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Preface

The purpose of this thesis is the development of a methodology and the
corresponding software for the construction of 2D unstructured grids for CFD
(Computational Fluid Dynamics) analyses. The geometry to be examined and the
boundaries of the domain are imported in 2D coordinates (X, y) form, through a
“.txt” file, or from an “obj” file in parametric form, which is the only input given by
the user. The direction of the nodes must follow counter clockwise sense for
external boundary nodes and clockwise sense for internal boundaries. Specifically,
the software developed enables the creation of purely triangular grids for the
simulation of inviscid flows, as well as hybrid unstructured grids, consisting of
triangular and quadrilateral elements, in order to accurately solve the boundary
layer that develops in the area near the solid walls of the computational domain
when simulating viscous flows. For the construction of the triangular grid, the
known “Delaundo” software, developed by ].D. Muller is used, while for the
construction of the viscous layers around the solid walls, an algebraic methodology
is used that has been developed in the context of this thesis. Finally, a specially
designed algorithm has also been implemented to suitably combine the triangular
and quadrilateral sections into a single grid. All data is stored in properly designed
structures. The software has been implemented entirely in C++ programming
language, and is also enriched with a flexible graphical interface (GUI), for easy user
interaction, created with the Qt 5 graphics platform, as well as with a viewer for
visualizing computational grids, based on OpenGL. At present, the software provides
the ability to create hybrid grids for both simple and more complex computational
domains, as presented in the validation chapter. The algebraic mesh algorithm that
has been created, follows a logical series of steps-calculations.
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Chapter 1: Basic Concepts

In modern practice, in the study of mechanical components and not only, problems
of fluid mechanics often appear, required to be solved. Studying and solving those
using analytical methods is not a simple procedure, as the differential equations
governing such problems are non-linear with high complexity. As experiments
proved to be particularly time-consuming and in most cases of high cost, the
development of a new branch of fluids engineering was required: Computational
Fluid Dynamics (CFD). CFD examines methods of developing and solving discrete
models for the partial differential equations (PDEs) that govern fluid mechanics
problems, adopting methods from computational physics and numerical analysis.
The equations describing the inviscid flow are the Euler equations, while the viscus
flow of Newtonian fluids are the Navier-Stokes equations [1]. Those equations
cannot be solved analytically, except for a few special cases, so it becomes necessary
the use of numerical approximations.

With CFD a numerical approximation for the problem at hand is calculated. In
order to receive the solution, it is necessary to use a discretization method, which
essentially approximates the system of partial differential equations with one
system of linear algebraic equations, which eventually can be solved using a
computer. Approximations are applied to small space sectors, (and short time steps
for transient problems), thus the solution is ultimately attributed to distinct points
of space (and time).

One of the crucial factors for a numerical solution is the discretization of space in
small sectors. These small (non-overlapping) sectors are called “cells” and all the
cells of the divided domain consist the computational grid, while the production of
such a grid is called “mesh generation”. Consequently, the way the grid is
constructed is particularly important to effectively solve a problem. A variety of
grids can be used in natural problems, such as “structured” or “unstructured” grids,
while there is no limitation on the number of cells. Two-dimensional grids usually
contain triangular (unstructured grids) or/and quadrilateral (structured or
unstructured grids) shaped cells. Furthermore, the combination of triangular and
quadrilateral cells (in 2D domains) produces the unstructured hybrid. Accordingly,
based on the needs of the flow simulation problem, different mesh generation
methods can be applied.

This diploma thesis aims in the development of a mesh generation software that
will discretize 2D flow domains with hybrid unstructured grids. Industry’s standard
programming language for such software is C++. C++ is deployed for tasks that
demand high performance, such as video editing and transcoding, high-end
computer-aided design or engineering (CAD, CAE), image processing, games,
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telecommunications, and business. For the graphical user interface (GUI) QT 5 and
OpenGL tools have been used, as they have been implemented in world-leading
commercial software, demonstrating the high performance of this combination.

1.1 2D Unstructured Triangular Grids

2-dimensional (2D) unstructured grids have clear advantages over structured ones.
In particular, unstructured grids can discretize any domain with triangular elements
(Fig. 1) without any problem; on the contrary it is very difficult and time-consuming
to build structured grids around complex geometries [1].

/\"“"ﬂ
%\

\.f\f
f‘ ”\
i

Figure 1: 2D unstructured grid around an axisymmetric diffuser.

Another important advantage of the unstructured grid is the ability of local
refinement, in areas where heavily changing phenomena (such as boundary layers
or shock waves) appear. The aforementioned local adaptation of the unstructured
grid can be implemented during the solution of a problem, if transient phenomena
appear, greatly increasing the accuracy of the simulation results. In contrast, in the
case of structured grids the refinement should be performed across the grid so it can
maintain the character of the structured grid [2]. The most important disadvantage
of unstructured grids is the difficulty in handling them. Since there is no sense of
direction against the length of the grid lines, it results an irregular connection of the
cells. Consequently, lack of structure requires the creation of appropriate data
structures, where the topological information of the elements will be stored.
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Creation of such structures but also their handling is quite time consuming, while at
the same time it has high memory requirements, especially for 3D cases.

1.2 2D Structured Quadrilateral Grids

The application of a structured grid in any aspect of grid generation has certain
advantages and disadvantages. The advantage of such a grid is that the points of an
elemental cell can be easily addressed by a double of indices (i, j) in 2D. The
connectivity is straightforward, because cells adjacent to a given elemental face are
identified by the indices and the cell edges form continuous mesh lines that begin
and end on opposite elemental faces, as illustrated in Fig. 2.

i j+1 / Elemental cell
® ‘,T/

o 0 o !
i-1,j i, j i+1,)
4 L
(o]
i, j-1
e o

Figure 2: Structured quadrilateral grid cells numbering [3].

In two dimensions, the central cell is connected by four neighboring cells. It also
allows easy data management, and connectivity occurs in a regular fashion, which
makes programming and data handling fast and easy [3]. Furthermore, structured
grids provide high degree of quality and control. This is arguably an area where
structured grids will always be supreme. Unstructured algorithms are highly
automated, and as a result, engineers have to sacrifice control. With structured
grids, a higher degree of control means almost the perfect match with the necessary
grid. Structured meshing typically allows the user to have a better control of interior
node locations and cell sizes.

Structured grids are usually aligned in the flow direction, producing more
accurate results and a better convergence in CFD solvers. This alignment in a
structured grid is achieved almost implicitly, because grid lines and flow follow the
contours of the boundaries; such an alignment is impossible for an unstructured
grid. Application of boundary conditions and turbulence models work better, when
there is a well-defined direction normal to a wall boundary, or a jet [4].
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The disadvantage of adopting such a grid, particularly for more complex
geometries, is the time consumption and the increase of grid nonorthogonality or
skewness that can cause unphysical solutions, due to the transformation of the
governing equations [3].

Figure 3: 2D structured grid close to the solid boundary of an axisymmetric diffuser.

1.3 Hybrid Mesh Generation

For successful flow simulation, grid generation and numerical simulation methods
need to be closely coupled [5]. This diploma thesis focuses on an adaptive algebraic
method for the construction of hybrid 2D grids, composed of quadrilateral and
triangular elements. Hybrid grid generation methods have attained a respectable
status for discretizing arbitrarily complex computational flow domains. The
quadrilaterals cover the region close to the body surface and triangles discretize the
remaining domain (Fig. 4).
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Figure 4: A 2D hybrid grid around an axisymmetric diffuser.

Different element types allow the exploitation of the advantages of both
structured and unstructured grid generation techniques. As described in the
previous paragraphs, the main advantage of unstructured grids is the high
automation level of the meshing procedure, and the grid adjustment almost in any
geometry. On the other hand, the cost of such fast method is the lower quality of the
numerical simulation, as irregular grid lines lead in a series of inaccurate flow
results. In contrast structured grids provide higher cells quality and normal grid
lines on the viscous boundaries, leading to simulation results of higher quality and
accuracy. However, high quality leads on a time consuming meshing procedure and
(usually) impossible mesh adaptation in complex geometries. Thus, the engineers
through the use of hybrid grids adopted a golden ratio in between mesh quality and
time consuming mesh generation.

1.4 Data Structures and C++

The use of dynamic data structures cannot be avoided, as the grid information as
well as information about the proper operation of the graphical environment is
constantly changing. Thus, the first step for the development of a functional meshing
software is the organization of the required data structures, to ensure adequate and
quick information exchange during the mesh generation procedure. At the same
time, the graphical environment should be adjusted accordingly to the user's
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selections, as different functions can be activated throughout the mesh generation
procedure. Thanks to those data structures, all desired software functions are
achieved. C++ programming language is the industry standard language for decent
graphical environments and high speed data processing. In addition, its flexibility as
well as its widespread use of various tools (such as OpenGL and Qt) renders it ideal
for creating such software, where the speed and high-quality graphics are
indispensable.

1.5 About OpenGL

OpenGL is the leading environment for developing portable, interactive 2D and 3D
graphics applications. Since its introduction in 1992, OpenGL has become the
industry's most widely used and supported 2D and 3D graphics application
programming interface (API), bringing thousands of applications to a wide variety of
computer platforms [6]. OpenGL promotes innovation and speeds application
development by incorporating a broad set of rendering, texture mapping, special
effects, and other powerful visualization functions. OpenGL was used in this work as
it provides useful functions for creating a graphical environment, as well as rich
material and information easy to find on the web. It is also effective, as it can handle
large amounts of data without delay [6]. The developed in this work T2GR
environment uses 2D graphics. OpenGL was used to visualize boundaries, edges,
nodes, and the constructed computational grid.

1.5.1 Cartesian Coordinates (OpenGL)

One of the hardest problems during the development of the GUI was finding the
cursor position at cartesian coordinates every time the user clicks on the viewer.
The coordinates functions of OpenGL return pixels cordinates. Therefore, a process
was developed to convert the coordinates from digital to Cartesian. If x is in the
range [a, b] and it is need to transform to y in the range [c, d], the following linear
relation gives

(d—-rc¢) (D
b —a) + c.

y=k-a

Thus, every time the user clicks on the viewer the digital coordinates are
converted to Cartesian, using the previous transformation. However, an
approximation of the actual position will be calculated, as it is impossible to click
exactly over a specific node. This is reasonable if we take into acount that an average
screen holds 1366 x 768 = 1,049,088 pixels resolution.
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1.5.2 Zoom In - Zoom Out (OpenGL)

If the mouse pointer moves forward, it is considered as a zoom-in, while if it moves
backward, it is considered as a zoom-out. Therefore, a variable that holds a zoom
scale equal to 1 is multiplied by 1.1 during the zoom-out operation, and divided by
1.1 during the zoom-in. The value 1.1 was selected as the zoom ratio after testing
several other values.

scale = scale x 1.1 (zoom — out) (2)

scale
1.1

scale = (zoom — in) (3)

As soon as the clipping plane is zoomed-in, the digital coordinates of the viewer
change. As the pixel that was before in position (500, 200) after 8 scrolls will be at
position(1072,430). Thus, the Cartesian coordinates that define the initial location
of the graphics display camera should also be adjusted, through the “glOrtho”
function.

1.5.3 About “glOrtho”

An orthographic projection matrix defines a cube-like frustum box that defines the
clipping space where each vertex outside this box is clipped. When creating an
orthographic projection matrix we specify the width, height and length of the visible
frustum. All the coordinates that end up inside this frustum after transforming them
to clip space with the orthographic projection matrix won't be clipped. The frustum
looks a bit like a container (Fig. 5).

FAR PLang
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\L GETS DISCARDED

Figure 5: The frustum defines the visible objects [6].
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The frustum defines the visible coordinates and is specified by a width, a height
and a near and far plane. Any coordinate in front of the near plane is clipped and the
same applies to coordinates behind the far plane. The orthographic frustum directly
maps all coordinates inside the frustum to normalized device coordinates, since the
w component of each vector is untouched. If the w component is equal to 1.0,
perspective division doesn't change the coordinates.

To create an orthographic projection matrix, we make use of function “glOrtho”:

Xmin Xmax Ymin Ymax (4)

glOrtho( ,Zmin, Zmax)

zoom scale’ zoom scale’ zoom scale’ zoom scale

The first two parameters specify the left and right coordinates of the frustum and
the third and fourth parameters specify the bottom and top parts of the frustum.
With those four points we've defined the size of the near and far planes, while the
5th and 6th parameters define the distances between the near and far planes. This
specific projection matrix transforms all coordinates between these x, y and z range
values to normalized device coordinates [6].

1.5.4 Mouse Move (OpenGL)
In order to impart the sense of movement in 2D space, the visible components
defined by “glOrtho” must be renewed. To this end, the following technique applies:

The difference between the previous position and the new is computed
d, = x — (last position of x). (5)

Translation into Cartesian coordinates

(xmax - xmin) (6)
dy = * width.
x width
Renewing the new position in Cartesian coordinates
Xtranslate = Xtranslate T dx- (7)
Re-initialization of function “glOrtho”
Xmin Xmax Ymin (8)

— Atranslater — Atranslater

glOrtho (

zoom scale zoom scale zoom scale

Ymax

— Ytranslate> — Vtranslate, ZMin, Zmax)-

zoom scale
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1.6 Qt 5 (GUI)

Since creating a computational grid is a complicated process, it would be quite
difficult for the user to interact with the software through the command line. In the
software developed within this diploma thesis, a graphical environment was
designed in order to simplify the corresponding procedures. The graphical
environment should be easy to learn, simple in its structure, provide all necessary
information and finally lead the user step by step on each process. In fact, the
graphical environment is the intermediary between the code and the user. The user
selects the available parameters through the GUI and the code runs on them. For the
creation of the GUI the Qt 5 classes and functions packet applied. Qt’s single source
compatibility, its feature richness, its C++ performance, the availability of the source
code, its documentation and all the classes and functions existence, make it ideal for
GUI development [7].

1.7 The Free-Form Deformation Tool

The T2GR software incorporates the Free-Form Deformation (FFD) tool. The tool
works complementarily with the initial mesh. A basic use of this tool is to create
similar geometries and their grids without inserting a new geometry or re-creating
the computational grid, but only by deforming the initial ones (geometry and grid).
Since the user has produced the necessary grid on the initial geometry, through the
use of the FFD tool the user can deform the current geometry and at the same time
the current computational grid (Fig. 6). Thus, without changing the boundary
conditions and the number of nodes in the grid, the user has the ability to rapidly
produce similar cases and study similar problems (such as in the case of an
automated design optimization procedure). In the field of computational
engineering any time-saving procedure could mean dramatic decrease on
computing or monetary cost [8]. A basic introduction on FFD technique will be
presented in Chapter 4.



On Hybrid Mesh Generation Basic Concepts

<
YAYAYAY >

/.

EA T 4 S A WA A WA WA WA W A ]

Figure 6: A deformed geometry and grid, using FFD.
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Chapter 2: Quadrilateral Grid Generation

2.1 The Algebraic Method for Quadrilateral Grid Generation

The method is based on algebra and vector mathematics and does not require the
solution of differential equations. The primary advantage of the method is that it
provides explicit control of the physical grid shape and physical grid spacing.
Additionally, it requires relatively few computations. Consequently, the application
of interactive computer graphics in conjunction with the algebraic method is
advocated for rapid generation of grids. The basic structure of the method is
described below, while particular attention is given to elements quality, grid
smoothing and nodal vectors inclination. Physical boundary topology requirements
are also presented.

2.1.1 Normal Vectors Calculation for Each Edge

Firstly, the algorithm calculates for each boundary and for each edge of the
boundary all normal vectors E; j(boundary;, edge;). Thus, let Ny, (X, Yn) and
Npny1(Xm+1, Ym+1) be the set of nodes of the corresponding edge. The vector E; ; is
computed as in (9), while its magnitude is given in (10); E; ; vector is then
normalized and the result is the unit vector in (11). The vectors are normalized as
for the subsequent calculations there is no need for their magnitude but only for
their direction.

Ei.j = (Vm+1~ Ym»Xms1~ Xm) 9)
| Ei,j | = \/(xm+1 - xm)z + (ym+1 - ym)z (10)
g, = Fij 11
E ;= ) (11)

2.1.2 Nodal Normal Vectors Calculation

Each edge of a boundary consists of two nodes, and for each edge a normal vector is
calculated. Initially, the normal (to the boundary) vector for a boundary node is
taken equal to that of one of the adjacent edges. In order to achieve uniformity of the
normal vectors along the corresponding boundary, it is necessary to apply a
smoothing operator to them. The nodes along a boundary are divided, and half of
them will be affected from the 1st node of the corresponding boundary and the
remaining half will be affected from the last node of the corresponding boundary.
The number of nodes, for which their normal vectors will be smoothed, is selected
by the user.

11
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Let the normal to node k — 1 be (x;_1 , Yx—1), and the normal to its adjacent node
of the boundary be (xy, y;). Let the pair of the corresponding normal vectors to the
adjacent to node k edges be (Xi_1,Yx-1), (Xx,Yx). Then, the smoothed normal
vector (Xg news Yk.new) Will be calculated as

Ximew = SF ¥ xXp—q + (1 =SF) * (X1 + X ) + xi (12)
Yinew = SExyp_1+ (1 =SF) * (Y1 + V) + i (13)
k=12....,.n—1

SF €[0,1]

Concerning the first and last nodes of each boundary, let the normal vector to the
previous boundary last edge be (X;,5:(pre), Yiast (pre)) and for the next boundary
first edge be (Xy(next),Yy(next)). Then, the smoothed normal vectors at the first
(0) and last (N) node of the boundary result as:

Xomew = [Xo + X1 + Xigse(pre) + Xigse—1(pre) 1+ xo (14)
Yonew = [Yo + Y1 + Yige(pre) + Y(pre)] + yo (15)
Xnnew = [Xiast + Xiase-1 + Xo(next) + Xy(next) ] + xy (16)
Ynnew = Wiase + Viast-1 + Yo(next) + Yi(next) |+ yy (17)

As before, every node vector is then normalized to become unitary.

In Figure 7 the smoothing was applied only to the 2 last nodes of the upper
boundary. In Figure 8 smoothing was applied to all nodes of both boundaries, and
the result is obviously better.

12
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Figure 7: Smoothed (nodal) normal vectors, only for the last 2 nodes for the upper
boundary.

Figure 8: Smoothed (nodal) normal vectors.

2.2 Inflation Set-Up

In order to initiate the inflation (of the quadrilateral mesh) in the selected
boundaries, it is first necessary to check which of the corresponding (inflated)
boundaries are connected to each other. Looking at the first and last node of the
corresponding boundary and the first and last node of the other inflated boundaries
the software recognizes if there is a connection between them. In the case of a
connection, all of the linked inflated boundaries are appended into a common list
and the double nodes are removed. Thus, when this procedure ends, information
about on which boundaries the inflation will be applied, which of these boundaries
are connected and finally which are the inflation nodes, is available. Combined with
the information of the growth rate, initial step, and number of steps, which is

13
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provided by the user through the GUI, the loop for the creation of the quadrilateral
grid can be initialized.

2.2.1 Quadrilateral Grid Generation
For the first inflation layer, the normal direction of the nodes has been already

computed. All normal vectors are transformed to unitary ones, and then the high of
the first layer is applied, in order to compute the corresponding nodes of the first
inflation layer. After the construction of the first inflation layer, all subsequent
layers can be created in the same way. In order to extend the (inflated) nodes to the
desired direction, it is necessary to re-calculate the vertical vectors on each edge, for
every new layer (so as to retain a smoothed inflation). As before, the direction of the
normal vectors attributed to each node of the layer are computed and then a
smoothing is applied. The height h; of each layer k is computed using a geometric
progression:

h, = hy * (growth rate)* (18)
k=12..,K

2.3 Quadrilateral Grid Conforming to Adjacent Boundary
If the inflated grid has to conform to the geometry of an adjacent boundary (Fig. 9),
then the previous methodology has to be modified.

Figure 9: Non-conforming inflated grid.

The method that provides the grid with the correct inflating direction, to conform
to the adjacent boundary,