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Abstract— Considering the target of an operating effectively
transportation system, we propose here a novel methodology
for integrated lane-changing and ramp metering control that
exploits the presence of connected and partly automated vehi-
cles. In particular, we assume that a percentage of vehicles can
receive and implement specific control tasks (e.g., lane-changing
commands). A novel approach is designed to robustly maximise
the throughput at motorway bottlenecks employing a Linear
Quadratic Integral (LQI) regulator in combination with an anti-
windup scheme, based on a simple Linear Time Invariant (LTI)
model. The method is evaluated via simulation experiments,
performed on a first-order, multi-lane, macroscopic traffic
flow model, also featuring the capacity drop phenomenon,
which allows to demonstrate the effectiveness of the developed
methodology and to highlight the improvement in terms of
traffic efficiency.

I. INTRODUCTION

In the last decades, a significant and increasing interdis-
ciplinary effort by the automotive industry, as well as by
numerous research institutions around the world, has been
devoted to planning, developing, testing, and deploying new
technologies that are expected to revolutionise the features
and capabilities of individual vehicles in the future [1].
Among the wide range of available systems, few may actu-
ally have a direct impact on traffic flow, while the majority
of them aims at primarily improving safety or driver’s
convenience ([2], [3], [4]). In the context of automated and
connected vehicles or Automated Highway Systems, only
a limited number of works have considered to optimize
lane distribution ([5], [6], [7], [8], [9], [10]). A number of
other works addressed specifically the problem of deciding
on efficient vehicle lane-paths for a motorway under fully
automated (AHS) or semi-automated driving (e.g., [5], [6]).

An optimal feedback control strategy [11] for lane-
changing control is formulated in [9] as a linear quadratic
regulator (LQR) and is extended in [10], to achieve dif-
ferent traffic density distribution for the various lanes at
the bottleneck area. However, in both works, it is assumed
that another controller ensures that the overall traffic flow
entering the area where lane-changing control is applied,
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does not significantly exceed the bottleneck capacity. This
paper extends the results in [9] presenting a novel methodol-
ogy for integrated lane-changing and ramp metering control,
considering the presence of partly automated and connected
vehicles. In particular, it is assumed that equipped vehicles
have the capability of bidirectional communication with the
infrastructure (V2I); appropriate control actions are decided
in a centralised manner by a Traffic Management Center
(TMC) and are dispatched to specific vehicles for imple-
mentation (e.g., [12], [7]).

The paper is structured as follows: Section II describes the
proposed LTI model. In Section III, the controller design is
presented. Section IV introduces the experiment setup, while
in Section V the obtained simulation results are presented
and compared with a reference no-control case. Section VI
concludes the paper, highlighting its main results.

II. LINEAR MULTI-LANE TRAFFIC FLOW MODEL

We consider a multi-lane motorway that is subdivided
into N segments, indexed by i = 0, . . . , N , of length
Li, while each segment is composed of lanes, indexed by
j = mi, . . . ,Mi, where mi and Mi are the minimum
and maximum indexes of lanes for segment i denotes each
element of the resulting grid (see Fig. 1) as “cell”, which
is indexed by (i, j). In order to account for any possible
network topology, including lane-drops and lane-additions,
both on the right and on the left sides of the motorway, we
assume that j = 0 corresponds to the segment(s) including
the right-most lane. For example, looking at the hypothetical
motorway stretch depicted in Fig. 1, m0 = 0 and M0 = 4,
while m3 = 1 and M3 = 3.

The model is formulated in discrete time, considering the
discrete time step T , indexed by k = 0, 1, . . ., where the time
is t = kT . According to this definition, the total number of
cells is H =

∑N
r=0 (Mr −mr + 1) and the number of cells

at the bottleneck area is S = MN −mN + 1.
Each motorway cell (i, j) is characterised by the traffic

density ρi,j(k), defined as the number of vehicles present
within the cell at time instant k divided by Li. Density
dynamically evolves according to the following conservation
law equation, see, e.g. [7],

ρi,j(k + 1)= ρi,j(k) +
T

Li

[
qi−1,j(k)− qi,j(k)

]
+
T

Li

[
fi,j−1(k)−fi,j(k)

]
+
T

Li
di,j(k)+

T

Li
ri,j(k),

(1)

where qi,j(k) is the longitudinal flow leaving cell (i, j) and
entering cell (i+1, j) during time interval (k, k+1]; fi,j(k)



Fig. 1: A hypothetical motorway stretch.

is the net lateral flow moving from cell (i, j) to cell (i, j+1)
during time interval (k, k + 1]; and di,j(k) is any external
flow entering the network in cell (i, j), either from upstream
of the considered stretch or from an on-ramp, during time
interval (k, k+1]. Since a ramp is assumed to be controlled,
we introduce ri,j(k) as the flow allowed to enter the network
from the ramp located in (i, j) during time interval (k, k+1]
(e.g., r2,1 in Fig. 1). Depending on the network topology,
some terms of (1) may not be present. In particular, the inflow
qi−1,j(k) does not exist for the first segment of the network,
the outflow qi,j(k) does not exist for the last segment before
a lane-drop, while lateral flow terms fi,j(k) exist only for
mi ≤ j < Mi. Following previous considerations, the total
number of lateral flow terms is F = H −N .

Let us consider the well-known relation

qi,j(k) = ρi,j(k) vi,j(k). (2)

Since the controller is designed to operate in (and in fact
maintain) congestion-free traffic conditions, we assume that
the speed in all cells remains at a constant value (e.g., the
critical speed) vi,j(k) ≡ v̄i,j ,∀i, j, k. Despite this may ap-
pear a strong assumption, we will see in simulation (Section
V) that the controller achieves good performance also when
speed varies over time. We therefore replace (2) into (1) and
we can write the resulting system in the form of a Linear
Time Invariant (LTI) system

x̄(k + 1) = Āx̄(k) + B̄u(k) + d̄(k) (3)

where (time index k is omitted to simplify notation)

x̄ = [ρ0,m0 . . . ρ0,M0 ρ1,m1 . . . ρN,MN ]T ∈ RH , (4)

d̄ =

[
T

L0
d0,m0 . . .

T

L0
d0,M0

T

L0
d1,m1 . . .

T

L0
dN,MN

]T
∈ RH ,

(5)

u = [f0,m0 . . . f0,M0 f1,m1 . . . fN,MN , ri,j ]
T ∈ RF+1. (6)

Variables u and d̄ are the controlled and uncontrolled inputs,
respectively; u includes all the lateral flows fi,j and the
ramp flow ri,j that is assumed controllable, while d̄ includes
the external flows that are not in u. Matrix Ā ∈ RH×H ,
composed of elements ap̄,s̄, which reflects the connections
between pairs of subsequent cells via a longitudinal flow.
Finally, matrix B̄, composed of elements bp̄,s̄ which reflects
the interconnections among cells via their entering or leaving
lateral flows. Thus, the matrices for the mentioned system
can be described as

ap̄,s̄ =


1 if p̄ = s̄ and (j < mi+1 or j > Mi+1)

1− T
Li
v̄i,j if p̄ = s̄ and (i = N or mi+1 ≤ j ≤Mi+1)

T
Li
v̄i,j if p̄ > H0 and s̄ = p̄−Mi−1 +mi − 1

0 otherwise

(7)

bp̄,s̄ =


T
Li

if j > mi and s̄ = p̄− i
− T

Li
if j < Mi and s̄ = p̄− i+ 1

T
Li

if j = j̄ and i = ī

0 otherwise

(8)

where (̄i, j̄) defines the location of on-ramp flow.
Finally, note that the CFL condition [13]

T

Li
v̄ < 1 (9)

should be respected for a realistic discrete time and discrete
space traffic flow model.

III. LATERAL FLOW AND RAMP METERING
CONTROLLER

A. Formulation

We employ here the linear system described in Section II
to formulate an optimal control problem, whose solution
leads to a MIMO (multi-input multi-output) feedback con-
troller. Specifically, the controller should manipulate the
lateral flows, as well as the flow entering from an on-
ramp located upstream of the bottleneck, with the goals of
avoiding the creation of congestion and indeed maximising
the bottleneck throughput.

To maximise the bottleneck throughput, densities at the
bottleneck areas should be maintained around their critical
values (ρcrS×1), which are here supposed to be known. In
presence of disturbances (e.g., upstream mainstream demand
or uncontrolled lateral flows), in order to avoid offset at
the stationary state, we employ an integral controller to
reject constant disturbances [14], thus removing the need for
measuring the external inflows. We formulate our problem
by augmenting the original system (3) with S (i.e, as many
as bottleneck lanes) integral states, denoted as z, where

z(k + 1) = z(k) + C̄x̄(k)− ρcr. (10)

The resulting augmented system reads

x(k + 1) = Ax(k) +Bu(k) + d(k), (11)

where

x =

[
x̄
z

]
, d =

[
d̄

−ρcrS×1

]
, A =

[
Ā 0H×S
C̄ IS×S

]
,

(12)

B =

[
B̄

0S×(F+1)

]
, C̄ =

[
0S×(H−S) IS×S

]
. (13)

We define the following quadratic cost function, over an
infinite time horizon, which accounts for penalization of
integral states and control inputs:

J =

∞∑
k=0

[
xT (k)C Q CTx(k) + uT (k) R u(k)

]
, (14)

where

Q = wQ IS×S , R =

[
wR1 IF×F 0F×1

01×F wR2

]
(15)

C =
[

0S×H IS×S
]
. (16)



Matrices Q and R are weighting matrices associated to
the magnitude of the integral states and control actions,
respectively, defined by parameters wQ > 0, wR1 > 0, and
wR2

> 0. The optimal control problem associated to (14),
(11) can be solved through a Linear Quadratic Regulator
(LQR), which provides a stabilising feedback gain under the
assumptions that the original system is, at least, stabilisable
and detectable (see Chapter 2 of [15]), which can be verified
using, e.g, the Hautus-test [16]. The system matrix A in
(11) is, by construction, lower triangular, implying that its
eigenvalues λ are equal to the elements in the main diagonal.
Assuming (9) is respected and v̄ is always positive, the modes
related to segments for which another downstream segment
exists are always stable (|λ| < 1), while the modes related to
segments without any other segment downstream (i.e., at a
lane-drop), as well as the integral state modes, are marginally
stable (λ = 1).

To guarantee that the pair (A,B) is stabilisable, B must
have more linearly independent columns than the number
of non-stable (λ ≥ 1) modes. In case there are no lane-
drops, there are S marginally stable modes, corresponding
to integral states, which, in order to satisfy the condition,
require at least S control inputs. Since, in our system
configuration, there are at least S − 1 lateral flows (i.e.,
the lateral flows at the bottleneck location), and an on-ramp
input, the stabilisability condition is satisfied.

We turn now our attention to the detectability of the pair
(A,CTQC) in (14); according to [17], since Q > 0, this
is equivalent to investigating the detectability of the pair
(A,C). This is verified, in case there are no lane-drops, when
controlling all integral states. Since, the pair (A,C) satisfies
criteria in [16].

B. Controller design

The solution to the proposed LQR problem is the linear
feedback control law

u(k) = −Kx(k), (17)

where
K =

(
R+BTPB

)−1
BTPA (18)

P = CTQC +ATPA−ATPB
(
R+BTPB

)−1
(19)

The optimal gain (18) and the Algebraic Riccati Equation
(19) can be found in classic Optimal Control books [18].
The feedback control law (17) is very effective for practical
application since the computation of the feedback gain matrix
K may be affectuated offline. For practical implementation,
the gain K can be appropriately split as

K =
[
KP KI

]
, (20)

which allows to compute the control law as

u(k) = −KP x̄(k)−KI z(k). (21)

In practice, it may not be always possible to achieve the
desired density set-point at the bottleneck (e.g., due to
input saturation), therefore it is necessary to include an

anti-windup scheme in our controller. We employ the one
proposed in [19] (see also [20], [21]), which, in our case,
modifies the integral part of the dynamic controller (10) as

z(k + 1) = (I +MKI)z(k) +
(
C̄+MKP

)
x(k) +Musat(k).

(22)

The saturated input usat is defined as follows

usat(k) = sat(u(k)) (23)

sat(um) =


umin
m if um < umin

m

umax
m if um > umax

m

um, otherwise,
(24)

where m is the index of the element inside vector u, and
umin
m and umax

m are the lower and upper bound for the input
um. Respectively, matrix M should be chosen so that I +
MKI has stable eigenvalues, for example, via classical pole
placement. Note that, when inputs are not saturated, equation
(22) becomes (10), which is stable according to our results in
III-A, while, when inputs are saturated, as M makes stable
eigenvalues for (22), again the system is stable [22].

IV. EXPERIMENT SETUP

A. Nonlinear multi-lane traffic flow model

In order to test and evaluate the performance of the
proposed control strategy, we present simulation experiments
using a first-order traffic flow model based on [7]. The model
is used for reproducing the traffic behaviour for a multi-lane
motorway and it features: (i) non-linear functions for the
lateral flows of manually driven vehicles (which may also
act as disturbances for the designed controller); (ii) a Cell
Transmission Models (CTM)-like formulation for the longi-
tudinal flows; and (iii) a non-linear formulation to account
for the capacity drop phenomenon. Briefly, we consider the
conservation law equation (1), where all variables are defined
as in Section II. Lateral flows due to manual lane-changing,
denoted as f̄Mi,j (k) are considered among adjacent lanes of
the same segment, and corresponding rules are defined in
order to properly assign and bound their values. They are
computed as

f̄M
i,j(k) = li,j,j+1(k)− li,j+1,j(k), (25)

where

li,j̄,j(k) = min

{
1,

Ei,j(k)

Di,j−1,j(k) +Di,j+1,j(k)

}
Di,j̄,j(k)

(26)

Ei,j(k) =
Li
T

[
ρjam
i,j − ρi,j(k)

]
(27)

Di,j(k) =
Li
T
ρi,j(k)Ai,j,j̄(k) (28)

Ai,j,j̄(k) = µ max

{
0,
Gi,j,j̄(k)ρi,j(k)− ρi,j̄(k)

Gi,j,j̄(k)ρi,j(k) + ρi,j̄(k)

}
, (29)

and j̄ = j ± 1. E denotes the available space, in terms of
flow acceptance, while D denotes the lateral demand flow,
which is computed via definition of the attractiveness rate A.
Equation (26) accounts for the potentially limited space that



Fig. 2: Motorway stretch employed in the simulation exper-
iments.

may not be sufficient for accepting the lateral flow entering
from both sides of a cell. In (29), the factor G is mostly equal
to 1, which implies the intent of drivers to move towards a
faster lane (leading also to equal densities among lanes), but
may also be tuned to reflect particular location-dependent
effects where lateral flow may occur in the direction from
a lower density to a higher one (e.g. upstream of on- and
off-ramps, lane drop locations, etc.); while µ is a constant
coefficient in the range [0, 1] reflecting the “aggressiveness”
in lane-changing.

Longitudinal flows are the flows going from a cell to the
next downstream one, while remaining in the same lane. We
employ the Godunov-discretised first-order model proposed
in [7], employing however a non-linear exponential demand
function for under-critical densities, to obtain a more realistic
behaviour at low densities. The model accounts also for the
capacity drop phenomenon, via a linearly decreasing demand
function for over-critical densities and a linear reduction of
the maximum flow as a function of the entering lateral flows
[23]. The overall formulation for longitudinal flow is

qi,j(k) = min
{
QDi,j(k), QEi+1,j(k)− di,j(k)

}
, (30)

where

QDi,j(k)=

v
max
i,j exp

[
− 1
α

(
ρi,j(k)
ρcr
i,j

)α]
ρi,j(k), if ρi,j(k)<ρcr

i,j

(1−γ)Qcap
i,j

ρcr
i,j−ρ

jam
i,j

[
ρi,j(k)−ρjam

i,j

]
+QBi,j(k), otherwise

(31)

QEi+1,j(k)=

{
Qcap
i+1,j , if ρi+1,j(k) < ρcr

i+1,j

wi+1

[
ρjam
i+1,j−ρi+1,j(k)

]
, otherwise.

(32)

QBi,j(k)=γ Qcap
i,j − η [li,j+1,j(k) + li,j−1,j(k)] (33)

Parameter vmax denotes the maximum speed, Qcap is the
capacity flow, ρcr is the critical density (i.e., the density at

which the capacity flow occurs), while α =
(

ln Qcap

vmaxρcr

)−1

[24]. Parameter γ influences the impact of capacity drop due
to overcritical densities, while η affects the capacity drop due
to entering lateral flows. Note that, setting γ = 1 and η = 0,
we obtain a conventional first-order model, i.e. no capacity
drop appears at the head of congestion.

B. Network description and simulation configuration

We consider a hypothetical two-lane motorway stretch,
shown in Fig. 2, to test and evaluate the performance of
the proposed strategy. In particular, we consider a network
composed of 10 segments characterised by the same length

TABLE I: Parameters used in the nonlinear multi-lane traffic
flow model.

vmax Qcap ρcr ρjam γ η G µ

[km/h] [veh/h] [veh/km] [veh/km]

j=1 100 1800 22 120 0.6 0.8 1 0.6
j=2 100 2400 26 160 0.6 0.8 1 0.6

Li = 0.5 km, while we employ a time step T = 10 s. Dif-
ferent lanes feature different parameters, namely a different
FD, which may reflect different traffic composition (e.g., a
high number of heavy vehicles reducing the capacity of a
specific lane). In addition, the used traffic demand is depicted
in Fig. 3.

We introduce variable Φcrt(k) to indicate if the controller
is active at time k (Φcrt(k) = 1) or not (Φcrt(k) = 0),
which reflects how the lateral flows are computed in our
simulation experiments. In addition, while applying our
controller, we assume that 50 % of the vehicles are con-
nected and automated, therefore a percentage of the manual
lane-changing flow is included as additive noise. Different
percentage of automated vehicles is studied and the results
will appear in future publication which denotes, higher
percentage of automated vehicles results in lower TTS. The
lateral flow implemented in our simulations is therefore

f̄i,j(k) =

{
f̄M
i,j(k), if Φcrt(k) = 0,

sat (fi,j(k)) + 0.5f̄M
i,j(k), if Φcrt(k) = 1.

(34)

Since ramp metering actions may create a queue outside
the motorway network, we introduce the following dynamics
for the queue length w(k) (in veh).

w(k + 1) = w(k) + T (g10,1(k)− r10,1(k)) , (35)

where g10,1(k) is the on-ramp demand during time interval
(k, k+ 1]. The ramp flow implemented in our simulations is

r̄10,1(k) =

{
g10,1(k), if Φcrt(k) = 0,

sat (r10,1) (k), if Φcrt(k) = 1.
(36)

Note that we consider the following bounds for the control
inputs:

sat(fi,j) =


fmin
i,j = −Li

T ρi,j if fi,j ≤ fmin
i,j

fmax
i,j = Li

T ρi,j if fi,j ≥ fmax
i,j

fi,j , otherwise;

(37)

sat(r10,1)=


rmin
10,1 = 0, if r10,1 ≤ rmin

10,1

rmax
10,1 = min

(
w
T +D10,1, Q

cap
1

)
, if r10,1 ≥ rmax

10,1

r10,1, otherwise.
(38)

V. EXPERIMENTAL RESULTS

A. No-control case

The no-control case is defined by implementation of the
nonlinear traffic model (25)-(33) in the described network.



Fig. 3: Traffic demand used in the simulation experiments.

Fig. 4: Density in the no-control case.

Looking at Figs. 4 and 5, one may observe that a strong
congestion develops at the merge area (segment 10) and
spills-back until segment 1. The reasons for the congestion
are a) the high inflow entering from the ramp, since the
total demand during the peak period is about 4600 veh/h,
while the overall capacity is 4200 veh/h; as well as b) the
inefficient “natural” lane-changing flow. Capacity drop also
occurs at the bottleneck cells of the stretch, which worsens
the congestion.

B. Lateral flow and ramp metering controller

We employ the linear dynamic compensator (21), (22) to
the non-linear traffic model (25)-(33). We performed a set of
experiments to evaluate the sensitivity of the controller to the
choice of parameters wQ, wR1

and wR2
, and we observed

that the controller has good performance, in term of Total
Time Spent (TTS), calculated as in [25], for a wide range
of parameter values. We show here results using wQ = 1,
wR1

= 1 and wR2
= 0.001. Congestion fully disappears and

the densities at the bottleneck area remain at their critical
values, see Figs. 6 and 7. Control outputs are computed so
that critical density is not exceeded and they are suggested
for the entire duration of the simulation experiment. On the
other hand, a large queue is created at the on-ramp during the
peak period, which is not upper-bounded in our experiments
(see Fig. 9). The TTS improvement is about 26% (see also
Table II).

Fig. 5: Contour plots of densities in the no-control case.

Fig. 6: Density in the controlled case.

Fig. 7: Contour plots of densities in the controlled case.

C. Implementation of an activation logic

It is not necessary nor reasonable at low densities (far
from ρcr) to order lane-changing of vehicles, since it is not
likely that a congestion would occur. In this experiment we
introduce an activation and deactivation logic as follows

Φcrt(k) = 1, if
∑
j ρI,j(k) > ρact

Φcrt(k) = 0, if
∑
j ρI,j(k) < ρdeact

Φcrt(k) = Φcrt(k − 1), if ρdeact <
∑
j ρI,j(k) < ρact

(39)

where ρact and ρdeact, are the activation and deactiva-
tion threshold, respectively. We consider selecting ρact >
ρdeact in order to avoid switches between activation and
deactivation states. In our experiments, we choose ρact as

Fig. 8: Contour plots of lateral flows in the controlled
case; without activation logic (left) and with activation logic
(right).

Fig. 9: Ramp queue (left) and ramp flow (right) in the
controlled case.



TABLE II: TTS for the different scenarios.

No control
case

Without
activation
logic

With
activation
logic

TTS [hr] 1060 783 810

Improvement (%) 26 23

Fig. 10: Density in the controlled case with activation logic.

0.7
∑2
j=1 ρ

cr
10,j and ρdeact as 0.5

∑2
j=1 ρ

cr
10,j . Similarly as in

previous case, using the activation logic, the congestion fully
disappears and the densities at the bottleneck area remain
at their critical values, see Figs. 10 and 11. Also, from
Fig. 8 (right), the controller is activated only in the middle
of the simulation. Namely when in the no-control case the
congestion was create. The TTS improvement is about 23%
(see Table II).

VI. CONCLUSIONS

This paper presents a novel methodology for integrated
lane-changing and ramp metering control at motorway bot-
tlenecks, which accounts for the presence of connected
and partly automated vehicles. The method is evaluated
via simulation experiments, through a first-order, multi-lane,
macroscopic traffic flow model featuring the capacity drop
phenomenon, which allows to show the effectiveness of
the developed methodology. We are currently investigating
stability properties of the controller, as well as producing
further simulation experiments to investigate robustness to
parameter choices and to different type of disturbances,
which are going to appear in a future publication.
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