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Abstract 

The ever-increasing content demand along with an increase in content size has begged the 

question to explore efficient caching algorithms in order to address the need for lag free content 

delivery and reduced costs and backhaul load. First, we consider the caching placement policy as 

a 0-1 Knapsack problem and then proceed to introduce the system model. Next, we 

comprehensively formulate the 0-1 Knapsack problem, and describe two algorithmic solutions, a 

simple and fast greedy algorithm, which is not optimal, and an optimal dynamic programming one. 

We also describe in detail the simulation model and the pertinent distributions we ran our 

simulations with. The results indicate that no matter the type of the weight distribution (weight 

here corresponds to the length of the content items) or its characteristics, the greedy algorithm 

manages to closely match the results of the dynamic programming one, while at the same time 

offering greatly reduced runtime complexity. On this basis, the simple and fast greedy algorithm 

considered is a very good choice as a caching policy, since content provision services currently 

offer large catalogues, where dynamic programming exhibits exorbitant running times. 
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Chapter 1 

Introduction 

 

Network technological advances in recent years have sparked interest in caching content 

offered by provision services. The ever-increasing demand for content in today’s networks, 

combined with the constant growth of content size consumed by the users, demands the use of 

efficient and effective algorithms in order to maximize the cache hit rate. At the same time, content 

providers drive consumption using recommendation solutions that aim to satisfy the user as much 

as possible, by recommending appealing content. This comes in contrast with a typical caching 

scenario, since individual recommendations may differ from cached content that aims to satisfy 

the maximum demand aggregated over all users. This work focuses on the caching solutions 

required in such systems, without taking into account the fusion with recommendation systems. 

According to Netflix, over 80% [1] of views come from algorithmic recommendations, 

while on YouTube 30% [2] of overall views come from related videos. Moreover, according to 

CISCO [3], globally, IP video traffic will be 82 percent of all IP traffic (both business and 

consumer) by 2022, up from 75 percent in 2017. According to the same source, Content Delivery 

Networks (CDNs) will carry 72 percent of Internet traffic by 2022 up from 56 percent in 2017. In 

3G and 4G LTE networks caching has been shown to be able to reduce mobile traffic by one third 

to two thirds.  These statistics alone, along with the oncoming arrival of 5G networks, demand a 

closer look on the caches required to satisfy the explosivity in network traffic demands. The usage 

of caches in Networks has lots of benefits, both for the end user and the provider. The user enjoys 

Quality of Experience (QoE) improvements, while the provider gains reduced network load.  

In its simplest form, the problem to determine which content will be cached or not, can be 

formulated as a Knapsack Problem. The name Knapsack problem is derived from research done 

by mathematician Tobias Dantzig, referring on the problem of which are the most important items 

that should be packed without overloading the luggage. Dating as far back as 1897, earliest works 

about this problem date back more than a century.  
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The purpose of this work is to provide sufficient data in order to assess and compare 

algorithmic solutions to the Knapsack problem. The idea is that through this work we will be able 

to determine which algorithmic solutions are sufficient as caching protocols, both in terms of 

solution optimality and complexity. 

 

1.1 Introduction to Knapsack Problem 

 

The Knapsack problem is an NP combinatorial optimization problem. There are many 

variations of this problem, with most of them differentiating a certain aspect of the problem, such 

as the number of Knapsacks, the number of items or the number of objectives. In this particular 

case, we are going to formulate and examine the most common variation of such a problem, called 

the 0-1 Knapsack problem. Our goal is to simulate a network caching scenario, aiming to cache 

content that maximizes satisfaction of user demand. This is achieved by using various algorithms 

in order to maximize the cache hit ratio. Therefore, a need arises to determine which content from 

the catalogue will be stored in the cache, given a maximum cache size. We assume a catalogue 

with 𝑛 contents, and a probability 𝑝𝑗 for each item 𝑗 ∈ {1, … , 𝑛} of our catalogue to get picked. 

The probability distribution assumes values in [0,1], so that ∑ 𝑝𝑗 = 1
𝑛
𝑗=1 . We assume 𝑊 to be the 

maximum cache size, which will be a fraction of the overall size of the catalogue. Each item 𝑗 ∈ 𝑛 

has weight equal to 𝑤𝑗. Using the data described above as input, we calculate the Cache Hit Ratio 

(CHR) achieved by various algorithms and compare them. The abovementioned tests are done 

using various distribution types as input, to cover a large number of use cases and provide the 

corresponding results. 

 

1.2 Introduction to the system model & pertinent distributions 

 

In order to thoroughly examine the problem, we need to conduct exhaustive tests with 

various types of distributions and cache sizes as input. We assume that the popularity of each of 

the 𝑛 items follows a Zipf-like distribution [4], with (s,V) being the distribution input parameters. 
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More specifically, V denotes the total number of items, which in our case is equal to 𝑛, while s 

defines the degree of skew. Every item j, 𝑗 ∈ {1,… , 𝑛} has a probability given by 𝑝𝑗 =

𝑐

𝑥1−𝑠
, 𝑤ℎ𝑒𝑟𝑒 𝑐 = 1/∑ 1/𝑥1−𝑠𝑛

𝑗=1  is a normalization constant. For s = 1 the distribution is uniform 

with no skew, while for s = 0 the distribution is highly skewed. For our testing purposes, we use a 

skew factor s equal to 0.2. We chose a Zipf-like distribution to simulate the item popularities, since 

web requests have been shown to be distributed according to such a model which also has been 

widely used in related works [9], [10]. 

To model the item length (or item weight) we used various types of distributions in order 

to get conclusive results about our caching scenario. The first distribution we used was a discrete 

uniform distribution. The item weights were distributed uniformly between a minimum and a 

maximum value a and b, respectively. The minimum value was set equal to 1(minimum length of 

an item) while the maximum value varied, in order to exhaustively test on a wide range of mean 

and variance distribution values. The second weight distribution we used was a geometric 

distribution. 

We also performed simulation tests using the Pareto distribution. This distribution was 

originally created to describe the distribution of wealth in a society. It is a heavily skewed 

distribution, characterized by a heavy tail, defined by a shape factor α. However, compared to the 

distributions that were previously used, Pareto distribution is continuous. This presents a problem, 

since 0/1 Knapsack problem can only be solved using dynamic programming if the weight 

distribution is composed of integers. Therefore, we have converted the continuous Pareto 

distribution to a discrete one, for the purposes of these simulation tests. This is achieved by 

rounding the floating-point numbers to the closest integer. The pareto distribution’s unique 

characteristic is that its variance does not converge for 𝑎 ≤ 2, while the mean value converges for 

𝑎 >  1. This distribution simulates an extreme scenario where a few items have very large lengths 

(or weights) while most of the items have small lengths.  

Last but not least, in order to thoroughly examine the problem, we also need to perform 

our tests on a wide array of cache sizes. Firstly, we calculated the mean value of our item length 

distribution. As cache sizes for each test, we used a percentage of the mean value of the weight 

distribution multiplied by the number of items. Specifically, we performed tests using typical cache 

sizes of 1%, 2%, 5%, 10% and 20% of the average size of the 𝑛 items. 
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1.3 Related Work 

 

The Knapsack problem has been the subject of research for many centuries. In recent 

research [14], a new algorithm is proposed that reduces the running time from O(Tn), where T is 

total weight and n is the number of items, to O(TD), where D is the number of distinct weights. 

The algorithm in [14] implies a bound of O(nM2), without any dependence on V, or O(nV2), 

without any dependence on M, compared to the previously possible runtime of O(nMV), bounded 

by both M and V, where M is the maximum weight and V is the maximum value of any item. For 

the unbounded Knapsack problem, an additional algorithm running in time O(M2) or O(V2) is 

provided. Both their proposals match recent conditional lower bounds shown for the Knapsack 

problem. The bounded Knapsack algorithm essentially partitions the items into D sets according 

to their weights and solves the Κnapsack problem in each set of the partition for every possible 

capacity up to T. This is done efficiently in O(T) time as all items in each set have the same weight 

and thus Knapsack can be greedily solved in those instances. Then, the overall solution is obtained 

by performing (max,+)-convolutions among them. Similarly, the algorithm for the unbounded 

Knapsack also uses (max,+) convolutions. 

As far as network caching is concerned, it has been the subject of many studies in order to 

provide further insight and solutions to it. In [4], a novel cache management policy is introduced 

which is a combination of Least Frequently Used and Least Recently Used cache replacement 

policies. The simulations prove that it has a positive effect on hit ratio, while significantly reducing 

the fraction of user requests with delayed starts and the required CPU overhead. Additionally, the 

paper further introduces a collaborative environment of proxy servers that act in a decentralized 

way, meaning there is no centralized coordinator to organize the cached contents. This 

collaborative environment consists of a hierarchical tree topology of proxies which significantly 

improves the performance of the previously examined simple topology of non-collaborative 

proxies introduced in the first part of the work. 

A lot of research lately is focused on the implementation of 5G network caching. In [11], 

caching techniques on such a network are explored. The authors first discuss how content is cached 

on current mobile networks and then proceed to explore caching techniques on 5G networks. They 
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argue that caching in 3G and 4G LTE networks has been proven to be able to reduce mobile traffic 

by one third to two thirds. They propose various techniques, including evolved packet core 

network caching and radio access network caching. They found that both techniques can 

significantly reduce user-perceived latency as well as the transmission of redundant traffic over 

the network. A smoothening effect was also found on traffic spikes as well as a balancing of the 

backhaul traffic over a long period of time. Lastly, a content centric caching scenario is also 

explored in [11]. 

In [13], the authors claim that small cells heterogeneous architectures such as femtocells 

and WIFI off-loading can handle video traffic to nomadic users by short range links to the nearest 

small cell access points. As the density of the small cells increases, a system bottleneck is presented 

on the system backhaul. Therefore, they propose that small cells with low rate backhaul and high 

storage capacity cache popular video files. They show that optimum file assignment is NP-hard 

and provide a greedy strategy that can be used in order to approximate a solution to this problem. 

Further research in [12] proposes a proactive caching scenario. To alleviate backhaul 

congestion, a proactive caching of files during off peak demands based on file popularity and 

correlations among users and files patterns is proposed. They also propose getting advantage of 

device to device (D2D) communications and social networks to proactively cache strategic 

contents and disseminate them to their social ties. These improvements show gains on backhaul 

savings that can be improved by increasing the storage capability at the network edge. 

Apart from the typical caching scenarios, some research lately is focused on the balance 

between cached videos and individually tailored recommendation systems which the authors claim 

that can be applied in future 5G networks. For example, in [5] a new caching model is proposed. 

We are introduced to the “soft cache hit” which occurs if a user’s requested content is not in the 

local cache, but the user can be (partially) satisfied by a related content that is cached. The idea is 

that in case of a cache miss, we can satisfy the user with highly related substitute content that may 

provide similar satisfaction as the initially requested content. The paper argues that this can be 

activated during periods of predicted congestion or for selected users, in order to avoid expensive 

remote access.  
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1.4 Thesis Goal and Contribution 

 

As we previously mentioned, the main goal of this work is the comparison between 

algorithms that can be used to decide caching policies. Our main goal was to compare the results 

of a simple and fast greedy algorithm, with the optimal solution that can be achieved using dynamic 

programming. The idea was to find how efficient and how close to the optimal solution can the 

above greedy solution be, for various kinds of different input distributions and cache sizes. This 

was done to provide insight on which algorithms are to be used in realistic caching scenarios. 

 

1.5 Thesis Outline 

 

In Chapter 2, we present and formulate the Knapsack problem. We also present the types 

of Knapsack problems and their various differences. In section 2.2 we analytically discuss dynamic 

programming, the algorithm used to solve the Knapsack problem as well as provide an example 

of a simple Knapsack problem to further demonstrate our point. We also discuss the space and 

time complexity of such an algorithm. In section 2.3 we present the greedy algorithm and provide 

a detailed explanation of the algorithmic steps. Furthermore, we provide an example in order to 

further facilitate the comprehension of this method. Last but not least, we analyze the space and 

time complexity of the algorithm.  

In Chapter 3, we present the simulation model and characteristics of pertinent distributions. 

In section 3.2 we comprehensively discuss the popularity Zipf distribution, its characteristics, and 

the way it was constructed. In section 3.3, we present the weight distributions used, namely 

geometric, discrete uniform and discrete pareto. We discuss their theoretical characteristics, 

provide sample characteristics and assess their accuracy. Finally, we explain the method used to 

construct the distributions. 

In Chapter 4, we present the results of our work. More specifically, in section 4.2 we 

discuss the simulation results for the geometric weight distributions. Similarly, in section 4.3 we 

discuss the simulation results for the uniform weight distributions and finally, in section 4.4 we 
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discuss the simulation results for the pareto weight distributions. In section 4.5 we compare our 

results and draw conclusions. Finally, in section 4.6 we present ideas on how we can expand this 

work in the future. 
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Chapter 2 

0-1 Knapsack Problem 

 

2.1 Mathematical Formulation 

 

 The 0-1 Κnapsack problem can be defined as follows: Given a set of 𝑛 items, j = 1, …, 𝑛, 

each characterized by a weight 𝑤𝑗 and a probability 𝑝𝑗 to get picked by the user, we must select a 

subset of these items in order to maximize the cumulative probability, without surpassing the 

maximum weight capacity 𝑊. We define 𝑊 as the maximum weight capacity, which refers to 

maximum content length that can be cached.  

Given the above, the problem can be formulated as follows: 

 

𝑚𝑎𝑥 𝑧 =  ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗 = 1

 

subject to: 

∑𝑤𝑗𝑥𝑗 ≤  𝑊

𝑛

𝑗 = 1

 

  

where 𝑥𝑗 is a binary variable that defines whether item j is part of the solution. If it belongs in the 

Knapsack, then 𝑥𝑗 is 1, otherwise it is equal to 0. Therefore, we define: 

𝑥𝑗 = {
0, 𝑖𝑓 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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We also assume that the following condition holds: 

∑𝑤𝑗  >  𝑊

𝑛

𝑗=1

 

Therefore, not all items can fit in the Knapsack. We further assume that 𝑤𝑗,𝑊 are positive 

integers. On the other hand, the probability distribution assumes values in [0,1], so that 

∑ 𝑝𝑗 = 1
𝑛
𝑗=1 . Therefore, 𝑝𝑗  is a floating-point number. 

We can also formulate a Knapsack problem using min instead of max by substituting utility 

for cost. However, in this work we will only study maximization scenarios, since our goal is to 

evaluate the caching protocol performance. 

0-1 Knapsack problem can be split into two variations. First, the unbounded Knapsack 

problem (UKP), which places no limit on the number of copies of each item. Second, the bounded 

Knapsack problem (BKP), the one we are interested in, which places the restriction that there can 

be only one copy of each item in the Knapsack.   

 

2.2 Dynamic Programming Algorithm   

 

Richard Bellman pioneered dynamic programming in 1950s, creating an optimal method 

to be used in multistage decision problems. According to the man himself, he chose the name 

dynamic because it sounded impressive. Interestingly enough, “programming” refers to the 

tabulation of intermediary results and not in computer programming. The basis of dynamic 

programming is to essentially break a complex problem into smaller, easier to solve sub-problems. 

Then, after solving the sub-problems recursively, beginning from the smallest ones first, and 

storing their result using memorization, we use the sub problems solutions in order to solve the 

more complex ones. The idea is that if we store the sub problems solutions, we need only calculate 

each solution once, meaning that these solutions can be reused to solve more complex problems.  

We can summarize that a problem has to have two main properties in order to be solved 

using dynamic programming. The first property is called optimal substructure. A problem has this 
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property when the optimal solution contains optimal solutions of its subproblems. The second 

property is overlapping subproblems, which entails that the solutions of the subproblems we 

memorize will be needed in the solving of higher up problems, in order to construct the solution. 

 

2.2.1 Algorithm & mathematical formulation 

The algorithm can be broken down as follows: 

First of all, we construct a 2-dimensional array of size (n+1) x (W+1). Each (j,w) cell of 

the array represents a subproblem and will contain the optimal solution up to that point. After we 

successfully calculate every cell, the optimal solution to the problem can be found in the cell (n,W), 

which will be the bottom rightmost cell of our array. 

Secondly, for every w in our array with j = 0, we set the array cells (0, w) = 0. Then, for 

every j in our array with w = 0, we set the array cells (j, 0) = 0. Therefore, our array should look 

as follows: 

array(j,w) w = 0 w = 1 … … w = W 

j = 1 0 0 0 0 0 

j = 2 0     

… 0     

j = n 0     

 

After we have successfully defined the initial values, we can start populating the Knapsack. 

We will calculate the remaining cell values in order to solve the problem. The order in which we 

will populate the array is line by line, from left to right. Therefore, the next step is for every item 

j and for every weight to calculate the cell weight using the following formula: 

If the weight of item j, 𝑤𝑗, is greater than w, then the value of the cell (j,w) is equal to the 

value of the cell (j-1,w). This means that if the current item does not fit into the Knapsack yet, we 

use the previously calculated values, which were the optimal solutions up to that point.  
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On the other hand, if the weight of item j, 𝑤𝑗 , is less than or equal to w, then the value of 

the cell (j,w) is equal to 𝑚𝑎𝑥{ 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1, 𝑤), 𝑝𝑗  +  𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤 − 𝑤𝑗)}. This 

means that we have two choices, we either place the item in the Knapsack or not. If we do not pick 

the current item as part of the solution, we pick the previously calculated optimal since it is better 

compared to the current item we are currently trying to fit. If we pick the current item as part of 

the solution, we calculate the new probability as our current item probability summed to the 

optimal utility we have previously calculated for the remaining w – 𝑤𝑗 weight. 

After we successfully evaluate every cell of our array, the optimal solution after having 

considered for every item if it should be placed in the Knapsack or not, is the (n,W) cell of our 

array. This returns the maximum utility we gain through our solution; however, it does not contain 

the items that are part of the optimal solution. 

Taking into consideration the steps above, the dynamic programming algorithm for 0-1 

Knapsack can be mathematically formulated as follows: 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗, 𝑤)  = {

 0,                                                                                               𝑖𝑓 𝑗 = 0 𝑜𝑟 𝑤𝑗 = 0 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤),                                                                             𝑖𝑓 𝑤𝑗  >  𝑤

𝑚𝑎𝑥{ 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1, 𝑤), 𝑝𝑗  +  𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤 − 𝑤𝑗)},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The algorithm described above possesses the two properties we first discussed that a 

problem must meet in order to be solvable by dynamic programming. First of all, it possesses the 

optimal substructure property, since the final optimal solution contains optimally solved 

subproblems. Last, but not least, we are constantly reusing memorized solutions of subproblems 

in our recursions. Therefore, it also possesses the overlapping subproblem property.  
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2.2.2 Example 

Below, we are presenting a simple example to facilitate the understanding of the algorithm 

we described above. Let’s suppose we want to place the following videos in a network cache, with 

a maximum weight limit equal to 3: 

Item 1 2 3 

Probability 0.1 0.2 0.7 

Weight 3 2 3 

 

First, we are going to construct the Knapsack array, filling it with zeros, as described above. 

 w = 0 w = 1 w = 2 w = 3 

j = 0 0 0 0 0 

Item 1(j = 1) 0    

Item 2(j = 2) 0    

Item 3(j = 3) 0    

 

Afterwards, we start filling the array from left to right, line by line. Therefore: 

j = 1:  

Array (1,1): Weight of item 1 is greater than current weight limit (w = 1), therefore this is case 

two of the mathematical formulation. So, 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(1,1) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤) =

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(0,1)  =  0.  

Array (1,2): The same applies for Array (1,2), since the weight limit is less than the item weight.  

Array (1,3): However, for cell (1,3), the item fits in the Knapsack, so this is case 3 of our 

mathematical formulation. For that reason: 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(1,3) = 𝑚𝑎𝑥{ 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤), 𝑝𝑗  +  𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤 − 𝑤𝑗)}  

=  𝑚𝑎𝑥{0 , 0.1 +  0}  =  0.1 
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j = 2:  

Array (2,1): Weight of item 2 is equal to 2, greater than the weight limit. Consequently, 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(2,1) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(1,1)  =  0. 

Array (2,2): Weight of item is equal to the weight limit. For that reason,  

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(2,2) = 𝑚𝑎𝑥{ 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤), 𝑝𝑗  +  𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤 − 𝑤𝑗)}  

=  𝑚𝑎𝑥{0 , 0.2 +  0}  =  0.2 

Array (2,3): Weight of item is less than the weight limit. Therefore, 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(2,3) = 𝑚𝑎𝑥{ 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤), 𝑝𝑗  +  𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤 − 𝑤𝑗)}  

=  𝑚𝑎𝑥{0.1 , 0.2 +  0}  =  0.2 

j = 3:  

Array (3,1): Weight of item is greater than the weight limit, ergo 

 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(3,1) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(2,1)  =  0 

Array (3,2): As is the case above, weight of item is greater than the weight limit, consequently: 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(3,2) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤) = 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(2,2)  =  0.2 

 

Array (3,3): Weight of item is equal to weight limit, therefore: 

𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(3,3) = 𝑚𝑎𝑥{ 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤), 𝑝𝑗  +  𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑗 − 1,𝑤 − 𝑤𝑗)}  

=  𝑚𝑎𝑥{0.2 , 0.7 +  0}  =  0.7 

 Finally, after we have calculated every cell value, the array is: 

  

 w = 0 w = 1 w = 2 w = 3 

j = 0 0 0 0 0 

Item 1(j = 1) 0 0 0 0.1 

Item 2(j = 2) 0 0 0.2 0.2 
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Item 3(j = 3) 0 0 0.2 0.7 

 

The solution of the Knapsack problem is located in the bottom rightmost cell and in this case, it 

is equal to 0.7. 

 

2.2.3 Recovering Items Contained in the Knapsack 

Following the algorithmic steps described above, we calculate the value of the optimal 

solution, but not the actual items contained in it. In order to recover the items that are actually 

contained in the Knapsack we follow the method described below: 

After successfully calculating all the values of our array and solved the Knapsack, we can 

develop a backtracking algorithm that constructs the solution. We start from the bottom rightmost 

cell, in this case (j = 3, w = 3), which is the result of the Knapsack. We compare it to the cell 

directly above. If the values are the same, then the item of this row is not included in the Knapsack. 

On the other hand, if the value changes, as in this case, the item is contained in the Knapsack. If 

an item is included in the Knapsack, we subtract its weight from the current weight and go 

vertically up one row and left according to its weight. We repeat this method until the weight 

reaches zero or until we reach the starting row.  

 

In our specific case, we compare 0.7 to 0.2. Since the values are different item 3 is included 

in the Knapsack. In order to find the next item, we go upwards one line and left, subtracting the 

weight of item 3. Since the weight of item 3 is 3, the next cell is (j = 2, w = 0). The remaining 

weight is equal to 0, therefore no other item fits the Knapsack and the optimal solution is item 3 

with value 0.7. 
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2.2.4 Complexity 

On the surface, the dynamic programming algorithm described above seems like it has a 

polynomial O(n*W) time complexity, since we construct an array of size n x W, with each cell 

having an O (1) cost to compute. However, taking a closer look, this is not entirely the case. The 

database size input n is polynomial in the length of the input of the problem, since n is the length 

of the array of the problem. On the other hand, the Knapsack input capacity W is just a number. 

The input size in this case is not W, but the number of bits that represent this number, which are 

equal to log(𝑊) and not W itself. Therefore, the complexity is in reality accurately described as 

𝑂(𝑛 ∗ 2𝑙𝑜𝑔𝑊). Hence, the algorithm runs in pseudo-polynomial time, ergo its running time is 

polynomial in the numeric value of the input, but exponential in the length of the input. 

This can be made easier to understand with an example: Let’s assume we have a cache 

capacity W = 2. To represent this number, we only need 2 bits. If we double the cache capacity to 

4, we need 3 bits in order to represent this number in binary. So, the bits to represent to number 

increased by 1, but the complexity doubled, since it increased from 𝑂(𝑛 ∗ 22) to 𝑂(𝑛 ∗ 23). As a 

result, time complexity is exponential with respect to Knapsack capacity, leading to rapidly 

increasing runtimes for large cache sizes. 

The space complexity is equal to O(n*W), since we construct an array of n * W entries. 

However, we can reduce this complexity, by making a simple observation looking at the solution 

algorithm. When solving the problem, in order to compute the cells for the next line, we only need 

the values of the current line cells and not of the entire array. Therefore, we reduce the space 

complexity to O(W), drastically decreasing memory requirements and space optimizing our 

solution.  

 

2.3 Greedy Algorithm 

 

When attempting to solve a problem using a greedy algorithm, we construct the problem 

solution in stages. In each stage, we pick the solution that looks best and by combining all sub-

solutions, we construct the final one. This means that we make a locally optimum choice (the 
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choice that is best at the moment) in the hope that this choice will lead us close to a global optimum 

solution, or rather the global optimum itself. Greedy algorithms usually don’t lead to optimal 

solutions, but when they do, they are most likely the most efficient algorithms available, due to 

their simplicity. 

The first step of the algorithm is to define a greedy heuristic in order to rank the items. In 

this case, we calculate the probability to pick an item over item weight.  

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =
𝑝𝑗

𝑤𝑗
  

The next step is to sort the calculated ratios of our item database, from highest to lowest. 

Last but not least, we fill the Knapsack trying to fit as many items as possible, picking the ones 

that provide the highest ratio first. This goes on until the remaining unused weight is 0 or until we 

exhaust the list of 𝑛 items. If an item does not fit in the Knapsack, we continue onto the next item 

with the next highest heuristic ratio.  

 

2.3.2 Example 

Below, we are going to show a simple example to further demonstrate the algorithm we 

described above. Let’s suppose we want to place the following videos in a network cache, with a 

maximum weight limit equal to 5: 

Item 1 2 3 

Probability 0.1 0.2 0.7 

Weight 3 2 3 

 

We first calculate the Probability/Weight heuristic of each item, which yields the 

following results: 

Item 1 2 3 

Probability/Weight 0.033333333 0.1 0.233333333 
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 Using the above results as input, we sort them by the heuristic ratio and try to fill the 

Knapsack, respecting the imposed weight limit. It is evident that we are going to pick the 3rd item 

first, which will yield a probability of 0.7 and reduce the weight limit from 5 to 2. Continuing the 

execution of our algorithm, we check whether the 2nd item fits in the Knapsack, since it has the 2nd 

highest ratio. The item successfully fits into the Knapsack and we now have a cumulative 

probability of 0.9, consisting of the 2nd and 3rd item. However, after subtracting the weights of 

these items from the weight limit, we are left with zero remaining empty space in our cache. 

Therefore, we terminate the execution of our algorithm and conclude that the greedy algorithm 

solution yields a probability of 0.9, consisting of the 3rd and 2nd item. In this case, the solution 

found by the greedy algorithm is also the optimal one. This claim can be validated if we run the 

dynamic algorithm described above in this case.  

 

2.3.3 Complexity 

From the algorithm described above, we can conclude that the algorithm is split into two 

parts. The first part is the calculation and sorting of the heuristic ratios while the second part is the 

placement of the items in the Knapsack. In order to calculate and sort the heuristic ratios, we will 

use the most efficient sorting algorithm, which is Merge Sort. Merge Sort has an average, worst- 

and best-case complexity of O(nlogn), while the placement of the items in the Knapsack has O(n) 

complexity. Therefore, we can conclude that the overall time complexity of the algorithm is 

O(nlogn), which is a lot more efficient that the dynamic programming time complexity equivalent. 

The space complexity of the algorithm is O(n), since we need only create an array of size n in 

order to store the heuristic ratios. 
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Chapter 3 

Simulation Model Characteristics 

 

3.1 Introduction 

 

Our aim in this and in the next chapter, is to provide extensive and convincing data, in 

order to justify our simulator. First, we are going into detail about the distributions we used and 

the way they were simulated. Afterwards, we are going to present the characteristics of each 

simulated distribution and compare them to the corresponding expected theoretical ones in order 

to verify that the simulations of the distributions were accurate. 

 

3.2 Popularity Distribution 

 

As we have already stated in our introductory chapter, the utility distribution we are going 

to use is a Zipf-like distribution, which is supported by experimental evidence about web caching 

[9], [10]. Our Zipf distribution is generated using two inputs, s and V, which represent the degree 

of skew and total number of items, respectively. A skew factor equal to 1 results in a uniform 

distribution with no skew, while a skew factor equal to 0 in a highly skewed distribution instead. 

For our testing purposes, we use a Zipf-like distribution with a skew equal to 0.2. Additional tests 

were also performed using higher and lower skew values in order to observe how the cache hit 

ratio (CHR) changes depending on the skew of our Zipf distribution. Below we are going to 

provide a graph of such a distribution: 
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Figure 1 Zipf distribution example, s = 0.2 

  

3.3 Weight Distributions 

 

3.3.1 Geometric Distribution 

The first distribution used in our experiments as an item length distribution was the 

geometric distribution. We simulate this distribution using the Inverse Transform Sampling 

technique. Given the Cumulative Distribution Function (CDF) of a distribution we can easily 

generate random variates, when the CDF is of such simple form that its inverse can be explicitly 

computed analytically. The first step is to compute the CDF of the desired random variable. In this 

case, the CDF of the geometric distribution is equal to 𝐹(𝑋) = 1 − (1 − 𝑝)𝑥. Afterwards, we need 

to solve the equation F(X) = R, for X in terms of R where R is a random number in [0, 1]. For the 
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geometric distribution, the result is ⌈ln(1 − 𝑅) /ln (1 − 𝑝)⌉, where p is the success probability. 

This is our random variate generator for the geometric distribution. In order to compute the desired 

random variates, first we generate uniform random numbers in [0, 1] 𝑅1, … , 𝑅𝑛 and compute 𝑋𝑗 =

𝐹−1(𝑅𝑗). The resulting distribution is a sampled geometric distribution. The method results in the 

following formula: 

𝑥 = ⌈
ln(1 − 𝑅)

ln(1 − 𝑝)
⌉ 

In order to calculate the simulated distribution’s characteristics, we calculate the sample 

mean and sample variance of the distribution and then proceed to compare them to the 

corresponding theoretical values, a way to confirm the validity of the simulated weight 

distribution. The formulas to calculate the sample mean and sample variance respectively are: 

𝜇 =  
∑ 𝑥𝑖𝑖

𝑛
 

σ2 =
∑ (𝑥𝑖 − 𝜇)

2
𝑖

𝑛 − 1
 

While the formulas used in order to calculate the expected mean and variance of the 

geometric distribution are respectively: 

𝜇 =  
1

𝑝
 

σ2 = 1 −
𝑝

𝑝2
 

In order to verify that the geometric distribution is correctly simulated using the Inverse 

Transform Sampling method, we compare the expected mean and variance to the sample mean 

and variance values. We generated a distribution sample with size equal to 100.000.000 values and 

compared the sample mean and sample variance to the corresponding theoretical values, for 

various values of the parameter p: 
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p Theoretical 
mean 

Sample mean Theoretical 
Variance 

Sample 
Variance 

Theoretical 
std 

0.005 200 200.0255 39800 39818.9925 199.499 
0.01 100 100.0121 9900 9900.0094 99.498 
0.1 10 9.9983 90 89.9608 9.486 
0.5 2 2 2 2.0004 1.414 
0.8 1.25 1.2499 0.31 0.3122 0.556 

Figure 2 Characteristics of the Geometric distributions 

As we can see from the results in the above table, the theoretical expected and variance 

values are very close to the simulated ones, therefore our geometric distribution simulation is 

considered accurate.  

 

3.3.2 Discrete Uniform Distribution 

Due to the nature of the dynamic programming Knapsack algorithm, our weight 

distributions that characterize the item length, need to be discrete. The second type of such a 

distribution we considered, is a discrete uniform distribution, which distributes the item length 

uniformly between a minimum value and a maximum value.  

A discrete uniform distribution, has a mean value equal to 
𝑘+1

2
,  where k is the maximum 

value. The minimum value is always set to 1. In order to verify the accuracy of the simulated 

distribution, we need to compare the theoretical mean and variance to the corresponding sampled 

values. We simulated discrete uniform distributions that had the same mean values as the 

geometric distributions we used, in order to compare the obtained results. Each discrete uniform 

distribution below has been sampled 100.000.000 times, confirming that our discrete uniform 

distributions are simulated correctly: 

Discrete Uniform Theoretical 
Mean 

Sample 
Mean 

Theoretical 
Variance 

Sample 
Variance 

Theoretical 
std 

[1,3] 2 2 0.66 0.66 0.812 
[1,19] 10 10 30 30.001 5.47 

[1,199] 100 99.99 3300 3300.4 57.44 
[1,399] 200 199.99 13266.66 13266.72 115.18 

Figure 3 Characteristics of the Uniform distributions 
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3.3.3 Discrete Pareto Distribution 

The last distribution we used in our simulation results, was the Pareto distribution. We used 

this distribution because of its unique characteristic, namely that its variance does not converge 

for 𝑎 ≤ 2, while its mean value converges for 𝑎 >  1. For the purposes of our simulations, we 

used the following 𝑎 values: 1.01, 1.16 and 1.9. Since Pareto is a continuous distribution, in order 

to discretize it, we generated continuous Pareto distribution variates and then converted the 

floating-point values to integers. Below, we present the comparison table between sample mean 

and variance and the corresponding theoretical values.  

In order to generate the distribution via inverse transform sampling, we firstly calculate the 

random variate of the distribution, which can be shown to be equal to  ⌊1/𝑒𝑙𝑛𝑅/𝑎⌋, and then 

compute the variate function using uniform random numbers in [0, 1], R, as input.  

Regarding the characteristics of the discrete pareto distribution, the mean value of the distribution 

can be shown to be equal to: 

𝜇 =  ∑
1

𝑥𝛼

∞

𝑥=1

 ∈  ℝ 

While variance can be shown to be equal to: 

σ2 =  ∑ [𝑥2(
1

𝑥𝑎
−

1

(𝑥 + 1)𝑎
)]

∞

𝑥=1

− 𝜇2 = +∞, 1 < 𝛼 < 2 

The clarification for the statements above can be found in the appendix of this work. 
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# of Samples Theoretical 
mean 

Sample 
Mean 

Theoretical 
Variance 

Sample 
Variance 

1000 100.5 10.3 ∞ 6208 
5000 100.5 8.4 ∞ 3141 

10000 100.5 9.1 ∞ 6140 
25000 100.5 17.6 ∞ 1840110 
50000 100.5 14 ∞ 941288 

100000 100.5 12.8 ∞ 514279 
1.000.000 100.5 11.5 ∞ 305533 
5.000.000 100.5 13.6 ∞ 3135092 

10.000.000 100.5 26.7 ∞ 813301707 
20.000.000 100.5 23.8 ∞ 613004380 
30.000.000 100.5 21.8 ∞ 429571444 
40.000.000 100.5 19.9 ∞ 324628106 
50.000.000 100.5 19.5 ∞ 271783321 
60.000.000 100.5 21.2 ∞ 354476453 
70.000.000 100.5 20.8 ∞ 30361269 
80.000.000 100.5 21.1 ∞ 313951646 
90.000.000 100.5 21.2 ∞ 305031987 

100.000.000 100.5 21.1 ∞ 291861713 
Figure 4 Characteristics of a Pareto distribution with a shape factor a = 1.01 

 

# of Samples Theoretical 
mean 

Sample 
mean 

Theoretical 
Variance 

Sample 
Variance 

1000 6.8387 19.8 ∞ 263198 
5000 6.8387 8.1 ∞ 53466 

10000 6.8387 7.1 ∞ 29849 
25000 6.8387 31.3 ∞ 15683668 
50000 6.8387 19.4 ∞ 7869944 

100000 6.8387 12.5 ∞ 3937156 
1.000.000 6.8387 6.9 ∞ 494689 
5.000.000 6.8387 6.3 ∞ 175383 

10.000.000 6.8387 6.8 ∞ 1558444 
20.000.000 6.8387 6.5 ∞ 830229 
30.000.000 6.8387 6.6 ∞ 812135 
40.000.000 6.8387 6.6 ∞ 723635 
50.000.000 6.8387 6.6 ∞ 598502 
60.000.000 6.8387 6.8 ∞ 1675810 
70.000.000 6.8387 6.8 ∞ 1611945 
80.000.000 6.8387 6.8 ∞ 1425318 
90.000.000 6.8387 6.7 ∞ 1277182 

100.000.000 6.8387 6.8 ∞ 2383606 
Figure 5 Characteristics of a Pareto distribution with a shape factor a = 1.16 
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# of Samples Theoretical 
mean 

Sample 
mean 

Theoretical 
Variance 

Sample 
Variance 

1000 1.7497 2 ∞ 6.3 
5000 1.7497 2.08 ∞ 32.4 

10000 1.7497 2.05 ∞ 20.1 
25000 1.7497 2.05 ∞ 17.1 
50000 1.7497 2.05 ∞ 13.2 

100000 1.7497 2.05 ∞ 11.5 
1.000.000 1.7497 2.05 ∞ 13.4 
5.000.000 1.7497 2.05 ∞ 58.5 

10.000.000 1.7497 2.05 ∞ 41.7 
20.000.000 1.7497 2.05 ∞ 30.6 
30.000.000 1.7497 2.05 ∞ 35.3 
40.000.000 1.7497 2.05 ∞ 32.1 
50.000.000 1.7497 2.05 ∞ 36.1 
60.000.000 1.7497 2.05 ∞ 35.3 
70.000.000 1.7497 2.05 ∞ 34.5 
80.000.000 1.7497 2.05 ∞ 32.5 
90.000.000 1.7497 2.05 ∞ 31.5 

100.000.000 1.7497 2.05 ∞ 31 
Figure 6 Characteristics of a Pareto distribution with a shape factor a = 1.9 

 

From the results in the above tables, we conclude that the accuracy of the Pareto simulated 

variates varies depending on the value of the shape factor of the distribution. Using Inverse 

Transform Sampling yields accurate results for a shape factor equal to 1.16, but the sample mean 

in the case of shape factor equal to 1.01 is way off the theoretical result. The same was also found 

to be true when simulating a continuous Pareto distribution with shape factor α = 1.01 with the 

theoretical mean being equal to 101 and the sample mean being equal to 21.1. In the case when 

the shape factor is equal to 1.9, we notice a slight difference between sample mean and the 

theoretical mean results. However, in this case, the difference is not as great as when α = 1.01.  
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Chapter 4 

Simulation Results 

4.1 Introduction 

 

In this chapter, we present representative results of our simulations. In sections 4.2 and 4.3, 

we will showcase our results using a geometric and a discrete uniform distribution, respectively. 

Additionally, in section 4.4, we are going to present our results using the discrete Pareto 

distribution. Finally, for each type of distribution used, we are going to comment on the results 

and extract a conclusion about the performance of each caching algorithm.   

 

4.2 Simulation Results for the Geometric Weight Distributions 

 

A geometric distribution is characterized by its parameter 𝑝, which is the probability of 

success after each trial. For each 𝑝 value, we simulated scenarios with database size equal to 1.000, 

5.000, 10.000, 25.000 and 50.000 items.  

We performed our tests using typical cache sizes equal to 1%, 2%, 5%, 10% & 20% of the 

average size of the 𝑛 items in the database. For example, in our first simulation test, which used a 

𝑛 value equal to 1.000 and a success probability equal to 0.8 (which means that average item size 

is equal to 1.25), the cache size was calculated as follows: 

𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 ∗ 𝑛 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 1.25 ∗ 1000 

In the tables below, the first column calculates the cache size as indicated by the formula 

above. The second and third column contain the greedy algorithm Cache Hit Ratio (CHR) and the 

average runtime in order to calculate the CHR respectively. The fourth and fifth columns contain 

the CHR and the average runtime of the dynamic programming algorithm. In order to make our 

results more conclusive, we run each simulation for each cache size 100 times, which is indicated 

in the sixth column. Therefore, we create 100 different distributions with the same values of the 
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parameters 𝑛 and p and calculate the CHR and average runtime of each algorithm. The last column, 

Total Time, indicates the total runtime of our simulation, including both the greedy and the 

dynamic programming algorithms.  Simulations were run on a desktop computer equipped with a 

Ryzen 2600 3.9 GHz processor and 16GB DDR4 RAM. Last but not least, because the CHR results 

of the greedy and dynamic programming algorithm are similar, the decimal places that are different 

are highlighted in the table below. 

The first 𝑝 value we considered was equal to 0.8, which yielded the following results: 

P Theoretical 
mean 

Sample 
mean 

Theoretical 
variance 

Sample 
Variance 

Standard 
Deviation 

Std./Mean 

0.8 1.25 1.247 0.31 0.3112 0.55 0.44 
Figure 7 Geometric distribution characteristics, p = 0.8 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 13 0.240762394024 0.0036s 0.240797417918 0.0387s 4.6s 
2% = 25 0.312432074743 0.0041s 0.312446653036 0.0413s 4.97s 
5% = 63 0.432839408563 0.005s 0.432839522647 0.0439s 5.27s 

10% = 125 0.537771432596 0.0048s 0.537771539726 0.0427s 5.26s 
20% = 250 0.660289487758 0.0043s 0.660289487758 0.0435s 5.17s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 63 0.291427568694 0.0255s 0.291428490676 0.2099s 25.63s 
2% = 125 0.362087986664 0.0262s 0.362088243534 0.2307s 27.9s 
5% = 313 0.473183079348 0.0253s 0.473183109061 0.2326s 27.85s 

10% = 625 0.571624669434 0.0256s 0.571624684046 0.2481s 29.3s 
20% = 1250 0.685367152627 0.0234s 0.68536715275 0.2638s 30.51s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 125 0.307452839677 0.0495s 0.307453008726 0.4391s 53s 
2% = 250 0.377226762762 0.047s 0.377226815851 0.4734s 56.31s 
5% = 630 0.485949126937 0.0492s 0.485949141376 0.5096s 59.88s 

10% = 1300 0.582390777311 0.0444s 0.582390780421 0.549s 63.31s 
20% = 2600 0.693057353545 0.0414s 0.693057356098 0.6193s 69.53s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 313 0.325941859492 0.1323s 0.325941962778 1.24s 148.2s 
2% = 625 0.39380375708 0.1322s 0.393803762199 1.37s 161.3s 

5% = 1563 0.499570238087 0.125s 0.499570239647 1.6s 183.1s 
10% = 3125 0.593401859997 0.115s 0.593401860828 1.8s 201.3s 
20% = 6250 0.701286584023 0.1016s 0.70128658428 2.15s 233.4s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 625 0.336861311778 0.284s 0.336861333218 2.82s 333.67s 
2% = 1250 0.403802003101 0.2773s 0.40380200662 3.18s 367.37s 
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5% = 3125 0.507873027655 0.255s 0.507873028018 3.93s 438.9s 
10% = 6250 0.600225561931 0.2176s 0.600225561995 4.73s 512.18s 

20% = 12500 0.706315431195 0.1886s 0.706315431203 6.1s 645.5s 
Figure 8 Simulation Results for the geometric distribution, p = 0.8 

 

P Theoretical 
mean 

Sample 
mean 

Theoretical 
variance 

Sample 
Variance 

Standard 
Deviation 

Sd./Mean 

0.5 2 1.999 2 2.001 1.414 0.707 
Figure 9 Geometric distribution characteristics, p = 0.5 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 20 0.251734667856 0.0033s 0.251763309412 0.041s 4.94s 
2% = 40 0.330490093859 0.0036s 0.33051003111 0.0418s 4.96s 

5% = 100 0.45345412494 0.005s 0.453461104583 0.0412s 5.1s 
10% = 200 0.562718152705 0.0037s 0.562719335424 0.0448s 5.33s 
20% = 400 0.688400741944 0.0043s 0.688401305986 0.0447s 5.37s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 100 0.305110132808 0.0254s 0.30511289275 0.2184s 26.47s 
2% = 200 0.378284754177 0.0254s 0.378285683654 0.2339s 27.96s 
5% = 500 0.492537473172 0.0249s 0.492537698264 0.2427s 28.71s 

10% = 1000 0.59434706407 0.0246s 0.594347138388 0.2615s 30.53s 
20% = 2000 0.711467157913 0.0228s 0.711467175155 0.2935s 33.4s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 200 0.32166659209 0.0562s 0.321667689268 0.4775s 57.57s 
2% = 400 0.393836867252 0.0544s 0.393837286686 0.4955s 59.2s 

5% = 1000 0.505631914279 0.0527s 0.505631965242 0.5484s 64s 
10% = 2000 0.604880213203 0.049s 0.604880235625 0.6219s 70.66s 
20% = 4000 0.718936135417 0.046s 0.718936139735 0.7117s 79s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 500 0.339327433278 0.1401s 0.339327827849 1.2753s 152.27s 
2% = 1000 0.409392441309 0.1405s 0.409392456198 1.4528s 170s 
5% = 2500 0.518343378428 0.1277s 0.518343387604 1.8s 202.5s 

10% = 5000 0.615139582178 0.1159s 0.615139584592 2.118s 232s 
20% = 10000 0.726326145848 0.1022s 0.726326146239 2.6757s 284.76s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 1000 0.350397161792 0.3141s 0.350397218827 2.9857s 352.3s 
2% = 2000 0.419315235384 0.2975s 0.41931524747 3.6356s 415.2s 
5% = 5000 0.526420812645 0.2787s 0.526420815555 4.771s 524.1s 

10% = 10000 0.621517703236 0.233s 0.621517703927 6s 645.72s 
20% = 20000 0.730798690394 0.1915s 0.730798690571 8.1467s 847s 

Figure 10 Simulation Results for the geometric distribution, p = 0.8  
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P Theoretical 
mean 

Sample 
mean 

Theoretical 
variance 

Sample 
Variance 

Standard 
Deviation 

Sd./Mean 

0.1 10 10.049 90 90.733 9.48 0.948 
Figure 11 Geometric distribution characteristics, p = 0.1 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 100 0.286421873914 0.005s 0.286724775139 0.044s 5.38s 
2% = 200 0.36925492424 0.0057s 0.369318798024 0.0472s 5.73s 
5% = 500 0.501073633927 0.0053s 0.501107261928 0.0494s 5.96s 

10% = 1000 0.617845234087 0.0046s 0.617923006199 0.0537s 6.19s 
20% = 2000 0.742570116683 0.0043s 0.742639005058 0.0599s 6.83s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 500 0.338976661219 0.0288s 0.338983649688 0.2611s 31.1s 
2% = 1000 0.417719562285 0.0275s 0.417721133715 0.2903s 33.8s 
5% = 2500 0.540412293443 0.0268s 0.54041278977 0.3572s 40.2s 

10% = 5000 0.647367365631 0.0244s 0.647379142418 0.4233s 46.4s 
20% = 10000 0.762527885619 0.0212s 0.762536448972 0.5318s 56.6s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 1000 0.354733627793 0.0637s 0.354735385478 0.6091s 71.8s 
2% = 2000 0.431484226879 0.0595s 0.431485268257 0.747s 85s 
5% = 5000 0.551264147762 0.0531s 0.551264237961 0.9537s 104.6s 

10% = 10000 0.656177657346 0.0462s 0.656183729408 1.2s 128.4s 
20% = 20000 0.768535345244 0.0395s 0.768540630817 1.6424s 170.81s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 2500 0.371710017953 0.1776s 0.371710206339 2.14s 242.6s 
2% = 5000 0.446827797487 0.1674s 0.446827891015 2.74s 301.2s 

5% = 12500 0.563468522409 0.1444s 0.56346854094 4.2s 440.9s 
10% = 25000 0.66523191966 0.1138s 0.665233543674 5.9s 608.2s 
20% = 50000 0.774465281468 0.0938s 0.774466507894 8.7s 882.9s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 5000 0.382528397614 0.4019s 0.38252849171 6s 668.4s 
2% = 10000 0.456449160034 0.3833s 0.456449176919 9.2s 978.5s 
5% = 25000 0.571056521843 0.3229s 0.571056526824 18.4s 1894.4s 

10% = 50000 0.67113154641 0.2377s 0.671132642082 39s 3944.1s 
20% = 100000 0.778493581297 0.1791s 0.778494283456 54.8s 5513.9s 

Figure 12 Simulation Results for the geometric distribution, p = 0.1 
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P Theoretical 
mean 

Sample 
mean 

Theoretical 
variance 

Sample 
Variance 

Standard 
Deviation 

Sd./Mean 

0.01 100 100.447 9900 9975.4 99.5 0.995 
Figure 13 Geometric distribution characteristics, p = 0.01 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 1000 0.310036195099 0.0051s 0.31069219168 0.05s 6.7s 
2% = 2000 0.395868857358 0.0052s 0.396060696283 0.07s 8s 
5% = 5000 0.525148506956 0.0048s 0.5252435869 0.09s 10.1s 

10% = 10000 0.635846093289 0.0042s 0.635947089828 0.12s 13.2s 
20% = 20000 0.75496770997 0.0038s 0.75503502281 0.1629s 17s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 5000 0.359244534771 0.0335s 0.359264120474 0.6s 66.4s 
2% = 10000 0.439178466843 0.0317s 0.439196961772 0.91s 96.7s 
5% = 25000 0.560599875214 0.027s 0.560617320984 1.73s 177.2s 

10% = 50000 0.663529923421 0.02s 0.663547487435 3.9s 392.7s 
20% = 105 0.774026578914 0.0144s 0.774039157445 6s 601s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 10000 0.373718286094 0.0768s 0.37372848586 2.1s 224.4s 
2% = 20000 0.451987708091 0.0783s 0.451995684592 3.6s 373.6s 
5% = 50000 0.570695929598 0.0612s 0.570703893505 11.6s 1170.1s 

10% = 100000 0.671320792679 0.0425s 0.671328495563 28.9s 2897.1s 
20% = 200000 0.778884564338 0.0334s 0.77889063817 43.6s 4363.5s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 25000 0.390915755531 0.2298s 0.39091986456 13.9s 1424.4s 
2% = 50000 0.466935759252 0.2145s 0.466938752506 38.3s 3860.9s 

5% = 125000 0.582148747452 0.1624s 0.582152084204 153.4s 15366.9s 
10% = 250000 0.679893644681 0.1302s 0.679896300691 268.7s 26894.4s 
20% = 500000 0.784607823051 0.102s 0.784610329353 383.8s 38397.6s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 50000 0.40078486637 0.5331s 0.400786604214 122.7s 12349.3s 
2% = 100000 0.47581389408 0.4687s 0.475815346588 300.4s 30110.9s 
5% = 250000 0.589265367338 0.3811s 0.589266762514 742s 74264s 

10% = 500000 0.685460908869 0.315s 0.685462542428 1213s 121348.6s 
20% = 106 0.788342543067 0.2351s 0.788343675868 1695.4s 169578.9s 

Figure 14 Simulation Results for the geometric distribution, p = 0.01 
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P Theoretical 
mean 

Sample 
mean 

Theoretical 
variance 

Sample 
Variance 

Standard 
Deviation 

Sd./Mean 

0.005 200 200.05 39800 39809.3 199.5 0.9975 
Figure 15 Geometric distribution characteristics, p = 0.005 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 2000 0.316045517326 0.005s 0.316376494778 0.0777s 8.9s 
2% = 4000 0.399568852119 0.0053s 0.399710937234 0.0975s 10.7s 

5% = 10000 0.527257314079 0.0042s 0.527383255581 0.148s 15.6s 
10% = 20000 0.636524522962 0.0038s 0.636608155348 0.1987s 20.6s 
20% = 40000 0.754948266877 0.0035s 0.755030817885 0.2808s 28.6s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 10000 0.361031043694 0.0351s 0.361054495031 1.021s 108s 
2% = 20000 0.440138850961 0.0331s 0.440157960864 1.8796s 193.3s 
5% = 50000 0.560673879303 0.0271s 0.560689802209 6s 611.93s 

10% = 100000 0.6636071204 0.0195s 0.663622051259 14.7s 1479.64s 
20% = 200000 0.773956337942 0.0153s 0.77396734939 22s 2199.5s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 20000 0.376234682526 0.0821s 0.376245416542 4.3s 443.3s 
2% = 40000 0.453791396883 0.0748s 0.453799970831 11.6s 1173.6s 

5% = 100000 0.571738199353 0.0594s 0.571745381972 43.8s 4391.2s 
10% = 200000 0.671998609391 0.0456s 0.672006457533 81.4s 8150.6s 
20% = 400000 0.779490224408 0.0366s 0.779495821275 116.6s 11669.3s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 20000 0.392550854618 0.254s 0.39255464038 50.4s 5077.8s 
2% = 40000 0.468387260837 0.2178s 0.468390158542 154.2s 15458.3s 

5% = 100000 0.583062633142 0.1827s 0.583065569533 371.2s 37149.2s 
10% = 200000 0.680482554553 0.141s 0.680484579301 606.5s 60674.7s 
20% = 400000 0.784964630293 0.1116s 0.784966629108 847.3s 84751.8s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 100000 0.402266979772 0.5484s 0.402268493046 360.4s 36115.3s 
2% = 40000 0.477116071219 0.4925s 0.477117589971 766s 76668.5s 

5% = 100000 0.590213173913 0.3906s 0.59021464342 1616.3s 161688.3s 
10% = 200000 0.686168070975 0.3094s 0.686169299989 2553.6s 255406.9s 
20% = 400000 0.788895159815 0.2411s 0.788896041158 3521s 352131.3s 

Figure 16 Simulation Results for the geometric distribution, p = 0.005 
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Below, we are providing a few graphs in order to further demonstrate the comparisons of the 

algorithmic results: 

 

 

Figure 17 CHR comparison chart, p = 0.005, cache size = 20% 

 

Figure 18 Greedy Algorithm Running Time, p = 0.005, cache size = 20% 
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Figure 19 Dynamic Programming Algorithm Running Time, p = 0.005, cache size = 20% 

The graphs provided show how comparable are the solutions to the problem produced by 

the greedy and the dynamic programming algorithms. No matter what the value of the success 

probability 𝑝 or of the cache size, the Cache Hit Ratios are really very similar. Due to lack of space 

we do not provide the corresponding graphs for every case. 

 

 

4.3 Simulation Results for the Uniform Weight Distributions 

 

As in the case of the geometric distribution simulations, we performed our simulations by 

creating distributions for number of items in the database equal to 1.000, 5.000, 10.000 and 50.000. 

We decided to simulate discrete uniform distributions that have the same mean value as the 

simulated geometric distributions we used in the previous tests, in order to facilitate comparisons. 

Since our discrete uniform distributions take values over the integers in [1, k], an equivalent in 

mean value discrete uniform distribution to the geometric distribution with 𝑝 = 0.8 could not be 

constructed (since the mean value of the latter is equal 1.25). Our simulations yield the following 

results: 
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Discrete Uniform Theoretical 
Mean 

Sample Mean Theoretical 
Variance 

Sample 
Variance 

Theoretical 
std 

[1,3] 2 2 0.66 0.66 0.812 
Figure 20 Uniform distribution characteristics, μ = 2 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 20 0.24102630909833067 0.001s 0.24109038429824353 0.0088s 1.08s 
2% = 40 0.3200262773569456 0.0011s 0.3200394568537226 0.0088s 1.06s 

5% = 100 0.4371007296380347 0.001s 0.43710856767366224 0.0089s 1.08s 
10% = 200 0.545805804977664 0.0013s 0.5458067778543679 0.0093s 1.14s 
20% = 400 0.6694800223228726 0.0013s 0.6694803875372334 0.0097s 1.19s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 100 0.29453210781815176 0.0059s 0.2945373589625834 0.0438s 5.4s 
2% = 200 0.3671908425610158 0.0058s 0.3671919494692401 0.0454s 5.59s 
5% = 500 0.4786799526305358 0.006s 0.4786801210378908 0.0481s 5.85s 

10% = 1000 0.5780476684625024 0.0064s 0.5780477223748153 0.0541s 6.48s 
20% = 2000 0.6929558340039277 0.0061s 0.6929558477000074 0.0632s 7.41s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 200 0.3110986274471151 0.0121s 0.311099478374455 0.0918s 11.2s 
2% = 400 0.38152684919796576 0.0121s 0.38152709431215137 0.0959s 11.68s 

5% = 1000 0.4914677158058989 0.0123s 0.4914677941642017 0.1076s 12.86s 
10% = 2000 0.5888248966054511 0.0124s 0.5888249208519906 0.1262s 14.71s 
20% = 4000 0.700558002587276 0.0134s 0.700558006984076 0.1629s 18.52s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 500 0.32939320703380637 0.0305s 0.3293933412150134 0.2483s 30.12s 
2% = 1000 0.397857530300534 0.0297s 0.39785756643298514 0.2763s 32.85s 
5% = 2500 0.5049727285512485 0.0308s 0.5049727371268602 0.3521s 40.5s 

10% = 5000 0.5995880440572602 0.0314s 0.5995880456929981 0.4492s 50.2s 
20% = 10000 0.7085372230345132 0.033s 0.7085372236891522 0.6637s 71.89s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 1000 0.3409203014210793 0.0594s 0.3409203476149061 0.5412s 64.4s 
2% = 2000 0.4082256735585127 0.0602s 0.40822568726742026 0.629s 73.2s 
5% = 5000 0.5131761608178532 0.0614s 0.5131761650235311 0.8777s 98.25s 

10% = 10000 0.6063998977178301 0.0628s 0.6063998986234563 1.2753s 138s 
20% = 20000 0.7134830470530147 0.0673s 0.7134830472979712 2.084s 219.36s 

Figure 21 Simulation Results for the uniform distribution, μ = 2 
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Discrete Uniform Theoretical 
Mean 

Sample Mean Theoretical 
Variance 

Sample 
Variance 

Theoretical 
std 

[1,19] 10 10 30 30.001 5.47 
Figure 22 Uniform distribution characteristics, μ = 10 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 100 0.26091759041070206 0.0012s 0.2611456215945535 0.0089s 1.09s 
2% = 200 0.3421349299969754 0.0012s 0.34221153976118274 0.0093s 1.13s 
5% = 500 0.46698441076682906 0.0013s 0.4670098400781651 0.0098s 1.19s 

10% = 1000 0.5769390060874067 0.0013s 0.5770032889870675 0.0109s 1.31s 
20% = 2000 0.7001525746124423 0.0014s 0.7002311319964234 0.0129s 1.52s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 500 0.31394314746401125 0.0063s 0.31395432101255905 0.0478s 5.84s 
2% = 1000 0.38902148949221393 0.0065s 0.3890248055714948 0.0533s 6.41s 
5% = 2500 0.5050144560964988 0.0065s 0.5050150206233714 0.0687s 7.95s 

10% = 5000 0.6076314474285424 0.0067s 0.6076405990045831 0.0892s 10.02s 
20% = 10000 0.7208183237169304 0.0072s 0.7208342275425417 0.1309s 14.22s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 1000 0.329221892556377 0.0129s 0.32922488391126525 0.1063s 12.79s 
2% = 2000 0.4039697255818268 0.0129s 0.403970495339026 0.124s 14.56s 
5% = 5000 0.5168754326963855 0.0136s 0.51687558585852 0.1753s 19.75s 

10% = 10000 0.6169331211908016 0.0137s 0.6169387484491304 0.2558s 27.8s 
20% = 20000 0.7278180338201672 0.0149s 0.7278230358758981 0.4138s 43.74s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 2500 0.3474985098149124 0.0338s 0.3474989644591816 0.3409s 39.65s 
2% = 5000 0.4191639051804622 0.0338s 0.4191640262335971 0.4404s 49.6s 

5% = 12500 0.5301464223758339 0.035s 0.5301464516771932 0.7475s 80.43s 
10% = 25000 0.6274865949960773 0.0357s 0.6274886665619082 1.2411s 129.87s 
20% = 50000 0.7352787475997838 0.0372s 0.7352808621340504 2.1617s 222s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 5000 0.35847826645979725 0.0774s 0.35847836347661227 0.9205s 104.16s 
2% = 10000 0.4288878479545991 0.0772s 0.4288878904318677 1.3478s 146.81s 
5% = 25000 0.5377765884556378 0.0794s 0.5377765954884164 2.6249s 274.74s 

10% = 50000 0.6338597116986141 0.0781s 0.6338608478493999 4.5742s 469.62s 
20% = 100000 0.7396455452288798 0.0779s 0.7396467602100542 9s 918.34s 

Figure 23 Simulation Results for the uniform distribution, μ = 10 
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Discrete Uniform Theoretical 
Mean 

Sample Mean Theoretical 
Variance 

Sample 
Variance 

Theoretical 
std 

[1,199] 100 99.99 3300 3300.4 57.44 
Figure 24 Uniform distribution characteristics, μ = 100 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 1000 0.2749320512370247 0.0012s 0.2753347778125061 0.0133s 1.55s 
2% = 2000 0.3554067756603906 0.0017s 0.355569754611764 0.0153s 1.79s 
5% = 5000 0.4783788238759184 0.0018s 0.47849749787913154 0.0217s 2.45s 

10% = 10000 0.5873285447440102 0.0026s 0.5874340082291298 0.0314s 3.458s 
20% = 20000 0.7050160053380158 0.0019s 0.7051204579134466 0.0558s 5.92s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 5000 0.3257928767185998 0.0086s 0.3258207041781456 0.1139s 12.77s 
2% = 10000 0.3995370488824803 0.0085s 0.3995609699687581 0.1639s 17.7s 
5% = 25000 0.5155730664939486 0.008s 0.5155904128638928 0.3125s 32.55s 

10% = 50000 0.6171644680910414 0.009s 0.6171825379968866 0.5672s 58s 
20% = 105 0.7276040567172244 0.0091s 0.7276215762402001 1.27s 128.9s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 10000 0.34074524157503716 0.018s 0.34075699849180296 0.3486s 37.63s 
2% = 20000 0.41495079112306066 0.0174s 0.41495979327259463 0.561s 58.91s 
5% = 50000 0.5280807040556075 0.0174s 0.5280894807225802 1.1525s 118s 

10% = 100000 0.6256302643034065 0.016s 0.6256379857861328 2.2s 223.53s 
20% = 200000 0.7336999560762795 0.0149s 0.7337089095482373 15.4s 1551.28s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 25000 0.3577316866352443 0.049s 0.3577355194487892 1.42s 149.85s 
2% = 50000 0.4301338242068312 0.0458s 0.4301375625366861 2.55s 262.69s 

5% = 125000 0.5398319392849712 0.0426s 0.5398351036234341 7s 707.3s 
10% = 250000 0.6353338862898696 0.0486s 0.6353377081213497 72.2s 7233.6s 
20% = 500000 0.7409987503814766 0.0471s 0.7410021004420195 138.1s 13823.5s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 50000 0.36840909126559246 0.1165s 0.3684107035157749 5.9s 606.52s 
2% = 100000 0.4394898561185189 0.1083s 0.4394915658671026 12.3s 1247.14s 
5% = 250000 0.5476758730219858 0.0919s 0.5476775433975969 150.3s 15052.6s 

10% = 500000 0.6416053944203438 0.0908s 0.6416072484593879 291.1s 29124s 
20% = 106 0.7454271700991775 0.0882s 0.74542887978638 506.9s 50701s 

Figure 25 Simulation Results for the uniform distribution, μ = 100 

 

 

 



36 
 

Discrete Uniform Theoretical 
Mean 

Sample Mean Theoretical 
Variance 

Sample 
Variance 

Theoretical 
std 

[1,399] 200 199.99 13266.66 13266.72 115.18 
Figure 26 Uniform distribution characteristics, μ = 200  

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 2000 0.27273193620931874 0.0011s 0.2731153059414385 0.013s 1.5s 
2% = 4000 0.3533850886970898 0.0012s 0.35355202947697423 0.0162s 1.8s 

5% = 10000 0.47736979721833833 0.0013s 0.47749222150127835 0.0263s 2.8s 
10% = 20000 0.5860038236083996 0.0012s 0.5861013939974378 0.0424s 4.45s 
20% = 40000 0.7067401384626534 0.0014s 0.7068387564196338 0.0732s 7.5s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 10000 0.3254934189959115 0.0071s 0.3255213453043621 0.1312s 14.3s 
2% = 20000 0.3999268992597758 0.0069s 0.3999482960089667 0.2148s 22.6s 
5% = 50000 0.516122507543533 0.0072s 0.5161407120138196 0.46s 47.17s 

10% = 100000 0.6161959651341544 0.0071s 0.6162145325065613 0.98s 99.1s 
20% = 200000 0.7277793752292939 0.0073s 0.7277972884556977 7.4s 740s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 20000 0.34066330865176603 0.0154s 0.34067388471802224 0.4497s 47.4s 
2% = 40000 0.41500783260905777 0.0159s 0.4150186960674145 0.8s 83.3s 

5% = 100000 0.5279371219844604 0.0159s 0.5279472611006457 2.1s 214.6s 
10% = 200000 0.626602301258445 0.0154s 0.6266118259239991 20.4s 2041.6s 
20% = 400000 0.7341350390474953 0.0153s 0.7341433665631812 37.8s 3782s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 50000 0.3584394522900653 0.05s 0.3584428675913742 2.6s 266.2s 
2% = 100000 0.4311759133446538 0.0495s 0.4311799190637143 5.7s 578.2s 
5% = 250000 0.5407289094068061 0.0438s 0.5407328396504016 77s 7713.7s 

10% = 500000 0.6359236339957312 0.0445s 0.6359270540729496 146.1s 14618s 
20% = 1000000 0.7412750937872725 0.044s 0.7412783763849043 256.2s 25634.8s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 100000 0.3697491200965831 0.1083s 0.3697506237648362 11.8s 1195.2s 
2% = 200000 0.44017233134141515 0.1032s 0.4401739890008854 141.7s 14188.1s 
5% = 500000 0.548358755878752 0.105s 0.5483604307390268 360.7s 36088.3s 

10% = 1000000 0.6420276129168839 0.0991s 0.6420293402588412 642.7s 64291.5s 
20% = 2000000 0.7458391908323426 0.0928s 0.7458410947076672 1111s 111122.5s 

Figure 27 Simulation Results for the uniform distribution, μ = 200 

 

Below, we provide a few graphs in order to facilitate the comparison of algorithmic results: 
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Figure 28 CHR comparison, uniform distribution, μ = 200, cache size = 20% 

 

Figure 29 Greedy Algorithm Running Time, μ = 200, cache size = 20% 
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Figure 30 Dynamic Programming Algorithm Running Time, μ = 200, cache size = 20% 

Once again, the results in the tables and graphs provided show that no matter what the 

mean value of the discrete uniform distribution, the two algorithms achieve almost identical 

results, although the dynamic programming algorithm consistently achieves a higher CHR. We 

observe that the CHR achieved in the case of the geometric distribution is slightly higher compared 

to the CHR achieved in the case of the discrete uniform distribution for the same mean item size 

value. 

 

 

4.4 Simulation Results for the Pareto Weight Distributions 

 

The last type of distribution in our simulations was the Pareto distribution. The simulations 

below were performed for values of the parameter α equal to 1.01, 1.16 and 1.9.  

Discrete Pareto 
α = 1.01 

Theoretical 
mean 

Theoretical 
Variance 

 100.5 ∞ 
Figure 31 Pareto distribution characteristics, a = 1.01 
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Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 1005 0.8027539582307185 0.0015s 0.802834822117092 0.0113s 1.37s 
2% = 2010 0.9278757387102305 0.0017s 0.9279778075686953 0.0133s 1.6s 
5% = 5025 0.9960620662048659 0.0016s 0.9962106148024086 0.0193s 2.19s 

10% = 10050 0.9995776174991394 0.0017s 0.9995915339552571 0.0272s 2.99s 
20% = 20100 0.9999587676078486 0.0017s 0.9999610286761822 0.045s 4.77s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 5025 0.8168957992376061 0.0085s 0.8169099728997747 0.1s 11.8s 
2% = 10050 0.9335853518219801 0.009s 0.9336012545391214 0.153s 16.7s 
5% = 25125 0.996899636095483 0.009s 0.9969170412946581 0.275s 28.93s 

10% = 50250 0.9998529305691313 0.0089s 0.999867183984285 0.46s 48.31s 
20% = 100500 0.9999933118171757 0.0088s 0.9999933118171757 1s 109.5s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 10050 0.8221480877712947 0.0175s 0.8221560188597806 0.324s 35.2s 
2% = 20100 0.935421349524826 0.0185s 0.9354296602200808 0.518s 54.7s 
5% = 50250 0.9971570982210274 0.0187s 0.9971683445454967 1s 104.7s 

10% = 100.500 0.9999617711155069 0.0186s 0.9999640154421715 2s 203.1s 
20% = 201.000 0.9999917655357682 0.0174s 0.9999917655357687 15.7s 1577s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 25125 0.8266011443208049 0.055s 0.8266045051854362 1.5s 167.3s 
2% = 50250 0.9371200578323073 0.0576s 0.9371232247989423 2.7s 286.2s 

5% = 125.625 0.9972527066373362 0.0539s 0.9972562139876144 9.5s 958.6s 
10% = 251.250 0.9999668002584663 0.0497s 0.999968412053203 66.2s 6628.6s 
20% = 502.500 0.9999987633467515 0.0483s 0.9999987633467521 127.2s 12731.7s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 50.250 0.829617359143741 0.1151s 0.829618980042332 5.6s 586.5s 
2% = 100.500 0.9383076656672802 0.1133s 0.9383092416308966 11.8s 1197.8s 
5% = 251.250 0.9972734480180254 0.1159s 0.9972755691562528 157.7s 15790.8s 

10% = 502.500 0.9999777511319453 0.1064s 0.9999788874627056 301.1s 30131.8s 
20% = 1.005.000 0.9999985188849817 0.0982s 0.9999985568643794 529.6s 52975.9s 

Figure 32 Simulation Results for the pareto distribution, a = 1.01 

 

 

 

 

 

 

 



40 
 

Discrete Pareto 
α = 1.16 

Theoretical 
mean 

Theoretical 
Variance 

 6.8 ∞ 
Figure 33 Pareto distribution characteristics, a = 1.16 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 68 0.3706629149684002 0.0012s 0.3706927468283927 0.0086s 1s 
2% = 136 0.47365679667759414 0.0012s 0.4736607057330222 0.0089s 1.1s 
5% = 340 0.6234148985257825 0.0014s 0.6234160416353149 0.0095s 1.18s 

10% = 680 0.757701068980383 0.0015s 0.7577012949059058 0.0107s 1.32s 
20% = 1360 0.8958763756762245 0.0016s 0.8959587874939909 0.0121s 1.47s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 340 0.42024791169856246 0.006s 0.4202497394262826 0.0462s 5.71s 
2% = 680 0.5102307303489586 0.0062s 0.510231722521159 0.0514s 6.27s 

5% = 1700 0.6507728420273282 0.0068s 0.6507729140647343 0.0616s 7.3s 
10% = 3400 0.7763851569496993 0.0074s 0.7763852269100104 0.0808s 9.3s 
20% = 6800 0.9045508619729311 0.008s 0.9045621638144117 0.1143s 12.7s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 680 0.43365996963610426 0.0125s 0.4336604771134958 0.1048s 12.7s 
2% = 1360 0.5211105275011263 0.0127s 0.5211106975437642 0.1167s 13.94s 
5% = 3400 0.6590199493802732 0.0132s 0.6590199943562695 0.1606s 18.37s 

10% = 6800 0.7812834123402022 0.0145s 0.7812834241009018 0.2358s 26s 
20% = 13600 0.9076135434529462 0.0162s 0.9076195290948028 0.358s 38.4s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 1700 0.4471979418013976 0.0333s 0.44719811336532883 0.3174s 37.6s 
2% = 3400 0.5340451335471473 0.0343s 0.5340452387920108 0.4028s 46.2s 
5% = 8500 0.6686727166024822 0.0358s 0.668672717580867 0.6525s 71.38s 

10% = 17000 0.7871352427635588 0.0394s 0.7871352429643467 1.04s 110.47s 
20% = 34000 0.9099156437718376 0.0429s 0.9099177594742598 1.8s 186s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 3400 0.4569749602700892 0.0696s 0.4569749638161411 0.8068s 92.65s 
2% = 6800 0.5414721499572308 0.0709s 0.5414721549085404 1.12s 124.8s 

5% = 17000 0.6738432084211345 0.073s 0.6738432087292746 2s 214.4s 
10% = 34000 0.7906990840489415 0.0804s 0.7906990846871709 3.5s 365.3s 
20% = 68000 0.9115080122416644 0.086s 0.9115089143523177 6.7s 690.8s 

Figure 34 Simulation Results for the pareto distribution, a = 1.16 
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Discrete Pareto 
α = 1.9 

Theoretical 
mean 

Theoretical 
Variance 

 1.75 ∞ 
Figure 35 Pareto distribution characteristics, a = 1.9 

 

Cache Size Greedy CHR Greedy 
Avg. 

Runtime 

Dynamic Pr. CHR Dynamic 
Pr. Avg. 
Runtime 

Total 
Time 

𝑛 = 𝟏𝟎𝟎𝟎      

1% = 18 0.26774226490203257 0.0011s 0.26781132861611817 0.0085s 1s 
2% = 35 0.34646402892080586 0.0012s 0.3464807466466814 0.0085s 1.07s 
5% = 88 0.47006287649212675 0.0012s 0.4701227150683427 0.0087s 1.09s 

10% = 175 0.5811607002506596 0.0012s 0.5811612562924355 0.0091s 1.13s 
20% = 350 0.7093314343223075 0.0013s 0.7093318664782611 0.0096s 1.18s 

𝑛 = 𝟓𝟎𝟎𝟎      

1% = 88 0.31522873813773755 0.006s 0.31525408850463643 0.0432s 5.43s 
2% = 175 0.3898576963836037 0.006s 0.3898581060795756 0.0447s 5.55s 
5% = 438 0.5081965936468305 0.006s 0.5081976366440218 0.049s 6s 

10% = 875 0.6117342467541662 0.0062s 0.6117343052880002 0.0544s 6.55s 
20% = 1750 0.7305590726090769 0.0067s 0.7305591050579285 0.0664s 7.8s 

𝑛 = 𝟏𝟎𝟎𝟎𝟎      

1% = 175 0.3319256014681526 0.0118s 0.33192672822616237 0.0896s 11.1s 
2% = 350 0.40526020993843337 0.0118s 0.4052603703263784 0.0935s 11.51s 
5% = 875 0.519932893914531 0.0124s 0.519932919890781 0.109s 13.15s 

10% = 1750 0.6208746818342036 0.0126s 0.6208746883859625 0.1327s 15.52s 
20% = 3500 0.7375986516386441 0.0131s 0.7375986537952106 0.1708s 19.38s 

𝑛 = 𝟐𝟓𝟎𝟎𝟎      

1% = 438 0.3501089693828819 0.0301s 0.35010907455789814 0.249s 30.44s 
2% = 875 0.42125401421525255 0.0306s 0.4212540819824545 0.273s 32.8s 

5% = 2188 0.532592438342475 0.031s 0.5325924443772836 0.35s 40.95s 
10% = 4375 0.6309837026234897 0.0326s 0.630983703292129 0.4629s 52s 
20% = 8750 0.7447482789004307 0.0339s 0.7447482796048712 0.71s 77s 

𝑛 = 𝟓𝟎𝟎𝟎𝟎      

1% = 875 0.36033925742149925 0.0628s 0.3603410937305476 0.563s 67.7s 
2% = 1750 0.4304328615594892 0.0631s 0.4304329000213182 0.6712s 78.4s 
5% = 4375 0.5402120692490817 0.065s 0.5402120699151798 0.929s 104.4s 

10% = 8750 0.637136989568242 0.0658s 0.6371369899079954 1.4s 151s 
20% = 17500 0.7489528070058118 0.0695s 0.7489528071099921 2.2s 238.6s 

Figure 36 Simulation Results for the pareto distribution, a = 1.9 
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Below, we provide a few graphs in order to further facilitate the comparison of the algorithmic 

results: 

 

Figure 37 CHR comparison, pareto α = 1.01, cache size = 10% 

 

Figure 38 Greedy Algorithm Time, α = 1.01, cache size = 10% 
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Figure 39 Dynamic Programming Time, α = 1.01, cache size = 10% 

Even in the extreme cases of a Pareto distribution, we still notice no noticeable difference 

between the performance of the two algorithms, in terms of CHR. The only discernible difference 

is the time complexity of the two algorithms. 

 

4.5 Conclusions 

 

We have conclusively tested the two algorithms using Geometric, Discrete Uniform and 

Pareto weight distributions. All the tests presented were done using a Zipf popularity probability 

distribution with a shape factor s equal to 0.2. Additional tests were performed for each weight 

distribution using different Zipf shape factors. These shape factors were s = 0 corresponding to a 

highly skewed distribution and s = 0.5 corresponding to a less skewed distribution. However, the 

results we obtained were similar to the results already presented, therefore they were not included 

in the Thesis. As expected, the greedy algorithm, since it is not an optimal solution, does not 

exactly achieve the optimal results of the dynamic programming algorithm. However, from the 

presented results we can clearly conclude that the greedy algorithm consistently achieves almost 

identical results in terms of CHR, that only differ in some decimal places. These results are true 

no matter the kind of the weight distribution of our data or the skew of our Zipf popularity 

distribution.  
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Studying our results, we also observe that if the weight distribution is a Pareto one, the 

CHR achieved is extremely high, especially for large cache sizes. In many cases, we even manage 

to achieve Cache Hit Ratios close to 100%. Moreover, comparing the CHR results for the 

geometric and for the discrete uniform distributions for the same mean item size value, we 

conclude that the results are almost identical, with the results for the geometric distribution case 

being slightly higher.  

In terms of average runtime there is a huge difference between the two algorithms, which 

is highlighted as the number of items 𝑛 increases. As the number of items 𝑛 increases, we confirm 

that the dynamic programming algorithm does not have a linear time complexity, but rather 

exhibits its pseudo polynomial complexity. All things considered, we can confidently conclude 

that the greedy algorithm can achieve an almost optimal solution in all cases examined while 

providing a vastly superior time complexity. Therefore, in a caching scenario where costs and time 

become increasingly important, while there is an ever-increasing number of items, it can be of 

great benefit to use the specific simple and fast greedy approach rather than solving the problem 

using dynamic programming. The dynamic programming solution is proven to only be suitable for 

usage in cases where the number of items in the database is very small. 

 

4.6 Ideas for Future Work 

 

An interesting idea would be to predict content popularity by examining the evolution 

patterns of content popularity on provisional services. Therefore, the work in this Thesis could be 

expanded by modifying the greedy heuristic to take into account popularity estimates for new 

content. Viral content rises in popularity really fast, where it either remains popular for a very long 

time, or it declines in popularity equally fast.  

This idea could be implemented using a Machine Learning approach, by automatically 

leveraging the vast amount of data provisional services have, in order to obtain the capability to 

recognize the popularity patterns of content. A similarity supervised learning approach could be 

applied. Similarity learning uses a similarity function to measure how similar new objects are. This 
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could be used in order to classify the popularity patterns of new content and therefore manage to 

successfully predict future viral content. 

Finally, we could also expand this work to take into account the recommendation system 

as well. This would in turn imply a need to change our heuristic, since in such case we have to 

jointly solve a complex problem. Related work on this subject classifies the joint caching and 

recommendations problem as a generalization of the 0-1 Knapsack Problem, meaning it is NP-

hard. Therefore, in the future, we could propose a heuristic algorithm that jointly takes into account 

both caching and recommendations. 
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Appendix 

Below, we are going to provide further clarification on how we constructed the random variate of 

the discrete pareto distribution. Given the Cumulative Distribution Function (CDF) of the pareto 

distribution, we compute its inverse. In this case, the CDF of the pareto distribution is equal to: 

𝐹𝑋(𝑥) = 𝑃[𝑋 ≤ 𝑥] = {
1 − (

𝑥𝑚
𝑥
)
𝑎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑥 ≥ 𝑥𝑚 

Where 𝑥𝑚 is the minimum value. In our case we assume 𝑥𝑚 = 1. We need to solve the equation 

F(X) = R, for X in terms of R where R is a random number in [0,1].  

1 − (
1

𝑥
)
𝑎

= 𝑅 ⇒ 1 − 𝑅 = (
1

𝑥
)
𝑎

⇒ln(1 − 𝑅) = 𝑎 ∗ 𝑙𝑛 (
1

𝑥
)⇒ ln (

1

𝑥
) =

ln(𝑅)

𝑎
⇒𝑒ln(

1
𝑥
)

= 𝑒
ln(𝑅)
𝑎 ⇒  1/𝑥 = 𝑒ln(𝑅)/𝑎⇒𝑥 =

1

𝑒
ln(𝑅)
𝑎

, 𝑥 > 1 

In order to discretize it, we use the floor function. Therefore, the random variate generator is equal 

to: 

𝑥 = ⌊1/𝑒𝑙𝑛𝑅/𝑎⌋ 

 

Calculating the mean and variance of the discrete pareto distribution: 

First, we calculate the survival function of the pareto distribution, which is equal to: 

𝑆(𝑥) = 𝑃[𝑋 ≥ 𝑥] = 𝑃[𝑋 > 𝑥] = 1 − 𝑃[𝑋 ≤ 𝑥] = {
1

𝑥𝑎
, 𝑥 ≥ 1

1, 𝑥 < 1
 

The Probability Mass Function (PMF) of the discretized pareto distribution is equal to [15]: 

𝑃[𝑋 = 𝑥] = 𝑆(𝑥) − 𝑆(𝑥 + 1) 

• 𝑥 + 1 < 1⇔ 𝑥 < 0: 

𝑃[𝑋 = 𝑥] = 𝑆(𝑥) − 𝑆(𝑥 + 1) = 1 − 1 = 0 
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• 𝑥 = 0 

𝑃[𝑋 = 𝑥] = 𝑆(0) − 𝑆(1) = 1 −
1

1𝑎
= 0 

 

• 𝑥 > 0 

𝑃[𝑋 = 𝑥] = 𝑆(𝑥) − 𝑆(𝑥 + 1) =
1

𝑥𝑎
−

1

(𝑥 + 1)𝑎
 

We now calculate the rth moment of the discretized pareto: 

𝐸(𝑥𝑟) =∑𝑥𝑟𝑃[𝑋 = 𝑥]

∞

𝑥=1

=∑𝑥𝑟(
1

𝑥𝑎
−

1

(𝑥 + 1)𝑎
)

∞

𝑥=1

 

We make the following observation: 

𝑆1 =∑𝑥𝑟(
1

𝑥𝑎
−

1

(𝑥 + 1)𝑎
)

1

𝑥=1

= 1𝑟 (
1

1𝑎
−
1

2𝑎
) = (1𝑟 − 0𝑟)

1

1𝑎
− 1𝑟

1

2𝑎
 

𝑆2 = 1
𝑟 (
1

1𝑎
−
1

2𝑎
) + 2𝑟 (

1

2𝑎
−
1

3𝑎
) = (1𝑟 − 0𝑟)

1

1𝑎
+ (2𝑟 − 1𝑟)

1

2𝑎
− 2𝑟

1

3𝑎
 

𝑆3 = 1
𝑟 (
1

1𝑎
−
1

2𝑎
) + 2𝑟 (

1

2𝑎
−
1

3𝑎
) + 3𝑟 (

1

3𝑎
−
1

4𝑎
)

= (1𝑟 − 0𝑟)
1

1𝑎
+ (2𝑟 − 1𝑟)

1

2𝑎
+ (3𝑟 − 2𝑟)

1

3𝑎
− 3𝑟

1

4𝑎
 

where 𝑆𝑖 is the partial sum of the first i terms of the summation ∑ 𝑥𝑟𝑃[𝑋 = 𝑥]∞
𝑥=1 . 

Therefore: 

𝑆𝑛 =∑[
𝑥𝑟 − (𝑥 − 1)𝑟

𝑥𝑎
] −

𝑛𝑟

(𝑛 + 1)𝑎

𝑛

𝑥=1

 

 

The mean value of the distribution is the first moment, so we set 𝑟 = 1, then 
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𝑆𝑛 =∑[
1

𝑥𝑎
] −

𝑛

(𝑛 + 1)𝑎

𝑛

𝑥=1

 

So, the mean value is equal to: 

𝐸(𝑥) = lim
𝑛→∞

𝑆𝑛 

The first part of 𝑆𝑛 : ∑ [
1

𝑥𝑎
]𝑛

𝑥=1  is a hyperharmonic series, which converges if 𝛼 > 1, as is the case 

in this work (α takes  three possible values in our work, 1.01, 1.16 and 1.9). 

Regarding the second part of 𝑆𝑛 : 
𝑛

(𝑛+1)𝑎
 : 

0 ≤
𝑛

(𝑛 + 1)𝑎
≤

𝑛 + 1

(𝑛 + 1)𝑎
=

1

(𝑛 + 1)𝑎−1
 

and the term on the r.h.s. above converges to 0 if 𝛼 > 1,as n tends to infinity     
1

(𝑛+1)𝑎−1
→ 0. 

So, we come to the conclusion that lim
𝑛→∞

𝑛

(𝑛+1)𝑎
= 0 

 

The first moment is therefore equal to: 

𝐸(𝑥) = lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

(∑[
1

𝑥𝑎
] −

𝑛

(𝑛 + 1)𝑎

𝑛

𝑥=1

) = lim
𝑛→∞

∑[
1

𝑥𝑎
] − lim

𝑛→∞

𝑛

(𝑛 + 1)𝑎
=

𝑛

𝑥=1

∑[
1

𝑥𝑎
]

∞

𝑥=1

 

 

In conclusion: 

𝜇 = 𝐸(𝑥) = ∑[
1

𝑥𝑎
]

𝑛

𝑥=1

∈ 𝑅 

In order to calculate the variance, we need to calculate the 2nd moment. 

If we assume r = α, then: 

𝑆𝑛 =∑[
𝑥𝑎 − (𝑥 − 1)𝑎

𝑥𝑎
] −

𝑛𝑎

(𝑛 + 1)𝑎

𝑛

𝑥=1

, 𝑎 ∈ 𝑁∗ 
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lim
𝑛→∞

𝑛𝑟

(𝑛 + 1)𝑎
= lim
𝑛→∞

𝑛𝑟

(𝑛 + 1)𝑟
= lim
𝑛→∞

(
𝑛

𝑛 + 1
)
𝑟

= 1𝑟 = 1 

So: 

𝐸(𝑥𝑟) = lim
𝑛→∞

𝑆𝑛 =∑[
𝑥𝑟 − (𝑥 − 1)𝑟

𝑥𝑟
] − 1

∞

𝑥=1

 

So, all that is left is to calculate ∑ [
𝑥𝑟−(𝑥−1)𝑟

𝑥𝑟
]∞

𝑥=1 .  

We are going to prove that 𝑥𝑟 − (𝑥 − 1)𝑟 ≥ 𝑥𝑟−1, when 𝑟 ≥ 1 and 𝑥 ≥ 1: 

 

𝑥𝑟 − (𝑥 − 1)𝑟 ≥ 𝑥𝑟−1
𝑥𝑟

⇔1− (
𝑥 − 1

𝑥
)
𝑟

≥
1

𝑥
⇔
𝑥 − 1

𝑥
≥ (
𝑥 − 1

𝑥
)
𝑟 0<

𝑥−1

𝑥
<1

⇔     1 ≤ 𝑟  

Therefore, our statement is true. 

Using the above statement: 

𝐸(𝑥𝑟)  ≥ ∑[
𝑥𝑟−1

𝑥𝑟
] − 1 =∑[

1

𝑥
] − 1 =  +∞

∞

𝑥=1

∞

𝑥=1

 

The sum ∑ [
1

𝑥
]∞

𝑥=1  is a harmonic series, therefore it diverges. So, we managed to show that 𝐸(𝑥𝑟) =

𝛦(𝑥𝑎) = +∞. 

Now in order to calculate the 2nd moment, we are going to use what we proved above.  

𝐸(𝑥2) = ∑𝑥2(
1

𝑥𝑎
−

1

(𝑥 + 1)𝑎
)

∞

𝑥=1

 

We know that 𝑥2 ≥ 𝑥𝑎, since 𝑥 ≥ 1 𝑎𝑛𝑑 𝑎 < 2. 

Therefore, 

𝐸(𝑥2)  ≥ ∑𝑥𝑎 (
1

𝑥𝑎
−

1

(𝑥 + 1)𝑎
)

∞

𝑥=1

= 𝐸(𝑥𝑎) = +∞ 
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Finally, in order to calculate the variance: 

𝜎2 = 𝐸(𝑥2) − 𝛦(𝑥)2 , which is equal to infinite minus something that converges. Which means 

the result is +∞.  
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