includes a port of the GNU Compiler Collection (GCC), GNU
Binutils for Windows (assembler, linker, archive manager), a set of freely
distributable Windows specific header files and static import
libraries which enable the use of the Windows API, a Windows native build
of the GNU Project's GNU Debugger, and miscellaneous utilities.

MinGW does not rely on third-party C runtime dynamic-link
library (DLL) files, and because the runtime libraries are not distributed
using the GNU General Public License(GPL), it is not necessary to distribute
the source code with the programs produced, unless a GPL library is used
elsewhere in the program.[3]

MinGW can be run either on the native Microsoft Windows
platform, cross-hosted on Linux (or other Unix), or "cross-native"
on Cygwin.

4.1.3 About language and C++

C++ is widely used among the programmers or developers mainly in

an application domain. It contains the important parts including the core

language providing all the required building blocks including variable, data

types, literals etc. It supports object-oriented programming including its

features like Inheritance, Polymorphism, Encapsulation, and Abstraction.

These concepts make the C++ language different and mostly in use for

developing the applications easily and conceptualized.

There are several benefits of using C++ for developing

applications and many applications product based developed in this

language only because of its features and security. Please find the

below sections, where uses of C++ has been widely and effectively

used. Below is the list of top 10 uses of C++:

 Applications: It is used for development of new applications

of C++. The applications based on graphic user interface,

which are highly used applications like adobe photoshop

https://en.m.wikipedia.org/wiki/Free_and_open-source_software
https://en.m.wikipedia.org/wiki/Free_and_open-source_software
https://en.m.wikipedia.org/wiki/Software_development
https://en.m.wikipedia.org/wiki/Microsoft_Windows
https://en.m.wikipedia.org/wiki/Microsoft_Windows
https://en.m.wikipedia.org/wiki/MinGW#MinGW-w64
https://en.m.wikipedia.org/wiki/Application_programming_interface
https://en.m.wikipedia.org/wiki/64-bit_support
https://en.m.wikipedia.org/wiki/64-bit_support
https://en.m.wikipedia.org/wiki/Porting
https://en.m.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.m.wikipedia.org/wiki/GNU_Binutils
https://en.m.wikipedia.org/wiki/GNU_Binutils
https://en.m.wikipedia.org/wiki/Assembler_(computing)
https://en.m.wikipedia.org/wiki/Linker_(computing)
https://en.m.wikipedia.org/wiki/Archive_file
https://en.m.wikipedia.org/wiki/Header_file
https://en.m.wikipedia.org/wiki/Static_library
https://en.m.wikipedia.org/wiki/Static_library
https://en.m.wikipedia.org/wiki/Windows_API
https://en.m.wikipedia.org/wiki/GNU_Project
https://en.m.wikipedia.org/wiki/GNU_Debugger
https://en.m.wikipedia.org/wiki/Third-party_software_component
https://en.m.wikipedia.org/wiki/C_(programming_language)
https://en.m.wikipedia.org/wiki/Runtime_library
https://en.m.wikipedia.org/wiki/Dynamic-link_library
https://en.m.wikipedia.org/wiki/Dynamic-link_library
https://en.m.wikipedia.org/wiki/GNU_General_Public_License
https://en.m.wikipedia.org/wiki/Source_code
https://en.m.wikipedia.org/wiki/MinGW#cite_note-3
https://en.m.wikipedia.org/wiki/Linux
https://en.m.wikipedia.org/wiki/Cygwin

19

and others. Many applications of Adobe systems are

developed in C++ like Illustrator and image ready and Adobe

 Games: This language is also used for developing games. It

overrides the complexity of 3D games. It helps in optimizing

the resources. It supports multiplayer option with

networking. uses of C++ allows procedural programming for

intensive functions of CPU and to provide control over

hardware, and this language is very fast because of which it is

widely used in developing different games or in gaming

engines. C++ mainly used in developing the suites of a game

tool.

 Web Browser: This language is used for developing

browser’s as well. C++ is used for making Google Chrome,

and Mozilla Internet browser Firefox. Some of the

applications are written in C++, from which Chrome

browser is one of them and others are like a file system, the

map reduces large cluster data processing. Mozilla has

other application also written in C++ that is email client

Mozilla Thunderbird. C++ is also a rendering engine for the

open source projects of Google and Mozilla.

 Database Access: This language is also used for developing

database software or open source database software.

The example for this is MySQL, which is one of the most

popular database management software and widely used in

organizations or among the developers. It helps in saving

time, money, business systems, and packaged software.

There are other database software access based

applications used that are Wikipedia, Yahoo, youtube etc.

The other example is Bloomberg RDBMS, which helps in

providing real-time financial information to investors. It is

mainly written in C++, which makes database access fast

and quick or accurate to deliver information regarding

business and finance, news around the world.

https://www.educba.com/mysql-interview-questions/
https://www.educba.com/database-management-system/
https://www.educba.com/rdbms-interview-questions/

20

 Compilers: Most of the compilers mainly written in C++

language only. The compilers that are used for compiling

other languages like C#, Java etc. mainly written in C++ only.

It is also used in developing these languages as well as C++

is platform independent and able to create a variety of

software.

 Operating Systems: It is also used for developing most of the

operating systems for Microsoft and few parts of Apple

operating system. Microsoft Windows 95, 98, 2000, XP,

office, Internet Explorer and visual studio, Symbian mobile

operating systems are mainly written in C++ language only.

 Other Uses: it is used for medical and engineering

applications, Computer-aided design systems. These

applications are like MRI scans machines, CAM systems that

are mainly used in hospitals, local, state and national

government, and other departments for construction and

mining etc. applications of C++ is considered as a first

preferred language to use among the developer when

performance is considered for any developing application.
In conclusion, C++ is the language which is used everywhere but

mainly in systems programming and embedded systems. Here system

programming means for developing the operating systems or drivers that

interface with Hardware. Embedded system means things that are

automobiles, robotics, and appliances. C++ is having higher or rich

community and developers, which helps in the easy hiring of developers

and online solutions easily. Uses of C++ is referred to as the safest language

because of its security and features. It is the first language for any

developer to start, who is interested in working in programming languages.

It is easy to learn, as it is pure concept based language. Its syntax is very

simple, which makes it easy to write or develop and errors can be easily

replicated. Before using any other language, programmers preferred to

learn C++ first and then they used other languages. But most of the

developers try to stick with C++ only because of its wide variety of usage

and compatibility with multiple platforms and software.

21

4.2 Starting with the suite

The meaning of spectral cube’s was analyzed before. The suite uses

XML files to extract information about images and the cube itself. So from

the UI, user is able to select an XML file which is contained in the folder

with the pictures.

The reason why we use XML files is that, it is a well-known and easy

to be used markup language, which has native support from Qt. That’s why

it is easy to save cube’s information in a text-based format which is

readable both from algorithms and from developers and people

themselves. Furthermore, it is very easy more information to be added and

stored in those files with no need of code fixing.

Reading now the XML file, I extract information which are used

subsequently in order to be easier for the user to handle the cube. The

information that be extracted are

 Wavelengths

 The first band - wavelength

 The last band - wavelength

 Band Step

 The date when the cube was last modified

 And of course the name of all the images which will be loaded

The information, I just mentioned to, are available after the import

in an action called “Cube Information” so that user will be able to know

about them.

By reading the XML file, and keep the information to which I just

referred to, I am able to access the cube, via images of course. After a set

the images and the information a get from them (First/Last Band, Step etc)

I keep the images in a QList in order to be able to process them and apply

any filter, feature or clustering algorithm the suite gives me the ability to

do so. After this process, UI has in the central Widget the mid Image from

the cube. Right down from the image that is shown, there is label in which

the wavelength in “nm” is mentioned.

As you see in the following image, there is a slider at the bottom of

the main window. Sliding it, gives you the opportunity to move in every

other image, from the loaded ones. The wavelength, I mentioned before,

22

of the image you chose is updated. On the other hand if you just want to

change the images one by one and not in a wider number, there are two

arrow, one on the left and one on the right bottom side. After clicking the

right one, for example, you move to the very image which’s wavelength is

up by step (The difference between two wavelengths, given that the

difference among them is the same).

Since the cube is imported, images and information are kept in

variables and arrays the image that is currently shown in the central

widget, is always fit in the Graphics view widget so that the user don’t miss

any point of view.

FIGURE 7 HYPERSPECTRAL SUITE GUI

4.3 Menu Bar and Options

The menu bar that is put on the top of the main window is developed

in two separated parts. The first one is the branch that is created in a static

way using Qt features. The options which are created apriori are:

23

1. The option “Cube”. This option has the following actions:

 Import: Triggering this action a window is revealed,

giving user the right to find the XML he wants and

loaded in order to images and information be parsed.

 Cube Information: At first this action is disabled. After a

cube is imported, I set this action enabled and after the

user clicks on it, a pop up window shows providing

cube’s information about first and last band, step and

date when the cube was last modified

 Recent Files: In case this option is hovered by the

cursor, a side list is revealed which contains the XML

files from the last 5 cubes were imported

 Export Cube: Clicking this button, a dialog window is

opened so that the user is able to export, to save the

whole modified cube after all the features he used

during the suite explore.

 Save: By triggering this action, a dialog window opens

so that user can save the current image which is shown

in the central widget.

 Exit: At last, when the user clicks this button, he exits

from the application at all.

24

FIGURE 8 MENU OPTION "CUBE"

2. The option named “Options”. Here there are some options,

with which the user is able to see the behavior either from the

current image or the whole cube using plotting or histogram

features, and edit the image by cropping, rotate etc. This

option has the following actions:

 Plotting: By triggering this option and hovering his

cursor over the current image is able to see the graph

which in xAxis has the wavelengths of the cube from

first to last band by step, and in yAxis the intensities of

the pixels. By moving the cursor over the image the

graph updates its graph.

25

FIGURE 9 SPECTRUM PIXEL PLOT

 Histogram: This option creates a graph only for the

current image and its purpose is to show how many

pixels are in each intensity value from 0 to 255.

FIGURE 10 IMAGE HISTOGRAM

 Reload Image: After using some filters on the current

image with this option the user can restore the original

image from the cube.

26

 Centroids: By clicking this button another graph is

revealed. Now the graphs are referring to some specific

pixels which belong in different colors. Each graph

refers to a different centroid with a different color so it

can be distinguished. There is also an interactive legend

where we can rename some centroids. Furthermore, if

we want to clear the field and delete some graphs,

there is a radio button that, when we want to do so, we

set it enabled by click on it and then double click to the

legend and delete the graph we selected.

 Crop: This is snipping tool which gives the user the

opportunity, using his mouse, to mark a specific area

on current image and create a new image which is the

data within the area he chose.

 Process: This is a checkable process which provides to

options called “Current” and “Cube”. By having

checked the “Current” option all the filters are applied

only in the current image and on the other hand if the

option “Cube” is checked the filters the user selects,

will be applied in all images of the cube.

 Plot Profile: By clicking this option, user is able to draw

a line on the current image in the central widget and

after that a new window pops up with a graph of the

intensities from each pixel which is on the line the user

just drawn.

27

FIGURE 11 PLOT PROFILE

 Surface Plot: This option creates a 3D graph with the

intensities of all the pixels within the current image.

FIGURE 12 SURFACE PLOT

 Transform: This option has to different actions. The first

one is “Flip”, which inverts the current image (upside-

down). The second option is “Rotate”. Using this one

the user can decide either clockwise or

counterclockwise rotation for the current image.

 Operations: This option is referring to the pixels and its

purpose is to replace each pixel value with the new

result. There are four operations available:

28

 Addition: Click this one, a configuration window

pops up, asking for a value which will be added

in each pixel in all images of the imported cube.

So, for each pixel of each image there is an

addition with current pixel value plus the value

which the user just inserts. If the result is not

getting over 255, the result is replacing previous

value. Otherwise, the new value will be 255.

FIGURE 13 ADDITION (VALUE = 50)

 Substraction: In the same mood, there is a

substraction, current pixel value minus the

number which is inserted by the user. If the

result is not less than zero, it replaces the current

pixel value. Otherwise the new value is zero.

29

FIGURE 14 SUBSTRACTION (VALUE = 50)

 Multiplication: As previous, the inserted number

is multiplied with the value of each pixel. If it

overcomes number 255, the new pixel value is

255.

FIGURE 15 MULTIPLICATION (VALUE = 2)

 Division: Using the value which the user has

inserted, there is a division between the

intensity of each pixel and the inserted number.

In this case like the others, the new value is

replacing the old one.

30

 Reload Cube: Pushing this button, the cube, the user

is currently handling, is being reloaded.

 Substract Image: On this action, there is a dialog

window popping up, where the user is asked to

choose one image, whichever he wants. After the

loading of the image, there is a check on the

dimensions of the selected image. If they match

with the dimensions of the images from the loaded

cube, there is a substraction between every pixel on

the loaded image and the corresponding pixel in

every image from the cube.

 Merge Image: On this action, there is a dialog

window which pops up and there are 3 lists. One for

each Red, Green and Blue channel. The user selects

one image for each channel and the right pixel value

is extracted. After that the three values are merged

in a new pixel image, so in the end a new image is

created and shown. There is a “Save” and “Exit” on

the window where the merged image is shown.

FIGURE 16 MERGED IMAGE

31

FIGURE 17 MENU OPTION "OPTIONS"

3. The option named “Help”. This option is divided into two

different parts.

 “About this Suite…”: Clicking this button and a new pop

up window is revealed. In that, there are some

information about the creator of this spectral suite, the

supervisor professor and the copyrights.

 “About the plugins…”: By having this button triggered,

there is a pop up window which includes information

about its one plugin that was parsed. There is

information about the author of the plugin and the

version of it.

32

FIGURE 18 MENU OPTION "HELP"

There were the menu actions and their options which was added in

the suite statically using tools and features which Qt Creator provides. In

the next chapter comes the plugin logic and implementation of this

spectral suite.

33

Chapter 5

Plugin Logic and Implementation

5.1 About plugins

In computing, a plug-in is a software component that adds a specific
feature to an existing computer program. When a program supports plug-
ins, it enables customization.

Web browsers have historically allowed executables as plug-ins,
though they are now mostly deprecated. (These are a different type of
software module than browser extensions.) Two plug-in examples are
the Adobe Flash Player for playing videos and a Java virtual machine for
running applets.

A theme or skin is a preset package containing additional or
changed graphical appearance details, achieved by the use of a graphical
user interface (GUI) that can be applied to specific software and websites
to suit the purpose, topic, or tastes of different users to customize the look
and feel of a piece of computer software or an operating system front-end
GUI (and window managers).

The host application provides services which the plug-in can use,
including a way for plug-ins to register themselves with the host
application and a protocol for the exchange of data with plug-ins. Plug-ins
depend on the services provided by the host application and do not usually
work by themselves. Conversely, the host application operates
independently of the plug-ins, making it possible for end-users to add and
update plug-ins dynamically without needing to make changes to the host
application.

Programmers typically implement plug-in functionality using shared
libraries, which get dynamically loaded at run time, installed in a place
prescribed by the host application. For example, HyperCard supported a
similar facility, but more commonly included the plug-in code in the
HyperCard documents (called stacks) themselves. Thus the HyperCard
stack became a self-contained application in its own right, distributable as
a single entity that end-users could run without the need for additional
installation-steps. Programs may also implement plugins by loading a
directory of simple script files written in a scripting
language like Python or Lua.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Deprecation
https://en.wikipedia.org/wiki/Browser_extension
https://en.wikipedia.org/wiki/Adobe_Flash_Player
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_applet
https://en.wikipedia.org/wiki/Theme_(computing)
https://en.wikipedia.org/wiki/Skin_(computing)
https://en.wikipedia.org/wiki/Window_manager
https://en.wikipedia.org/wiki/Protocol_(computing)
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Dynamic_loading
https://en.wikipedia.org/wiki/HyperCard
https://en.wikipedia.org/wiki/Script_(computing)
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)

34

Plug-ins appeared as early as the mid 1970s, when the EDT text
editor running on the Unisys VS/9 operating system using the UNIVAC
Series 90 mainframe computers provided the ability to run a program from
the editor and to allow such a program to access the editor buffer, thus
allowing an external program to access an edit session in memory.[14] The
plug-in program could make calls to the editor to have it perform text-
editing services upon the buffer that the editor shared with the plug-in.
The Waterloo Fortran compiler used this feature to allow interactive
compilation of Fortran programs edited by EDT.

Very early PC software applications to incorporate plug-in
functionality included HyperCard and QuarkXPress on the Macintosh, both
released in 1987. In 1988, Silicon Beach Software included plug-in
functionality in Digital Darkroom and SuperPaint, and Ed Bomke coined
the term plug-in.

Applications support plug-ins for many reasons. Some of the main
reasons include:

 to enable third-party developers to create abilities which
extend an application

 to support easily adding new features

 to reduce the size of an application

 to separate source code from an application because of
incompatible software licenses.

5.2 Why to use plugins in this suite

As it was mentioned before, the purpose of this spectral suite is to
create and develop a new framework which will be able to differ in some
field to the other spectral suites. One purpose is to create a suite which
will be well designed and easier to be used in contrast to the others. A
second field is time. There is a specific effort by developing an optimal code
to have real time results in applied algorithms. But the most important and
vital purpose of this suite is compatibility and grow-up prospects. By
creating a platform that is appropriate to use plug-ins, there is an obvious
determination and prospect to deliver a framework fully dynamically
designed in order, for itself, to be able to be used from other scientists and
engineers in the future. People who will catch the pulse of their time needs
and develop tools and features which will be able to be applied and reach
results and goals vital to the future of the next generations.

https://en.wikipedia.org/wiki/EDT_(Univac)
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Unisys
https://en.wikipedia.org/wiki/VS/9
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/UNIVAC_Series_90
https://en.wikipedia.org/wiki/UNIVAC_Series_90
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Plug-in_(computing)#cite_note-14
https://en.wikipedia.org/wiki/University_of_Waterloo
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/QuarkXPress
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/Silicon_Beach_Software
https://en.wikipedia.org/wiki/Digital_Darkroom
https://en.wikipedia.org/wiki/SuperPaint
https://en.wikipedia.org/wiki/Third-party_developer
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_license

35

So it is clear that by choosing to go with plugins the suite is a fully
dynamically environment, easy to be used, easy to be grown up. Anyone in
the future, after reading and understanding what the suite already
provides, he will be able to add whatever he wants and anything he needs.
He just need to follow the generic pattern which the base class follows and
all the rest will be easily done.

5.3 Pattern of Plugins – Base Class

Now, speaking about the pattern which base class follows, it is
composed of 8 virtual function which all will be implemented in each plugin
main.cpp file.

The 8 virtual functions and their meaning is as follows:

 Title(): This function return a QString which is the name
of the dll. This name will be shown in the menu bar in
each category.

 Description(): There is again a QString return value with
the description of each plugin.

 Configuration(): All plugins in this suite, and in the most
features in general, needs some parameters to be
more compatible. That’s why, as you are going to see
below, after the user clicks on a plugin, at first he has
to trigger configuration window and add the values
which are meant to be filled, and after that to proceed
to the execution

 Execution(): This is the main function. Here goes the
implementation of each plugin.

 Tested(): This is a function that helps the user to be sure
about the compatibility of each design

 Author(): Here goes the name of the designer of each
dll.

 Version(): Here goes the version of each plugin.

36

5.4 Plugins in this suite

The plugins, that are added in this suite, are separated to 3 different
categories based on the purpose of their implementation

5.4.1 PreProcess Plugins

In this category, there are plugins intended to be applied before any
clustering algorithm.

1. Binning: This is a plugin which helps the user to make some
sort of combination between a group of pixels in order to
shorten image’s information so that it will be easier to be
handled. The configuration window asks the user to choose
either a 2*2 or 4*4 “window”, which will be applied on the
current image. The execution function gets this configure
value as an argument and applies it on the image. The new
image is loaded to the central widget.

FIGURE 19 BINNING (2*2)

2. Mean Filter: Mean filtering is a simple, intuitive and easy to
implement method of smoothing images, i.e. reducing the
amount of intensity variation between one pixel and the next.
It is often used to reduce noise in images. The idea of mean
filtering is simply to replace each pixel value in an image with

37

the mean (`average') value of its neighbors, including itself.
This has the effect of eliminating pixel values which are
unrepresentative of their surroundings. Mean filtering is
usually thought of as a convolution filter. Like other
convolutions it is based around a kernel, which represents the
shape and size of the neighborhood to be sampled when
calculating the mean. Often a 3×3 square kernel is used, as
shown in Figure 1, although larger kernels (e.g. 5×5 squares)
can be used for more severe smoothing. For the
implementation of this filter the OpenCV’s mean filter
function is used.

FIGURE 20 MEAN FILTER

3. Median Filter: This is a nonlinear digital filtering technique,
often used to remove noise from an image or signal.
Such noise reduction is a typical pre-processing step to
improve the results of later processing (for example, edge
detection on an image). Median filtering is very widely used
in digital image processing because, under certain conditions,
it preserves edges while removing noise (but see discussion
below), also having applications in signal processing. The
main idea of the median filter is to run through the signal
entry by entry, replacing each entry with the median of
neighboring entries. The pattern of neighbors is called the

https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm
https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Signal_noise
https://en.wikipedia.org/wiki/Noise_reduction
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Median

38

"window", which slides, entry by entry, over the entire signal.
For 1D signals, the most obvious window is just the first few
preceding and following entries, whereas for 2D (or higher-
dimensional) signals such as images, more complex window
patterns are possible (such as "box" or "cross" patterns). Note
that if the window has an odd number of entries, then
the median is simple to define: it is just the middle value after
all the entries in the window are sorted numerically. For an
even number of entries, there is more than one possible
median. For this function, an OpenCV function was used, too.

FIGURE 21 MEDIAN FILTER

4. Despeckle Filter: One of the fundamental challenges in image
processing and computer vision is image denoising. What
denoising does is to estimate the original image by
suppressing noise from the image. Image noise may be
caused by different sources (from sensor or from
environment) which are often not possible to avoid in
practical situations. Therefore, image denoising plays an
important role in a wide range of applications such as image
restoration, visual tracking, image registration, and image
segmentation. While many algorithms have been proposed
for the purpose of image denoising, the problem of image
noise suppression remains an open challenge, especially in

https://en.wikipedia.org/wiki/Median

39

situations where the images are acquired under poor
conditions where the noise level is very high. There are two
main types of noise in the image:

 Salt and pepper noise : It has sparse light and dark
disturbances. Pixels in the image are very different in
color or intensity from their surrounding pixels; the
defining characteristic is that the value of a noisy pixel
bears no relation to the color of surrounding pixels.
Generally this type of noise will only affect a small
number of image pixels. When viewed, the image
contains dark and white dots, hence the term salt and
pepper nose.

 Gaussian noise: "Each pixel in the image will be changed
from its original value by a (usually) small amount. A
histogram, a plot of the amount of distortion of a pixel
value against the frequency with which it occurs, shows
a normal distribution of noise. While other
distributions are possible, the Gaussian (normal)
distribution is usually a good model, due to the central
limit theorem that says that the sum of different noises
tends to approach a Gaussian distribution.

For this function, an OpenCV function was used, too.

FIGURE 22 DESPECKLE FILTER

40

5. Smoothing Filter: Image blurring is achieved by convolving the
image with a low-pass filter kernel. It is useful for removing
noises. It actually removes high frequency content (eg: noise,
edges) from the image. So edges are blurred a little bit in this
operation. (Well, there are blurring techniques which doesn't
blur the edges too). OpenCV provides mainly four types of
blurring techniques.

 Averaging: This is done by convolving image with a
normalized box filter. It simply takes the average of all
the pixels under kernel area and replace the central
element.

 Gaussian Blurring: In this, instead of box filter,
gaussian kernel is used.

 Bilateral Filtering: This is highly effective in noise
removal while keeping edges sharp. But the operation
is slower compared to other filters. We already saw
that gaussian filter takes the a neighbourhood around
the pixel and find its gaussian weighted average. This
gaussian filter is a function of space alone, that is,
nearby pixels are considered while filtering. It doesn't
consider whether pixels have almost same intensity. It
doesn't consider whether pixel is an edge pixel or not.
So it blurs the edges also, which we don't want to do.

 Median Blurring: Here, this technique takes median of

all the pixels under kernel area and central element is

replaced with this median value. This is highly effective

against salt-and-pepper noise in the images.

Interesting thing is that, in the above filters, central

element is a newly calculated value which may be a

pixel value in the image or a new value. But in median

blurring, central element is always replaced by some

pixel value in the image. It reduces the noise

effectively. Its kernel size should be a positive odd

integer.

For this function, an OpenCV function was used, too.

41

FIGURE 23 SMOOTHING FILTER - GAUSSIAN

5.4.2 Clustering Plugins

5.4.2.1 About Clustering

Clustering can be considered the most important unsupervised

learning problem; so, as every other problem of this kind, it deals with
finding a structure in a collection of unlabeled data.
A loose definition of clustering could be “the process of organizing objects
into groups whose members are similar in some way”.
A cluster is therefore a collection of objects which are “similar” between
them and are “dissimilar” to the objects belonging to other clusters.
We can show this with a simple graphical example:

In this case we easily identify the 4 clusters into which the data can
be divided; the similarity criterion is distance: two or more objects belong
to the same cluster if they are “close” according to a given distance (in this
case geometrical distance). This is called distance-based clustering.
Another kind of clustering is conceptual clustering: two or more objects
belong to the same cluster if this one defines a concept common to all that
objects. In other words, objects are grouped according to their fit to
descriptive concepts, not according to simple similarity measures.

42

5.4.2.2 The Goals of Clustering

So, the goal of clustering is to determine the intrinsic grouping in a
set of unlabeled data. But how to decide what constitutes a good
clustering? It can be shown that there is no absolute “best” criterion which
would be independent of the final aim of the clustering. Consequently, it
is the user which must supply this criterion, in such a way that the result of
the clustering will suit their needs.
For instance, we could be interested in finding representatives for
homogeneous groups (data reduction), in finding “natural clusters” and
describe their unknown properties (“natural” data types), in finding useful
and suitable groupings (“useful” data classes) or in finding unusual data
objects (outlier detection).

5.4.2.3 Possible Applications

Clustering algorithms can be applied in many fields, for instance:

 Marketing: finding groups of customers with similar behavior
given a large database of customer data containing their
properties and past buying records

 Biology: classification of plants and animals given their features;

 Libraries: book ordering

 Insurance: identifying groups of motor insurance policy holders
with a high average claim cost; identifying frauds

 City-planning: identifying groups of houses according to their
house type, value and geographical location

 Earthquake studies: clustering observed earthquake epicenters
to identify dangerous zones

 WWW: document classification; clustering weblog data to
discover groups of similar access patterns.

5.4.2.4 Requirements

The main requirements that a clustering algorithm should satisfy are:

 scalability
 dealing with different types of attributes
 discovering clusters with arbitrary shape
 minimal requirements for domain knowledge to determine input

parameters

43

 ability to deal with noise and outliers
 insensitivity to order of input records
 high dimensionality
 interpretability and usability.

5.4.2.5 Problems

There are a number of problems with clustering. Among them:

 current clustering techniques do not address all the requirements
adequately (and concurrently)

 dealing with large number of dimensions and large number of data
items can be problematic because of time complexity

 the effectiveness of the method depends on the definition of
“distance” (for distance-based clustering)

 if an obvious distance measure doesn’t exist we must “define” it,
which is not always easy, especially in multi-dimensional spaces

 The result of the clustering algorithm (that in many cases can be
arbitrary itself) can be interpreted in different ways.

5.4.2.6 Well known Clustering Algorithms

K-Means is probably the most well know clustering algorithm. It’s
taught in a lot of introductory data science and machine learning classes.
It’s easy to understand and implement in code.

Mean shift clustering is a sliding-window-based algorithm that
attempts to find dense areas of data points. It is a centroid-based algorithm
meaning that the goal is to locate the center points of each group/class,
which works by updating candidates for center points to be the mean of
the points within the sliding-window. These candidate windows are then
filtered in a post-processing stage to eliminate near-duplicates, forming the
final set of center points and their corresponding groups.

DBSCAN is a density based clustered algorithm similar to mean-shift,
but with a couple of notable advantages. Suppose we have a set of points,
it can group together points that are nearby neighbors and also marks the
outliers points that lie on a big distance.

44

5.4.3 Clustering Algorithms in this suite

5.4.3.1 K-Means

In this suite K-Means is implemented. The implementation of K-
Means is as follows in steps:

 Initialization: The first thing k-means does, is randomly choose K
examples (data points) from the dataset as initial centroids and that’s
simply because it does not know yet where the center of each cluster
is. (a centroid is the center of a cluster).

 Cluster Assignment: Then, all the data points that are the closest
(similar) to a centroid will create a cluster. If we’re using the
Euclidean distance between data points and every centroid, a
straight line is drawn between two centroids, then a perpendicular
bisector divides this line into two clusters.

 Move the Centroid: Now, we have new clusters that need centers. A
centroid’s new value is going to be the mean of all the examples in a
cluster. We’ll keep repeating step 2 and 3 until the centroids stop
moving, in other words, K-means algorithm is converged.

FIGURE 24 K-MEANS RESULT

45

5.4.3.2 DBSCAN

Except for K-Means, DBSAN is also implemented. It is about a
density-based clustering algorithm where, given a set of points in some
place, it groups together points that are closely packed together (points
with many nearby neighbors), marking as outliers points that lie alone in
low-density regions (whose nearest neighbors are too far away). The
DBSCAN algorithm basically requires 2 parameters:

 eps: the minimum distance between two points. It means that if the
distance between two points is lower or equal to this value (eps),
these points are considered neighbors.

 minPoints: the minimum number of points to form a dense region.
For example, if we set the minPoints parameter as 5, then we need
at least 5 points to form a dense region.

5.4.4 Process Plugins

These plugins are headed to be applied after the preprocessing
filters like smoothing, median etc. In this category the algorithms which
are implemented are:

 Contrast Enhancement: Contrast enhancement is a significant
factor in any subjective evaluation of image quality which used
to enhance the overall quality of the medical image for feature
visualization and clinical measurement. This study presents a
number of contrast enhancement techniques for medical images
analysis. These techniques were applied on different type of
medical images such as: MRI, CT-Scan and X-ray to improve
image quality and come up with an acceptable image contrast.
The proposed method included different enhancement
techniques: logarithm and Exponential equations was created to
improve the illumination and contrast of medical images, Image
quality coefficients were extracted and compared with image
quality coefficients for the same images, which were processed
by the modified filter, and showed that the proposed method
gave better results.

46

FIGURE 25 CONTRAST ENHANCEMENT (LIMIT 100)

 Threshold: In this plugin, there is again a configuration window
which asks for a threshold value. Then, this value is compared to
every pixel in the current image in order to get the result. If a
pixel’s value is lower than the value that the user gave, that
pixel’s new value is 0, otherwise the value remains as it was.

FIGURE 26 THRESHOLD (LIMIT = 120)

47

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Starting with what it was presented and analyzed in the former

pages, at first there was an introduction in spectral imaging in general. We

saw the definitions of some highly important concepts. Image processing,

electromagnetic spectrum, spectral cube were presented so that anyone

will be able to have an idea of what he is dealing with.

Furthermore, there was an extensive reference to multi and

hyperspectral imaging. What hyperspectral imaging really is and the

applications in which it can be applied, were collocated. Undoubtedly,

there are countless applications and the importance of heading to this field

of science and engineering deemed necessary.

After that spectral cubes were presented. It is vital for this work and

the suite, anyone to understand what a spectral cube really means, how it

is presented and what information he/she is able to extract from it. The

whole spirit of this suite is handling spectral cubes and editing them in a

specific way, given the features which are provided.

Subsequently, the importance of developing a hyperspectral suite

for data analysis like this one was analyzed. Other similar software which

are on market nowadays were presented. Also, there was a reference in

similar applications which take place in TUC Electronics Laboratory and

most important, the reasons why this suite must be developed given the

fields which it covers.

After all that, an introduction on the way this suite works and the

main features which were implemented, took place. There are several

features for image processing and many different ways to apply these

techniques either in a single image or the whole cube.

But the clue of this suite development and the reason why this suite

is different and maybe with some addendums will be able to compete

others, is the plugin thing. What a plugin is, the importance of having a

dynamically created suite which any plugin, that follows the base class

48

pattern, can be added. All these were analyzed so I hope now is clear why

we were headed to that direction.

So, base class implementation and the dynamically created menus

for PreProcess, Process and Clustering and their features were analyzed

and specified.

6.2 Future Work

From now on, taking for granted that there is stable base with this

suite and given the fact of portability of it, the suite can be expanded and

many other plugins can be added. Other engineers who will use this suite,

are able to add other features and use what already exists.

Moreover, it can be a new group of plugins, which can be added,

based on GPU, like CUDA and OpenCl. Also, in this suite could be added

algorithms which are used in Electronics Laboratory, like Hematology etc.

In the end, more static features can be put on this suite for operations

which are not be supported from this suite yet and maybe the GUI can be

updated with menu bars and features so that it will be easier to work with.

