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Abstract

For the “exact” predictor-feedback control design, recently introduced by Tsubakino, Krstic, and Oliveira for multi-input linear systems
with distinct input delays, we establish input-to-state stability, with respect to additive plant disturbances, as well as robustness to constant
multiplicative uncertainties affecting the inputs. We also show that the exact predictor-feedback controller is inverse optimal with respect
to a meaningful differential game problem. Our proofs capitalize on the availability of a backstepping transformation, which is formulated
appropriately in a recursive manner. An example, computed numerically, is provided to illustrate the validity of the developed results.
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1 Introduction

Although for multi-input linear systems with distinct in-
put delays predictor-based control designs have been devel-
oped since the late 1970s and early 1980s, (see, for example,
Artstein, 1982; Manitius & Olbrot, 1979; Tsubakino, Krstic,
& Oliveira, 2016). It was not until the result in Tsubakino,
Krstic & Oliveira (2016) that an “exact” predictor-feedback
control design has appeared. This predictor-feedback con-
troller is referred to as exact, to highlight the fact that each
of the control input signals employs, in the nominal (for the
delay-free system) feedback law, the predictor of the state
as many time units in the future as the corresponding in-
put delay. This key idea has enabled the development of
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extensions to nonlinear systems (Bekiaris-Liberis & Krstic
2017), to systems with simultaneous input and state delays
(Bresch-Pietri & Di Meglio, 2017; Kharitonov, 2017), and
to extremum seeking control for static maps with delays
(Oliveira, Krstic & Tsubakino, 2017).

In the single-delay linear case, the inverse optimality and
disturbance attenuation properties of the basic predictor
feedback as well as its low-pass-filtered modification are
studied in Cai, Bekiaris-Liberis & Krstic (2018) and Krstic
(2008), whereas for nonlinear systems respective develop-
ments can be found, for instance, in Cai, Lin & Liu (2015)
and Karafyllis & Krstic (2017). Robustness of predictor
feedback to delay mismatches, for both linear and nonlinear
systems with a single input delay, is studied in Bekiaris-
Liberis & Krstic (2013), Karafyllis & Krstic (2013) and
Krstic (2008). When uncertainties in the plant parameters
or the delay are large, adaptive prediction-based schemes
may be employed, which are recently developed for sys-
tems with a single (Basturk & Krstic, 2015; Bresch-Pietri,
Chauvin & Petit, 2012; Bresch-Pietri & Krstic, 2014; Zhu,
Krstic & Su, 2017) or multiple (Zhu, Krstic & Su, in press)
delays. Prediction-based control designs for single-delay
systems under sampling also exist (Karafyllis & Krstic,
2013; Mazenc & Normand-Cyrot, 2013).

Besides highlighting some of the benefits of the exact
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predictor-feedback scheme and the accompanying backstep-
ping transformation, the problem we tackle in the present pa-
per is inspired by highway traffic control problems. In partic-
ular, in scenarios where the goal is to regulate the flow (ODE
state) at a potential bottleneck area, far downstream from the
locations of actuated on-ramps whose flows (control inputs)
may be manipulated (via, for example, ramp metering) and
where the mainstream inflow (plant disturbance) to the high-
way is unmeasured, see, for instance (Wang, Kosmatopou-
los, Papageorgiou & Papamichail, 2014). Other applications
in which multi-input systems with several delays may ap-
pear include network congestion control (Quet, Ataslar, If-
tar, Ozbay, Kalyanaraman & Kang, 2002; Tregouet, Seuret
& Di Loreto, 2016), robotic manipulators (Ailon, 2004),
multi-agent systems (Abdessameud & Tayebi, 2011) and
autonomous ground vehicles (Malisoff & Zhang, 2013), to
name only a few (Donkers, Daafouz & Heemels, 2014; Frid-
man, 2014; Mahjoub, Van Assche, Giri & Chaoui, 2015).

Motivated by these specific applications, for the exact
predictor-feedback controller in the present work we es-
tablish (1) input-to-state stability with respect to additive
plant disturbances, (2) robustness to constant multiplicative
uncertainties affecting the inputs, and (3) inverse optimal-
ity with respect to a meaningful differential game problem.
All of these results for multi-input linear systems with dis-
tinct input delays under predictor feedback are novel. Our
proofs are based on a recursive formulation of the infinite-
dimensional backstepping transformation and the construc-
tion of a Lyapunov functional. A simulation example of an
unstable third-order system with two delays is also provided
to illustrate the validity of the presented analysis.

Notation. For an n-vector, | · | denotes the Euclidean norm.
For a matrix A = (ai j)n×m, |A| denotes the induced ma-
trix norm. For functions ui : [0,Di]×R→ R and Ui : R→

R, i= 1, . . . ,m, we denote ‖ui(t)‖=
(∫ Di

0 ui(x, t)2dx
)1/2

and

‖Ui(t)‖=
(∫ t

t−Di
Ui(θ)

2dθ

)1/2
, respectively.

2 System Description and Control Law Design

Consider the following system

Ẋ(t) = AX(t)+
m

∑
i=1

biUi(t−Di)+Bδ (t), (1)

where X ∈Rn is the state, U1, . . . ,Um ∈R are control inputs,
D1, . . . ,Dm are input delays satisfying (without loss of gener-
ality) 0<D1≤ . . .≤Dm, A is an n×n matrix, bi, i= 1, . . . ,m
are n-dimensional vectors, B is an n× l matrix, and δ ∈ Rl

is disturbance. We assume that the pair ([A,b1, . . . ,bm]) is
stabilizable. In the delay-free case of system (1), we choose
the following linear feedback control laws

U i(t) = kT
i X(t), (2)

where each vector ki ∈Rn, i = 1,2, . . . ,m, is selected so that

A+
m
∑

i=1
bikT

i is Hurwitz.

We consider the following basic predictor-feedback con-
trol law

Ui(t) =
ci

ci +1
U i(t) =U∗i (t), (3)

where ci > 0, i = 1,2, . . . ,m, are sufficiently large constants
and U i(t) are given in Tsubakino, Krstic & Oliveira (2016)
as

U i(t) = kT
i Pi(t), i = 1,2, . . . ,m, (4)

where the predictors are given by

P1(t) = eAD1X(t)

+
∫ t

t−D1

eA(t−s)
m

∑
i=1

biUi(s−Di,1)ds, (5)

P2(t) = eA1D2,1P1(t)

+
∫ t

t−D2,1

eA1(t−s)
m

∑
i=2

biUi(s−Di,2)ds, (6)

...
Pm(t) = eAm−1Dm,m−1Pm−1(t)

+
∫ t

t−Dm,m−1

eAm−1(t−s)bmUm(s)ds, (7)

the matrices Ai, i = 1, . . . ,m, are

Ai = A+
i

∑
j=1

b jkT
j , (8)

and D j, i = D j−Di, for all i≤ j ≤ m, with D0 = 0.

3 Gain-Robustness and Inverse Optimality of the Basic
Predictor Feedback Controller

We first prove that the closed-loop system (1), (3)–(7)
is input-to-state stable (ISS) and we then show the inverse
optimality of (3)–(7), when the ci’s are sufficiently large 1.

3.1 ISS of the basic predictor-feedback controller

1 Considering the system of retarded functional differential equa-
tions derived by differentiating (3)–(7) and assuming that the
initial conditions Ui(s), −Di ≤ s ≤ 0, i = 1, . . . ,m, are abso-
lutely continuous and compatible with the feedback laws (3)–
(7), existence and uniqueness of an absolutely continuous solu-
tion (X(t),U1(t), . . . ,Um(t)), t ≥ 0, i = 1, . . . ,m to the closed-loop
system (1), (3)–(7), may follow, e.g., from Theorem 5.2 in Kol-
manovskii & Myshkis (1999)(for a measurable and bounded dis-
turbance δ .)

2



Theorem 1 Consider the closed-loop system consisting
of (1) with the control laws (3)–(7). There exists c∗ > 0
such that the closed-loop system is ISS provided that
c = min

i=1,2,...,m
ci > c∗, that is, there exist positive constants

ψ,λ , and ζ > 0, such that for all c > c∗,

Ω(t)≤ ψΩ(0)e−λ t +ζ

(
sup

0≤τ≤t
|δ (τ)|

)2

, for all t ≥ 0,

(9)
with

Ω(t) = |X(t)|2 +
m
∑

i=1
‖Ui(t)‖2. (10)

Remark 1 Theorem 1 shows that the basic predictor-
feedback controller (3)–(7), besides being input-to-state sta-
bilizing with respect to additive plant disturbances, is robust
to constant multiplicative uncertainty affecting the systems
inputs. Moreover, if the control law (3) is modified to

Ui(t) =
ci +1

ci
U i(t), i = 1,2, . . . ,m, (11)

then the result of Theorem 1 still holds. In other words, the
basic predictor-feedback controller is robust to uncertainties
that are both larger and smaller than unity. Since such a re-
sult could be established employing identical arguments to
the proof of Theorem 1, its proof is omitted as the super-
fluous technical details would only distract the reader from
the substance of the result, which is robustness of predictor
feedback.

Remark 2 When the control gains ki
ci

ci+1 in (3) are replaced
by ki +4i where |4i|, i = 1,2, · · · ,m, are sufficiently small,
the result of Theorem 1 still holds. The proof of such a result
would be almost identical to that of Theorem 1.

Remark 3 The closed-loop system in Tsubakino, Krstic &
Oliveira (2016) is not the same with the closed-loop system
(1) under (3)–(7), with δ ≡ 0, and thus, the result in Theorem
1 cannot follow combining the exponential stability result in
Tsubakino, Krstic & Oliveira (2016) with the results in, for
example, Dashkovskiy & Mironchenko (2013). It should be
also noted that another advantage of performing the stability
analysis adopting the constructive strategy of the proof of
Theorem 1 is that one obtains explicit input-to-state stability
estimates, as estimate (9) with the specific constants ψ, λ ,
and ζ , which is a result of the explicit construction of a
Lyapunov functional.

The proof of Theorem 1 is based on a series of technical
lemmas, which are presented next, together with transport
PDE representation for the actuator state, which allows us

to re-write system (1) as

Ẋ(t) = AX(t)+
m

∑
i=1

biui(0, t)+Bδ (t) (12)

∂tui(x, t) = ∂xui(x, t), x ∈ (0,Di), i = 1,2, . . . ,m (13)
ui(Di, t) =Ui(t), i = 1,2, . . . ,m, (14)

where

ui(x, t) =Ui(x+ t−Di), i = 1,2, . . . ,m. (15)

In this notation, we define

p1(x, t) = eAxX(t)

+
∫ x

0
eA(x−α)

m

∑
i=1

biui(α, t)dα, 0≤ x≤ D1, (16)

p2(x, t) = eA1(x−D1)p1(D1, t)

+
∫ x

D1

eA1(x−α)
m

∑
i=2

biui(α, t)dα, D1 ≤ x≤ D2,(17)

...

pm(x, t) = eAm−1(x−Dm−1)pm−1(Dm−1, t)+
∫ x

Dm−1

eAm−1(x−α)

×bmum(α, t)dα, Dm−1 ≤ x≤ Dm, (18)

and thus, with this representation, (4) becomes

U i(t) = kT
i pi(Di, t), i = 1,2, · · · ,m. (19)

From (16)–(18), it is also easy to see that

p1(0, t) = X(t), (20)
p2(D1, t) = p1(D1, t), (21)

...
pm(Dm−1, t) = pm−1(Dm−1, t). (22)

Lemma 1 The backstepping transformations of ui(x, t), i=
1, . . . ,m, defined as

ω1(x, t) = u1(x, t)− kT
1 p1(x, t), x ∈ [0,D1] (23)

ω2(x, t) = u2(x, t)−

{
kT

2 p1(x, t), x ∈ [0,D1]

kT
2 p2(x, t), x ∈ [D1,D2]

(24)

...

ωm(x, t) = um(x, t)−



kT
m p1(x, t), x ∈ [0,D1]

kT
m p2(x, t), x ∈ [D1,D2]

...

kT
m pm(x, t), x ∈ [Dm−1,Dm],

(25)

where pi(x, t), i = 1,2, . . . ,m, are given by (16)–(18), to-
gether with the control laws (3), (19), (16)–(18) transform
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system (12)–(14) to the following “target system”

Ẋ(t) =

(
A+

m

∑
i=1

bikT
i

)
X(t)+

m

∑
i=1

biωi(0, t)+Bδ (t)(26)

∂tω1(x, t) = ∂xω1(x, t)− kT
1 eAxBδ (t), x ∈ (0,D1) (27)

∂tω2(x, t) = ∂xω2(x, t)

−


kT

2 eAxBδ (t), x ∈ (0,D1),

kT
2 eA1(x−D1)eAD1Bδ (t)

− kT
2

c1+1 eA1(x−D1)b1kT
1 p1(D1, t),

x ∈ (D1,D2)

(28)

...
∂tωm(x, t) = ∂xωm(x, t)

−



kT
meAxBδ (t), x ∈ (0,D1),

kT
meA1(x−D1)eAD1Bδ (t)

− kT
m

c1+1 eA1(x−D1)b1kT
1 p1(D1, t), x ∈ (D1,D2)

...

kT
meAm−1(x−Dm−1)eAm−2Dm−1,m−2

×eAm−3Dm−2,m−3 · · ·eA1D2,1eAD1Bδ (t)

−
m−2
∑
j=1

{
kT

meAm−1(x−Dm−1)eAm−2Dm−1,m−2

×eAm−3Dm−2,m−3 · · ·eA jD j+1, j
b jkT

j
c j+1 p j(D j, t)

}
−kT

meAm−1(x−Dm−1)
bm−1kT

m−1
cm−1+1 pm−1(Dm−1, t),

x ∈ (Dm−1,Dm)

(29)

ωi(Di, t) =−
1

ci +1
kT

i pi(Di, t), i = 1,2, . . . ,m. (30)

Proof. The space is limited, the proof is omitted.

Lemma 2 The inverse backstepping transformations of
(23)–(25) are defined by

u1(x, t) = ω1(x, t)+ kT
1 q1(x, t), x ∈ [0,D1] (31)

u2(x, t) = ω2(x, t)+

{
kT

2 q1(x, t), x ∈ [0,D1]

kT
2 q2(x, t), x ∈ [D1,D2]

(32)

...

um(x, t) = ωm(x, t)+



kT
mq1(x, t), x ∈ [0,D1]

kT
mq2(x, t), x ∈ [D1,D2]

...

kT
mqm(x, t), x ∈ [Dm−1,Dm],

(33)

where

q1(x, t) = eAmxX(t)+
∫ x

0
eAm(x−α)

×
m

∑
i=1

biωi(α, t)dα, 0≤ x≤ D1, (34)

q2(x, t) = eAm(x−D1)q1(D1, t)+
∫ x

D1

eAm(x−α)

×
m

∑
i=2

biωi(α, t)dα, D1 ≤ x≤ D2, (35)

...

qm(x, t) = eAm(x−Dm−1)qm−1(Dm−1, t)+
∫ x

Dm−1

eAm(x−α)

×bmωm(α, t)dα, Dm−1 ≤ x≤ Dm. (36)

Proof. It can be deduced using similar arguments to
the corresponding proof in Tsubakino, Krstic & Oliveira
(2016)(Appendix B).

Lemma 3 There exist positive scalars γ j and ι j (indepen-
dent of the c j’s), j = 1,2, · · · ,m, such that

sup
x∈[D j−1,D j ]

∣∣p j(x, t)
∣∣2 ≤ γ j

(
|X(t)|2 +

m

∑
i=1
‖ui(t)‖2

)
, (37)

sup
x∈[D j−1,D j ]

∣∣q j(x, t)
∣∣2 ≤ ι j

(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
, (38)

for all j = 1,2, · · · ,m.

Proof. Noting that 0 < D1 ≤ ·· · ≤ Dm and using Cauchy-
Schwartz inequality, from (16)–(18) and (34)–(36), we can
derive (37) and (38), respectively, with

γ j = 2 j+1e2|A j−1|D j · · ·e2|A|D1

×max
{

1,(m− j+1)D j, j−1 max
i= j,··· ,m

{|bi|2}
}
· · ·

×max
{

1,mD1 max
i=1,··· ,m

{|bi|2}
}
, (39)

with j = 1,2, . . . ,m, A0 = A, and

ι j = 2 j+1e2|Am|(D1+D2+···+D j)

×max
{

1,(m− j+1)D j, j−1 max
i= j,··· ,m

{|bi|2}
}
· · ·

×max{1,mD1 max
i=1,··· ,m

{|bi|2}}, j = 1,2, . . . ,m. (40)

Lemma 4 There exist positive constants α1 and α2 (inde-
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pendent of the ci’s) such that

|X(t)|2 +
m

∑
i=1
‖ωi(t)‖2 ≤ α1

(
|X(t)|2 +

m

∑
i=1
‖ui(t)‖2

)
, (41)

|X(t)|2 +
m

∑
i=1
‖ui(t)‖2 ≤ α2

(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
. (42)

Proof. With Lemma 3 and relations (23)–(25), (31)–(33),

we get (41), (42) with α1 = 2

(
1+

m
∑
j=1

D j|k j|2γ j

)
and α2 =

2

(
1+

m
∑
j=1

D j|k j|2ι j

)
, respectively.

Proof of Theorem 1: Since A +
m
∑

i=1
bikT

i is Hurwitz, for

any positive definite matrix S, there exists a unique positive
definite matrix M such that

M

(
A+

m

∑
i=1

bikT
i

)
+

(
A+

m

∑
i=1

bikT
i

)T

M =−S. (43)

Consider a Lyapunov functional

V (t) = X(t)T MX(t)+
a1

2

m

∑
i=1

∫ Di

0
ex

ωi(x, t)2dx, (44)

where the constant a1 > 0 is determined later on. The deriva-
tive of V (t) along the solutions of system (26) –(30) satisfies
the following equality

V̇ (t) =−XT (t)SX(t)+2XT (t)M
m

∑
i=1

biωi(0, t)

+2XT (t)MBδ (t)

+a1

m

∑
i=1

∫ Di

0
ex

ωi(x, t)∂tωi(x, t)dx. (45)

With (26)–(30), we compute the following integral for each i

∫ Di

0
ex

ωi(x, t)∂tωi(x, t)dx

=
∫ D1

0
ex

ωi(x, t)
(
∂xωi(x, t)− kT

i eAxBδ (t)
)

dx

+
∫ D2

D1

ex
ωi(x, t)

(
∂xωi(x, t)− kT

i eA1(x−D1)eAD1Bδ (t)

+
kT

i
c1 +1

eA1(x−D1)b1kT
1 p1(D1, t)

)
dx

...

+
∫ Di

Di−1

ex
ωi(x, t)

(
∂xωi(x, t)− kT

i eAi−1(x−Di−1)

×eAi−2Di−1,i−2eAi−3Di−2,i−3 · · ·eA1D2,1eAD1Bδ (t)
)

dx

+
i−2

∑
j=1

∫ Di

Di−1

(
ex

ωi(x, t)kT
i eAi−1(x−Di−1)eAi−2Di−1, i−2

eAi−3Di−2, i−3 · · ·eA jD j+1, j
b jkT

j

c j +1
p j(D j, t)

)
dx

+
∫ Di

Di−1

(
ex

ωi(x, t)kT
i eAi−1(x−Di−1)

×
bi−1kT

i−1

ci−1 +1
pi−1(Di−1, t)

)
dx. (46)

We estimate the first term of the right-hand side of (46) as

∫ D1

0
ex

ωi(x, t)(∂xωi(x, t)− kT
i eAxBδ (t))dx

≤ 1
2

eD1ωi(D1, t)2− 1
2

ωi(0, t)2− 1
4

∫ D1

0
ex

ωi(x, t)2dx

+D1eD1 |ki|2e2|A|D1 |B|2|δ (t)|2. (47)

Similarly, for the second term of the right-hand side of (46),
we have

∫ D2

D1

ex
ωi(x, t)

(
∂xωi(x, t)− kT

i eA1(x−D1)eAD1Bδ (t)

+
kT

i
c1 +1

eA1(x−D1)b1kT
1 p1(D1, t)

)
dx

≤ 1
2

eD2ωi(D2, t)2− 1
2

eD1ωi(D1, t)2− 1
4

∫ D2

D1

ex
ωi(x, t)2dx

+2D2,1eD2 |ki|2e2|A1|D2e2|A|D1 |B|2|δ (t)|2

+2D2,1eD2
|ki|2

(c1 +1)2 e2|A1|D2 |b1|2|k1|2|p1(D1, t)|2. (48)

For the general lth term of (46), we get

Γl =
∫ Dl

Dl−1

ex
ωi(x, t)

(
∂xωi(x, t)− kT

i eAl−1(x−Dl−1)

×eAl−2Dl−1,l−2eAl−3Dl−2,l−3 · · ·eA1D2,1eAD1Bδ (t)
)

dx

+
l−2

∑
j=1

∫ Dl

Dl−1

(
ex

ωi(x, t)kT
i eAl−1(x−Dl−1)eAl−2Dl−1,l−2

×eAl−3Dl−2,l−3 · · ·eA jD j+1, j
b jkT

j

c j +1
p j(D j, t)

)
dx+

∫ Dl

Dl−1

ex
ωi(x, t)kT

i eAl−1(x−Dl−1)
bl−1kT

l−1

cl−1 +1
pl−1(Dl−1, t)dx
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≤ 1
2

eDl ωi(Dl , t)2− 1
2

eDl−1ωi(Dl−1, t)2

−1
4

∫ Dl

Dl−1

ex
ωi(x, t)2dx+ lDl,l−1eDl |ki|2e2|Al−1|Dl,l−1

×e2|Al−2|Dl−1,l−2 · · ·e2|A|D1 |B|2|δ (t)|2

+
l−2

∑
j=1

(
lDl,l−1eDl |ki|2e2|Al−1|Dl, l−1e2|Al−2|Dl−1,l−2 · · ·

×e2|A j |D j+1, j
|b j|2|k j|2

(c j +1)2 |p j(D j, t)|2
)
+ lDl,l−1eDl |ki|2

×e2|Al−1|Dl,l−1
|bl−1|2|kl−1|2

(cl−1 +1)2 |pl−1(Dl−1, t)|2, (49)

for all l = 3, . . . , i. Recalling (30), from (47), (48), (49), we
have

∫ Di

0
ex

ωi(x, t)∂tωi(x, t)dx

≤ 1
2

eDi
1

(ci +1)2 |ki|2|pi(Di, t)|2−
1
2

ωi(0, t)2

−1
4

∫ Di

0
ex

ωi(x, t)2dx+ ςi|δ (t)|2

+2D2,1eD2
|ki|2

(c1 +1)2 e2|A1|D2 |b1|2|k1|2|p1(D1, t)|2 + . . .

+lDl,l−1eDl |ki|2
l−1

∑
j=1

(
e2|Al−1|Dl,l−1e2|Al−2|Dl−1,l−2 . . .

×e2|A j |D j+1, j
|b j|2|k j|2

(c j +1)2 |p j(D j, t)|2
)
+ . . .

+iDi,i−1eDi |ki|2
i−1

∑
j=1

(
e2|Ai−1|Di,i−1e2|Ai−2|Di−1,i−2 . . .

×e2|A j |D j+1, j
|b j|2|k j|2

(c j +1)2 |p j(D j, t)|2
)

(50)

where

ςi = D1eD1 |ki|2e2|A|D1 |B|2 +2D2,1eD2 |ki|2e2|A1|D2e2|A|D1 |B|2

+ . . .+ iDi,i−1eDi |ki|2e2|Ai−1|Di,i−1

×e2|Ai−2|Di−1,i−2 . . .e2|A|D1 |B|2. (51)

Denoting

c = min
i=1,2,··· ,m

{ci}. (52)

ρi =
1
2

eDi |ki|2γi +2D2,1eD2 |ki|2e2|A1|D2 |b1|2|k1|2|γ1

+lDl,l−1eDl |ki|2
l−1

∑
j=1

e2|Al−1|Dl,l−1e2|Al−2|Dl−1,l−2 · · ·

×e2|A j |D j+1, j |b j|2|k j|2γ j + . . .

+iDi,i−1eDi |ki|2
i−1

∑
j=1

e2|Ai−1|Di,i−1e2|Ai−2|Di−1,i−2 . . .

×e2|A j |D j+1, j |b j|2|k j|2|γ j, (53)

with the help of (37), (42), (50), we finally get

∫ Di

0
ex

ωi(x, t)∂tωi(x, t)dx

≤ α2

(c+1)2 ρi

(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
− 1

2
ωi(0, t)2

−1
4

∫ Di

0
ex

ωi(x, t)2dx+ ςi|δ (t)|2, (54)

for all i = 1,2, . . . ,m. With (54), it can be deduced from (45)
that

V̇ (t)≤−λmin(S)
2

XT (t)X(t)

+
4mλmax(M2)

λmin(S)
max

i=1,2,...,m

{
|bi|2

} m

∑
i=1

ωi(0, t)2

+
4λmax(MBBT M)

λmin(S)
|δ (t)|2

+
α2a1

(c+1)2

(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
m

∑
i=1

ρi

−1
2

a1

m

∑
i=1

ωi(0, t)2− a1

4

m

∑
i=1

∫ Di

0
ex

ωi(x, t)2dx

+a1|δ (t)|2
m

∑
i=1

ςi. (55)

Let

a1 =
8mλmax(M2)

λmin(S)
max

i=1,2,...,m

{
|bi|2

}
+1. (56)
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With (55), we get

V̇ (t)≤−

(
λmin(S)

2
− α2a1

(c+1)2

m

∑
i=1

ρi

)
|X(t)|2

−

(
a1

4
− α2a1

(c+1)2

m

∑
i=1

ρi

)
m

∑
i=1
‖ωi(t)‖2

+

(
4λmax(MBBT M)

λmin(S)
+a1

m

∑
i=1

ςi

)
|δ (t)|2. (57)

For c > c∗, where

c∗ =

√
2α2

m
∑

i=1
ρi max

{
a1

λmin(S)
,2
}

√
1−µ

, (58)

for some 0 < µ < 1, we get

V̇ (t)≤−µ min
{

λmin(S)
2

,
a1

4

}(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)

+

(
4λmax(MBBT M)

λmin(S)
+a1

m

∑
i=1

ςi

)
|δ (t)|2. (59)

Moreover, from (44), we have

min
{

λmin(M),
a1

2

}(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
≤V (t)

≤max
{

λmax(M),
a1eDm

2

}(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
, (60)

and thus, from (59), (60), it holds that

V̇ (t)≤−λV (t)+ν |δ (t)|2, (61)

with

λ =
µ min

{
λmin(S)

2 , a1
2

}
max

{
{λmax(M), a1eDm

2

} , (62)

ν =
4λmax(MBBT M)

λmin(S)
+a1

m

∑
i=1

ςi. (63)

Combining (15), (41), (42), (60), and (61), we get (9) with

ζ = α2ν

λmin{λmin(M),
a1
2 }

, ψ =
α1α2max

{
λmax(M),

a1eDm
2

}
min{λmin(M),

a1
2 }

.

3.2 Inverse optimality of the basic predictor-feedback con-
troller

Theorem 2 Consider system (1) together with the control
laws (3)–(7). There exist c∗∗ ≥ c∗ and d∗∗ > 0, such that for
all c > c∗∗ and d > d∗∗, the control laws (3)–(7) minimize
the cost functional

J = sup
δ∈Ξ

lim
t→∞

(
2βV (t)+

∫ t
0

(
L(τ)+a1β

m
∑

i=1

eDiUi(τ)
2

ci

−dβ |δ (τ)|2
)

dτ
)
, (64)

where L is a functional of (X(t),U1(θ1), . . . ,Um(θm)) , t−
Di ≤ θi ≤ t, i = 1, . . . ,m, such that

L(t)≥ β χΩ(t), (65)

for an arbitrary β > 0 and some χ > 0, and where a1, V , Ω

are given by (56), (44), (10), respectively, with Ξ being the set
of l-dimensional vector-valued linear bounded functionals
of (X(t),U1(θ1), . . . ,Um(θm)) , t−Di ≤ θi ≤ t, i = 1, . . . ,m.

Remark 4 Although cost functional (64) is not as general
as a respective cost functional that would be employed in a
direct optimal control approach, it is a meaningful cost since
it puts quadratic penalties both on the control efforts and the
disturbances, as well as on the overall infinite-dimensional
state of the system (via the term L, which is lower bounded
by Ω), and it also incorporates a terminal penalty. Moreover,
the (inverse) optimality result in Theorem 2, is derived with-
out needing to solve complicated operator Riccati equations
and it provides an optimal value function that is actually
a Lyapunov functional for the closed-loop system. Finally,
note that inverse optimality also implies certain gain margin
guarantees as it is evident in the present case from relation
(3), which may be seen as a perturbed version of the nomi-
nal controller (4).

Proof of Theorem 2: Denote

Θi(t) =
∫ D2

D1

ex
ωi(x, t)

kT
i

c1 +1
eA1(x−D1)b1kT

1 p1(D1, t)dx

+ . . .

+
∫ Di

Di−1

i−2

∑
j=1

(
ex

ωi(x, t)kT
i eAi−1(x−Di−1)eAi−2Di−1,i−2

×eAi−3Di−2,i−3 · · ·eA jD j+1, j
b jkT

j

c j +1
p j(D j, t)

)
dx

+
∫ Di

Di−1

ex
ωi(x, t)kT

i eAi−1(x−Di−1)

×
bi−1kT

i−1

ci−1 +1
pi−1(Di−1, t)dx, (66)
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for i = 2, . . . ,m, and

ηi(t) =−
∫ D1

0
ex

ωi(x, t)kT
i eAxdx

−
∫ D2

D1

ex
ωi(x, t)kT

i eA1(x−D1)eAD1 dx−·· ·

−
∫ Di

Di−1

ex
ωi(x, t)kT

i eAi−1(x−Di−1)eAi−2Di−1,i−2

×eAi−3Di−2,i−3 · · ·eA1D2,1eAD1dx, (67)

for i = 1,2, . . . ,m. Choose

L(t) =−a1β

m

∑
i=1

eDi

ci +1
U i(t)2 +a1β

m

∑
i=1

ωi(0, t)2

+a1β

m

∑
i=1

∫ Di

0
ex

ωi(x, t)2dx+2βXT (t)SX(t)

−4βXT (t)M
m

∑
i=1

biωi(0, t)−2a1β

m

∑
i=1

Θi(t)

−β

d

∣∣∣∣∣2XT (t)MB+a1

m

∑
i=1

ηi(t)B

∣∣∣∣∣
2

, (68)

where a1,U i,S are given by (56), (4), (43), respectively, and
d > 0, and β is an arbitrary positive scalar. From (66), (67),
using Cauchy-Schwartz inequality, after some calculations,
we have

Θi(t)≤
1
8

∫ Di

0
ex

ωi(x, t)2dx

+
α2

(c+1)2 ρi

(
|X(t)|2 +

m

∑
i=1
‖ωi(t)‖2

)
, (69)

for i = 1,2, . . . ,m, where c, ρi,α2 are given by (52), (53),
(42), respectively, and

|ηi(t)|2 ≤ ie2D1

∫ D1

0
ωi(x, t)2dx

∫ D1

0

∣∣kT
i eAx∣∣2 dx

+ie2D2,1

∫ D2

D1

ωi(x, t)2dx
∫ D2

D1

∣∣∣kT
i eA1(x−D1)eAD1

∣∣∣2 dx

+ · · ·

+ie2Di,i−1

∫ Di

Di−1

ωi(x, t)2dx
∫ Di

Di−1

∣∣∣kT
i eAi−1(x−Di−1)

×eAi−2Di−1,i−2eAi−3Di−2,i−3 · · ·eA1D2,1eAD1
∣∣2 dx

≤Λi

∫ Di

0
ωi(x, t)2dx, (70)

where

Λi = max{D1e2D1 ,D2,1e2D2,1 , . . . ,Di,i−1e2Di,i−1}

×i|ki|2e
2

i−1
∑

j=0
|A j |D j+1, j

, (71)

for i = 1,2 . . . ,m.

Noting from (56) that a1 > 8mλmax(M2)
λmin(S)

max
i=1,2,...,m

|bi|2, by

(4), (37), (42), (67)–(71), after some tedious calculations,
we get

L(t)≥ β

(
3λmin(S)

2
− 2a1α2

(c+1)2

m

∑
i=1

ρi

−a1α2

m

∑
i=1

γieDi

ci +1
− 8

d
λmax(MBBT M)

)
|X(t)|2

+β

(
3a1

4
− 2a1α2

(c+1)2

m

∑
i=1

ρi

−a1α2

m

∑
i=1

γieDi

ci +1
− 2a2

1|B|2mξ

d

)
m

∑
i=1
‖ωi(t)‖2, (72)

with ξ = max{Λ1, . . . ,Λm}. Choose c∗∗ and d∗∗ such that

c∗∗ ≥max
{

a1α2max
{

2
λmin(S)

,
4
a1

}
×

(
2

m

∑
i=1

ρi +
m

∑
i=1

γieDi

)
, c∗
}
, (73)

where c∗ is defined in (58), and

d∗∗ ≥max
{

16λmax(MBBT M)

λmin(S)
, 8a1|B|2mξ

}
. (74)

By (15), (42), (73) and (74), we get from (72) that

L(t)≥
βmin

{
λmin(S)

2 , a1
4

}(
|X(t)|2 +

m
∑

i=1
‖Ui(t)‖2

)
α2

, (75)

and hence, (65) is achieved with χ =
min
{

λmin(S)
2 ,

a1
4

}
α2

. With
the help of (45), (46) and using (66), (67), from (68), we
have

L(t) =−a1β

m

∑
i=1

eDi

ci +1
U i(t)2 +a1β

m

∑
i=1

eDiωi(Di, t)2

−2βV̇ (t)+4βXT (t)MBδ (t)+2a1β

m

∑
i=1

ηi(t)Bδ (t)

−β

d

∣∣∣∣∣2XT (t)MB+a1

m

∑
i=1

ηi(t)B

∣∣∣∣∣
2

. (76)

Furthermore, using the fact that ωi(Di, t) =Ui(t)−U i(t), for
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all i = 1,2, . . . ,m, and relation (3) we get

L(t) = a1β

m

∑
i=1

eDi (Ui(t)−U∗i (t))
2

−a1β

m

∑
i=1

eDi
2Ui(t)U∗i (t)

ci
+a1β

m

∑
i=1

eDi
U∗i (t)

2

ci

−2βV̇ (t)+4βXT (t)MBδ (t)+2a1β

m

∑
i=1

ηi(t)Bδ (t)

−β

d

∣∣∣∣∣2XT (t)MB+a1

m

∑
i=1

ηi(t)B

∣∣∣∣∣
2

. (77)

Denoting

Π(δ (τ)) = 4βXT (τ)MBδ (τ)+2a1β

m

∑
i=1

ηi(τ)Bδ (τ)

−β

d

∣∣∣∣∣2XT (τ)MB+a1

m

∑
i=1

ηi(τ)B

∣∣∣∣∣
2

−dβ |δ (τ)|2, (78)

by (77), (78), completing the squares, it can be deduced that

∫ t

0

(
L(τ)+a1β

m

∑
i=1

eDiUi(τ)
2

ci
−dβ |δ (τ)|2

)
dτ

=−2βV (t)+2βV (0)

+a1β

∫ t

0

m

∑
i=1

eDi

(
1+

1
ci

)
(Ui(τ)−U∗i (τ))

2dτ

+
∫ t

0
Π(δ (τ))dτ. (79)

With the help of (79), we get from (64) that

J = 2βV (0)+a1β

∫
∞

0

m

∑
i=1

eDi

(
1+

1
ci

)
(Ui(τ)−U∗i (τ))

2dτ

+ sup
δ∈Ξ

∫
∞

0
Π(δ (τ))dτ. (80)

With (78), it can then be deduced that

Π(δ (τ)) =−β

∣∣∣∣∣ 1√
d

(
2XT (τ)M+a1

m

∑
i=1

ηi(τ)

)
B (81)

−
√

dδ
T (τ)

∣∣∣2 ≤ 0,

with Π(δ ) = 0, if and only if δ = δ ∗, where

δ
∗ =

1
d

BT

(
2MT X +a1

m

∑
i=1

η
T
i

)
. (82)

Thus,
sup
δ∈Ξ

∫
∞

0 Π(δ (τ))dτ = 0, (83)

and the ‘worst case’ disturbance is given by (82). With (80)
and (83), we get

J = 2βV (0)+a1β
∫

∞

0

m
∑

i=1
eDi
(

1+ 1
ci

)
(Ui(τ)−U∗i (τ))

2dτ.

(84)
So the minimum of (84) is reached with

Ui(t) =U∗i (t), (85)

for i = 1,2, . . . ,m, and is such that

J = 2βV (0). (86)

4 Example

Consider system (1) with the matrices A, b1,b2, and B
given by

A =


0 1 0

−3 4 0

−6 2 3

 , b1 =


0

1

0

 , b2 =


0

−1

1

 , B=


0

2

3

 .

(87)
It is easy to see that (A,b1,b2) is controllable, but neither
(A,b1) nor (A,b2) alone are controllable. The nominal gains
k1,k2 are (see Tsubakino, Krstic & Oliveira, 2016)

k1 =
(

4 −10 0
)T

, k2 =
(

6 −2 −6
)T

, (88)

which render A+ b1kT
1 + b2kT

2 Hurwitz. Assume that there
are delays D1 = 0.2 and D2 = 0.5 in the control inputs U1
and U2, respectively. The proposed control laws are

U1(t) =
c1

c1 +1

(
4 −10 0

)
P1(t), (89)

U2(t) =
c2

c2 +1

(
6 −2 −6

)
P2(t), (90)

where ci > 0, i= 1,2, are sufficiently large, and Pi(t), i= 1,2,
are given as

P1(t) = eAD1X(t) (91)

+
∫ t

t−D1

eA(t−s)(b1U1(s)+b2U2(s−D2 +D1))ds,

P2(t) = eA1(D2−D1)P1(t)+
∫ t

t−D2+D1

eA1(t−s)b2U2(s)ds, (92)

with A1 = A+ b1kT
1 . The obtained allowable lower bound

for c1,c2, within Theorem 1, may be somewhat conser-
vative, yet, it may be computed explicitly using (58) as
c∗ = 904.6266, with µ = 0.1 and S = 10I.

Responses of the states under the control laws (89)–(92)
are shown for c1 = c2 = 1000 in Fig.1, whereas the control
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Fig. 1. Response of the states X1,X2,X3 with the control
laws (89)–(92) for initial conditions as X1(0) = 0, X2(0) = 1,
X3(0) = 0.5, and U1(θ) = 0, for θ ∈ [−0.2,0], U2(θ) = 0, for
θ ∈ [−0.5,0].

efforts are shown in Fig. 2. Disturbance δ (t) in Fig.1 is
comprised of randomly generated numbers from a uniform
distribution in [−1, 1]. The closed-loop system is ISS.

5 Conclusions

We consider multi-input linear systems, with distinct
input delays in each individual input channel, under the
predictor-feedback controller from Tsubakino, Krstic &
Oliveira (2016). We established, (1) ISS with respect to
additive plant disturbances, (2) robustness to constant mul-
tiplicative perturbations appearing at the system inputs, and
(3) inverse optimality with respect to a meaningful differ-
ential game problem. Our analyses are based on the avail-
ability of a backstepping transformation. Future research
includes extensions to nonlinear systems as well as exten-
sions to systems with more complex actuator dynamics than
pure transport PDEs, with the results in Bekiaris-Liberis &
Krstic (2011, 2014), Cai & Krstic (2015, 2016), as potential
starting points.

0 1 2 3 4 5
-20
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-10
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0
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15
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-20

-10
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10

20

Fig. 2. Control laws (89)–(92) for c1 = c2 = 1000.
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