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Abstract 

Ph.D. Thesis 

Macroscopic Traffic Flow Modelling in the Presence of Vehicle Automation and 
Communication Systems 

by Kallirroi  PORFYRI 

 
Over the past few years most of the countries are facing the consequences of the ever-

increasing number of vehicles, which lead to a continuous increase of congestion phenomena, 

resulting in significant increases in travel times, fuel consumption, and emissions, as well as 

reduced traffic safety. Conventional approaches for solving the problem of traffic congestion 

by expanding the existing infrastructure and operational improvements - such as 

auxiliary lanes, additional alternate routes and interchange modifications - remain practically 

infeasible, mainly due to economic and environmental reasons. Instead, comprehensive traffic 

control strategies can be defined to mitigate the problem of persisting traffic jams. However, 

the employment of efficient real-time traffic control measures entails the availability of reliable 

and robust traffic flow models that may be used to develop and validate the proposed control 

strategies. In this context, an effective calibration and validation process appears to be 

mandatory to ensure the credibility of traffic flow models in performing real-world 

simulations and optimization scenarios. 

Concurrently, engineers are seeking for solutions to improve the road network 

efficiency and capacity by means of Intelligent Transportation Systems (ITS). Specifically, 

during the last decade, an enormous continuing interdisciplinary effort is performed by the 

automobile industry, as well as by various research institutions around the world, to plan, 

develop, test, and start deploying a variety of Vehicle Automation and Communication 

Systems (VACS) that are expected to bring radical changes in the way the traffic flow will be 

controlled and optimized within the next decades. VACS, such as Adaptive Cruise Control 

(ACC) and Cooperative Adaptive Cruise Control (CACC) systems, have been initially 

developed based on new commuting alternatives for drivers and passengers, with particular 

emphasis given on improving comfort, convenience, and safety, as well as reducing traffic 

congestion. 

This thesis, which is composed of two parts, is an early attempt towards this direction. 

More specifically, the first part deals with the advancement of traffic flow models, with 

emphasis on macroscopic ones. In particular, within this thesis the well-known continuous 

second-order macroscopic gas-kinetic-based traffic model (GKT model) was validated, 

regarding the representation of traffic conditions at congested freeway areas. The model was 

calibrated and validated by employing an optimization methodology based on a parallel, 

metamodel-assisted Differential Evolution (DE) algorithm (synchronous and asynchronous) 

and using real traffic data from two different motorway networks; a motorway stretch in the 
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U.K., where severe traffic congestion is created due to high on-ramp flows during the morning 

peak periods, and a freeway stretch in Greece, where recurrent congestion is triggered by a 

saturated off-ramp during the morning peak hours. Moreover, a multi-lane approach of the 

GKT model is evaluated using real traffic data from the aforementioned network in the U.K. 

Subsequently, by implementing the same optimization scheme, the GKT model was 

compared with the most popular discrete time-space macroscopic traffic flow model, namely 

the METANET model, in terms of the representation of traffic flow conditions at the 

motorway stretch in the U.K. 

The GKT second-order traffic flow model, presented in the first part of this 
dissertation, provides the methodical prerequisites for the second part of the dissertation, 
where a novel concept of two alternative models for the macroscopic simulation of ACC and 
CACC traffic is discussed. This approach is based on the introduction of a relaxation term in 
the momentum equation of the GKT model that satisfies the time/space-gap principle of ACC 
and CACC systems. In this thesis both linear and nonlinear stability analyses are performed, 
to derive the stability threshold of the aforementioned models, and additionally study the 
influence of the equipped vehicles on the traffic flow stabilization, with respect to both small 
and large perturbations around the equilibrium state. 
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Περίληψη 

Τα τελευταία χρόνια, πολλές βιομηχανικές χώρες αντιμετωπίζουν τις συνέπειες του συνεχώς 
αυξανόμενου αριθμού των οχημάτων, γεγονός που οδηγεί σε συνεχή αύξηση των φαινομένων 
συμφόρησης. Αυτά έχουν ως αποτέλεσμα τη σημαντική αύξηση των χρόνων ταξιδιού, την 
κατανάλωση καυσίμων, τις εκπομπές καυσαερίων, καθώς και τη μείωση της κυκλοφοριακής 
ασφάλειας. Οι συμβατικές μέθοδοι για την επίλυση του προβλήματος της κυκλοφοριακής 
συμφόρησης, με επέκταση των υπαρχουσών υποδομών και λειτουργικές βελτιώσεις, όπως οι 
βοηθητικές λωρίδες, οι πρόσθετες εναλλακτικές διαδρομές και οι τροποποιήσεις των 
μεταφορών, παραμένουν πρακτικά ανέφικτες, κυρίως λόγω οικονομικών και 
περιβαλλοντικών λόγων. Αντίθετα, μπορεί να χρησιμοποιηθεί εναλλακτικά μια 
ολοκληρωμένη στρατηγική ελέγχου της κυκλοφορίας, προκειμένου να μετριαστεί το 
πρόβλημα των συνεχών κυκλοφοριακών συμφορήσεων. Ωστόσο, η εφαρμογή αποδοτικών 
μέτρων ελέγχου της κυκλοφορίας σε πραγματικό χρόνο συνεπάγεται την ύπαρξη αξιόπιστων 
και εύρωστων μοντέλων κυκλοφοριακής ροής, τα οποία μπορούν να χρησιμοποιηθούν για 
την ανάπτυξη και την επικύρωση των προτεινόμενων στρατηγικών ελέγχου. Στο πλαίσιο 
αυτό, μια αποτελεσματική διαδικασία βαθμονόμησης και επικύρωσης φαίνεται να είναι 
αναγκαία για να εξασφαλιστεί η αξιοπιστία των μοντέλων κυκλοφοριακής ροής κατά την 
εκτέλεση πραγματικών προσομοιώσεων και σεναρίων βελτιστοποίησης.   

Ταυτόχρονα, επιστήμονες και μηχανικοί στις μέρες μας αναζητούν λύσεις για τη 
βελτίωση της αποτελεσματικότητας και της χωρητικότητας των οδικών δικτύων, μέσω των 
Συστημάτων Ευφυών Μεταφορών. Συγκεκριμένα, κατά τη διάρκεια της τελευταίας δεκαετίας, 
πραγματοποιήθηκαν τεράστιες συνεχιζόμενες διεπιστημονικές προσπάθειες από τον κλάδο 
της αυτοκινητοβιομηχανίας, καθώς και από πολυάριθμα ερευνητικά ιδρύματα σε όλον τον 
κόσμο για το σχεδιασμό, την ανάπτυξη, τη δοκιμή και τη χρησιμοποίηση ποικίλων 
συστημάτων αυτοματισμού και επικοινωνίας οχημάτων, τα οποία αναμένεται να φέρουν 
ριζικές αλλαγές στον τρόπο ελέγχου και βελτιστοποίησης της κυκλοφοριακής ροής στις 
επόμενες δεκαετίες. Τα συστήματα αυτά, όπως τα συστήματα Adaptive Cruise Control (ACC) 
και Cooperative Adaptive Cruise Control (CACC), αναπτύχθηκαν αρχικά βάση νέων 
εναλλακτικών μετακίνησης για τους οδηγούς και τους επιβάτες, με ιδιαίτερη έμφαση στη 
βελτίωση της άνεσης, της ευκολίας και της ασφάλειας, καθώς και στη μείωση της 
κυκλοφοριακής συμφόρησης.  

Η εργασία αυτή, η οποία αποτελείται από δύο κύρια μέρη, είναι μία πρώτη 
προσπάθεια προς αυτή την κατεύθυνση. Πιο συγκεκριμένα, το πρώτο μέρος ασχολείται με την 
εξέλιξη των μοντέλων κυκλοφοριακής ροής, με έμφαση στα μακροσκοπικά μοντέλα. Στα 
πλαίσια της παρούσας διατριβής, το γνωστό συνεχές 2ης τάξης μοντέλο κυκλοφοριακής ροής 
gas-kinetic-based traffic model (GKT) αξιολογήθηκε σχετικά με την ικανότητά του να 
αναπαριστά τις κυκλοφοριακές συνθήκες σε περιοχές αυτοκινητόδρομων υπό κυκλοφοριακή 
συμφόρηση. Το  μοντέλο βαθμονομήθηκε και επικυρώθηκε με τη χρήση μιας μεθόδου 
βελτιστοποίησης βασισμένη σε παράλληλο Διαφορικό Εξελικτικό αλγόριθμο (Differential 
Evolution (DE) algorithm), χρησιμοποιώντας πραγματικά δεδομένα κίνησης από δύο 
διαφορετικά δίκτυα αυτοκινητοδρόμων: από ένα τμήμα αυτοκινητοδρόμου στο Ηνωμένο 
Βασίλειο, όπου εμφανίζεται σοβαρή κυκλοφοριακή συμφόρηση εξαιτίας των υψηλών ροών 
στη ράμπα εισόδου κατά τις πρωινές ώρες αιχμής, καθώς και από ένα τμήμα 
αυτοκινητοδρόμου στην Ελλάδα, όπου επαναλαμβανόμενη συμφόρηση προκαλείται από μία 
ράμπα εξόδου, επίσης κατά τις πρωινές ώρες αιχμής. Επιπλέον, η προσέγγιση πολλαπλών 
λωρίδων του μοντέλου GKT αξιολογήθηκε με τη χρήση πραγματικών  δεδομένων κίνησης 
από το προαναφερθέν δίκτυο στο Ηνωμένο Βασίλειο. Στη συνέχεια, εφαρμόζοντας τον ίδιο 
αλγόριθμο βελτιστοποίησης, το GKT μοντέλο συγκρίθηκε με το πιο δημοφιλές διακριτό 
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μακροσκοπικό μοντέλο, το METANET, σχετικά με την ικανότητά τους να αναπαραστήσουν 
τις συνθήκες κυκλοφοριακής ροής στο τμήμα του αυτοκινητόδρομου στο Ηνωμένο Βασίλειο.  

Το 2ης τάξης GKT μοντέλο κυκλοφορικής ροής, όπως θα παρουσιαστεί στο πρώτο 
μέρος, παρέχει τα μεθοδολογικά προαπαιτούμενα για το δεύτερο μέρος της διατριβής, όπου 
παρατίθενται δύο νέα μοντέλα μακροσκοπικής προσομοίωσης για ACC και CACC οχήματα. 
Συγκεκριμένα, η νέα προσέγγιση βασίζεται στην εισαγωγή ενός όρου χαλάρωσης στην 
εξίσωση της ορμής του GKT μοντέλου, ο οποίος ικανοποιεί την αρχή του χρονικού/χωρικού 
κενού (time/space-gap) των ACC και CACC οχημάτων. Επιπρόσθετα, στη διατριβή αυτή 
εξετάζεται τόσο η γραμμική όσο και η μη γραμμική ανάλυση ευαισθησίας, προκειμένου να 
προκύψει το όριο ευστάθειας των νέων μοντέλων, τα οποία είναι ικανά να προσομοιώνουν 
τη συμπεριφορά των ACC και CACC οχημάτων στη κυκλοφοριακή ροή, καθώς επίσης και να 
μελετηθεί η επιρροή αυτών των εξοπλισμένων οχημάτων στη σταθεροποίηση της 
κυκλοφοριακής ροής, όσον αφορά τόσο μικρές όσο και μεγάλες διαταραχές γύρω από την 
κατάσταση ισορροπίας. 
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Chapter 1: Introduction 

A rapid growth of vehicular traffic flow modelling has taken place over the last decades, the 

main reason being the need for efficient usage of existing traffic infrastructures and for the 

optimal design of new ones. The rising financial and, especially, environmental costs of 

persisting traffic jams, as well as their impact on the quality of life, put additional pressure 

towards the development of novel traffic flow simulation tools. Moreover, during the last 

decade, there has been an enormous continuing interdisciplinary effort, made by the 

automobile industry as well as by numerous research institutions around the world, to plan, 

develop, test and start deploying a variety of VACS that are expected to revolutionize the 

features and capabilities of individual vehicles within the next decades.   

Towards this direction, in this thesis two second-order macroscopic traffic flow 

models, able to simulate the impact of ACC and CACC vehicles on traffic flow dynamics, are 

presented and analysed in order to study their qualitative properties by deriving proper 

stability conditions with respect to both small and large perturbations. For the development 

of these models, the existing second-order macroscopic GKT model was implemented as the 

basis model. Moreover, a novel numerical approach was applied for the numerical 

approximation of the GKT model, along with its multi-lane extension. Additionally, the 

numerical simulation approach was combined with an optimization procedure to enable the 

automatic estimation of the most crucial parameters of the model; specifically, a parallel, 

metamodel-assisted Differential Evolution (DE) algorithm was employed for the calibration 

of the GKT model (and its extensions). 

In the following Sections 1.1 and 1.2, the motivation and the objectives of this work are 

presented. Section 1.3 provides an outline of the thesis structure and an overview of the 

remaining chapters. Finally, this first chapter will be completed by giving a list of the related 

publications (Section 1.4). 

 

 

1.1 Motivation 

The need for robust, realistic, and time-efficient modelling tools, for evaluating different 

traffic systems and ITS technologies, has increased remarkably in recent years. Traffic flow 

models can now be employed for the planning and assessment of road infrastructures, traffic 

surveillance and monitoring, incident detection, as well as for the development and testing of 

traffic control strategies and other operational tools (Kotsialos & Papageorgiou, 2001). 

Currently, several commercial traffic simulation models are available, and even more 

mathematical models have been developed by researchers all over the world (Van 

Wageningen-Kessels, 2013). However, several questions are raised about the level of 

proximity of these models to reality and its representation. In this context, an effective 

calibration and validation process is deemed mandatory for any simulation model, so as to 

ensure its credibility and validity in performing real-world simulations, by capturing realistic 

distribution for all possible traffic conditions (Henclewood et al., 2017). However, the 

calibration and validation, especially of second-order macroscopic traffic flow models, 

constitutes a difficult task, as the assignment of appropriate values to the unknown model 

parameters is a challenging problem, because of the highly non-linear nature of the model 
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equations. As a matter of fact, relatively few calibration results for such macroscopic traffic 

flow models have been reported so far (Ngoduy & Maher, 2012). Hence, this thesis aims to 

commence a promising calibration process for establishing accurate and robust traffic flow 

simulations. 

Over the past few decades, as the volume of transport has grown significantly, in 

contrast to the construction of transportation infrastructure, traffic congestion has become 

remarkably worse and more widespread in many countries (Papageorgiou et al., 2003). 

Concurrently, many efforts have been made aiming to investigate the formation and diffusion 

of traffic flow instabilities; it is well known that even small perturbations resulting from the 

response of drivers to a stimulus can lead to the formation of congestion and traffic jams. In 

many occasions these emergent traffic jams could become a serious problem rather than a 

small inconvenience, deteriorating the overall traffic performance, increasing fuel 

consumption, increasing air pollution, as well as leading to severe infrastructure 

underutilization (Jiang et al., 2017). Moreover, such traffic jams are usually associated with 

traffic flow instabilities, including stop-and-go driving conditions, which, under congested 

states, can grow and travel against traffic direction (Ngoduy, 2012a). The application of new 

technologies in the field of VACS, is expected to provide additional tools for the remedy of 

the aforementioned traffic flow problems, reducing the adverse impacts of traffic flow 

instabilities through the selection of suitable operating parameters. 

 

 

1.2 Objectives and Approach 

The aim of the present research is twofold.  Firstly, it attempts to describe the development 

and implementation of a calibration and evaluation methodology, which is based on an 

optimization procedure, utilizing a parallel (synchronous or asynchronous), metamodel-

assisted DE algorithm. The proposed methodology is applied for the calibration of the second-

order macroscopic GKT model, as well as for the calibration of an extended version of the 

model, able to deal with multi-lane traffic. The model was numerically approximated by an 

accurate and robust high-resolution Finite-Volume (FV) relaxation scheme, where the 

nonlinear equations were first transformed to a semi-linear diagonalizable problem, with 

linear characteristic variables and stiff source terms, and then discretized using a higher-order 

weighted essentially non-oscillatory (WENO) scheme. For the evaluation of the proposed 

optimization procedure, this was employed for the calibration of the numerically discretized 

GKT model’s parameters, using real traffic data from two different motorway networks; a 

motorway stretch in the U.K., where severe traffic congestion is created due to high on-ramp 

flows during the morning peak periods, and a freeway stretch in Greece, where recurrent 

congestion is triggered by a saturated off-ramp during the morning peak hours. For further 

increasing the computational efficiency of the utilized DE algorithm (on top of its 

parallelization), it was combined with two Artificial Neural Networks (ANNs), a multi-layer 

perceptron (MLP) and a radial basis functions network (RBFN), which serve as surrogate 

models and accelerate the convergence of the optimization procedure. Moreover, the 

proposed procedure was used to calibrate the well-known macroscopic second-order 

METANET model, for the aforementioned motorway stretch in the U.K., and compare the 

corresponding results to those of the recently developed second-order traffic flow model. 

Finally, both GKT and METANET models are validated against different traffic flow 
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conditions (than those used for their calibration), and compared regarding their accuracy in 

representing the prevailing traffic conditions. 

The second objective of this dissertation refers to the investigation of the qualitative 

properties of the developed ACC and CACC models and the derivation of proper stability 

conditions, with respect to both small and large perturbations around the equilibrium state. 

To this end, the linear stability method is first applied, which refers to linear Taylor 

approximations, used throughout the analysis, in order to study the influences that small 

introduced perturbations induce to the macroscopic characteristics of ACC and CACC traffic 

flow. Linear stability analysis is a widely established approach to estimate the stability 

performance of the systems controlling the traffic flow, as it provides a valuable insight into 

the general behaviour and performance of the system (Ngoduy, 2012a). Furthermore, a non-

linear stability analysis of the proposed macroscopic models for ACC and CACC traffic is 

performed, as it allows for a more accurate examination of the global stability conditions, 

under which a large perturbation travels against the traffic flow. Thus, a nonlinear stability 

criterion is derived, using a wavefront expansion method under large perturbations, which 

enables the investigation of the shock wave propagation properties of the developed ACC and 

CACC macroscopic model. Moreover, numerical simulation is additionally conducted to 

validate the derived non-linear stability conditions for the developed ACC model. 

Specifically, considering similar studies available in the literature, the following 

contributions are introduced in this dissertation: 

 

 The development of a computational procedure, based on a parallel (synchronous or 

asynchronous), metamodel-assisted DE algorithm, for solving the constrained 

continuous multi-extremal optimization problem of traffic flow model calibration. The 

proposed procedure is evaluated with respect to its efficiency, accuracy, and 

robustness for the automated calibration of different second-order traffic flow models. 

 

 The implementation of the proposed computational procedure for the calibration of 

the numerically approximated single-lane GKT model via a high-resolution finite 

volume relaxation scheme. Additionally, the validation of the model takes place to 

assess its accuracy in the reproduction of congestion created at freeways close to 

on/off-ramps. 

 

 The implementation and testing of the proposed computational procedure for the 

calibration of the multi-lane extension of the GKT model, which includes a large 

number of calibration parameters, with the specific hi-order discretization scheme. 

The ability of the proposed computational procedure to calibrate a large number of 

parameters is demonstrated, while the robustness of the calibration procedure is 

confirmed through the validation of the model in different traffic flow conditions. 

 

 The evaluation and comparison of the synchronous and asynchronous versions of the 

developed parallel, metamodel-assisted DE algorithm (in the test problem of the GKT 

traffic flow model calibration), in order to demonstrate which one of them is best 

suited for the problem at hand, in terms of computational efficiency and quality of the 

optimal solution. 
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 The application of the proposed computational procedure for the calibration of an 

alternative traffic flow model, namely the METANET, and the comparison of the 

produced calibration and validation results with those produced for the GKT second-

order traffic flow model. 

 

 The linear stability analysis and the derivation of the corresponding stability 

conditions for the ACC/CACC extensions of the GKT model, to investigate the effects 

of the incorporated ACC and CACC characteristics on the stabilization of the traffic 

flow, under small perturbations around the equilibrium state. 

 

 The nonlinear stability analysis and the derivation of the corresponding stability 

conditions for the ACC/CACC extensions of the GKT model, to investigate the effects 

of the incorporated ACC and CACC characteristics on the stabilization of the traffic 

flow, under large perturbations around the equilibrium state. 

 

 The investigation of the theoretical findings of the previous linear and nonlinear 

stability analyses, using appropriate numerical simulations. 

 

 

1.3 Thesis Outline 

The thesis consists of two major parts, organized in a series of self-contained chapters. In Part 

I, the computational methodology, developed for the calibration and validation of 

macroscopic traffic flow models, will be presented. Part II, contains the linear and nonlinear 

stability analysis of the ACC/CACC extensions of the GKT second-order macroscopic traffic 

flow model and the numerical investigation of the findings of the corresponding analyses.  

This first chapter introduces the reader to the importance of the topic being studied 

and presents the motivation and the objectives of this thesis. The structure of the rest of the 

thesis is as follows: Chapter 2 presents some prerequisite notions and a state-of-the-art of 

traffic flow modelling, with emphasis on macroscopic traffic flow models. Chapter 3 presents 

a full description of the major elements composing the proposed numerical optimization 

procedure and presents the numerically approximated GKT model via a high-resolution finite 

volume relaxation scheme; this is later employed and evaluated, regarding the representation 

of traffic conditions at congested freeway on/off-ramps areas. A brief description of the well-

known METANET model, which is compared with the GKT model, regarding the proposed 

optimization scheme, is also included. Chapter 4 contains the calibration and validation 

results of the proposed optimization method, including qualitative and quantitative 

comparisons of the obtained results for the GKT model, using real traffic data for two 

particular freeway stretches, as well as for the METANET model. In Chapters 5 and 6 the two 

macroscopic approaches reflecting ACC and CACC traffic dynamics in the GKT model are 

analysed; a linear and a nonlinear method are utilized to analytically derive the influencing 

conditions to the stability of traffic flow based on the developed models. Numerical study to 

qualitatively support the analytical findings is also involved. Finally, Chapter 7 contains some 

conclusions and information on ongoing and future work. 
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Chapter 2: State-of-the-art of Vehicular 
Traffic Flow Modelling 

2.1 Introduction 

Vehicular traffic flow modelling is rapidly growing, mainly due to the rising need for more 

efficient usage of existing traffic infrastructures and for the optimal design of new ones. The 

constantly increasing economic and environmental cost of traffic congestion and its influence 

on the quality of life, put additional pressure on the development of novel and accurate traffic 

simulation models. Such traffic flow models may be used for traffic surveillance and 

monitoring, as well as for the development and testing of traffic control strategies and other 

operational tools (Kotsialos & Papageorgiou, 2001). Thus, to effectively manage and control 

traffic flow in order to improve mobility, appropriate traffic models have been developed to 

simulate and forecast traffic flow states; for the time being, at least 100 traffic flow models 

have been studied, which are broadly classified into microscopic, mesoscopic and 

macroscopic ones (Wagner, 2010). The objective of this chapter is to present an overview of 

the most important developments in traffic flow modelling at two fundamentals levels: the 

microscopic and the macroscopic one (including the successful gas kinetic approaches), 

focusing on the most popular macroscopic traffic flow models. 

In general, traffic simulation models can be roughly divided according to 

the level of detail they provide. Specifically, microscopic traffic flow models capture traffic 

dynamics through highly detailed representations of individual vehicles. Moreover, the use 

of microscopic models is widely spread among researchers and engineers due to their 

properties, such as their versatility, the included visual interfaces and the visualization of the 

actual vehicle movement, their ability to model different vehicle and driver characteristics, 

and the use of actual road geometries. Microscopic simulation models are often used in 

evaluating congested intersections (Messer, 1998), weaving sections (Stewart et al., 1996), 

freeway bottlenecks (Halkias et al., 2007), merging and lane changing (Hidas, 2002), among 

others. On the other hand, macroscopic approaches capture traffic dynamics in lesser detail, 

by using aggregated relationships and variables, such as flow, density, and mean speed. It is 

worth noting that macroscopic models describe traffic flow as a continuum flow and are 

derived in proportion to continuum models for compressible fluid. The application of 

macroscopic simulation models is addressed at large-scale networks (Kotsialos et al., 2002; 

Carlson et al., 2010) or real time traffic control in order to reduce congestion and improve 

mobility (Hegyi et al., 2005a, 2005b; Lu et al., 2010). Finally, the mesoscopic models use a 

medium level of detail, combining the accuracy of the microscopic and the computational 

efficiency of the macroscopic approaches into a hybrid model. The most successful among 

these are based on the gas-kinetic model, which is used to derive the macroscopic models 

based on the method of moments (Helbing, 1997a; Hoogendoorn, 1999).  

The decision on which scale of models, i.e. microscopic or macroscopic (including the 

gas kinetic models) is the correct one to formulate traffic flow problems, has troubled many 

traffic engineers over the last decades. From the state-of-the-art review, the substantial 

advantages and disadvantages of the two different categories of traffic flow models are briefly 

resumed below. Primarily, microscopic models require a large number of parameters 
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compared to macroscopic models, which frequently are not easy to observe and measure. So, 

in general, microscopic models deemed more demanding than macroscopic ones, requiring 

greater effort for the calibration and validation procedures. Moreover, despite their significant 

improvement over the last years, disadvantages still exist. For example, unnatural lane 

changing and car merging in on-ramps has been observed, which asks for more attention by 

the research teams involved in their development (Hueper et al., 2009; Van Wageningen-

Kessels, 2013). 

On the other hand, the lower complexity of macroscopic models makes them more 

suitable for studying large-scale problems. Furthermore, some of the main advantages of the 

macroscopic models are their numerical efficiency (compared to microscopic ones), their good 

agreement with empirical data, their suitability for analytical investigations, the simple 

treatment of inflows (contrary to microscopic models), and the allowance to simulate multi-

lane flows by effective one-lane models. Nevertheless, the microscopic simulation models’ 

attribute to recognize in detail the behavior of each vehicle, enables more accurate estimation 

of individual vehicles' response under realistic traffic conditions, such as the congestion 

propagation and dissipation (Van Wageningen-Kessels, 2013). 

The rest of this chapter is structured as follows: Section 2.2 presents an overview of the 

most important developments of microscopic traffic flow models. Section 2.3 discusses the 

evolution of macroscopic traffic flow models over the last few decades. Section 2.4 introduces 

the reader to calibration process of traffic flow models.  

 

2.2 Microscopic Traffic Flow Models 

Microscopic traffic flow models are used to describe the motion of each individual level and 

they were primarily developed in the ‘50s, after the pioneering works on car-following theory 

by Reuschel, 1950 and Pipes, 1953, see Figure 2.1. In general, microscopic models can be 

distinguished in the following two major categories: 

 

 Continuous Space and Time Models use ordinary or delay-differential equations and, 

consequently, the variables vary continuously in space and time. One of the most 

prominent examples of this approach is the car-following models that are based on the 

assumption that drivers follow their leader and adjust their behavior according to the 

conditions in front (Treiber & Kesting, 2013).  

 

 Discrete Time and Discrete Space - Cellular Automata (CA) Models describe traffic 

dynamics in a completely discrete way by using (generally small) integers; where 

space is subdivided into cells and time into time steps (Figure 2.1). The first CA model 

has been proposed in (Cremer & Ludwig, 1986).  

 

In microscopic traffic flow models, vehicles are numbered to indicate their order: 𝑛 

denotes the vehicle under consideration (subject vehicle), 𝑛 − 1 denotes its leader, 𝑛 + 1 its 

follower etc. The behavior of each individual vehicle is modeled in terms of the position of the 

front of the vehicle 𝑥𝑛, velocity  𝑣𝑛 =
𝑑𝑥𝑛

𝑑𝑡
 and acceleration 𝑎𝑛 =

𝑑𝑣𝑛

𝑑𝑡
=
𝑑𝑥𝑛

2

𝑑𝑡2
 (Van Wageningen-

Kessels, 2013). In the remainder of this section, some examples of models for each of the above 

categories will be discussed, providing some insight into mechanisms of different microscopic 

modelling approaches. 
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Macroscopic Model 

 

Microscopic Model 

 

Cellular Automa Model 

FIGURE 2.1: Illustration of different traffic modelling approaches: A snapshot of a road section at time 

to is either characterized by macroscopic traffic flow quantities, such as average velocity u(x, to), traffic 

density ρ(x, to) or flow q(x, to), or, microscopically, by the positions xa(to) of single driver-vehicle units 

a. For CA, the road is divided into cells, which can be either empty or occupied by one vehicle maximum. 

 

2.2.1 Car-following models 

Several theories have been proposed in the literature since the ‘50s to model car-following 

behavior that can be further divided into safe-distance models, stimulus response models and 

action point models.  

 
Safe-distance models 

Safe-distance or collision avoidance models try to simply describe the dynamics of the 

following vehicle in relation to the leading one, by adapting their velocity to maintain a safe 

distance to avoid collision. In this respect, a very simple model is Pipes’ rule (Pipes, 1953), 

according to which the position of the leader is expressed as a function of its follower 

formulated by   

𝑥𝑛−1 = 𝑥𝑛 + S + T𝑣𝑛 + 𝑙𝑛−1 (2.1) 

with S being the distance between the two successive vehicles at standstill, T the minimum 

time headway and 𝑙𝑛−1 the length of the leading vehicle; T𝑣𝑛 is interpreted by Pipes as the 

“legal distance” between the two vehicles.  

A similar approach was proposed by Forbes et al., 1958, while Kometani & Sasaki, 1961, 

tried to improve the traffic dynamic theory of Pipes by deriving a new car-following model 

based on the basic Newtonian equations of motion. More specifically, it was assumed that the 

driver seeks to maintain a safe following distance behind the leading vehicle, even if the 

predecessor were to act “unpredictably” (e.g., slows-down abruptly). Furthermore, they 

replaced the distance between the two successive vehicles at standstill, S, in Pipes’ model with 
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a velocity-dependent term and introduced reaction time 𝜏 (time delay). Through their study, 

they established the basic concept of the collision avoidance model in car-following situations. 

The mathematical formulation of the model is given as:  

𝛥𝑥(𝑡 − 𝜏) = 𝛼𝑣𝑛−1
2 (𝑡 − 𝑇) + 𝛽1𝑣𝑛

2(𝑡) + 𝛽𝑣𝑛 + 𝑏0 , (2.2) 

where 𝛥𝑥 is the relative distance between vehicle 𝑛 and 𝑛 − 1, 𝜏 is the reaction time and 𝛼, 𝛽1, 

𝛽 and 𝑏0 are constants to be calibrated.  

The next major development of safe-distance models was made by Gipps, 1981, who 

configured the reaction of the following vehicle based on the supposition that each driver sets 

limitations to their desired braking and acceleration rates. These limitations allow the model 

to estimate a safe speed for the following vehicle in order that it can come to a safe stop if the 

preceding vehicle stops abruptly. Gipps’ model has the following form: 

𝑣𝑛(𝑡 + 𝜏) = 𝑚𝑖𝑛 {𝑣𝑛(𝑡) + 2.5𝑎𝑚𝑎𝑥𝜏 (1 −
𝑣𝑛(𝑡)

𝑣𝑚𝑎𝑥
)√0.25 −

𝑣𝑛(𝑡)

𝑣𝑚𝑎𝑥
 ,  

 (2.3) 

𝑎𝑚𝑖𝑛𝜏 + √𝑎𝑚𝑖𝑛
2 𝜏2 − 𝑎𝑚𝑖𝑛 (2(𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝑠𝑗𝑎𝑚) − 𝑣𝑛(𝑡)𝜏 −

𝑣𝑛−1(𝑡)
2

𝑏
)} ,  

where 𝑎𝑚𝑎𝑥 denotes the maximum acceleration, 𝑎𝑚𝑖𝑛 the maximum deceleration (minimum 

deceleration), 𝑣𝑚𝑎𝑥 the desired (maximum) velocity, 𝜏 the reaction time and 𝑠𝑗𝑎𝑚 the jam 

spacing (front-to-front, or equivalently rear-to-rear, distance between two vehicles at 

standstill). Another simple safe-distance model with delay was proposed by Newell, 1961 and 

a second one a few years later by Newell, 2002.  

  

Stimulus-response models 

The second class of car-following models involves a stimulus–response notion, based on the 

supposition that the drivers of the following vehicle attempt to adapt to the behavior of the 

vehicle ahead. This car-following procedure is based on the following principle 

𝑅esponse(𝑡 + 𝜏) = Sensitivity × Stimulus(𝑡) , (2.4) 

and can be interpreted as that the following vehicle’s driver’s action (response) is proportional 

to the magnitude of the stimulus created by the leading vehicles’ behavior; the response is the 

acceleration or deceleration of the following vehicle, delayed by an overall reaction time 𝜏. 

A well-known application of stimulus-response models in traffic analysis is the car-

following approach by Chandler et al., 1958, which is based on the intuitive hypothesis that 

the driver’s response (acceleration or deceleration) is proportional to the relative speed 

between the leader and the follower, as shown below 

𝑎𝑛(𝑡 + 𝜏) = 𝛾(𝑣𝑛−1(𝑡) − 𝑣𝑛(𝑡)) , (2.5) 

or equivalently 

𝑎𝑛(𝑡) = 𝛾(𝑣𝑛−1(𝑡 − 𝜏) − 𝑣𝑛(𝑡 − 𝜏)) , (2.6) 

where 𝛾 denotes the driver’s sensitivity; the receding rate 𝑣𝑛−1(𝑡 − 𝜏) − 𝑣𝑛(𝑡 − 𝜏) is considered 

as the stimulus, the acceleration 𝑎𝑛(𝑡) as the response, hence the name stimulus-response 
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model. The stimulus-response concept was also used in the car-following model by Herman 

et al., 1959 and Helly, 1961. Moreover, Gazis et al., 1961 proposed the following expression for 

driver’s sensitivity 𝛾, consolidating the now famous GHR-model (named after the authors 

Gazis, Herman, & Rothery) 

𝛾 = 𝑐
(𝑣𝑛−1(𝑡))

𝑐1

(𝑥𝑛−1(𝑡 − 𝜏) − 𝑥𝑛(𝑡 − 𝜏))
𝑐2
 , (2.7) 

where 𝑐 is a sensitivity parameter and 𝑐1 and 𝑐2 are parameters used to fit the model to the 

data.  

More recently, a new model called Optimal Velocity Model (OVM) was developed by 

Bando et al., 1995, introducing an optimal velocity function that allows the following vehicle 

to adjust its speed towards the optimal one, which is a function of the headway. The governing 

equations are as follows 

𝑎𝑛(𝑡) = 𝑘 (𝑣𝑜𝑝𝑡(𝛥𝑥𝑛(𝑡)) − 𝑣𝑛(𝑡)) , (2.8) 

  

𝑣𝑜𝑝𝑡(𝛥𝑥) = 𝑣𝑚𝑎𝑥(𝑡𝑎𝑛ℎ(𝑠 − 𝑐1) + 𝑐2) , (2.9) 

with 𝑘 the sensitivity parameter, 𝛥𝑥𝑛 the spacing with respect to the leader (𝛥𝑥𝑛 = 𝑥𝑛−1 − 𝑥𝑛) 

and 𝑐1 and 𝑐2 the parameters of the optimal velocity function 𝑣𝑜𝑝𝑡(𝛥𝑥) such that 

𝑡𝑎𝑛ℎ(𝑠𝑗𝑎𝑚 − 𝑐1) + 𝑐2 = 0. Bando et al., 1998 extended their model by introducing the explicit 

delay time 𝜏 in order to construct realistic models of traffic flow: in the right-hand side of 

equation (2.8) 𝑡 is replaced by 𝑡 − 𝜏.  

Finally, the Intelligent Driver Model (IDM) by Treiber et al., 2000 is one of the most 

popular stimulus-response models that have emerged over the last years. The IDM model was 

developed to better reproduce the various traffic situations realized by the following 

continuous acceleration function 

𝑎 = 𝑎𝑚𝑎𝑥 = (1 − (
𝑣

𝑣𝑚𝑎𝑥
)
𝛿

− (
𝑠∗(𝑣, 𝛥𝑣)

𝑠
)

2

) , (2.10) 

where 𝑎𝑚𝑎𝑥 denotes the maximum acceleration, 𝑣𝑚𝑎𝑥 the maximum velocity, 𝛿 the 

acceleration exponent and 𝑠∗(𝑣, 𝛥𝑣) the desired space gap function. According to equation 

(2.10) the acceleration in the IDM model consists of two parts, one comparing the current 

velocity 𝑣 to the maximum (desired) velocity 𝑣𝑚𝑎𝑥, and another comparing the current 

distance 𝑠 to the desired distance 𝑠∗, given by Treiber & Kesting, 2013 

𝑠∗(𝑣, 𝛥𝑣) = 𝑠𝑗𝑎𝑚 +𝑚𝑎𝑥 (0, 𝑇𝑣 +
𝑣 𝛥𝑣

2√𝑎𝑚𝑎𝑥𝑎𝑚𝑖𝑛
) , (2.11) 

with 𝑎𝑚𝑖𝑛 denoting the minimum acceleration, 𝑠𝑗𝑎𝑚 the jam spacing and 𝑇 the minimum time 

headway.  
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Action point models 

The third class of car-following models consists of action point or psycho-spacing models, first 

introduced by Wiedemann, 1974. In general, the psycho-spacing car-following models follow 

thresholds where a driver makes a change in their behavior at an action point.  

The basic behavioral rules of such so-called action point models are: 

 

 At large spacings, the behavior of the following vehicle is not influenced by that of 

other vehicles. 

 

 At small spacings, the behavior of the following vehicle is only influenced by that of 

other vehicles if changes in relative velocity and headway are large enough to be 

perceived. 

 

2.2.2 Cellular Automata (CA) Models 

To conclude this section, a special class of discrete microsimulation models is discussed; the 

well-known CA models, with the approach by Nagel & Schreckenberg, 1992, being the most 

famous one. In the cellular automata models, the space is split into homogeneous cells of equal 

length, and time is divided into time steps of equal duration. These cells can be either empty 

or occupied by one vehicle at maximum, while each vehicle has an integral velocity with 

values ranging from zero to 𝑣𝑚𝑎𝑥, see Figure 2.1.  

One update of the system consists of the following consecutive steps, which are 

performed in parallel for all the vehicles 

 

 Acceleration: If the vehicle has a smaller velocity than its maximum, 𝑣𝑚𝑎𝑥, then 

accelerates: 𝑣̃ → 𝑚𝑖𝑛(𝑣̃ + 1, 𝑣̃𝑚𝑎𝑥). 

 

 Deceleration: If the headway to the preceding vehicle is too small, then the vehicle will 

decelerate: 𝑣̃ → 𝑚𝑖𝑛(𝑣̃, 𝑠̃𝑗𝑎𝑚 − 1). 

 

 Dawdling: Given a probability 𝜋, the velocity of a vehicle decreases spontaneously: 𝑣̃ →

𝑚𝑎𝑥(𝑣̃ − 1, 0) with probability 𝜋.  

 

 Moving: 𝑥̃ → 𝑥̃ + 𝑣̃, 

 

where 𝑣̃ is the normalized vehicle velocity in number of cells per time step, 𝑣̃𝑚𝑎𝑥 the 

normalized maximum velocity, 𝑠̃𝑗𝑎𝑚 the normalized jam spacing in number of cells, 𝑥̃ the cell 

number and 𝜋 the deceleration probability. 

 

 

2.3 Macroscopic Traffic Flow Models 

Macroscopic traffic flow models, which describe traffic behavior in terms of aggregated traffic 

flow variables, can be classified into first-, second-, or higher-order models in the sense of the 
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number of partial differential equations they involve, see Figure 2.1. First-order models, 

originally developed by the pioneers Lighthill–Whitham–Richards, 1956 (LWR model), 

(Lighthill & Whitham, 1955; Richards, 1956) adopt the mass conservation equation and the 

fundamental diagram to describe the evolution of traffic density. However, although the 

approaches of this class are simple, reproducing qualitatively a number of real traffic 

phenomena, such as the formation of shock waves, they suffer from several limitations and 

they have proved to be inadequate for describing complicated traffic flow dynamics. More 

specifically, these models do not allow for fluctuations of velocity around the so-called 

equilibrium fundamental diagram and they have limited capability to replicate certain real 

dynamic phenomena observed on freeways, such as the hysteresis, the capacity drop and 

relaxation, the stop-and-go waves at bottlenecks, as well as the spontaneous congestion or  

platoon diffusion. To overcome the shortcomings of the LWR-type models a lot of research 

has been devoted to develop second- or higher-order macroscopic models, which incorporate 

(at least) the momentum equation, in addition to the continuity one, to describe the evolution 

of flow/speed dynamics. Although such models, with the Payne model (Payne, 1971) being 

one of the most popular among them, have the potential to capture the aforementioned non-

linear wave phenomena with higher accuracy, when compared to real-time traffic data, they 

use an increased number of parameters to describe the aggregate infrastructure-vehicle-driver 

behaviors.  

In this section, an elaborate description of the most popular models of the two major 

branches of macroscopic models is presented, namely first-order models (Section 2.3.2) and 

higher-order models (Section 2.3.3). Furthermore, in Section 2.3.1 the conservation equation 

that governs all macroscopic traffic flow models is discussed. 

 

2.3.1 Conservation Equation of Macroscopic Traffic Flow Models 

All macroscopic traffic flow models are governed by one fundamental equation that is based 

on the conservation of vehicles on the road. Assuming that the vehicles are moving from left 

to right, the conservation of vehicles equation, also known as the continuity equation, can be 

written as (Gerlough & Huber, 1976; Kühne & Michalopoulos, 1997): 

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
= 0 , (2.12) 

where 𝑥 [𝑘𝑚] denotes the spatial coordinate in the direction of traffic flow, 𝑡 [ℎ] is the 

time, 𝜌 [𝑣𝑒ℎ/𝑘𝑚] is the density and 𝑞 [𝑣𝑒ℎ/ℎ] denotes the flow. This equation formally 

represents the assumption that between two counting stations in a motorway section without 

entrances and exits, the traffic flow is always conserved; in other words, vehicles are not 

created or destroyed. This equation is complemented by the fundamental relationship 

𝑞(𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡) (2.13) 

with 𝑣 [𝑘𝑚/ℎ] being the mean speed. However, equations (2.12) and (2.13) constitute a system 

of two independent equations and three unknown variables. Consequently, to solve this 

system an additional equation or an assumption is needed, which by extension can lead to 

various types of continuum traffic flow models. For example, the equation which is based on 

the assumption that flow is a function of density (𝑞 = 𝑞(𝜌)) or equivalently that speed is also 

a function of density (𝑣 = 𝑣(𝜌)) leads to the first-order macroscopic traffic flow models, while 
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the high-order continuous models are supplemented by momentum equations. In the ensuing 

of this section, several model specifications are reviewed.  

 

2.3.2 First-order Models 

Lighthill and Whitham (Lighthill & Whitham, 1955) and, independently, Richards (Richards, 

1956) have taken the first major step towards the development of the most popular first-order 

model so far, commonly referred to as the LWR model. The LWR model employs the 

conservation equation (2.12) and is supplemented by the fundamental equation of traffic flow 

(equation (2.13)) and the following relationship between the mean speed and the traffic 

density under equilibrium conditions (known as the fundamental diagram): 

𝑣(𝑥, 𝑡) = 𝑉𝑒[𝜌(𝑥, 𝑡)] . (2.14) 

Hence, the non-linear first-order partial differential equation that results by substituting 

equation (2.13) and (2.14) into conservation equation (2.12) has the following form: 

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
+
𝜕(𝜌(𝑥, 𝑡)𝑉𝑒[𝜌(𝑥, 𝑡)])

𝜕𝑥
= 0 . (2.15) 

Because of its simplicity, the LWR model has received a lot of attention and critique. 

The main drawback of the model lies on the fact that vehicles are assumed to attain their 

desired speed (represented by the fundamental diagram) instantaneously after a change in 

the traffic state, implying infinite acceleration and deceleration. However, as pointed out by 

Liu et al., 1998, since the speed in this model is determined by the equilibrium speed–density 

relationship (equation (2.14)), no fluctuations of velocity around the equilibrium fundamental 

diagram are allowed. Thus, the model is not suitable for the description of non-equilibrium 

traffic flow dynamics occurring at on-ramp areas, lane-drop areas, or stop-and-go traffic, 

having as well other unrealistic consequences, such as the lack of hysteresis effects or traffic 

instabilities. Another deficiency of the LWR model is that the shift from the free flow regime 

to the congestion one always takes place at the same density and without a decline in the 

capacity; therefore, the use of the LWR model for designing traffic control strategies is 

restricted (Papageorgiou, 1998). Several researchers tried to address the above model 

limitations by variants of the LWR model (see, e.g., Newell, 1965; Daganzo et al., 1997; 

Lebacque, 2002; Leclercq, 2007). 

 

2.3.3 Higher-order Models 

Second-order or higher-order traffic flow models incorporate one (or more) Partial 

Differential Equation(s) (PDE(s)), in addition to the continuity one (equation (2.12)), to 

describe the evolution of flow/speed dynamics. In this section, the most pioneering 

approaches of high-order traffic flow models are presented.  

 

The Payne-Witham (PW) model (1974) 
 
The Payne–Whitham (PW) model, proposed independently in (Payne, 1971) and in (Whitham, 

1974), is one of the first non-equilibrium traffic flow models derived from a simple stimulus-
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response car-following model by means of Taylor’s expansion. Its acceleration equation 

(momentum equation) has the following form 

𝜕(𝜌𝑢)

𝜕𝑡
  +

𝜕(𝜌𝑢2 + 𝑃(𝜌))

𝜕𝑥
= 𝜌(

𝑉𝑒(𝜌) − 𝑢

𝜏
) , (2.16) 

where 𝑃(𝜌) is the pressure like term of flow, given as 𝑃(𝜌) = 𝑐0
2𝜌 with 𝑐0 the anticipation 

parameter that reflects how the drivers react to traffic density. Further, the model includes a 

relaxation term that keeps speed concentration in equilibrium (the drivers tend to adapt their 

speed to the equilibrium speed-density relation 𝑉𝑒(𝜌)), with 𝑉𝑒(𝜌) being the equilibrium 

speed described by the fundamental relation and 𝜏 being a speed relaxation time.  

Although the PW model improved the deficiencies of the LWR model, allowing 

fluctuations of speed around the equilibrium values and taking into account the vehicles’ 

acceleration capabilities and the drivers’ reaction time, it has received much critique as it 

seems to fail in some fundamental properties of traffic flows (Del Castillo et al., 1994; Daganzo, 

1995a). The main drawback of the model that Daganzo (Daganzo, 1995a) has been concerned 

about, is that the anisotropic nature of traffic is not preserved, implying that vehicles do not 

only react to the downstream traffic conditions but also on upstream traffic conditions. 

Moreover, the PW model allows slower vehicles to be affected by the faster ones and there 

can also be cases (e.g. tail of congested regions) of negative speeds and flows.  

Over the years, a number of extensions-modifications of the momentum equation of 

the PW model have been proposed, in order to improve the models’ deficiencies. In particular, 

writing the momentum equation (2.16) in its most general form 

𝜕𝑢

𝜕𝑡
  + 𝑢

𝜕𝑢

𝜕𝑥⏟      
𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

=
𝑉𝑒(𝜌) − 𝑢

𝜏⏟      
𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛

−
1

𝜌

𝜕𝑃

𝜕𝑥⏟
𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 
(2.17) 

and using different settings for the traffic pressure 𝑃, the relaxation time 𝜏 and the equilibrium 

speed-density relation 𝑉𝑒(𝜌), the following macroscopic traffic flow models arise: 

 

 Phillips’ model (Phillips, 1979) is obtained using a density dependent relaxation time 

𝜏 = 𝜏(𝜌) and approximating the traffic pressure using 𝑃(𝜌) = 𝜌𝜃(𝜌), with 𝜃(𝜌) being 

the velocity variance; this is estimated as 𝜃(𝜌) = 𝜃0(1 − 𝜌 𝜌𝑚𝑎𝑥⁄ ) with 𝜌𝑚𝑎𝑥 being the 

maximum traffic density. 

 

 Papageorgiou’s model (Papageorgiou et al., 1990) is derived for 𝑃(𝜌) = −𝑉𝑒(𝜌) 2𝜏⁄  

and constant relaxation time 𝜏. Moreover, additional terms were introduced in order 

to consider merging and lane-changing phenomena, namely the −𝛿𝑣𝑟 𝜌⁄  and the  

−𝜑𝛥𝜆𝜌𝑢2 𝜌𝑐𝑟⁄  term; 𝛿 and 𝜑, being model parameters, 𝑟 is the incoming on-ramp flow, 

𝛥𝜆 are the number of lanes being dropped and 𝜌𝑐𝑟 is the critical density. 

 

 Kerner–Konhäuser (KK) model (Kerner & Konhäuser, 1993, 1994) is obtained using 

𝑃(𝜌) = 𝜌𝜃(𝜌) − 𝜂
𝜕𝑢

𝜕𝑥
, with 𝜃(𝜌) = 𝜃0 being a positive constant and 𝜂 = 𝜂0 a viscosity 

coefficient.  
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 Zhang’s model (Zhang, 1998) is derived for 𝑃(𝜌) =
1

3
𝜌3𝑉𝑒

′2(𝜌) with 𝑉𝑒′(𝜌) =
𝑑𝑉𝑒(𝜌)

𝑑𝜌
. 

This approach ensures that traffic disturbances are always propagated against the 

traffic stream.  

 
 
Treiber et al. model (1999) 
 
A recent contribution to the field of macroscopic flow models is made by (Treiber et al., 1999). 

The authors proposed a model based on gas-kinetic principles, the well-known GKT model 

that was derived from a microscopic model of vehicles’ dynamics. The resulting speed 

equation is given as 

𝜕𝑢

𝜕𝑡
  + 𝑢

𝜕𝑢

𝜕𝑥
= 𝜌(

𝑉𝑒(𝜌, 𝑢, 𝜌𝛼 , 𝑢𝛼) − 𝑢

𝜏
) −

1

𝜌

𝜕𝑃

𝜕𝑥
 . (2.18) 

In the GKT model, the “traffic pressure” 𝑃 is given by 𝑃 = 𝜌𝜃 = 𝜌𝐴(𝜌)𝑢2, with 𝜌𝐴(𝜌) a 

density-dependent function, while the equilibrium velocity, towards which the average 

velocity relaxes in the real traffic state, is defined as 

𝑉𝑒(𝜌, 𝑢, 𝜌𝛼 , 𝑢𝛼) = 𝑢𝑚𝑎𝑥 [1 −
𝜃 + 𝜃𝛼
2𝐴𝜌𝑚𝑎𝑥

(
𝜌𝛼𝑇

1 − 𝜌𝛼 𝜌𝑚𝑎𝑥⁄
)
2

𝐵(𝛥𝑢)] , (2.19) 

where 𝑢𝑚𝑎𝑥 is the maximum desired speed, 𝑇 is the desired time-gap, 𝜌𝑚𝑎𝑥 is the maximum 

density, 𝜌𝛼 and 𝑢𝛼 are the density and velocity, respectively, at an advanced “interaction 

point” and 𝐵 is the Boltzmann factor. In contrast to other macroscopic models, equation (2.19) 

depends not only on the local (𝜌, 𝑢) but also on the non-local traffic state (𝜌𝛼 , 𝑢𝛼), thus 

introducing non-locality. The non-locality has smoothing properties similar to those of a 

viscosity term, but its effect is forwardly directed and, therefore, more realistic. A detailed 

description of the GKT models’ equations is provided in Chapter 3.  

 
 
The Aw–Rascle (AR) model and the Aw–Rascle–Zhang (ARZ) model (2000) 
 
In order to remove the defects of the PW and its derivative models, Aw and Rascle (Aw & 

Rascle, 2000) proposed the involvement of the total derivative of the pressure-like terms in 

the momentum equation (without relaxation term) that reads as  

𝜕(𝑢 + 𝑃(𝜌))

𝜕𝑡
  + 𝑢

𝜕(𝑢 + 𝑃(𝜌))

𝜕𝑥
= 0 , (2.20) 

where now the pressure term 𝑃(𝜌) is a smooth and increasing function of density, given as 

𝑃(𝜌) = 𝜌𝛾, 𝛾 > 0.  

 A model similar to the AR model was proposed in (Zhang, 2002), the so-called Aw–

Rascle–Zhang (ARZ) model; the momentum equation that describes speed dynamics is 

derived from a car-following model and is given as  

𝜕𝑦

𝜕𝑡
  +

𝜕𝑃(𝜌)

𝜕𝑥
= 0 , (2.21) 
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where 𝑦 = 𝜌𝑢 − 𝜌𝑉𝑒(𝜌) and 𝑃(𝜌) = 𝜌𝑢(𝑢 − 𝑉𝑒(𝜌)) = 𝑢𝑦. The variance 𝑦 in this case can be 

considered to be the difference between the actual flow (𝑞 = 𝜌𝑢) and equilibrium flow (𝑞𝑒 =

𝜌𝑉𝑒).  

 

2.3.4 Discretization of Continuum Macroscopic Models 

All macroscopic traffic flow models presented so far (in Sections 2.3.2 and 2.3.3), are based on 

conservation of the traffic flow. Mathematically, each of these models originally consist a 

hyperbolic system of PDEs that describes the time-evolution of traffic density, speed and flow. 

These partial differential equations cannot be solved analytically; thus, appropriate numerical 

schemes must be applied before being used in a computer simulation. In general, time is 

divided into discrete time steps while, depending on the model, also space or other 

continuous variables are discretized. Subsequently, numerical methods are applied to 

approximate solutions for conservation laws (approximate the new traffic state at each time 

step), resulting in a discrete traffic flow model. From an engineering application approach, 

the ultimate space-time discretized models should be as plain as possible and have nice 

analytical attributes (e.g. have a precise state-space form, perform continuous and 

differentiable functions), which would permit simple, as well as transparent computation 

codes, convenient discretization intervals, brief computation times,  as well as direct 

application of dynamic mathematical methods (e.g. Kalman filtering, optimization, optimal 

control) (Papageorgiou, 1998; Kotsialos & Papageorgiou, 2001).  

To date, several discrete traffic flow models have been derived from continuum ones. 

Examples are the numerical solutions to the LWR model, namely, the Cell-Transmission 

Model (CTM) by Daganzo, 1994, 1995b and the discretized approach by Lebacque, 1996, who 

applied the Godunov-scheme. Moreover, the FREFLO model by Payne, 1979, which is a 

discretized version of the second order Payne model and the METANET model by Messmer 

& Papageorgiou, 1990, which is a discretized and enhanced variation of the Payne model, are 

among the most popular simulation tools. The models of Van Maarseveen, 1982, Kotsialos et 

al., 1999, Lyrintzis et al., 1994, and Liu et al., 1998, are also some examples of discrete Payne-

type models.  

 
 

2.4 Calibration of Traffic Flow Models 

No matter which approach is used, the microscopic or macroscopic one, accurate modelling 

of traffic flow requires three types of data: model inputs, model parameters and observed 

outputs. Model inputs involve the demand-side data, for which a traffic simulation is 

performed. Model parameters involve different types of supply-side parameters used in the 

traffic simulation, depending on the level of complexity in modelling. This is true for both 

microscopic and macroscopic models, since they all contain some set of parameters in their 

structure, whose values represent the particular road network’s traffic flow features. The 

output data observed in the real-world is required in order to compare model outputs and 

evaluate the accuracy of the models.  Macroscopic models call for a relatively small number 

of parameters, compared to microscopic ones, which results in significantly less demanding 

and computationally expensive, but by no means trivial, calibration and validation processes 

and, therefore, in a more versatile model development for real-world applications. 
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Within this thesis the discrete second-order model METANET and the numerically 

solved second-order gas-kinetic-based traffic GKT model are tested, validated and compared 

with respect to their accuracy in the reproduction of congestion created at freeways close to 

on/off-ramps, using real traffic data from two freeway stretches located in U.K. and Greece. 

Moreover, the recently developed multi-lane GKT model is validated using real traffic data 

from a three-lane freeway stretch in the U.K. Both METANET and GKT models are among the 

most widely used macroscopic traffic flow models and have been utilized by several research 

groups in order to handle various traffic engineering tasks, such as simulation, optimization, 

estimation and optimal freeway traffic control. Chapter 3 includes a detailed description of 

the utilized macroscopic traffic flow models and the calibration procedure, while the 

calibration and validation results are presented in Chapter 4. 
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Chapter 3: Calibration of Macroscopic 
Traffic Flow Models 
 

3.1 Introduction 

The rapidly expanding traffic and transportation applications call for efficient and accurate 

traffic flow models, for assessing their potential impact on environment and community 

decision-making. As such, accurate traffic flow models are a prerequisite for a number of 

important tasks in the field of traffic management, including transportation planning, traffic 

simulation, traffic surveillance and monitoring, incident detection, assessment and planning 

of road infrastructures, control strategy design as well as the evaluation of transport energy 

consumption. Currently, several commercial traffic simulation software packages are 

available, and even more mathematical models have been proposed by research 

centers and groups all over the world. However, several questions are raised about the level 

of proximity of these models to reality and its representation. Hence, to ensure the credibility 

and validity of any model in performing real-world simulations and optimization scenarios, 

providing simultaneously reliable and reproducible results, the implementation of a 

calibration and validation procedure is mandatory.  

Despite the increasing popularity of macroscopic traffic simulation models, relatively 

few studies in the literature have addressed, or actually conducted, calibration and validation 

of such models against real traffic data; most of the research done to date has focused on 

model and software development. However, as indicated by Papageorgiou, 1998 and Ni et al., 

2004, model validation is the ultimate criterion for assessing the extent to which existing or 

new macroscopic traffic flow models replicate real traffic phenomena, and consequently the 

usefulness of their development and implementation is a valuable tool for the efficient 

simulation and optimization of traffic flow for specific transportation infrastructures. 

Regarding the calibration of first-order macroscopic traffic flow models, the 

Fundamental Diagram (FD), which represents a direct mapping from density to traffic flow, 

plays a vital role. The FD calibration procedure mainly concerns the estimation of the FD 

parameters of the relevant discrete road sections in order to maximize the model’s descriptive 

power to represent traffic flow characteristics. The most widely deployed model of this order 

is the CTM by Daganzo, 1994 and detailed calibration methodologies can be found in Muñoz 

et al., 2004, 2006. Moreover, a comparative study of the first-order CTM and the second-order 

METANET (Messmer & Papageorgiou, 1990) for a freeway in Greece, based on the 

deterministic Nelder-Mead algorithm (see, e.g., Nelder & Mead, 1965; Lagarias et al., 1998) has 

been recently presented by Spiliopoulou et al., 2014.  

Within the vast literature of second-order macroscopic traffic flow models, researchers 

have come up with different employed algorithms to calibrate and validate them against real 

traffic data. Extensive validation studies of METANET for the modelling of the Paris ring road 

and the large scale motorway networks around Amsterdam are reported by Papageorgiou et 

al., 1990, and Kotsialos et al., 1998, 2002, respectively, where the deterministic complex 

algorithm of Box (Box, 1965) was used for the calibration procedure. The Box algorithm was 

also used to calibrate the improved Payne's model (Cremer & Papageorgiou, 1981; Sanwal et 

al., 1996), as well as a proposed macroscopic traffic simulation model (of the so-called ‘‘node 
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model’’ type) by Monamy et al., 2012. An extension of the Nelder–Mead optimization 

technique was described by Ngoduy et al., 2004, in order to determine the parameters of the 

considered macroscopic model equations for various numerical schemes. Moreover, the gas-

kinetic traffic flow model (Treiber et al., 1999) was validated by Ngoduy & Maher, 2012, on a 

5 km section of a motorway in the U.K., using a generic Monte Carlo technique, namely the 

Cross Entropy Method (CEM) (Boer et al., 2005). A number of derivative free optimization 

algorithms are evaluated and compared in Spiliopoulou et al., 2015, for the parameter 

estimation problem of METANET model with respect to the robustness of the proposed 

model, the required computation time, and the optimum cost function time. A parameter 

identification algorithm for the METANET model, with a limited number of loop detectors, is 

discussed by Frejo et al., 2012; the algorithm was tested with real traffic data from a highway 

in California with satisfactory results. The METANET validation of a U.K. motorway is also 

described by Poole & Kotsialos, 2012, where the calibration problem was solved by means of 

a genetic algorithm with a least-squares method.  

At this point, it is worth mentioning that there are several works in the literature 

concerning the development of online calibration methods for macroscopic traffic flow 

models, where a random walk is introduced to the model parameters, resulting to augmented 

traffic flow variables and the model parameters being estimated (see, e.g., Wang & 

Papageorgiou, 2005; Wang et al., 2006; Luspay et al., 2010; Ngoduy, 2011); although such 

applications have been extensively used for real-time traffic state estimation problems, they 

are beyond the scope of this thesis. Moreover, despite the fact that this work is devoted to the 

calibration and validation of macroscopic traffic flow models, it is important to highlight that 

a great deal of studies have been undertaken by several researchers dedicated to optimization 

methods for the calibration of microscopic traffic models (Brockfeld et al., 2005; Hoogendoorn 

& Ossen, 2005; Lee & Ozbay, 2009; Hoogendoorn & Hoogendoorn, 2010).  

This thesis puts forward an optimization scheme, based on a parallel, synchronous or 

asynchronous metamodel-assisted DE algorithm (Storn & Price, 1995, 1997; Price et al., 2005), 

to determine the optimal parameters of the second-order macroscopic GKT model (Treiber et 

al., 1999; Helbing et al., 2001; Treiber & Kesting, 2013). This optimization algorithm is used to 

minimize the relative error between the model prediction and the observed real data. Such a 

calibration process presents a quite complex problem, since it takes the form of minimizing a 

cost function with numerous local minima, which traditional gradient-based algorithms 

usually fail to avoid. 

Among the various search and optimization techniques, Evolutionary Algorithms 

(EAs) have emerged over the past few years as an essential and versatile tool of dealing with 

demanding high-dimensional real-world optimization problems. EAs are capable of handling 

non-differentiable, nonlinear and multimodal cost functions, based on the principles of 

natural selection and evolution. From a population of candidate solutions, each individual is 

evaluated on the basis of its fitness function, and the best one is selected to proceed to the next 

generation and evolve through a certain process. However, despite the important contribution 

of EAs in solving complicated problems, they suffer from a significant drawback; a 

considerable number of evaluations is needed, which usually calls for significantly increased 

computation time. In order to overcome this barrier, the use of surrogate models 

(metamodels), in conjunction with parallel processing, appears to be an efficient approach. 

The population-based searching mechanism of EAs makes them eminently suitable for 

parallelism. In the vast literature, different Parallel Evolutionary Algorithms (PEAs) can be 

found (Luque & Alba, 2011; Alba et al., 2013) aiming not only to improve the efficiency, but 
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also to enhance the arithmetic performance, if structured populations are adopted. The 

different types of parallel EAs can be mainly divided in two categories; panmictic EAs and 

structured ones (Cantu-Paz, 1999; Alba & Tomassini, 2002). Combinations of the 

aforementioned categories have been reported in the literature, resulting in hybrid models, 

such as hierarchical hybrids (Hu & Goodman, 2002; Jong et al., 2004; Oliveira et al., 2004; 

Acampora et al., 2011). In panmictic EAs, a global parallelization model is usually followed, 

which utilizes a unique population of candidate solutions, while the selection operation is 

applied to all members of the population. The whole procedure is tailored by a central 

processor, which distributes the members of the population to different processors in order to 

be evaluated in parallel, while the selection step is performed only by the central one 

sequentially. This model is usually combined with a Master-Slave architecture. Synchronous 

and asynchronous parallel implementations of panmictic PEAs have been proposed in the 

literature (Alba & Troya, 1999, 2001). Since synchronous parallel EAs waste a lot of idle time 

waiting for completion of the longest fitness evaluation, asynchronous evolutions approaches 

seem like a mandatory step towards computational-time-savings. In general, asynchronous 

parallel implementations of EAs generate a new solution without waiting for the evaluations 

of other solutions, unlike the conventional synchronous approaches, which should wait for 

all evaluations to be completed before continuing with the next generation (Scott & De Jong, 

2015a, 2015b). 

In general, PEAs mostly use structured populations, following either the island (dEAs) 

or the cellular model (cEAs) (Cantu-Paz, 1999; Llorà & Garrell, 2001; Li & Kirley, 2002; Alba 

& Dorronsoro, 2005; Tomassini, 2005). For the parallel implementation, the population is 

divided into subpopulations called demes, and each one evolves separately on its assigned 

processor. In dEAs each subpopulation is comprised by many individuals, while in cEAs the 

subpopulation corresponds to a single individual. The demes exchange individuals with some 

migration frequency, to ensure the propagation of good solutions. In a dEA the 

subpopulations are loosely connected to each other, whereas in cEAs every individual can 

interact only with its neighbours. When implementing the island model, only a small number 

of subpopulations is used, in opposition to cEAs, where the number of subpopulations is 

equal to the population size (Cantu-Paz, 1999; Alba & Tomassini, 2002). Hybrid PEAs 

implementations utilize the multi-population dEA model along with the fine grained cEA 

model, resulting in better convergence behavior (Hu & Goodman, 2002; Jong et al., 2004; 

Oliveira et al., 2004; Acampora et al., 2011). 

In this thesis, a parallel DE algorithm has been developed, based on the panmictic 

approach, by using a unique population that is distributed among the processors with a 

Master-Slave architecture. Separate executable programs perform the evaluation of each 

individual in the population, while the required data exchange and communication between 

the processors are achieved by using MPI (Message Passing Interface) library functions. 

Furthermore, the utilization of two ANNs as surrogate models within the DE algorithm 

enhances its performance by substituting the computationally time-consuming exact 

evaluations of the fitness function with low-cost approximations.  

The structure of the present chapter is as follows: In Section 3.2 the numerically 

approximated GKT model (along with its multi-lane extension) via a high-resolution finite 

volume relaxation scheme, as well as a brief description of the METANET model, are 

presented. In Section 3.2.3 a full description of the major elements composing the proposed 

numerical optimization scheme is outlined.  
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3.2 Selected Macroscopic Traffic Flow Models 

3.2.1 GKT Model 

In this section, we recall some basic definitions and the differential equations governing the 

GKT model, according to Treiber et al., 1999, Helbing et al., 2001, Treiber & Kesting, 2013 and 

Delis et al., 2014, 2015a.  Let 𝜌(𝑥, 𝑡), hereafter 𝜌 for short, denoting the traffic density (number 

of vehicles occupying at unit length), which accounts at location 𝑥 and time instant 𝑡, 𝑢(𝑥, 𝑡), 

hereafter 𝑢 for short, denoting the average speed, while by definition  𝑞 =  𝜌𝑢 denotes the 

traffic flow rate (number of vehicles per unit of time). The GKT model can be written in 

conservation form (balance law) form with source terms, namely the 𝑟𝑟𝑚𝑝 and ℎ𝑟𝑚𝑝 ones, 

representing traffic flow from on-ramps (or to off-ramps), as well as a traffic relaxation term, 

with 𝑉𝑒
∗ being the equilibrium speed as 

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑢) = 𝑟𝑟𝑚𝑝 , (3.1) 

  

𝜕𝑡(𝜌𝑢) + 𝜕𝑥(𝜌𝑢
2 + 𝜃𝜌) = 𝜌 (

𝑉𝑒
∗(𝜌) − 𝑢

𝜏
) + ℎ𝑟𝑚𝑝. (3.2) 

Following from Treiber & Kesting, 2013, the term 𝑟𝑟𝑚𝑝  on the right-hand side of the 

continuity equation (3.1) denotes the effective source density that is only active within the 

merging (diverging) sections with length 𝑙𝑟𝑚𝑝 and inflow 𝑞𝑟𝑚𝑝 > 0 from (or outflow 𝑞𝑟𝑚𝑝 < 0 

to) the ramps, and is determined as  

𝑟𝑟𝑚𝑝(𝑥, 𝑡) = {

𝑞𝑟𝑚𝑝(𝑡)

𝑙𝑟𝑚𝑝
   𝑖𝑓 𝑥 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 𝑧𝑜𝑛𝑒,

0           𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒.

 (3.3) 

Further, the source term ℎ𝑟𝑚𝑝 in the momentum dynamics equation (3.2) describes changes in 

the macroscopic local speed, by assuming that on-ramp vehicles merge to the main road at 

speed 𝑢𝑟𝑚𝑝 < u. On the contrary, the drivers considered to leave the main road reduce their 

speed to 𝑢𝑟𝑚𝑝 before they diverge to the off-ramp. Hence, this term can be written as 

ℎ𝑟𝑚𝑝(𝑥, 𝑡) =
𝑞 ∙ 𝑟𝑟𝑚𝑝
𝜌

+
(𝑢𝑟𝑚𝑝 − 𝑢)|𝑞𝑟𝑚𝑝|

𝑙𝑟𝑚𝑝
 . (3.4) 

In equation (3.2), 𝜃 denotes the pressure-like term, computed as a density-dependent 

fraction 𝐴(𝜌) of the squared velocity 𝜃 =  𝐴(𝜌)𝑢2, where 𝐴(𝜌)  is given by the Fermi function 

as 

𝐴(𝜌) = 𝐴0 + 𝛿𝐴 [1 + tanh (
𝜌 − 𝜌𝑐𝑟
𝛿𝜌

)] , (3.5) 

where 𝜌𝑐𝑟 is the critical density, reflecting the boundary for the transition from the free flow 

to congested traffic state, with  𝐴0 and 𝐴0 + 2𝛿𝐴 the variance pre-factors between the 

aforementioned two states, while 𝛿𝜌 is the width of the transition region. Typical parameter 

value ranges for 𝐴0, 𝛿𝐴, and 𝛿𝜌, along with other typical used model parameters of the GKT 

model are specified by Treiber et al., 1999, Helbing et al., 2001, Treiber & Kesting, 2013 and 

Delis et al., 2014, 2015a.  
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Another advantageous feature of this model is the involved traffic relaxation term that 

tends to keep the velocity concentration in equilibrium state, with 𝑉𝑒
∗ = 𝑉𝑒

∗(𝜌, 𝑢, 𝜌𝛼 , 𝑢𝛼) being 

the dynamic equilibrium speed, depending not only on the local (𝜌, 𝑢) but also on the non-

local traffic state (𝜌𝛼 , 𝑢𝛼). Thus, the dynamic equilibrium speed, towards which the average 

speed relaxes, is determined as 

𝑉𝑒
∗(𝜌) = 𝑢𝑚𝑎𝑥 [1 −

𝜃 + 𝜃𝛼
2𝐴𝜌𝑚𝑎𝑥

(
𝜌𝛼𝑇

1 − 𝜌𝛼 𝜌𝑚𝑎𝑥⁄
)
2

𝐵(𝛿𝑢)] . (3.6) 

According to equation (3.6), the dynamic equilibrium speed is computed as the maximum 

desired speed, 𝑢𝑚𝑎𝑥, reduced by a braking non-local term, which reflects necessary 

deceleration maneuvers in traffic flow at the downstream interaction location 𝑥𝛼 = 𝑥 +

𝛾(1 𝜌𝑚𝑎𝑥 + 𝑇 ∙ 𝑢⁄ ), with 𝑇 being the average time-headway, 𝜌𝑚𝑎𝑥 the maximum density and 𝛾 

a scale factor. Finally, 𝐵(𝛿𝑢) is a so-called Boltzmann interaction factor that contains the 

standard normal distribution and the Gaussian error function, given as 

𝐵(𝛿𝑢) = 2 [𝛿𝑢
𝑒−𝛿𝑢

2 2⁄

√2𝜋
+ (1 + 𝛿𝑢2)∫

𝑒−𝑦
2 2⁄

√2𝜋

𝛿𝑢

−∞

𝑑𝑦] . (3.7) 

The above monotonically increasing term describes the dependence of the braking 

interaction on the dimensionless velocity difference 𝛿𝑢 = (𝑢 − 𝑢𝑎) √𝜃 + 𝜃𝛼⁄ , taking into 

account the velocity and variance at the actual position 𝑥 and the interaction point 𝑥𝛼, 

respectively.  

The decisive difference between the GKT model and other macroscopic traffic flow 

models is its non-local character, which was derived by adopting realistic assumptions of 

driving behavior. Specifically, it turned out that the non-locality of the braking term in 

equation (3.6) has similar smoothing attributes as a diffusion or viscosity term, but its effect is 

more realistic, as it is forwardly directed, which means that vehicles react on density or 

velocity gradients in front of them. Moreover, in contrast to other macroscopic models, the 

steady-state (equilibrium) speed-density relation of GKT model, 𝑉𝑒(𝜌), is not explicitly given, 

but it rather results from the steady-state condition of homogeneous traffic.  

 

 

3.2.1.1 The Multi-lane GKT Model 

 
In the following, the recently developed by Delis et al., 2015b, multi-lane GKT model is briefly 

presented. In general, continuous models that simulate multi-lane traffic flow dynamics, are 

based on a nonlinear system of conservation laws, with additional source/sink terms, in order 

to take into account lane-changes due to vehicle interactions, as well as spontaneous ones. 

Hence, assuming a highway with 𝑁 lanes, which are numbered by 𝑙 = 1, 2, … ,𝑁, the multi-

lane GKT model can be written in vector form (for each lane, 𝑙), supplied with initial 

conditions, as follows 

𝜕𝑡𝒖𝑙 + 𝜕𝑥𝒇(𝒖𝑙) = 𝒔(𝒖𝑙) + 𝒘𝑙(𝒖1, … , 𝒖𝑁) ,  

 (3.8) 

𝒖𝑙(𝑥, 0) = 𝒖𝑙,0(𝑥) ,  

where the functions 𝒖𝑙, 𝒇(𝒖𝑙) and 𝒔(𝒖𝑙) ∈ ℝ
2 with 𝒖𝑙 = [𝑢𝑙

1, 𝑢𝑙
2]T = [𝜌𝑙 , 𝑞𝑙]

T, 𝒇(𝒖𝑙) =

[𝜌𝑙𝑢𝑙 , 𝜌𝑙𝑢𝑙
2 + 𝜃𝑙𝜌𝑙]

T and 𝒔(𝒖𝑙) =  [𝑟𝑟𝑚𝑝,1, (𝜌𝑙𝑉𝑒,𝑙
∗ − 𝜌𝑙𝑢𝑙) 𝜏⁄ + ℎ𝑟𝑚𝑝,1]

T. The variables 𝜌𝑙, 𝑢𝑙, and 
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𝑞𝑙 are the traffic density, the average speed of vehicles and the traffic flow rate at the 𝑙-th lane, 

for 𝑙 = 1, 2, … ,𝑁, respectively. Herein, following the definition of the pressure-like term 𝜃𝑙 =

 𝐴(𝜌𝑙)𝑢𝑙
2, the density-dependent variance factor 𝐴(𝜌𝑙) is given as: 

𝐴(𝜌𝑙) = 𝐴0,𝑙 + 𝛿𝐴𝑙 [1 + tanh (
𝜌𝑙 − 𝜌𝑐𝑟,𝑙
𝛿𝜌𝑙

)] . (3.9) 

Furthermore, terms 𝑟𝑟𝑚𝑝,1 and ℎ𝑟𝑚𝑝,1 reflect the impact of traffic flow from on-ramps (or to 

off-ramps) on the first lane and take non-zero values only for the corresponding lane. As in 

the case of the single-lane GKT model (see Section 3.2.1), the term 𝑟𝑟𝑚𝑝,1 denotes the effective 

source density that is only active within the merging sections with length 𝑙𝑟𝑚𝑝 and inflow 

𝑞𝑟𝑚𝑝,1 > 0 from (or outflow 𝑞𝑟𝑚𝑝,1 < 0 to) the ramps, determined as  

𝑟𝑟𝑚𝑝,1(𝑥, 𝑡) = {

𝑞𝑟𝑚𝑝,1(𝑡)

𝑙𝑟𝑚𝑝
   𝑖𝑓 𝑥 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 𝑧𝑜𝑛𝑒,

0           𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒,

 (3.10) 

while the term ℎ𝑟𝑚𝑝,1 describes changes in the macroscopic local speed by assuming that on-

ramp vehicles merge to the main road at speed 𝑢𝑟𝑚𝑝 < u. On the contrary, the drivers 

considering to leave the main road reduce their speed to 𝑢𝑟𝑚𝑝 before they diverge to the off-

ramp. Hence, for the multi-lane GKT model this term is expressed as 

ℎ𝑟𝑚𝑝,1(𝑥, 𝑡) =
𝑞1 ∙ 𝑟𝑟𝑚𝑝,1

𝜌1
+
(𝑢𝑟𝑚𝑝 − 𝑢1)|𝑞𝑟𝑚𝑝,1|

𝑙𝑟𝑚𝑝
 . (3.11) 

The non-local and dynamic equilibrium speed, 𝑉𝑒,𝑙
∗ (𝜌𝑙 , 𝑢𝑙 , 𝜌𝛼,𝑙 , 𝑢𝛼,𝑙), toward which the 

average speed relaxes, is determined as 

𝑉𝑒,𝑙
∗ = 𝑢𝑚𝑎𝑥,𝑙 [1 −

𝜃𝑙 + 𝜃𝛼,𝑙
2𝐴(𝜌𝑚𝑎𝑥,𝑙)

(
𝜌𝛼,𝑙  𝑇𝑙

1 − 𝜌𝛼,𝑙 𝜌𝑚𝑎𝑥,𝑙⁄
)

2

𝐵(𝛿𝑢𝑙)]  (3.12) 

while the Boltzmann factor 𝐵(𝛿𝑢𝑙), with 𝛿𝑢𝑙 = (𝑢𝑙 − 𝑢𝑎,𝑙) √𝜃𝑙 + 𝜃𝛼,𝑙⁄ , takes the form 

𝐵(𝛿𝑢𝑙) = 2 [𝛿𝑢𝑙
𝑒−𝛿𝑢𝑙

2 2⁄

√2𝜋
+ (1 + 𝛿𝑢𝑙

2)∫
𝑒−𝑦

2 2⁄

√2𝜋

𝛿𝑢𝑙

−∞

𝑑𝑦] . (3.13) 

Further, according to model equations (3.8) for the multi-lane traffic, the source term 

𝒘𝑙(𝒖1, … , 𝒖𝑁) ∈ ℝ
2 represents the sources and sinks due to lane-changing, resulting in a 

weakly coupled system of 2𝑁 equations. The components of the lane-changing terms are 

defined as 

𝑤𝑙
1,2 = (

1

𝑇𝑙−1
𝐿 𝑢𝑙−1

1,2 −
1

𝑇𝑙
𝑅 𝑢𝑙

1,2) (1 − 𝛿𝑙,1) + (
1

𝑇𝑙+1
𝑅 𝑢𝑙+1

1,2 −
1

𝑇𝑙
𝐿 𝑢𝑙

1,2) (1 − 𝛿𝑙,𝑁) , (3.14) 

with 
1

𝑇𝐿
 and 

1

𝑇𝑅
 being the lane changing rates from lane 𝑙 to left 𝑙 + 1 and right 𝑙 − 1, 

respectively, and 𝛿𝑖,𝑗 the Kronecker delta. The lane changing rates are defined as 

1

𝑇𝑙
𝐿 = 𝑃𝐿(𝜌𝑙+1)𝑣(𝜌𝑙) + 𝑆𝑙

𝐿 ,  

 (3.15) 
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1

𝑇𝑙
𝑅 = 𝑃𝑅(𝜌𝑙−1)(1 − 𝑃𝐿(𝜌𝑙+1))𝑣(𝜌𝑙) + 𝑆𝑙

𝑅 ,  

where the terms 𝑃𝑅,𝐿(𝜌𝑙) are the lane-changing probabilities in response to vehicle interactions 

and 𝑣(𝜌𝑙) = 𝜈𝑓(1 − 𝜌𝑙)𝜌𝑙
2 are the interaction frequencies regarding deceleration and 

acceleration; for simplicity, considered that 𝑃𝑅(𝜌) = 𝑃𝐿(𝜌). The shape of  𝑃𝑅,𝐿(𝜌𝑙) depends on 

a characteristic density value (𝜌𝑃), while that of 𝑣(𝜌𝑙) depends on the value of 𝜈𝑓, as depicted 

for example in Figure 3.1. 

Further, we assume here that the spontaneous lane changes, which are not caused by 

vehicle interactions and described by the terms 𝑆𝑙
𝐿,𝑅, are formulated as  

𝑆𝑙
𝐿,𝑅 = 𝑘𝑙

𝐿,𝑅 (1 −
𝜌𝑙±1

𝜌𝑚𝑎𝑥,𝑙±1
)

𝛽

 (3.16) 

in which 𝑘𝑙
𝐿,𝑅 and 𝛽 are spontaneous lane-changing parameters. For the spontaneous lane-

changing terms in equation (3.16), the European-rule of primarily using the right lane at low 

densities is adopted (Shvetsov & Helbing, 1999; Ngoduy et al., 2005). Calibration results have 

shown that spontaneous lane-changing mainly influences low-density regimes. Setting 𝛽 = 8 

in equation (3.18), a smooth correction pre-factor 𝐺𝐸𝑢, with 0 < 𝐺𝐸𝑢(𝜌) <1, is used to account 

for the European traffic rule by modifying 𝑆𝑙
𝐿 as 𝑆𝑙

𝐿 𝐺𝐸𝑢 and 𝑆𝑙
𝑅 as 𝑆𝑙

𝑅  /𝐺𝐸𝑢  (Delis et al., 2015b). 

 

 

FIGURE 3.1: (Left) Lane changing probability for ρcr,l=0.3ρmax,l and ρP=0.025. (Right) Lane 

changing frequency for normalized density, for vf=0.4. 

 
3.2.1.2 The Relaxation Approach for 1-D systems of conservations laws 

For the numerical integration of system (3.1)-(3.2) or equivalent system (3.8), an accurate and 

robust high-resolution finite volume relaxation scheme was applied. This section, briefly 

describes the developed relaxation scheme and its numerical discretization.  

 Model equations (3.1)-(3.2) can be written in vector form, supplied with initial 

conditions, as  

𝜕𝑡𝒖 + 𝜕𝑥𝒇(𝒖) = 𝒔(𝒖) ,  

 (3.17) 

𝒖(𝑥, 0) = 𝒖0(𝑥) ,   
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where the functions 𝒖, 𝒇(𝒖) and 𝒔(𝒖) ∈ ℝ2 with 𝒖 = [𝜌, 𝑞]T, 𝒇(𝒖) = [𝜌𝑢, 𝜌𝑢2 + 𝜃𝜌]T and 

𝒔(𝒖) =  [𝑟𝑟𝑚𝑝, (𝜌𝑉𝑒
∗ − 𝜌𝑢) 𝜏⁄ + ℎ𝑟𝑚𝑝]

T. 

Systems in the form of (3.17) can be rewritten in quasi-linear form 

𝜕𝑡𝒖 + 𝐉(𝒖)𝜕𝑥𝒖 = 𝒔(𝒖) , (3.18) 

in which 𝐉(𝒖) =
𝜕𝒇

𝜕𝒖
 is the Jacobian matrix of the system. This Jacobian matrix has two distinct, 

real and positive eigenvalues, for all physically reasonable parameter sets, given as 

𝜆1,2 = 𝑢 +
1

2

𝜕𝑃

𝜕𝑞
± √(

1

2

𝜕𝑃

𝜕𝑞
)
2

+
𝑞

𝑟

𝜕𝑃

𝜕𝑞
+
𝜕𝑃

𝜕𝜌
 , (3.19) 

which denote that the model equations constitute a strictly hyperbolic set of partial differential 

equations. 

In what follows, the class of relaxation models by Jin & Xin, 1995, which applied to 

various second-order macroscopic traffic flow models by Delis et al., 2014, is briefly presented. 

Introducing the artificial variables 𝒘, the corresponding to (3.17), relaxation system reads as 

𝜕𝑡𝒖+ 𝜕𝑥𝒘 = 𝒔(𝒖) ,  

 (3.20) 

𝜕𝑡𝒘+ 𝑪
2𝜕𝑥𝒖 =

𝒇(𝒖) − 𝒘

𝜖
 .  

and the extra initial condition 𝒘(𝑥, 0) = 𝒘0(𝑥) = 𝒇(𝒖0(𝑥)), where the small parameter 𝜖 

(0 < 𝜖 ≪ 1), is the relaxation rate, and 𝑪2 = 𝑑𝑖𝑎𝑔{𝑐1
2, 𝑐2

2} is a positive diagonal matrix. 

Applying the Chapman-Enskog expansion in system (3.20), the following approximation for 

𝒖 can be obtained, 

𝜕𝑡𝒖+ 𝜕𝑥𝒇(𝒖) = 𝒔(𝒖) + 𝜖𝜕𝑥 [(
𝜕𝒇(𝒖)

𝜕𝒖
) 𝒔(𝒖)] +  𝜖𝜕𝑥 [(𝑪

2 − (
𝜕𝒇(𝒖)

𝜕𝒖
)

2

)𝜕𝑥𝒖] + 𝑂(𝜖)
2 . (3.21) 

Equation (3.21) controls the first-order behavior of system (3.20), with the third term on the 

right-hand side being an 𝑂(𝜖) dominant dissipation term in the model with (𝑪2 − (
𝜕𝒇(𝒖)

𝜕𝒖
)
2
) 

being the diffusion-like coefficient matrix. Model (3.20) is well-posed only if the matrix is 

positive semi-definite for all 𝒖. This requirement on the diffusion coefficient matrix is the well-

known sub-characteristic condition (Jin & Xin, 1995) 

𝑪2 − (
𝜕𝒇(𝒖)

𝜕𝒖
)

2

≥ 0,      ∀𝒖 . (3.22) 

Condition (3.22) can always be satisfied by choosing sufficiently large values for the elements 

in 𝑪2, for 𝒖 varying in a bounded domain. As such, the solution of the relaxation model (3.20) 

strongly converges to the unique entropy solution of the original conservation laws. In 

practice this can be equivalent to the choice  

𝜆2 ≤ 𝑐2, where 𝜆 = max
1≤𝑖≤2

|𝜆𝑖| and 𝑐 = min
1≤𝑖≤2

|𝑐𝑖| . (3.23) 

Now, system (3.20) can be easily diagonalized, leading to the following decoupled 

system of equations 
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𝜕𝑡(𝒘 + 𝑪𝒖) + 𝑪𝜕𝑥(𝒘 + 𝑪𝒖) =
𝒇(𝒖) − 𝒘

𝜖
+ 𝑪𝒔(𝒖); (3.24) 

  

𝜕𝑡(𝒘− 𝑪𝒖) − 𝐂𝜕𝑥(𝒘− 𝑪𝒖) =
𝒇(𝒖) − 𝒘

𝜖
− 𝐂𝒔(𝒖) . (3.25) 

The left-hand side of system (3.24)-(3.25) is linear with constant wave speeds. Its solution has 

the property that it propagates at finite speeds along linear characteristic curves 𝑑𝑥 𝑑𝑡 = ±𝑪⁄ . 

From (3.24)-(3.25), and by setting 𝒈1,2 = 𝒘± 𝑪, the following relations to the original variables 

of the relaxation system hold 

𝒖 =
1

2
𝑪−1(𝒈1 −𝒈2) and 𝒘 =

1

2
(𝒈1 + 𝒈2) . (3.26) 

The structure of the linear characteristic field of the relaxation system constitutes a clear 

advantage compared to the original conservation laws for their numerical integration. 

 For the spatial discretization of (3.20) the finite volume approach is adopted. Let 𝑥𝑖 =

𝑖𝛥𝑥, 𝑥
𝑖±
1

2

= (𝑖 ±
1

2
)𝛥𝑥, where 𝛥𝑥 is a uniform spatial discretization step. The discrete cell 

average of 𝒖 in the cell 𝐼𝑖 = [𝑥𝑖−1
2

 , 𝑥
𝑖+
1

2

] at time 𝑡 is defined as 𝒖𝑖(𝑡) and the approximate value 

of 𝒖 at (𝑥
𝑖+
1

2

 , 𝑡) by  𝒖
𝑖+
1

2

(𝑡). The semi-discrete relaxation system is given as  

𝜕

𝜕𝑡
(𝒖𝑖) +

1

𝛥𝑥
(𝒘

𝑖+
1
2
−𝒘

𝑖−
1
2
) = 𝒔(𝒖)𝑖 ,  

 (3.27) 

𝜕

𝜕𝑡
(𝒘𝑖) +

𝑪2

𝛥𝑥
(𝒖

𝑖+
1
2
− 𝒖

𝑖−
1
2
) = −

1

𝜖
(𝒘𝑖 − 𝒇(𝒖)𝑖) .  

where 𝒔(𝒖)𝑖 and 𝒇(𝒖)𝑖 are discrete averages of the source term and flux function, respectively. 

To completely define the spatial discretization, we need to compute the flux values 𝒖
𝑖±
1

2

 and 

𝒘
𝑖±
1

2

. As system (3.20) has linear characteristics and its characteristic speeds, +𝑐𝑘 and −𝑐𝑘, are 

constant, the construction of an upwind scheme is much simpler than developing such a 

scheme for the original nonlinear conservation laws. For example, the first-order upwind 

scheme (Jin & Xin, 1995; Delis et al., 2014), applied to 𝒈1 and 𝒈2 gives 𝒈1𝑖+1
2

= 𝒈1𝑖 and 𝒈2𝑖+1
2

=

𝒈2𝑖+1.  

In order to increase the spatial order of accuracy, a WENO-type interpolant approach 

is applied, where the approximate solution is reconstructed by using higher-order 

polynomials. By direct application of this reconstruction to the 𝑘−th components of the 

characteristic variables, 𝒈1,2 = 𝒘± 𝑪𝒖, a non-oscillatory higher-order spatial discretization is 

obtained. The superiority of applying higher-order schemes, compared to low-order ones, in 

traffic flow simulations has been recently demonstrated by Delis et al., 2014. By applying a 

fifth-order WENO reconstruction the discrete values of each component of 𝒈1𝑖+1
2

 and 𝒈2𝑖+1
2

, at 

a cell boundary 𝑖 +
1

2
, are defined as left and right extrapolated values 𝒈1

−
𝑖+
1

2

 and 𝒈2
+
𝑖+
1

2

 i.e., 

𝒈1𝑖+1
2

= 𝒈1
−
𝑖+
1

2

 and 𝒈2𝑖+1
2

= 𝒈2
+
𝑖+
1

2

. After the reconstructions have been performed to each 

component of the characteristic variables, the numerical fluxes for 𝒖
𝑖+
1

2

 and 𝒘
𝑖+
1

2

 are computed 

from (3.26). The face values at cell boundary −
1

2
   are computed in a similar manner. 
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The semi-discrete relaxation system (3.27) constitutes a system of autonomous 

ordinary differential equations with a stiff relaxation term. A time marching approach based 

on implicit-explicit (IMEX) Runge-Kutta (RK) splitting was considered, in order to avoid the 

time step restrictions imposed by an explicit solver due to stiffness. As such, the explicit RK 

scheme treats the non-stiff stage of the splitting, while a diagonally implicit RK scheme treats 

the stiff one. We note that even though an implicit scheme is used, either linear or nonlinear 

algebraic equations have to be solved due to the special structure of the relaxation system. 

The choice of the time marching step 𝛥𝑡𝑛 is based only on a usual CFL (Courant-Friedrichs-

Lewy) condition,  

𝐶𝐹𝐿 = max((max
𝑖,𝑘

𝑐𝑘
𝑛)
𝛥𝑡𝑛

𝛥𝑥
,
𝛥𝑡𝑛

𝛥𝑥
 ) ≤

1

2
 , (3.28) 

where the values of the relaxation constants 𝑐𝑘
𝑛 are re-computed at each time step based on 

the Jacobian eigenvalues so as to satisfy the sub-characteristic condition (3.22). A detailed 

description of the spatial and temporal discretization schemes, as well as the superiority and 

performance of the applied higher-order scheme, with respect to low-order ones, in traffic 

flow simulations has been demonstrated by Delis et al., 2014.  

 

3.2.2 METANET Model 

Further in this thesis the single-lane GKT model (see Section 3.2.1) is validated and compared 

with the METANET model (Messmer & Papageorgiou, 1990) in terms of the representation of 

traffic flow conditions at congested freeway areas. The METANET model is the most 

commonly used macroscopic traffic flow model and has been utilized by several research 

groups to handle various traffic engineering tasks, such as simulation, optimization, 

estimation and optimal freeway traffic control. In what follows, a brief description of the 

METANET model is presented. 

The METANET model is a discretized and enhanced variant of the Payne (PW) model. 

Within METANET, the freeway is divided into homogeneous, consecutively numbered 

sections 𝑖, with respective lengths 𝐿𝑖 and number of lanes 𝜆𝑖, as shown in Figure 3.2. Time is 

also discretized into uniform intervals of duration 𝑇, with a discrete time index 𝑘 = 0,1,2,… , 𝐾 

where 𝐾 is the time horizon. The state variables for section 𝑖 are the density 𝜌𝑖(𝑘) (in 

veh/km/lane) and the mean speed 𝑢𝑖(𝑘) (in km/h) at the time instant 𝑘𝑇, which are 

calculated according to the following equations: 

𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇

𝐿𝑖𝜆𝑖
[𝑞𝑖−1(𝑘) − 𝑞𝑖(𝑘) + 𝑟𝑖(𝑘) − 𝑠𝑖(𝑘)] , (3.29) 

  

𝑢𝑖(𝑘 + 1) = 𝑢𝑖(𝑘) +
𝑇

𝐿𝑖
𝑢𝑖(𝑘)[𝑢𝑖−1(𝑘) − 𝑢𝑖(𝑘)] +

𝑇

𝜏
[𝑉𝑒[𝜌𝑖(𝑘)] − 𝑢𝑖(𝑘)]

− 
𝜈𝑇[𝜌𝑖+1(𝑘) − 𝜌𝑖(𝑘)]

𝜏𝐿𝑖[𝜌𝑖(𝑘) + 𝜅]
  , 

(3.30) 

where, 𝑞𝑖 is the traffic flow exiting section 𝑖 and entering section 𝑖 + 1, 𝑟𝑖(𝑘) is the traffic flow 

entering the freeway section 𝑖 from an on-ramp and 𝑠𝑖(𝑘) is the traffic flow exiting the freeway 

section from an off-ramp, and equals to 𝑠𝑖(𝑘) = 𝛽𝑖(𝑘)𝑞𝑖(𝑘)/[1 − 𝛽𝑖(𝑘)] where 𝛽𝑖(𝑘) is the 
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splitting ratio. Moreover, 𝜏 (a time constant), 𝜈 (an anticipation constant) and 𝜅 are model 

parameters, while function 𝑉𝑒[𝜌𝑖(𝑘)] corresponds to the fundamental diagram, calculated 

using the following equation: 

𝑉𝑒[𝜌𝑖(𝑘)] = 𝑢𝑓,𝑖 𝑒𝑥𝑝 [−
1

𝑎𝑖
(
𝜌𝑖(𝑘)

𝜌𝑐𝑟,𝑖
)

𝑎𝑖

] , (3.31) 

where 𝑢𝑓,𝑖 is the free flow speed, 𝜌𝑐𝑟,𝑖 is the critical density (for which the flow at section 𝑖 is 

maximized) and 𝑎𝑖 is a further model parameter for section 𝑖. Moreover, the mean speed 

calculated by the model is truncated if it is below a minimum value 𝑢𝑚𝑖𝑛. Papageorgiou et al., 

1990, proposed two additional terms for more accurate modelling of merging and lane-drop 

phenomena. In particular, the impact on mainstream speed due to an on-ramp merging flow 

is calculated by adding the term −𝛿𝑇𝑟𝑖(𝑘)𝑣𝑖(𝑘) 𝐿𝑖𝜆𝑖⁄ [𝜌𝑖(𝑘) + 𝜅] at the right hand side of 

equation (3.30) for the merging section, where 𝛿 is a model parameter. This term is not used 

if there is a lane gain downstream of the on-ramp, i.e., if there is a lane dedicated for entering 

vehicles. In order to take into account the impact on speed due to intensive lane-changing at 

lane-drop areas, the term −𝜑𝑇𝛥𝜆𝜌𝑖(𝑘)𝑣𝑖(𝑘)
2 𝐿𝑖𝜆𝑖⁄ 𝜌𝑐𝑟,𝑖, is added to equation (3.30) for the 

section immediately upstream of the lane drop, where 𝜑 is a model parameter and 𝛥𝜆 is the 

number of dropped lanes. 

 

FIGURE 3.2: Freeway discretization in the METANET model. 

At bifurcation locations (e.g. off-ramps), a downstream density 𝜌𝑖+1(𝑘) is needed in 

equation (3.30) for section 𝑖 entering the bifurcation; this density reflects the upstream 

influence of the downstream traffic conditions. However, since we have at least two 

downstream sections at bifurcations, the following formula was proposed by Messmer & 

Papageorgiou, 1990, for usage 

𝜌𝑖+1(𝑘) = ∑ 𝜌𝜇
2(𝑘)

𝜇𝜖𝛰𝜄

∑ 𝜌𝜇(𝑘)

𝜇𝜖𝛰𝜄

⁄  , (3.32) 

where 𝜌𝑖+1(𝑘) is the virtual density downstream of section 𝑖, which is used in equation (3.30), 

and 𝜌𝜇(𝑘) is the density of each section downstream of section 𝑖, 𝛰𝜄 being the set of existing 

sections. The quadratic average used in (3.32) accounts for the fact that congestion may spill 

back to a section 𝑖 from any one of its downstream sections (e.g., in case of spillback from a 

saturated off-ramp), even if the rest downstream sections are not congested. Notice that 

equation (3.32) does not include any parameter to be calibrated. Finally, the flow 𝑞𝑖(𝑘) exiting 

section 𝑖 and entering section 𝑖 + 1 is computed as 
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𝑞𝑖(𝑘) = 𝑢𝑖(𝑘)𝜌𝑖(𝑘)𝜆𝑖[1 − 𝛽𝑖(𝑘)] . (3.33) 

 

3.2.3 The Differential Evolution Algorithm 

Among the various search and optimization techniques, the development of EAs has become 

increasingly appealing over the last decade, as a flexible and robust tool, capable of addressing 

high-dimensional real-world optimization problems that have several local optima. They 

constitute a class of search methods with a remarkable balance between exploitation of the 

best solutions and exploration of the search space, as well as low sensitivity to local minima 

treatment. They combine elements of directed and stochastic search and, therefore, are more 

robust than directed search methods. Within the proposed numerical optimization scheme, a 

DE Algorithm is utilized. This is a versatile stochastic search method, introduced by Storn & 

Price, 1995, 1997, capable of handling non-differentiable, nonlinear and multimodal cost 

functions, providing superior convergence performance than other EAs (Storn & Price, 1995, 

1997; Price et al., 2005). Contrary to other EAs, the DE compares each new candidate member 

(offspring) of the population only against a single existing one (parent), which is its 

counterpart in the current population. The new parameter vector (offspring) results after 

applying mutation and crossover operators; specifically, this is a linear combination between 

a randomly selected member of the current population (chromosome) and a weighted 

difference between two other randomly chosen chromosomes. 

Below, an analytical description of the basic elements composing a classic DE 

algorithm is presented. Given a cost function 

𝑓𝑐𝑜𝑠𝑡(𝒙) = 𝑓𝑐𝑜𝑠𝑡(𝑥1 , 𝑥2, … , 𝑥𝑛) → 𝑚𝑖𝑛 (3.34) 

where 𝒙 denotes the vector containing the 𝑛 design variables (number of genes) of the problem 

under consideration and 𝑓𝑐𝑜𝑠𝑡 (𝒙):ℝ
𝑛 → ℝ a real function. The optimization target is the 

minimization of the cost function 𝑓𝑐𝑜𝑠𝑡 by modulating the values of its design variables 

(𝑥1 , 𝑥2, … , 𝑥𝑛), while each one of the design variables is bounded between an upper 𝑥𝑖
𝑢 and a 

lower 𝑥𝑖
l value. DE evolves a fixed size population of 𝑁𝑝 individuals (chromosomes) for a finite 

number of generations 𝐺𝑚𝑎𝑥. The initialization of the first population 𝐺 = 0 is established by 

randomly assigning values to the design variables within their given boundaries  

𝑥𝑘,𝑖
0 = 𝑟 ∙ (𝑥𝑖

𝑢 − 𝑥𝑖
𝑙) + 𝑥𝑖

𝑙 ,   𝑖 = 1,… , 𝑛, 𝑘 = 1,… ,𝑁𝑝,  

 (3.35) 

𝑥𝑖
𝑙 ≤ 𝑥𝑘,𝑖

0 ≤ 𝑥𝑖
𝑢 ,  

where 𝑟 denotes a random number generated with uniform probability within the range [0, 1]. 

After the evaluation of each individual's cost function, operators are applied to the population, 

simulating the according natural processes. The first operator applied is the mutation scheme, 

which generates a new chromosome (mutant), based on three randomly selected individuals 

(chromosomes) of the current generation 𝐺. The formation of the new parameter vector is 

realized by adding a weighted difference vector between the two members of the triad to the 

third one, the so-called "donor". Then, the uniform crossover scheme is applied; the mutant 

and the chromosome of the current population (parent) are subjected to a discrete 

recombination, which produces the final candidate solution 
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𝑥𝑘,𝑖
′𝐺+1 = {

𝑥𝐶𝑘,𝑖
𝐺 + 𝐹(𝑥𝐴𝑘,𝑖

𝐺 − 𝑥𝐵𝑘,𝑖
𝐺 )   𝑖𝑓 𝑟 ≤ 𝐶𝑟    𝑜𝑟    𝑖 = 𝑖

∗ ∀ 𝑖 = 1,… , 𝑛

𝑥𝑘,𝑖
𝐺             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  

 (3.36) 

𝑘 = 1,… ,𝑁𝑝, 𝑖 = 1,… , 𝑛  

𝐴𝑘 ∈ [1,… ,𝑁𝑝 ], 𝐵𝑘 ∈ [1,… ,𝑁𝑝 ], 𝐶𝑘 ∈ [1,… ,𝑁𝑝 ], 𝐴𝑘 ≠ 𝐵𝑘  ≠ 𝐶𝑘 

𝐶𝑟 ∈ [0,1], 𝐹 ∈ [0, 1 +], 𝑟 ∈ [0,1] , 

 

where 𝑥𝐶𝑘,𝑖
𝐺  are the elements of the "donor" vector (chromosome), 𝐺 is the current generation 

and 𝑖∗ is a randomly selected integer within [1, 𝑛], chosen once for all members of the 

population. The random number 𝑟 is seeded for every gene of each chromosome whereas the 

parameters 𝐹 and 𝐶𝑟 consider the mutation and crossover operations, respectively. 

Specifically, the scale factor 𝐹 controls the diversification rate of the population, while the 

crossover probability 𝐶𝑟 controls the fraction of design values that are inherited from the 

mutant. Moreover, the design variable, which corresponds to the randomly selected index, 𝑖∗, 

is taken from the mutant to ensure that the trial vector (offspring) does not duplicate the initial 

one (parent). Scaling vector differences ensures that trial vectors do not duplicate existing 

members in the population. Additionally, scaling can shift the focus of the search between 

local and global. 

Subsequently, each member of the resulting intermediate population (offspring) is 

evaluated and competes against its counterpart in the current population (parent); the best-

fitted individuals are the ones that will form the next generation. The DE selection scheme 

ensures the survival of the elitists and can be described as follows: 

𝒙𝑘
𝐺+1 = {

𝒙𝑘
′𝐺+1 𝑖𝑓 𝑓(𝒙𝑘

′𝐺+1) ≤ 𝑓(𝒙𝑘
𝐺),

𝒙𝑘
𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3.37) 

The process is successively repeated, providing populations with better-fitted 

individuals. 

The DE selection scheme has a substantial difference compared to other EAs, owing to 

the fact that the offspring is not compared against all the members of the current population, 

but only against its parent, replacing it if it’s better-fitted. This important characteristic allows 

for a relatively easy implementation of an asynchronous parallelization procedure, as it will 

be described in a following section. If each population member is assigned to a different 

processor (or core), this processor can proceed to the evaluation of a new individual, after 

completing the evaluation of its parent. Communication between the different processors is 

mainly required in order to perform the mutation operation. This does not necessitate the 

existence of a generation in the strict sense; a population comprising chromosomes belonging 

to different generations may be used instead. Additional communication with the master 

node is needed in the case of utilizing surrogate models, which are re-trained in each 

generation (which is the case in our implementation). 

 

3.3 Macroscopic Traffic Flow Model Calibration  

Macroscopic traffic simulation models are essential tools in modelling transport systems; one 

of the challenges faced by such a model is to respond to prevailing local conditions with the 

highest possible level of accuracy. In fact, the process of model calibration is a prerequisite for 
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any macroscopic model so as to ensure its credibility and reliability in performing real-world 

simulations, capturing realistic distribution of all possible traffic conditions of a freeway 

network and producing valid results. To do so, an optimization problem should be solved in 

order to mine the optimal design parameters of the model, which minimize the relative error 

between the model prediction and the observed data. However, such a calibration process is 

a challenging problem, since the equations of both the GKT and the METANET models (see 

Section 3.2.1 and 3.2.2) are highly nonlinear.  

 

3.3.1 The Combined Use of Surrogate Models 

In each DE generation, each trial vector (offspring) must first be evaluated (by computing its 

cost function using simulation software) and then compared with its parent, so as to select the 

better-fitted between them to pass on to the next generation. The computation of the 

offspring’s cost function is (in most real-world applications) a time-consuming operation. The 

concept of utilizing surrogate models in this evaluation procedure is to replace the costly exact 

evaluations with fast inexact approximations, without sacrificing the robustness of the DE 

algorithm. These surrogate models are established using a data-driven approach, where only 

the input and output behavior of the simulation model of the cost function is taken into 

account, as to create a mechanism that mimics that behavior. Two types of Artificial Neural 

Networks (ANNs) are used as surrogate models; a Multi-Layer Perceptron (MLP) and a 

Radial Basis Function (RBF) ANN, respectively. A detailed description of their 

implementation within the DE optimizer can be found in (Nikolos, 2004, 2011, 2013), along 

with related references to available types of surrogate models and their combination with EAs. 

Each offspring is pre-evaluated, using the available surrogate models, in a fast screening 

procedure. If an offspring is pre-evaluated and found lower-fitted than its parent, then no 

further exact evaluation is taking place, and the current vector (parent) is transferred to the 

next generation, while the offspring is abandoned. In the opposite case, where the offspring 

is pre-evaluated as better-fitted than its parent, an exact (and costly) re-evaluation is 

performed after the pre-evaluation, along with a second comparison between the two vectors. 

If the offspring is found again better-fitted than its parent, then the offspring passes on to the 

next generation. Otherwise, its parent will pass on to the next generation and the offspring 

will be abandoned. 

An additional small percentage (5% − 10%) of the candidate solutions are selected 

with uniform probability to be exactly evaluated, without taking into account their pre-

evaluation by the utilized surrogate models, to further enhance the robustness of the 

procedure. Moreover, in the first two generations of the DE, all trial vectors are exactly 

evaluated (without using the surrogate models), so as to initialize the central database (pool) 

required for the training of the surrogate models. As it was previously described, only exactly-

evaluated candidate solutions have the opportunity to pass on to the new generation. 

Consequently, in each generation the current population always comprises individuals that 

have been selected using exact evaluation. Therefore, one part of the comparison (the parent) 

in the pre-evaluation phase is always an exactly-evaluated vector, and this enhances the 

robustness of the procedure. It should be emphasized that the surrogate model predictions 

replace exact and costly evaluations only for the less-promising individuals. The pre-
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evaluation phase is used to quickly reject them without spending valuable computational 

resources to exactly-evaluate them. 

Each evaluated chromosome, along with its resulted fitness function value, is stored 

in the central database. The training and testing data sets are selected in each generation from 

the corresponding database, to be used by all available surrogate models. If 𝑁𝑅 is the length 

of the training set and 𝑁𝑇 is the length of the testing set (defined by the user in the beginning 

of the optimization procedure), the 𝑁𝑅 + 𝑁𝑇 best members of the central database are 

deterministically selected.  From this set, 𝑁𝑅 members are randomly selected (with uniform 

probability) to be utilized as the training set, while the rest 𝑁𝑇 are being used for testing. In 

this way the surrogate models, which are re-trained and re-tested in each generation, evolve 

with the population and use only the currently most-promising individuals for approximating 

the cost function.  

The utilized surrogate models can be used either independently or as an ensemble. In 

the first case, a single surrogate is used throughout the whole optimization procedure. In the 

second case all surrogates are re-trained and re-tested in each generation (using the same 

training and testing data sets for all surrogates). Then, only the best one is used in the pre-

evaluation phase of the trial vectors. The selected surrogate (different in each generation) is 

the one with the lower value of the testing error. The second procedure is usually preferred, 

since it is not known a-priori which surrogate is the best for a new cost function and for each 

region of the cost function, thus this automated procedure decides for the surrogate to be used 

in each generation. The re-training of all the available surrogates in each generation adds 

negligible cost, compared to the cost of the evaluations (Nikolos, 2004, 2011, 2013; Strofylas & 

Nikolos, 2015).  

 

3.3.2 Parallel Implementation  

Despite the important contribution of EAs in solving complicated problems, they tend to be 

excessively time-consuming, since they require a considerable number of evaluations. Thus, 

appropriate acceleration through parallel processing appears to be mandatory; this is 

supported by the fact that EAs are inherently parallel algorithms, as they deal with a 

population of different candidate solutions in each generation. The concept behind the 

developed parallelization strategy is to enable the cooperation of the DE with different 

simulation software in the form of executables. The required data transfer between the DE 

and the simulation software is succeeded with appropriate text files. The communication 

among the processors and the parallel implementation is achieved using MPI library 

functions. The proposed strategy appears to be quite efficient, regardless of the use of text 

files, considering that the computational time of data transfer is negligible compared to that 

of the evaluation step. Two different parallel implementations have been developed, a 

synchronous and an asynchronous one; their common characteristics will be described next, 

along with their differences. 

For both parallel implementations, the population members are distributed a priori 

among the available processors; each processor is in charge of the evaluation of one 

individual. Next, a unique rank is assigned to each processor, while one of them is identified 

as the master node that keeps track of the whole procedure. This master node performs all the 

pre-process that is required prior to the beginning of the optimization procedure. This 
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includes the creation of a working folder for each processor where the executables comprising 

the evaluation step and their corresponding text files are replicated. Furthermore, the master 

node distributes all the necessary information concerning the DE algorithm to all other 

processors, i.e., the number of the design variables, their upper and lower bounds and control 

parameters for the DE algorithm. Actually, the parallel implementation is a hybrid 

master/slave one. There exists a master node, which performs the pre-process, as well as the 

auxiliary evaluations of the surrogate models. However, exchange of information, concerning 

the modification of the population, is allowed between the various processors through 

broadcasting (and not exclusively through the master node), as this is more computationally 

efficient. This hybrid master/slave model is tailor-made for a multi-core server application. 

In the synchronous implementation (Figure 3.3), each generation is strictly defined and 

comprises a population of candidate solutions, which undergo the various DE operations 

simultaneously (in parallel). All the current members of the population belong to the same 

generation. In order to pass on to the next generation, all the individuals of the previous 

generation (parents) are first evaluated and then compared with their offspring individuals 

(using pre-evaluation with surrogates and then exact evaluation). More specifically, after the 

completion of the initialization step, the main procedure begins. Each processor is generating 

a random individual within the specified bounds for each gene of the chromosome and 

evaluates it. Next, the fitness values of the candidate solutions and their corresponding 

chromosomes are broadcasted to all processors, in order to update their databases with the 

new population members. Each processor evolves one chromosome separately, and the new 

resulting one (offspring) is stored in its corresponding working folder. 

All the operations needed (mutation, crossover and selection) for the evolution 

process, are implemented after the evaluation step of each generation, on each node separately 

for its assigned chromosome. Nevertheless, the auxiliary evaluations of the surrogate models 

are performed only by the master node for all chromosomes. According to the prescribed 

approximate pre-evaluation procedure, a Boolean array is filled, indicating whether the new 

trial vector (offspring) is better-fitted than its parent and should hence be exactly evaluated. 

Subsequently, the selected candidates (only a part of the offspring auxiliary population) are 

exactly evaluated. For the rest their fitness function values and trial vectors are explicitly 

broadcasted by the master node to their corresponding processors for the consistency of the 

procedure. The optimization process is terminated when a prescribed number of generations 

is reached. 

The prescribed algorithm implements a synchronous strategy of survivor selection to 

update the population members. During each generation loop, the evolutionary operations 

are imposed on each selected member of the population to produce an auxiliary population 

of (offspring) trial vectors. Once the calculations with the current population members finish 

at the end of each generation, the original population is updated instantaneously. This implies 

an implicit synchronization mechanism, ensuring that evolution operators are performed on 

all population members of the current generation. The utilized synchronization barrier causes 

processes to stop at the end of each offspring evaluation, waiting for all the remaining 

members of the auxiliary population to finish their own evaluations. This barrier results in a 

time overhead, if the evaluation processes have different time durations between the 

processors, thus allowing the slowest evaluation process to determine the speed of the 

computational procedure. 
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FIGURE 3.3: Flowchart of the synchronous implementation of the parallel Differential Evolution 

algorithm. 

On the contrary, in an asynchronous implementation the generation is not strictly 

defined and the current population (at each time instant) can comprise individuals belonging 

to different generations. More specifically, each newly generated trial vector (offspring) can 

replace its parent (if better-fitted) and become a member of the current population, just after 

the completion of its evaluation process, without waiting for the completion of the evaluation 

phases of the rest members of the auxiliary population (Figure 3.4). Thus, individuals evolve 

independently, without strict central control or full coordination between generations.  

 

Broadcast fitness values and 

chromosomes to all processes 

Evaluation 

End 

Initialization 

Neural feed 

Start 

G = 

Gmax ? 

Yes 

No 

Wait all processes to finish 

Evolution operators 

Evaluation (neural and/or exact) 

Broadcast fitness values and 

chromosomes to all processes 

Wait all processes to finish 

 



M a c r o s c o p i c  T r a f f i c  F l o w  M o d e l  C a l i b r a t i o n   

37 

 

 

FIGURE 3.4: Flowchart of the asynchronous implementation of the parallel Differential Evolution 

algorithm. 

Consequently, asynchronous update has the clear advantage that the improved 

solutions can contribute to the evolution immediately, without time-lags, and can speed up 

the convergence to become faster than the synchronous update. As the cycle over all the 

population members is removed, the concept of generations is obsolete in the asynchronous 

DE.  

The choice of a triplet of randomly selected individuals for each population member, 

used in the mutation DE operator (equation (3.36)), is an issue which emerges as soon as we 

switch from a synchronous to an asynchronous update population mode. As the generation 

concept is no longer applicable, the random selection of three members of the current 

population (at the corresponding time instant) means that those individuals may not belong 

to the same generation. However, this has been proven to introduce no convergence problems 

to the asynchronous DE version. On the contrary, as the various individuals evolve 

independently to each other, with a faster convergence rate, the randomly chosen triplet is 

likely to have better characteristics, compared to the synchronous case. 

The proposed asynchronous implementation of the DE algorithm uses non-blocking 

MPI communication operations. An asynchronous master-slave architecture has been 
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followed, i.e., the master process steers the evolution procedure, trains and tests the surrogate 

models, and collects/distributes data from all other processes. This is achieved by using 

Remote Memory Access (RMA) windows. To allow for remote memory access, the master 

node exposes contiguous regions of memory to the rest of the processes, which are called 

windows. MPI accomplishes this by a collective function called “MPI_Win_create”. A process 

can get and set data to remote memory via “MPI_Get” and “MPI_Put”.  As MPI forbids 

concurrent access to the same memory location in the window, it is necessary to have a 

mechanism which ensures that access operations are completed before using the data. Thus, 

updates to the RMA windows by other processes are protected by the master node, using 

exclusive locks in case of a conflict. Non-conflicting accesses (such as read-only accesses or 

accumulate accesses) are protected by shared locks, both for local accesses and for RMA 

accesses.  

Each slave node works independently, updating periodically only the fitness function 

value and its corresponding chromosome to the RMA windows. Each one of the slave nodes 

executes the same process in an infinite loop, checking first the receiving buffer to see if the 

termination message from the master node has arrived. Subsequently, it acquires all the 

updated data, essential for the calculations performed during a DE iteration. These include 

the fitness values of the candidate solutions and their corresponding chromosomes, as well as 

the parameters of the surrogate models through the RMA windows, in order to perform the 

evolution operators. 

Due to the non-blocking communication, the processes never wait for one another. 

That is, they run completely asynchronously, and the slowest process does not slow down the 

others. This characteristic is essential, especially when using surrogate models, since the pre-

evaluation of the trial vector is performed very fast. This means that, if the trial vector 

(offspring) is lower-fitted than the corresponding vector of the current population (parent), 

the processor won’t have to wait for all other processors to finish the computations. Instead, 

it can proceed to the production of the next trial vector and its evaluation.  

As it has been previously stated, in the asynchronous version of the parallel DE 

algorithm the concept of generation is no longer present. However, a definition for a 

“generation” number is needed for defining a frequency for the re-training and re-testing of 

the surrogate models, for interpreting the convergence history of the optimization run, and 

for comparison purposes. Thus, the generation number for the asynchronous parallel DE is 

defined as follows: the master node, which controls the DE procedure, is enforced to always 

exactly evaluate its corresponding chromosome. Therefore, the change between successive 

individuals for the master node defines a generation for this node, which is also used to define 

a “generation” for the whole population. This definition is rather connected to computation 

time intervals, than to a real generation concept. The exact evaluation time for each individual 

is roughly the same for all processes in a system comprising identical processors or cores (as 

the one used in this work). Therefore, the utilized definition of “generation” in the 

asynchronous DE case renders the comparisons between synchronous and asynchronous 

runs, with respect to the generation number, valid. 

 

3.3.3 Fitness Function Formulation  

As already mentioned, this thesis addresses the problem of calibrating the parameters of the 

second-order GKT and METANET models to best match the real-measured traffic data, by 
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means of the optimization scheme for the calibration and validation of macroscopic traffic 

flow models. In particular, this methodology attempts to minimize the discrepancy between 

model generated data and the measurements taken from the detectors (real data), in terms of 

a fitness function with appropriate specification of the parameters included in the model. 

Within the literature there are many discrepancies error measures (goodness-of-fit 

measures) that can be used to evaluate the overall performance of simulation models by 

showing the differences between real and simulated data; some of the most common ones, 

along with their expressions, are presented below (Hollander & Liu, 2008; Ciuffo et al., 2012). 
 

 Squared Error (SE) 

𝑆𝐸(𝑥, 𝑦) =∑(𝑥𝑖 − 𝑦𝑖)
2

𝑁

𝑖=1

 (3.38) 

 Mean Error (ME) 

𝑀𝐸(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)

𝑁

𝑖=1

 (3.39) 

 Mean Normalized Error (MNE) 

𝑀𝑁𝐸(𝑥, 𝑦) =
1

𝑁
∑

(𝑥𝑖 − 𝑦𝑖)

𝑦𝑖

𝑁

𝑖=1

 (3.40) 

 Mean Absolute Error (MAE) 

𝑀𝐴𝐸(𝑥, 𝑦) =
1

𝑁
∑|𝑥𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 (3.41) 

 Mean Absolute Normalized Error (MANE) 

𝑀𝐴𝑁𝐸(𝑥, 𝑦) =
1

𝑁
∑

|𝑥𝑖 − 𝑦𝑖|

𝑦𝑖

𝑁

𝑖=1

 (3.42) 

 Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸(𝑥, 𝑦) = √
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 (3.43) 

 Root Mean Square Normalized Error (RMSNE) 

𝑅𝑀𝑆𝐸(𝑥, 𝑦) = √
1

𝑁
∑(

𝑥𝑖 − 𝑦𝑖
𝑦𝑖

)
2

𝑁

𝑖=1

 (3.44) 

where 𝑥𝑖 and 𝑦𝑖 represent, respectively, the averages of simulated predictions and the real 

measurements used in the calibration problem at space–time point 𝑖, while 𝑁 is the total 

amount of all available data. The measures ME, MNE, MAE, MANE use the difference or the 
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absolute value of the difference between the real and simulated measurements, providing in 

this way equal weights to all errors. On the other hand, the measures that depend on squared 

difference (SE, RMSE and RMSNE) place a higher penalty on large errors, which are more 

appropriate, given that penalizing small errors is wrong for traffic modelling and may lead to 

an over-specified model, considering that minor fluctuations over the means are in the nature 

of traffic phenomena (Hollander & Liu, 2008).  

Another measure that is widely accepted is the Geoffrey E. Havers’ (GEH) statistic 

(Highway Agency, 1996), which is not evaluated over a series of traffic data, but over a single 

pair of real and predicted measurements. Hence, the index for each counting station is 

calculated as: 

𝐺𝐸𝐻𝑖(𝑥, 𝑦) = √
2(𝑥𝑖 − 𝑦𝑖)

2

𝑥𝑖 + 𝑦𝑖
 (3.45) 

Subsequently, an aggregated index is estimated by means of the following algorithm: 

For 𝑖 = 𝑁 (number of counting stations) 

 If 𝐺𝐸𝐻𝑖(𝑥, 𝑦) ≤ 5, then set 𝐺𝐸𝐻𝑖(𝑥, 𝑦) = 1 

  Otherwise set 𝐺𝐸𝐻𝑖(𝑥, 𝑦) = 0 

 Endif; 

End for; 

Let 𝐺𝐸𝐻(𝑥, 𝑦) =
1

𝑁
∑ 𝐺𝐸𝐻𝑖(𝑥, 𝑦)
𝑁
𝑖=1  

If 𝐺𝐸𝐻(𝑥, 𝑦) ≥ 85% then accept the model 

 Otherwise reject the model 

Endif;  

which can be interpreted as follows: if the deviation of the simulated values with respect to 

the observed measurements is smaller than 5% in at least 85% of the pairs (cases), then the 

two series of data show a good fit and the model is accepted.  

Theil’s inequality coefficient (Theil, 1961) is another normalized measure used to 

provide information on the relative error between real and simulated traffic measurements, 

smoothing out the impact of large errors. This measure is given by 

𝑈(𝑥, 𝑦) =
√1
𝑁
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1

√1
𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 +√

1
𝑁
∑ 𝑦𝑖

2𝑁
𝑖=1

  (3.46) 

in which 𝑈 is bounded between 0 and 1 (0 ≤ 𝑈 ≤ 1). 𝑈 = 0 indicates a perfect fit between the 

real and simulated data, while 𝑈 = 1 implies the worst possible fit.  

Theil’s indicator can be decomposed into three proportions: the bias (𝑈𝑀), the variance 

(𝑈𝑆) and the covariance (𝑈𝐶) proportion, which are, respectively, defined as: 

𝑈𝑀 =
𝑁(𝑦̅ − 𝑥̅)2

∑ (𝑦𝑖 − 𝑥𝑖)
2𝑁

𝑖=1

 , (3.47) 

  

𝑈𝑆 =
𝑁(𝜎𝑦 − 𝜎𝑥)

2

∑ (𝑦𝑖 − 𝑥𝑖)
2𝑁

𝑖=1

 , (3.48) 
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𝑈𝐶 =
2(1 − 𝑟) ∙ 𝑁 ∙ 𝜎𝑥𝜎𝑦

∑ (𝑦𝑖 − 𝑥𝑖)
2𝑁

𝑖=1

 , (3.49) 

where 𝑥̅ and 𝑦̅ are the means of real and simulated values, respectively, 𝜎𝑥 and 𝜎𝑦 are their 

standard deviations and 𝑟 is the correlation coefficient. They satisfy the following relationship: 

𝑈𝑀 + 𝑈𝑆 + 𝑈𝐶 = 1. The proportion 𝑈𝑀 is a measure of systematic error; 𝑈𝑀 = 0 indicates a 

perfect fit, while high values close to 1 indicates an unacceptable bias. The variance 

proportion, 𝑈𝑆, measures how the distribution of simulated measurements diverge from that 

of the real traffic data; 𝑈𝑆 = 0 indicates a perfect fit while 𝑈𝑆 = 1 indicates the worst fit, since 

the simulated series has a significantly different variability. Finally, the proportion 𝑈𝐶 

measures the existence of unsystematic error and, consequently, it should take high values 

close to 1 for a good fit.  

Detailed discussion over the choice of the various cost functions for the calibration 

problems of traffic flow models can be found in the studies proposed by Hollander & Liu, 

2008, and Ciuffo et al., 2012. Nevertheless, it is straightforward to apply the metamodel-

assisted DE algorithm presented in Sections 3.2.3 and 3.3.1 for any of the above formulations 

of the cost functions in order to calibrate the selected macroscopic traffic flow models. In this 

thesis, however, we limit ourselves to the following cost functions (equations (3.50), (3.51) and 

(3.52)) and leave the test for other forms for a future research.  

Specifically, the developed GKT model (Section 3.2.1) is fed with real traffic data to 

reproduce the complete traffic state of different scenarios, while for evaluating the resulting 

models’ accuracy, three different cost functions have been tested, formulated in terms of 

discrete combinations of the speed, flow, and density values of real and simulated virtual 

detectors, within the simulated area. In particular, a combined total mean square normalized 

errors of the model estimated and real measured speed and flow is used first, specifically 

𝑓(𝒙) =
1

𝐶
∑∑[(1 − 𝜇)(1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝑞𝑖,𝑘

𝑞𝑖,𝑘
𝑑 )

2

]

𝑛

𝑖=1

𝐾

𝑘=1

 , (3.50) 

where 𝜇 is a weighting factor equal to 0.5. Alternatively, by substituting flow with density in 

equation above, the cost function is reformulated as 

𝑓(𝒙) =
1

𝐶
∑∑[(1 − 𝜇)(1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝜌𝑖,𝑘

𝜌𝑖,𝑘
𝑑 )

2

] .

𝑛

𝑖=1

𝐾

𝑘=1

 (3.51) 

Moreover, by following the root mean square speed and density normalized errors the 

cost function is given as  

𝑓(𝒙) = √
1

𝐶
∑∑(

𝑢𝑖,𝑘
𝑑 − 𝑢𝑖,𝑘

𝑢𝑚
𝑑 )

2𝑛

𝑖=1

𝐾

𝑘=1

√
1

𝐶
∑∑(

𝜌𝑖,𝑘
𝑑 − 𝜌𝑖,𝑘

𝜌𝑚
𝑑 )

2𝑛

𝑖=1

𝐾

𝑘=1

 , (3.52) 

where, 𝑢𝑖,𝑘, 𝜌𝑖,𝑘, and 𝑞𝑖,𝑘 represent, respectively, the predicted mean speed, density and flow, 

computed at detector location 𝑘 (𝐾 is the number of detectors that are available for calibration) 

and time instant 𝑖 (𝑛 is the simulation time horizon) and 𝐶 = 𝑛𝐾; 𝑢𝑖,𝑘
𝑑 , 𝜌𝑖,𝑘

𝑑  and 𝑞𝑖,𝑘
𝑑  represent, 

respectively, the observed mean speed, density and flow computed at location 𝑘 and time 

instant 𝑖, while 𝑢𝑚
𝑑  and 𝜌𝑚

𝑑  denote the corresponding maximum values of the observed mean 

speed and density. 
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The calibration procedure commences with an initial random population of candidate 

solutions (chromosomes); every chromosome (calibrated model parameter vectors 𝒙) is 

randomly initialized, within their predefined upper and lower bounds. A numerical 

simulation for the traffic flow situation is then carried out for each candidate chromosome, 

which is used along with the boundary input data, to produce a space-time distribution of 

flow and speed. Then, at each generation the cost function of each candidate chromosome is 

evaluated according to the pre-specified cost function, i.e. the discrepancy between the real-

world traffic data and the simulated data; note that it is this step that suffers from significant 

computational resources, and calls for the use of surrogate models in order to decrease the 

computational effort of the optimization process. The assistance of these models lies in time-

savings, due to avoiding the computationally intensive exact evaluations of each one of the 

candidate solutions, but using a trained neural network instead (Nikolos, 2013), as it was 

previously described. Subsequently, for each generation, the elitist reproduction scheme of 

the DE algorithm is implemented so as to evolve the newly generated population based on 

the mutation, crossover, and selection operators, aiming to the best parameter candidate 

vector, according to the proposed cost function. The whole procedure is terminated when a 

pre-described number of generations has been reached. The overall optimization scheme for 

the calibration of the considered macroscopic traffic flow models is described as a flow chart 

in Figure 3.5. 

The following chapter contains the calibration and validation results of the single- and 

multi-lane GKT macroscopic traffic flow models, by employing the above optimization 

procedure. The same optimization procedure was also implemented for the calibration of the 

METANET macroscopic traffic flow model, followed by comparative results with the GKT 

one.  
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FIGURE 3.5: Flowchart with the major steps of the optimization process.  
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Chapter 4: Calibration and Validation 
Results 
 

4.1 Introduction 

The calibration process constitutes a crucial step for the successful development and 

application of any macroscopic traffic flow model in transportation planning and real traffic 

management. Indeed, the reliability and credibility of a model to reproduce different traffic 

flow conditions inside a freeway network with the best possible accuracy is of major 

importance. However, the estimation of proper parameter values used in the selected models 

(see Section 3.2) is a challenging task, because of the highly non-linear nature of the models 

equations in both its parameters and state variables. Furthermore, after the calibration 

procedure, the traffic flow models must be validated before their potential use. The validation 

procedure aims to ensure that the resulting traffic flow models reliably reflect the prevailing 

traffic flow characteristics of the investigated networks, thus they may sufficiently reproduce 

their typical traffic conditions. 

This section continues with the evaluation of the proposed methodology against test 

cases using real traffic data from different motorway networks, considering the congestion 

created close to on/off-ramps during the morning peak periods. Section 4.2 presents the 

considered freeway stretches and the utilized real traffic data, Section 4.3 describes the 

calibration settings for both GKT and METANET models for the optimization procedure, 

while Section 4.4 displays the calibration and validation results for 4 different scenarios. 

Finally, Section 4.5 summarizes the results and conclusions of the calibration procedure. 

 

 

4.2 Tests Networks and Real Traffic Data 

The second-order macroscopic GKT traffic flow model described in Section 3.2.1 is applied to 

two different motorway networks in order to calibrate its parameters and validate its 

equations under recurrent traffic flow conditions. Moreover, a comparative study of the GKT 

and the METANET models (Section 3.2.2) for the considered motorway network in U.K., 

based on the previous described calibration methodology (see Section 3.2.3), is also presented.  

 

4.2.1 The Motorway Network in U.K. and the Real Traffic Data 

The first considered network is a stretch of the M56 motorway located in the areas of 

Cheshire and Greater Manchester, U.K. (with direction from Chester to Manchester), as 

shown in Figure 4.1. Specifically, the chosen network, sketched in Figure 4.2, is 9.45 km long 

and is composed by three lanes, including one off-ramp and a two-lane on-ramp, which, 

before merging into the mainstream, splits into two separate lanes. 

 

https://en.wikipedia.org/wiki/Cheshire
https://en.wikipedia.org/wiki/Greater_Manchester
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FIGURE 4.1: U.K. freeway stretch. 

Real-time traffic data, provided by MIDAS database1, is collected through 6 detector-

stations (D-locations in Figure 4.2) that deliver measurements of flow and speed per lane with 

a time resolution of 60 s. Detectors are also installed on the ramps, measuring the 

corresponding incoming and outgoing traffic flows. Measured data corresponding to the 

stretch’s boundaries were also available, and used as boundary conditions in the numerical 

model. 

 

FIGURE 4.2: A graphical representation of the U.K. freeway stretch considered. 

The quantitative real-time traffic data analysis regarding the considered test network 

showed that a major recurrent congestion is formed, originated from high on-ramp flows 

during a typical morning’s rush hour (see Figure 4.3). Hence, it was decided to use the data 

of June 3rd 2014 for model calibration, taking into account the morning peak hours, 

specifically from 6: 30 a.m. to 9: 00 a.m.. Morning peak data of June 24th 2014 were reserved 

for model validation. In particular, based on the contour plots shown in Figure 4.4, for visual 

inspection of the space-time evolution of the real speed measurements for the 3rd and 24th of 

June 2014, it can be observed that traffic congestion is formed upstream of the second on-

ramp between 7: 00– 8: 00 a.m. for both days; this strong congestion pattern spills back onto 

the freeway mainstream, producing an intensive high density area of several kilometers. It is 

worth noting that the dominant criterion for selecting these two days was that, during the 

morning hours 6: 30 a.m. to 9: 00 a.m. no incident and no sensor failure occurred at the 

examined test network, which could not be reproduced by the utilized or any other traffic 

flow models. 

                                                           
1 Highways Agency, 2007. Motorway Incident Detection and Automatic Signaling (MIDAS) Design Standard. (No. 

1st ed.). Bristol, UK. 
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FIGURE 4.3: Measured on-ramp flows of the U.K. freeway stretch for 3/6/2014. 
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FIGURE 4.4: Phase space speed dynamics at the U.K. freeway stretch for two different days. 

 

4.2.2 The Motorway Network in Greece and the Real Traffic Data 

The second freeway stretch considered in this thesis is a part of Attiki Odos motorway in 
Athens, Greece. Specifically, it is an urban motorway characterized by a traffic pattern that is 
strongly dependent on the demand due to the commuters using the specific network. In 
Figure 4.5, an aerial map of the area is shown; the highlighted road is the considered stretch 
of Attiki Odos freeway, where the direction from the Airport to Elefsina will be considered 
(from East to West). 
 

 

FIGURE 4.5: Attiki odos freeway stretch. 

 

 
 



T e s t s  N e t w o r k s  a n d  R e a l  T r a f f i c  D a t a   

48 

 

Specifically, the chosen network, as shown in Figure 4.6, is 6.2 km long (from 34th to 
27.8th km) and is composed by three lanes, which widens to four lanes from 30.8th to 30.3rd 
km, including three on-ramps and three off-ramps, depicted by arrows in Figure 4.6. The 
locations of the available detector stations (13 in total) are also illustrated in Figure 4.6. 
 

 

FIGURE 4.6: A graphical representation of the considered Attiki Odos freeway stretch. 

The real traffic data were provided by the company ATTIKES DIADROMES S.A., 

which is responsible for the operation and maintenance of the motorway, as well as for traffic 

management and customer service. In particular, data were collected at the 13 detector-

stations (Figure 4.6) that delivered measurements of flow and speed per lane with a time 

resolution of 20 s, for the time period May–June 2009. Detectors were also installed on the 

ramps, measuring the corresponding ingoing and outgoing traffic flows. Measured data 

corresponding to the stretch’s boundaries were also available, and were used as boundary 

conditions in the numerical model.  

A qualitative of real-time data analysis shows that, within this examined freeway 

stretch, a recurrent congestion is formed, originated from high exit flow off-ramp during a 

typical morning’s rush hour. Hence, it was decided to take into account the morning rush 

hour, specifically from 6: 00 a.m. to 12: 00 p.m., and to use morning peak data of June 16th 

2009 for model calibration, while corresponding data of June 23rd 2009 are reserved for 

model validation; in both days no incident and no sensor failure was reported at the test 

network. At this point, it is important to highlight that although recurrent congestion 

originated from an off-ramp area is a quite frequent case of traffic flow degradation, appearing 

mainly at freeways during the peak periods, it is not a trivial task to deal with, since it is 

difficult to control the freeway exit flow. 

 Based on the contour plots shown in Figure 4.7, the congestion creation area is formed 

upstream of the off-ramp E-11-1 during 8: 00 − 10: 00 a.m. for both days. In particular, this 

major congestion originates at the 29th km and spills back onto the considered network, 

producing an intensive high density area up to the 33nd km. The main reason behind this 

major congestion created in the specific diverging area is a combination of the increased exit 

flow that the off-ramp E-11-1 receives and its limited capacity, along with an increase to the 

entering flow from upstream The traffic congestion lasts for a couple of hours, until it is 

dissolved thanks to the demand reduction at the end of the peak period. It is emphasized that 

on the selected two days there are no incidents nor sensor failures during the morning hours 

at the considered network. 
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FIGURE 4.7: Phase space speed dynamics at Attiki Odos freeway stretch for two different days. 

 

4.3 Calibration Settings 

The main aim in this chapter is to assess the continuous second-order GKT model by 

implementing the automated calibration procedure, as presented in Section 3.2.3, in order to 

represent the traffic conditions of the specific freeway stretches (see Section 4.2) with the 

highest possible level of accuracy. Subsequently, the same optimization scheme is applied to 

the widely used discrete second-order METANET model as to compare these two selected 

traffic flow models. Hence, the optimization problem must be solved to mine the optimal 

design parameters of the models, which minimize the relative error between the model 

prediction and the observed data.  

Herein, the parameter vector for the calibration of the single-lane GKT model consists 

of the maximum desired velocity 𝑢𝑚𝑎𝑥, the maximum density  𝜌𝑚𝑎𝑥, the critical density  𝜌𝑐𝑟, 

the desired time gap 𝑇, the anticipation factor 𝛾, the relaxation time 𝜏, the variance pre-factor 

for free traffic 𝐴0, the pre-factor 𝛿𝐴 and the transition width 𝛿𝜌. Thus, the parameter vector 𝒙 

for the GKT model is 𝒙 = [𝑢𝑚𝑎𝑥,  𝜌𝑚𝑎𝑥 ,  𝜌𝑐𝑟, 𝑇, 𝛾, 𝜏,  𝐴0, 𝛿𝐴, 𝛿𝜌]. In the case of the automated 

calibration process for the multi-lane GKT model, the parameter vector to be calibrated 

consists of the following additional parameters: the frequency factor for lane changing, 𝜈𝑓, the 

critical density for lane changing probability, 𝜌𝑃, the percentage of reducing speed at 

exiting/entering, (𝑢𝑟𝑚𝑝 𝑢𝑙⁄ ), and the spontaneous lane-changing parameter, 𝑘𝑙
𝐿,𝑅. Specifically, 

for the examined three-lane freeway stretch in the U.K. (see Section 4.2.1) the parameter vector 

𝒙 takes the form 𝒙 = [𝑢𝑚𝑎𝑥,𝑙 ,  𝜌𝑚𝑎𝑥,𝑙 ,  𝜌𝑐𝑟,𝑙 , 𝑇𝑙 , 𝛾𝑙 , 𝜏𝑙 , 𝐴0,𝑙 , 𝛿𝐴𝑙 , 𝛿𝜌𝑙 , (𝑢𝑟𝑚𝑝 𝑢1⁄ ), 𝜈𝑓 , 𝜌𝑃 , 𝑘1
𝐿,

𝑘2
𝑅 , 𝑘2

𝐿, 𝑘3
𝑅 ], 𝑙 = 1,2,3, (ending up to 34 parameters/design variables in total). 

Regarding the METANET model, the parameter vector 𝒙 consists of the free flow 

speed 𝑢𝑓, the critical density 𝜌𝑐𝑟 and the parameters 𝑎, 𝜏, ν and δ, which are common for all 
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the freeway sections. Moreover, the model includes two extra parameters, which are known 

from previous validation exercises to be of minor importance and are, therefore, given 

constant values, in order to reduce the dimension of the parameter vector. In particular, 𝜅 is 

set equal to 10 𝑣𝑒ℎ/𝑘𝑚/𝑙𝑎𝑛𝑒 and 𝑢𝑓 is set to 7 𝑘𝑚/ℎ. Thus, one single fundamental diagram 

is considered for all freeway sections in this model. Considering the above, the parameter 

vector for the METANET model is 𝒙 = [𝜏,  ν, δ, 𝑢𝑓 , 𝜌𝑐𝑟, 𝑎]. 

Hence, for both traffic flow models the vector 𝒙 includes the unknown models 

parameters that need to be defined for each model so as to minimize the discrepancy between 

the simulated and real traffic data by using an appropriate cost function, hereafter denoted 

by 𝑓(𝒙). The parameter estimation problem consists of finding the optimal vector of 𝒙 subject 

to equations (3.1) and (3.2) in case of the GKT model or to model (3.8) in case of the multi-lane 

GKT model, and to equations (3.29) and (3.30) in case of the METANET model for all 𝒙 ∈ Ω, 

where Ω defines a bounded admissible parameter space, determined on the basis of physical 

constraints. However, such a parameter estimation (model calibration) problem is particularly 

challenging, since it is formulated as a global optimization of a continuous multi-extrema cost 

function, see, e.g., Ngoduy & Maher, 2012, with numerous local minima, which traditional 

gradient-based optimization algorithms typically fail to avoid. To this end, we apply the 

parallel, metamodel-assisted Differential Evolution algorithm, as presented in Section 3.2.3, 

for optimizing the aforementioned complex continuous problem with multiple local minima 

(Nikolos, 2013; Strofylas & Nikolos, 2015).  

The runs of the DE algorithm for the calibration of the GKT model have been 

performed on a DELLTM R815 PowerEdgeTM server with four AMD OpteronTM 6380 sixteen-

core processors at 2.50 GHz (64 cores in total), while the traffic simulations were performed 

using a desktop computer with 2.4 GHz CPU and 2.0 GB of RAM. The calibration procedure, 

including the traffic flow models and the optimization algorithm, has been programmed in 

FORTRAN. 

 

 

4.4 Calibration and Validation Results for Different Test Cases 

4.4.1 Calibration and Validation of the single-lane GKT Model Using the 
Parallel, Synchronous, Metamodel-Assisted DE Algorithm with Different 
Fitness Functions (U.K. network) 

As mentioned before, the optimization problem addressed in this thesis consists of 

minimizing the deviation between the GKT model calculations and the real-measured traffic 

data. Hence, the first test case considers the employment of the parallel, synchronous, 

metamodel-assisted DE algorithm (see Section 3.2.3) for the calibration of the model using real 

traffic data from the motorway network in the U.K. (see Section 4.2.1); in this test case, a single-

lane with the mean values of the flow quantities of the three-lane stretch is considered. More 

specifically, the numerically discretized GKT model was first calibrated to specify the optimal 

parameter values for the considered network, using the measured data for a specific day. 

Eventually, the GKT model was validated using data collected at the same freeway on a 

different day, to ensure that the model is able to reliably reproduce the traffic conditions of 

the examined site.  
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Initially, in order to evaluate the resulting model accuracy, the three different cost 

functions (equations (3.50), (3.51) and (3.52)), presented in Section 3.3.3, are tested. Briefly, a 

combined total mean square normalized error of the model estimated and real measured 

speed and flow was used first: 

𝑓(𝒙) =
1

𝐶
∑∑[(1 − 𝜇)(1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝑞𝑖,𝑘

𝑞𝑖,𝑘
𝑑 )

2

]

𝑛

𝑖=1

𝐾

𝑘=1

 . (4.1) 

Next, by substituting flow with density in the equation above, the cost function is 

reformulated as 

𝑓(𝒙) =
1

𝐶
∑∑[(1 − 𝜇)(1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝜌𝑖,𝑘

𝜌𝑖,𝑘
𝑑 )

2

] .

𝑛

𝑖=1

𝐾

𝑘=1

 (4.2) 

Finally, by utilizing the root mean square speed and density normalized errors, the third cost 

function that is tested is given as  

𝑓(𝒙) = √
1

𝐶
∑∑(

𝑢𝑖,𝑘
𝑑 − 𝑢𝑖,𝑘

𝑢𝑚
𝑑 )

2𝑛

𝑖=1

𝐾

𝑘=1

√
1

𝐶
∑∑(

𝜌𝑖,𝑘
𝑑 − 𝜌𝑖,𝑘

𝜌𝑚
𝑑 )

2𝑛

𝑖=1

𝐾

𝑘=1

 . (4.3) 

 

4.4.1.1 Calibration Results  

The calibration results were obtained using real traffic data from the 3rd of June, 2014 (see 

Section 4.2.1). The model parameters with their corresponding feasible bounds, conforming 

with those given in Treiber et al., 1999, Helbing et al., 2001, Treiber & Kesting, 2013, and Delis 

et al., 2014, are presented in Table 4.1. The DE algorithm was employed with a population size 

equal to 50, whereas the maximum number of generations was set equal to 1100; the control 

parameters for the mutation and crossover operations were 𝐹 = 0.6 and 𝐶𝑟 = 0.45. 

TABLE 4.1: Admissible range of the parameter vector used for the GKT model calibration (U.K. 
network – as single lane). 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥,  km/h [105, 135] 
Maximum density, 𝜌𝑚𝑎𝑥  veh/km [100, 200] 
Critical density, 𝜌𝑐𝑟 veh/km [30, 60] 
Desired time gap, 𝑇 s [0.5, 2.5] 
Anticipation factor, 𝛾  [1, 2] 
Relaxation time, 𝜏 s [10, 40] 
Variance pre-factor for free traffic, 𝐴0  [0.0025, 0.015] 
Pre-factor, 𝛿𝐴  [0.01, 0.03] 
Transition width, 𝛿𝜌 veh/km [3.5, 20] 
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TABLE 4.2: Cost function values and the resulted optimal parameter values for the calibration phase 

(U.K. network – as single lane). 

Model      

Parameters 

𝒖𝒎𝒂𝒙 𝝆𝒎𝒂𝒙 𝝆𝒄𝒓 𝑻 𝜸 𝝉 𝑨𝟎 𝜹𝑨 𝜹𝝆 Cost 

Function 

Value (%) 
(km/h) (veh/km) (s)  (s)   (veh/km) 

Cost Function (4.1) 115 170 42 2 2 20 0.0025 0.015 10 1.16 

Cost Function (4.2) 120 150 40 2.3 2 24 0.0025 0.019 11 1.45 

Cost Function (4.3) 115 140 45 2.4 2 22 0.0025 0.027 12 0.2 

 

 

FIGURE 4.8: (U.K. network – as single lane) Phase space speed dynamics for real measured speed (a) 

and the model predictions for the calibration date using: (b) cost function (4.1), (c) cost function (4.2), 

(d) cost function(4.3). 

 

  
(a) (b) 

  
(c) (d) 
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The considered 9.45 km stretch was simulated for 3 morning peak hours (i.e. from 

6: 00 a.m. to 9: 00 a.m.), whereas the space discretization was 𝛥𝑥 = 100 m. The numerical 

scheme is stable under the usual CFL stability condition for explicit discretization schemes 

thus the CFL value was set equal to 0.5. The clock computational time for 1100 generations 

was 146.5 min. Table 4.2 contains the minimum value of the three alternative cost functions 

(which were obtained in three respective optimization runs for the same calibration problem), 

along with the resulted optimal parameters. Very good agreement with the measured data set 

and very similar optimal parameter vectors have been obtained with all three cost functions. 

Figure 4.8 displays the space-time evolution of the speed reproduced by simulation 

compared to the observation for the calibration day, for the three alternative cost functions 

Figure 4.9 contains the DE convergence history of the best value of the three different cost 

functions in each generation. Finally, Figures 4.10-4.12 display the speed dynamics for all 

detector locations, produced using the optimal parameter values of the calibration procedure 

with the three different cost functions. It is clear that for all the examined cost functions the 

real traffic conditions are well reproduced by the calibrated model, capturing with sufficient 

accuracy when and where the traffic flow becomes congested, for the correct duration and 

extent, as observed in the real traffic data, regardless of which function was used.  

 

 

FIGURE 4.9: (U.K. network – as single lane) The convergence history of the best solution of each 

generation of the DE algorithm as a function of the generation number for the three cost functions. 
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FIGURE 4.10: (U.K. network – as single lane) Time-series of the real speed measurements (black) 

and the model prediction of speed (red) using cost function (4.1) at various detector locations for the 

calibration day. 

 

 

FIGURE 4.11: (U.K. network – as single lane)  Time-series of the real speed measurements (black) 

and the model prediction of speed (red) using cost function (4.2) at various detector locations for the 

calibration day. 
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FIGURE 4.12: (U.K. network – as single lane)  Time-series of the real speed measurements (black) 

and the model prediction of speed (red) using cost function (4.3) at various detector locations for the 

calibration day. 

4.4.1.2 Validation Results  
 

To test and assess the robustness of the GKT model the resulting, from the previous calibration 

procedure (Section 4.4.1.1), optimal parameters of the three proposed cost functions were 

applied to the same motorway stretch, but for a different day, the 24th of June, 2014. For the 

validation day, the recurrent congestion in the traffic flow behavior is similar to the one of the 

calibration day. The cost function values obtained for this validation procedure were 1.64% 

for equation (4.1), 4% for equation (4.2) and 4.8% for equation (4.3).  

The validation results presented in Figures 4.13, 4.14, 4.15 and 4.16, are seen to capture 

with sufficient accuracy the real traffic flow conditions in the particular U.K. freeway stretch, 

for all the examined cost functions, although not at the exact same level of accuracy as the 

calibrated ones. In particular, the GKT model was able to reproduce the congestion extend as 

well as the average speed reduction but slightly overestimated its duration (starting later and 

finished later) at some locations. However, the overall comparison, also in terms of the three 

alternatives cost functions, is considered as satisfactory, given the complexity of the traffic 

flow phenomena.  
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FIGURE 4.13: (U.K. network – as single lane) Phase space speed dynamics for real measured speed 

(a) and the GKT model predictions for the validation date using: (b) cost function (4.1), (c) cost 

function (4.2), (d) cost function (4.3). 

  
(a) (b) 

  
(c) (d) 
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FIGURE 4.14: (U.K. network – as single lane) Time-series of the real speed measurements (black) 
and the GKT model prediction of speed (red) using cost function (4.1) at various detector locations for 

the validation day. 

 

 

FIGURE 4.15: (U.K. network – as single lane)  Time-series of the real speed measurements (black) 
and the GKT model prediction of speed (red) using cost function (4.2) at various detector locations for 

the validation day. 
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FIGURE 4.16: (U.K. network – as single lane) Time-series of the real speed measurements (black) 
and the GKT model validation of speed (red) using cost function (4.3) at various detector locations for 

the calibration day. 

 

Based on the fact that a very good agreement with the measured data set and very similar 
optimal parameter vectors have been produced with all three cost functions, but cost function 
(4.1) had slightly better value for the validation procedure, the next test cases will be 
conducted only using this cost function.  

 

4.4.2 Calibration and Validation of the Multi-Lane GKT Model Using the 
Parallel, Synchronous, Metamodel-Assisted DE Algorithm (U.K. network) 

The second problem encountered, concerns the validation of the multi-lane GKT model (as 

presented in Section 3.2.1.1) with respect to its accuracy in the reproduction of the recurrent 

congestion originated from high on-ramp flows during the morning peak hours, using real 

traffic data from the three-lane freeway stretch in the U.K. (see Section 4.2.1). As described in 

Section 3.2.1.1, in the developed multi-lane GKT model, the lane-changing terms, simulating 

lane-changes due to vehicle interactions as well as spontaneous ones, are introduced as source 

and sink terms in the model equations; the model provides the ability to use different 

calibration parameters per lane. Hence, the numerically discretized multi-lane GKT model 

was first calibrated to specify the optimal parameter values for the considered network, using 

the measured data for a specific day. Again, to demonstrate the validity of the developed 

model to reliably reproduce the traffic conditions of the examined site, the optimal parameters 

resulting from the calibration procedure were applied to the same freeway on a different day. 

 Before we proceed, it is important to highlight that the selected cost function (4.1) is 

adapted in this case, in order to calibrate the complicated multi-lane GKT model that has a 
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relatively large number of (usually) counteracting calibration parameters. Therefore, the cost 

function (4.1) is reformulated as 

𝑓(𝒙) =
1

𝐶
∑∑∑[(1 − 𝜇) (1 −

𝑢𝑙,𝑖,𝑘

𝑢𝑙,𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝑞𝑙,𝑖,𝑘

𝑞𝑙,𝑖,𝑘
𝑑 )

2

]

𝑛

𝑖=1

𝐾

𝑘=1

𝑁

𝑙=1

 . (4.4) 

where, 𝑢𝑙,𝑖,𝑘, and 𝑞𝑙,𝑖,𝑘 represent the predicted mean speed and flow, respectively, computed 

for lane 𝑙, location 𝑘 (𝐾 is the number of detectors that are available for calibration) and time 

instant 𝑖 (𝑛 is the simulation time horizon); 𝑢𝑙,𝑖,𝑘
𝑑  and 𝑞𝑙,𝑖,𝑘

𝑑  represent, respectively, the observed 

mean speed and flow computed at lane 𝑙, location 𝑘 and time instant 𝑖, while 𝐶 = 𝑁 ∙ 𝑛 ∙ 𝐾, and 

𝜇 is a weighting factor equal to 0.5. 

 

4.4.2.1 Calibration Results 
  
As in the previous test case, the real measurements per-lane used for the calibration process 

were collected on the M56 motorway in U.K. on the 3rd of June, 2014. The multi-lane GKT 

model parameters, along with their corresponding admissible bounds, being consistent with 

those given in Delis et al., 2014, 2015b, are presented in Table 4.3. The DE algorithm was 

employed with a population size equal to 60, whereas the maximum number of generations 

was set equal to 1500; the control parameters for the mutation and crossover operations were 

𝐹 = 0.6 and 𝐶𝑟 = 0.45. 

 

TABLE 4.3: (Multilane U.K. network) Admissible range of the parameter vector used for the multi-
lane GKT model calibration. 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥,𝑙 km/h [80, 140] 
Maximum density, 𝜌𝑚𝑎𝑥,𝑙  veh/km [140, 160] 
Critical density, 𝜌𝑐𝑟,𝑙 veh/km [30, 60] 
Desired time gap, 𝑇𝑙 s [1, 2] 
Anticipation factor, 𝛾𝑙  [1, 1.5] 
Relaxation time, 𝜏𝑙 s [20, 40] 
Variance pre-factor for free traffic, 𝐴0,𝑙  [0.006, 0.01] 
Pre-factor, 𝛿𝐴𝑙  [0.008, 0.04] 
Transition width, 𝛿𝜌𝑙 veh/km [3.5, 20] 
Frequency factor for lane changing, 𝜈𝑓   [0.1, 1] 

Critical density for lane changing probability, 
𝜌𝑃 , 

 [0.02, 0.04] 

Percentage of reducing speed at 

exiting/entering,  (𝑢𝑟𝑚𝑝 𝑢1⁄ ) 

 [0.4, 0.9] 

Spontaneous lane-changing factor, 𝑘1
𝐿 Events/sec/m [0.001, 0.1] 

Spontaneous lane-changing factor, 𝑘2
𝑅 Events/sec/m [0.001, 0.04] 

Spontaneous lane-changing factor, 𝑘2
𝐿 Events/sec/m [0.001, 0.1] 

Spontaneous lane-changing factor, 𝑘3
𝑅 Events/sec/m [0.001, 0.04] 

 

         Again, the considered U.K. stretch (9.45 km length) was simulated for 2.5 morning peak 

hours (i.e. from 6: 30 a.m. to 9:00 a.m.), whereas the space discretization was 𝛥𝑥 = 100 m and 
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the CFL value was set equal to 0.5, as in the first test case. The clock computational time for 

1500 generations was 781.3 min. 

Figure 4.17 displays the space-time evolution of the simulated speed, contrasted to the 

observations for the calibration day. Figure 4.18 contains the DE convergence history of the 

best value of the cost function (4.4) in each generation. Figure 4.19 depicts the measured and 

estimated speed dynamics for all detector locations around the congested area; as it can be 

observed, the real traffic conditions are well reproduced by the calibrated model, capturing 

with sufficient accuracy the onset of congestion with accurate timing and at the correct 

location, as observed in the real traffic data. The optimal model parameters and the minimum 

value of the cost function are given in Table 4.4. 

TABLE 4.4: (Multilane U.K. network) Cost function values and the resulted optimal parameter 

values for the calibration phase. 

Lanes 
𝒖𝒎𝒂𝒙 𝝆𝒎𝒂𝒙 𝝆𝒄𝒓 𝑻 𝜸 𝝉 𝑨𝟎 𝜹𝑨 𝜹𝝆 𝒗𝒇 𝝆𝑷 (

𝒖𝒓𝒎𝒑

𝒖𝟏
) 𝒌𝟏

𝑳 𝒌𝟐
𝑹 𝒌𝟐

𝑳 𝒌𝟑
𝑹 

𝑘𝑚

ℎ
 

𝑣𝑒ℎ

𝑘𝑚
 (s)  (s)   

𝑣𝑒ℎ

𝑘𝑚
     

𝐸𝑣𝑒𝑛𝑡𝑠

𝑠𝑒𝑐 ∙ 𝑙𝑎𝑛𝑒
 

Lane1 96 140 30 1.4 1.5 28 0.009 0.01 20 

0.44 0.02 0.76 0.003 0.007 0.001 0.04 Lane2 118 142 59 2 1.5 23 0.0065 0.032 10 

Lane3 128 140 60 2 1.5 21 0.0064 0.032 14 
     Cost Function Value (%) : 2.9 

 

 

  

FIGURE 4.17: (Multilane U.K. network) Lane phase space speed dynamics for real measured speed 

(upper) and the GKT model prediction (lower) for the calibration date. 
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FIGURE 4.18: (Multilane U.K. network) The convergence history of the best solution of each 

generation of the DE algorithm as a function of the generation number. 
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FIGURE 4.19: (Multilane U.K. network) Time-series of the real speed measurements (black) and the 
GKT model prediction of speed at various detector locations for the calibration day. 
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4.4.2.2 Validation Results  
 

Again, to assess the robustness of the produced calibrated parameters, the resulting multi-

lane GKT model was validated using real traffic data in the same freeway stretch on a different 

day, which is the 24th of June, 2014, using the optimal parameters of the previous calibration 

procedure (Section 4.4.2.1). The validation results presented in Figure 4.20 and Figure 4.21, 

are observed to capture with sufficient accuracy the real traffic flow conditions in the 

particular freeway stretch, although not at the exact same level of accuracy as the calibrated 

ones. The cost function value for this validation procedure was 5.4 %. From the simulation 

results it can be observed that, although the value of the cost function is low, the simulation 

is not able to fully replicate all the flow fluctuations inside the congested region. Nevertheless, 

the proposed model shows a good potential for simulating such traffic flow patterns in multi-

lane highways. 

 

 

FIGURE 4.20: (Multilane U.K. network) Phase space speed dynamics for real measured speed 

(upper) and the GKT  model prediction (lower) for the validation date. 



C a l i b r a t i o n  a n d  V a l i d a t i o n  R e s u l t s  f o r  D i f f e r e n t  T e s t  C a s e s   

64 

 

 

FIGURE 4.21: (Multilane U.K. network) Time-series of the real speed measurements (black) and the 

GKT model prediction of speed at various detector locations for the validation day. 
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4.4.3  Calibration and Validation of the single-lane GKT Model Using 
Synchronous and Asynchronous Parallel Metamodel-Assisted DE 
Algorithm (Attiki Odos) 

The next benchmark problem encountered in this study considers the employment of the two 

versions of the developed parallel metamodel-assisted DE algorithm (the synchronous and 

the asynchronous one), as described in Section 3.3, for the automated calibration of the 

parameters of a second-order macroscopic GKT traffic flow model, using real traffic data from 

Attiki Odos freeway (see Section 4.2.2). Hence, the model is first calibrated to identify the 

optimal parameter values for the examined freeway test network, using measured data from 

a specific date. Eventually, in order to investigate the extent to which the proposed model 

replicates the traffic conditions of the considered site, the optimal parameters values resulting 

from the calibration process are applied to the same freeway network for a different day. A 

comparison between the synchronous and asynchronous DE algorithms, with respect to their 

convergence rate, is also presented. 

 

4.4.3.1 Calibration Results  
 

The real traffic data used for the calibration process were collected on the Attiki Odos freeway 

in Greece on the 16th of June, 2009. The GKT model parameters, with their respective upper 

and lower bounds, being also in line with those given in Treiber et al., 1999, Helbing et al., 

2001, Treiber & Kesting, 2013 and Delis et al., 2014, are presented in Table 4.5. The synchronous 

version of the parallel DE algorithm was used first to calibrate the traffic flow model. A 

detailed presentation of the calibration and validation results of the GKT model will be 

presented only for the optimization run using the synchronous version of the parallel DE 

algorithm. The reason is that the results, concerning the optimal parameters vector, obtained 

by the synchronous and the asynchronous versions of the DE are almost identical, as it can be 

observed in Table 4.6. A comparison between the optimization runs using the two versions of 

the parallel DE algorithm will be presented in the following Section 4.4.3.3. The population 

size of the synchronous DE algorithm was defined equal to 60, while the algorithm was 

executed for 2000 generations. The control parameters for the mutation and crossover 

operations were 𝐹 = 0.6 and 𝐶𝑟 = 0.45, respectively.  
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TABLE 4.5: (Attiki Odos – as single lane) Admissible range of the parameter vector used for the GKT 

model calibration. 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥,  km/h [110, 130] 
Maximum density, 𝜌𝑚𝑎𝑥  veh/km [100, 200] 
Critical density, 𝜌𝑐𝑟 veh/km [30, 60] 
Desired time gap, 𝑇 s [0.8, 2.2] 
Anticipation factor, 𝛾  [1, 2] 
Relaxation time, 𝜏 s [10, 40] 
Variance pre-factor for free traffic, 𝐴0  [0.0025, 0.015] 
Pre-factor, 𝛿𝐴  [0.03, 0.035] 
Transition width, 𝛿𝜌 veh/km [3.5, 20] 

 

TABLE 4.6: (Attiki Odos – as single lane) Cost function values and the resulted optimal parameter 

values for the calibration phase. 

Model 

Parameters 

𝒖𝒎𝒂𝒙 
(km/h) 

𝝆𝒎𝒂𝒙 
(veh/km) 

𝝆𝒄𝒓 
(veh/km) 

𝑻 
(s) 

γ 

 

𝝉 
(s) 

𝜜𝟎 
           

𝜹𝜜 
 

𝜹𝝆 
(veh/km) 

Cost 

Function 

(%) 

Optimal values 

(Synchronous) 
110 172 30 1.059 1.999 30.42 0.015 0.03 20 4.983 

Optimal values 

(Asynchronous) 
110 172 30 1.058 1.999 30.46 0.015 0.03 20 4.892 

 

The considered 6.2 km stretch was simulated for 6 morning hours (i.e. from 6: 00 a.m. 

to 12: 00 p.m.), whereas the space discretization was for 𝛥𝑥 = 50 m and the CFL was set equal 

to 0.4. The wall clock computational time for the synchronous run and for 2000 generations 

was 1752 min. The resulted optimal model parameters and the minimum value of the cost 

function are presented in Table 4.6. In Figure 4.22, the convergence history for the cost 

function of the best chromosome in each generation is presented as a function of the 

generation number and as a function of the number of exact evaluations, for the synchronous 

DE run. 
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FIGURE 4.22: (Attiki Odos – as single-lane) The convergence history of the best solution of each 

generation of the DE algorithm as a function of the generation number (top) and as a function of exact 

evaluations (bottom) (synchronous DE version). 

Figure 4.23 presents the space-time diagrams of the real measured speeds, contrasted 

to the numerical model's estimation of speed for the calibration day using the computed 

optimal parameters. As it can be seen, the model is able to accurately reproduce the 

spatiotemporal behavior of the speed dynamics. More precisely, following the early morning 

hours and their free flow conditions, the initiation time (at 8:00 a.m.) and location (close to the 

E-11-1 off-ramp) of the congestion, as well as its duration (up to 10:00 a.m) along with the 

average speed reduction are well reproduced. Further, the upstream propagation of the 

congestion (up to the 32nd km) for this date is also accurately represented by the model. It is 

noted that, the perfect agreement at the detection station located at the 34th km is due to the 
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use of the real measurements from this detector as upstream boundary condition in the 

numerical model.  

 

 

FIGURE 4.23: (Attiki Odos – as single lane) Phase space speed dynamics for real measured speed 

(left) and the GKT model prediction (right) for the calibration day. 

 Figure 4.24 displays the measured and estimated speed dynamics, in time, for all 

detector stations (whose locations are depicted in Figure 4.6). As it can be seen, the reduction 

in speed (indicating the initiation of congestion) originates close to the 29th km at 8: 00 a.m. 

and propagates upstream up to the 32nd km. This reduction can reach the values of 15 − 20 

km/h and lasts for up to two hours for certain locations in the motorway. In addition, the 

model is able to reflect realistically the vehicle acceleration downstream of the congestion 

creation area (29th km), since this model acknowledges the limited acceleration ability of 

vehicles. Hence, the overall agreement of the real measurement time series with those 

produced by the GKT model for all detector stations is almost perfect.  
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FIGURE 4.24: (Attiki Odos – as single lane)  Time series of the real speed measurements (black) and 

the GKT model prediction of speed (red) at various detector locations for the calibration day. 

In Figure 4.25 the corresponding average flow (veh/h) dynamics comparison is given 

for all detector stations. Flow measurements are important as to realize the correct behavior 

of the model in terms of density and flow conservation (also related to the correct treatment 

in the model of the on- and off-ramp flows). Again the variation of the real flow is correctly 

reproduced by the GKT model. An important point here is the ability of the model to 

reproduce relatively accurate the reduced (discharge) flow rate following the onset of 

congestion. These flow reductions, also well-known as capacity drops, are typically measured 

by comparing the queue discharge flow rate to the maximum pre-queue discharge flow rate. 

This is particularly evident in the detector stations between 28.3 and 31.6 km.  
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FIGURE 4.25: : (Attiki Odos – as single lane)  Time series of the real flow measurements (black) and 

the GKT model prediction of flow (red) at various detector locations for the calibration day. 

4.4.3.2 Validation Results  
 

To test and assess the performance and robustness of the resulting GKT model, the optimal 

parameters resulting from the previous calibration procedure (Section 4.4.3.1) were applied 

to the same freeway stretch in Attiki Odos, but for a different day, the 23rd of June 2009. For 

the validation day, the recurrent congestion in the traffic flow behavior is similar to the one of 

the calibration day. The cost function value obtained for the validation procedure was 14%. 

The validation results are presented in Figures 4.26, 4.27 and 4.28 following the same 

presentation as for the calibration day (in Figures 4.23, 4.25). The real traffic flow conditions 

indicate a similar behavior with that of the calibration date. The only differences being the 

time duration of the congestion (which starts at about 8: 30 a.m.) but now propagates up to 

the 33rd km. The validation results show that the model is able to reproduce traffic congestion 

due to the over-spilling off-ramp with sufficient accuracy. 
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FIGURE 4.26:  (Attiki Odos – as single lane) Phase space speed dynamics for real measured speed 

(left) and the GKT model prediction (right) for the validation day. 

Figure 4.26 presents the space-time diagrams of the real measured speeds, in 

comparison to the numerical model's estimation of speed for this day using the computed 

optimal parameters obtained from the calibration date. The GKT model was able to reproduce 

the congestion extend as well as the average speed reduction but slightly overestimated its 

duration (starting earlier and finished later) at some locations. This is also evident in Figure 

4.27, since at some detectors (those at 29.6, 30.1 and 30.72 km) the time duration of the 

congestion is slightly larger. However, the overall comparison, also in terms of the average 

predicted speed, is considered as satisfactory, given the complexity of the traffic flow 

phenomena. Further, in Figure 4.28 the corresponding average flow dynamics comparison is 

given for all detector stations. Again the variation of the real flow is almost correctly 

reproduced by the model with only some discrepancies appearing in some detectors, where 

the flow emerging from the congestion (discharge) is somehow lower compared to the real 

one, on average.  

 In general, it is observed that the model is able to reproduce/replicate the traffic 

conditions of other days with sufficient accuracy, predicting the congestion at almost the right 

time period and for the right space-time extent; although it is seen to produce slightly longer 

congestion duration at certain locations. 
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FIGURE 4.27: (Attiki Odos – as single lane) Time series of the real speed measurements (black) and 

the GKT model prediction of speed (red) at various detector locations for the validation day. 
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FIGURE 4.28: (Attiki Odos – as single lane) Time series of the real flow measurements (black) and 

the model prediction of flow (red) at various detector locations for the validation day. 

4.4.3.3 Comparison between Synchronous and Asynchronous Parallel Differential 
Evolution Runs (Attiki Odos – as single lane) 

 
In the following, a comparison between the two versions of the parallel DE algorithm is 

presented, with respect to the calibration of the single-lane GKT model for Attiki Odos case. 

Both parallel DE versions (synchronous and asynchronous) were run for 2000 generations, 

and converged practically to the same optimal solution (the one depicted in Table 4.6). Figure 

4.29 contains the convergence histories for the two parallel DE versions with respect to the 

generation number (top) and the number of exact evaluations (bottom). The minimum value 

of the cost function in each generation (the cost function of the best member of the population) 

is plotted against the generation number (as previously defined for the asynchronous version) 

in the first case (Figure 4.29  (top)). It can be easily observed that, although both versions 

converge to almost the same cost function value, the asynchronous version has a steeper 

convergence rate at the beginning of the optimization procedure, reaching faster a region close 

to the final optimal solution. However, if we compare the two versions with respect to the 

number of exact evaluations, a very similar behavior is observed, which will be explained 

later.  
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FIGURE 4.29: (Attiki Odos – as single lane) Convergence histories of the synchronous and 

asynchronous versions of the parallel DE algorithm, for the calibration of the GKT model: as a 

function of generation number (top), and as a function of exact evaluations (bottom). 

Figures 4.30 and 4.31 contain the histories of the training and testing errors for the two 

surrogates (RBF and MLP Artificial Neural Networks), for the synchronous parallel DE run. 

The MLP surrogate demonstrates a much smoother behavior of its errors, compared to the 
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RBF one, but the latter provides much smaller training and testing errors.  As a result, it is the 

RBF network that is used for the pre-evaluation phase for all generations in the synchronous 

run. 

Figures 4.32 and 4.33 contain the histories of the training and testing errors for the two 

surrogate models, for the asynchronous parallel DE run. Their behavior is very similar to the 

synchronous run (with slightly lower error values, due to the faster convergence of the 

asynchronous DE version). The RBF again demonstrates much lower training and testing 

errors for all generations, and it is always (automatically) selected for the pre-evaluation phase 

of the trial vectors. It should be mentioned here that the automatic selection of the best 

surrogate model in each generation (based on the lower value of the corresponding testing 

error) makes the surrogate-assisted optimization procedure very easily adaptable to different 

cost functions and search spaces. 

 

 

 

FIGURE 4.30: (Attiki Odos – as single lane) The history for the Training Error for both surrogate 

models, for the synchronous DE run. 
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FIGURE 4.31: (Attiki Odos – as single lane) The history for the Testing Error for both surrogate 
models, for the synchronous DE run. 

 

 

FIGURE 4.32: (Attiki Odos – as single lane) The history for the Training Error for both surrogate 

models, for the asynchronous DE run. 
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FIGURE 4.33: (Attiki Odos – as single lane) The history for the Testing Error for both surrogate 

models, for the asynchronous DE run. 

Figure 4.34 contains the history for the exact evaluations per generation for the 

synchronous and the asynchronous DE runs. For the synchronous run, it is evident that for 

almost half the members of each population an exact evaluation is used after the pre-

evaluation phase. This number slightly decreases with increasing generation number. The 

number of exact evaluations per generation depends on the optimization problem at hand 

and on the selected surrogate model as well. In general, when the RBF network is selected as 

the surrogate model, a large number of exact evaluations is observed in each generation, but 

when the MLP network is selected, only few calls to the exact evaluation procedure are 

observed in each generation (Nikolos, 2013). For the asynchronous run a completely different 

situation can be observed. Due to the fact that the “generation” is rather an artificial time 

period (defined by the master node), and due to the absence of synchronization between the 

parallel processes, a large number of exact evaluations takes place in each generation, which 

may be even higher than the number of available processors (being equal to 60). This unusual 

observation is explained by the fact that the master node (which defines the time duration of 

each “generation” in the asynchronous version), besides the evaluation of its individuals, has 

to perform all the DE processes, including the re-training and re-testing of both surrogate 

models. The resulting delay in the completion of its “generation” requires additional time, 

which is used by the rest of the processors to evaluate more individuals in an asynchronous 

(thus more efficient) manner. This explains also the faster convergence of the asynchronous 

DE compared to the synchronous one, with respect to the generation number (Figure 4.29 

(top)). In each “generation”, the asynchronous version completes many more evaluations 

(exact and inexact), thus it evolves its population faster. However, if the convergence is plotted 

with respect to the exact evaluations (Figure 4.29 (bottom)), both versions show similar 

performance. This observation unveils the fact that the cost function value convergence rate 

is directly connected to the number of exact evaluations, regardless the way such evaluations 
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are accomplished (synchronously or asynchronously). In the latter case (Figure 4.29  (bottom)), 

as the asynchronous evaluations result in a more efficient utilization of the available 

computational resources, this observation has the effect of faster convergence rate. To 

demonstrate that, the two runs (synchronous and asynchronous) had almost the same wall 

clock run times for 2000 generations (105,132 s and 100,585 s, respectively). However, these 

run times correspond to 68,575 exact evaluations for the synchronous parallel DE run and to 

118,055 ones for the asynchronous one. 

In order to further test the predictive ability of the surrogate models, an experiment 

was conducted for the synchronous version of the parallel DE algorithm. For this experiment 

the algorithm was modified as to exactly evaluate all the candidate solutions in each 

generation, so that the predictive capability of the utilized surrogate model to be evaluated. 

Figure 4.35 contains the percentage (in each generation) of the correct worse-fitted forecast by 

the surrogate model for this implementation (how many candidate solutions predicted by the 

surrogate model as worse-fitted than their parents are actually worse-fitted). As it can be 

observed in Figure 4.35, this percentage is very high (in the order of 95%), which supports the 

use of the surrogate model to predict the less-promising candidate solutions. 

Finally, Figure 4.36 contains the percentage (in each generation) of the correct better-

fitted forecast by the surrogate model (how many candidate solutions predicted by the 

surrogate model as better-fitted than their parents are actually better-fitted). As it can be 

observed in Figure 4.36, this percentage is relatively low. However, this prediction does not 

have a negative effect on the accuracy and the robustness of the DE algorithm as it is followed 

by an exact evaluation. This low-accuracy prediction can be explained by the fact that the new 

candidates are outside the region used to train the surrogate models. At the same time this 

region becomes shorter as the generation number gets higher. 
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FIGURE 4.34: (Attiki Odos – as single lane) The history of the exact evaluations per generation for 

the synchronous DE run (top) and the asynchronous one (bottom). 
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FIGURE 4.35: (Attiki Odos – as single lane) The history of the percentage of the correct worse-fitted 

forecast by the surrogate model for the synchronous implementation. 

 

FIGURE 4.36: (Attiki Odos – as single lane) The history of the percentage of the correct better-fitted 

forecast by the surrogate model for the synchronous implementation. 
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4.4.4 Comparative Calibration and Validation of the GKT and METANET 
Models Using Synchronous Parallel Metamodel-Assisted DE Algorithm 
(U.K. network – as single lane) 

The last calibration testing encountered in this study concerns the employment of the 

synchronous, parallel, metamodel-assisted DE algorithm for the automated calibration of the 

parameters of the two second-order macroscopic traffic flow models (as single-lane). In 

particular, the numerically approximated second-order GKT model and the discrete second-

order METANET model were compared, regarding the reproduction of traffic congestion 

created at freeways close to on/off-ramps. To this end, the selected models were first 

calibrated using real traffic data from the freeway stretch in U.K. and then validated and 

compared using real traffic data for a different day from the same freeway network.  

 
4.4.4.1 Calibration Results  
 

As in the first test case (Section 4.4.1.1), the calibration results were obtained using real traffic 

data from the M56 motorway in U.K. on the 3rd of June, 2014. The GKT model parameters, 

with their respective upper and lower bounds, according to Treiber et al., 1999, Helbing et al., 

2001, Treiber & Kesting, 2013 and Delis et al., 2014, are presented in Table 4.7. Moreover, the 

population size of the DE algorithm was defined equal to 50, whereas the maximum number 

of generations was 1100; the control parameters 𝐹 and 𝐶𝑟 for the mutation and crossover 

operations were set equal to 0.6 and 0.45, respectively. 

 

TABLE 4.7: (U.K. network – as single lane) Admissible range of the parameter vector used for the 

GKT model calibration. 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥,  km/h [105, 135] 
Maximum density, 𝜌𝑚𝑎𝑥  veh/km [100, 200] 
Critical density, 𝜌𝑐𝑟 veh/km [30, 60] 
Desired time gap, 𝑇 s [0.5, 2.5] 
Anticipation factor, 𝛾  [1, 2] 
Relaxation time, 𝜏 s [10, 40] 
Variance pre-factor for free traffic, 𝐴0  [0.0025, 0.015] 
Pre-factor, 𝛿𝐴  [0.01, 0.03] 
Transition width, 𝛿𝜌 veh/km [3.5, 20] 

 

The examined freeway stretch of 9.45 km was also simulated from 6: 00 a.m. to 9: 00 

a.m.), with the space discretization equal to 100 m and the CFL value equal to 0.5. Figure 4.37 

illustrates the convergence history of the best solution of each generation, which achieves a 

low value already from the first 400 iterations. Table 4.8 presents the resulting optimal model 

parameters and the minimum of the cost function, calculated using equation (4.1). Figure 4.38 

displays the space-time evolution of real measured speed, contrasted to the model prediction 

for the calibration day. Figure 4.39 depicts the measured and simulated speed dynamics for 

all detector stations around the traffic congestion area, using the optimal parameters values 

of Table 4.8; as it can be observed, the calibrated model reproduces with sufficient accuracy 



C a l i b r a t i o n  a n d  V a l i d a t i o n  R e s u l t s  f o r  D i f f e r e n t  T e s t  C a s e s   

82 

 

the real traffic conditions, capturing the occurring congestion at the accurate location and time 

in both duration and extent.  

 

 

FIGURE 4.37: (U.K. network – as single lane) DE algorithm convergence history during the 

calibration of the GKT and the METANET models. 

 

TABLE 4.8: (U.K. network – as single lane) Cost function values and the resulted optimal parameter 

values for the calibration phase of the GKT model. 

Model 
parameters 

𝒖𝒎𝒂𝒙 

(km/h) 

𝝆𝒎𝒂𝒙 𝝆𝒄𝒓 𝑻 

(s) 

𝜸 𝝉 

(s) 

𝑨𝟎 𝜹𝑨 𝜹𝝆 

(veh/km) (veh/km) (veh/km) 

Optimal 
values 

115 170 42 2 2 20 0.0025 0.015 10 

Cost 
function 

(%) 

     1.16    
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FIGURE 4.38: (U.K. network – as single lane) Phase space speed dynamics for real measured speed 

(left) and the GKT model estimation (right) for the calibration date. 

 

 

FIGURE 4.39: (U.K. network – as single lane) Time series of the real speed measurements (black) and 

the GKT model prediction of speed (red) at various detector locations for the calibration day. 

 
Regarding the METANET model, the parameter vector consists of the free flow speed 

𝑢𝑓, the critical density 𝜌𝑐𝑟 and the parameters 𝑎, 𝜏, 𝜈 and 𝛿, which are common for all the 

freeway sections. Moreover, the model includes two extra parameters which are known from 
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previous validation exercises to be of minor importance and are, therefore, given constant 

values, in order to reduce the dimension of the parameter vector. In particular, 𝜅 is set equal 

to 10 𝑣𝑒ℎ/𝑘𝑚/𝑙𝑎𝑛𝑒 and uf is set to 7 𝑘𝑚/ℎ. Thus, one single fundamental diagram is 

considered for all freeway sections in this model. The METANET model parameters, with 

their respective upper and lower bounds are presented in Table 4.9. Again, the DE was 

employed with population size equal to 50, maximum number of generations 1100 and 

control parameters 𝐹 = 0.6 and 𝐶𝑟 = 0.45; the consider network was also simulated from 6: 00 

a.m. to 9: 00 a.m. as in the case of the GKT model.   

 

TABLE 4.9: (U.K. network – as single lane) Admissible range of the parameter vector used for the 

METANET model calibration. 

Model parameters Units Bounds 

Free flow speed, 𝑢𝑓,  km/h [80, 150] 

Critical density, 𝜌𝑐𝑟 veh/km/lane [5, 80] 

Model parameter, 𝑎  [1800, 2500] (capacity 
bounds)  

Time constant, 𝜏 s [5, 80] 

Anticipation constant, ν km2/h [15, 40] 

Model parameter, 𝛿 h/km [0, 10] 

 
Figure 4.37 presents the DE convergence history of the best value of the cost function 

in each generation, which also achieves a low value already from the first 450 iterations. Table 

4.10 contains the optimal parameter set, obtained for the specific cost function (4.1) as well the 

corresponding minimum value. The space-time evolution of the model estimation of speed in 

comparison with the real measured data for the calibration day is illustrated in Figure 4.40. 

Figure 4.41 displays the observed and estimated speed dynamics for all detector locations, 

using the optimal parameters values included in Table 4.10. In both figures, it can be seen that 

the model predictions are very close to the real measurements, as for the previous model. 

 

  



C a l i b r a t i o n  a n d  V a l i d a t i o n  R e s u l t s  f o r  D i f f e r e n t  T e s t  C a s e s   

85 

 

 

TABLE 4.10: (U.K. network – as single lane) Cost function values and the resulted optimal 

parameter values for the calibration phase of the METANET model. 

Model  

parameters 

𝒖𝒇 

(km/h) 

𝝆𝒄𝒓 𝒂 𝝉 𝛎 𝜹 

(veh/km/lane)  (s) (km2/h) (h/km) 

Optimal  

values 

114 34.5 2.3 19.8 29.7 0.66 

Cost  

function  

(%) 

      1.4      

 

 

 

FIGURE 4.40: (U.K. network – as single lane) Phase space speed dynamics for real measured speed 

(left) and the METANET model estimation (right) for the calibration date. 
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FIGURE 4.41: (U.K. network – as single lane) Time series of the real speed measurements (black) and 

the METANET model prediction of speed (red) at various detector locations for the calibration day. 

 

4.4.4.2 Validation Results  
 

In order to test and evaluate the robustness of the produced optimal parameters of the 

previous calibration procedure (Section 4.4.4.1), the resulting macroscopic traffic flow models 

were validated using a different data set than the one utilized for their calibration. Hence, 

both models were validated using real traffic data in the U.K. site from 24th June, 2014, with 

particular emphasis on the recurrent congestion in traffic flow, which persists between 7: 00 

a.m. and 8: 00 a.m., as in the calibration day.  

Figure 4.42 displays the space-time diagrams of the real measured speeds, contrasted 

to the models' prediction of speed for the validation day. The comparison between the real 

speed data and the simulated speed data can be seen in Figure 4.43 for the GKT model and in 

Figure 4.44 for METANET model. It is observed that both models are able to reproduce the 

real traffic condition for the specific freeway stretch in U.K. also for the validation day, 

simulating the congestion for the correct duration and extent, as observed in the real traffic 

data; although the METANET model is seen to produce a congestion that spills back further 

onto the freeway mainstream and spreads almost all over the network. The cost function value 

for this validation procedure was 1.6 % for the GKT model and 1.5 % for the METANET 

model.  
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FIGURE 4.42: (U.K. network – as single lane) Phase space speed dynamics for real measured speed 

and the models’ estimation for the validation date (left: measured, center: GKT, right: METANET). 

 

 

FIGURE 4.43: (U.K. network – as single lane) Time series of the real speed measurements (black) and 

the GKT model prediction of speed (red) at various detector locations for the validation day. 
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FIGURE 4.44: (U.K. network – as single lane) Time series of the real speed measurements (black) and 

the METANET model prediction of speed (red) at various detector locations for the validation day. 

4.5 Final Remarks and Conclusions 

In this chapter, the parallel metamodel-assisted DE algorithm was employed for the 

automated calibration of the parameters of a second-order macroscopic GKT traffic flow 

model, using real traffic data. Specifically, the GKT model was calibrated and validated by 

employing both the synchronous and the asynchronous version of the DE algorithm using 

real traffic data from the U.K. motorway and from Attiki Odos freeway in Athens; in the first 

network traffic congestion is created due to high on-ramp flows during the morning hours, 

whereas in the second network recurrent congestion is triggered by a saturated off-ramp 

during the morning peak hours, as well. Furthermore, the extended GKT model for the 

simulation of multi-lane traffic dynamics was also evaluated using real traffic data from the 

motorway network in the U.K. (by employing the synchronous version of the DE algorithm). 

Subsequently, by implementing the same optimization scheme for the same network in U.K., 

the GKT model was compared with the well-known METANET model.  

Following from the numerical results, both parallel DE algorithms proved to be viable 

candidates and versatile tools for the calibration of macroscopic traffic flow models, having 

counteracting calibration parameters in which the cost function exhibits multi-optimal values. 

Specifically, the resulted optimal values of the model parameters indicated that the proposed 

DE algorithms guarantee the convergence to the best solutions as well as that the GKT model 

is able to replicate and predict with sufficient accuracy the prevailing traffic flow conditions; 

especially, in the case of the calibration of the complicated multi-lane GKT model, which have 

a relatively large number of (usually) counteracting calibration parameters, the synchronous 

DE algorithm also proved to be a promising and robust tool. It is also worth to highlight that 

the DE algorithms have the advantage that they can be used without the need of tuning its 
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parameters for the problem at hand, while wide bounds can be used for the unknown vector 

without convergence problems. 

 Regarding the implementation of the (synchronous) DE algorithm for the comparison 

of the GKT and METANET model, simulations results showed that the performance of the 

two models is comparable; both the GKT and METANET model were able to reproduce 

accurately and similarly the real traffic dynamics, including congestion. Moreover, by 

comparing the two versions of the DE algorithm, the asynchronous version had a faster 

convergence rate (especially at the first steps of the optimization procedure), compared to the 

synchronous one, as it was expected. Further, for the addressed optimization problem, the 

Radial Basis Function (RBF) Artificial Neural Network (ANN) featured the lowest training 

and testing errors for all generations and for both versions of the DE optimizer. As such, it 

was constantly (automatically) selected as surrogate model for the pre-evaluation phase, in 

both cases. Finally, the robustness of the calibrated parameters was demonstrated through the 

validation process, indicating that both the single- and multi-lane GKT models, as well as the 

METANET model, are able to reproduce with sufficient accuracy the traffic flow conditions 

of the particular networks also for different than the calibration date.  
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Macroscopic Modelling of ACC/CACC 
traffic: Stability Analyses 



91 

 



92 

 

Chapter 5: Macroscopic Traffic Flow 
Modelling with Adaptive and 
Cooperative Adaptive Cruise Control 
 
 

5.1 Introduction 

During the last decades, there has been an enormous effort to develop a variety of VACS that 

are expected to bring radical changes in the way that traffic flow will be controlled and 

optimized. VACS, such as ACC and CACC systems, were initially developed with particular 

emphasis put on improving comfort, convenience, and safety. The benefits of the ACC and 

CACC framework are also highlighted in terms of improved capacity and stability. Indeed, 

for specific values of their parameters, such systems appear to be a potential remedy to reduce 

the amplitude or even to eliminate the formation of traffic flow instabilities, which are usually 

related to traffic jams. This advanced feature, along with the expected spreading of such 

systems, are likely to effectively contribute to the diminution of the existing and rising traffic 

congestion.  

Motivated by such facts, the automotive industry and many research institutes have 

made a massive interdisciplinary effort to develop and test VACS, while several different 

types of equipped vehicles are already available in the market. The ACC technology, for 

example, enables drivers to automatically follow a preceding vehicle by controlling the 

throttle and the brake actuators. Specifically, using headway sensors, such as a radar or 

LIDAR, an ACC system is able to continuously measure the time-gap and the speed to the 

front vehicle, usually referred to as the leader. Hence, in cases that the ACC sensors detect 

that the leading vehicle travels at a lower speed, ACC automatically adjusts the speed of the 

equipped vehicle in order to realize the pre-selected by the user desired distance (gap-control 

mode). On the other hand, when the leader is out of the range of the equipped vehicle’s 

sensors, the ACC vehicle operates in a speed-control mode, maintaining the user-defined free-

speed.  

An enhancement of the ACC functionality is the CACC system, which is based on 

inter-vehicle exchange of information among the equipped vehicles via wireless technology 

or ad-hoc networks, resulting in remarkably higher accuracy and faster response. Thus, even 

though ACC systems have been focused on increasing driving comfort, safety and collision 

avoidance, as the driver is relieved from continuous speed adjustments to the speed of the 

leader, CACC systems additionally offer high potential to further improve the traffic flow 

capacity and safety, reducing the traffic congestion as well. The latter is the prospective result 

of the main aspiration of the CACC concept to decrease time gaps between consecutive 

vehicles, as well as to eliminate the traffic disturbances. Compared to ACC, the literature on 

CACC systems is still very premature and relevant studies do not usually investigate the 

traffic flow effects of CACC quantitatively in terms of throughput, capacity, and congestion 

reduction, but aim at creating design frameworks which will standardize and optimize the 

use of such technology. 

A lot of active approaches relying on microscopic traffic flow simulation have been 

reported, representing the vehicle behavior in presence of ACC and CACC systems at 
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individual level (see, e.g., Ioannou & Chien, 1993; Swaroop et al., 1994; Swaroop & Hedrick, 

1996; Liang & Peng, 1999, 2002; Swaroop & Rajagopal, 1999; Alkim et al., 2000; Marsden et al., 

2001; VanderWerf et al., 2001; Davis, 2004, 2007; Rajamani et al., 2005; Kesting et al., 2006, 2008, 

2010; van Arem et al., 2006; Nowakowski et al., 2011; Shladover et al., 2012; Arnaout & Bowling, 

2014; Milanés et al., 2014; Milanés & Shladover, 2014; Wang et al., 2014; Ntousakis et al., 2015). 

On the contrary, the corresponding literature pertaining to macroscopic models is rather 

limited. However, macroscopic models in general have specific advantages, compared to 

microscopic ones, as they require less computational resources, involve fewer parameters, and 

need lower calibration and validation effort. Hence, the development of macroscopic models 

for the real-time simulation of ACC and CACC traffic, evaluating also their impact on traffic 

dynamics, could be of major significance in the near future. 

In Swaroop & Rajagopal, 1999, a design approach for an ACC strategy of vehicles in 

an Automated Highway System, based on macroscopic traffic flow stability analysis, was 

presented. In this study, in order to analyze the effect of the ACC laws on the behavior of 

traffic flow, an open stretch highway with inlets and exits was considered, having a small 

constant inflow from an on-ramp, where all the equipped vehicles employed constant-time 

headway policy; the results showed that the constant-time headway policy leads to 

characteristics inappropriate for automated traffic flow. Furthermore, Yi & Horowitz, 2002, 

presented a macroscopic model with velocity saturation for traffic flow that also takes into 

account a constant-time headway policy in order to study the behavior of ACC vehicles.  

In Lenz, 1999, and Hoogendoorn & Bovy, 2001, the macroscopic formulation of a 

kinetic model to variable speed control was applied, using Variable Message Signs (VMS). In 

the first work, a sliding mode controller that was able to extinguish stop-and-go waves by 

increasing the flow above some density and by decreasing the flow below this density, 

adapting suitable speed limits on the VMS, was applied. In the second work, a similar 

approach was adopted, in which VMS were used to inform drivers of slower traffic ahead. 

The authors assumed that drivers decrease their desired velocity when control is active and 

applied the variable average desired speed in the macroscopic implementation of the model. 

As a result, the occurrence of the so-called phantom traffic jams was prevented, as long as the 

speed adaptation by drivers was sufficiently high. 

An analysis of ACC systems based on macroscopic traffic flow modelling was also 

conducted by Demir, 2003. In particular, the already existing macroscopic model of Payne was 

modified including parameters to represent ACC policies, by being calibrated using a 

microscopic simulation model incorporated in ACC vehicles. Following from the simulation 

results, lower time headways increased the traffic flow rate while congestion disappeared 

faster, even with small penetration rates of ACC vehicles. Specifically, up to a penetration rate 

of 30 % the traffic flow rate was increasing, whereas an additional increase of the penetration 

rate did not provide any further benefits.  

An extended multiclass gas-kinetic theory was proposed by Ngoduy et al., 2009, to 

integrate the cooperative concepts into traffic flow modelling, allowing the equipped vehicles 

to adapt their desired speed to the speed of the congested traffic flowing downstream; the 

derived macroscopic model was based on the method of moments. In this way, the equipped 

vehicles lead to a delay in traffic inflowing the congested area, adopting a deceleration 

situation close to lower speed areas. Through the numerical tests it became apparent that the 

presence of equipped vehicles contributes to substantial improvements of traffic flow stability 

and total travel time, as well as to the suppression of traffic congestion. The same method of 

moments was applied by Ngoduy, 2012a, to derive a macroscopic formulation for a multiclass 



T h e  G K T  M o d e l  f o r  A C C  a n d  C A C C  S y s t e m s   

94 

 

gas-kinetic model able to simulate mixed traffic flow of both manual and ACC vehicles. Based 

on the numerical simulation results, it was demonstrated that increasing the penetration rate 

of ACC vehicles contributes to more stable traffic flow, while a rate of 30 % ACC vehicles 

results in remarkably improved capacity and reduced travel time. Furthermore, the 

development of a macroscopic model for CACC traffic flow dynamics was presented by 

Ngoduy, 2013a, also based on the gas-kinetic approach. The numerical results indicated that 

CACC systems better enhance the dynamic equilibrium capacity, compared to ACC vehicles, 

which potentially lead to jam suppression effects at bottlenecks. Finally, recent works 

regarding the platoon-based driving behavior (Ngoduy, 2013b) and the multi-anticipative 

driving behavior (Ngoduy & Wilson, 2014), are also derived from the modified gas-kinetic 

theory.   

In the following Section 5.2, a new approach to develop a second order macroscopic 
model for traffic flow by Delis et al., 2015a, is presented, which reflects ACC and CACC traffic 
dynamics in the GKT model (see Section 3.2.1). In particular, modelling is based on the 
introduction of a relaxation term in a GKT model that satisfies the time-gap principle of ACC 
or CACC systems and allows for consideration of mixed traffic of manual and ACC/CACC 
vehicles. The relaxation time is assigned to multiple leading vehicles in the CACC case, 
whereas in the ACC case it’s only related to the direct leading vehicle. Appendix B presents 
the related mathematical background for the development of the macroscopic models for 
ACC and CACC traffic flow dynamics of Ngoduy, 2012a, and Ngoduy, 2013a, for comparative 
reasons. 
  

 

5.2 The GKT Model for ACC and CACC Systems 

In this section, the developed second-order macroscopic traffic flow model, incorporating the 

behavior of ACC and CACC equipped vehicles, is reviewed (Delis et al., 2015a; Nikolos et al., 

2015). The model has been implemented based on the gas-kinetic traffic flow model, which 

was first established in the 1960s with a quite simple model by Prigogine & Andrews, 1960, 

and Prigogine, 1961. However, in the last years an increasing interest can be observed for the 

GKT model, by applying it to derive alternative continuum macroscopic traffic flow models 

(Treiber et al., 1999; Helbing et al., 2001; Treiber et al., 2010; Ngoduy, 2012a; 2013a; 2013b). The 

macroscopic traffic flow equations are derived from the gas-kinetic ones using the so-called 

method of moments (see, e.g., Helbing, 1997b; Treiber et al., 1999; Ngoduy, 2006, 2009; Ngoduy 

et al., 2009; Ngoduy & Tampere, 2009; Ngoduy, 2012a). Specifically, as the gas-kinetic models 

describe the dynamics of the phase-space density, which reflect the dynamics of the velocity 

distribution functions of vehicles in traffic flow, one knowing the phase-space density profile 

and using the method of moments can define the macroscopic traffic flow variables such as 

the density, the mean speed, or the flow rate. It should also be noted at this point that the 

crucial difference between the GKT model and other macroscopic traffic flow models is its 

non-local interaction term, which has beneficial properties regarding the rapidity and 

robustness of numerical integration methods. Therefore, the GKT model allows for real world 

application ensuring accuracy, robustness and computational efficiency, even in case of large 

freeway network (Treiber et al., 1999). Moreover, the non-local GKT model is capable to 

describe the “synchronized traffic”, namely the hysteretic phase transitions to congested 

traffic, which is the most frequent form of congested states, typically occurring behind on-

ramps, gradients, or other bottlenecks of crowded highways (Helbing & Treiber, 1998; Treiber 
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et al., 1999; Treiber & Helbing, 1999). For a more detailed review of the features of the GKT 

model with the corresponding mathematical form, see Section 3.2.1.  

By denoting again 𝜌(𝑥, 𝑡) the traffic density, 𝑢(𝑥, 𝑡) the average speed and 𝑞 =  𝜌𝑢 the 

traffic flow rate as functions in space, 𝑥 and time instant 𝑡, the modified single-lane GKT 

model, in its conservation law form with source terms (without on/off-ramps) is given as, 

𝜕𝑡(𝜌) + 𝜕𝑥(𝜌𝑢) = 0 , (5.1) 

  

           𝜕𝑡(𝜌𝑢) + 𝜕𝑥(𝜌𝑢
2 + 𝜃𝜌) = 𝜌 (

𝑉𝑒
∗(𝜌) − 𝑢

𝜏
) [1 − 𝑝𝐹(𝜌)] + 𝑝𝑉𝑎𝑐𝑐/𝑐𝑎𝑐𝑐  . (5.2) 

From the momentum equation (5.2), it can be seen that the contribution of ACC and CACC 

vehicles lies in the terms of 𝑝𝑉𝑎𝑐𝑐/𝑐𝑎𝑐𝑐 and [1 − 𝑝𝐹(𝜌)], where 𝑝 is the penetration rate of the 

ACC/CACC-equipped vehicles. By setting the coefficient 𝑝 equal to zero the original GKT 

model equations for manual driving are obtained, as described in Section 3.2.1. Moreover, the 

definition of the GKT models’ parameters, such as the pressure-like term, 𝜃, the equilibrium 

speed, 𝑉𝑒
∗(𝜌) and the relaxation time, 𝜏 remains the same with their definition in Section 3.2.1. 

Next, the incorporation of the ACC and CACC traffic dynamics in the GKT model is 

presented. This is done through the terms, 𝑝𝑉𝑎𝑐𝑐/𝑐𝑎𝑐𝑐 and [1 − 𝑝𝐹(𝜌)], in equation (5.2), with 

𝑝 = 1. One major difference of this new approach compared to others, is that the ACC/CACC 

terms contribute to the non-local relaxation term in the momentum equation of the GKT 

model, which controls the speed dynamics in traffic flow. In addition, the proposed model 

enables the explicit definition of the significant for cooperative systems time-gap principle, 

allowing the simulation of ACC and CACC flows with different time-gap settings, leading to 

different dynamic equilibrium capacities and dynamic behavior.  

The proposed model is based on the prerequisite control objectives that the ACC 

systems should adopt, and by extension the CACC systems, as they have similar control 

objectives with the important difference being in their desired time gaps, according to 

Shladover et al., 2012: 

 

I. Speed control mode: to travel close to the pre-set by the driver maximum velocity, in 

cases where no leading vehicles are detected and identified by the sensor systems, or 

leading vehicles are detected but their speeds are higher than the driver-defined 

maximum velocity. 

 

II. Gap control mode: to adjust the velocity of the equipped vehicle equal to the velocity of 

the leading vehicle, so as to maintain the user-defined desired gap, in cases that the 

leading vehicle is identified by the sensor systems and its velocity is lower than the 

pre-set by the user maximum speed. 

 

III. The two aforementioned control modes are required to operate with robust, stable and 

smooth transitions between them, in order to avoid discomfort to the passengers, on 

account of sudden, abrupt changes in velocity. 

 

At this point, it is essential to clarify the terms headway and gap. Time/space-headway is 

defined as the time/space interval between the front bumpers of two successive vehicles 

following each other, while time/space-gap is defined as the time/space interval between the 

rear bumper of the leading vehicle and the front bumper of the following vehicle (Treiber & 
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Kesting, 2013). Moreover, the proposed model was induced by an appealing control policy 

for ACC (and -in extension- CACC) systems, the ‘‘Constant Time Headway (CTH) policy’’, 

where the desired inter-vehicle distance is proportional to the vehicle’s velocity (Zhou & 

Peng, 2005).  

The following are the underlying assumptions for the developed model, satisfying 

simultaneously the aforementioned objectives: 

 

 At densities explicitly below the critical threshold 𝜌𝑎𝑐𝑐 (being lower than or equal to 

the critical density 𝜌𝑐𝑟) the additional term to the GKT model has no influence, since it 

is supposed that the drivers react by setting their maximum desired speeds as in a 

manual manner. At densities around 𝜌𝑎𝑐𝑐 a smooth but fast transition between the 

previous manual case and the ACC or CACC model is established, using the Fermi 

function: 

𝐹(𝜌) =
1

2
[1 + 𝑡𝑎𝑛ℎ (

𝜌 − 𝜌𝑎𝑐𝑐
𝛥𝜌

)] . (5.3) 

 When the gap control mode is activated, the desired constant time gap 𝑇∗ is imposed 

through its corresponding influence on a desired density 𝜌∗, given as: 

𝜌∗ =
1

1 𝜌𝑚𝑎𝑥⁄ + 𝑇∗𝑢∗
  (5.4) 

in which the denominator reflects the desired space headway, with 1 𝜌𝑚𝑎𝑥⁄  being the vehicle’s 

length and 𝑢∗ = 𝑢(𝑥∗) being the velocity of the preceding vehicle, computed at “interaction” 

position: 

𝑥∗ = 𝑥 + 𝛾∗(1 𝜌𝑚𝑎𝑥⁄ + 𝑇∗𝑢) ,       𝛾∗  ∈  [1, 2] . (5.5) 

Additionally, after a relaxation time 𝜏∗ the desired speed relaxes to the speed of the preceding 

vehicle 𝑢∗. Accordingly, the corresponding source term of equation (5.2) that reflects the 

behavior of ACC systems can be expressed mathematically as 

𝑉𝑎𝑐𝑐(𝜌, 𝑢, 𝜌
∗, 𝑢∗) = 𝐹(𝜌) (

𝜌∗𝑢∗ − 𝜌𝑢

𝜏∗
) . (5.6) 

In the work of Marsden et al., 2001, it was demonstrated that the minimum time-gap that can 

be achieved by ACC vehicles is 0.8s. In general, indicated values for ACC-equipped vehicles 

should be 𝑇∗ ∈  [0.8, 2.2]𝑠, following [ISO 15622, 2010] standards, while 𝜏∗ ≈ 1𝑠.  

In the following, in order to model the impact of CACC vehicles in traffic flow 

dynamics, a similar approach is utilized, with the only difference being that the vehicle can 

exchange information with multiple preceding vehicles, each one of which has a different 

relaxation time. As a result, the corresponding source term of equation (5.2) is modified, 

taking into consideration the velocities of the respective preceding vehicles, enhancing in this 

way the smoothing effect of this term. It is also worth mentioning that this feature for 

exchanging information from far downstream enables a considerable reduction in the size of 

time gaps, resulting in a significant increase of traffic flow density and efficiency without 

compromising safety. Thus, the corresponding source term of the momentum equation takes 

the form  
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𝑉𝑐𝑎𝑐𝑐(𝜌, 𝑢, 𝜌
∗, 𝑢∗) = 𝐹(𝜌)∑(

𝜌∗𝑢𝑖
∗ − 𝜌𝑢

𝜏𝑖
∗ )

𝑀

𝑖=1

 (5.7) 

where 𝑢𝑖
∗ = 𝑢(𝑥𝑖

∗) with 𝑥𝑖
∗ = 𝑥 +  𝑖 ∙ 𝛾∗(1 𝜌𝑚𝑎𝑥⁄ + 𝑇∗ ∙ 𝑢),     𝑖 = 1,… ,𝑀, and  

𝜌∗ =
1

1 𝜌𝑚𝑎𝑥⁄ + 𝑇∗𝑢1
∗ . (5.8) 

In this work indicated values for CACC systems should be 𝑀 = 3, while [𝜏1
∗, 𝜏2

∗, 𝜏2
∗] = [2, 3, 6]. 

 

 

5.3 Qualitative comparison between the utilized ACC model and that 

proposed by Ngoduy 

In this section, the developed second-order macroscopic traffic flow model, incorporating the 

behavior of ACC-equipped vehicles (Delis et al., 2015a; Nikolos et al., 2015) is qualitatively 

compared with the one proposed by Ngoduy, 2012c. 

By denoting 𝜌(𝑥, 𝑡) the traffic density, 𝑢(𝑥, 𝑡) the average speed and 𝑞 =  𝜌𝑢 the traffic 

flow rate as functions in space, 𝑥 and time instant 𝑡, the modified single-lane GKT model, in 

its conservation law form with source terms (without on/off-ramps) is given as, 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0 (5.9) 

  

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕[𝜌(𝑢2 + 𝜃)]

𝜕𝑥
= 𝜌 (

𝑉𝑒
∗(𝜌) − 𝑢

𝜏
) [1 − 𝑝𝐹(𝜌)] + 𝑝𝑉𝑎𝑐𝑐  ⇒ (5.10) 

 

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕[𝜌(𝑢2 + 𝜃)]

𝜕𝑥
= 𝜌 (

𝑉𝑒
∗(𝜌) − 𝑢

𝜏
) [1 − 𝑝𝐹(𝜌)] + 𝑝𝐹(𝜌) (

𝜌∗𝑢∗ − 𝜌𝑢

𝜏∗
) , (5.11) 

 

where the Fermi function is given as 

𝐹(𝜌) =
1

2
[1 + 𝑡𝑎𝑛ℎ (

𝜌 − 𝜌𝑎𝑐𝑐
𝛥𝜌

)]  (5.12) 

and the desired constant time gap 𝑇∗ of the ACC vehicle is imposed through its corresponding 

influence on a desired density 𝜌∗, given as 

𝜌∗ =
1

1 𝜌𝑚𝑎𝑥⁄ + 𝑇∗𝑢∗
  , (5.13) 

where the denominator reflects the desired space headway, with 1 𝜌𝑚𝑎𝑥⁄  being the vehicle’s 

length and 𝑢∗ = 𝑢(𝑥∗) being the velocity of the preceding vehicle, computed at “interaction” 

position 

𝑥∗ = 𝑥 + 𝛾∗(1 𝜌𝑚𝑎𝑥⁄ + 𝑇∗𝑢) ,       𝛾∗  ∈  [1, 2] . (5.14) 

For penetration rate of the ACC-equipped vehicles 𝑝 = 0, the original GKT model results 
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𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕[𝜌(𝑢2 + 𝜃)]

𝜕𝑥
= 𝜌 (

𝑉𝑒
∗(𝜌) − 𝑢

𝜏
) . (5.15) 

For penetration rate of the ACC-equipped vehicles 𝑝 = 1, the modified model becomes 

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕[𝜌(𝑢2 + 𝜃)]

𝜕𝑥
= (

𝜌𝑉𝑒
∗ − 𝜌𝑢

𝜏
) [1 − 𝐹(𝜌)] + 𝐹(𝜌) (

𝜌∗𝑢∗ − 𝜌𝑢

𝜏∗
) .  (5.16) 

The additional source term 

(
𝜌∗𝑢∗ − 𝜌𝑢

𝜏∗
) 

(5.17) 

 

smoothly [due to 𝐹(𝜌)] replaces the original GKT source term 

(
𝜌𝑉𝑒

∗ − 𝜌𝑢

𝜏
) 

(5.18) 

for 𝜌 > 𝜌𝑎𝑐𝑐. As a result, for densities below 𝜌𝑎𝑐𝑐, the additional term has no influence, and 

the ACC-equipped vehicles tend to reach the maximum desired speeds set by their drivers, 

similarly to the manual manner. However, for 𝜌 > 𝜌𝑎𝑐𝑐 the original source term is smoothly 

deactivated and the ACC vehicles turn into the gap control mode, trying to reach a pre-

specified constant time gap 𝑇∗ (indirectly, through 𝜌∗) and the speed of the preceding vehicle 

𝑢∗ = 𝑢(𝑥∗), within a relaxation time 𝜏∗. 

The proposed modification was based on rational thinking rather on formal 

mathematical derivation, in order to fulfill the ACC/CACC control objectives described by 

Shladover et al., 2012 and the Constant Time Headway (CTH) policy (Zhou & Peng, 2005). It 

provides the major advantage that the only modification to the original GKT model is in the 

source term of the momentum equation, without changing the corresponding LHS. This 

results in a very easy numerical implementation of the corresponding modification. 

Additionally, the ACC penetration rate is easily and explicitly defined. 

The corresponding ACC model proposed by Ngoduy, 2012c, is also based on the 

original GKT model; however, its derivation is purely analytic, based on the method of 

moments (see Appendix B, where a detailed derivation is included). For the case of a 100% 

penetration rate of ACC-equipped vehicles, the model’s equations are: 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0 , (5.19) 

  

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕[𝜌(𝑢2 + 𝜃)]

𝜕𝑥
−
𝛾

𝜏∗
𝜕𝑢

𝜕𝑥
= 𝜌(

𝑉𝑒
∗(𝜌) − 𝑢

𝜏
) , (5.20) 

where 𝜏∗ denotes the relaxation time of the ACC vehicle. From the equation above it is clear 

that the contribution of the ACC vehicles lies in the convection term, which consequently 

results in the propagation of the shock waves (Ngoduy, 2012c). According to this model, the 

impact of ACC vehicles on the wave propagation is indicated through 𝜏∗, which has as result 

that the waves propagate faster upstream and slower downstream in free-flow traffic 

conditions. It was experimentally shown that the impact of ACC vehicles on traffic dynamics 

becomes insignificant when 𝜏∗ > 𝜏. 
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A major difference of the model of Ngoduy, 2012c, compared to the examined one 

(Delis et al., 2015a; Nikolos et al., 2015) is the fact that the ACC additional term is in the LHS 

of the momentum equation, which requires more significant modifications to the original GKT 

model for its numerical discretization. 

Another difference between the two models is that the desired ACC time gap is not 

explicitly defined within the momentum equation in the model of Ngoduy, 2012c. Moreover, 

the additional term is active in the whole density regime (congested and uncongested traffic 

flow), which is not compatible with the objectives of the ACC systems (Shladover et al., 2012). 

A more thorough comparison between the two models should involve numerical 

experiments in common test-cases. This requires the programming of the model proposed by 

Ngoduy, 2012c, which is beyond the scope of this thesis and remains as a topic for future 

work.  
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Chapter 6: Macroscopic Traffic Flow 
Stability Analysis for Adaptive and 
Cooperative Adaptive Cruise Control 
Systems 
 
6.1 Introduction 

In recent years, many efforts have been made aiming to investigate the formation and 

diffusion of traffic flow instabilities; it is well known that even small perturbations resulting 

from the response of drivers to a stimulus, can lead to the formation of traffic jams. In many 

occasions, these emergent traffic jams could present a serious problem rather than just a small 

inconvenience, deteriorating the overall traffic performance, increasing fuel consumption, as 

well as leading to severe infrastructure underutilization. Moreover, such traffic jams are 

usually associated with traffic flow instabilities, including stop-and-go waves, which, under 

congested states, can grow and travel against traffic direction. In general, the application of 

new technologies in the field of VACS, such as ACC and CACC systems, can provide 

additional tools for the remedy of the aforementioned traffic flow problems, reducing the 

adverse impacts of traffic flow instabilities through the selection of suitable operating 

parameters. To this end, in this chapter both linear and nonlinear stability analysis is 

performed, in order to derive the stability threshold(s) of the recently developed second-order 

macroscopic traffic flow model that is able to simulate the effects in traffic flow when ACC 

and CACC vehicles are present; the adopted macroscopic model is based on the GKT model 

(see Chapter 5). Thus, the influence of the equipped vehicles on the traffic flow stabilization 

is considered with respect to both small and large perturbations around the equilibrium state. 

More specifically, traffic flow perturbation phenomena, such as abrupt decelerations 

of vehicles, bottlenecks, rear-end collisions, or non-uniformity of the flow entering a highway 

from an on-ramp, are likely to develop into stop-and-go waves traveling upstream, or even 

traffic jams, under certain traffic flow conditions; thus, resulting in a reduction of traffic 

efficiency and negative influence on total travel time, energy consumption, and traffic 

accidents. Consequently, it is of significant importance to evaluate the capability of ACC- and 

CACC-equipped vehicles to reduce potential traffic instability, and identify their crucial 

parameters that result to a stable or unstable response after the introduction of a disturbance 

to the traffic flow.  

Various researchers have demonstrated that such cooperative systems can improve 

the traffic flow stability (Hasebe et al., 2003; Davis, 2004; van Arem et al., 2006; Naus et al., 

2010), while others appear more conservative regarding their stabilization effects (Marsden et 

al., 2001). In the former case also belongs the study of an ACC CTH policy in the work by 

Zhou & Peng, 2005, concluding that ACC systems are required to ensure string or traffic flow 

stability, otherwise the traffic safety and congestion would be deteriorated instead of 

improving. 

Scientists have been particularly interested in understanding the occurrence of traffic 

flow instabilities since the ‘50s (see, e.g., Herman et al., 1959), as it is considered to be one of 
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the fundamental problems in traffic theory. Indeed, much work has been devoted to the 

application of both linear and nonlinear stability methods in order to derive stability criteria, 

using either microscopic models (Herman et al., 1959; Wilson et al., 2004; Treiber et al., 2006; 

Kesting & Treiber, 2008; Yu et al., 2008; Li et al., 2009, 2013; Tian et al., 2011; Treiber & Kesting, 

2011, 2013; Peng et al., 2012; Tang et al., 2012; Zheng et al., 2012; Ngoduy, 2013c) or macroscopic 

ones (Wilson et al., 2004; Gupta & Katiyar, 2005, 2006; Tampere et al., 2005; Zhang & Wong, 

2006; Tang et al., 2008, 2011; Helbing & Johansson, 2009; Ngoduy & Tampere, 2009; Zhang et 

al., 2009; Tian et al., 2011; Ngoduy, 2012b, 2014; Treiber & Kesting, 2013; Gupta & Dhiman, 

2014). At this point, it is necessary to provide a clear distinction on the definition of stability 

analysis between microscopic and macroscopic traffic flow models. Stability analysis in a 

macroscopic level is referred to as flow stability, describing the way aggregated density and 

speed evolve, depending on variations in traffic flow caused by speed or density 

perturbations. On the other hand, the stability analysis obtained at a vehicle level is called 

string stability of a platoon of vehicles, referring to the way the perturbations from the 

deceleration of the leading vehicles are propagated upstream against the traffic flow (Swaroop 

& Rajagopal, 1999; Treiber & Kesting, 2013). For a more detailed review of the overall 

classification of traffic flow models with the corresponding stability method for each class, we 

refer to the work by Treiber & Kesting, 2013.  

Although much work of microscopic approaches for analyzing linear or nonlinear 

instabilities of traffic flow has been reported, in order to evaluate the impact of the penetration 

of ACC and CACC systems on traffic dynamics (see, for instance, Ioannou & Chien, 1993; 

Swaroop et al., 1994; Swaroop & Hedrick, 1996; Liang & Peng, 1999; 2000; Treiber & Helbing, 

2001; Bareket et al., 2003), corresponding approaches pertaining to macroscopic or gas-kinetic 

traffic flow models are relatively rare. Swaroop & Rajagopal, 1999 first studied the traffic flow 

stability under an ACC spacing policy, using an aggregated macroscopic traffic flow model 

for an open stretch highway with entries and exits. Using a linearized stability analysis they 

concluded that the traffic flow equilibrium state was marginally stable, but traffic flow was 

unstable when using spatially discretized stability analysis for a CTH policy. It should be 

stressed, however, that the findings appear to contradict those reported in the work by Li & 

Shrivastava, 2002, where the traffic flow stability on a circular highway with no entries and 

exits was studied, concluding that the traffic flow induced by the CTH policy is stable. 

Further, a framework to study traffic flow propagation stability using a generalized 

macroscopic model for vehicles controlled by ACC policies was presented by Yi & Horowitz, 

2006. The nonlinear stability condition was derived using a wavefront expansion method, 

resulting in necessary and mandatory conditions to predict the traffic flow stability under 

ACC systems and having the ability to be used for the design and validation of ACC systems 

with different spacing policies as well.  

A linear stability analysis was also used by Ngoduy, 2012c, showing analytically that 

the proposed approach of ACC systems, based on an extension of the multiclass gas-kinetic 

theory, stabilizes the traffic flow with respect to small perturbations. The numerical 

simulation results in a circular homogeneous freeway were supported by the analytical 

results. The same linear stability method was implemented in recent works regarding the 

platoon-based driving behavior (Ngoduy, 2013a) and the multi-anticipative driving behavior 

(Ngoduy & Wilson, 2014); based on the linear stability diagrams, the developed models 

enhance the stabilization of traffic flow with respect to a small perturbation. Finally, stability 

diagrams were constructed from the developed macroscopic model for CACC traffic flow 

dynamics by Ngoduy, 2013b, based on both linear and non-linear stability methods for a 
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certain model parameter set. The numerical results indicated that the CACC vehicles enhance 

the stabilization of traffic flow with respect to both small and large perturbations, compared 

to the ACC vehicles.  

The outline of this chapter is as follows. In Section 6.2, using both the linear (6.2.1) and 

nonlinear (6.2.2) methods, we derive analytically the influencing conditions to the stability of 

traffic flow based on the developed model. Section 6.3 presents a numerical study to support 

qualitatively the analytical findings. 

 

 

6.2 Stability Analysis for ACC and CACC Systems 

Inherently, the stability analysis concerns the study of solutions and trajectories of a dynamic 

system with respect to smaller or larger introduced perturbations in the homogeneous flow, 

which are primarily responsible for the deterioration of traffic flow stability.  Regarding traffic 

flow theory, drivers’ response under hazardous driving conditions, such as an abrupt or 

sudden deceleration/acceleration, results in the formation of perturbations that, in congested 

traffic flow, can grow and eventually give rise to “phantom traffic jams”, propagating 

against the direction of the vehicle flow. Thus, it is of high importance to derive the specific 

instability conditions under which emergent waves are expected to occur even in case of small 

introduced perturbations (Treiber & Kesting, 2013).  

Towards this direction, this section aims to investigate the qualitative properties and 

the influences of the macroscopic characteristics of ACC and CACC vehicles exhibited by the 

developed model, as presented in Chapter 5, on traffic flow stability. To this end, a proper 

stability threshold is derived based on linear and nonlinear stability analyses, in reference to 

small and large perturbations, respectively. At this point it is important to highlight the 

difference between small and large perturbations in the stability analysis of traffic flow 

systems. Mathematically, dynamics of small perturbations can be approximately 

characterized by linear differential equations around an equilibrium point using Taylor series 

expansion. However, the outcome of such linear approximations is that, even if the traffic 

system is linearly stable, it might actually still be nonlinearly unstable with respect to large 

perturbations; small perturbations can be eradicated or delimited with the course of time but 

large ones may be amplified generating persistent traffic waves. Hence, the linear stability 

method is valid only in cases of small perturbations, since the higher order terms in this 

technique are neglected. Indeed, as pointed out by Whitham, 1974, in cases where the 

amplitude of the perturbations is considerably large (caused, e.g., by hard braking maneuvers 

or reckless lane changes), the aforementioned linear stability approach is likely to result in 

incorrect outcomes. Therefore, there has been a need to adopt alternative nonlinear methods 

to derive the stability conditions, under which a large perturbation travels against the traffic 

flow, such as the wavefront expansion method that is also followed in this thesis (Yi et al., 

2003). At this point, it should be highlighted that both linear and nonlinear stability methods 

can complementary provide a valuable insight into the general behavior of the model in the 

presence of ACC or CACC vehicles and its numerical solution (Swaroop & Rajagopal, 1999; 

Ngoduy, 2012c, 2013b).  
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6.2.1  Linear Stability Analysis for ACC and CACC Systems 

Let’s start with finding the unstable traffic regions by the linear stability analysis of the 

presented model, taking primarily into account the case where only ACC vehicles are present 

in the flow, i.e. 𝑝 = 1 (100% penetration rate) in equation (5.2). In order to simplify the 

analysis, it is assumed that the flow is congested (thus the value of 𝐹(𝜌) → 1  in equation (5.6) 

and only the ACC-term is activated in the source term of equation (6.2)). Accordingly, 

equations (5.1) and (5.2) are transformed in the following form:  

𝜕𝑡(𝜌) + 𝑢𝜕𝑥(𝜌) + 𝜌𝜕𝑥(𝑢) = 0 , (6.1) 

  

𝜕𝑡(𝑢) + 𝑢𝜕𝑥(𝑢) +
1

𝜌
(𝜕𝜌(𝑃)𝜕𝑥(𝜌) + 𝜕𝑢(𝑃)𝜕𝑥(𝑢)) =

1

𝜌
(
𝜌∗𝑢∗ − 𝜌𝑢

𝜏∗
) , (6.2) 

where 𝑃 = 𝜃𝜌, while the shortened notations for partial derivatives are defined as 

𝜕𝑎(∙) =
𝜕(∙)

𝜕𝑎
 . (6.3) 

The whole procedure begins supposing that the stationary and spatially homogeneous 

(i.e. time- and location-independent) solution vector of the system of partial differential 

equations (6.1) and (6.2) is the constant density 𝜌0 and velocity 𝑢0 (Helbing & Johansson, 2009; 

Treiber & Kesting, 2013). Thus, in this initial equilibrium state of homogenous flow all vehicles 

have equal speed, constant spacing and zero acceleration. Subsequently, small deviations are 

considered around this solution pair 𝜌0 and 𝑢0, represented by 𝛿𝜌(𝑥, 𝑡) and 𝛿𝑢(𝑥, 𝑡), which 

result in 

𝛿𝜌(𝑥, 𝑡) = 𝜌(𝑥, 𝑡) − 𝜌0   and   𝛿𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢0 . (6.4) 

The dominant essence of the traffic flow stability analysis is to find the threshold under 

which the magnitude of the perturbations 𝛿𝜌(𝑥, 𝑡) and 𝛿𝑢(𝑥, 𝑡) decreases, in order to gradually 

restore the equilibrium state. 

Next, by setting 𝜌(𝑥, 𝑡) = 𝜌0 + 𝛿𝜌(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) = 𝑢0 + 𝛿𝑢(𝑥, 𝑡) into the reformed 

continuity equation (6.1), and performing linear Taylor approximations, where is necessary, 

and dropping all nonlinear terms because of the assumption of small perturbations 

𝛿𝜌(𝑥, 𝑡) 𝜌0⁄ ≪ 1 and 𝛿𝑢(𝑥, 𝑡) 𝑢0⁄ ≪ 1, the following linearized equation is derived 

𝜕𝑡(𝛿𝜌) + 𝑢0𝜕𝑥(𝛿𝜌) + 𝜌0𝜕𝑥(𝛿𝑢) = 0 . (6.5) 

In the same way, and noticing that 𝜌∗𝑢∗  is independent of 𝜌, the linearized equation 

for the momentum dynamics equation (6.2), describing the behavior of ACC vehicles, 

becomes 

𝜕𝑡(𝛿𝑢) + 𝑢0𝜕𝑥(𝛿𝑢) +
1

𝜌0
[𝜕𝑢(𝑃)𝜕𝑥(𝛿𝑢) + 𝜕𝜌(𝑃)𝜕𝑥(𝛿𝜌) −

1

𝜏∗
𝜕𝑢(𝜌

∗𝑢∗)𝛿𝑢] +
𝛿𝑢

𝜏∗
= 0. (6.6) 

 

In principle, the stability analysis highly depends on the form of the perturbed initial 

conditions, which is essential to be defined in a way that the linear approach is as general as 

possible. Indeed, any conventional functional form is possible to be implemented for the 

perturbations of the initial uniform state. However, any periodic function can be written as a 
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discrete sum (or integral in cases of non-periodic functions) of sine and cosine functions. If the 

model is stable with respect to any function of sines or cosines, it will be stable for any linear 

combination of these functions as well. Therefore, proving the stability conditions of the 

model in relation to sine or cosine perturbations, also proves the general stability conditions 

to any functional form of the perturbations (Helbing & Johansson, 2009). Accordingly, it is 

considered that the corresponding functions of the deviations are determined as shown 

below: 

𝛿𝜌(𝑥, 𝑡) = 𝛿𝜌0𝑒
𝜆𝑡+𝑖𝜔𝑥  , (6.7) 

  

𝛿𝑢(𝑥, 𝑡) = 𝛿𝑢0𝑒
𝜆𝑡+𝑖𝜔𝑥 (6.8) 

in which the wave frequency 𝜆 and the wave number 𝜔 are complex numbers: 𝜆, 𝜔 ∈ ℂ, 𝑖 

denotes the imaginary unit, and 𝛿𝜌0 and 𝛿𝑢0 are constants. 

The remainder of the linear stability analysis concentrates on finding the conditions so 

that two restrictions are met (Helbing & Johansson, 2009; Treiber & Kesting, 2013): 

 

I. The deviation pair 𝛿𝜌(𝑥, 𝑡) and 𝛿𝑢(𝑥, 𝑡) is a solution of equations (6.1) and (6.2) 

and 

 

II. This solution is stable, which means that the amplitude of the perturbation 

should diminish with time; the latter is true if the real part of 𝜆 is strictly 

negative. 

 

In order to satisfy the former condition we substitute the definitions for the 

perturbations 𝛿𝜌(𝑥, 𝑡) and 𝛿𝑢(𝑥, 𝑡) (equations (6.7) and (6.8)) are substituted in the linearized 

equations (6.5) and (6.6), which yields the following linear system (which can be considered 

as an eigenvalue problem) 

(
𝜆 − 𝑎11 𝑎12
𝑎21 𝜆 − 𝑎22

)
⏟            

ℐ

(
𝛿𝜌0
𝛿𝑢0

) = (
0
0
) (6.9) 

using the following abbreviations 

𝑎11 = −𝑖𝜔𝑢0 (6.10) 

  

𝑎12 = 𝑖𝜔𝜌0 (6.11) 

  

𝑎21 =  𝑖𝜔
1

𝜌0
𝜕𝜌(𝑃) (6.12) 

  

𝑎22 = −𝑖𝜔(𝑢0 +
1

𝜌0
𝜕𝑢(𝑃)) +

1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
 . (6.13) 

These eigenvalues of 𝜆 result by solving the characteristic polynomial of second order 

in 𝜆, which is obtained by determining the determinant of the matrix ℐ, and requiring that it 

becomes equal to zero. So, the corresponding characteristic polynomial is given as 

𝑑𝑒𝑡(ℐ) = 0 ⇔ 𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0 , (6.14) 
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which results in 

𝜆1 = 0.5 (𝑎11 + 𝑎22 +√(𝑎11 − 𝑎22)
2 + 4𝑎12𝑎21) (6.15) 

and 

𝜆2 = 0.5 (𝑎11 + 𝑎22 −√(𝑎11 − 𝑎22)
2 + 4𝑎12𝑎21) . (6.16) 

Condition II is strictly fulfilled if the real part of 𝜆1, 𝜆2 is strictly negative, i.e. 𝑅𝑒(𝜆1,2) <

0. Thus,  

𝑅𝑒(𝑎11 + 𝑎22) =
1

𝜌0𝜏
∗

𝜕(𝜌∗𝑢∗)

𝜕𝑢
−
1

𝜏∗
= −

1

𝜏∗
(1 −

1

𝜌0

𝜕(𝜌∗𝑢∗)

𝜕𝑢
) . (6.17) 

Under the assumption of small perturbations around the initial state, it can be written 

that 

1

𝜌0

𝜕(𝜌∗𝑢∗)

𝜕𝑢
≈
1

𝜌0

𝜕(𝜌∗𝑢)

𝜕𝑢
=
1

𝜌0

𝜌𝑚𝑎𝑥
(1 + 𝑇∗𝜌𝑚𝑎𝑥𝑢)

2
 , (6.18) 

which for 𝜌0 ∈ [𝜌𝑐𝑟, 𝜌𝑚𝑎𝑥] takes values always less than one. Thus, the value of 𝑅𝑒(𝑎11 + 𝑎22) 

is always negative. 

Owing to the fact that the square root of equations (6.15) and (6.16) contains a complex 

number the following useful formula is applied for separating the real part 𝑅 and imaginary 

part 𝐼 for a complex number 𝑧 = 𝑅 + 𝑖𝐼 (which is described in detail in the Appendix A): 

√𝑅 ± 𝑖|𝐼| = √0.5 (√𝑅2 + 𝐼2 + 𝑅) ± 𝑖√0.5 (√𝑅2 + 𝐼2 − 𝑅) . (6.19) 

By applying (6.18) to the square root terms of 𝜆1,2, eventually results in 

𝑅𝑒 (√(𝑎11 − 𝑎22)
2 + 4𝑎12𝑎21) = √0.5 (√𝑅

2 + 𝐼2 + 𝑅) , (6.20) 

where now 

𝑅 =
1

𝜏∗2
(1 −

1

𝜌0
𝜕𝑢(𝜌

∗𝑢∗))

2

− (
𝜔

𝜌0
𝜕𝑢(𝑃))

2

− 4𝜔2𝜕𝜌(𝑃) (6.21) 

and 

𝐼 =
2𝜔

𝜌0𝜏
∗
𝜕𝑢(𝑃)(1 −

1

𝜌0
𝜕𝑢(𝜌

∗𝑢∗)) . (6.22) 

Thus, from  equations (6.17) and (6.20), and simultaneously taking into account that a 

change from stable to unstable behavior, i.e. the transition from negative to positive values of 

𝑅𝑒(𝜆1,2) occurs only for eigenvalue 𝜆1, the inequality 𝑅𝑒(𝜆1) < 0 results in: 

1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
< −√0.5 (√𝑅2 + 𝐼2 + 𝑅) ⇔ 

(
1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
)
2

> 0.5 (√𝑅2 + 𝐼2 + 𝑅) ⇔ 

(6.23) 
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2 (
1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
)
2

> (√𝑅2 + 𝐼2 + 𝑅) ⇔ 

4 (
1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
)
4

> (√𝑅2 + 𝐼2 + 𝑅)
2
⇔ 

4 (
1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
)
4

− 4(
1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗) −
1

𝜏∗
)
2

𝑅 > 𝐼2⇔ 

𝜕𝜌(𝑃)(
1

𝜏∗
−

1

𝜌0𝜏
∗
𝜕𝑢(𝜌

∗𝑢∗))

2

> 0 . 

Using equation (6.18), the following inequality is conducted 

ℬ (
1

𝜏∗
)
2

(1 −
1

𝜌0
𝒜)

2

> 0 (6.24) 

where ℬ = 𝜕𝜌(𝑃), 𝒜 =
𝜌𝑚𝑎𝑥

(1+𝑇∗𝜌𝑚𝑎𝑥𝑢)
2 . 

From the last inequality, provided that the term ℬ = 𝜕𝜌(𝑃) is positive (which is true in 

our case, where the pressure term 𝑃 is modelled as 𝑃 = 𝜌𝐴(𝜌)𝑢2), the stability condition for 

linear stability is always fulfilled. As a special case, the stability threshold is derived for  

(1 −
1

𝜌0
𝒜)

2

= 0 ⇔ 𝜌0 = 𝒜 =
𝜌𝑚𝑎𝑥

(1 + 𝑇∗𝜌𝑚𝑎𝑥𝑢)
2

 

⇔ 𝑇∗ =

−1+ √
𝜌𝑚𝑎𝑥
𝜌

𝜌𝑚𝑎𝑥𝑢
 . 

(6.25) 

The possible values of 𝑇∗ ∈ [𝑇𝑚𝑖𝑛
∗ , 𝑇𝑚𝑎𝑥

∗ ]. From equation (6.25), arises: 

𝑢 =
1

𝑇∗

−1+ √
𝜌𝑚𝑎𝑥
𝜌

𝜌𝑚𝑎𝑥
 . 

(6.26) 

Following an analogous derivation method, and taking into consideration the case of 

having only CACC-equipped vehicles (see Chapter 5), the linear stability conditions for 

equations (5.1) and (5.2) are obtained as: 

𝜕𝜌(𝑃)(∑
1

𝜏𝑖
∗

𝑀

𝑖=1

−∑
1

𝜌0𝜏𝑖
∗

𝜌𝑚𝑎𝑥
(1 + 𝑇∗𝜌𝑚𝑎𝑥𝑢)

2

𝑀

𝑖=1

)

2

> 0 .  (6.27) 

The term in the left-hand-side of equation (6.27) can be written as: 

𝜕𝜌(𝑃)(∑
1

𝜏𝑖
∗

𝑀

𝑖=1

(1 −
1

𝜌0

𝜌𝑚𝑎𝑥
(1 + 𝑇∗𝜌𝑚𝑎𝑥𝑢)

2
))

2

= 𝜕𝜌(𝑃)(∑
1

𝜏𝑖
∗

𝑀

𝑖=1

(1 −
1

𝜌0
𝒜))

2

= 𝜕𝜌(𝑃) (1 −
1

𝜌0
𝒜)

2

(∑
1

𝜏𝑖
∗

𝑀

𝑖=1

)

2

 . 

(6.28) 

As the third term in equation (6.28) is always positive, the stability threshold results in 

this case in the same way as for the previous ACC analysis (equations (6.25) and (6.26)). 
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6.2.2 Nonlinear Stability Analysis for ACC and CACC Systems 

Since the linear stability analysis of the ACC/CACC system presented in Section 6.2.1 is only 

valid when the magnitude of perturbations is small, as for the linear approximation to be 

valid, in this Section the nonlinear stability analysis follows. The propagation stability 

conditions for the developed ACC and CACC traffic flow model are derived using a 

wavefront expansion method with respect to large perturbations around an equilibrium 

traffic state. In principle, if a perturbation begins at a certain location 𝑥0 in a homogenous 

equilibrium state (i.e. uniform flow) (𝜌0, 𝑢0), the wavefront is the propagation curve of the 

perturbation inside this homogenous flow. If the perturbation maintains its initial modulation 

magnitude during propagation, the traffic flow is considered to be nonlinearly stable. In 

contrast, if the perturbation travels upstream with increasing amplitude, traffic will become 

gradually unstable, forming for example shock waves or stop-and-go waves; the wavefront 

in a traffic system can be considered as a separation curve between disturbed and undisturbed 

flow regions (Yi et al., 2003). 

In what follows, the wavefront expansion method is adopted in order to find the 

unstable traffic regions of traffic flow via model equations (5.1) and (5.2), which incorporate 

the modelling of ACC and CACC vehicles (see Chapter 5). First of all, only the case of ACC-

equipped vehicles is taken into account, while the same procedure will be expanded 

subsequently to the case of CACC-equipped vehicles. Hence, equations (5.1) and (5.2) are 

considered in their simplified form, presented in equations (6.1) and (6.2).  

To derive the influencing conditions to traffic flow stability under a large perturbation, 

the macroscopic traffic flow variables, 𝜌(𝑥, 𝑡) and 𝑢(𝑥, 𝑡), need to be expanded, as well as their 

time and space partial derivatives, around the wavefront, as a power series of a small 

deviation 

𝜉 = 𝑥 − 𝑋(𝑡) , (6.29) 

with 𝑋(𝑡) being the location of the wavefront at time instant 𝑡, and 

𝑋̇(𝑡) =
𝑑𝑋

𝑑𝑡
= 𝑢0 + 𝑢𝑐  , (6.30) 

where 𝑢𝑐 denotes the relative characteristic speed, which will be defined later. Thus, using 

equation (6.29), the aforementioned flow variables 𝜌 and 𝑢 are expanded downstream the 

wavefront in a power series of 𝜉 as 

𝜌(𝑥, 𝑡) = 𝜌0 + 𝜉𝜕𝑥(𝜌(𝑡)) +
1

2
𝜉2𝜕𝑥𝑥(𝜌(𝑡)) +⋯ (6.31) 

  

𝑢(𝑥, 𝑡) = 𝑢0 + 𝜉𝜕𝑥(𝑢(𝑡)) +
1

2
𝜉2𝜕𝑥𝑥(𝑢(𝑡)) +⋯ (6.32) 

  

𝜕𝑡(𝜌) = −𝑋̇(𝑡)𝜕𝑥(𝜌(𝑡)) + 𝜉𝜌̇𝑥(𝑡) + 𝜉 (−𝑋̇(𝑡)𝜕𝑥𝑥(𝜌(𝑡))) +
1

2
𝜉2𝜌̇𝑥𝑥(𝑡) + ⋯ (6.33) 

  

𝜕𝑡(𝑢) = −𝑋̇(𝑡)𝜕𝑥(𝑢(𝑡)) + 𝜉𝑢̇𝑥(𝑡) + 𝜉 (−𝑋̇(𝑡)𝜕𝑥𝑥(𝑢(𝑡))) +
1

2
𝜉2𝑢̇𝑥𝑥(𝑡) + ⋯ (6.34) 
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𝜕𝑥(𝜌) = 𝜕𝑥(𝜌(𝑡)) + 𝜉𝜕𝑥𝑥(𝜌(𝑡)) +
1

2
𝜉2𝜕𝑥𝑥𝑥(𝜌(𝑡)) + ⋯ (6.35) 

  

𝜕𝑥(𝑢) = 𝜕𝑥(𝑢(𝑡)) + 𝜉𝜕𝑥𝑥(𝑢(𝑡)) +
1

2
𝜉2𝜕𝑥𝑥𝑥(𝑢(𝑡)) + ⋯, (6.36) 

where the abbreviations for derivatives are defined as 

𝜌̇𝑥(𝑡) =
𝑑(𝜕𝑥(𝜌(𝑡)))

𝑑𝑡
 , 𝑢̇𝑥(𝑡) =

𝑑(𝜕𝑥(𝑢(𝑡)))

𝑑𝑡
 , 

(6.37) 

  

𝜌̇𝑥𝑥(𝑡) =
𝑑(𝜕𝑥𝑥(𝜌(𝑡)))

𝑑𝑡
 , 𝑢̇𝑥𝑥(𝑡) =

𝑑(𝜕𝑥𝑥(𝑢(𝑡)))

𝑑𝑡
 , 

  

𝜕𝑥(𝜌(𝑡)) =
𝜕𝜌

𝜕𝑥
|
𝑋(𝑡),𝑡

 , 𝜕𝑥(𝑢(𝑡)) =
𝜕𝑢

𝜕𝑥
|
𝑋(𝑡),𝑡

 , 

  

𝜕𝑥𝑥(𝜌(𝑡)) =
𝜕2𝜌

𝜕𝑥2
|
𝑋(𝑡),𝑡

 , 𝜕𝑥𝑥(𝑢(𝑡)) =
𝜕2𝑢

𝜕𝑥2
|
𝑋(𝑡),𝑡

 , 

  

𝜕𝑥𝑥𝑥(𝜌(𝑡)) =
𝜕3𝜌

𝜕𝑥3
|
𝑋(𝑡),𝑡

, 𝜕𝑥𝑥𝑥(𝑢(𝑡)) =
𝜕3𝑢

𝜕𝑥3
|
𝑋(𝑡),𝑡

 . 

Correspondingly, the derivatives of traffic pressure in relation to the local density and 

speed are expressed as 

𝜕𝜌(𝑃) = 𝜕𝜌(𝑃0) + 𝜉[𝜕𝜌𝜌(𝑃0)𝜕𝑥(𝜌(𝑡)) + 𝜕𝜌𝑢(𝑃0)𝜕𝑥(𝑢(𝑡))] + ⋯ (6.38) 

  

𝜕𝑢(𝑃) = 𝜕𝑢(𝑃0) + 𝜉[𝜕𝑢𝜌(𝑃0)𝜕𝑥(𝜌(𝑡)) + 𝜕𝑢𝑢(𝑃0)𝜕𝑥(𝑢(𝑡))] +⋯ (6.39) 

Similarly, the desired density 𝜌∗and speed 𝑢∗ in the ACC model at the relative position 

(with respect to the front) (𝑥∗ − 𝑋) = (𝑑∗ + 𝜉), with 𝑑∗ = 𝑥∗ − 𝑥, are expanded as  

𝜌∗ = 𝜌0 + (𝑑
∗ + 𝜉)𝜕𝑥(𝜌(𝑡)) +

1

2
(𝑑∗ + 𝜉)2𝜕𝑥𝑥(𝜌(𝑡))

= 𝜌0 + (𝑑
∗ + 𝜉)𝜕𝑥(𝜌(𝑡)) +

1

2
((𝑑∗)2 + 𝜉2 + 2𝑑∗𝜉)𝜕𝑥𝑥(𝜌(𝑡))

= 𝜌0 + 𝜉𝜕𝑥(𝜌(𝑡)) + 𝑑
∗ (𝜕𝑥(𝜌(𝑡)) + 𝜉𝜕𝑥𝑥(𝜌(𝑡))) + ⋯, 

(6.40) 

and similarly 

𝑢∗ = 𝑢0 + 𝜉𝜕𝑥(𝑢(𝑡)) + 𝑑
∗ (𝜕𝑥(𝑢(𝑡)) + 𝜉𝜕𝑥𝑥(𝑢(𝑡))) + ⋯, (6.41) 

where 𝑃0 = 𝑃(𝜌0, 𝑢0). Further, the following abbreviations have been used 

𝜕𝜌(𝑃0) =
𝜕𝑃

𝜕𝜌
|
𝑋(𝑡),𝑡

 , 𝜕𝜌𝜌(𝑃0) =
𝜕2𝑃

𝜕𝜌2
|
𝑋(𝑡),𝑡

 , 

(6.42) 
  

𝜕𝑢(𝑃0) =
𝜕𝑃

𝜕𝑢
|
𝑋(𝑡),𝑡

 , 𝜕𝑢𝑢(𝑃0) =
𝜕2𝑃

𝜕𝑢2
|
𝑋(𝑡),𝑡

, 
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𝜕𝜌𝑢(𝑃0) =
𝜕2𝑃

𝜕𝜌𝜕𝑢
|
𝑋(𝑡),𝑡

 , 𝜕𝑢𝜌(𝑃0) =
𝜕2𝑃

𝜕𝜌𝜕𝑢
|
𝑋(𝑡),𝑡

. 

Thereafter, substituting equations (6.31)-(6.36) and (6.38)-(6.41) into the system 

equations (6.1) and (6.2), and neglecting terms including 𝜉2and (𝑑∗)2, two sets of equations 

are obtained, one for the original position (𝜉0) (for 𝜉 = 0) and one for the disturbed position 

(𝜉1), taking also into account equation (6.30). Thus, conservation equation (6.1) provides the 

following expressions:  

𝝃𝟎 ∶  −𝜕𝑥(𝜌)𝑢𝑐 + 𝜌0𝜕𝑥(𝑢) = 0 , (6.43) 

  

𝝃𝟏 ∶ 𝜌̇𝑥 − 𝜕𝑥𝑥(𝜌)𝑢𝑐 + 2𝜕𝑥(𝜌)𝜕𝑥(𝑢) + 𝜌0𝜕𝑥𝑥(𝑢) = 0 . (6.44) 

Similarly, for the momentum dynamics equation (5.2), the following expressions are 

obtained (using also equations (6.43) and (6.44)): 

𝝃𝟎 ∶ −𝑢𝑐𝜕𝑥(𝑢) +
1

𝜌0
 (𝜕𝜌(𝑃0)𝜕𝑥(𝜌) + 𝜕𝑢(𝑃0)𝜕𝑥(𝑢)) =  

1

𝜌0
(
𝑑∗

𝜏∗
) (𝜌0𝜕𝑥(𝑢) + 𝑢0𝜕𝑥(𝜌)) , (6.45) 

 

  

𝝃𝟏 ∶  𝑢̇𝑥 − 𝑢𝑐𝜕𝑥𝑥(𝑢) + (𝜕𝑥(𝑢))
2
− 𝑢𝑐

𝜕𝑥(𝜌)

𝜌0
𝜕𝑥(𝑢) 

+
1

𝜌0
 𝜕𝜌(𝑃0)𝜕𝑥𝑥(𝜌) +

1

𝜌0
  𝜕𝜌𝜌(𝑃0)(𝜕𝑥(𝜌))

2
+
2

𝜌0
𝜕𝜌𝑢(𝑃0)𝜕𝑥(𝜌)𝜕𝑥(𝑢) 

+
1

𝜌0
 𝜕𝑢(𝑃0)𝜕𝑥𝑥(𝑢) +

1

𝜌0
𝜕𝑢𝑢(𝑃0)(𝜕𝑥(𝑢))

2
 

= (
𝑑∗

𝜏∗
) (𝜕𝑥𝑥(𝑢) +

2

𝜌0
𝜕𝑥(𝜌)𝜕𝑥(𝑢) +

1

𝜌0
𝑢0𝜕𝑥𝑥(𝜌)) . 

(6.46) 

Equation (6.43) leads to 

𝜕𝑥(𝜌) =
𝜌0𝜕𝑥(𝑢)

𝑢𝑐
 . (6.47) 

Thus, by substituting equation (6.47) into equation (6.45), the following relation for the 

characteristic velocities 𝑢𝑐 is derived, 

𝑢𝑐
2 − (

1

𝜌0
 𝜕𝑢(𝑃0) − (

𝑑∗

𝜏∗
))𝑢𝑐 + (

𝑑∗

𝜏∗
) 𝑢0 − 𝜕𝜌(𝑃0) = 0 ,  (6.48) 

which gives 

𝑢𝑐± =
1

2
(
1

𝜌0
 𝜕𝑢(𝑃0) − (

𝑑∗

𝜏∗
)) ± √(

1

2𝜌0
 𝜕𝑢(𝑃0) −

1

2
(
𝑑∗

𝜏∗
))

2

+ 𝜕𝜌(𝑃0) − (
𝑑∗

𝜏∗
)𝑢0 . (6.49) 

In general, in free-flow traffic condition, related to low traffic demand, disturbances 

propagate downstream with positive characteristic velocity 𝑢𝑐+. In contrast, under congested 

flow conditions they travel upstream, with negative characteristic velocity 𝑢𝑐−. However, as 

pointed out by Yi et al., 2003, the positive characteristic velocity 𝑢𝑐+ will decay to zero very 
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quickly in the course of time without having a particularly relevant role. Therefore, in the 

remainder of the nonlinear stability analysis, the branch corresponding to the perturbation 

moving downstream is neglected, concentrating only on the upstream propagation with 

characteristic velocity 𝑢𝑐−. 

Subsequently, the second-order partial derivatives 𝜕𝑥𝑥(𝜌) and 𝜕𝑥𝑥(𝑢) in equations 

(6.44) and (6.46) can be eliminated. This is feasible by multiplying expressions (6.44) and (6.46) 

with the terms {−𝑢𝑐−} and {
1

𝜌0
((
𝑑∗

𝜏∗
) 𝑢0 − 𝜕𝜌(𝑃0))}, respectively, and using properly equation  

(6.48), whereby the resulting equations are added to one another. Consequently, after some 

algebraic manipulation, we obtain the reduced equation 

𝑢̇𝑥 + 𝑎𝜕𝑥(𝑢) + 𝛽(𝜕𝑥(𝑢))
2
= 0 ,  (6.50) 

in which 

𝑎 = 0 ,  

 (6.51) 

β =
2𝜕𝜌(𝑃0) + 𝜌0𝜕𝜌𝜌(𝑃0) + 2𝑢𝑐−𝜕𝜌𝑢(𝑃0) +

(𝑢𝑐−)
2

𝜌0
𝜕𝑢𝑢(𝑃0) − 2𝑢0 [

𝑑∗

𝜏∗]
− 2𝑢𝑐− [

𝑑∗

𝜏∗]

(𝑢𝑐−)
2
+ 𝜕𝜌(𝑃0) − 𝑢0 [

𝑑∗

𝜏∗]
 .  

The solution of equation (6.50) is given as  

𝜕𝑥(𝑢(𝑡)) =
𝜕𝑥(𝑢(0))

𝜕𝑥(𝑢(0))𝛽𝑡 + 1
 , (6.52) 

where 𝜕𝑥(𝑢(0)) is the initial condition for 𝜕𝑥(𝑢(𝑡)). From equation (6.52), the trend of 𝜕𝑥(𝑢(𝑡)) 

can be determined using the derivative 

𝑑(𝜕𝑥(𝑢(𝑡)))

𝑑𝑡
=

−(𝜕𝑥(𝑢(0)))
2
𝛽

(𝜕𝑥(𝑢(0))𝛽𝑡 + 1)
2 . (6.53) 

According to equation (6.52), if the denominator tends to zero, then 𝜕𝑥(𝑢(𝑡)) tends to 

infinity and traffic becomes nonlinearly unstable. More precisely, this can happen when 

𝜕𝑥(𝑢(0))𝛽𝑡 + 1 = 0 or when 𝑡 = −1 (𝜕𝑥𝑢(0)𝛽)⁄ . As 𝑡 is always positive, for the satisfaction of 

the previous condition, 𝜕𝑥(𝑢(0))𝛽 < 0  should be applied. Thus, for the unstable regions, the 

solution must satisfy the following two restrictions: {𝜕𝑥(𝑢(0)) < 0 𝑎𝑛𝑑 𝛽 > 0} or {𝜕𝑥(𝑢(0)) >

0 𝑎𝑛𝑑 𝛽 < 0}. However, for most second-order models, 𝛽 > 0 (Yi et al., 2003; Ngoduy, 2013b); 

thus it is expected that unstable regions emerge when 𝜕𝑥(𝑢(0)) < 0. 

Similarly, following the aforementioned derivation nonlinear stability method 

including the contribution of CACC elements, the reduced equation is given as: 

𝑢̇𝑥 + 𝑎𝜕𝑥(𝑢) + 𝛽(𝜕𝑥(𝑢))
2
= 0 , (6.54) 

where  

𝑎 = 0 ,  

 (6.55) 
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𝛽 = 
2𝜕𝜌(𝑃0) + 𝜌0𝜕𝜌𝜌(𝑃0) + 2𝑢𝑐−𝜕𝜌𝑢(𝑃0) +

(𝑢𝑐−)
2

𝜌0
𝜕𝑢𝑢(𝑃0) − 2𝑢0∑

𝑑∗

𝜏𝑖
∗

𝑀
𝑖=1 − 2𝑢𝑐−∑

𝑑∗

𝜏𝑖
∗

𝑀
𝑖=1

(𝑢𝑐−)
2
+ 𝜕𝜌(𝑃0) − 𝑢0∑

𝑑∗

𝜏𝑖
∗

𝑀
𝑖=1

 .  

 

 

6.3 Numerical Study for Nonlinear Stability Analysis of ACC Systems 

In this section, we investigate numerically the findings of the theoretical analysis, 

assuming the traffic flow inside a single-lane ring road of circumference 𝐿 = 10 km; periodic 

boundary conditions were implemented at the boundaries of the discretized section. The 

second order model is numerically approximated by an accurate and robust high-resolution 

finite volume relaxation scheme, where the nonlinear system of partial differential equations 

is first recast to a diagonalizable semi-linear system and is then discretized by a higher-order 

WENO scheme (Delis et al., 2014, 2015a). 

We consider an initial perturbation of the average density, as it is depicted in Figure 

6.1, given as 

𝜌 = 𝜌̅ − 𝛥𝜌
1

2
 [1 + 𝑡𝑎𝑛ℎ (

𝑥 − 𝑥1
𝛥𝑥

)] + 𝛥𝜌
1

2
 [1 + 𝑡𝑎𝑛ℎ (

𝑥 − 𝑥2
𝛥𝑥

)] , (6.56) 

where 𝜌̅ = 45 veh/km, 𝛥𝜌 = 5 veh/km, 𝛥𝑥 = 400 m, 𝑥1 = 4000 m, and 𝑥2 = 7000 m. The 

resulting velocity perturbation is also presented in Figure 6.1. The initial perturbation was 

selected in order to produce the condition 𝜕𝑥(𝑢(0)) < 0. 

 

FIGURE 6.1: The initial perturbation in ρ (left) and u (right), applied for the numerical example. 

The ring was discretized with 𝑛𝑝𝑡𝑠 = 400 grid points, while the model parameters 

used in the simulation of the GKT model were 𝑢𝑚𝑎𝑥 = 110 km/h, 𝜌𝑚𝑎𝑥 = 160 veh/km, 𝜌𝑐𝑟 =

0.27𝜌𝑚𝑎𝑥, 𝜏 = 35 s, 𝐴0 = 0.008, 𝛿𝛢 = 0.02, 𝛿𝜌 = 0.05𝜌𝑚𝑎𝑥, 𝑇 = 1.8 s, 𝛾 = 1.2. Simulations are 

reported up to 1200 s. First the manual flow was simulated (by setting 𝑝 = 0 in equation (5.2)).  

The simulation results for manual cars are presented in Figures 6.2 and 6.3 for density 

and velocity, respectively; a cascade of stop-and-go waves emerges from the perturbation in 

the initial condition. 

The corresponding simulation results for ACC traffic (by setting 𝑝 = 1 in equation 

(5.2)) are presented in Figures 6.4 and 6.5, for density and velocity evolution respectively. The 
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same initial perturbation was used as for the flow with manual vehicles. All cars are supposed 

to be equipped with the same type of ACC, with the same parameters; the time gap was set 

equal to 𝑇∗ = 1 s, while 𝜌𝑎𝑐𝑐 = 0.9𝜌𝑐𝑟, 𝛾
∗ = 1 and 𝜏∗ = 0.5 s. As it can be observed, the original 

cascade of stop-and-go waves (produced in the manual traffic) has been eliminated; however, 

a series of growing instabilities emerges from the region where 𝜕𝑥(𝑢(0)) < 0 in the initial 

condition. This observation is compatible with the findings of the theoretical investigation. 

 

 

 

FIGURE 6.2: Density evolution for manually driven cars. 
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FIGURE 6.3: Velocity evolution for manually driven cars. 

 

 

FIGURE 6.4: Density evolution for ACC traffic.  
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FIGURE 6.5: Velocity evolution for ACC traffic. 
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Chapter 7: Conclusions and Future 
Work 
 

This final chapter summarizes the findings and results of this thesis. In particular, Section 7.1 

gives a summary of the study and highlights the main results and contributions of the thesis, 

while Section 7.2 indicates future research aspects that could be considered to extend the 

investigation results. 

 

7.1 Concluding remarks 

In the last few decades, traffic flow theory, modelling, and simulation have gained 

considerable attention since overall traffic demand has increased and more data as well as 

easy access to computing power has become available. Moreover, this growing interest to 

traffic flow modelling stems also from the need for reliable traffic management, so as to 

optimize traffic efficiency and safety under various traffic flow conditions. One of the main 

issues, regarding traffic flow models, is their level of proximity to reality and its 

representation. Hence, to ensure the validity of any model in performing real-world 

simulations and provide results that are reliable, the application of calibration and validation 

processes is deemed mandatory. 

Concurrently, traffic congestion originating from off-ramp areas is a particular, but 

quite frequent case of (recurrent) congestion, which is appearing usually at urban or peri-

urban freeways during the peak periods and is difficult to deal with. Moreover, within the 

traffic flow modelling literature there are, so far, no studies undertaking validation of second-

order traffic flow models regarding the reproduction of traffic conditions at congested 

freeway on/off-ramp areas. The emergence of traffic flow models that are able to reproduce 

such cases with satisfactory accuracy is deemed important as it may trigger the development 

of innovative traffic control strategies that face this particular type of freeway congestion. This 

gap in the literature was addressed within this thesis, which focuses on the validation of traffic 

flow modelling for congested freeway off-ramp areas.  

In addition, the frequent occurrence of perturbations in traffic flow, such as sudden 

deceleration of vehicles, or the non-uniformity of the flow entering a highway from an on-

ramp, is likely to develop into stop-and-go waves traveling upstream, or traffic jams when the 

amplitude of perturbations is large enough, resulting in considerable time-delays, increased 

fuel consumption and air pollution, as well as a serious under-utilization of the available 

infrastructure. Consequently, traffic flow stability analysis is considered to be one of the 

fundamental problems in traffic theory, and scientists have been particularly interested in 

understanding the formation and evolution of such traffic flow instabilities since the early 

days of traffic engineering. Recent developments in the field of ITS and VACS, such as ACC 

and CACC systems, besides their contribution in safety and convenience of the passengers, is 

believed to be a potential remedy to the aforementioned traffic flow problems, and be capable 

of reducing the effects of traffic flow instabilities with the appropriate selection of their 

operation parameters. This advanced feature, in conjunction with the expected extensive use 

of such systems in the near future, can provide additional tools for the mitigation of the 

rapidly growing problem of traffic congestion. Towards this direction, this thesis attempts to 
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perform both a linear and a nonlinear stability analysis of a recently developed second order 

macroscopic traffic flow model able to simulate the flow of ACC/CACC-equipped vehicles, 

and identify the ways that ACC and CACC systems influence the stability of traffic flow, in 

relation with both small and large traffic disturbances around the equilibrium state.  

In particular, in the first part of the thesis (Chapter 3 − Chapter 4), a parallel, 

synchronous and asynchronous, metamodel-assisted DE algorithm was employed for the 

automated calibration of the parameters of a second-order GKT traffic flow model (along with 

its multi-lane extension), in order to evaluate the representation of traffic conditions at 

congested freeway on/off-ramp areas. The model was first calibrated using real traffic data 

from two different motorway networks; a motorway stretch in the U.K., where severe traffic 

congestion is created due to high on-ramp flows during the morning peak periods, and a 

freeway stretch in Greece, where recurrent congestion is triggered by a saturated off-ramp 

during the morning peak hours. Then the resulted model was validated using different traffic 

data sets from the same freeway sites. Finally, this thesis evaluates the implementation of the 

proposed DE algorithm for the comparison of the GKT model and the well-known METANET 

model, with respect to their accuracy in reproducing real traffic dynamics using data from the 

freeway stretch in U.K.   

The results demonstrated that the parallel, metamodel-assisted DE algorithm can be 

considered as a useful and versatile tool for the calibration of macroscopic traffic flow models 

in which the cost function exhibits multi-optimal values. It also has the advantage that it can 

be used without the need of tuning its parameters for the problem at hand, while wide bounds 

can be used for the unknown vector of parameters without convergence problems. The well-

known computational inefficiency of evolutionary algorithms was successfully addressed in 

our implementation with parallel processing and surrogate-model assistance. Moreover, both 

the GKT and the METANET model achieved satisfactory reproduction of the network traffic 

conditions for the calibration date. Finally, the calibration and validation of both models 

indicated that they are both able to reproduce the traffic conditions of the examined networks 

also for other dates, while the GKT model achieves a lower cost function value comparing to 

the METANET model for the calibration date.  

The second part of the thesis (Chapter 5 - Chapter 6) aims to derive the stability 

conditions of a recently proposed second-order macroscopic traffic flow model, as to 

investigate the effects of the incorporated ACC and CACC characteristics on the stabilization 

of traffic flow under small and large perturbations around the equilibrium state, applying 

both linear and nonlinear stability analyses. The macroscopic model under investigation has 

been derived based on the well-known GKT model, taking into account the impacts of ACC 

and CACC equipped vehicles by adding a proper source term in the momentum equation of 

the GKT model. This term controls the speed dynamics, contributing to the relaxation term in 

the GKT model equations and also takes explicitly into account the major time/space-gap 

principle of ACC and by extension CACC systems.  

Considering the above, the main contributions and findings of the thesis can be 

summarized as follows: 

 

 The numerically approximated second-order GKT model via a high resolution finite 

volume relaxation scheme was calibrated by implementing a parallel, synchronous & 

asynchronous, metamodel-assisted Differential Evolution (DE) algorithm. The DE 

algorithm was also applied for the calibration of the discrete second order METANET 
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model. The calibration procedure proved to be problem-free for both macroscopic 

models, for single- and multi-lane variants and for all test-cases considered. 

 

 The optimization results showed that the DE algorithm can be considered as a useful, 

effective, and versatile tool for the calibration of macroscopic traffic flow models. It 

provides the ability to calibrate a large number of parameters, in a fully automated 

way, without human interaction, and with wide initial bounds for the parameters’ 

vector. The large number of evaluations, required by all EAs, was successfully 

addressed through parallel processing and ANN surrogate models. 

 

 The asynchronous version of the parallel DE proved to be more time efficient than the 

synchronous one, with a steeper convergence rate at the beginning of the procedure. 

Both versions provided almost identical optimal solutions. 

 

  Both GKT and METANET macroscopic models showed that they can reproduce 

accurately and similarly real traffic dynamics, including congestion. The METANET 

model showed a longer congestion time, compared to the GKT one, for the validation 

date. 

 

 The qualitative properties of the developed macroscopic model to reflect the effects of 

ACC/CACC-equipped vehicles on traffic flow stability were investigated through a 

linear stability method, which refers to linear Taylor approximations, used throughout 

the analysis. However, the consequence of using such linear approximations is that 

even if the traffic system is linearly stable, might actually still display nonlinear 

instability with respect to large perturbations. Thus, subsequently, a wavefront 

expansion method, with respect to large perturbations, was applied to analytically 

derive the stability region of the developed model. The procedure was proved not a 

trivial task, however, provided interesting findings: a perturbation in the initial 

conditions with 𝜕𝑥(𝑢(0)) < 0 leads to growing instabilities. 

 

 The theoretical findings for the ACC model were supported by the simulation results 

derived for a numerical test in a single-lane ring road with a perturbation in the initial 

conditions of density and speed. The simulation results revealed that a series of 

growing instabilities emerges from the region in the initial conditions where the 

previous instability criterion is valid. 

 

7.2 Further research 

There are various ways to extend the investigations presented in this thesis. Few of 

them are listed in the following: 

 

 Investigate how the instability region resulted for the ACC/CACC model can be 

alleviated/eliminated with a proper selection of parameters (especially the time gap). 
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 Perform experimental analysis (for the examined test cases and additional ones) to 

study the effect of the use of ACC/CACC equipped vehicles (with various penetration 

rates) on the observed congestion and its characteristics. 

 

 Perform comparative studies of the examined macroscopic ACC/CACC model with 

other macroscopic ones (such as the one proposed by Ngoduy), for specific test cases, 

in order to compare their performance and analyze their credibility. 

 

 Compare the examined macroscopic ACC/CACC model to microscopic ones, to 

evaluate their performance and efficiency. 

 

 Extend the proposed combination of the macroscopic model and the calibration 

(optimization) algorithm to a software package, with a friendly user interface, to be 

used as a tool for traffic Engineers and planners. 
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Appendix A 

This section describes how to derive equation (6.19) in order to recast the square root of a 
complex number. Recalling that complex numbers extend to the two-dimensional space, every 
complex number can be written in the following notation: 

𝑧 = 𝑅 + 𝑖𝐼 , (A.1) 

where (𝑅, 𝐼) are real numbers in Cartesian coordinates and 𝑖 is the imaginary unit defined as:  
𝑖2 = −1. In the former equation 𝑅 represents the real part of 𝑧, written as 𝑅 = 𝑅𝑒(𝑧), while 𝐼 
the imaginary part, written as 𝐼 = 𝐼𝑚(𝑧).  

The square root of a complex number can be easily found using the polar form, thus, 
by switching to polar coordinates (𝑟, 𝜃), the nonzero complex number 𝑧 can be defined as 

𝑧 = 𝑟 𝑐𝑜𝑠(𝜃) + 𝑖𝑟 𝑠𝑖𝑛(𝜃) , (A.2) 

where 𝑟 cos(𝜃) = 𝑅𝑒(𝑧) and 𝑟 sin(𝜃) = 𝐼𝑚(𝑧) the real and the imaginary parts, respectively. 
The absolute value or modulus 𝑟 is given as 

𝑟 = √𝑅2 + 𝐼2 = √(𝑅 + 𝑖𝐼)(𝑅 − 𝑖𝐼) = √𝑧𝑧̅ = |𝑧| , (A.3) 

where 𝑧̅ = 𝑅 − 𝑖𝐼 is the complex conjugate number, whereas the polar angle 𝜃 is determined 
by 

𝑡𝑎𝑛(𝜃) =
𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)
=
𝐼

𝑅
=
𝐼𝑚(𝑧)

𝑅𝑒(𝑧)
 . (A.4) 

Next, using the following Euler’s formula  

𝑒𝑖𝜃 = 𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃) (A.5) 

the aforementioned polar form of a complex number can be rewritten into its exponential 
form as: 

𝑧 = 𝑟[𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃)] = 𝑟 𝑒𝑖𝜃 . (A.6) 

The exponential function can be defined on the complex plane by an infinite series expansion 

𝑒𝑥𝑝(𝑧) = 𝑒𝑧 = ∑
𝑧𝑛

𝑛!

∞

𝑛=0

 . (A.7) 

Therefore, the relationships for exponential functions are also applied to the case of 
complex numbers, getting the useful formulas for the product or quotient of complex 

numbers; i.e. the product of two complex numbers 𝑧1 = 𝑅1 + 𝑖𝐼1 = 𝑟1𝑒
𝑖𝜃1 and 𝑧2 = 𝑅2 + 𝑖𝐼2 =

𝑟2𝑒
𝑖𝜃2 is given by 

𝑧1𝑧2 = (𝑅1𝑅2 − 𝐼1𝐼2) + 𝑖(𝑅1𝑅2 + 𝐼1𝐼2) = 𝑟1𝑒
𝑖𝜃1𝑟2𝑒

𝑖𝜃2 = 𝑟1𝑟2𝑒
𝑖(𝜃1+𝜃2)  

= 𝑟1𝑟2 𝑐𝑜𝑠(𝜃1 + 𝜃2) + 𝑖𝑟1𝑟2 𝑠𝑖𝑛(𝜃1 + 𝜃2) . 
(A.8) 

Since the real and imaginary parts are linearly independent of each other, this yields 
that 𝑅1𝑅2 − 𝐼1𝐼2 = 𝑟1𝑟2 cos(𝜃1 + 𝜃2) and 𝑅1𝑅2 + 𝐼1𝐼2 = 𝑟1𝑟2 sin(𝜃1 + 𝜃2). Moreover, the inverse 
of any nonzero complex number is given by 

http://en.wikipedia.org/wiki/Complex_plane
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1

𝑧
=

1

𝑟 𝑒𝑖𝜃
=
𝑒−𝑖𝜃

𝑟
 , (A.9) 

where 𝑖 = √−1 = 𝑒𝑖𝜋 2⁄ . 

In general, the square of complex numbers in the form 

𝑧 = 𝑟 𝑒±𝑖𝜃 =  𝑟[𝑐𝑜𝑠(𝜃) ± 𝑖 𝑠𝑖𝑛(𝜃)] (A.10) 

can be written either as 

𝑧2 = 𝑟2[𝑐𝑜𝑠2(𝜃) ± 2𝑖 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) − 𝑠𝑖𝑛2(𝜃)] (A.11) 

or, using the familiar additive property 𝑒𝑥1 ∙ 𝑒𝑥2 = 𝑒𝑥1+𝑥2 of the exponential function, the 
alternative representation is given as 

𝑧2 = 𝑟2 (𝑒±𝑖𝜃)
2
= 𝑟2𝑒±𝑖2𝜃 = 𝑟2[𝑐𝑜𝑠(2𝜃) ± 𝑖 𝑠𝑖𝑛(2𝜃)] . (A.12) 

Thus, comparing the real parts and using the trigonometric identity cos2(𝜃) + sin2(𝜃) = 1, we 
find  

𝑐𝑜𝑠(2𝜃) = 1 − 2 𝑠𝑖𝑛2(𝜃) = 1 − 2[1 − 𝑐𝑜𝑠2(𝜃)] = 2 𝑐𝑜𝑠2(𝜃) − 1 (A.13) 

from which the following trigonometric types are derived: 

cos2(𝜃 2⁄ ) =
1

2
[1 + cos(𝜃)] ,  

 (A.14) 

sin2(𝜃 2⁄ ) =
1

2
[1 − cos(𝜃)] .  

Consequently, the square root of a complex number is defined as 

√𝑧 = √𝑟𝑒±𝑖𝜃 2⁄ = √𝑟[cos(𝜃 2⁄ ) ± 𝑖 sin(𝜃 2⁄ )]

= √
1

2
[𝑟 + rcos(𝜃)] ± 𝑖√

1

2
[𝑟 − rcos(𝜃)] . 

(A.15) 

Taking into account that 𝑅 = 𝑟 cos(𝜃) and 𝐼 = 𝑟 sin(𝜃), the following desired equation form is 
obtained: 

√𝑅 ± 𝑖|𝐼| = √
1

2
(√𝑅2 + 𝐼2 + 𝑅) ± 𝑖√

1

2
(√𝑅2 + 𝐼2 − 𝑅) .   (A.16) 
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Appendix B 

 
B.1 Macroscopic Model Development for ACC traffic flow based on 

GKT theory 

The work reported here contains a detailed derivation of the equations for the macroscopic 

traffic flow simulation with ACC traffic dynamics (Ngoduy, 2012c), obtained from the classic 

multi-class GKT theory, using the well-known method of moments. It is actually based on the 

work of Hoogendoorn & Bovy, 2000, and Ngoduy, 2012c.  This derivation was performed in 

order to verify the procedure followed in Ngoduy, 2012c, and highlight the details of this 

procedure, so as to be able to compare the utilized ACC model (Chapter 5) with that in 

Ngoduy, 2012c. 

 

B.1.1 Underlying gas-kinetic model for ACC vehicles 

This section introduces the so-called gas-kinetic equations describing multiple user-class 

traffic operations (Hoogendoorn & Bovy, 2000) and its extension to mixed traffic flow of 

manual and ACC vehicles.  In general, the gas-kinetic model describes the behavior 

characteristics of group of vehicles, determined by their location, 𝑥, (space), current speed, 𝑣, 

and desired speed, 𝑣0, at a particular instant in time, 𝑡, (phase). Let us first denote the class 

specific phase-space density 𝜌𝑢(𝑥, 𝑡, 𝑣, 𝑣
0), hereafter 𝜌𝑢 for short, which represents the 

expected number of vehicles class 𝑢 on (𝑥, 𝑡) driving with speed 𝑣 while having desired speed 

𝑣0 per unit roadway length. In what follows, 𝑢 = 1 indicates the manual vehicle while 𝑢 = 2 

indicates the ACC vehicle. Let 𝜓𝑢(𝑣, 𝑣
0) denotes the joint probability function of the current 

speed and the desired speed of vehicle class 𝑢. By definition, 𝜌𝑢 = 𝜓𝑢𝑟𝑢, with 𝑟𝑢 = 𝑟𝑢(𝑥, 𝑡), 

being the class specific density at location 𝑥 and time 𝑡. The multi-class gas-kinetic theory of 

Hoogendoorn & Bovy, 2000, describes the changes of the class specific phase-space density 𝜌𝑢 

due to the continuum process and non-continuum process. In particular, the continuum 

process produces smooth changes of 𝜌𝑢, due to inflow and outflow in the phase-space 

consisting of vector ℱ = (𝑥, 𝑣, 𝑣0), while the non-continuum process reflects non-smooth 

changes of 𝜌𝑢 caused by the interaction between and within vehicle classes. The generalized 

governing gas-kinetic equation for multi-class traffic flow is defined as (Hoogendoorn & 

Bovy, 2000; Ngoduy, 2012c): 

𝜕𝜌𝑢
𝜕𝑡

+ 𝛻 (𝜌𝑢
𝑑ℱ

𝑑𝑡
)

⏟      
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚

= (
𝜕𝜌𝑢
𝜕𝑡
)

⏟  

𝑖𝑛𝑡

𝑛𝑜𝑛−𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚

  , (B.1) 

where 𝛻 is the so-called Nabla operator defined by:  

𝛻 = (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑣
,
𝜕

𝜕𝑣0
) . (B.2) 
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Assuming that drivers do not change their desired speed during their trip, the first and the 

third term of 
𝑑ℱ

𝑑𝑡
 in equation (B.1) becomes: 

𝑑𝑥

𝑑𝑡
= 𝑣,     

𝑑𝑣0

𝑑𝑡
= 0 . (B.3) 

While the second term 
𝑑ℱ

𝑑𝑡
 is actually the acceleration/deceleration law and is determined for 

manual vehicles as 
𝑑𝑣

𝑑𝑡
=
𝑣0−𝑣

𝜏𝑢
  , while for ACC vehicles is specified as (Davis, 2004):  

𝑑𝑣

𝑑𝑡
=
𝑣0 − 𝑣

𝜏𝑢⏟  
1

+ 𝜅(𝑤 − 𝑣)⏟      
2

 . (B.4) 

Ιn the above equation, τu is the relaxation time of the vehicle towards the desired speed and 

𝜅 is the coefficient of the ACC system in response to the speed difference with the leader. Term 

(1) represents the relaxation of the vehicle towards the desired speed, while term (2) reflects 

the relaxation of the ACC vehicle towards the speed of the leader 𝑤. Based on the space-

headway policy, the speeds of the ACC vehicle and its leader are related to each other as: 𝑤 =

𝑣(𝑥 + 𝛥𝑥, 𝑡), where 𝛥𝑥 is the space headway between two consecutive vehicles. 

In the non-continuum process (vehicular interaction), the term (
𝜕𝜌𝑢

𝜕𝑡
)
𝑖𝑛𝑡

 reflects the 

interactions among vehicle classes or within a vehicle class (Treiber et al., 1999; Hoogendoorn 

& Bovy, 2000; Helbing et al., 2001). 

B.1.2 Governing macroscopic traffic equations 

In the remainder, a multi-class macroscopic model incorporating mixed ACC traffic dynamics 

will be derived from the gas-kinetic model proposed above, using the so-called method of 

moments (Hoogendoorn & Bovy, 2000). 

Helpful Calculations: 
 

𝑑ℱ

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑥, 𝑣, 𝑣0) = (

𝑑𝑥

𝑑𝑡
,
𝑑𝑣

𝑑𝑡
,
𝑑𝑣0

𝑑𝑡
) = (𝑣,

𝑑𝑣

𝑑𝑡
, 0) , (B.5) 

 

𝛻 (𝜌𝑢
𝑑ℱ

𝑑𝑡
) = (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑣
,
𝜕

𝜕𝑣0
)𝜌𝑢 (

𝑑𝑥

𝑑𝑡
,
𝑑𝑣

𝑑𝑡
,
𝑑𝑣0

𝑑𝑡
) = (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑣
,
𝜕

𝜕𝑣0
)(𝜌𝑢𝑣, 𝜌𝑢

𝑑𝑣

𝑑𝑡
, 0)

=
𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑣
(𝜌𝑢

𝑑𝑣

𝑑𝑡
) + 0 . 

 

(B.6) 

Thus, the left-hand side of equation (B.1) becomes 

(𝐿𝐻𝑆) =
𝜕𝜌𝑢
𝜕𝑡

+
𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑣
(𝜌𝑢

𝑑𝑣

𝑑𝑡
) . (B.7) 

 
Method of Moments 
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Afterwards, the left-hand side of equation (B.1) is multiplied with the “𝑘 moments” of the 

variable 𝑣, 𝑣𝑘 and subsequently the resulting equation is integrated over the physical range 

of speed 𝑣 and desired speed 𝑣0 

(𝐿𝐻𝑆) =
𝜕

𝜕𝑡
(𝜌𝑢)𝑣

𝑘 +
𝜕

𝜕𝑥
(𝜌𝑢𝑣)𝑣

𝑘 +
𝜕

𝜕𝑣
(𝜌𝑢

𝑑𝑣

𝑑𝑡
) 𝑣𝑘  ⟹ 

(𝐿𝐻𝑆) = ∫ ∫
𝜕

𝜕𝑡
𝜌𝑢𝑣

𝑘𝑑𝑣0𝑑𝑣

𝑣0𝑣

+∫ ∫
𝜕

𝜕𝑥
𝜌𝑢𝑣

𝑘+1𝑑𝑣0𝑑𝑣

𝑣0𝑣

+∫ ∫𝑣𝑘
𝜕

𝜕𝑣
(𝜌𝑢

𝑑𝑣

𝑑𝑡
)𝑑𝑣0𝑑𝑣

𝑣0𝑣

 . 
(B.8) 

Taking into account that 𝜌𝑢 = 𝑟𝑢𝜓𝑢 = 𝑟𝑢(𝑥, 𝑡)𝜓𝑢(𝑣, 𝑣
0) the above equation (B.8) becomes 

(𝐿𝐻𝑆) = ∫ ∫
𝜕

𝜕𝑡
𝑟𝑢(𝑥, 𝑡)𝑣

𝑘𝜓𝑢(𝑣, 𝑣
0)𝑑𝑣0𝑑𝑣

𝑣0𝑣⏟                      
𝐴

+∫ ∫
𝜕

𝜕𝑥
𝑟𝑢(𝑥, 𝑡)𝑣

𝑘+1𝜓𝑢(𝑣, 𝑣
0)𝑑𝑣0𝑑𝑣

𝑣0𝑣⏟                        
𝐵

 

 

+∫ ∫𝑣𝑘
𝜕

𝜕𝑣
(𝜌𝑢

𝑑𝑣

𝑑𝑡
)𝑑𝑣0𝑑𝑣

𝑣0𝑣⏟                
𝑐

 . 

(B.9) 

The following mean operator, 〈. 〉𝑢, of vehicle class u is applied to any function 𝑦(𝑣, 𝑣0): 

〈𝑦(𝑣, 𝑣0)〉𝑢 = ∫ ∫𝑦(𝑣, 𝑣0)𝜓𝑢(𝑣, 𝑣
0)𝑑𝑣0𝑑𝑣

𝑣0𝑣

 . (B.10) 

For example: 

∫ ∫𝑣𝑘𝜓𝑢(𝑣, 𝑣
0)𝑑𝑣0𝑑𝑣 = 〈𝑣𝑘〉𝑢

𝑣0𝑣

 . (B.11) 

So, the macroscopic traffic variables are defined as below: 

 Density: 𝑟=∫ 𝜌 𝑑𝑣𝑣
 

 

 Mean speed: 𝑉𝑢=〈𝑣〉𝑢 

 

 Mean speed variance: 𝛩𝑢=〈𝑣2〉𝑢 − (𝑉𝑢)
2⇒ 〈𝑣2〉𝑢 = 𝛩𝑢 + (𝑉𝑢)

2 

 

 Mean desired speed: 𝑉𝑢
0 = 〈𝑣0〉𝑢  

 

Applying partial integration to equation (B.9) results in 

Term 𝐴: 

𝐴 =
𝜕

𝜕𝑡
𝑟𝑢(𝑥, 𝑡)∫ ∫𝑣𝑘𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣0𝑑𝑣

𝑣0𝑣

=
𝜕

𝜕𝑡
𝑟𝑢〈𝑣

𝑘〉𝑢 (B.12) 

 

Term 𝐵: 
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𝐵 =
𝜕

𝜕𝑥
𝑟𝑢(𝑥, 𝑡)∫ ∫𝑣𝑘+1𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣0𝑑𝑣

𝑣0𝑣

=
𝜕

𝜕𝑥
𝑟𝑢〈𝑣

𝑘+1〉𝑢 (B.13) 

Term 𝐶 (taking also into account the following equations (B.15), (B.16), (B.17)): 

𝐶 = ∫ ∫𝑣𝑘
𝜕

𝜕𝑣
(𝜌𝑢

𝑑𝑣

𝑑𝑡
)𝑑𝑣0𝑑𝑣

𝑣0𝑣

= ∫ ∫[
𝜕

𝜕𝑣
(𝑣𝑘𝜌𝑢

𝑑𝑣

𝑑𝑡
) −

𝜕

𝜕𝑣
(𝑣𝑘)𝜌𝑢

𝑑𝑣

𝑑𝑡
] 𝑑𝑣0𝑑𝑣

𝑣0𝑣

 . (B.14) 

Specifically, in the above equation 

∫ ∫
𝜕

𝜕𝑣
(𝑣𝑘𝜌𝑢

𝑑𝑣

𝑑𝑡
)𝑑𝑣0𝑑𝑣

𝑣0𝑣

= ∫𝑣𝑘𝜌𝑢
𝑑𝑣

𝑑𝑡
𝑑𝑣0

𝑣0

→ 0 (B.15) 

and hence the term 𝐶 is equivalent to 

𝐶 = −∫ ∫𝑘𝑣𝑘−1𝑟𝑢𝜓𝑢(𝑣, 𝑣
0)
𝑑𝑣

𝑑𝑡
𝑑𝑣0𝑑𝑣

𝑣0𝑣

 . (B.16) 

By substituting equation (B.4) into equation (B.16) the term 𝐶 is obtained as 

𝐶 = −𝑘𝑟𝑢∫ ∫𝑣𝑘−1
𝑑𝑣

𝑑𝑡
𝜓𝑢𝑑𝑣

0𝑑𝑣

𝑣0𝑣

= −𝑘𝑟𝑢∫ ∫
𝑣𝑘−1𝑣0 − 𝑣𝑘−1𝑣

𝜏𝑢
+
𝑣𝑘−1𝑤 − 𝑣𝑘−1𝑣

𝜏∗
𝜓𝑢𝑑𝑣

0𝑑𝑣

𝑣0𝑣

= −𝑘𝑟𝑢∫ ∫
𝑣𝑘−1𝑣0 − 𝑣𝑘

𝜏𝑢
𝜓𝑢𝑑𝑣

0𝑑𝑣 + ∫ ∫
𝑣𝑘−1𝑤 − 𝑣𝑘

𝜏∗
𝜓𝑢𝑑𝑣

0𝑑𝑣

𝑣0𝑣𝑣0𝑣

= −𝑘𝑟𝑢 [〈
𝑣𝑘−1𝑣0 − 𝑣𝑘

𝜏𝑢
〉 + 〈

𝑣𝑘−1𝑤 − 𝑣𝑘

𝜏∗
〉] . 

(B.17) 

By setting 𝑘 = 0 and 𝑘 = 1, the aggregated left-hand side becomes 

 For 𝒌 = 𝟎 

 

𝐴 =
𝜕

𝜕𝑡
(𝑟𝑢〈𝑣

𝑘〉𝑢) =
𝜕

𝜕𝑡
(𝑟𝑢〈𝑣

(0)〉𝑢) =
𝜕

𝜕𝑡
(𝑟𝑢1) =

𝜕(𝑟𝑢)

𝜕𝑡
 , (B.18) 

  

𝐵 =
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣

(𝑘+1)〉𝑢) =
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣

(0+1)〉𝑢) =
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣〉𝑢) =

𝜕

𝜕𝑥
(𝑟𝑢𝑉𝑢) , (B.19) 

  

𝐶 = 0 . (B.20) 

Finally, 

(𝐿𝐻𝑆) = (𝑡𝑒𝑟𝑚 𝐴 + 𝑡𝑒𝑟𝑚 𝐵 = 𝑡𝑒𝑟𝑚 𝐶) =
𝜕(𝑟𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑟𝑢𝑉𝑢) + 0 ⟹ 

(𝐿𝐻𝑆) =
𝜕(𝑟𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑟𝑢𝑉𝑢) 

(B.21) 

 

 For k=1: 
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𝐴 =
𝜕

𝜕𝑡
(𝑟𝑢〈𝑣

𝑘〉𝑢) =
𝜕

𝜕𝑡
(𝑟𝑢〈𝑣

(1)〉𝑢) =
𝜕

𝜕𝑡
(𝑟𝑢〈𝑣〉𝑢) =

𝜕

𝜕𝑡
(𝑟𝑢𝑉𝑢) , (B.22) 

  

𝐵 =
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣

(𝑘+1)〉𝑢) =
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣

(1+1)〉𝑢) =
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣

2〉𝑢) , (B.23) 

  

𝐶 = −𝑘𝑟𝑢 [〈
𝑣𝑘−1𝑣0 − 𝑣𝑘

𝜏𝑢
〉 + 〈

𝑣𝑘−1𝑤 − 𝑣𝑘

𝜏∗
〉] = −𝑟𝑢 [〈

𝑣1−1𝑣0 − 𝑣1

𝜏𝑢
〉 + 〈

𝑣1−1𝑤 − 𝑣1

𝜏∗
〉]

= −𝑟𝑢 [〈
𝑣(0)𝑣0 − 𝑣

𝜏𝑢
〉 + 〈

𝑣(0)𝑤 − 𝑣

𝜏∗
〉] = −𝑟𝑢 [〈

𝑣0 − 𝑣

𝜏𝑢
〉 + 〈

𝑤 − 𝑣

𝜏∗
〉]

= −𝑟𝑢 [
〈𝑣0〉 − 〈𝑣〉

〈𝜏𝑢〉
+ 〈
𝑤 − 𝑣

𝜏∗
〉] = −𝑟𝑢 [

𝑉0 − 𝑉

𝜏𝑢
+ 〈
𝑤 − 𝑣

𝜏∗
〉] . 

(B.24) 

Finally, 

(𝐿𝐻𝑆) =
𝜕(𝑟𝑢𝑉𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑟𝑢〈𝑣

2〉𝑢) − 𝑟𝑢
𝑉𝑢
0 − 𝑉𝑢
𝜏𝑢

− 𝛾𝑢𝑟𝑢 〈
𝑤 − 𝑣

𝜏∗
〉 (B.25) 

where 𝛾𝑢 = 0 for manual vehicles and 𝛾𝑢 = 1 for ACC vehicles. 

Let 𝜑(𝛥𝑥) denotes the space headway distribution between two consequent vehicles, 

regardless of the class. By substituting 𝑤 = 𝑣(𝑥 + 𝛥𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝛥𝑥
𝜕𝑣

𝜕𝑥
 into the mean 

operator 〈𝑤 − 𝑣〉, we obtain: 

〈𝑤 − 𝑣〉 = ∫∫ ∫𝛥𝑥
𝜕𝑣

𝜕𝑥
𝛥𝑥

𝜑(𝛥𝑥)𝜓𝑢(𝑣, 𝑣
0)𝑑(𝛥𝑥)𝑑𝑣𝑑𝑣0

𝑣𝑣0

 . (B.26) 

Assume that 𝜑(𝛥𝑥) is distributed as below: 

𝜑(𝛥𝑥) = 𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
). (B.27) 

Here, 𝛿(. ) denotes the Dirac delta function and 𝛿𝑥 is defined as: 

𝛿𝑥 =
1

2
(∫ ∫𝜌(𝑣, 𝑣0)𝑑𝑣0𝑑𝑣

𝑣0𝑣

)

−1

=
1

2
(∫ ∫𝑟𝑢(𝑥, 𝑡)𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣0𝑑𝑣

𝑣0𝑣

)

−1

=
1

2
(𝑟∫ ∫𝜓𝑢𝑑𝑣

0𝑑𝑣

𝑣0𝑣

)

−1

=
1

2
(𝑟 ∙ 1)−1 =

1

2𝑟
 

(B.28) 

Calculation of 〈𝛥𝑥〉: 
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〈𝛥𝑥〉 = ∫∫ ∫𝛥𝑥

𝛥𝑥

𝜑(𝛥𝑥)𝜓𝑢(𝑣, 𝑣
0)𝑑(𝛥𝑥)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= ∫𝛥𝑥

𝛥𝑥

𝜑(𝛥𝑥)𝑑(𝛥𝑥) ∫∫𝜓𝑢(𝑣, 𝑣
0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= ∫𝛥𝑥

𝛥𝑥

𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) 𝑑(𝛥𝑥) ∫∫𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣𝑑𝑣0

𝑣𝑣0⏟              
=1

= ∫𝛥𝑥

𝛥𝑥

𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) 𝑑(𝛥𝑥) . 

(B.29) 

By the properties of the Dirac delta function: 

∫𝛥𝑥

𝛥𝑥

𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) 𝑑(𝛥𝑥) =

1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
 . (B.30) 

By substituting equation (B.30) into equation (B.29), we obtain: 

〈𝛥𝑥〉 =
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
 . (B.31) 

By applying the first-order Taylor expansion for 𝜑(𝛥𝑥) with respect to location 𝑥, and using 

equation (B.28), we come up with 

〈𝛥𝑥〉 =
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
=

1

𝑟(𝑥)
+ [

1

𝑟(𝑥)
]
𝑥

1

𝛿𝑥 =
1

𝑟
+ [−

1

𝑟2
𝜕𝑟

𝜕𝑥
] 𝛿𝑥 =

1

𝑟
−
1

𝑟2
𝜕𝑟

𝜕𝑥
𝛿𝑥

=
1

𝑟
−
1

𝑟2
𝜕𝑟

𝜕𝑥

1

2𝑟
=
1

𝑟
−
1

2𝑟3
𝜕𝑟

𝜕𝑥
 . 

(B.32) 

Neglecting the second-order terms 

〈𝛥𝑥〉 =
1

𝑟
 . (B.33) 

Finally, by substituting equations (B.27) and (B.33) into equation (B.26), we obtain: 

〈𝑤 − 𝑣〉 = ∫∫ ∫𝛥𝑥
𝜕𝑣

𝜕𝑥
𝛥𝑥

𝜑(𝛥𝑥)𝜓𝑢(𝑣, 𝑣
0)𝑑(𝛥𝑥)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= ∫𝛥𝑥

𝛥𝑥

𝜑(𝛥𝑥)𝑑(𝛥𝑥) ∫∫
𝜕𝑣

𝜕𝑥
𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= 〈𝛥𝑥〉 ∫∫
𝜕𝑣

𝜕𝑥
𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= 〈𝛥𝑥〉
𝜕

𝜕𝑥
∫∫𝑣𝜓𝑢(𝑣, 𝑣

0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= 〈𝛥𝑥〉
𝜕

𝜕𝑥
〈𝑣〉𝑢 = 〈𝛥𝑥〉

𝜕

𝜕𝑥
𝑉𝑢 =

1

𝑟
(
𝜕𝑉𝑢
𝜕𝑥
) . 

(B.34) 

The derivation of the right-hand side (non-continuum term) of equation (B.5) has been 

specified in the papers of Treiber et al., 1999, Hoogendoorn & Bovy, 2000 and Helbing et al., 

2001.  

In more details, we can distinguish two types of non-continuum processes, namely 

adaptation of the desired velocity distribution to a reasonable desired velocity distribution, 

and the deceleration caused by vehicle interactions. An interaction event is determined by the 
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fact that a faster vehicle catches up with a slower one. In case of interaction, the fast vehicle 

needs to perform a remedial maneuver to avoid an imminent collision. Hence, in what 

follows, the impeded vehicle will be referred to as the active party, while we will refer to the 

impeding vehicle as the passive party (Treiber et al., 1999). 

Subsequently, let us first consider interacting vehicles of 𝜌𝑢(𝑥, 𝑡, 𝑣, 𝑣
0); interactions can 

either yield an increase or a decrease in 𝜌𝑢(𝑥, 𝑡, 𝑣, 𝑣
0), denoted by (𝜕𝜌𝑢 𝜕𝑡⁄ )𝑖𝑛𝑡

+  and (𝜕𝜌𝑢 𝜕𝑡⁄ )𝑖𝑛𝑡
− , 

respectively. That is: 

(
𝜕𝜌𝑢
𝜕𝑡
)
𝑁𝐶
= (

𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

−

+ (
𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

+

 . (B.35) 

Let us now consider the joint phase-space density of classes 𝑢 and 𝑠, given by 𝜌𝑢,𝑠(𝑥, 𝑡, 𝑣, 𝑤), 

with 𝑣 = (𝑣, 𝑣0) and 𝑤 = (𝑤,𝑤0) being the velocity and desired velocity of vehicles 1 and 2, 

respectively. Specifically, 𝜌𝑢,𝑠 denotes the expected pair of vehicles of class 𝑢 having a velocity 

𝑣 and a desired velocity 𝑣0 and a vehicle of class 𝑠 with velocity 𝑤 and desired velocity 𝑤0 

per unit length of a roadway. Subsequently, let 𝑝𝑢 = 𝑝𝑢(𝑥, 𝑡, 𝑣, 𝑤) denotes the probability 

that slower vehicles can be immediately overtaken by a vehicle of class 𝑢. Then, based on the 

results established in Leutzbach, 1988, the reduction rate (𝜕𝜌𝑢 𝜕𝑡⁄ )𝑖𝑛𝑡
−  in 𝜌𝑢(𝑥, 𝑡, 𝑣, 𝑣

0) due to 

vehicles in 𝜌𝑢(𝑥, 𝑡, 𝑣, 𝑣
0) interacting with slower ones is given by: 

(
𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

−

=∑ ∫ ∫(1 − 𝑝𝑢 = 𝑝𝑢(𝑣, 𝑤
′))

𝑤0𝑤′𝑠

(𝑤′ − 𝑣)𝜌𝑢,𝑠(𝑣, 𝑣
0, 𝑤′, 𝑤0)𝑑𝑤0𝑑𝑤′ . (B.36) 

The increase rate (𝜕𝜌𝑢 𝜕𝑡⁄ )𝑖𝑛𝑡
+  due to vehicles in 𝜌𝑢(𝑥, 𝑡, 𝑤, 𝑣

0), with 𝑤 > 𝑣, interacting with 

slower ones in 𝜌𝑠(𝑥, 𝑡, 𝑣, 𝑣
0) (irrespective of the desired velocity 𝑣0) equals: 

(
𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

+

=∑ ∫ ∫(1 − 𝑝𝑢 = 𝑝𝑢(𝑣
′, 𝑣))

𝑤0

∞

𝑣′=𝑣𝑠

(𝑣′ − 𝑣)𝜌𝑢,𝑠(𝑣
′, 𝑣0, 𝑣, 𝑤0)𝑑𝑤0𝑑𝑣′ , (B.37) 

where it was speculated that slower vehicles are not affected by the interaction. 

The probability 𝑝𝑢 = 𝑝𝑢(𝑥, 𝑡, 𝑣, 𝑤) of immediate overtaking depends on several factors, 

such as the traffic flow conditions in a destination lane, the maneuverability and length of the 

vehicle, as well as the difference between the current velocity 𝑣 and the velocity 𝑤 of the 

impeding vehicle, the traffic composition (for example the percentage of heavy-vehicles), etc.  

Next, using the expression 𝜌𝑢,𝑠 = 𝜌𝑢𝜌𝑠 or 𝜌𝑢,𝑠 = 𝜌𝑢𝜌𝑠
𝑓
, where 𝜌𝑠

𝑓
 denotes the free-

flowing vehicles in 𝜌𝑠, the resulting expressions for (B.35) and (B.36) can be approximated by: 

(
𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

−

=∑(1 − 𝜋𝑢,𝑠) ∫ ∫(𝑤′ − 𝑣)

𝑤0

𝑣

𝑤′=0𝑠

𝜌𝑢(𝑣, 𝑣
0)𝜌𝑠

𝑓(𝑤′, 𝑤0)𝑑𝑤0𝑑𝑤′ (B.38) 

  

(
𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

+

=∑(1 − 𝜋𝑢,𝑠) ∫ ∫(𝑣′ − 𝑣)

𝑤0

∞

𝑣′=𝑣𝑠

𝜌𝑢(𝑣
′, 𝑣0)𝜌𝑠

𝑓(𝑣, 𝑤0)𝑑𝑤0𝑑𝑣′ , (B.39) 

in which 𝜋𝑢,𝑠 defines the (𝑣, 𝑣0)-independent expected probability of immediate overtaking 

of vehicles of class 𝑢 overtaking a vehicle of class 𝑠. 
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B.1.3 Method of Moments for the right-hand side 

∫ ∫(
𝜕𝜌𝑢
𝜕𝑡
)
𝑁𝐶

𝑣0𝑣

= 𝑣𝑘𝑑𝑣0𝑑𝑣 

= ∫ ∫[∑(1 − 𝜋𝑢,𝑠) ∫ ∫(𝑤′ − 𝑣)

𝑤0

𝑣

𝑤′=0𝑠

𝜌𝑢(𝑣, 𝑣
0)𝜌𝑠

𝑓(𝑤′, 𝑤0)𝑑𝑤0𝑑𝑤′] 𝑣𝑘𝑑𝑣0𝑑𝑣

𝑣0𝑣

 

+∫ ∫[∑(1 − 𝜋𝑢,𝑠) ∫ ∫(𝑣′ − 𝑣)

𝑤0

∞

𝑣′=𝑣𝑠

𝜌𝑢(𝑣
′, 𝑣0)𝜌𝑠

𝑓(𝑣, 𝑤0)𝑑𝑤0𝑑𝑣′]

𝑣0𝑣

𝑣𝑘𝑑𝑣0𝑑𝑣 . 

(B.40) 

Using 𝜌𝑢 = 𝜓𝑢𝑟𝑢  and 𝜌𝑠 = 𝜓𝑠𝑟𝑠 (from the known mean operator) the equation (B.40) becomes: 

∫ ∫[∑(1 − 𝜋𝑢,𝑠) ∫ ∫(𝑤′ − 𝑣)

𝑤0

𝑣

𝑤′=0𝑠

𝜌𝑢(𝑣, 𝑣
0)𝜌𝑠

𝑓(𝑤′, 𝑤0)𝑑𝑤0𝑑𝑤′] 𝑣𝑘𝑑𝑣0𝑑𝑣

𝑣0𝑣

 

= ∫ ∫𝑣𝑘∑(1 − 𝜋𝑢,𝑠)𝑑𝑣
0𝑑𝑣 ∫ ∫(𝑤′ − 𝑣)𝑟𝑢

𝑤0

𝑣

𝑤′=0𝑠

𝜓𝑢𝜌𝑠(𝑤
′, 𝑤0)𝑑𝑤0𝑑𝑤′

𝑣0𝑣

 

= ∫ ∫𝑣𝑘∑(1 − 𝜋𝑢,𝑠)𝑑𝑣
0𝑑𝑣 ∫ (𝑤′ − 𝑣)𝑟𝑢𝜓𝑢 [ ∫𝜌𝑠(𝑤

′, 𝑤0)𝑑𝑤0

𝑤0

]

𝑣

𝑤′=0𝑠

𝑑𝑤′

𝑣0𝑣

 

= ∫ ∫𝑣𝑘∑(1− 𝜋𝑢,𝑠)𝑑𝑣
0𝑑𝑣 ∫ (𝑤′ − 𝑣)𝑟𝑢𝜓𝑢𝜌𝑠̃(𝑤

′)

𝑣

𝑤′=0𝑠

𝑑𝑤′

𝑣0𝑣

 

=∑(1 − 𝜋𝑢,𝑠)𝑟𝑢(𝑥, 𝑡) [∫ ∫𝑣𝑘𝑑𝑣0𝑑𝑣 ∫ (𝑤′ − 𝑣)𝜓𝑢(𝑣, 𝑣
0)𝜌𝑠̃(𝑤

′)

𝑣

𝑤′=0

𝑑𝑤′

𝑣0𝑣

]

𝑠

 

=∑(1 − 𝜋𝑢,𝑠)𝑟𝑢∫ ∫𝑣𝑘𝜓𝑢(𝑣, 𝑣
0)𝑑𝑣0𝑑𝑣 ∫ (𝑤′ − 𝑣)𝜌𝑠̃(𝑤

′)

𝑣

𝑤′=0

𝑑𝑤′

𝑣0𝑣𝑠

 

=∑(1 − 𝜋𝑢,𝑠)𝑟𝑢 〈𝑣
𝑘 ∫ (𝑤′ − 𝑣)𝜌𝑠̃(𝑤

′)

𝑣

𝑤′=0

𝑑𝑤′〉

𝑠

 

=∑(1 − 𝜋𝑢,𝑠)𝑟𝑢𝐹𝑢,𝑠
𝑠

 . 

(B.41) 

Similarly, 

∫ ∫[∑(1 − 𝜋𝑢,𝑠) ∫ ∫(𝑣′ − 𝑣)

𝑤0

∞

𝑣′=𝑣𝑠

𝜌𝑢(𝑣
′, 𝑣0)𝜌𝑠

𝑓(𝑣, 𝑤0)𝑑𝑤0𝑑𝑣′] 𝑣𝑘𝑑𝑣0𝑑𝑣

𝑣0𝑣

 

= ∫ ∫𝑣𝑘∑(1− 𝜋𝑢,𝑠)𝑑𝑣
0𝑑𝑣

𝑠

[ ∫ ∫(𝑣′ − 𝑣)𝜌𝑢(𝑣
′, 𝑣0)𝜓𝑠(𝑣, 𝑤

0)𝑟𝑠(𝑥, 𝑡)𝑑𝑤
0𝑑𝑣′

𝑤0

∞

𝑣′=𝑣

]

𝑣0𝑣

𝑑𝑣0𝑑𝑣 

= ∫𝑣𝑘∑(1− 𝜋𝑢,𝑠)

𝑠

𝑟𝑠(𝑥, 𝑡)𝑑𝑣 ∫ ∫(𝑣′ − 𝑣)𝜌𝑢̃(𝑣
′)𝜓𝑠(𝑣, 𝑤

0)𝑑𝑤0𝑑𝑣′

𝑤0

∞

𝑣′=𝑣𝑣

 

=∑(1 − 𝜋𝑢,𝑠)𝑟𝑠∫ ∫[𝑣𝑘 ∫ ∫(𝑣′ − 𝑣)𝜌𝑢̃(𝑣
′)𝜓𝑠(𝑣,𝑤

0)𝑑𝑣′

𝑤0

∞

𝑣′=𝑣

] 𝑑𝑤0𝑑𝑣

𝑤0

∞

𝑣𝑠

 

(B.42) 
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=∑(1− 𝜋𝑢,𝑠)𝑟𝑠 〈𝑣
𝑘 ∫ ∫(𝑣′ − 𝑣)𝜌𝑢̃(𝑣

′)𝑑𝑣′

𝑤0

∞

𝑣′=𝑣

〉

𝑠

=∑(1− 𝜋𝑢,𝑠)𝑟𝑠𝐻𝑢,𝑠
𝑠

 . 

 

Let us define (
𝜕𝜌𝑢

𝜕𝑡
)
𝑁𝐶

= (
𝜕𝜌𝑢

𝜕𝑡
)
𝑁𝐶

−
+ (

𝜕𝜌𝑢

𝜕𝑡
)
𝑁𝐶

+
→ 𝑅𝑢,𝑠

(𝑘)
= 𝐹𝑢,𝑠

(𝑘)
+𝐻𝑢,𝑠

(𝑘)
 

Hence, 

(
𝜕𝜌𝑢
𝜕𝑡
)
𝑁𝐶
= (

𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

−

+ (
𝜕𝜌𝑢
𝜕𝑡
)
𝑖𝑛𝑡

+

= (1 − 𝜋𝑢,𝑠)𝑟𝑢∑𝑅𝑢,𝑠
(𝑘)

𝑠

 . (B.43) 

Finally, the aggregated right-hand side of equation (B.1) becomes (Ngoduy, 2012c): 

 For 𝒌 = 𝟎: (𝑅𝐻𝑆) = 0 

 

 For 𝒌 = 𝟏: (𝑅𝐻𝑆) = −𝑟𝑢(1 − 𝜋𝑢,𝑠)∑ 𝑅𝑢,𝑠𝑠 , with 𝑅𝑢,𝑠 being the interaction rate between 

a vehicle of class 𝑢 and the leading vehicle of any class (denoted by 𝑠) and 𝜋𝑢 being 

the probability that a vehicle of class 𝑢 is able to immediately change lanes. 

 

Consequently, the macroscopic equations for mixed traffic of manual and ACC vehicles 

are determined as  

 Conservation law: 

 
𝜕𝑟𝑢
𝜕𝑡
+
𝜕𝑟𝑢𝑉𝑢
𝜕𝑥

= 0 ,  (B.44) 

 

 Momentum dynamics: 

 

𝜕𝑟𝑢𝑉𝑢
𝜕𝑡

+
𝜕𝑟𝑢(𝑉𝑢

2 +𝛩𝑢)

𝜕𝑥
−
𝛾𝑢
𝜏∗
𝜕𝑉𝑢
𝜕𝑥⏟              

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝑟𝑢
𝑉𝑢
𝑒 − 𝑉𝑢
𝜏𝑢⏟      

𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛

 , (B.45) 

where 𝑉𝑢
𝑒 is the equilibrium class specific speed: 

𝑉𝑢
𝑒(𝑟𝑢, 𝑉𝑢, 𝛩𝑢) = 𝑉𝑢

0 − (1 − 𝜋𝑢)𝜏𝑢∑𝑅𝑢,𝑠
𝑠

 . (B.46) 
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B.2 Macroscopic Model Development for CACC traffic flow based on 

GKT theory 

Similarly to the previous Section B.1, the work reported here contains a detailed derivation of 

the equations for the macroscopic traffic flow simulation with CACC traffic dynamics 

(Ngoduy, 2013b), obtained from the classic GKT theory using the well-known method of 

moments. It is based on the work of Hoogendoorn & Bovy, 2000, and Ngoduy, 2013b. This 

derivation was performed in order to verify the procedure followed by Ngoduy, 2013b, and 

highlight the details of this procedure, so as to be able to compare the utilized CACC model 

(Chapter 5) with that in Ngoduy, 2013b. 

B.2.1 Underlying gas-kinetic model for CACC vehicles  

The macroscopic approach incorporating CACC traffic dynamics is extended from the gas-

kinetic theory presented in the previous Section B.1 for ACC equipped vehicles. Thus, we will 

start by briefly recalling the GKT model for ACC vehicles presented in Section B.1.  Let us first 

denote the phase space density 𝜌(𝑥, 𝑡, 𝑣, 𝑣0), 𝜌 for short, which represents the expected 

number of vehicles on (𝑥, 𝑡) driving with speed 𝑣 while having desired speed 𝑣0 per unit 

roadway. With 𝜓(𝑣, 𝑣0) the joint probability of the current speed and the desired speed of 

vehicles is denoted. By definition, 𝜌 = 𝜓𝑟, with 𝑟 = 𝑟(𝑥, 𝑡), is the density at location 𝑥 and time 

instant 𝑡. Based on the work of Hoogendoorn & Bovy, 2000, the gas-kinetic theory reflects the 

changes of the phase space density ρ due to both the continuum and non-continuum process; 

the continuum process yields smooth changes of 𝜌, due to inflow and outflow into the phase 

space consisting of vector ℱ = (𝑥, 𝑣, 𝑣0), while the non-continuum process produces non-

smooth changes of 𝜌 by the interaction occurring between and within vehicle classes. The gas-

kinetic equation describing the traffic dynamics for aggregate lane and aggregate vehicle class 

is given below (Ngoduy, 2013b) 

𝜕𝜌

𝜕𝑡
+ 𝛻 (𝜌

𝑑ℱ

𝑑𝑡
)

⏟      
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚

= (
𝜕𝜌

𝜕𝑡
)

⏟

𝑖𝑛𝑡

𝑛𝑜𝑛−𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚

 ,  (B.47) 

where the Nabla operator, 𝛻, is defined as 

𝛻 = (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑣
,
𝜕

𝜕𝑣0
) . 

(B.48) 

Assuming that drivers do not change their desired speed during their journey, the first and 

the third term of the non-continuum process 
𝑑ℱ

𝑑𝑡
 of equation (B.47) are determined as: 

𝑑𝑥

𝑑𝑡
= 𝑣,     

𝑑𝑣0

𝑑𝑡
= 0 . (B.49) 

In case of the second term of 
𝑑ℱ

𝑑𝑡
, which is actually the acceleration or deceleration term and is 

specified for manual vehicles as 
𝑑𝑣

𝑑𝑡
=
𝑣0−𝑣

𝜏𝑢
  for CACC vehicles, takes the following form: 

𝑑𝑣

𝑑𝑡
=
𝑣0 − 𝑣

𝜏
+∑

𝑤𝑛 − 𝑣

𝜏𝑛
∗

𝑁

𝑛=1

 ,  (B.50) 
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in which 𝑛 = 1,2,… , 𝑁 with 𝑁 being the number of preceding vehicles that the follower could 

exchange information (interact) with; 𝑤𝑛 is the speed of the 𝑛th preceding vehicle. Following 

from the space-headway policy, the speeds of the follower are correlated with the speeds of 

its 𝑛th leader according to the following equation: 〈𝑤𝑛〉 = 〈𝑣(𝑥 + 𝛥𝑥𝑛, 𝑡)〉, with 𝛥𝑥𝑛 being the 

space headway between the follower and its 𝑛th leader. Moreover, the coefficient 𝜏𝑛
∗  in 

equation (B.50) reflects the relaxation time of the CACC vehicle to the 𝑛th leader. Under the 

assumption that CACC vehicles takes longer time to relax to the speed of the furthest 𝑛th 

leader, it is supposed that 𝜏1
∗ < 𝜏2

∗ < ⋯𝜏𝑁
∗  and ∑

1

𝜏𝑛
∗ =

1

𝜏∗
𝑁
𝑛=1  , where 𝜏∗ denotes the relaxation 

time of the ACC vehicle. 

By substituting equation (B.50) into the generalized governing equation (B.47) we end 

up in the following gas-kinetic equation that incorporates CACC traffic dynamics: 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)

𝜕𝑥⏟  
𝐼

+
𝜕

𝜕𝑣
(𝑝
𝑣0 − 𝑣

𝜏
)

⏟        
𝐼𝐼

+
𝜕

𝜕𝑣
(𝜌∑

𝑤𝑛 − 𝑣

𝜏𝑛
∗

𝑁

𝑛=1

)
⏟            

𝐼𝐼𝐼

= (
𝜕𝜌

𝜕𝑡
)
𝑖𝑛𝑡

 . (B.51) 

In the equation above, term 𝐼 reflects the changes of the phase-space density 𝜌 due to the 

motion of vehicles along the space variable 𝑥, term 𝐼𝐼 denotes the changes of 𝜌 due to the 

acceleration process (i.e. the vehicle accelerates to its the desired speed 𝑣0), while term 𝐼𝐼𝐼 

depicts the changes of 𝜌 due to the relaxation process towards the speeds of the preceding 

vehicles through the CACC system. 

B.2.2 Governing macroscopic traffic equations 

The macroscopic model for CACC traffic flow is derived from the gas-kinetic model proposed 

above, based on the so-called method of moments (Treiber et al., 1999). 

 

Helpful Calculations: 
𝑑ℱ

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑥, 𝑣, 𝑣0) = (

𝑑𝑥

𝑑𝑡
,
𝑑𝑣

𝑑𝑡
,
𝑑𝑣0

𝑑𝑡
) = (𝑣,

𝑑𝑣

𝑑𝑡
, 0) , (B.52) 

  

𝛻 (𝜌
𝑑ℱ

𝑑𝑡
) = (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑣
,
𝜕

𝜕𝑣0
)𝜌 (

𝑑𝑥

𝑑𝑡
,
𝑑𝑣

𝑑𝑡
,
𝑑𝑣0

𝑑𝑡
) = (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑣
,
𝜕

𝜕𝑣0
) (𝜌𝑣, 𝜌

𝑑𝑣

𝑑𝑡
, 0)

=
𝜕

𝜕𝑥
(𝜌𝑣) +

𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
) + 0 =

𝜕

𝜕𝑥
(𝜌𝑣) +

𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
) . 

(B.53) 

So, the left-hand side of equation (B.47) becomes: 

(𝐿𝐻𝑆) =
𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑣) +

𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
) . (B.54) 

 

Method of Moments 
 

Afterwards, we multiply the left-hand side of equation (B.48) with the “𝑘 moments” of the 

variable 𝑣, 𝑣𝑘 and subsequently the resulting equation is integrated over the physical range 

of speed 𝑣 and desired speed 𝑣0: 
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(𝐿𝐻𝑆) =
𝜕

𝜕𝑡
(𝜌)𝑣𝑘 +

𝜕

𝜕𝑥
(𝜌𝑣)𝑣𝑘 +

𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
) 𝑣𝑘  ⟹ 

(𝐿𝐻𝑆) = ∫ ∫
𝜕

𝜕𝑡
𝜌𝑣𝑘𝑑𝑣𝑑𝑣0

𝑣0𝑣

+∫ ∫
𝜕

𝜕𝑥
𝜌𝑣𝑘+1𝑑𝑣𝑑𝑣0

𝑣0𝑣

+∫ ∫𝑣𝑘
𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
)𝑑𝑣𝑑𝑣0

𝑣0𝑣

 . 
(B.55) 

Taking into account that 𝜌 = 𝑟𝜓 = 𝑟(𝑥, 𝑡)𝜓(𝑣, 𝑣0), equation (B.55) becomes: 

(𝐿𝐻𝑆) = ∫ ∫
𝜕

𝜕𝑡
𝑟(𝑥, 𝑡)𝑣𝑘𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣⏟                    
𝐴

+∫ ∫
𝜕

𝜕𝑥
𝑟(𝑥, 𝑡)𝑣𝑘+1𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣⏟                        
𝐵

+∫ ∫𝑣𝑘
𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
)𝑑𝑣𝑑𝑣0

𝑣0𝑣⏟                
𝑐

 . 

(B.56) 

In the ensuing section, the following mean operator, 〈. 〉, is applied to any function 

𝑦(𝑣, 𝑣0): 

〈𝑦(𝑣, 𝑣0)〉 = ∫ ∫𝑦(𝑣, 𝑣0)𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣

 . (B.57) 

For example: 

∫ ∫𝑣𝑘𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0 = 〈𝑣𝑘〉

𝑣0𝑣

 . (B.58) 

Thus, the macroscopic traffic variables are defined as below: 

 Density: 𝑟=∫ 𝜌 𝑑𝑣𝑣
 

 

  Mean speed: 𝑉=〈𝑣〉 

 

 Mean speed variance: 𝛩=〈𝑣2〉 − (𝑉)2⇒ 〈𝑣2〉 = 𝛩 + (𝑉)2 

 

 Mean desired speed: 𝑉0 = 〈𝑣0〉 

 

Applying partial integration to equation (B.56) results in: 

Term 𝐴: 

𝐴 =
𝜕

𝜕𝑡
𝑟(𝑥, 𝑡)∫ ∫𝑣𝑘𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣

=
𝜕

𝜕𝑡
𝑟〈𝑣𝑘〉  (9.59) 

Term 𝐵: 

𝐵 =
𝜕

𝜕𝑥
𝑟(𝑥, 𝑡)∫ ∫𝑣𝑘+1𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣

=
𝜕

𝜕𝑥
𝑟〈𝑣𝑘+1〉  (B.60) 

Term 𝐶 (taking also into account the equations (B.62), (B.63), (B.64)): 
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𝐶 = ∫ ∫𝑣𝑘
𝜕

𝜕𝑣
(𝜌
𝑑𝑣

𝑑𝑡
)𝑑𝑣𝑑𝑣0

𝑣0𝑣

= ∫ ∫[
𝜕

𝜕𝑣
(𝑣𝑘𝜌

𝑑𝑣

𝑑𝑡
) −

𝜕

𝜕𝑣
(𝑣𝑘)𝜌

𝑑𝑣

𝑑𝑡
] 𝑑𝑣𝑑𝑣0

𝑣0𝑣

. (B.61) 

In the above equation, obviously:  

∫ ∫
𝜕

𝜕𝑣
(𝑣𝑘𝜌

𝑑𝑣

𝑑𝑡
) 𝑑𝑣𝑑𝑣0

𝑣0𝑣

= ∫𝑣𝑘𝜌
𝑑𝑣

𝑑𝑡
𝑑𝑣0

𝑣0

→ 0 . (B.62) 

So,  

∫ ∫
𝜕

𝜕𝑣
(𝑣𝑘𝜌

𝑑𝑣

𝑑𝑡
)𝑑𝑣𝑑𝑣0

𝑣0𝑣

→ 0 (B.63) 

and the term 𝐶 is equivalent to: 

𝐶 = −∫ ∫𝑘𝑣𝑘−1𝑟𝜓(𝑣, 𝑣0)
𝑑𝑣

𝑑𝑡
𝑑𝑣𝑑𝑣0

𝑣0𝑣

 ⇒ 

𝐶 = −𝑘𝑟∫ ∫𝜓(𝑣, 𝑣0)
𝑑𝑣

𝑑𝑡
𝑣𝑘−1𝑑𝑣𝑑𝑣0 .

𝑣0𝑣

 

(B.64) 

By substituting equation (B.50) into equation (B.64) the term 𝐶 becomes: 

𝐶 = −𝑘𝑟∫ ∫𝑣𝑘−1
𝑑𝑣

𝑑𝑡
𝜓𝑑𝑣𝑑𝑣0

𝑣0𝑣

= −𝑘𝑟∫ ∫
𝑣𝑘−1𝑣0 − 𝑣𝑘−1𝑣

𝜏
+ (𝑣𝑘−1∑

𝑤𝑛 − 𝑣
𝑘

𝜏𝑛
∗

𝑁

𝑛=1

)𝜓𝑑𝑣𝑑𝑣0

𝑣0𝑣

 

= −𝑘𝑟∫ ∫
𝑣𝑘−1𝑣0 − 𝑣𝑘

𝜏
𝜓𝑑𝑣𝑑𝑣0 +∫ ∫(∑

𝑣𝑘−1𝑤𝑛 − 𝑣
𝑘−1𝑣𝑘

𝜏𝑛
∗

𝑁

𝑛=1

)𝜓𝑑𝑣𝑑𝑣0

𝑣0𝑣𝑣0𝑣

= −𝑘𝑟 [〈
𝑣𝑘−1𝑣0 − 𝑣𝑘

𝜏
〉 +∑ 〈

𝑣𝑘−1𝑤𝑛 − 𝑣
𝑘

𝜏𝑛
∗ 〉

𝑁

𝑛=1

] . 

(B.65) 

By setting 𝑘 = 0 and 𝑘 = 1, the aggregated left-hand side takes the form: 

 For 𝒌 = 𝟎: 

 

𝐴 =
𝜕

𝜕𝑡
(𝑟〈𝑣𝑘〉) =

𝜕

𝜕𝑡
(𝑟〈𝑣(0)〉) =

𝜕

𝜕𝑡
(𝑟 1) =

𝜕𝑟

𝜕𝑡
 , (B.66) 

  

𝐵 =
𝜕

𝜕𝑥
(𝑟〈𝑣(𝑘+1)〉) =

𝜕

𝜕𝑥
(𝑟〈𝑣(0+1)〉) =

𝜕

𝜕𝑥
(𝑟〈𝑣〉) =

𝜕

𝜕𝑥
(𝑟𝑉) , (B.67) 

  

𝐶 = 0 . (B.68) 

Therefore, 

(𝐿𝐻𝑆) = (𝑡𝑒𝑟𝑚 𝐴 + 𝑡𝑒𝑟𝑚 𝐵 = 𝑡𝑒𝑟𝑚 𝐶) =
𝜕𝑟

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑟𝑉) + 0 ⟹ (𝐿𝐻𝑆)

=
𝜕𝑟

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑟𝑉) . 

(B.69) 
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 For 𝒌 = 𝟏: 

 

𝐴 =
𝜕

𝜕𝑡
(𝑟〈𝑣𝑘〉) =

𝜕

𝜕𝑡
(𝑟〈𝑣(1)〉) =

𝜕

𝜕𝑡
(𝑟〈𝑣〉) =

𝜕

𝜕𝑡
(𝑟𝑉) , (B.70) 

  

𝐵 =
𝜕

𝜕𝑥
(𝑟〈𝑣(𝑘+1)〉) =

𝜕

𝜕𝑥
(𝑟〈𝑣(1+1)〉) =

𝜕

𝜕𝑥
(𝑟〈𝑣2〉) =

𝜕

𝜕𝑥
[𝑟(𝛩 + 𝑉2)] , (B.71) 

  

𝐶 = −𝑘𝑟 [〈
𝑣𝑘−1𝑣0 − 𝑣𝑘

𝜏
〉 +∑ 〈

𝑣𝑘−1𝑤𝑛 − 𝑣
𝑘

𝜏𝑛
∗ 〉

𝑁

𝑛=1

]

= −𝑟 [〈
𝑣1−1𝑣0 − 𝑣1

𝜏
〉 +∑ 〈

𝑣1−1𝑤𝑛 − 𝑣
1

𝜏𝑛
∗ 〉

𝑁

𝑛=1

]

= −𝑟 [〈
𝑣(0)𝑣0 − 𝑣

𝜏
〉 +∑ 〈

𝑣(0)𝑤𝑛 − 𝑣
1

𝜏𝑛
∗ 〉

𝑁

𝑛=1

]

= −𝑟 [〈
𝑣0 − 𝑣

𝜏
〉 +∑ 〈

𝑤𝑛 − 𝑣

𝜏𝑛
∗ 〉

𝑁

𝑛=1

] = −𝑟 [
〈𝑣0〉 − 〈𝑣〉

〈𝜏〉
+∑ 〈

𝑤𝑛 − 𝑣

𝜏𝑛
∗ 〉

𝑁

𝑛=1

]

= −𝑟 [
𝑉0 − 𝑉

𝜏
+∑ 〈

𝑤𝑛 − 𝑣

𝜏𝑛
∗ 〉

𝑁

𝑛=1

] . 

(B.72) 

Finally, 

(𝐿𝐻𝑆) =
𝜕(𝑟𝑉)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑟〈𝑣2〉) − 𝑟

𝑉0 − 𝑉

𝜏
− 𝑟∑ 〈

𝑤𝑛 − 𝑣

𝜏𝑛
∗ 〉

𝑁

𝑛=1

=
𝜕(𝑟𝑉)

𝜕𝑡
+
𝜕

𝜕𝑥
[𝑟(𝛩 + 𝑉2)] − 𝑟

𝑉0 − 𝑉

𝜏
− 𝑟∑ 〈

𝑤𝑛 − 𝑣

𝜏𝑛
∗ 〉 .

𝑁

𝑛=1

 

(B.73) 

Let us now denote the space headway distribution between two successive vehicles, 

𝜑(𝛥𝑥). By substituting 〈𝑤𝑛〉 = 〈𝑣(𝑥 + 𝛥𝑥𝑛 , 𝑡)〉 = 𝑉(𝑥, 𝑡) + 𝛥𝑥𝑛
𝜕𝑣

𝜕𝑥
 into the mean operator 

〈𝑤𝑛 − 𝑣〉 and 〈𝛥𝑥𝑛〉 = 𝑛𝛥𝑥 (with 𝛥𝑥 being the space headway between two successive vehicles) 

we end up with: 

〈𝑤𝑛 − 𝑣〉 = ∫∫ ∫𝑛𝛥𝑥
𝜕𝑣

𝜕𝑥
𝛥𝑥

𝜑(𝛥𝑥)𝜓(𝑣, 𝑣0)𝑑(𝛥𝑥𝑛)𝑑𝑣𝑑𝑣
0

𝑣𝑣0

 . (B.74) 

Next, we assume that 𝜑(𝛥𝑥) is distributed as follows: 

𝜑(𝛥𝑥) = 𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) . (B.75) 

Here, 𝛿(. ) denotes the Dirac delta function and 𝛿𝑥 is defined as: 
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𝛿𝑥 =
1

2
(∫ ∫𝜌(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣

)

−1

=
1

2
(∫ ∫𝑟(𝑥, 𝑡)𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣0𝑣

)

−1

=
1

2
(𝑟∫ ∫𝜓𝑑𝑣𝑑𝑣0

𝑣0𝑣

)

−1

=
1

2
(𝑟 ∙ 1)−1 =

1

2𝑟
 . 

(B.76) 

Calculation of 〈𝛥𝑥〉: 

〈𝛥𝑥〉 = ∫∫ ∫𝛥𝑥

𝛥𝑥

𝜑(𝛥𝑥)𝜓(𝑣, 𝑣0)𝑑(𝛥𝑥)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= ∫𝛥𝑥

𝛥𝑥

𝜑(𝛥𝑥)𝑑(𝛥𝑥) ∫∫𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= ∫𝛥𝑥

𝛥𝑥

𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) 𝑑(𝛥𝑥) ∫∫𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣𝑣0⏟            
=1

= ∫𝛥𝑥

𝛥𝑥

𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) 𝑑(𝛥𝑥) . 

(B.77) 

By the properties of the Dirac delta function: 

∫𝛥𝑥

𝛥𝑥

𝛿 (𝛥𝑥 −
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
) 𝑑(𝛥𝑥) =

1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
 . (B.78) 

By substituting equation (B.78) into equation (B.77), we obtain: 

〈𝛥𝑥〉 =
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
 . (B.79) 

By applying the first-order Taylor expansion for 𝜑(𝛥𝑥) with respect to location 𝑥, and using 

equation (B.76), we come up with 

〈𝛥𝑥〉 =
1

𝑟(𝑥 + 𝛿𝑥, 𝑡)
=

1

𝑟(𝑥)
+ [

1

𝑟(𝑥)
]
𝑥

1

𝛿𝑥 =
1

𝑟
+ [−

1

𝑟2
𝜕𝑟

𝜕𝑥
] 𝛿𝑥 =

1

𝑟
−
1

𝑟2
𝜕𝑟

𝜕𝑥
𝛿𝑥

=
1

𝑟
−
1

𝑟2
𝜕𝑟

𝜕𝑥

1

2𝑟
=
1

𝑟
−
1

2𝑟3
𝜕𝑟

𝜕𝑥
 . 

(B.80) 

Neglecting the second-order terms 

〈𝛥𝑥〉 =
1

𝑟
 . (B.81) 

Finally, by substituting equations (B.75) and (B.81) into equation (B.74), we obtain:  
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〈𝑤𝑛 − 𝑣〉 = ∫∫ ∫𝑛𝛥𝑥
𝜕𝑣

𝜕𝑥
𝛥𝑥

𝜑(𝛥𝑥)𝜓(𝑣, 𝑣0)𝑑(𝛥𝑥)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= ∫𝑛𝛥𝑥

𝛥𝑥

𝜑(𝛥𝑥)𝑑(𝛥𝑥) ∫∫
𝜕𝑣

𝜕𝑥
𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= 𝑛〈𝛥𝑥〉 ∫∫
𝜕𝑣

𝜕𝑥
𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= 𝑛〈𝛥𝑥〉
𝜕

𝜕𝑥
∫∫𝑣𝜓(𝑣, 𝑣0)𝑑𝑣𝑑𝑣0

𝑣𝑣0

= 𝑛〈𝛥𝑥〉
𝜕

𝜕𝑥
〈𝑣〉 = 𝑛〈𝛥𝑥〉

𝜕𝑉

𝜕𝑥
=
𝑛

𝑟
(
𝜕𝑉

𝜕𝑥
) . 

(B.82) 

 

The mean operator of the non-continuum term of equation (B.47) has been specified in the 

work of Treiber et al., 1999, Hoogendoorn & Bovy, 2000 and Helbing et al., 2001). In the 

following section we adopt the results concerning Treiber’s work (Treiber et al., 1999). 

B.2.3 Underlying the gas-kinetic equation 

In principle, the kinetic equation that describes the evolution of the coarse-grained phase-

space density is given as 

𝜌̃(𝑥, 𝑣, 𝑡) =∑∫𝑑𝑡′∫𝑑𝑥′∫𝑑𝑣′ 𝑔(𝑡 − 𝑡′, 𝑥 − 𝑥′, 𝑣 − 𝑣′)

𝑎

× 𝛿(𝑥′ − 𝑥𝛼(𝑡))𝛿(𝑣
′ − 𝑣𝛼(𝑡)) , 

(B.83) 

and represents the probability density of finding, at a given time 𝑡, a vehicle 𝛼 at position 𝑥𝛼 

having velocity 𝑣𝛼. The coarse graining is performed by taking local averages over a weighting 

function 𝑔(𝑡 − 𝑡′, 𝑥 − 𝑥′, 𝑣 − 𝑣′) satisfying ∫𝑑𝑡′ ∫𝑑𝑥′ ∫𝑑𝑣′ 𝑔(𝑡 − 𝑡′, 𝑥 − 𝑥′, 𝑣 − 𝑣′) = 1, which 

is localized in a microscopically large and macroscopically small neighborhood around 𝑥 and 

in appropriate neighborhoods around 𝑡 and 𝑣 (Treiber et al., 1999). 

Subsequently, taking the time derivative of the above equation (B.83), and inserting the 

microscopic equation 
𝑑𝑣𝑎

𝑑𝑡
=
𝑉0−𝑣𝑎

𝜏
− ∑ 𝑓𝑎̅𝛽𝛽≠𝑎 + 𝜉𝑎(𝑡), gives, by partial integration the kinetic 

evolution equation (B.86) for the phase-space density (Treiber et al., 1999) : 

𝜃𝜌̃

𝜃𝑡
+
𝜃

𝜃𝑥
(𝜌̃𝑣) +

𝜃

𝜃𝑣
[𝜌̃
𝑉0 − 𝑣

𝜏
] =

𝜃

𝜃𝑣
(𝜌̃𝑓𝑖𝑛𝑡) +

𝜃2

𝜃𝑣2
(𝜌̃𝐷) ,  (B.84) 

in which the interaction term has the form 

𝑓𝑖𝑛𝑡 = 𝜌̃
−1∑∑∫𝑑𝑡′∫𝑑𝑥′∫𝑑𝑣′ 𝑔(𝑡 − 𝑡′, 𝑥 − 𝑥′, 𝑣 − 𝑣′)

𝛽≠𝑎𝑎

𝑓𝑎̅𝛽𝛿(𝑥
′ − 𝑥𝛼(𝑡))𝛿(𝑣

′

− 𝑣𝛼(𝑡)) . 

(B.85) 

The microscopic braking interactions 𝑓𝑎̅𝛽 directly results in a Boltzmann-like 

interaction with a density-dependent prefactor 𝑃(𝜌): 

𝜃

𝜃𝑣
(𝜌̃𝑓𝑖𝑛𝑡) = 𝑃(𝜌)𝛪(𝑥, 𝑣, 𝑡) , (B.86) 

in which 
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𝛪(𝑥, 𝑣, 𝑡) = ∫ 𝑑𝑣′( 𝑣′ − 𝑣)𝜌̃(𝑥, 𝑣′, 𝑡)

𝑣′>𝑣

𝜌̃(𝑥𝑎 , 𝑣, 𝑡)

+ ∫ 𝑑𝑣′( 𝑣 − 𝑣′)𝜌̃(𝑥, 𝑣, 𝑡)

𝑣′<𝑣

𝜌̃(𝑥𝑎 , 𝑣
′, 𝑡) . 

(B.87) 

The first term of the right-hand side of equation  (B.87) reflects the increase of the phase-space 

density 𝜌̃(𝑥, 𝑣, 𝑡) due to the deceleration of faster vehicles having velocity 𝑣′ > 𝑣, which cannot 

overtake vehicles at 𝑥𝑎 driving with velocity 𝑣, whereas the second term defines the decrease 

of the phase-space density due to deceleration of vehicles driving with velocity 𝑣, which 

cannot overtake slower vehicles at 𝑥𝑎 driving with 𝑣′ < 𝑣. The prefactor 

𝑃(𝜌) = (1 − 𝑝)𝜒 =  
1

𝑝
− 1 (B.88) 

is proportional to the probability (1 − 𝑝) that one cannot immediately overtake a slower 

vehicle, and to the correlation factor 𝜒 =  
1

𝑝
 describing the increased interaction rate due to 

vehicular space requirements. To sum up, the kinetic phase-space equation, upon which the 

GKT model is based, is defined by 

𝜃𝜌̃

𝜃𝑡
+
𝜃

𝜃𝑥
(𝜌̃𝑣) +

𝜃

𝜃𝑣
[𝜌̃
𝑉0 − 𝑣

𝜏
]

= (
1

𝑝
− 1) [ ∫ 𝑑𝑣′( 𝑣′ − 𝑣)𝜌̃(𝑥, 𝑣′, 𝑡)

𝑣′>𝑣

𝜌̃(𝑥𝑎 , 𝑣, 𝑡)

+ ∫ 𝑑𝑣′( 𝑣 − 𝑣′)𝜌̃(𝑥, 𝑣, 𝑡)

𝑣′<𝑣

𝜌̃(𝑥𝑎 , 𝑣
′, 𝑡)] +

𝜃2

𝜃𝑣2
(𝜌̃𝐷) . 

(B.89) 

 

B.2.4 Derivation of the macroscopic equations 

Next, macroscopic equations for the lowest velocity moments are derived from the kinetic 

equation (B.89). Consequently, the macroscopic vehicle density 𝜌(𝑥, 𝑡) and the average 

velocity 𝑉(𝑥, 𝑡) are determined as: 

𝜌(𝑥, 𝑡) = ∫ 𝑑𝑣

∞

0

𝜌̃(𝑥, 𝑣, 𝑡) , (B.90) 

  

𝑉(𝑥, 𝑡) = 〈𝑣〉 = 𝜌−1∫ 𝑑𝑣 𝑣

∞

0

𝜌̃(𝑥, 𝑣, 𝑡) . (B.91) 

In particular, the macroscopic density equation depends on 𝑉, and the macroscopic equation 

for 𝑉 on the variance 

𝜃(𝑥, 𝑡) = 〈(𝑣 − 𝑉)2〉 = 𝜌−1∫ 𝑑𝑣 (𝑣 − 𝑉)2
∞

0

𝜌̃(𝑥, 𝑣, 𝑡) . (B.92) 
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In the GKT model, we make two assumptions. First, we assume that the variance 𝜃 is a 

function of density and average velocity. Second, we assume that the phase-space density is 

locally associated with a Gaussian velocity distribution 

𝜌̃(𝑥, 𝑣, 𝑡) = 𝜌(𝑥, 𝑡)
𝑒−[𝑣−𝑉(𝑥,𝑡)]

2 [2𝜃(𝑥,𝑡)]⁄

√2𝜋𝜃(𝑥, 𝑡)
 . (B.93) 

Finally, multiplying the phase-space equation (B.89) with 1 or 𝑣, respectively, and integrating 

over 𝑣, after straightforward but rather lengthy calculations lead to 

𝜃𝑟

𝜃𝑡
+
𝜃(𝑟𝑉)

𝜃𝑥
= 0 , (B.94) 

  

(
𝜃

𝜃𝑡
+ 𝑉

𝜃

𝜃𝑥
)𝑉 = −

1

𝜌

𝜃(𝜌𝜃)

𝜃𝑥
+
𝑉0 − 𝑣

𝜏
−
𝑃(𝜌𝑎)𝜌𝑎(𝜃 + 𝜃𝑎)

2
𝐵(𝛿𝑣) . (B.95) 

In more detail, from equation (B.89) we obtain: 

∫ 𝑑𝑣

∞

0

∫ 𝑑𝑣′( 𝑣′ − 𝑣)𝜌̃(𝑥, 𝑣′, 𝑡)

𝑣′>𝑣

𝜌̃(𝑥𝑎 , 𝑣, 𝑡) + ∫ 𝑑𝑣 ∫ 𝑑𝑣′( 𝑣 − 𝑣′)𝜌̃(𝑥, 𝑣, 𝑡)

𝑣′<𝑣

𝜌̃(𝑥𝑎 , 𝑣
′, 𝑡)

∞

0

= ∫ 𝑑𝑣

∞

0

∫ 𝑑𝑣′𝑣′𝜌̃(𝑥, 𝑣′, 𝑡)

𝑣′>𝑣

𝜌̃(𝑥𝑎 , 𝑣, 𝑡)

− ∫ 𝑑𝑣 ∫ 𝑑𝑣′𝑣𝜌̃(𝑥, 𝑣′, 𝑡)

𝑣′>𝑣

𝜌̃(𝑥𝑎, 𝑣, 𝑡)

∞

0

+∫ 𝑑𝑣 ∫ 𝑑𝑣′𝑣′𝜌̃(𝑥, 𝑣, 𝑡)

𝑣′<𝑣

𝜌̃(𝑥𝑎, 𝑣
′, 𝑡)

∞

0

−∫ 𝑑𝑣 ∫ 𝑑𝑣′𝑣𝜌̃(𝑥, 𝑣, 𝑡)

𝑣′<𝑣

𝜌̃(𝑥𝑎, 𝑣
′, 𝑡) .

∞

0

 

(B.96) 

Using equations (B.90) and (B.91): 

∫ 𝑑𝑣

∞

0

𝜌̃(𝑥, 𝑣, 𝑡) ∫ 𝑑𝑣′ 𝑣′𝜌̃(𝑥, 𝑣′, 𝑡) =

𝑣′>𝑣

𝜌(𝑥𝑎 , 𝑡) ∫ 𝑑𝑣′ 𝑣′𝜌̃(𝑥, 𝑣′, 𝑡) ,

𝑣′>𝑣

 (B.97) 

  

∫ 𝑑𝑣

∞

0

𝑣𝜌̃(𝑥𝑎 , 𝑣, 𝑡) ∫ 𝑑𝑣′ 𝜌̃(𝑥, 𝑣′, 𝑡) =

𝑣′>𝑣

𝜌(𝑥𝑎 , 𝑡)𝑉(𝑥𝑎 , 𝑡) ∫ 𝑑𝑣′ 𝜌̃(𝑥, 𝑣′, 𝑡) ,

𝑣′>𝑣

 (B.98) 

  

−∫ 𝑑𝑣

∞

0

𝜌̃(𝑥, 𝑣, 𝑡) ∫ 𝑑𝑣′𝑣′ 𝜌̃(𝑥𝑎, 𝑣
′, 𝑡) =

𝑣′<𝑣

− 𝜌(𝑥, 𝑡) ∫ 𝑑𝑣′𝑣′ 𝜌̃(𝑥𝑎, 𝑣
′, 𝑡) ,

𝑣′<𝑣

 (B.99) 

  

∫ 𝑑𝑣

∞

0

𝑣𝜌̃(𝑥, 𝑣, 𝑡) ∫ 𝑑𝑣′ 𝜌̃(𝑥𝑎, 𝑣
′, 𝑡) =

𝑣′<𝑣

𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡) ∫ 𝑑𝑣′ 𝜌̃(𝑥𝑎 , 𝑣
′, 𝑡)

𝑣′<𝑣

 . (B.100) 

However, 
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𝜌(𝑥𝑎 , 𝑡) ∫ 𝑑𝑣′𝑣′ 𝜌̃(𝑥, 𝑣′, 𝑡) =

𝑣′>𝑣

𝜌(𝑥𝑎 , 𝑡)𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡) , (B.101) 

  

𝜌(𝑥𝑎 , 𝑡)𝑉(𝑥𝑎 , 𝑡) ∫ 𝑑𝑣′ 𝜌̃(𝑥, 𝑣′, 𝑡) =

𝑣′>𝑣

𝜌(𝑥𝑎 , 𝑡)𝑉(𝑥𝑎 , 𝑡)𝜌(𝑥, 𝑡) , (B.102) 

  

𝜌(𝑥, 𝑡) ∫ 𝑑𝑣′ 𝑣′𝜌̃(𝑥𝑎, 𝑣
′, 𝑡) =

𝑣′<𝑣

𝜌(𝑥, 𝑡)𝜌(𝑥𝑎 , 𝑡)𝑉(𝑥𝑎 , 𝑡) , (B.103) 

  

𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡) ∫ 𝑑𝑣′ 𝜌̃(𝑥𝑎, 𝑣
′, 𝑡) =

𝑣′<𝑣

𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡)𝜌(𝑥𝑎 , 𝑡) . (B.104) 

So,  

𝜌(𝑥𝑎 , 𝑡)𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡) − 𝜌(𝑥𝑎 , 𝑡)𝑉(𝑥𝑎 , 𝑡)𝜌(𝑥, 𝑡) + 𝜌(𝑥, 𝑡)𝜌(𝑥𝑎 , 𝑡)𝑉(𝑥𝑎 , 𝑡)

− 𝜌(𝑥, 𝑡)𝑉(𝑥, 𝑡)𝜌(𝑥𝑎 , 𝑡) = 0 . 
(B.105) 

Finally, the monotonically increasing macroscopic interaction term, 𝛣(𝛿𝑣), of equation (B.95) 

𝛣(𝛿𝑣) = 2 [𝛿𝑣
𝑒−𝛿𝑣

2 2⁄

√2𝜋
+ (1 + 𝛿𝑣2)∫

𝑒−𝑦
2 2⁄

√2𝜋

𝛿𝑣

−∞

𝑑𝑦] (B.106) 

describes the dependence of the braking interaction on the dimensionless velocity difference 

𝛿𝑣 = (𝑉 − 𝑉𝑎) √𝜃 + 𝜃𝛼⁄  . 

To sum up, the macroscopic equations for CACC vehicles are (Ngoduy, 2013b): 

 Conservation law: 

 
𝜕𝑟

𝜕𝑡
+
𝜕(𝑟𝑉)

𝜕𝑥
= 0 ,  (B.107) 

 Momentum dynamics: 

 

𝜕(𝑟𝑉)

𝜕𝑡
+
𝜕[𝑟(𝑉2 + 𝛩)]

𝜕𝑥
−
𝜕𝑉

𝜕𝑥
∑

𝑛

𝜏𝑛
∗

𝑁

𝑛=1

= 𝑟
𝑉𝑒 − 𝑉

𝜏
 , (B.108) 

where 𝑉𝑒 = 𝑉𝑒(𝑟, 𝑉, 𝑟𝑎 , 𝑉𝑎) denotes the (dynamic) equilibrium speed, which depends not only 

on the local density 𝑟 and mean speed 𝑉, but also on the nonlocal density 𝑟𝑎 and mean speed 

𝑉𝑎. Both 𝑟𝑎  and 𝑉𝑎 are computed at location 𝑥𝑎 = 𝑥 + 𝑑,  with 𝑑 being the safe distance gap, 

specified as 𝑑 = 𝑑0 + 𝛾𝑇𝑉. Here, 𝑑0 and 𝑇 are the safe distance gap at the standstill and safe 

time headway, respectively. Typically, 𝑑0 =
1

𝑟𝑗𝑎𝑚
   where 𝑟𝑗𝑎𝑚 denotes the jam density; 𝛾 is a 

scaled parameter. The dynamic equilibrium speed function of the nonlocal model is (Treiber 

et al., 1999): 

𝑉𝑒(𝑟, 𝑉, 𝑟𝑎 , 𝑉𝑎) = 𝑉0

[
 
 
 

1 −
𝐴(𝑟)

𝐴(𝑟𝑗𝑎𝑚)
(

𝑟𝑎𝑑

1 −
𝑟𝑎
𝑟𝑗𝑎𝑚

)

2

𝐵 (
𝑉 − 𝑉𝛼

√𝛩
)

]
 
 
 

 , (B.109) 
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where A(r) is a variance factor, determined as: 

𝐴(𝑟) = 𝐴0 + 𝛿𝛢 [1 + 𝑡𝑎𝑛ℎ (
𝑟 − 𝑟𝑐𝑟
𝛿𝑟

)] , (B.110) 

in which 𝑟𝑐𝑟 is the critical density, reflecting the division between the free-flow and congested 

traffic situation; 𝐴0, 𝛿𝛢 and 𝛿𝑟 are constants; 𝐵(. ) is defined as: 

𝐵(𝑧) = 2[𝑧𝑁(𝑧) + (1 + 𝑧2)]𝐸(𝑧) , (B.111) 

with 𝑁(𝑧) = 1 √2𝜋𝑒𝑥𝑝(−𝑧2 2⁄ )⁄  and 𝐸(𝑧) = ∫ 𝑁(𝑦)𝑑𝑦 .
𝑧

−∞
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