
Technical University Of Crete
School of Electrical and Computer

Engineering

Diploma Thesis

A Caching Platform for Large Scale
Data-Intensive Distributed Applications

A thesis submitted in fulfillment of the requirements for the degree of Diploma in
Electrical and Computer Engineering

Author: Thesis Committee:
Nikolaos Kafritsas Professor Minos Garofalakis (Supervisor)

Associate Professor Vasilis Samoladas
Associate Professor Antonios Deligiannakis

Chania, August 2019

http://www.tuc.gr
http://www.ece.tuc.gr
http://www.ece.tuc.gr
http://www.softnet.tuc.gr/~minos/
http://www.softnet.tuc.gr/~vsam/
http://www.softnet.tuc.gr/~adeli/

”Artificial Intelligence is the new electricity ”

Andrew Ng

Abstract

In the last decade, data processing systems started using main memory as much as pos-
sible, in order to speed up computations and boost performance. Towards this direction,
many breakthroughs were created in the stream processing systems, which must meet
rigorous demands and achieve sub-second latency along with high throughput. These
advancements were feasible due to the availability of large amounts of DRAM at a plum-
meting cost and the rapid evolution of in-memory databases. However, in the Big Data
era, maintaining such a huge amount of data in memory is impossible. On the other
hand, the use of disk-based databases to remedy the situation is prohibitively expensive
in terms of disk latencies. The ideal scenario would be to have the high access speed
of memory, with the large capacity and low price of disk. This hinges on the ability to
effectively utilize both the main memory and disk. Consequently, developing a solution
which somehow combines the benefits of both worlds is highly desirable.

This diploma thesis tackles the aforementioned problem by proposing an alternative
architecture. More specifically, hot data are stored in memory, while cold data are moved
to disk in a transactionally-safe manner as the database grows in size. Because data
initially reside in memory, this architecture reverses the traditional storage hierarchy of
disk-based systems. The disk is treated as an extended storage for evicted elements/cold
data, not the primary host for the whole data. Based on this architecture, a multi-layered
platform is presented which is highly scalable and can work in a distributed manner. The
memory layer acts as a cache with configurable capacity and provides several eviction
policies, the most important being a variation of the traditional LFU eviction policy. In
particular, data regarded as cold could return back to memory if it becomes hot again, a
case that occurs when the distribution of data changes in online processing. Thanks to
this feature and the sub-second latency that is achieved, the platform can also perform
efficiently in a streaming environment and can be used as a stateful memory component
in a real-time architecture. The disk layer is flexible and elastic, meaning that users
can use the database of their choice as a disk-based storage for cold data. Finally, the
platform is tested in different scenarios under heavy load, and the benchmarks showed
that it can perform extremely well and achieve throughput in the order of thousands of
elements per second.

Acknowledgements

First of all, I would like to express my sincere gratitude to my advisor, professor Minos
Garofalakis, for initiating me to the world of large databases, motivating and supervising
me. I am also thankful to Antonios Deligiannakis and Vasilis Samoladas for their fruitful
comments and the knowledge that I acquired from their courses during my studies.

Next, I am deeply grateful and I acknowledge the time that doctor Odysseas Papapetrou
spent, in order to guide me throughout this whole process, as well as for his thoughtful
and detailed comments.

Furthermore, I am grateful to my family, Dimitris, Vasso and Marialena, for constantly
supporting me in an unconditional way, and not holding grudges when I was abrupt
towards them over the phone in times of stress.

Last but not least, I would like to thank my dear Maria, for always being there for me,
constantly providing inspiration, support and reassurance during the time I was writing
this thesis.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Thesis Motivation . 1
1.2 Thesis Contribution . 4
1.3 Thesis Outline . 5

2 Problem Statement 6
2.1 Technical Challenges . 6
2.2 Problem Formulation . 7
2.3 Alternative approaches . 8

2.3.1 Backpressure . 8
2.3.2 Micro-Batching . 9
2.3.3 Approximation . 9
2.3.4 Faster Storage . 10

2.4 Alternative Approach . 11

3 Background and Related Work 13
3.1 The Concept of Caching . 13

3.1.1 How Caching Helps . 14
3.1.1.1 Speeding up CPU-Βound Applications 14
3.1.1.2 Speeding up I/O-Βound Applications 15
3.1.1.3 Characterization of this Platform 16

3.1.2 Expected Speedup . 16
3.1.3 Eviction Strategies . 17
3.1.4 Caches and Machine Learning . 20
3.1.5 Writing Strategies . 20

3.1.5.1 Write-Through Cache . 20
3.1.5.2 Write-Around Cache . 21
3.1.5.3 Write-Back Cache . 21

3.2 Caching Challenges . 21

iv

Contents v

3.3 Databases and Key-Value Stores . 22
3.3.1 Redis . 23
3.3.2 Apache Ignite . 23
3.3.3 Ehcache . 24
3.3.4 MapDB . 25
3.3.5 Conclusion . 26

4 Implementation 27
4.1 Layers of the Platform . 27

4.1.1 First Layer . 27
4.1.2 Second Layer . 27
4.1.3 Third Layer . 29

4.2 Additional Specifications . 29
4.2.1 Modularity and Flexibility . 30
4.2.2 Scalability . 31
4.2.3 Generic Values . 32

4.3 Differences with a Traditional Caching System 33
4.4 Platform Architecture . 35

4.4.1 Bloom Filter . 35
4.4.1.1 Overview . 35
4.4.1.2 Implementation Details 36
4.4.1.3 Technical Details . 36
4.4.1.4 How the Bloom Filter is Parameterized 37

4.4.2 Memory Layer . 38
4.4.2.1 LRU . 39
4.4.2.2 MRU . 41
4.4.2.3 LFU . 43

4.4.3 Persistence Layer . 49
4.4.3.1 DAO Pattern . 50
4.4.3.2 Abstract Factory Pattern 52
4.4.3.3 Connection Pooling . 55

5 Performance Evaluation 57
5.1 Experimental Setup . 57
5.2 The Naive Approach . 59
5.3 Second Version . 59
5.4 Cache Hit Ratio . 61
5.5 Comparison with Naive Approach . 63
5.6 Large Scale Experiments . 64
5.7 Memory Management . 65

6 Conclusion 68
6.1 Closing Remarks . 68
6.2 Future Work . 70

Contents vi

Bibliography 71

List of Figures

1.1 The concept of Structured Streaming in Apache Spark 3
1.2 Example of handling late data in a stream, where event time is different

from ingestion timevery important for handling time-sensitive data e.g.
sensor data . 4

4.1 The overall architecture of the system. Each layer is depicted with a
different color . 28

4.2 The stream is partitioned and each itemset is assigned to a particular
instance . 31

4.3 The system can be used inside each bolt, where Apache Storm’s processing
logic takes place . 32

4.4 Left: A traditional caching system, Right: The implementation of this
thesis . 34

4.5 The UML class depicting the DAO Pattern 50
4.6 UML class about Abstract Factory. Note that the specific details of how

the database is managed (e.g. connection credentials) is implemented in
the Factory class of each database independently 54

4.7 The Connection Pool Module . 55

5.1 Cache hit ratios with (1) get requests, (2) update requests, (3) random
requests . 62

5.2 Total time for each version when 75% of elements are in memory 63
5.3 Cache hit ratios with (1) one million distinct elements, (2) two million

distinct elements . 65
5.4 VisualVM monitors CPU and memory usage, among other things 66

vii

List of Tables

5.1 System configuration for all experiments 57
5.2 Experimental results of the first version 59
5.3 Experimental results of the second version using zipfian distribution with

s=1 . 60
5.4 Experimental results of the second version using zipfian distribution with

s=2 . 60
5.5 Experimental results of the second version using uniform distribution . . . 61
5.6 Experimental results on a larger scale . 64

viii

List of Algorithms

1 LRU – Put operation . 39
2 LRU – Get operation . 40
3 LRU – Eviction . 41
4 MRU – Put operation . 41
5 MRU – Get operation . 42
6 MRU – Eviction . 42
7 LFU – Put operation . 45
8 LFU – Get operation . 48

ix

Chapter 1

Introduction

1.1 Thesis Motivation

With the advent of stream-processing frameworks, a lot of software architectures shifted
towards real-time processing. Initially, most of ETL operations were re-implemented
to accommodate for a real or near-real time processing architecture. Many algorithms
required additional memory to store summary statistics, temporary results and so on.
These are called stateful architectures. At a high level, state in stream processing can be
considered as memory in operators or data structures that remembers information about
past input and can be used to influence the processing of future input. Some frameworks
like Samza and Apache Flink have APIs for providing stateful functionalities since their
inception, while Apache Storm introduced its stateful functionality subsequently in ver-
sion 1.0.0. In the past few years, stateful deployments have surpassed stateless ones in
streaming processors [1]

As the time was passing by, the demand for implementing more complex algorithms
necessitated the deployment of more sophisticated systems. More complex streaming
pipelines generally need to cache in memory some sort of operator state in order to
execute the application logic. Examples include keeping some aggregation or summary
of the received elements. There are also more complex states such as keeping a state-
machine for detecting patterns for fraudulent financial transactions or holding a model
for some machine learning application. While in all mentioned cases some kind of sum-
mary of the input history is kept, the concrete requirements vary greatly from one
stateful application to another.

Another common practice is to decouple the role of the state management from the
stream processor. The most obvious way to do this is to use an external database

1

Chapter 1. Introduction 2

system or a caching platform where the state will be stored. This can be something
as simple as a key-value store or more demanding like a NoSQL database. However,
the performance of disk-based databases, slowed down by unpredictable and high access
latency of disks, is no longer acceptable in meeting the rigorous low-latency, real time
demands of Big Data. The performance issue is further exacerbated by the overhead
(e.g., system calls, buffer manager) hidden by the I/O flow. To meet the strict real
time requirements for analyzing a massive amount of data and servicing requests within
milliseconds, an in-memory database that keeps data in the main memory all the time is
a promising alternative. In the past few years, the availability of large amounts of DRAM
at a lower cost than before helped to create new breakthroughs, making it possible to
deploy in-memory databases where a significant part, if not the entirety, of data fits in
main memory.

Over time, the database community realized that the most efficient way to boost perfor-
mance and speed is to store data in memory. If data reside in memory, all computations
would be faster, since the flow and the transformation of data is faster. This signified the
transition of the Hadoop-based era to the Spark-based era and the introduction of Lamda
architecture in 2011 by Nathan Marz. However, all big data processing frameworks show
the tendency to integrate their batch and stream processing APIs in the same execution
engine. Two of the most state-of-the art open source frameworks, Apache Flink and
Apache Spark started abandoning the notion of Tuple and RDD respectively and focus
on the more advanced, DataStream and DataFrame APIs. In this paradigm, the stream
is not regarded as a collection of tuples, but as a Streaming Database, which changes
over time (Figure 1.1). In order to get at this point, the data processing platforms
achieved 2 goals: Exactly once processing in true stream processing and handling of late
data in the stream (also called Structured Streaming, Figure 1.2). Spark announced
on March 2018 that its new version 2.4 will introduce the new Streaming API V2, a
new execution engine that can execute streaming queries with sub-millisecond end-to-
end latency. It is clear that in the future batch and stream processing will unify under
a single execution engine. This would also mark the evolution of Lamda architecture,
which wanted the batch and speed layers in separate configurations executed by different
APIs. The downside of this technique is that big data systems are increasingly relying
on having large amounts of memory available in order to achieve fast processing speeds
and accommodate a real time processing architecture. This entails moving, shuffling and
transforming data in memory where all of the above actions can be performed extremely
fast at DRAM processing speeds.

Chapter 1. Introduction 3

Figure 1.1: The concept of Structured Streaming in Apache Spark

A completely in-memory data management system presents many challenges [2], [3] and
it is not only prohibitively expensive, but also in some cases impossible. Memory is not
unlimited, and therefore expecting all of the data to fit is counter-intuitive. Inevitably,
a disk-based database would be used as well to store additional data which do not fit
in memory. However, in the context of a streaming application which requires a rigor-
ous threshold in terms of latency and throughput, this is not always possible. Stream
processors are usually assumed to consume unbounded streams which contain data with
unknown distributions and they are expected to stay fully functional even after random
spikes in traffic. The parallel use of a disk-based database would likely introduce un-
expected disk latencies which cannot be ignored. Therefore, it is difficult to estimate
how fast the data will be processed and how much pressure will be put on the streaming
application. The next chapter discusses a hypothetical situation and demonstrates how
this use-case could be a problem.

Chapter 1. Introduction 4

Figure 1.2: Example of handling late data in a stream, where event time is different
from ingestion timevery important for handling time-sensitive data e.g. sensor data

1.2 Thesis Contribution

This thesis tackles the problem of limited memory by proposing a multi-layered hybrid
platform which acts as a caching system and is accompanied with secondary data storage.
The main functionality of the caching component is to store hot elements and evict them
to disk according to an eviction policy. Therefore, the disk acts as a cold storage for
evicted data. Apart form that, cold data can return from disk back to memory if they
become hot again. This mechanism is referred to throughout this thesis as restoration.
Therefore, eviction and restoration work interchangeably and are responsible for keeping
hot elements in memory at all times, in an application-agnostic way. To achieve this
functionality, this thesis proposes three novel eviction strategies which are variations of
the LRU, MRU and LFU policies. They are similar to the traditional policies, however,
they have been configured to support both eviction and restoration. Using a small
amount of memory to keep only the hot elements cached at all times is very beneficial
for streaming applications, which require extremely low latency and thus suffer from
expensive I/Os to the disk. To our knowledge, there is no similar system which provides
this functionality. There are either a) in-memory databases which provide optional
backup to disk and b) hybrid systems which evict cold elements to the disk, but they
don’t examine the possibility of returning them back to memory if they become hot
again. This platform can work in a standalone mode or a distributed one, and can also
be used as an embedded stateful component in popular streaming frameworks. Finally,

Chapter 1. Introduction 5

the thesis discusses numerous optimizations and additional features such as database
interchangeability (the users can use the database of their choice as the default data
storage) and the use of bloom filter, which enhance performance and versatility.

1.3 Thesis Outline

This thesis is divided into multiple Chapters and there are 6 in total. Chapter 2 provides
a detailed formulation of the problem that is addressed in this thesis, along with the
relevant technical challenges. Next, Chapter 3 provides useful background related to
concepts used throughout this thesis. Chapter 4 presents the main contribution in
detail and describes in depth the platform that was implemented in order to solve the
problems that were posed in Chapter 2. Chapter 5 presents a detailed performance
evaluation. Finally, Chapter 6 discusses the thesis in general and outlines its possible
expansions through future work.

Chapter 2

Problem Statement

This Chapter presents the problem that was addressed in this thesis, and argues why it
cannot be solved by off-the-shelf solutions.

2.1 Technical Challenges

Suppose there is a distributed streaming processor which is ‘assigned’ to an unbounded
stream and continually ingests new data. The data must be processed in real time,
which means that the system is working on a single data point at a time and the goal
is to achieve sub-second-level latency between the data being created and the results
being available (this assumption excludes the micro-batching use case). In other words,
the system must have a throughput in the order of more than thousands of datapoints
per second and latency of a few milliseconds. Furthermore, assume that the particular
system computes an algorithm which saves or reads a complex state as an intermediate
result in an external storage system before fully processing and delivering the desired
results. Unfortunately, in this case the process of reading and writing the complex state
from storage is very costly. This is a logical assumption because it is not possible to
expect the enormous throughput of datapoints which are flowing throughout the various
stages of the streaming processor to match the speed of I/O operations. On top of that,
things become worse if the algorithm requires the I/Os to take place one-at-a time, and
not in batches, which they are much faster.

As a consequence, this use case looks like an impossible scenario, because it is absurd to
compare the speed of in-memory operations with I/Os. After the algorithm is deployed
on the stream processor, the system would not work properly, because the intermediate
datapoints would not have been fully processed and ready to be delivered at the output

6

Chapter 2. Problem Statement 7

by the time the new datapoints start arriving. The latency of the I/Os would surpass
all other costs throughout the system. Eventually, the connection between the stream
processor and the external storage system becomes the bottleneck. The internal buffers
of the stream processor which hold the processed datapoints at various nodes across
the cluster would overflow because they would receive more tuples than they are able
to send (in other words, their holding capacity would be exceeded). After a while, the
stream would start lagging behind. The system would either crash or start dropping
datapoints/tuples in order to flush its buffers, an action that is very likely to break the
algorithm.It is worth mentioning that this problem does not affect stateless architec-
tures, which don’t require to store intermediate or temporary results based on previous
computations. It only concerns stateful proccessing, where the state cannot fit in main
memory. The following sections discuss some common workarounds to this problem and
how these affect the behavior of the system in terms of validity, robustness and easiness
of implementing them.

2.2 Problem Formulation

The problem can be summarized as follows:

How can a stateful stream processor, with a limited amount of memory, store a large
state (which doesn’t fit in memory) and simultaneously avoid the disk storage because
the real-time processing will suffer from expensive writes?

Looking more closely, there are three main challenges:

• All streaming frameworks which perform real-time processing (sub-second latency)
should be able to process large amounts of data extremely fast - at DRAM pro-
cessing speeds.

• Memory is finite, and therefore in some cases it would be impossible to store all
data in memory.

• However, if the disk is used to store at least some portion of it, the expensive disk
lookups will hurt the performance and negate the purpose of real-time proccessing.

Chapter 2. Problem Statement 8

2.3 Alternative approaches

This section discusses some common workarounds to this problem and how these affect
the behavior of the system in terms of validity, robustness and easiness of implementing
them.

2.3.1 Backpressure

The most obvious solution is somehow to throttle the throughput of the input stream
in order to match the slower speed of the I/Os. While this technique can be done man-
ually, many stream frameworks expose this functionality as, what it is called, automatic
backpressure. By definition, automatic backpressure enables the stream processor to
consume new data depending on its capacity. If it is full and cannot accommodate for
new datapoints, then the consumers ‘choke’ the input stream, and therefore the through-
put is lowered. Some systems like Twitter Heron and Apache Flink use more advanced
and sophisticated mechanisms to implement automatic backpressure, while other sys-
tems use simpler and more naïve techniques to provide that functionality. Either way,
backpressure is a fundamental part of all stream processing systems, and that is why
it is present in some form in most of them. Unfortunately, this workaround is not a
viable solution. First of all, even if the stream will not probably be lagging anymore, the
throughput would have been lowered, leading to a non-optimal architecture. To put it
differently, if a stream can support a much higher value of throughput, and for whatever
reason it is lowered in order to accommodate the speed of the slower components, then
this architecture defeats the purpose of high scalability. The overall end-to-end latency
of the system is defined by the latency of the slowest part, no matter how fast and
scalable the other components are. This is analogous to having a cluster with 3 nodes,
where one of them is slower than the others.In this case, the latency of the slowest node
dominates the overall latency, no matter how fast the other nodes are. Finally, even if
backpressure is used to cope with this problem, it is widely known that is not supposed
to be used in this way. Backpressure was introduced as a temporal solution when the
stream processor was experiencing random and short spikes of traffic. Also, it is used
when a node in the cluster had failed, and for a limited amount of time, some data had
to redirected to another node, thus putting some temporary pressure on the system,
until the faulty one is fixed and comes back online. It is not meant to be used forever, as
a way to throttle down the stream indefinitely and prevent it from crashing. That’s why
it is impossible to use backpressure as a fix to the situation that was described above.

Chapter 2. Problem Statement 9

2.3.2 Micro-Batching

Another solution would be to use micro-batching instead of pure stream processing.
Micro-batching does not impose so much strict requirements regarding time, because
this architecture can accept a latency of a few seconds or more (depends on the batch
size and the window time). While micro-batching can also be considered a subcategory
of stream processing, there are some notable differences. First, they are unsuitable
for working on single-data-point-at-a-time kinds of problems. Secondly, this approach
implies giving up the associated super-low latency in processing one data point at a
time. If a user can surmount these limitations, then this is an acceptable solution.
Nevertheless, this thesis discusses real time processing and focuses on extremely high
throughput and sub-second-level latency, and therefore this scenario as well does not
provide a viable solution.

2.3.3 Approximation

Moreover, a possible workaround for the above problem would be to use a probabilistic
data structure which somehow approximates the results accurately enough with a small
margin of error. The data processing literature has some very popular and efficient al-
gorithms that can do this job such as Space-Saving and Lossy counting [4] [5], as well as
sketches [6], which cover a vast variety of use cases. One of the most significant advan-
tages of those algorithms is that they require sublinear space, at most poly-logarithmic
in n to work. Therefore, it is not necessary to use an external data storage system
because the main memory will probably be adequate. Nonetheless, their disadvantage
is that they don’t provide an exact answer. While this drawback may not be problem
in some use cases, they cannot be used when the system handles sensitive data, such as
financial data. Furthermore, if the output of the stream processor is fed into a software
which builds a machine learning model using those data, then it is counter-intuitive to
use approximate results because that would hurt the model during the training phase.
In other words, the system would hold an approximation of the data in memory (e.g.
summary statistics, sketches, histograms) in order to conserve space, which means that
the results at the output would be within a margin of error. This thesis however does
not completely reject the idea of using a probabilistic data structure. The next Chapter
will discuss the possibility of using one that on the one hand it does not hurt the validity
and the correctness of the results, and on the other hand it boosts performance.

Chapter 2. Problem Statement 10

2.3.4 Faster Storage

Finally, since the external storage system is essentially the bottleneck, there is a way
to minimize the cost of the I/Os and reduce latency by using SSDs instead of HDDs.
SSDs are much faster than a traditional hard disk, but slower than traditional DRAM
nevertheless. A typical DRAM has a transfer rate of approximately 2-25GB/s, whereas
typical SSDs have a transfer rate of 500MB/s. At the time of writing this thesis, the
maximum threshold that the fastest SSDs can reach caps at 560 MB/s. Taking this into
account, there is a huge gap in speed between DRAM and SSDs (one to two orders of
magnitude). The same is also true for flash memory, because modern SSDs are flash-
based. Consequently, using an SSD as a secondary external storage does not guarantee
that the system will work smoothly or the stream would not lag behind because still
SSDs cannot match the latency of memory operations. The next scenario is to consider
if the substitution of HDDs with SSDs will bridge the gap between memory and disk
latencies and hence solve the problem of the lagging stream. Despite the advantages of
SSDs over HDDs in terms of speed, but there are still some issues regarding durability
and capacity. The latter is not an overwhelming issue, because the maximum threshold
of 1 TB offered by modern SSDs is adequate for most applications. As far as durability
is concerned, SSDs are more likely to fail quicker than an HDD when they are put under
heavy load. To understand why durability is an issue, it is important to understand how
SSDs work. In particular, they have to erase an entire block at a time before writing to
it. Because SSDs write data to pages but erase data in blocks, the amount of data being
written to the drive is always larger than the actual update. If a single change is made
to a 4KB file, for example, the entire block that 4K file sits within must be updated and
rewritten. Depending on the number of pages per block and the size of the pages, the
SSD might end up writing 4MB worth of data to update a 4KB file. The only way for an
SSD to update an existing page is to copy the contents of the entire block into memory,
erase the block, and then write the contents of the old block along with the updated
page. If the drive is full and there are no empty pages available, the SSD must first scan
for blocks that are marked for deletion but that haven’t been deleted yet, erase them,
and then write the data to the now-erased page. This is why SSDs can become slower
as they age. A mostly-empty drive is full of blocks that can be written immediately,
while a mostly-full drive is more likely to be forced through the entire program/erase
sequence. Therefore, they wear out at a much higher rate than the HDD and they
are extremely susceptible to wear if they are put under an infinite stream of writes and
updates. Of course, modern SSDs have more advanced controllers which try to minimize
the damage and increase life-span. If the system entailed mostly reads and a small of
amount of writes and update operations, then the SSDs would be a good solution as a
secondary storage. There are also other issues like power consumption, cost of buying,

Chapter 2. Problem Statement 11

and so on, that do not concern this thesis and will not be further discussed. On the other
hand, there are a few promising technologies under development that may change the
memory/disk storage landscape. Both magnetic RAM and phase change memory are
upcoming technologies that have presented themselves as candidates. Nonetheless, both
technologies are still in early stages and must overcome significant challenges to actually
compete as a replacement to the current state of an SSD drive. Taking all the above
into consideration, although SSDs seem a good alternative in comparison to the above
workarounds, it is still unclear if they solve the problem at the time of writing this thesis
or in the near future. Their lower latency compared to HDDs comes at a cost of less
reliability and fault-tolerance. They could be used with some additional modifications,
(like for example mirroring the contents of an SSD to another disk and so on) which may
increase the complexity of the system. Either way, they seem to be a good approach, but
this thesis will concentrate on finding an algorithmic solution without the drawbacks of
the SSDs.

2.4 Alternative Approach

Taking all the above into account, it is clear that in order to provide a viable solution to
the problem and address all the challenges, an out-of-the box approach should be used.
This thesis proposes that the system which will address the problem efficiently should
satisfy the following requirements:

• The proposed system should act as a cache with configurable element capacity,
which will store the hot elements.

• The cold data would be evicted to disk according to an eviction policy. The
disk should not act as backup for the data in memory. If that would be case,
the mirroring of the updates to the disk would make the whole process too slow.
Therefore, the disk and the caching components will have different data. Also the
data updates to the disk should be consistent.

• Having the hot elements available in memory at all times ensures that the expensive
trips to disk would be minimized, thus ensuring low latencies. This makes the
proposed architecture able to be used as a stateful memory component for a stream
processor. It could also be used as a standalone system or a distributed one in a
real-time architecture.

• Since the system would be used in a real time architecture and the distribution
of streaming data may change (online processing), cold elements should be able

Chapter 2. Problem Statement 12

to automatically return to memory again if they start getting referenced. The
proposed eviction strategy that would perform well is the LFU policy because it
can advantage of the skew in the data - however the system should also be able to
work with little or no skew at all.

Chapter 3

Background and Related Work

This chapter summarizes required background knowledge about specific subjects that
are mentioned throughout the thesis. It also presents and analyzes available databases,
and checks whether they could contribute somehow to the solution of the problem that
this thesis poses.

3.1 The Concept of Caching

Caching is one of the most fundamental topics of computer engineering. It is the tech-
nique of storing a copy of data temporarily in rapidly-accessible storage media (also
known as memory) local to the central processing unit (CPU) and separate from bulk
storage. In fact, it has been around for as long as computing itself.

From web browsers, to DNS systems and CPU caches, nowadays it is almost unimagin-
able to think that a modern system does not use any form of caching. Caching is not only
limited to simple variables. It is also used for more complex objects like images, data
access objects, security credentials, web pages, parts of a graph and many other things.
The existence of cache is based on a mismatch between the performance characteristics
of core components of computing architectures, namely that bulk storage cannot keep
up with the performance requirements of the CPU and application processing.

The concept of caching is based on the “The Long Tail” term, which was studied by
the mathematician Benoît Mandelbrot in the 1950s [7]. However, this term is not only
limited to math and statistics. It is also found in financial systems, marketing models
and social network mechanisms. For instance, in e-commerce, a small number of items
may make up the bulk of sales, a small number of blogs might get the most hits and
so on. While there is a small list of popular items, there is a long tail of less popular

13

Chapter 3. Background and Related Work 14

ones. In statistics, the Long Tail is itself a vernacular term for a Power Law probability
distribution. One form of a Power Law distribution is the Pareto distribution, commonly
known as the 80:20 rule. This phenomenon is useful for caching. If 20% of objects
are used 80% of the time and a way can be found to reduce the cost of obtaining
that 20%, then the system performance will improve. This phenomenon also appears
throughout the nature. An example is natural language processing. In the Brown Corpus
of American English text, the word ”the” is the most frequently occurring word, and
by itself accounts for nearly 7% of all word occurrences (69,971 out of slightly over 1
million). True to Zipf’s Law, the second-place word ”of” accounts for slightly over 3.5%
of words (36,411 occurrences), followed by ”and” (28,852). Only 135 vocabulary items
are needed to account for half the Brown Corpus [8]. The next section describes how an
application can be benefited from caching.

3.1.1 How Caching Helps

In order to thoroughly understand how caching enhances a system in terms of speed and
robustness, it is important to understand what is the problem that caches solve in the
first place.

There are 2 types of bottlenecks in an application: In particular, the applications can
be either CPU-bound or I/O-bound. If an application is I/O-bound then then the time
taken to complete a computation depends primarily on the rate at which data can be
obtained. If it is CPU-bound, then the time taken primarily depends on the speed of
the CPU and main memory.

While the focus for caching is on improving performance, it is also worth realizing that it
reduces load. The time it takes something to complete is usually related to the expense
of it. So, caching often reduces load on scarce resources.

3.1.1.1 Speeding up CPU-Βound Applications

CPU bound applications are often sped up by:

• Improving algorithm performance.

• Parallelizing the computations across multiple CPUs (SMP) or multiple machines
(Clusters).

• Upgrading the CPU speed.

Chapter 3. Background and Related Work 15

The role of caching, in this case is to temporarily store computations and data that may
be reused again. For example:

• Large web pages that have a high rendering cost.

• Caching of authentication status, where authentication requires cryptographic
transforms or computing complex cryptographic hashes.

3.1.1.2 Speeding up I/O-Βound Applications

Many applications are I/O-bound, by either disk or network operations. In the case of
databases, they can be limited by both.

There is no Moore’s law for hard disks. A 10000 RPM disk was fast 10 years ago and is
still fast. Hard disks are speeding up by using their own caching of blocks into memory.
Network operations can be bound by a number of factors:

• Time to set up and tear down connections.

• Latency, or the minimum round trip time.

• Throughput limits.

• Marshaling and unmarshaling overhead.

The caching of data can often help a lot with I/O-bound applications. Some examples
of this case are:

• Data Access Object caching for a database or an ORM.

• Web page caching, for pages generated from databases.

• Blob caching, for large files such as multimedia objects.

In this case, caching may be able to reduce the workload required. If caching can cause
90 of that 100 to be cache hits and not even get to the database, then the database can
scale 10 times higher than otherwise.

Chapter 3. Background and Related Work 16

3.1.1.3 Characterization of this Platform

Obviously, the situation that the particular thesis describes is characterized as I/O-
bound. Of course, this depends on the data that are handled by the system. If it
was assumed that there are data which require complex CPU-intensive computations,
then the application could be CPU-bound as well. However, this thesis focuses only on
data-intensive applications and therefore it is assumed that the system is I/O-bound.
Another fundamental issue that needs to be discussed is how faster the system will
become if caching is used. This is considered next.

3.1.2 Expected Speedup

One of the most fundamental questions regarding this topic is how much an application
will speed up with caching. There is not a definite answer, because that depends on a
multitude of factors being:

• How many times a cached piece of data can and is reused by the application.
This factor is crucial because it largely determines which eviction strategy is most
suitable.

• The proportion of the response time that is alleviated by caching.

In applications that are I/O-bound, which is most business applications, most of the
response time is spent on getting data from a database. Consequently, the speed up
mostly depends on how much reuse a piece of data gets. In a system where each piece
of data is used just once, it is almost zero. In a system where data is reused a lot, the
speed up is large.

The speedup of the application can be estimated numerically using Amdahl’s Law [9]
which is used to find the system speed up from a speed up in part of the system. It can
be formulated in the following way:

Speedup =
1

(1− p) + p
s

(3.1)

where

- Speedup is the theoretical speedup of the execution of the whole task;

Chapter 3. Background and Related Work 17

- s is the speedup of the part of the task that benefits from improved system resources;
- p is the proportion of execution time that the part benefiting from improved resources
originally occupied.

At the time of writing this thesis, a random read/write in DRAM is in the order of
nanoseconds, while a disk I/O is in the order of milliseconds. Therefore, DRAM is
1000000 times faster than a disk I/O. If a system spends 70% of the execution time
retrieving or storing an object from the database and the rest doing calculations in main
memory, then the expected speedup using Amdahl’s Law is calculated as follows:

Speedup =
1

(1− 0.7) + 0.7
1000000

(3.2)

This example assumes a monolithic system and it is merely estimation. Also Amdahl’s
Law assumes that each operation has a fixed cost. In the context of this example, it
assumes that the cost of each ‘trip’ to the database is constant throughout the whole
execution. Chapter 4 will argue that this is not always the case because some disk
accesses will cause additional lookups if there is an eviction. However, this is a simple
case which demonstrates numerically the usefulness of a cache.

3.1.3 Eviction Strategies

One of the most important factors that characterizes a cache is its eviction strategy.
In fact, the use of a particular eviction strategy largely depends on the nature of the
problem that should be solved. For example, if the data follows a Pareto distribution,
then a frequency-based cache is more useful than a recency-based one. Also, some
caches are more complex and require more resources than others. There are also caches
which are not widely used, but they are optimal than their counterparts at very specific
use-cases. Generally speaking, all eviction strategies are partitioned in 2 subcategories:

1. Timed-based Eviction or Time bound cache
As the name suggests, data are subjected to an expiry policy. When an object is
inserted in the cache, the user specifies a time interval for that particular object.
The user can also specify a time interval that applies to all elements at once.
Therefore, the entries are held for a predefined period. The most usual eviction
strategies in this sub-category are:

Chapter 3. Background and Related Work 18

• Time to Idle Seconds (or TTI) – The maximum number of seconds an
element can exist in the cache without being accessed. The element expires
at this limit and will no longer be returned from the cache.

• Time to Live Seconds (or TTL) – The maximum number of seconds an
element can exist in the cache regardless of use. Same as before, the element
expires at this limit and will no longer be returned from the cache.

The greatest advantage of this type of eviction policy is that it is a simple and
very easy to use. For instance, in Java it can be implemented using ExpringMap,
or by using an off-the-self library like Guava.

2. Size-based Eviction
This type of caches holds entries until they are invalidated by subsequent updates.
A threshold is specified, after which the entries are invalidated and hence replaced
according to an eviction strategy. The threshold can be a memory constraint or
a maximum number of entries allowed inside the cache. The latter is more popu-
lar, because it can be used with all eviction policies and is the easiest to implement.

Least Recently Used (LRU): This is the most popular eviction strategy. It
works pretty well because of the locality of reference phenomenon and is the default
strategy in most caches. In this scenario, the element with the oldest timestamp is
evicted. The last used timestamp is updated when an element is put into the cache
or an element is retrieved from the cache with a get call. In fact, this is its simplest
form. However, this algorithm has evolved the past years, and has become more
efficient. For example, Adaptive Replacement Cache (ARC) [10] which is based on
LRU has better performance. That’s because it combines the use of the locality
of reference with frequency.

Least Frequently Used (LFU): One of the most efficient eviction policies. It
works well when data popularity is skewed and follows a Pareto distribution. For
each get or update call on the element the number of hits is updated. When a
put call is made for a new element (and assuming that the max limit is reached)
the element with least number of hits, the Least Frequently Used element, is
evicted. One variation of this cache is the Least Frequent Recently Used (LFRU)
cache, [11] which combines both LRU and LFU. In LFRU, the cache is divided
into two partitions called privileged and unprivileged partitions. The privileged
partition can be defined as a protected partition. If content is highly popular, it
is pushed into privileged partition. If it is required to replace content from the
privileged partition, the replacement is done as follows: LFRU evicts content from
unprivileged partition, pushes content from privileged partition to unprivileged

Chapter 3. Background and Related Work 19

partition, and finally inserts new content in privileged partition. The privileged
partition acts an LRU, while the unprivileged acts an approximated LFU. This
type of cache is most suitable for in-network applications, such as Content Delivery
Networks.

LFU with Dynamic Aging (LFUDA): This variant of LFU uses dynamic
aging to accommodate shifts in the set of popular objects [12]. In the dynamic
aging policy, a cache age factor is added to the reference count when an object is
added to the cache or an existing object is referenced. This prevents previously
popular documents from polluting the cache. Instead of adjusting all key values
in the cache, as some aging mechanisms require, the dynamic aging policy simply
increments the cache age when evicting objects from the cache, setting it to the
key value of the evicted object. This has the property that the cache age is always
less than or equal to the minimum key value in the cache. This also prevents the
need for parameterization of the policy, which LFU-Aging requires.

First In First Out (FIFO): Elements are evicted in the same order as they
come in. When a put call is made for a new element (and assuming that the max
limit is reached for the memory store) the element that was placed first (First-In)
in the store is the candidate for eviction (First-Out).This algorithm is used if the
use of an element makes it less likely to be used in the future. An example of this
case would be an authentication cache.

Most Recently used (MRU): A less popular algorithm which discards, in con-
trast to LRU, the most recently used items first. Despite the fact that this policy
has not many uses, in some cases it outperforms other policies. For example, when
a file is being repeatedly scanned in a Looping Sequential reference pattern, MRU
is the best replacement algorithm [13]. Moreover, for random access patterns and
repeated scans over large datasets (sometimes known as cyclic access patterns)
MRU cache algorithms have more hits than LRU due to their tendency to retain
older data [14]. MRU algorithms are most useful in situations where the older an
item is, the more likely it is to be accessed.

Randomized eviction: This policy randomly chooses entries to evict. It is the
simplest in terms of implementation and the least efficient of all strategies. This
eviction policy is mainly used for debugging and testing purposes.

Randomized LRU: It is a page-based eviction policy that combines LRU and
randomization. Once a memory region defined by a memory policy is configured,
an array is allocated to track the ’last usage’ timestamp for every individual data
page. When a data page is accessed, its timestamp gets updated in the tracking
array. When it is time to evict a page, the algorithm randomly chooses a con-
figurable number of indexes from the tracking array and evicts the page with the

Chapter 3. Background and Related Work 20

oldest timestamp. If some of the indexes point to non-data pages (index or system
pages), then the algorithm picks another page. This implementation has many
variations though. Another version is to evict 2 pages. More specifically, the two
most recent access timestamps are stored for every data page. At the time of
eviction, the algorithm randomly chooses 2 indexes from the tracking array and
the minimum between two latest timestamps is taken for further comparison with
corresponding minimums of four other pages that are chosen as eviction candi-
dates. This method outperforms LRU by resolving the one-hit wonder problem: if
a data page is accessed rarely but accidentally accessed once, it’s protected from
eviction for a long time.

3.1.4 Caches and Machine Learning

In the past few years, with the explosive growth of machine learning/deep learning and
its many applications, a lot of research has been made in the caching area too. In fact,
it is not the first time that a machine learning-powered approach is made to a problem
which traditionally lies in the field of data structures and databases. For example, Tim
Kraska et al. in [15] use neural networks to train indexes which can learn the sort
order or structure of lookup keys and use this signal to effectively predict the position
or existence of records. Similarly, in caching the idea is to treat an eviction policy as
a statistical model and try to predict the elements which should be evicted in order
to optimally increase cache-hit ratio [16] [17]. Although these approaches surpass the
performance of traditional eviction strategies in certain scenarios, there is still room for
improvement in the future.

3.1.5 Writing Strategies

There are three main caching techniques that can be deployed, each with its own pros
and cons.

3.1.5.1 Write-Through Cache

Write-through cache directs write I/O onto cache and through to underlying permanent
storage before confirming I/O completion to the host. This ensures data updates are
safely stored on, for example, a shared storage array, but has the disadvantage that I/O
still experiences latency based on writing to that storage. Write-through cache is good
for applications that write and then re-read data frequently as data is stored in cache
and results in low read latency.

Chapter 3. Background and Related Work 21

3.1.5.2 Write-Around Cache

Write-around cache is a similar technique to write-through cache, but write I/O is writ-
ten directly to permanent storage, bypassing the cache. This can reduce the cache being
flooded with write I/O that will not subsequently be re-read, but has the disadvantage
that a read request for recently written data will create a “cache miss” and have to be
read from slower bulk storage and experience higher latency.

3.1.5.3 Write-Back Cache

Write-back cache is where write I/O is directed to cache and completion is immediately
confirmed to the host. This results in low latency and high throughput for write-intensive
applications, but there is data availability exposure risk because the only copy of the
written data is in cache. Nevertheless, the past decade things have improved and sup-
pliers have added resiliency with products that duplicate writes. Users need to consider
whether write-back cache offers enough protection as data is exposed until it is staged
to external storage. Write-back cache is the best performer for mixed workloads as both
read and write I/O have similar response time levels.

3.2 Caching Challenges

Generally speaking, the most important parameterization for a cache is finding the right
eviction strategy and adjusting it according to the needs of the application. Additionally,
caching can encounter challenges that include, for example, the problem of cache warm-
up, where cache needs to be loaded with enough active data to reduce cache misses and
allow it to start improving I/O response times. There is a technique to cope with this
issue which will be shown in the next chapter.

The next step is to evaluate which eviction policy is the most suitable for solving the
problem that this thesis posed. To recap, the problem are the random I/Os at the
external storage. If the goal was to perform batch-processing, then the additional latency
of the I/O cost would not hurt the performance. Stream processing however requires low
latency, in order to sustain high throughput. Consequently, solving the problem comes
down to 2 sub-problems, which can be tackled separately:

1. Limit the number of I/Os as much as possible
The truth is, it is impossible to get rid of disk I/Os, but what can be done is to limit
them as much as possible. The idea is to deploy a cache in main memory, where

Chapter 3. Background and Related Work 22

the most accessed entries would be kept in. The other entries which are deemed
as less frequent would be kept in a hard disk, which is assumed to be much larger
than the main memory. The eviction strategy which is more appropriate for the
problem described above is the LFU. Apart from that, LFU also takes advantage
of skew in the data. Naturally, most data distributions have skewed elements. By
keeping the most frequent entries in the cache, the number of accesses to the disk
is limited, because the algorithm interacts with much higher probability with the
“hot” entries. Of course, that does not mean that the system should only work
with a heavily-skewed distribution. The goal is to have a satisfactory performance
even with the worst-case scenario (uniform case), and simultaneously prove that
the system performs better the more skew the distribution has. Finally, since the
distribution of the elements which the system consumes is supposed to be unknown,
there is a chance that a cold element which is not referenced frequently, to become
frequent in the future. Therefore, the application should not simply evict elements
and apply the LFU policy only in the cache. In this case, cold elements on the
disk which may start becoming hot again, must be transferred back to the cache.

2. Lower the latency of I/Os as much as possible
Unfortunately, the latency of the I/Os cannot be limited below a certain threshold,
because the cost of moving the head assembly must also be accounted for. Accord-
ing to database theory, the cost of random I/Os is much higher than sequential
ones. For example, main memory is only about 6 times faster when the disk is
performing sequential access (350 Mb/sec for memory compared with 60 Mb/sec
for disk). Nonetheless, memory is about 100000 times faster when the disk per-
forms random access. Therefore, the problem can somewhat be alleviated by not
doing completely random accesses at the disk. The best strategy in this scenario
is to use a write buffer. The buffer will hold some entries until it becomes full.
After that, all changes will be committed and synched to disk in a single access,
thus limiting the overall cost.

3.3 Databases and Key-Value Stores

This section presents and analyzes the in-memory database ecosystem. The goal is to
perform a search and try to find an eligible system which satisfies all the aforementioned
requirements, thus avoid creating one from scratch. Even if a database is rejected, the
reasons of its rejection will also be presented. It is worth mentioning that the successful
database should also have the option for persistence. This means that pure in-memory
systems such as Memcached and Apache Arrow will not be discussed at all. Also, open

Chapter 3. Background and Related Work 23

source systems will be considered more seriously. If a commercial product is found to
do the job similarly to an open source one, then the latter will be used instead.

3.3.1 Redis

Redis [18] is one of the most popular in-memory key-value store [19], implementing a
distributed, in-memory key-value store. First introduced in 2009, it is a reliable and
battle-tested system because it is widely used in both industry and academia. It is
open-source, with a great number of contributors, while it is also supported by popular
companies like Facebook and Twitter. As far as its memory-processing capabilities are
concerned, there is no match, because it excels in high throughput, fault-tolerance and
robustness. Redis is a state-of-the-art project that offers advanced features, such as
partitioning, replication, publish-subscribe functionality and so on. Redis however does
not have full ACID properties, since it does not support transactions. Also, it supports
eventual consistency instead of immediate consistency, which is less robust and reliable.
This is not a critical drawback because Redis is supposed to work that way: It favors high
availability over consistency. There are some workarounds that can improve consistency
at the application level. Furthermore, it also offers the choice for data persistence. If
data persistence has been activated, then the contents of the in-memory data structures
stored in Redis are mirrored to the disk, thus guaranteeing fault-tolerance and no single
point of failure. Of course, this feature induces additional costs because data should
be updated at the disk as well. The problem though is that the purpose of this thesis
requires the hot data to be in stored in main memory and the cold ones in disk, which
means that main memory and disk storage must have different data. Therefore, although
Redis offers a plethora of advantages regarding the in-memory processing functionalities,
it cannot be used because of its persistence limitations.

3.3.2 Apache Ignite

Apache Ignite [20] is one of the newest additions in the in-memory platform ecosystem
and very similar to Redis, which makes it a direct competitor. Introduced in 2014 and
incubated in 2015 at the Apache foundation, it is a promising project open-source with
a plethora of in-memory processing capabilities and options for persistence. It is mostly
implemented in Java. Data in Ignite is stored in the form of key-value pairs in the off-
heap memory by default, in order to avoid long pauses from garbage collection. There is
also the option of storing data in the Java heap as well. The database component scales
horizontally, distributing key-value pairs across the cluster in such a way that every node
owns a portion of the overall data set. Therefore, its clustering component is based on

Chapter 3. Background and Related Work 24

the shared nothing architecture. Contrary to Redis, Ignite supports the ANSI-99 SQL
standard with joins, ACID transactions, immediate consistency as well as MapReduce
like computations and off the shelf machine learning APIs. As a downside, it does not
support master-slave replication or multi-master replication that Redis does. Finally,
Ignite also offers native persistence, similar to Redis, but with some extra features. In
particular, persistence is optional and can be turned on and off. When turned off, Ignite
becomes a pure in-memory store. With the native persistence enabled, Ignite always
stores a superset of data on disk, and as much as possible in RAM. For example, if there
are 100 entries and RAM has the capacity to store only 20, then all 100 will be stored
on disk and only 20 will be cached in RAM for better performance. Every time the
data is updated in memory, the update will be appended to the tail of the write-ahead
log (WAL). The purpose of the WAL is to propagate updates to disk in the fastest way
possible and provide a consistent recovery mechanism that supports full cluster failures.
In other words, Ignite simply mirrors data stored in main memory at the disk, which is
something that also Redis does (without the transactional part), and as it was explained
above, this is not the desirable use case. Apart from that, Ignite also offers the option
of eviction from memory and persistence to disk, when the memory designated by the
user is filled up. The user has a variety of eviction strategies to choose from such as
LRU, FIFO, eviction using TTL (time-to-live requests) and completely random eviction.
While LRU is a very good option, according to the problem that the thesis formulated
above, an LFU eviction strategy would be more suitable. Nevertheless, Apache Ignite
is a very popular project with many contributors and supporters, and it would be no
surprise if in the future it will move towards this direction.

3.3.3 Ehcache

Ehcache [21] is probably the most widely used and the most popular Java cache plat-
form. It is mostly open source and has a lot of contributors. Unfortunately, some of
its features require a paid license and are only available in commercial products. These
include the Enterprise Ehcache and BigMemory, which offer major functionalities such
as distributed caching, replication and Fast Restartability Consistency (option to store
a fully consistent copy of the in-memory data on the local disk). This is a big downside,
because all the above features have many applications in modern deployments. Apart
from that, Ehcache is general purpose caching system and it can be found preinstalled
in a plethora of systems, such as Hibernate, Google App Engine, JTA (a component
of JEE ecosystem) and so on. Moreover, it has a powerful set of APIs such as SOAP
and RESTful services, a gzip caching servlet filter. The latter provides a set of gen-
eral purpose web caching filters in the ehcache-web module. Using these can make a

Chapter 3. Background and Related Work 25

significant difference to web application performance. With built-in gzipping, storage
and network transmission are highly efficient. Cache pages and fragments can be com-
pressed and stored in memory or in the disk. As far as the caching functionalities are
concerned, the memory obviously can be used as a cache and its content can be flushed
to the disk according to some eviction strategy. Unfortunately, one major drawback of
Ehcache is that since version 2.0 it cannot be used exclusively as a disk database. The
memory component on top of the disk storage must be activated. This excludes the
usage of Ehcache solely as a datastore like LevelDB. Of all the aforementioned systems,
Ehcache has the richest set of expiry policies. More specifically, it supports LRU, ran-
dom eviction, FIFO, TTL, TTI (timeToIdleSeconds, which is the maximum number of
seconds an element can exist in the cache without being accessed) and LFU. LRU is
implemented in both a probabilistic and a deterministic way. On the other hand, LFU
is implemented exclusively in a probabilistic way. According to the official documenta-
tion, it takes a random sample of the elements and evicts the smallest. Obviously, this
technique increases speed but lowers accuracy. This poses a problem for the use case
that was stated in the beginning of this section. However, even if a probabilistic way
could be accepted, Ehcache does not return an element stored at the disk back to the
cache, if it becomes hot again after a while. Taking all the above into account, it does
not meet the required expectations. The fact that it is not open-source and some vital
features are not available also has a negative effect and does not constitute Ehcache a
successful candidate.

3.3.4 MapDB

MapDB [22] is an open-source project which can be used both as an in-memory data
store and a database. Although it was released in 2014, the creation of MapDB is
the culmination of years of research and development to get the project to that point.
According to the author, the concept of MapDB is largely based on JDBM, a project
which the author started developing in 1999. The first version was written purely in Java,
but since then development has started moving towards Kotlin. In fact, the latest stable
version of MapDB (version 3.0) has more lines of code in Kotlin than in Java. Of all the
aforementioned systems, it is the least popular (both in industry and academia) and has
the least number of contributors. The greatest advantage of MapDB is that it leverages
the already existing Java Collections API, which is so familiar to Java developers that
most of them literally use it daily in their work. More specifically, MapDB provides
Java maps, concurrent maps, sets, lists, queues and so on, which are stored in the JVM
off-heap memory. Therefore, it does not only function as a simple key value store.
Moreover, the same data structures can be used for disk storage as well. This is one of

Chapter 3. Background and Related Work 26

the biggest strengths of MapDB that distinguishes it from the aforementioned systems.
For example, any HashMap object can be handled similarly both in memory and in disk,
by using similar APIs, thus reducing complexity in the code. Consequently, concepts
like serialization/deserialization, transformations, writes and so on are more flexible in
terms of dealing with objects. Furthermore, given the capabilities of MapDB, it can
be used as a caching system, with optional disk persistence as a secondary storage.
MapDB supports eviction mechanisms, but there is not a wide range of options to
choose from, as opposed to other systems described in this section. In particular, it uses
LRU, Random, and TTL eviction. Unfortunately, the desired case of the LFU eviction
is absent, and therefore it cannot be used for its caching mechanisms. Finally, MapDB
is not a distributed system and therefore it does not support features such as sharding,
replication etc. It is meant to be used as an embedded database. However, it is not
difficult to add an extra layer above and partition it at the application layer.

3.3.5 Conclusion

Taking all the above into consideration, there is no suitable system that meets all the
requirements in order to solve the problem that this thesis poses. Some desired features
such as partitioning, fault-tolerance and a rich set of in-memory data structures are
present in almost all of the databases above. But in order to give a conclusive solution,
the eviction policy that is most suitable for the current situation is LFU. The next
chapter discusses the requirements and the details of building such as a system.

Chapter 4

Implementation

This chapter describes the architecture of the platform in depth and explains all the
implementation-specific design choices that have been made along the way in order to
increase robustness and speed.

4.1 Layers of the Platform

The subsections below present the layers in depth. Each layer serves a different func-
tionality. Apart from that, the multi-layered organization makes the platform more
flexible and elastic. The overall architecture is visually presented in Figure 4.1. The
implemented algorithms are also explained here.

4.1.1 First Layer

The first layer on top of the whole a system contains a Bloom filter. Newly arrived
data will access the bloom filter first, before hitting the memory layer. The deployment
of the bloom filter is an optional technique since there is a trade-off between memory
occupancy and throughput. The user can choose whether to deploy it or not, according
to his needs.

4.1.2 Second Layer

The second and the most fundamental layer of the system contains the caching logic.
Since there is no off-the-shelf in-memory database that covers all the aforementioned
requirements, the implementation of caching logic is custom and does not depend on
external in-memory databases. More specifically, this layer contains:

27

Chapter 4. Implementation 28

• The data structures which manage the entries in main memory-processing.

• The write buffer.

• The APIs which communicate with the other layers.

• The implementation of various eviction policies.

The eviction policies include the adapted versions of MRU, LRU and LFU. This thesis
however focuses mostly on the LFU policy, which is the most difficult to implement and
its proposed adaptation cannot be found in other popular systems. Apart from that,
LFU is the most useful policy in the context of this project, because it is the most
efficient for solving the problem of the expensive I/Os. The rest of the policies were
built in order to present a fully-functional caching system.

Figure 4.1: The overall architecture of the system. Each layer is depicted with a
different color

Chapter 4. Implementation 29

4.1.3 Third Layer

Finally, the persistence layer contains the database for storing the less frequent elements.
Contrary to the previous layer, there is no need to create a custom database system, since
any existing system could do the job. This layer contains the APIs that read, save and
update the elements on the external system. The user can choose any database he wants,
as long as it is compatible with the APIs that explicitly define the correct structure of
the data that are used in the platform. In other words, the database is not hard-coded
in the system. All functions on top of the database that handle data operations are
completely unaware of the database. For the current thesis, the database that was
chosen is MapDB. It is worth mentioning that MapDB is an embedded key-value store
and not a pure database. MapDB was chosen for 2 main reasons. First and foremost,
it is a light storage system which can be configured and deployed easily. Secondly, the
platform is implemented in Java, same as MapDB. This in turn has many advantages.
In particular, it is possible to store complex Java objects as values in MapDB without
additional overhead. For example, a complex object in Java could be a JSON object.
Other key-value stores that are written in different languages, such as LevelDB [23]
which is written in C++, require additional wrappers for Java types and do not support
a rich set of values such as MapDB. For instance, LevelDB cannot store Java Objects,
Hash Maps etc as values. Consequently, using MapDB has the advantage of providing
a variety of options to the user and simultaneously keeps the architecture simple and
robust. Last but not least, this layer includes a static Connection Pooling module. This
component gives the ability to open many parallel connections to the database from an
application. When the connections are closed, they are returned to the pool, without
being destroyed. Therefore, they are ready to be used by other requests, and the cost of
creating connection objects anew (which is expensive) is avoided. This mechanism boosts
performance and adheres to the modern way of deploying complex big data systems in
production.

4.2 Additional Specifications

The system, which can be characterized as a hybrid caching system with additional
persistence capabilities, also has the following specifications:

Chapter 4. Implementation 30

4.2.1 Modularity and Flexibility

Modularization is a big issue in today’s programming. Programmers all over the world
are trying to avoid the idea of adding code to existing classes in order to make them sup-
port encapsulating more general information. Take the case of an information manager
which manages phone number. Phone numbers have a particular rule on which they get
generated depending on areas and countries. If at some point the application should
be changed in order to support adding numbers form a new country, the code of the
application would have to be changed and it would become more and more complicated.

Contemporary software engineering architectures aim to increase modularity by allowing
the separation of cross-cutting concerns [24]. They do so by adding additional behavior
to existing code (an advice) without modifying the code itself. Instead, they separately
specify which code is modified via a ”pointcut” specification, such as ”log all function
calls when the function’s name begins with ’set’”. This allows behaviors that are not
central to the business logic (such as logging) to be added to a program without cluttering
the code, core to the functionality.

This entails breaking down program logic into distinct parts (so-called concerns, cohe-
sive areas of functionality). Nearly all programming paradigms support some level of
grouping and encapsulation of concerns into separate, independent entities by providing
abstractions (e.g., functions, procedures, modules, classes, methods) that can be used for
implementing, abstracting and composing these concerns. Some concerns ”cut across”
multiple abstractions in a program, and defy these forms of implementation. These
concerns are called cross-cutting concerns or horizontal concerns.

For example, in the current thesis the cache is considered a ’concern’, and the eviction
strategy is an ’advice’. The cache is the main entity, and each eviction policy gives a
different behavior to the cache. The user can add eviction policies/behaviors to the cache
seamlessly by encapsulation. The cache is decoupled from the eviction policy because its
only job is to abstract the get and the put methods, without taking into consideration
how each eviction policy is implemented. This plays a significant role in the flexibility
and the robustness of the system because the user can add different eviction policies
without breaking the code. The same technique is also used in the persistence layer
as explained above. That’s why it is modular and the user can plug his own system
which handles the persistence functionality. This principle in software engineering is
also known as aspect-oriented programming [25]. More details about how these features
are implemented are analyzed in the next sections.

Chapter 4. Implementation 31

4.2.2 Scalability

Generally speaking, all big data systems nowadays are distributed in order to be able to
handle a large amount of data with efficiency. Apart from that, a plethora of streaming
algorithms is expected to work in parallel by taking advantage of many nodes.

Consequently, an additional characteristic of the system is its ability to work in a dis-
tributed manner. In order to achieve this, the user can create more than one instances
of the system. The stream then can be partitioned among these instances (by using for
example hash partitioning). This can be implemented relatively easily, since each key
can be assigned to a particular instance, according to a partitioning function. Moreover,
the stream itself can be divided into one or more sub-streams. A top-level view of this
feature is shown in Figure 4.2

Figure 4.2: The stream is partitioned and each itemset is assigned to a particular
instance

In addition to this, the platform is also built to work in tandem with a stream processor.
More specifically, the user can instantiate an instance of the system (as a single instance)

Chapter 4. Implementation 32

inside a worker/node of a stream processor. The system, using a limited amount of mem-
ory, can help the sub-partition of the stream processor store and handle large amount
of data at speeds which require sub-second latencies. A useful case would be to use this
platform embedded inside the popular real-time processing framework Apache Storm.
This is shown in Figure Figure 4.3. Spouts and bolts are the two basic primitives that
the user has at his disposal in order to perform the needed computations. A spout can
be thought as a ”tap” that produces tuples at a constant, variable or event driven rate.
Bolts are responsible for all the transformations and processing that happens within
each of the currently running topologies in the cluster.

Figure 4.3: The system can be used inside each bolt, where Apache Storm’s processing
logic takes place

In the above example, the system can be embedded as a single instance inside each
bolt where Apache Storm’s processing logic takes place. Although this example shows
only Apache Storm, the platform is configured to work with other stream processors
too. This is because the platform can work independently using the AOP pattern and
support real-time processing speeds.

4.2.3 Generic Values

One the most fundamental features of a caching system or a database is the datatype
of the values that is compatible with. In a traditional implementation, the choice of the
variable would largely depend on the type of the database that is used in the underlying
persistence layer. In the case of this thesis, the system which is presented is able to
use any possible variable as a value or even a Java object. This is mainly achieved
because MapDB (which is the default database in this architecture) can handle directly
any Java object. If the user wishes to use a different database instead, like for example

Chapter 4. Implementation 33

a relational database, all he has to do is to is implement the Data Access Object APIs
and handle the object in a way that is compatible to the database. For example, if the
user had used PostgreSQL instead, he would have to create a table with 2 variables (key
and value) and then use the JDBC driver to handle the data by calling the Data Access
Object APIs of the platform.

However, since MapDB gives the freedom to use any Java object directly as a value, the
value variable in the cache interface is defined as a Java Generic type Object. The user
explicitly specifies what that type wishes to be during the instantiation of the whole
system. Some examples of values which could be used are:

• Data structures like arrays, hash maps and lists. For example, the user can store a
random variable as a key and an one-dimensional histogram or a pdf as hash map
(the value).

• Complex Java objects, which can be a combination of any data type. For example,
the key could be a node in the graph and the value could be a Java object which
consists of:

– An integer number containing the weight of the particular node

– A hash map containing its neighbors and their respective values

– A hash map or a list containing the edges and their respective values

• Custom Java objects which are created using an external Java library. For instance:

– A JSON object (by using e.g. the Jackson Library)

– An XML object (by using e.g. the XMLBeans Library)

– A DoubleMatrix2D (by using the Colt Library)

– etc

Taking all the above into consideration, using a Java-based database like MapDB gives
a variety of choices to the user by default. Moreover, the user has also the freedom to
plug the database of his choice. It is obvious that every database has its pros and cos,
and a single database cannot cover all the challenges that are presented.

4.3 Differences with a Traditional Caching System

As it was stated above, the architecture of the particular platform uses an alternative
approach to the traditional storage hierarchy of disk-based systems. There are some
notable differences:

Chapter 4. Implementation 34

• First and foremost, in the traditional caching systems, disk storage acts as a backup
for the whole dataset, while in the particular implementation the disk acts as a
cold storage for evicted data. This also means that data in disk are not copied
back to the cache.

• The fundamental assumptions about the memory size are different. In the tradi-
tional paradigm, the memory size is much smaller than the total data size. In the
proposed architecture, the memory size is larger and can hold a relatively bigger
amount of data. That is why throughout this thesis, the layer which is responsible
for memory management, is referred to as memory layer instead of caching layer.
This definition helps distinguishing the two cases.

• In the caching domain, in case of a cache miss, the application retrieves data from
the disk storage and stores them in the cache. Evicted data do not return back
to disk from memory since they already exist in the disk. On the other hand, in
this platform, the application does not have privileges to directly access the disk
storage. Instead, only the memory layer can access the disk and dynamically evict
or restore elements to the memory, as long as it complies with the necessary eviction
policy. By assigning this responsibility to the memory layer, the computation of
which elements are hot can be done in an algorithmic and application-agnostic
way. This process is reflected in Figure 4.4

Figure 4.4: Left: A traditional caching system, Right: The implementation of this
thesis

• Finally, the primary function of all caches is the eviction mechanism. However, in
the particular implementation there are two fundamental operations which work
in tandem, eviction and restoration. These two operations are responsible for
optimally managing the dynamic exchange of elements between the memory and
disk layer with the purpose of constantly keeping the hot elements in memory at
all times.

Chapter 4. Implementation 35

4.4 Platform Architecture

This section presents in depth the algorithms and all the components which are used in
each layer.

4.4.1 Bloom Filter

4.4.1.1 Overview

The first layer of the system is a bloom filter [26]. First of all, a bloom filter is essentially a
data structure designed to designate, rapidly and memory-efficiently, whether an element
is present in a set. It’s like a set but it does not contain the elements. The basic bloom
filter supports two operations: test and add.

Test is used to check whether a given element is in the set or not. If it returns:

• False then the element is definitely not in the set.

• True then the element is probably in the set. The false positive rate is a function
of the bloom filter’s size and the number and independence of the hash functions
used.

Add simply adds an element to the set.

All the above operations have O(K) complexity, where K is the number of hash functions
that are used. Practically, the cost is constant.

It is worth mentioning that removal is impossible without introducing false negatives,
but extensions to the bloom filter are possible that allow removal like counting filters
[27]. Also, counting bloom filters are less space-efficient. Hence, only the basic bloom
filter is used in this thesis.

The price paid for this efficiency is that a Bloom filter is a probabilistic data structure.
If the element is not present in the bloom filter, then it is known for sure that there
is no need to perform the expensive lookup. On the other hand, if it is present in the
bloom filter, then the lookup is performed, and it is expected to fail some proportion of
the time (the false positive rate). Consequently, false positive matches are possible, but
false negatives are not.

The classic example is using bloom filters to reduce expensive disk (or network) lookups
for non-existent keys. For instance, bloom filters are used in web browsers, databases

Chapter 4. Implementation 36

authentication modules and so on. Moreover, they are embedded in other database
systems, such as Google BigQuery[28]. Another interesting usage is using a bloom filter
to optimize an SQL query (as many popular databases do).

4.4.1.2 Implementation Details

The role of the bloom filter in this system is to decrease expensive cache misses. If
the bloom filter returns false, the algorithm will not search in the cache or disk for that
itemset, and hence the system would immediately return that the itemset does not exist.
This is particularly helpful at the initial phase when the cache is warming up and is more
susceptible to cold misses. This prevents a potential heavy concentration of expensive
lookups at the start that could have a negative impact on the throughput of the system.
If the bloom filter returns true, then the algorithm will search for the item first in the
cache and then in the disk. In case of a false positive, the system would return that
the particular itemset does not exist. It is worth mentioning that the system is built to
withstand random data as well, which negate the benefits of a cache. In this case, the
use of the bloom filter is essentially important.

4.4.1.3 Technical Details

First and foremost, the most integral part of the bloom filter is the choice and the number
of hash functions. The number of the hash functions that were used is considered in the
next sub-section. The hash function that was chosen for this current implementation is
MurmurHash3 [29]. It is a popular non-cryptographic function with many applications.
It basically consists of 2 operations, which are applied in this order: (mu)ltiply, (r)otate,
(mu)ltiply, (r)otate along with some XOR operations. The reasons for using murmur
hashing are the following:

• Simple and fast: It uses as few instructions as possible, while being as fast as
possible and remaining statistically strong.

• Distribution: It passes the Chi-Square distribution tests for practically all keysets
and bucket sizes to ensure there is no correlation whatsoever and is similar to pure
randomness. The hash space is be filled randomly.

• Avalanche Effect: When one bit in the key changes, at least half the bits should
changes in the hash. It is to ensure the function has a good randomization and no
forecast is possible (or hardly).

Chapter 4. Implementation 37

• Collision Resistance: A good hash function should almost never have collisions.
In the 128-bit variant, the hash space is quite huge: 3.4028237e+38: it should be
nearly impossible to have a collision. Moreover, two different keys should have
only a random chance to collision, no more.

These features make murmur hashing ideal for many applications such as UID generators,
checksums, Hash tables and so on. It is also widely used in FM sketches, because it
ensures a good randomization of 1’s over the bitmap

There are two versions of this hash function: The 32-bit variant which produces integers,
and the 128-bit variant which produces or 1 or 2 longs. As noted above, the 128-bit
variant has a huge hash space and hence the number of collisions is minimized. However,
the 32-bit variant is much more space efficient, and that’s why this variant is used in
the current thesis.

The implementation of bloom filter uses the Funnel class of the Guava library [30]. More
specifically, the Funnel class helps storing and serializing the data of the bitmap.

4.4.1.4 How the Bloom Filter is Parameterized

Let m be the number of bits in the bitmap, n the expected number of elements to insert,
and f the false positive probability. There must also be k different hash functions defined
each of which maps or hashes some set element to one of the m array positions, generating
a uniform random distribution. In general k << m. It is proved that:

k =
m

n
ln2 (4.1)

m = − nlnf

(ln2)2
(4.2)

Consequently, the bloom filter is simply parameterized by the expected number of el-
ements and the false positive probability[31]. The second formula is asymptotically
approximated and holds as m → ∞. The implementation of the bloom in this thesis
is based on the corresponding implementation of other popular systems like Guava[30],
Apache Cassandra[32] and RocksDB[33]. Using the same formulas, they estimate k and
m. For example, in RocksDB, when a user requests a bloom filter, RocksDB uses these

Chapter 4. Implementation 38

formulas to estimate the size of the bitmap, and it is only deployed when it can safely
fit in main memory.

Having multiple hashes is necessary to avoid too many false positives: one hash function
implies to check only one bit. With two hash functions, it needs to check two bits,
therefore, because there is less chance to have both set. The other extreme is not good
either. Having tons of hash functions means the bitmap is going to be filled quickly
with 1’s, therefore the rate of false positives is going to grow. It’s a delicate equilibrium.
In the current implementation, when a new instance of the system is created, the user
should specify the false positive rate and the expected number of elements.

If the user underestimates the number of expected number elements, the bloom filter
will start filling up. If the bloom filter becomes full, then the system assumes that
every element has been seen by the bloom filter. In this case, the LFU algorithm will
stop benefiting from the advantages of the bloom filter and the user will pay a memory
cost from having a full bloom filter. However, even this case the system is designed to
function normally and the algorithm of the eviction policy won’t break.

If the user expects a large number of unique elements in the stream, but cannot afford
to allocate enough memory in order to build the bloom filter, the solution is to use one
or more instances. For example, if the number of expected elements is d, then the user
can instantiate 2 instances and partition the stream among them. By doing so, each
instance will receive d/2 elements. Certainly, the user can allocate as many partitions as
he wants, according to the available resources or the nature of his application/algorithm.
This feature demonstrates the flexibility and the scalability of the system.

Finally, the user may choose to not use the bloom filter at all. The first layer is deacti-
vated and all the incoming elements will hit the memory layer.

4.4.2 Memory Layer

This is the most important layer in the system. The memory layer implements all the
eviction policies and is responsible for the management of all elements in memory. Under
the hood, this layer essentially implements the Factory design pattern [34]. This pattern
is used when there is a super class with multiple sub-classes and a particular sub-class is
returned based on the input. This pattern takes out the responsibility of instantiation of
a class from the program to the factory class. Using this pattern provides 2 advantages:

• The class instantiation is deferred to the sub-classes. In other words, each eviction
policy is instantiated independently without exposing the caching logic.

Chapter 4. Implementation 39

• It provides flexibility because more eviction policies can be added seamlessly.

The next section describes the eviction policies. While the LRU and MRU policies will
be described in detail, the focus of this thesis is the LFU policy.

4.4.2.1 LRU

The LRU eviction policy is consisted of 3 procedures: put, get and eviction. The data
structure which is used in the cache is ListOrderedMap, a map decorated as a list.
Although the algorithm manages the elements in main memory, it also interacts with the
database (when needed) using the Data Accessing Object APIs. The cache is oblivious
to the type and the kind of the database and interacts with the persistence layer by
using these APIs.

Algorithm 1 LRU – Put operation

1: procedure putLRU(k, v)
2: if (k ∈ cache) then
3: cache.remove(k)
4: cache.put(0, k, v)
5: else
6: cache.put(0, k, v)
7: if (k ∈ bloom filter) then
8: LruDAO.remove(k)

9: if (cache.size == cache.maxCapacity) then
10: call evictionLRU()

11: bloomfilter.put(k)

Each time an element is accessed (whether it previously existed in the cache or not), it is
moved to the first position. Obviously, the last element will be the candidate for eviction.
If an element does not exist in the cache, then it is either in the disk or a completely
new element. In this case, the element is added in the first position with its updated
value, but it must also be checked if the element exists in the disk (it is not possible to
have the same element both in cache in the disk). The algorithm then asks the bloom
filter. If the bloom filter returns false, then the elements with 100% probability does not
exist in the disk. If the bloom filter returns true, then the algorithm searches for that
element in the disk and removes it. If this case was a false positive, then the element
won’t be found in the disk. The alternative way would be to search for the element
in the disk every time there was a cache update. By taking advantage of the bloom

Chapter 4. Implementation 40

filter, the algorithm knows if an element does not exist in the disk (it is completely new
so far), and therefore these I/Os are avoided. Furthermore, the algorithm checks the
cache capacity and if it is exceeded, then the candidate element for eviction is removed.
Finally, the element is set on the bloom filter. It is worth mentioning that the algorithm
accesses the disk via the LruDAO function which implements the DAO pattern. This
will be explained better in 4.4.3.1

Algorithm 2 LRU – Get operation

1: procedure getLRU(k)
2: if (k ∈ bloom filter) then
3: return null

4: else
5: if (k ∈ cache) then
6: v = cache.remove(k)
7: cache.put(0, k, v)
8: return v

9: else
10: v = LruDAO.remove(k)
11: if (v == null) then
12: return null

13: else
14: cache.put(0, k, v)
15: call evictionLRU()

16: return v

Get is slightly more complex than put. The algorithm firstly asks the bloom filter to
check if the element exists in the system. If the bloom filter returns false, then with 100%
percent accuracy the element does not exist anywhere in the platform and therefore the
expensive lookup on the disk is spared. If it returns true, the algorithm first checks the
cache and then the disk. If the element is found in the cache, then it is returned and its
temporal reference is updated. If the element is found on the disk, then it is removed
from the disk, its value is returned, and is put back on the cache in order to update its
temporal reference. If the element is not found in the cache or in disk, that means the
decision of the bloom filter was a false positive, and hence the algorithm returns null.

Chapter 4. Implementation 41

Algorithm 3 LRU – Eviction

1: procedure evictionLRU
2: k = cache.get(cache.size-1)
3: v = cache.remove(k)
4: LruDAO.put(k, v)

The eviction algorithm is simple: The algorithm removes the element in the last position
from the cache, and stores it in disk via the LruDAO API.

4.4.2.2 MRU

The MRU eviction policy is very similar to LRU. It uses the same techniques and the
procedure is based on the same methodology

Algorithm 4 MRU – Put operation

1: procedure putMRU(k, v)
2: if (k ∈ cache) then
3: cache.remove(k)
4: cache.put(cache.size,k, v)
5: else
6: cache.put(cache.size(),k, v)
7: if (k ∈ bloom filter) then
8: LruDAO.remove(k)

9: if (cache.size == cache.maxCapacity) then
10: call evictionMRU()

11: bloomfilter.put(k)

Chapter 4. Implementation 42

Algorithm 5 MRU – Get operation

1: procedure getMRU(k)
2: if (k ∈ bloom filter) then
3: return null

4: else
5: if (k ∈ cache) then
6: v = cache.remove(k)
7: cache.put((cache.size,k, v)
8: return v

9: else
10: v = LruDAO.remove(k)
11: if (v == null) then
12: return null

13: else
14: cache.put((cache.size(),k, v)
15: call evictionMRU()

16: return v

Algorithm 6 MRU – Eviction

1: procedure evictionMRU
2: k = cache.get(cache.size-1)
3: v = cache.remove(k)
4: LruDAO.put(k, v)

The eviction algorithm is the same as the LRU policy. The algorithm removes the
element in the last position from the cache, and stores it in disk via the LruDAO API.

Taking all the above into consideration, by using the same methodology and by taking
advantage of the flexibility of the system architecture, it is possible to seamlessly create
2 fundamental eviction policies which covers a plethora of use cases. Moreover, it is
obvious that the usefulness of bloom filter can play a catalytic role in reducing disk
I/Os. In many cases, the algorithms accessed the first layer in order to decide whether
to take some actions or not. Finally, using the same template, more eviction strategies
can be implemented, like for example FIFO which is based on the same meth odology.
However, the thesis will focus on the LFU strategy, which is more complex and more
likely to solve the ’lagging stream’ problem. This is considered in the next section.

Chapter 4. Implementation 43

4.4.2.3 LFU

The functionality of the LFU follows a dual-purpose strategy:

• Store the frequent elements in main memory and the less frequent ones on disk.
Each element has the form of a key-value entry. Furthermore, each key must be
unique throughout the whole system. In other words, a particular key will either
exist in the cache or in disk at any given time.

• When the system consumes the stream of itemsets, the hot and the cold elements
must always be balanced. As it was stated in the first chapter, because it is assumed
that the distribution of elements is unknown, a cold element which is stored in disk
may become hot again in the future. This means that the particular element will
be moved back to the cache, and take the position of the least frequent element
(the potential candidate for eviction at that time). This is a complex process and
requires additional checks to ensure that the above functionality is valid. The main
data structure which holds the elements is a hash map. There is also a smaller
structure which plays the role of the inverted index. Specifically, it indexes the
elements by frequency and helps finding immediately the potential candidate for
eviction. It is worth mentioning that the LFU algorithm does not only manage
the elements in the cache. In many cases, the LFU procedures access the disk via
the appropriate APIs as well as the bloom filter.

Since the LFU eviction policy must also take into account the frequency of each element
somehow, an additional parameter should be added. To solve this problem, the value of
the LFU cache is not a single data type. Instead, a composite Java object is used, which
is comprised of 2 variables: the value itself of the itemset (which is a Java Generic type
as it was previously specified) and the frequency of the itemset. Each time an itemset is
accessed/updated, this change is reflected on the frequency variable. The frequency is a
simple primitive integer variable (4 bytes). Consequently, the value of the LFU eviction
strategy, contrary to the previous eviction policies is a Java object. The class is also
implemented as serializable (to correctly approach the definition of the POJO class),
because these objects must be stored to the database (or retrieved from it) without any
serialization/deserialization errors. The serialVersionUID variable is defined in order to
avoid errors during deserialization.

public class LFUCacheEntry <N> implements Serializable{

private static final long serialVersionUID = 42L;

Chapter 4. Implementation 44

private N data;
private int frequency;

// default constructor
public LFUCacheEntry(N data,int frequency){
this.data=data;
this.frequency=frequency;
}

Listing 4.1: The LFUCacheEntry object

Furthermore, the data structure which holds the elements in main memory is the
Int2ObjectOpenHashMap. As the official javadoc says, it’s a “type-specific hash map
with a fast, small-footprint implementation”. The table is filled up to a specified load
factor, and then doubled in size to accommodate new entries. If the table is emptied
below one fourth of the load factor, it is halved in size; however, the table is never
reduced to a size smaller than that at creation time: this approach makes it possible
to create maps with a large capacity in which insertions and deletions do not cause
immediately rehashing. Moreover, halving is not performed when deleting entries from
an iterator, as it would interfere with the iteration process. This is particularly helpful,
because deletions and re-insertions are very frequent in the context of the LFU policy.
This hypothesis also agrees with the experimental results.

The main procedures in the LFU policy are the put and get operations. As far as the
put operation is concerned, the input is the key-value tuple (k, (v, f)), where (v, f) is
the LFUCacheEntry object consisted of the value v and the frequency f . From now on
the potential candidate for eviction is referred as the LFUelement.

Chapter 4. Implementation 45

Algorithm 7 LFU – Put operation

1: procedure putLFU((k, (v,f))
2: if (cache.size == cache.maxCapacity) then
3: if (k ∈ cache) then
4: f ++

5: cache.put(k, (v, f))
6: else
7: if (k /∈ bloom filter) then
8: LfuDAO.put(k, (v, 1))
9: else (v, f) = LfuDAO.remove(k)

10: if ((v, f) == null) then
11: LfuDAO.put(k, (v, 1))
12: else
13: if (f >= cache.getLFUelement.frequency) then
14: LfuDAO.put(LFUelement.k,(LFUelement.v,LFUelement.frequency)
15: f ++

16: cache.put(k, (v, f))
17: else
18: f ++

19: LfuDAO.put(k, (v, f))

20: else if (cache.size<cache.maxCapacity) then
21: if (k ∈ cache) then
22: f ++

23: cache.put(k, (v, f))
24: else
25: cache.put(k, (v, 1))

• Line 3-5: The algorithm checks if the element already exists in the cache. If so,
the element gets updated with the new value and its frequency is incremented by
1.

• Line 6-8: The algorithm asks the bloom filter if the element exists in the system.
If it doesn’t, then algorithm returns null without doing a disk lookup because in
that case the bloom filter is 100% correct. In other words the element is completely
new, and therefore it is placed directly in the database with frequency 1 (the cache
is full, and there is no way the element will surpass the frequency of the LFUelement
- even in the most extreme case the LFUelement will have a frequency of 1).

Chapter 4. Implementation 46

• Line 10-11: Since the element does not exist in the disk, it means the bloom
filter gave a false positive. As before, the element is completely new, and hence it
is treated as described above.

• Line 13-16: The incoming element has equal or bigger frequency than the fre-
quency of the LFUelement. Consequently, the LFUelement is moved the database
and the incoming element takes its place with its frequency incremented.

• Line 18-19: The incoming element has less frequency than the frequency of the
LFUelement. Therefore, the element is simply updated in the disk with its new
value and its frequency incremented by 1.

• Line 20: In this case the cache is not full, and therefore no eviction will have
taken place so far. To put it differently, the database will be empty.

• Line 21-23: The algorithm checks if the element already exists in the cache. If
so, the element gets updated with the new value and its frequency is incremented
by 1.The first step in this case is similar to the previous case.

• Line 25: The element does not exist in the cache at all because it is completely
new. Therefore it is added in the cache with frequency 1.

COST ANALYSIS for Put operation

This subsection presents an analysis for costs that each operation induces. The main
factor is the I/O costs (since all operations in memory have constant access and therefore
their costs are negligible). The putLFU procedure is partitioned in many sub-cases,
and each one has to be studied differently. This analysis will also help to understand
the logic of the algorithm better. Moreover, all I/Os in the disk are assumed to have
O(1) complexity, since the underlying data structure in the database is a hash map (it
functions like an index).

There are 4 different use cases:

Case A: The element is completely new in the system, since the bloom filter returns
false with 100% accuracy. This process is consisted of 1 I/O

• In line 8, the element is simply added in the database with frequency 1. (1 write1)

Case B: This is almost the same case as before. The decision of the bloom filter however
is designated as a false positive. This process is consisted of 1 I/O

1Technically speaking, the writes don’t immediately hit the disk because of the write buffer. However,
for the sake of algorithmic complexity, it is said that this operation induces one write

Chapter 4. Implementation 47

• In line 11, the element is simply added in the database with frequency 1 (1 write)

Case C: The entry is located in the disk and it has to be updated with a new value.
This process is consisted of 2 I/Os:

• In line 9, the entry is probed in order to get its value (1 read)

• In line 14, there is need for eviction. The LFUelement is moved to the disk (1
write)

Case D: The entry is located in the disk and it has to be updated with a new value.
This process is consisted of 2 I/Os:

• In line 9 (same as before), the entry is probed in order to get its value (1 read)

• In line 19, the entry has its frequency updated in the disk (1 write)

The last 2 cases are the most expensive. In both of these cases, the algorithm has to
locate the element in the disk in order to make a decision. On the other hand, if the
cache is not full, then there is no need to access the disk since there is no chance of
eviction.

Chapter 4. Implementation 48

Algorithm 8 LFU – Get operation

1: procedure getLFU(k)
2: if (k /∈ bloom filter) then
3: return null

4: else
5: if (k ∈ cache) then
6: f ++

7: cache.put(k, (v, f))
8: return v

9: else
10: (v, f) = LfuDAO.remove(k)
11: if ((v, f) == null) then
12: return null

13: else
14: if (f >= cache.getLFUelement.frequency) then
15: LfuDAO.put(LFUelement.k,(LFUelement.v,LFUelement.frequency)
16: f ++

17: cache.put(k, (v, f))
18: return v

19: else
20: f ++

21: LfuDAO.put(k, (v, f))
22: return v

• Line 2-3: The algorithm probes the bloom filter in order to check if the element
exists in the system. If not, the algorithm returns null without performing a disk
access.

• Line 5-8: The algorithm checks if the element already exists in the cache. If so,
the value of the element is returned and its frequency is incremented by 1.

• Line 10: The element is not present in the cache, which means either it is stored
in the disk or the bloom filter gave a false positive.

• Line 11-12: In this case the output of the bloom filter was a false positive, and
therefore the procedure returns null.

• Line 14-18: The requested element has equal or bigger frequency than the fre-
quency of the LFUelement. Consequently, the LFUelement is moved the database
and the incoming element takes its place with its frequency incremented. Finally,

Chapter 4. Implementation 49

its value is returned. This case shows that even a get operation can cause an
eviction.

• Line 20-22: The incoming element has less frequency than the frequency of the
LFUelement. Firstly, its value is returned. Then the element has its frequency
incremented by 1.

COST ANALYSIS for Get operation

The cost is prominent in 2 cases:

Case A: The entry is located in the disk and the procedure has to retrieve it. This
process is consisted of 2 I/Os:

• In line 10, the entry is probed in order to get its value (1 read) (1 read)

• In line 15, there is an eviction. The LFUelement is moved to the disk (1 write)

Case B: Same as before, the entry is located in the disk and the procedure has to
retrieve it. This process is consisted of 2 I/Os:

• In line 10, the entry is probed in order to get its value

• In line 21, the entry has its frequency updated in the disk (1 write)

Taking all the above account, the worst case in this scenario is having 2 I/Os. The use
of bloom filter prevents a disk access in Line 3.

4.4.3 Persistence Layer

The last layer in the system is responsible for handling the objects in the database.
The overall architecture of the persistence layer is comprised of 2 design patterns: The
Abstract Factory and the Data Access Object (DAO) pattern. Generally speaking, the
first one is used to add more databases seamlessly, and the latter is used to exchange
objects between the caching and the persistence layer without refactoring the code of
the eviction policies.

Firstly, the section discusses the above design paradigms in depth and how they are used
to abstract the persistence logic. The section concludes by describing the role of Con-
nection Pooling module and how it contributes to the overall efficiency and performance
of the system.

Chapter 4. Implementation 50

4.4.3.1 DAO Pattern

Data Access Object Pattern or DAO [34] pattern is used to separate low level data
accessing API or operations from high level computation services. Nowadays, it is the
de facto software paradigm for implementing a connection between the application logic
and a database. Many web and application frameworks have pre-implemented the DAO
layers for popular databases without the user having to write its own.

Following are the participants in this design paradigm which are presented visually in
the UML diagram

Figure 4.5: The UML class depicting the DAO Pattern

• Data Access Object Interface - This interface defines the standard operations
to be performed on a model object. Sometimes, there is no need to use a model
object if the data can be expressed by simpler variables. In the above figure, these
classes are the LFUTupleDAO and TupleDAO. The first is used by the LFU cache,
while the latter is used by the LRU and MRU caches. Their implementation is
shown the following code snippets:

public interface TupleDAO <N> {

public void put(Double id, N object);
public N remove(Double id);
public N get(Double key);

public int getDBSize();

Chapter 4. Implementation 51

public void printDB();
public void printDBContentVerbose();

}

Listing 4.2: TupleDAO shows which operations a database should implement in
order to be plugged in the caching layer.

public interface LFUTupleDAO <N> {

public void put(Double key, LFUCacheEntry <N> lfe);
public LFUCacheEntry <N> remove(Double key);
public LFUCacheEntry <N> get(Double key);

public int getDBSize();
public void printDB();
public void printDBContentVerbose();

public void close();

}

Listing 4.3: The only difference with the TupleDAO class is that this class uses
the LFUCacheEntry as a model object to pass information between the caching

and persistence layers.

• Data Access Object concrete class - This class implements the above interface
and is responsible to get data from a data source which can be database / XML or
any other storage mechanism. In other words, it contains the database queries and
the methods which are responsible for the database connection. The corresponding
classes for this role are the TupleDAOImpl and LFUTupleDAOImpl

• Model Object or Value Object - This object is a simple POJO class containing
get/set methods to store data retrieved using DAO class. The LFU cache uses the
LFUCacheEntry which was described previously in the caching layer. Therefore,
data between the LFU cache and the database are exchanged using this object.
The LRU and MRU caches are simpler and don’t require a new object to model
their communication.

In general, the DAO paradigm is used to impose an API/interface upon the structure
and the type of the data that the caching layer uses. The advantage of using data access
objects is the relatively simple and rigorous separation between two important parts of
an application that can but should not know anything of each other, and which can be
expected to evolve frequently and independently. Changing business logic can rely on

Chapter 4. Implementation 52

the same DAO interface, while changes to persistence logic do not affect DAO clients as
long as the interface remains correctly implemented. All details of storage are hidden
from the rest of the application. Thus, possible changes to the persistence mechanism
can be implemented by just modifying one DAO implementation while the rest of the
application isn’t affected. DAOs act as an intermediary between the application and
the database. They move data back and forth between objects and database records.
Based on this principle, the caching logic is separated from the persistence logic and
does not depend on the query which characterizes a particular database. An example
is shown the following pictures, where the cache removes an element from the database
without knowing which underlying database or query is involved to perform this opera-
tion. As such, the database and the data access object can be chosen independently of
the algorithm.

LFUCacheEntry <N> lce3= this.invalidateInDisk(key);

if (lce3 == null) {
lce3 = new LFUCacheEntry(object ,1);
prune(key, lce3);
}

Listing 4.4: The algorithm calls the database implicitly without specifying the database
or the model object which will transfer the data to the disk.

public void prune(Double key,LFUCacheEntry <N> lce) {
lfutupledao.put(key, lce);

}

public LFUCacheEntry <N> invalidateInDisk(Double key){
LFUCacheEntry <N> lce = lfutupledao.remove(key);

return lce;
}

Listing 4.5: The access to the disk is specified independently according to which DAO
is instantiated by the client.

4.4.3.2 Abstract Factory Pattern

The Abstract Factory pattern [34] is in fact an extension and a more generic version of
the Factory pattern that was previously used in the caching layer

Using this pattern, a framework is defined, which produces objects that follow a general
pattern and at runtime this factory is paired with any concrete factory to produce

Chapter 4. Implementation 53

objects that follow the pattern of a certain class. In other words, the Abstract Factory
is a super-factory which creates other factories (Factory of factories). In normal usage,
the client software creates a concrete implementation of the abstract factory and then
uses the generic interface of the factory to create the concrete objects that are part of
the theme. The client doesn’t know (or care) which concrete objects it gets from each of
these internal factories, since it uses only the generic interfaces of their products. This
pattern separates the details of implementation of a set of objects from their general
usage and relies on object composition, as object creation is implemented in methods
exposed in the factory interface. The advantages of using this design pattern are:

• Abstract Factory offers the interface for creating a family of related objects, with-
out explicitly specifying their classes. The AbstractFactory class is the one that
determines the actual type of the concrete object and creates it, but it returns an
abstract pointer to the concrete object just created. This determines the behavior
of the client that asks the factory to create an object of a certain abstract type
and to return the abstract pointer to it, keeping the client from knowing anything
about the actual creation of the object. The fact that the factory returns an ab-
stract pointer to the created object means that the client doesn’t have knowledge
of the object’s type. This implies that there is no need for including any class
declarations relating to the concrete type, the client dealing at all times with the
abstract type. The objects of the concrete type, created by the factory, are ac-
cessed by the client only through the abstract interface. This achieves the first
objective of using a database without knowing its underlying mechanisms at the
client code.

public abstract class DAOFactory <N> {

public abstract TupleDAO <N> getTupleDAO();
public abstract LFUTupleDAO <N> getLFUTupleDAO();

public static DAOFactory getMapDBDAOFactoryUnPartitioned() {
return new MapDBDAOFactory();

}

}

Listing 4.6: If the user wants to use an alternative database other than MapDB,
he must implement this class first and create his own factory. He must also take

into account the DAOs which are defined here as abstract methods.

• Use of this pattern makes it possible to interchange concrete implementations with-
out changing the code that uses them, even at runtime. The second implication of

Chapter 4. Implementation 54

this way of creating objects is that when the adding new concrete types is needed,
all the user has to do is modify the client code and make it use a different factory,
which is far easier than instantiating a new type, which requires changing the
code wherever a new object is created. Therefore, the user can switch to another
database at the client level seamlessly without changing the implementation logic.

In this thesis, the factories are potential databases which can be plugged in the system.
Each factory produces objects that handle a specific task. In this case, these objects are
the DAOs that were mentioned previously. However, since the system expects different
databases and cannot know beforehand how to embed them in the architecture, the
solution is to encapsulate them as factories and abstract their underlying mechanisms.
There is a super factory which is called DAOFactory (Figure 4.6). that imposes all
specifications that a database/factory should have in order to be eligible to be used in the
system. Moreover, the methods for creating new instances/factories are also present in
the DAOFactory interface. Using the formal definition of the Abstract Factory pattern,
these methods could have been defined in a different class. The reason for not doing this
is because this variation gives the ability to the user to not only choose the database,
but the DAO as well.

Figure 4.6: UML class about Abstract Factory. Note that the specific details of how
the database is managed (e.g. connection credentials) is implemented in the Factory

class of each database independently

Chapter 4. Implementation 55

Figure 4.7: The Connection Pool Module

4.4.3.3 Connection Pooling

The final module in the database layer is the static Connection pool layer. A connection
pool is a cache of database connections maintained in the database’s memory so that
the connections can be reused when the database receives future requests for data. To
put it differently, it’s like a thread pool, but the term applies to database connections.
A simple depiction of this architecture is shown in Figure 4.7

Connection pools are used to enhance the performance of executing commands on a
database. Opening and maintaining a database connection for each request, especially
requests made to a dynamic database-driven application, is costly and wastes resources.
In connection pooling, after a connection is created, it is placed in the pool and it is used
over again so that a new connection does not have to be established. If all the connections
are being used, a new connection is made and is added to the pool. Connection pooling
also cuts down on the amount of time a request must wait to establish a connection to
the database.

Apart from that, the connections in the pool are lazy initialized. Lazy Initialization is
a performance optimization where the object creation is deferred until just before it is
actually needed. One good example is to not create a database connection up front,
but only just before it is necessary to get data from the database. The key reason for
doing this is that it is possible to avoid creating the object completely if they will not
be needed.

In the current implementation, the user simply specifies the number of the connections
that will be available in the pool. This number should also take into consideration the

Chapter 4. Implementation 56

parameterization of the databases. Almost all databases have a variable which defines
the maximum number of concurrent connections that are able to support. This variable
should be in sync with the number of the available connections in the pool that the user
has specified. Last but not least, these connections are lazily initialized as explained
above and they are created only when they are requested.

Nevertheless, MapDB does not support Connection Pooling in its current version. Since
it is intended to be used as an embedded database, it cannot accept more than one
connection simultaneously. The main reason for that is because MapDB cannot accept
concurrent write operations. However, MapDB’s consistency assures that when an oper-
ation fails to complete, there will not be corrupted or incorrect data in the data storage.
In the future, where MapDB will become a general purpose caching system (version 4),
it will probably support Connection Pooling.

Regardless, the current system supports other databases as well, and therefore the Con-
nection Pooling may seem useful. For example, all popular relational databases support
connection pooling. Therefore, the current configuration which uses MapDB by default
has the Connection Pooling component deactivated.

Chapter 5

Performance Evaluation

This chapter tests and evaluates the overall performance of the system. In order to do
this, the system is put under heavy traffic with the purpose of monitoring its behavior.
The experimental setup also involves tracking vital metrics such as time, cache hit ratio
and so on. The data which will be consumed by the platform are created artificially
by sampling from different distribution generators, each with its own parameters (they
will be explained in depth). Both the best use case and the worst use case scenarios
are considered. The Table 5.1 shows the hardware specifications of the hosting system
where all the experiments took place.

5.1 Experimental Setup

BenchmarkConfiguration
CPU Intel® Core™ i7-4720HQ CPU @2.60GHz (8-cores with hyper-threading)
RAM 2x 8GB DDR3L @ 1600 MHz SDRAM

Storage 1TB HDD 7200 RPM
Network Hypervisor Ethernet Adapter (at least Megabit)

Bare-metal OS Ubuntu 15.04 Server

Table 5.1: System configuration for all experiments

The platform which is presented throughout the thesis is the final product of an imple-
menting process which involved a lot experimentation and parameterization in order to
achieve the desired result. The first version2 of the system had less features and was
less optimized. For example, it did not contain the bloom filter implementation and the
write optimizations. Also, the LFU policy was much simpler: The keys did not return

2Actually, the very first version involved using MapDB for its caching properties as well. However,
MapDB couldn’t cope with the heavy load of the stream and ‘crashed’ after a few minutes of execution

57

Chapter 5. Performance Evaluation 58

back to the cache after their eviction. In other words, an element which becomes a
frequent one subsequently (for a variety of reasons, such as the sudden change of the
distribution in the stream), will not have the chance to return in memory. The only
optimization that was used was the application of a fast compression technique- lzf [35]
to further reduce the I/O traffic. The main idea behind the first version was to try a
quick approach and check if the problem, which was formulated in the first chapter, can
be solved without designing a complex architecture.

As far as the benchmark setup is concerned, it involved creating a stream of 1 million
operations from 100000 distinct keys. The operations were partitioned in 3 categories i)
get ii) update and iii) 50% get and 50% update. Moreover, each stream of elements was
generated using a random generator (uniform distribution) and a zipfian generator with
exponent s=1 and s=2. The candidate zipfian generator libraries that were considered
to be used are from the Parallel Colt and the Apache Commons Maths package. Never-
theless, the latter was found to be much faster because it makes use of rejection-inversion
sampling and also works for exponents less than 1. It does not require precalculating
the CDF and keeping it in memory. Furthermore, the costs for generating one sample
are constant and do not increase with the number of items. Each set of experiments was
performed with i)75% keys in main memory and 25% on disk ii) 50% keys in main mem-
ory and 50% on disk and iii) 25% keys on main memory and 75% on disk. Moreover, the
total time of execution as well as the time to complete the last 200001 requests (20%) is
also measured. This was done in order to give the cache sufficient time to warm up. The
time to generate the samples is deducted from the overall time metrics (although this
cost is negligible and wouldn’t hurt the results even if they were included). The same
set of experiments with exactly the same parameters is applied to both the first and the
second version of the platform and the experimental results are presented in Tables 5.2,
5.3, 5.4 and 5.5

Chapter 5. Performance Evaluation 59

5.2 The Naive Approach

#
Size

(Mem/
disk)

Distribution Action Cache
Hits

Cache
Misses

Total
Time

(hh:mm)

Last
20%

(minutes)
1 75/25 Uniform Get 150330 49671 1:15 14
2 Update 150245 49756 1:18 15
3 Get/Update 150040 49961 1:16 15
4 Zipfian(s=1) Get 169983 30018 0:13 2
5 Update 169499 30502 0:14 3
6 Get/Update 168830 31171 0:14 3
7 50/50 Uniform Get 100168 99832 2:35 35
8 Update 100052 99948 2:37 34
9 Get/Update 100029 99972 2:34 33
10 Zipfian(s=1) Get 167525 32476 0:35 7
11 Update 167411 32590 0:33 6
12 Get/Update 167504 32497 0:34 6
13 25/75 Uniform Get 49926 150075 4:12 48
14 Update 50125 149876 4:00 45
15 Get/Update 49853 150148 4:06 44
16 Zipfian(s=1) Get 164525 35476 0:59 11
17 Update 163501 36500 0:57 11
18 Get/Update 164627 35374 0:57 11

Table 5.2: Experimental results of the first version

In this approach, the initial results did not meet the expectations of a fast stream
processor that achieves high throughput and low latency. In particular, the duration
of the uniform benchmark is in the order of hours, and as the number of elements in
the cache decreases, the performance deteriorates rapidly. Modern big data systems
are able to process hundreds of thousands of elements in a few seconds. Obviously,
the slowest benchmarks belong to the last category, where only the 25% of keys are in
memory. However, there is still room for improvement, since the results that this version
provided are not acceptable

5.3 Second Version

The second version of the system is the one which was presented throughout the second
chapter. The experiments presented below are performed using all the aforementioned
optimizations, as well as the improved version of the algorithm.

Chapter 5. Performance Evaluation 60

#
Size

(Mem/
disk)

Distribution Action Cache
Hits

Cache
Misses

Total
Time

(seconds)

Last
20%

(millisecs)
1 75/25 Zipfian(s=1) Get 189290 10711 4 390
2 Update 188218 11783 4 410
3 Get/Update 189499 10502 4 395
4 50/50 Zipfian(s=1) Get 181977 18024 5 542
5 Update 181411 18590 5 550
6 Get/Update 181504 18497 6 590
7 25/75 Zipfian(s=1) Get 171381 28620 8 960
8 Update 171307 28694 8 910
9 Get/Update 171611 28390 8 922

Table 5.3: Experimental results of the second version using zipfian distribution with
s=1

#
Size

(Mem/
disk)

Distribution Action Cache
Hits

Cache
Misses

Total
Time

(seconds)

Last
20%

(millisecs)
10 75/25 Zipfian(s=2) Get 199833 168 2 117
11 Update 199828 173 2 102
12 Get/Update 199821 180 2 118
13 50/50 Zipfian(s=2) Get 199796 205 2 130
14 Update 199787 214 2 135
15 Get/Update 199779 222 2 137
16 25/75 Zipfian(s=2) Get 199640 361 2 140
17 Update 199641 360 2 189
18 Get/Update 199655 346 2 153

Table 5.4: Experimental results of the second version using zipfian distribution with
s=2

The zipfian distribution is a favorable use case because the platform takes advantage
of the skew in the data. In this situation, evictions (which are the costlier operations,
as shown in the previous chapter) are minimized, and therefore the performance is very
high. The highest average throughput of all experiments in the s=1 category is 250000
elements per second. On the other hand, the lowest throughput is observed when the
system has 25% of all elements in memory (Experiments #7, #8, #9 in Table 3).
In that case, the throughput, on average, is 125000 elements per second. In the s=2
category, where the skew is higher and the cache misses are low, the highest average
throughput is 500000 elements per second. The fact that the most frequent elements are
kept dynamically in main memory helps reducing the cache misses significantly. These
results indicate that the platform can perform well in this scenario and can sustain a
continuous stream without having its performance hurt.

Chapter 5. Performance Evaluation 61

#
Size

(Mem/
disk)

Distribution Action Cache
Hits

Cache
Misses

Total
Time

(seconds)

Last
20%

(millisecs)
19 75/25 Uniform Get 149732 50269 8 1478
20 Update 150245 49756 9 1562
21 Get/Update 150040 49961 9 1742
22 50/50 Uniform Get 99273 100208 14 3040
23 Update 100052 99948 14 2994
24 Get/Update 100029 99972 14 2957
25 25/75 Uniform Get 49789 150212 21 4794
25 Update 49926 150075 23 4751
27 Get/Update 49853 150148 21 4614

Table 5.5: Experimental results of the second version using uniform distribution

The uniform case scenario is the most demanding one, because it negates the benefit
of caching that the system provides. In other words, after the memory becomes full,
evictions will happen at random and the cache hit ratio will be decreased. Nonetheless,
the experimental results showed that performance did not decline significantly. The
highest average throughput is 125000 elements per second (which is similar to the worst
throughput of the zipfian case) and the lowest one is 43478 elements per second. More-
over, the total time and the last 20% metrics are not impacted significantly compared
to the zipfian case. Even with only 25% elements in the cache, the stream is processed
in less than half a minute.

5.4 Cache Hit Ratio

The primary objective of the LFU algorithm is to reduce cache misses as much as
possible. This is mainly achieved by the balancing mechanism of the eviction policy
which pushes the frequent elements in memory. A cache miss is expensive because in
the worst case scenario, it may cause an eviction and a push back to the memory. This
process may cost 2 disk lookups at worse. In other words, it is safe to emphasize that the
cache hit ratio is a metric which is paramount for the cache efficiency. Figure 5.1 shows
the cache hit ratio for different percentages of cached elements in memory. The cache
hit ratio is measured during the last 20% of requests, where the cache is warmed up.
All distributions are considered, including the Zipfian with different parameterizations.
Zipfian1 and Zipfian2 are the cases where the exponent equals one and two respectively.

Chapter 5. Performance Evaluation 62

(1) (2)

(3)

Figure 5.1: Cache hit ratios with (1) get requests, (2) update requests, (3) random
requests

The figures are almost identical. These findings suggest that cache performance does
not depend on the type of the request and stays almost the same whether they are get or
update requests. This is very important because if there were differences between them
the caching mechanism would not work properly. In the uniform case, the cache hit
ratio is approximately linear. Intuitively, this makes sense because the cache hit ratio is
equal to the number of elements in memory since the distribution is uniform. This also
shows that the system scales smoothly as more memory is assigned to it. The zipfian
cases are much better than the uniform, as expected. The case of zipfian with s=2
has extremely low cache misses, and in turn, less evictions. Consequently, the platform
does not entail ingesting exclusively data from a highly skewed distribution (like the
zipfian with s=2) to work well. A slightly skewed distribution can perform adequately
as well. On the other hand, the uniform distribution can also provide satisfying results,

Chapter 5. Performance Evaluation 63

given enough memory (for example, the case where there are 50% percent of elements
in main memory gives satisfactory results). However, the purpose of the platform is
not to consume elements which are exclusively uniformly distributed, as this defeats
the purpose of caching. It only shows that performance is not impacted significantly.
If the consumed elements come from a varying distribution (which is a very frequent
phenomenon in online learning), and that distribution later shifts towards the uniform
case, then the system will not fall behind and the stream will not lag.

5.5 Comparison with Naive Approach

It is obvious that the second version has a significantly greater performance than the
first one. All experiments are much faster, which means that the system can consume
and process more elements during each unit of time (in other words, higher throughput).
The most notable difference is in the experiments with the uniform distribution, which
finish in a few seconds instead of hours. The zipfian experiments are also improved,
because they finish in a few seconds instead of minutes (at least two orders of magnitude
improvement in all zipfian cases). This observation is reflected visually in Figure 5.2

Figure 5.2: Total time for each version when 75% of elements are in memory

The figure demonstrates the total time to process 1 million requests for each version
when 75% of keys are in memory. As expected, the difference is huge and the same goes
for the rest of the experiments.

Chapter 5. Performance Evaluation 64

5.6 Large Scale Experiments

This section repeats the same type of experiments on the second version of the system,
but on a larger scale. Instead of streaming 1 million elements, the new benchmarks
stream 10, 50 and 100 million elements. The size of the disk storage in all cases is in the
order of GBs. Similarly, the memory component consumes elements until it becomes
full (16 GB approximately). To achieve this, the value of each element is defined as a
hashmap, which is updated with new elements each time an update operation is required.
In each category, the distinct elements that are used 1 and 2 million. Moreover, only
the uniform and the zipfian distribution with s=1 are used to create samples. Finally,
for the sake of brevity, only the cases where 25% and 75% of elements are in memory
are considered. The types of requests are categorized into get and put operations, which
occur randomly. The experimental results are shown in Table 5.6

#Updates #Distinct
Keys

Size
Mem/

disk

Distri-
bution

Cache
Hits

Cache
Misses

Total
Time

(mm:ss)

Last
20%

(millis)
10000000 1000000 75/25 Uniform 1500846 499155 1:54 21218

Zipfian 1895405 104596 00:36 4956
25/75 Uniform 500806 1499195 4:04 45167

Zipfian 1749262 250739 1:00 10218
2000000 75/25 Uniform 1500711 499290 2:29 27696

Zipfian 1839926 160075 00:37 5026
25/75 Uniform 500220 1499781 5:19 60007

Zipfian 1709702 290299 1:07 10707
50000000 1000000 75/25 Uniform 7502018 2497983 8:34 92554

Zipfian 9757692 242309 2:36 20807
25/75 Uniform 2499763 7500238 19:05 215810

Zipfian 9004573 995428 4:31 46497
2000000 75/25 Uniform 7500127 2499874 10:51 111315

Zipfian 9705783 294218 3:08 26185
25/75 Uniform 2501403 7498598 22:20 251051

Zipfian 8988287 1011714 4:53 47174
100000000 1000000 75/25 Uniform 15000034 4999967 15:47 177793

Zipfian 19549390 450611 5:03 45504
25/75 Uniform 4999419 15000582 45:31 527995

Zipfian 18044424 1955577 8:41 97259
2000000 75/25 Uniform 14998029 5001972 19:32 209162

Zipfian 19533832 466169 6:08 61407
25/75 Uniform 5000542 14999459 45:12 511769

Zipfian 18096228 1903773 10:36 116075

Table 5.6: Experimental results on a larger scale

Chapter 5. Performance Evaluation 65

Contrary to the previous benchmarks, in this case the total time has increased, especially
in the uniform case. This occurs due to the fact that the number of distinct elements is
bigger, and therefore the number of elements which exist on the disk is higher. This in
turn means that the total amount of disk accesses and evictions are increased as well.
Thus, the increase of total time was expected. In the zipfian experiments, the elements
are consumed in less than five minutes, with the exception of benchmark #22 where
the benchmark finished in approximately 6 minutes. The fastest one is benchmark #2,
which consumes 10 million elements from a zipfian distribution and takes 36 seconds.
The most significant result of these benchmarks is that the cache hit ratio stays the
same in all cases and it is similar to the previous set of benchmarks (where the number
of requests was 1 million). This is shown in Figure 5.3

(1) (2)

Figure 5.3: Cache hit ratios with (1) one million distinct elements, (2) two million
distinct elements

These figures depict the case where the stream consists of 100 million requests. The
other figures for the rest of the cases are identical, and therefore they are omitted for
the sake of brevity. In general, the uniform case follows a linear pattern as before, and
scales as more memory is allocated. The zipfian distribution performs well and achieves
a high cache-hit ratio throughout the duration of the experiments

5.7 Memory Management

An integral part of a system which processes huge chunks of data continuously is mem-
ory management .These systems are more vulnerable to issues which can corrupt or

Chapter 5. Performance Evaluation 66

mishandle objects in memory, because they run indefinitely, and even a small miscalcu-
lation can crash the system after some time. For example, even a small memory leak can
become an alarming issue in the long run. The JVM platform uses garbage collection,
which automatically frees the storage for use by other processes and ensures that a pro-
gram (or a process) using increasing amounts of pooled storage does not reach its quota.
Nevertheless, Java is also susceptible to memory leaks and poor management of objects
and classes. In most cases, the automation that the garbage collector provides makes
the detection of memory issues more challenging. Besides, the garbage collection is the
biggest advantage and disadvantage simultaneously when using the heap in JVM. Since
the particular platform uses the default option of heap usage, additional checks should
be made in order to make sure that all processes are stable and do not overuse memory.
A good way to test a system for memory issues is to observe it for longer periods of time
and check for anomalies in memory and the garbage collection calls. This is shown in
Figure 5.4, which shows an example of memory management during the second set of
experiments (Table 5.6) with uniform distribution.

Figure 5.4: VisualVM monitors CPU and memory usage, among other things

The platform was tested by using the VisualVm [36] software, which facilitates the
monitoring of JVM applications. The system was constantly receiving elements for
approximately 24 hours and was being monitored during that time. As far as memory
is concerned, the heap usage was stable over time and there was no sign of memory
overuse or memory leaks. This was checked throughout the duration of all experiments

Chapter 5. Performance Evaluation 67

that were performed in this thesis. The garbage collector was functioning normally
as well, without stressing the hardware resources. Last but not least, the CPU usage
was also normal and rarely exceeded the 15% percentage. Taking all the above into
consideration, the system did not face any issue in terms of memory management and
CPU resources.

Chapter 6

Conclusion

6.1 Closing Remarks

This diploma thesis tackled the problem of limited memory that contemporary data
processing systems need in order to increase their speed and achieve real or near-real
time processing time. This is achieved with a proposed architecture which reverses
the traditional storage hierarchy of disk-based systems. More specifically, the memory
layer is used as the basic stateful storage and simultaneously functions as a cache with
configurable element capacity by the user. The primary functionality of the memory
layer is to keep hot elements and evict them to disk according to an eviction policy.

On the other hand, the disk layer acts as a cold storage for evicted data. In particular,
data are moved from memory to disk in a transactionally-safe manner as the database
grows in size. The opposite happens too: Cold data which become hot again are returned
from disk back to memory. Consequently, there are two fundamental operations which
work in tandem, eviction and restoration. These two operations are responsible for
optimally managing the dynamic exchange of elements between the memory and disk
layer with the purpose of constantly keeping the hot elements in memory at all times.
The eviction strategies that are provided in the framework are variations of the LRU,
MRU and LFU policies. They are similar to the traditional policies, however, they
have been configured to accommodate the fact that elements may also return back to
memory. Apart from that, the platform is equipped with additional optimizations, such
as the bloom filter and the write buffer, which further reduce disk latencies as much as
possible. All these components work in conjunction with the algorithms at the memory
layer.

In general, the platform is highly scalable and it is supposed to work as a standalone
service or a distributed one. Moreover, one of its biggest advantages is modularization

68

Chapter 6. Conclusion 69

and elasticity. The persistence layer is not hardcoded and therefore users can plug
the database of their choice into the system. The same is true for the memory layer,
where users can integrate another eviction policy seamlessly without refactoring the
core modules at the memory layer. The platform is configured to store both simple and
complex data types, as was explained in Chapter 4.

Nevertheless, the primary purpose of the platform is to achieve sub-second latency and
high throughput. This is feasible because hot elements are kept dynamically in memory
at all times. Cold data are requested less frequently, thus minimizing the expensive
disk lookups. This feature makes the platform suitable for real time processing, where
rigorous demands should be met in order to achieve low latency. The most benefited ap-
plications from this system would be the stateful streaming applications that are required
to store a complex state that is larger than the available memory. As a consequence,
the platform can be utilized in conjunction with a stream processor, deployed in a real
time configuration. Aside from real time processing, the platform can also be used in
trivial cases which require some sort of fast Top-K implementation, like for example a
web application which stores popular items.

Ultimately, of all the aforementioned eviction policies, the LFU strategy is the most
versatile, because it takes advantage of skew in the data and it is not usually provided
by most of the off-the-shelf in-memory systems. The experiments in Chapter 3 show
that the system performed well even in the worst case scenario which involved consuming
elements form a uniform distribution). This makes the system particularly useful in the
following cases:

• The platform is not expected to work exclusively with skewed data, because as the
experiments have shown, it can also handle the uniform distribution. The idea is
that it leverages skewed data and increases its performance when they are present.
If the consumed elements come from a varying distribution and that distribution
later shifts towards the uniform case, then the system will not fall behind and
the stream will not lag. In other words, this characteristic makes the platform
particularly useful for online processing where the distribution of the incoming
elements is unknown or changes over time. Should the uniformly distributed el-
ements impacted significantly the overall performance, then the platform would
not be eligible for real-time processing.

• If the platform consumes many streams simultaneously from different sources, then
it could tolerate low skew or no skew at all in some of these streams. Obviously,
the more skew in the data, the better the performance will be.

Chapter 6. Conclusion 70

Generally speaking, the experiments showed more than satisfying results in every sce-
nario. Performing this in a way that ensures the correctness of the algorithms without
impacting performance is not a trivial task and requires significant effort.

6.2 Future Work

The past few years, software applications, especially those which run on a large scale,
make use of more sophisticated deployments. Standalone installations or virtual ma-
chines have started becoming outdated since containers have emerged. In particular,
containers facilitate deployments and provide more flexibility while simultaneously they
require less hardware resources. By deploying the application platform and its depen-
dencies in a container, differences in OS distributions and underlying infrastructure are
abstracted away.

The platform which is presented in this thesis is also able reap the benefits of container-
ization. Doing so will facilitate its deployment as a distributed application. Also, the
platform can be bundled more easily with other systems such as stream processors and
application servers. An even better approach would be to configure the platform with
a framework which automates deployment, scaling and management of containerized
applications like Kubernetes.

Bibliography

[1] Data Artisans. Apache Flink: user review in 2017. ”https://data-artisans.
com/blog/apache-flink-user-survey-2017-recap”.

[2] Hao Zhang et al. “Efficient In-memory Data Management: An Analysis”. In: Pro-
ceedings of the VLDB Endowment 7.10 (June 2014), pp. 833–836.

[3] Kian-Lee Tan et al. “In-memory Databases: Challenges and Opportunities From
Software and Hardware Perspectives”. In: ACM SIGMOD Record 44.2 (Aug. 2015),
pp. 35–40.

[4] Graham Cormode and Marios Hadjieleftheriou. “Finding Frequent Items in Data
Streams”. In: Proceedings of the VLDB Endowment 1.2 (Aug. 2008), pp. 1530–
1541.

[5] Gurmeet Singh Manku and Rajeev Motwani. “Approximate Frequency Counts over
Data Streams”. In: Proceedings of the 28th International Conference on Very Large
Data Bases. VLDB ’02. Hong Kong, China: VLDB Endowment, 2002, pp. 346–357.

[6] Graham Cormode and S. Muthukrishnan. “An Improved Data Stream Summary:
The Count-min Sketch and Its Applications”. In: Journal of Algorithms 55.1 (Apr.
2005), pp. 58–75.

[7] Hans Ulrich Obrist. The Father of Long Tails. An interview with Benoît Mandel-
brot.

[8] Stephen Fagan and Ramazan GenÃ§ay. “An Introduction to Textual Economet-
rics”. In: Handbook of empirical economics and finance (Dec. 2010), pp. 133–154.

[9] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM,
1967, pp. 483–485.

[10] Nimrod Megiddo and Dharmendra Modha. “Proceedings of the 2Nd USENIX
Conference on File and Storage Technologies”. In: San Francisco, CA: USENIX
Association, 2003, pp. 115–130.

71

https://data-artisans.com/blog/apache-flink-user-survey-2017-recap
https://data-artisans.com/blog/apache-flink-user-survey-2017-recap

Bibliography 72

[11] Muhammad Bilal and Shin-Gak Kang. A Cache Management Scheme for Efficient
Content Eviction and Replication in Cache Networks. 2017.

[12] P. Jayarekha and T. R. Gopalakrishnan Nair. An Adaptive Dynamic Replacement
Approach for a Multicast based Popularity Aware Prefix Cache Memory System.
2010.

[13] Hong-Tai Chou and David J. DeWitt. “An Evaluation of Buffer Management
Strategies for Relational Database Systems”. In: Proceedings of the 11th Interna-
tional Conference on Very Large Data Bases - Volume 11. VLDB ’85. Stockholm,
Sweden: VLDB Endowment, 1985, pp. 127–141.

[14] Shaul Dar et al. “Semantic Data Caching and Replacement”. In: Proceedings of
the 22th International Conference on Very Large Data Bases. VLDB ’96. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1996, pp. 330–341.

[15] Tim Kraska et al. The Case for Learned Index Structures. 2017.

[16] Chen Zhong, Mustafa Cenk Gursoy, and Senem Velipasalar. A Deep Reinforcement
Learning-Based Framework for Content Caching. 2017.

[17] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine
learned advice. 2018.

[18] Redis. An open source (BSD licensed), in-memory data structure store, used as a
database, cache and message broker.

[19] DB-Engines. Ranking of Key-value Stores. ”https : / / db - engines . com / en /
ranking/key-value+store”.

[20] Apache Ignite. The Apache software foundation.

[21] Ehcache. An open source, standards-based cache that boosts performance and sim-
plifies scalability.

[22] MapDB. A hybrid between java collection framework and embedded database en-
gine.

[23] LevelDB. A light-weight, single-purpose library for persistence with bindings to
many platforms.

[24] Joshua Bloch. Effective Java 3rd Edition. 2018.

[25] Gregor Kiczales et al. “Aspect-Oriented Programming”. In: Proceedings of the Eu-
ropean Conference on Object-Oriented Programming (ECOOP) (1997).

[26] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable Errors”.
In: Communications of the ACM 13.7 (July 1970), pp. 422–426.

[27] Deke Guo et al. “False Negative Problem of Counting Bloom Filter”. In: IEEE
Transactions on Knowledge and Data Engineering 22.5 (May 2010), pp. 651–664.

https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store

Bibliography 73

[28] GoogleBigQuery. A fast, highly scalable, cost-effective and fully-managed enterprise
data warehouse for analytics at any scale.

[29] Adam Horvath. MurMurHash3, an ultra-fast hash algorithm for C # / .NET.
2012.

[30] Guava. An open source, Java-based library developed by Google.

[31] Fabio Grandi. “On the analysis of Bloom filters”. In: 129 (Sept. 2017).

[32] Apache Cassandra. A free and open-source distributed wide column store NoSQL
database management system.

[33] RocksDB. An embeddable persistent key-value store for fast storage.

[34] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. 1994.

[35] Marc A Lehmann. LZF-compress is a Java library for encoding and decoding data
in LZF format.

[36] Visual VM. A visual tool integrating commandline JDK tools and lightweight pro-
filing capabilities.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Motivation
	1.2 Thesis Contribution
	1.3 Thesis Outline

	2 Problem Statement
	2.1 Technical Challenges
	2.2 Problem Formulation
	2.3 Alternative approaches
	2.3.1 Backpressure
	2.3.2 Micro-Batching
	2.3.3 Approximation
	2.3.4 Faster Storage

	2.4 Alternative Approach

	3 Background and Related Work
	3.1 The Concept of Caching
	3.1.1 How Caching Helps
	3.1.1.1 Speeding up CPU-Βound Applications
	3.1.1.2 Speeding up I/O-Βound Applications
	3.1.1.3 Characterization of this Platform

	3.1.2 Expected Speedup
	3.1.3 Eviction Strategies
	3.1.4 Caches and Machine Learning
	3.1.5 Writing Strategies
	3.1.5.1 Write-Through Cache
	3.1.5.2 Write-Around Cache
	3.1.5.3 Write-Back Cache

	3.2 Caching Challenges
	3.3 Databases and Key-Value Stores
	3.3.1 Redis
	3.3.2 Apache Ignite
	3.3.3 Ehcache
	3.3.4 MapDB
	3.3.5 Conclusion

	4 Implementation
	4.1 Layers of the Platform
	4.1.1 First Layer
	4.1.2 Second Layer
	4.1.3 Third Layer

	4.2 Additional Specifications
	4.2.1 Modularity and Flexibility
	4.2.2 Scalability
	4.2.3 Generic Values

	4.3 Differences with a Traditional Caching System
	4.4 Platform Architecture
	4.4.1 Bloom Filter
	4.4.1.1 Overview
	4.4.1.2 Implementation Details
	4.4.1.3 Technical Details
	4.4.1.4 How the Bloom Filter is Parameterized

	4.4.2 Memory Layer
	4.4.2.1 LRU
	4.4.2.2 MRU
	4.4.2.3 LFU

	4.4.3 Persistence Layer
	4.4.3.1 DAO Pattern
	4.4.3.2 Abstract Factory Pattern
	4.4.3.3 Connection Pooling

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 The Naive Approach
	5.3 Second Version
	5.4 Cache Hit Ratio
	5.5 Comparison with Naive Approach
	5.6 Large Scale Experiments
	5.7 Memory Management

	6 Conclusion
	6.1 Closing Remarks
	6.2 Future Work

	Bibliography

