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Abstract

In Searchable Encryption (SE), a data owner outsources an encrypted set of documents to a
server, with the purpose of enabling the server to answer keyword queries in a private manner.
Recently, SE has been extended to support more expressive private queries, such as range,
aggregate, boolean, phrase, substring, wildcard queries and a wide range of SQL queries.

In this work, we introduce the notion of Multi-Dimensional Range SE (MRSE) schemes and we
provide novel constructions (MRSE-A, MRSE-B, MRSE-C) by extending/modifying Logarithmic-
SRC-i1 and SRC-i2 RSE schemes, proposed by Demertzis et al.(SIGMOD 2016, TODS 2018)
to multiple dimensions. We demonstrate that, given any secure SE/RSE scheme, the challenge
boils down to (i) formulating leakages that arise from the index structure, (ii) improving the
index space, and (iii) minimizing false positives incurred by the space reduction. We further
propose a new MRSE scheme utilizing a powerful cryptographic tool, Oblivious Random Ac-
cess Memory (ORAM), and introduce the notion of Oblivious-MRSE (OMRSE) that reduces
the leakages introduced by MRSE schemes. We demonstrate a surprising finding; we experi-
mentally show that our strongly secure OMRSE scheme requires significantly less space than
the proposed MRSE schemes, and has comparable/better search performance (up to 2× slow-
down,up to 100× speed-up) with MRSE schemes when are tuned to have similar space demands
with the OMRSE scheme.
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Περίληψη

Στο σχήμα της κρυπτογραφημένης αναζήτησης (SE), ο client διαθέτει την κρυπτογραφημένη
μορφή ενός σετ δεδομένων την οποία αποστέλλει στο server ώστε να υποστηριχθεί ένα
πρωτόκολλο ερωτημάτων το οποίο θα επιτρέπει την ιδιωτικότητα και την προστασία των
δεδομένων. Πλέον, μετά από μια σειρά πρόσφατων επεκτάσεων, το σχήμα της κρυπτογραφημένης
αναζήτησης υποστηρίζει ποικίλες μορφές ερωτημάτων, όπως τα range, aggregate, boolean,
phrase, substring, wildcard queries καθώς και πολλά από τα SQL ερωτήματα που συναντάμε
στα παραδοσιακά συστήματα βάσεων δεδομένων.

Σε αυτή την εργασία, επεκτείνουμε την ιδέα της κρυπτογραφημένης αναζήτησης σε πολυδιάστατα
ερωτήματα. Πιο συγκεκριμένα, επικεντρωνόμαστε σε πολυδιάστατα ερωτήματα εύρους
και προτείνουμε τρία νέα σχήματα (MRSE-A, MRSE-B, MRSE-C) τα οποία προκύπτουν
μετά από κατάλληλες επεκτάσεις των Logarithmic-SRC-i1 και SRC-i2 RSE σχημάτων που
προτάθηκαν στη δουλειά των Demertzis et al.(SIGMOD 2016, TODS 2018) για μονοδιάστατα
ερωτήματα εύρους. Οι βασικές δυσκολίες στη σχεδίαση ενός ασφαλούς SE/RSE σχήματος
είναι: (α) η ακριβής διατύπωση για τη μορφή της πληροφορίας που μπορεί να υποκλέψει
κάποιος πιθανός κακόβουλος χρήστης παρατηρώντας τη δομή του index, (β) η μείωση της
χωρητικότητας των indexes περιορίζοντας όμως ταυτόχρονα των αριθμό των false posi-
tives η αύξηση των οποίων προκύπτει ως συνέπεια αυτής της μείωσης. Στη συνέχεια
προτείνουμε ένα νέο MRSE σχήμα, το Oblivious-MRSE (OMRSE) που βασίζεται σε ένα
ισχυρό κρυπτογραφικό πρωτόκολλο, το Oblivious Random Access Memory (ORAM) και
σκοπεύει στη μείωση της πληροφορίας που διαρρέεται από τα MRSE σχήματα. Πειραματικά
δείχνουμε ότι το OMRSE, που δίνει πιο ισχυρά privacy guarantees, χρειάζεται λιγότερη
χωρητικότητα από τα MRSE ενώ όταν τα συγκρίνουμε υπό τις ίδιες προδιαγραφές μνήμης
το OMRSE έχει συγκρίσιμη ή/και καλύτερη απόδοση (έως και 2× slow-down, έως και 100×
speed-up).
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Chapter 1

Introduction

Data breaches occur with an alarming frequency. According to estimates, 5.5 million records
are stolen on a daily basis. European Union takes data protection and people’s privacy very
seriously enforced the General Data Protection Regulation (GDPR) on May 25th 2018. GDPR
gives data protection authorities more robust powers to tackle non-compliance, including sig-
nificant administrative fining capabilities of up to 20 million Euro (or 4% of total annual global
turnover, whichever is greater) for the most serious infringements. Thus, there is a pressing need
for companies to keep data encrypted on premise and, more importantly, on third-party cloud
platforms. Currently, companies use ad hoc solutions that are based on a hot and cold setting,
in which they store users’ data encrypted in disks (cold storage) and they fetch, decrypt and
keep those data unencrypted in-memory (hot storage) in order to perform the necessary com-
putations. The above heuristic solutions are both vulnerable to a plethora of security threats
and lack efficiency due to the encryption/decryption overhead.

Towards improving the efficiency of the above naive approaches have been proposed new works
for private search and privacy preserving database management systems. These solutions reach
the desired performance at the cost of lacking rigorous security guarantees, e.g. CryptDB [1] and
Monomi [2] support a wide-range of SQL queries using deterministic (DET) and order preserving
encryption (OPE)1. A recent work of Naveed et al.[3] shows that these systems are not reliable,
due to their vulnerability to severe attacks, which allow an attacker to take advantage of the
leaked statistical and order information and decrypt the actual encrypted records.

An alternative is to use more sophisticated cryptographic solutions, such as Searchable Encryp-
tion (SE) schemes, in order to reach better security guarantees. SE, proposed by Song et al.[4] in

1Deterministic encryption leaks the distribution of the input data. Order preserving encryption leaks both
the distribution of the input data and the order of the data.
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2000, enables a data owner to outsource a document collection to a server in a private manner, so
that the latter can still answer keyword search queries. In a typical SE scheme, the data owner
prepares an encrypted index which is sent to the server. To perform a keyword search, given a
keyword w, a token t(w) is sent by the data owner to the server that allows the server to retrieve
pointers to the encrypted documents containing the keyword w, while leaking some information,
e.g., the search (whether a search query is repeated) and the access (encrypted document that
satisfy the query) or volume patterns (the size of the query result). Recently, SE was extended
to support more expressive queries, such as boolean, range, substring, wildcard, phrase queries
and SQL queries [5–9]. SE is used not only as a secure alternative to CryptDB-based solution,
but also as an efficient alternative to very expensive approaches such as oblivious RAMs [10, 11]
and fully-homomorphic encryption [12, 13]. In fact, SE schemes have been proven to be very
practical at the expense of well-defined leakages.

Despite the recent advancements in SE, there are certain query types that they have not meet
yet realistic security-efficiency goals required from real-world applications. For instance, it is still
an open problem to efficiently and securely support privacy preserving Multi-dimensional Range
(MDR) queries. In theory, the work of Kamara and Tarik [9] providing a wide-range of SQL
queries can also provide a solution for MDR queries; however the proposed solution for MDR
cannot be considered as a viable solution since it requires to first linear scan each individual
dimension and then produce the final result computing the intersection. Additionally, MDR
queries can be supported combining the recent works of [7, 8, 14] that support private singe-
dimensional range queries with the works of [5, 6] that support private conjunctive queries.
Again, the latter approach cannot be deployed in practice, since the works of [5, 6] in order to
support conjuctive queries with minimum leakage and efficient search time require exponential
(to the number of dimensions) size indexes.

A very important question is why we do not combine SE with index structures, such as quad
trees, k-d trees, R-Trees, grid files, etc., which have been proposed in the literature for plaintext
MDR queries, especially in the area of spatial databases. Integrating these index structures
with SE achieves in practice scalable setup costs, but traversing the index becomes the main
challenge. That is because traversing the index requires multiple rounds of interaction between
the client and the server, which not only introduces inefficiencies, but most importantly increases
the leakage since each traversal of the index depends on the distribution of the dataset . This
means that for each traversal not only we leak information about the search/access patterns, but
we leak how exactly the search algorithm traverses the tree from the root node to the matched
leaf nodes for each given query, i.e., it leaks the identifiers of all the nodes in the paths traversed
by the search algorithm for each given query.
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Scheme Storage Search Time False Posit Interactions Leakage/Security
MRSE-A O(dm+ dnlogn) O(min(ri)) O(min(ri)) 2 2
MRSE-B O(dm+ nlogdn) O(min(ri)) O(min(ri)) 2 1
MRSE-C O(nlogdm) O(R+ r) O(R+ r) d 3
OMRSE O(n) O(n) O(n) O(r logn) 0

n: dataset size, r : result size, m: the sum of the domain sizes of the d dimensions, i.e, m =
∑

∀i∈[1,d] mi

R: the maximum query range size of the individuals d dimensions.

Table 1.1: Summary of Our MRSE Schemes

In the literature, there is a plethora of works that address the private MDR problem proposing
solutions without rigorous security analysis, such as [15–17]. We do not consider the latter
works as reference points to our work, since the lack of formal security analysis renders them
both incomparable and it is unknown if they can be used in practice2.

In this work. We propose the first MRSE schemes extending existing private singe-dimensional
RSE schemes to multiple dimensions [8, 14] (Logarithmic-SRC, SRC-i1,SRC-i2). We also provide
the first Oblivious MRSE (OMRSE), which (i) reduces the leakages of the MRSE schemes, (ii)
minimizes the setup costs, and (iii) achieves at the same time practical search efficiency. Our
constructions with their performance and security characteristics are summarized in Table 1.1
and discussed in detail in Section 3. In particular:

1. Our first scheme MRSE-A creates d instances of the Logarithmic-SRC-i2 scheme [8, 14];
one for each dimension. Given a d-dimensional range query the client breaks the query to
d sub-queries one for each dimension. Then, she executes a multi-dimensional range query
in two rounds. In particular, in the first round she interacts with the d instances of the
Logarithmic-SRC-i2 scheme in order to retrieve the size of the result for each dimension. In
the second round, she fetches the result from the Logarithmic-SRC-i2 instance/dimension
with the minimum result size. The final answer contains false positives which are filtered-
out by the client. The search complexity of MRSE-A is proportional to the smallest result
size of the d sub-queries, i.e., O(min(ri)) for i ∈ [1, d].

2. Our MRSE-B scheme improves the security of MRSE-A, and experimentally reduces the
number of false positives (see Section 4) by modifying the Logarithmic-SRC-i2 scheme of
MRSE-A—which is based on the Logarithmic-SRC scheme. The underlying data structure
of the aforementioned scheme is based on a modification of a range tree [20]. The modified
range tree assumes a full binary tree, where each internal node contains the union of its

2We illustrate the importance of rigorous security analysis of newly proposed schemes by the following example:
The paper of Karras et al.[18] was proposed in SIGMOD 2016 without formal provable security guarantees; the
work of Horst et al.[19] in SIGMOD 2017 provided successful attacks against the schemes proposed by Karras.
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descendants. Note that in Logarithmic-SRC-i2 version for the one-dimensional case the
required space to store this data structure is O(m+ n logn). We can trivially extend the
above data structure to d dimensions in a similar manner as we extend the range tree to
multiple dimensions. MRSE-B scheme maintains one additional index for each dimension
which will be used in order to store/search the individual result sizes for each dimension
—these indexes will be used in a similar manner as the first-round of MRSE-A.

3. Our MRSE-C scheme is the first scheme that can bound the number of false positives to be
proportional to actual result and range size at the expense of more leakage and increased
number of interactions. MRSE-C scheme based on modifying Logarithmic-SRC-i1 scheme
to multiple dimensions, in similar manner as in MRSE-B, i.e., by extending the range-tree
like structure of Logarithmic-SRC-i1 to multiple dimensions.

4. The main drawback of the aforementioned approaches is the increased size of the encrypted
indexes. For instance, for MRSE-C we observe that the size of the index is O(n logdm),
where d denotes the number of supported dimensions and m the maximum domain size
of all dimensions, and therefore this cost clearly becomes a bottleneck. For instance, in
the most secure/efficient scheme of [8], i.e. Logarithmic-SRC-i1, and for d = 1 (one-
dimensional range queries), the size of the encrypted indexes for 5 million tuples is 14

GB. Extending the Logarithmic-SRC-i1 in MRSE-C we can observe that the size of the
encrypted indexes for d = 2 using the same schemes will be at least 300 GB, and similarly
for d = 3 it is estimated to reach 6 petabytes. We tackle this problem introducing a
new trade-off between the space and false positives in MRSE-A, MRSE-B, and MRSE-
C. Instead of storing all the levels of the used range-tree like structure, we store only s

evenly distributed levels for each dimension; the missing levels increase the number of false
positives.

5. Our OMRSE scheme is based on the use of Oblivious RAM schemes, ideas from Oblivious
Data Structures [21], and R-tree indexes. In particular, we use the aforementioned building
blocks, and we create an oblivious R-tree, which can be used for supporting strongly secure
MDR queries. Our OMRSE leaks only the size of the returned result, i.e., it does not leak
the access/search pattern leakages as the MRSE schemes. Additionally, the index size is
O(n), and the search performance is depended on the R-tree implementation and used
ORAM—which introduces a polylog n multiplicative overhead (using PathORAM [11] and
setting carefully the block size this overhead can be O(logn)). We experimentally show
that our strongly secure OMRSE scheme requires significantly less space than the proposed
MRSE schemes, and has comparable/better search performance (up to 2× slow-down,up
to 100× speed-up) with the MRSE schemes—when the MRSE schemes are tuned to have
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similar space demands (e.g., keeping only 2 evenly distributed levels per dimension) with
the OMRSE scheme.
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Chapter 2

Background

2.1 Preliminaries

2.1.1 Searchable Encryption (SE) Scheme

SE definitions. Let D be a collection of documents, where a document can be any data item,
even a tuple. Each document d ∈ D has a unique id, which is an alias that allows easy mapping
to d. Every d is also associated with a unique identifier d.id and a set of keywords from a
dictionary ∆, each denoted as d.w. We represent by id(w) the ids of the documents that contain
w and |id(w)| the number of documents that contain w. We also define n ≜

∑
w∈∆ |id(w)| as

the size of dataset D, i.e., the number of all (d.id, d.w) pairs for all d ∈ D. SE schemes focus on
building an encrypted index I on the document ids. For simplicity, we concentrate only on the
ids, since the actual documents are encrypted independently and stored at the server separately
from I; once some id is retrieved during search, the server can send the corresponding document
to the owner, who decrypts in a final step that is orthogonal to the SE instantiation.

An SE protocol involves an owner and a server and consists of the following algorithms:

k ← Setup(1λ) A probabilistic algorithm run by the owner before commencing the system. It
takes as input security parameter λ and outputs a secret key k.

I ← BuildIndex(k,D) A probabilistic algorithm run by the owner prior to sending its data to
the server. It takes as input the secret key k and the data collection D, and outputs an
encrypted index I built on the document ids. Index I is sent to the server, along with the
actual encrypted documents.

6



t← Trpdr(k,w) A deterministic algorithm executed by the owner when issuing a query. It takes
as input key k and keyword w, and outputs a token t.

X ← Search(t, I) A deterministic algorithm run by the server to retrieve the ids of the docu-
ments containing the query keyword. It takes as input a token t corresponding to the
query keyword and the encrypted index I, and outputs a set X of document ids.

In state-of-the-art SE constructions [6, 22–27], I is essentially an encrypted inverted index, which
allows efficient retrieval of the document id list corresponding to the query keyword. The token
t constitutes auxiliary information that allows the server to partially decrypt only the index
components that lead to the retrieval of the result ids. However, once these index portions
are decrypted, they become permanently known to the server. In other words, SE inherently
introduces certain information leakage.

An ad-hoc way of defining security would be to outline a set of adversarial attacks, and prove
that the scheme is robust against these attacks. This is dangerous as we cannot anticipate the
types of attacks an adversary is able to launch. A rigorous way to define security is to formulate
the leakage, and prove that the adversary learns nothing more than this leakage. Curtmola
et al. [22] introduced a framework for achieving this, following the seminal ideal-real paradigm
by Goldreich [28]. In particular, after formulating leakage, we define two games. The real is
essentially the execution of the actual SE protocol. The ideal is a simulation of the real, i.e., an
attempt to “fake” the real game, knowing only the formulated leakage. Finally, we prove that
an adversary can distinguish the output of the first from that of the second with only negligible
probability. Intuitively, this means that the adversary indeed does not learn anything more
than the leakage, otherwise he would be able to distinguish the real from the ideal execution
with non-negligible probability.

We focus on semi-honest, adaptive adversaries. “Semi-honest” means that the adversary is
curious to infer information during the execution of the protocol, but does not deviate from the
protocol. “Adaptive” means that the adversary attempts to learn information even in between
query executions, and may adaptively select the next query based on the previous ones. A non-
adaptive adversary submits all queries before starting to learn information. Clearly, adaptive
adversaries are more realistic in database applications where the queries are not presented all
at once to a system.

For completeness, in Figure 2.1 we present the SE ideal-real games for (semi-honest) adaptive
adversaries, as introduced in [29]. In RealSE,A, an adversary A interacts with the actual SE
protocol, choosing the initial document set and (adaptively) the keyword queries. The adversary
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RealSE,A(k) IdealSE,A,S(k)

k ← Setup(1λ)
(D, stA)← A0(1

λ) (D, stA)← A0(1
λ)

I ←BuildIndex(k,D) (I, stS)← S0(L1(D))
(w1, stA)← A1(stA, I) (w1, stA)← A1(stA, I)
t1 ←Trpdr(k,w1) (t1, stS)← S1(stS ,L2(D,w1))
for 2 ≤ i ≤ q for 2 ≤ i ≤ q
(wi, stA)← Ai(stA, I, t1..ti−1) (wi, stA)← Ai(stA, I, t1..ti−1)
ti ←Trpdr(k,wi) (ti, stS)← Si(stS ,L2(D,w1..wi))

let t = (t1..tq) let t = (t1..tq)
output v = (I, t) and stA output v = (I, t) and stA

Figure 2.1: SE ideal-real security game

gets access only to BuildIndex and Trpdr, since it does not know the secret key k. stA is some
state maintained by the adversary. The final view of A is the encrypted index I, and the set
of generated tokens t and stA. Now observe the line correspondence between RealSE,A and
IdealSE,A,S . In the latter, a simulator S (maintaining state stS) is enforced with “faking”
BuildIndex and Trpdr for the same D and query keywords, only using leakage functions L1 and
L2 (explained below). Security boils down to returning (I, t, stA) that is distinguishable with
negligible probability from the output by the real game. The challenge lies in properly using
leakages L1 and L2 to create I and t, such that (i) they “look” like those produced by real, and
(ii) the Search algorithm in ideal is consistent, i.e., it functions similarly to that in real.

Although our schemes are independent of the underlying SE construction, as an example, we
describe the leakage functions L1,L2 assuming the SE scheme by [6]. L1 is associated with what
is leaked from the index alone, whereas L2 accounts for the leakage from the queries.

• L1(D) = n, where n is the size of D.

• L2(D,W ) = ⟨α(W ), σ(W )⟩,
where W is a set of keywords, α(W ) = (id(w))w∈W is the access patterns, i.e., the docu-
ment ids returned by each keyword query, and σ(W ) is the search patterns, i.e., for every
pair wi, wj ∈W such that i ̸= j, it indicates whether wi = wj or wi ̸= wj .

2.1.2 Range Searchable Encryption (RSE) schemes

In this section we provide an overview of the prior work in privacy preserving range queries
of Demertzis et al. [14] which we adequately extend so as to propose a novel technique for
multidimensional range queries. At first, we present the notion of Single Range Cover (SRC)
technique used in Logarithmic-SRC schemes in [14]. The idea is that the required range to
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be retrieved is covered by a single range, potentially a superset of the range query. Below we
present the Logarithmic-SRC schemes:

2.1.2.1 Logarithmic-SRC-i1

Figure 2.2: Double index I of SRC-i1

In Logarithmic-SRC-i1 there is a double index I = (I1, I2), where I2 indexes the tuples of the
document collection D and I1 is an auxiliary index that guides search in I2. Index I1 is an
array based on the TDAG1 structure. In order to build TDAG1, we build a binary tree over
domain A of the query attribute. We then inject one extra node ( gray node ) between every
two nodes at every level of the tree, which points to the two nodes directly below it in the next
level. Note that each leaf of the TDAG1 holds the subset of documents that contain the value
of the attribute this leaf represents. For example, in the figure above, we see that documents
{d0, ..., d9} have value 2 on the query attribute. Again, each father stores the info for all of their
children while in the final I1 index there is a corresponding entry for every node in TDAG1.
Regarding the structure of I2 is also an array built based on TDAG2 which will be described
next. In I2 for each node in TDAG2 we store its document collection D′, which is a subset of
D. Finally, for bulding TDAG2 we suppose our document collection D = {d0, ..., d15} is sorted
on the query attribute A and we construct a binary tree bottom-up. We then inject one extra
node ( gray node ) between every two nodes at every level of the tree, which points to the two
nodes directly below it in the next level.

The RSE protocol for Logarithmic-SRC-i1 is as follows:
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k ← Setup(1λ). Generate and output two SE keys (k1, k2).

I ← BuilIndex(k,D). BuildIndex(k,D) Build SE index I1 on the tuple ranges using
TDAG1 with key k1, and index I2 on the sorted tuples on A using TDAG2 with key
k2. Output (I1, I2).

t← Trpdr(k,w). This is an interactive algorithm. Parse k = (k1, k2). Generate SE token
t1 with k1 for the SRC node on TDAG1 that covers range w, and send it to the
server. Decrypt the answer to retrieve new range w�. Generate SE token t2 with k2

for the SRC node on TDAG2 that covers w�, and output (t1, t2).

X ← Search(t, I). This is an interactive algorithm. Parse t = (t1, t2) and I = (I1, I2).
Retrieve t1 from the owner, invoke the Search algorithm of SE on I1 and send the
result to the owner. Retrieve t2 from the owner, invoke the Search algorithm of SE
on I2 and output the result X.

Since I1 and I2 are built following the construction algorithm of the underlying SE protocol
and using two different keys, the leakage in each index is identical to that of the SE scheme.
Therefore, having the L1 and L2 leakages of SE for both indexes and the mapping between
the nodes of the first index to the nodes of the second index, we can prove the security of
Logarithmic-SRC-i1.

We describe the leakage of Logarithmic-SRC-i1 more formally:

−L1(D,A) = ⟨m,n, n′⟩.

D is the dataset, A is the query attribute domain, n is the cardinality of D, n′ is the
cardinality of unique values of D and m is the size of A.

−L2(D,A,W ) = ⟨α(W ), σ(W ), (µ(RC(w))TDAG1 , µ(RC(w′))TDAG2 , uqv(RC(w)), id(RC(w′)))⟩.

α(W ), σ(W ) are the access and search patterns of the queries as defined for SE. For every
query range w ∈W , the leakage contains a tuple that consists of an alias µ(RC(w))TDAG1

for the node returned by the range covering RC(w) in TDAG1 (similarly for TDAG2,
along with the unique domain values stored in TDAG1 and the list of tuple IDs id(RC(w))

associated with the keyword RC(w′). It is worth mentioning that the combinations of
(µ(RC(w))TDAG1 , µ(RC(w′))TDAG2) with σ(W ) also leak the relation between a node in
TDAG1 with a node in TDAG2 i.e., more than one node from TDAG1 can be associated
with a node in TDAG2 and vice versa.

Finally, the storage overhead for the above scheme is O(nlogm) while false positives and query
size are O(R+ r).
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2.1.2.2 Logarithmic-SRC-i2

Figure 2.3: Double index I of SRC-i2

In Logarithmic SRC-i2 there is a double index I = (I1, I2), where I2 indexes the tuples of the
document collection D and I1 is an auxiliary index that guides the search in I2. To begin with,
I1 index is an array where for each value in the query attribute range, we store the first and last
document id that contain this value. For instance, in the example seen at the figure, in index
I1 the documents d0 − d9 have the value 2 in the query attribute.

Regarding I2, is also an array built based on TDAG2 which will be described next. In I2 for
each node in TDAG2 we store its document collection D′, which is a subset of D. Finally, for
bulding TDAG2 we suppose our document collection D = {d0, ..., d15} is sorted on the query
attribute A and we construct a binary tree bottom-up. We then inject one extra node ( gray
node ) between every two nodes at every level of the tree, which points to the two nodes directly
below it in the next level.

Let us make clear that information stored at each level of the tree is n, where n is the number
of tuples. Please note, that each parent stores the document collection of its children. For
example, N0,1 is an entry in I2 in the form of < d0, d1 > whereas N0,3 is < d0, d1, d2, d3 >.

Subsequently, we illustrate an example with one query attribute A in the where clause. Suppose,
range A is 7 and the user asks for range α = {3 − 6}, which states that we look for all the
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documents di where di.α = 3 || di.α = 4 || di.α = 5 || di.α = 6 . At first, by looking upon index
I1 we find that the documents to be retrieved are Dres = {d10−d14}. The single node that covers
Dres in I2 is N8,15. Therefore, the result-set returned to the user is equal to Dfinal = {d8−d15}
and the false positives are Dfinal −Dres = {d8, d9, d15}.

The RSE protocol for Logarithmic-SRC-i2 is as follows:

k ← Setup(1λ). Generate and output two SE keys (k1, k2).

I ← BuilIndex(k,D). Build SE index I1 using T1 with key k1, and index I2 on the sorted
tuples on A using TDAG2 with key k2. Output (I1, I2).

t← Trpdr(k,w). This is an interactive algorithm. Parse k = (k1, k2) and range w = [i,
j]. Generate SE token t1 = (t11, t12) with k1 for keywords (i, R) and (j, L). Decrypt
the answer to retrieve new range w’. Generate SE token t2 with k2 for the SRC
node on TDAG2 that covers w’, and output (t1 ,t2).

X ← Search(t, I). This is an interactive algorithm. Parse t = (t1 ,t2), t1 = (t11, t12) and
I = (I1, I2). Retrieve t1 from the owner, invoke the Search algorithm of SE for t11,
t12 on I1 and send the results to the owner. Retrieve t2 from the owner, invoke the
Search algorithm of SE on I2 and output the result X .

We describe the leakage of Logarithmic-SRC-i2 more formally:

−L1(D,A) = ⟨m,n⟩.

D is the dataset, A is the query attribute domain, n is the cardinality of D and m is the
size of A.

−L2(D,A,W ) = ⟨α(W ), σ(W ), (µ(wL), µ(wR), µ(RC(w)), id(RC(w)))⟩.

α(W ), σ(W ) are the access and search patterns of the queries as defined for SE. For every
query range w ∈ W , the leakage contains a tuple that consists of an alias µ(wL), an
alias µ(wR) for the tokens returned by the first encrypted index, an alias µ(RC(w)) for
the query in TDAG2, and the list of tuple ids id(RC(w)) associated with the keyword
(RC(w)) in TDAG2.

Finally, storage overhead for the above scheme is O(m+ nlogn) while false positives and query
size are O(r).
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2.1.3 Oblivious RAM

Oblivious RAM (ORAM) introduced by Goldreich and Ostrovsky [30] is a compiler that encodes
the memory such that accesses on the compiled memory do not reveal access patterns on the
original memory. An ORAM scheme guarantees that there is no polynomial time adversary
that can distinguish between any two sequences of accesses of the same length. The adversary
can pick the initial memory and any two polynomial size sequences of accesses y1 and y2 of
the same length (|y1| = |y2|) and by observing the oblivious accesses of o(y1) and o(y2) she
will not able to distinguish them, with non-negligible probability.An ORAM scheme consists of
two algorithms/protocols ORAM = (OramInitialize, OramAccess), where OramInitialize
initializes the oblivious memory, and OramAccess performs the oblivious accesses.

2.1.4 Oblivious Data Structures

An oblivious data structure is a data structure that aims to hide the type and content of a
sequence of operations performed on the data. Intuitively, for any two possible sequences of
m operations, their resulting access patterns (i.e., the sequence of memory addresses accessed
will executing the operations) must be indistinguishable. ODict offers the following protocols
(see [21] for a detailed description):

• (T, σ)← ODictSetup(1λ, N): Given a security parameter λ, and an upper bound N on
the number of elements, it creates an oblivious data structure T . The client sends T to
the server and maintains locally the state σ.

• (value, T ′, σ′)← ODictSearch(key, T, σ): Given the search key key and σ, returns the
corresponding value value, the updated T ′ and σ′.

• (T ′, σ′) ← ODictInsert(key, value, T, σ): Given a key-value pair key, value and σ, it
inserts this entry in the dictionary. It returns the updated T ′ and σ′.

2.1.5 Oblivious SE (OSE)

One possible way to reduce the SE query leakage would be to replace all the memory accesses
performed with oblivious memory accesses using an ORAM as a black box. In that case, the
only leaked information during queries is the result size, i.e., L2(D,W ) = (|α(W )|).
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2.2 Related Work

In 2000, Song et al. [4] presented the first SE scheme, secure under Chosen Plaintext Attacks
(CPA). Goh [31] realized that CPA security is not adequate for the case of SE schemes. Curtmola
et al. [22] introduced the state-of-the-art security definitions for SE for both, non-adaptive
settings, i.e. maintaining security only if all the queries are submitted at once in one batch,
as well as adaptive settings, i.e. maintaining security even if the queries are progressively
submitted, and provided constructions that satisfy their definitions. The work of Curtmola
et al. [22] led the way for the appearance of several new SE schemes [6, 23–26, 32–35], some
of which allow updates [24–26, 34, 35], are parallelizable [25] and extend SE to support more
expressive queries [5–8]. In 2014, Cash et al. [27] experimentally showed that in-memory SE
cannot scale to large datasets and provided the motivation for designating locality-aware SE as a
new research direction. Along this line, al. [36–39] proposed a new constructions locality-aware
SE schemes.

Another important research area extends SE to support more expressive queries, such as boolean,
substring, wildcard, phrase queries, range and SQL queries [5–9, 14]. The work of [9] supports a
large class of SQL queries by transforming any query to selection, projection and cross product
operators. However, it cannot support range and MDR queries in sub-linear time. Similarly,
the works for private boolean queries [5, 6] can be used both for decomposing the range search
to multi-keyword disjunctive search, and then the problem of MDR to multi-keyword con-
junctive search. Unfortunately, the way that the private disjunctions and conjunctions are
implemented in [5] conflicts with our performance desiderata for supporting range and MDR
queries—disjunctions in [5] require significant leakages, while conjunctions require either linear
search time or exponential size indexes (as we have discussed in section 1).

The works of [16, 40–43] provide privacy preserving multi-dimensional range queries for a public
setting, which is different and incomparable with our approaches.
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Chapter 3

Our Approach

3.1 Multi-dimensional Range Searchable Encryption

In this chapter we develop three novel encryption schemes for private multi-dimensional range
queries. More specifically, we provide various extensions of Logarithmic-SRC-i1 (see Section
2.1.2.1) and Logarithmic-SRC-i2 schemes (see Section 2.1.2.2) that work for multiple dimensions.

3.1.1 MRSE-A

Figure 3.1: MRSE-A for 2 dimensions (Salary and Age)

MRSE-A is based on the Logarithmic-SRC-i2 presented in Section 2.1.2.2. Recall that Logarithmic-
SRC-i2 has a double index I = (I1, I2), where I2 indexes the tuples of the document collection D

and I1 is an auxiliary index that guides the search in I2. For d-dimensional queries, i.e., queries
with d predicates in the where-clause, the proposed scheme creates d independent Logarithmic-
SRC-i2 instances (with d double (I1, I2) indexes). At first, for each dimension we use the d I1

16



indexes of Logarithmic-SRC-i2 in order to retrieve the number of documents satisfying the re-
quested range for each dimension. Once all d result-sets are collected , we choose the dimension
with the minimum number of tuples. We use the I2 index of the aforementioned dimension
(with the minimum number of tuples) and we retrieve the corresponding tuples. Those tuples
correspond to a super set of the result, so the client has to decrypt and filter-out the false
positives. Briefly, the storage for our proposed scheme is O(dm+ dn logn), where m is the sum
of the domain sizes of each of the d query attributes, i.e m =

∑
∀i∈[1,d]mi and n is the dataset

size. The false-positives are O(min(ri)) for i ∈ [1, d]—namely in the worst case the number of
false positives are proportional to the result size of the dimension with the smallest result set.

To further illustrate how the proposed scheme works, we present in Figure 3.1 an illustration
of the encrypted indexes that MRSE-A stores for 2 dimensions (salary and age attributes), and
we provide the following examples:

• σsalary=[3K−6K]

Since there is no age predicate, we use only the I1 index for the salary attribute. Suppose
that the documents to be retrieved are Dres = {d10 − d14}. Using I2 index for salary, we
retrieve the node N8,15 which contains Dfinal = {d8 − d15}.

• σage=[25−35]

Since there is no salary predicate, we use only the I1 index for the age attribute. Suppose
that the documents to be retrieved are Dres = {d5 − d7}. Using I2 index for age, we
retrieve the node N4,7 which contains Dfinal = {d4 − d7}.

• σsalary=[3K−6K]∧age=[25−35]

Using I1 index for the salary attribute we learn that |Dsalary| = 5 and I1 index for the
age attribute that |Dage| = 3. Since, Dage has the minimum number of tuples we use I2

index for age attribute and we retrieve the node N4,7 .

For the MRSE-A given the number of distinct query attributes d, i.e., l ∈ {1, 2, · · · , d}, we
assume that the client stores the {min,max} values for each attribute along with n, which
represents the total number of tuples. We refer to the min value of a query attribute l as min.l,
and to the max value as max.l. Similarly, we denote with I1.l the I1 index of attribute l. Finally,
we denote with t2.min the trapdoor for I2,min index of attribute min, i.e., the attribute whose
result size retrieved from I1 is the minimum. In particular:
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k ← Setup(1λ). Generate and output d pairs of SE keys (k1.l, k2.l), one pair for each
attribute.

I ← BuilIndex(k,D). For each l ∈ [1, d], build the SE indexes I1.l using T1.l (as in SRC-
i2) with key k1.l and index I2.l on the sorted tuples of A.l using TDAG2 with key
k2.l, and output (I1.l, I2.l).

t← Trpdr(k,w). This is an interactive algorithm which runs in 2 rounds. Round 1: For
l ∈ [1, d] parse k.j as (k1.l, k2.l) and range w.l as [i.l, j.l]. Generate SE tokens
t1.l = (t11.l, t12.l) with k1.l for keywords (i.l, R.l) and (j.l, L.l). These tokens
will be used as inputs to multiple calls of the Search algorithm below. Round 2:
After retrieving/decrypting the answers of all the above executions of the Search

algorithms the client can identify the dimension min with the minimum result size
(as described above) and its corresponding range w′. Finally, the client generates
a SE token t2.min with k2.min for the SRC node of TDAG2.min that covers the
range w′, and output (t1, t2).

X ← Search(t, I). This is an interactive algorithm which runs in 2 rounds. Round 1:
Parse t.l = (t1.l ,t2.l), t1.l = (t11.l, t12.l) and I = (I1.l, I2,min). Retrieve t1.l from
the owner, invoke the Search algorithm of SE for t11.l, t12.l on I1.l and send the
results to the owner. Round 2: Retrieve t2.min from the owner (second round of
the Token algorithm), invoke the Search algorithm of SE on I2,min and output the
result X.

We describe the leakages of MRSE-A more formally:

−L1(D,A) = ⟨m,n, d⟩.

D is the dataset, A is a vector of the domain sizes of the d query attributes, n is the
cardinality of D, m is the sum of the domain sizes of the query attributes and d is the
number of the distinct attributes in the where-clause of the query.

−L2(D,A,W ) = ⟨σ(W ), µ(wi,L), µ(wi,R))∀i∈[1,d], µ(RC(wmin)), id(RC(wmin))⟩.

W corresponds to the multi-dimensional range query and is in the form of w = (w1, w2, ..., wd),
where wi is the range for the i-th attribute (i ∈ [1, d]) in the where-clause of the query.
The leakage contains σ(W ), which is the search patterns of w1, w2, ..., wd; for each wi a
tuple that consists of an alias µ(wi,L) and an alias µ(wi,R) for the tokens returned by
the first encrypted indexes; it contains an alias µ(RC(wmin)) in I2,min of the attribute
whose result set is the minimum, and the list of tuple ids id(RC(wmin)) associated with
the keyword RC(wmin) in I2,min.
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Qualitative Comparison. MRSE-A is the simplest and most intuitive way to extend Logarithmic-
SRC-i2 to work for multiple dimensions. The main drawbacks of this approach are (i) the
increased storage demands, (ii) the search time/false positives which are linear to the number
of returned tuples for the dimension with the minimum result size, i.e., there is case that the
result size is empty and O(min(ri)) is proportional to O(n).

3.1.2 MRSE-B

Figure 3.2: MRSE-B for 2 dimensions (Salary and Age)

MRSE-B is based on Logarithmic-SRC-i2 presented in Section 2.1.2.2. In particular, given a
document collection D and d query attributes, we create d indexes of type I1 (see Logarithmic-
SRC-i2) which are auxiliary indexes that guide the search in the index I2. The difference now
lies on the I2 index in which each node contains a nested I2 index for the next dimension. The
composite I2 is stored as an array, where entries are the concatenation of the outer node with
the corresponding inner node. The I2 index of MRSE-B is based on a d-dimensional TDAG2.

For example, we provide in Figure 3.2 the indexes of MRSE-B for 2 attributes—salary and age
attribute, assuming that the outer nodes correspond to the sorted salary attribute and the inner
nodes to the sorted age attribute.

As an example, consider the node N0,3 of I2 index for salary which points to the subset D′ =

{d0, ..., d3}. Now, D is sorted by age attribute and any document di ̸∈ D′ becomes a null info
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leaf in the inner TDAG2. Note that the order of documents change, because of the different
sorting, which means the outer d0 might become the inner d7.

To further illustrate how MRSE-B works, we consider the following examples:

• σsalary=[3K−6K]

Using I1 index for the salary attribute, suppose that the documents to be retrieved are
Dsalary = {d3, d4, d5}. Since there is no age predicate, we retrieve the node N2,5N0,7, i.e.,
the N0,7 node of the inner TDAG2 from N2,5 node of the outer TDAG2.

• σage=[25−35]

Using I1 index for the age attribute, suppose that the documents to be retrieved are
Dage = {d1 − d2}. Since there is no salary predicate, we retrieve the node N0,7N1,2 of the
I2 index, i.e., the inner N1,2 node of the outer N0,7 node.

• σsalary=[3K−6K]∧age=[25−35]

Using I1 index for salary attribute, and I1 index for age attribute we learn the boundaries
of the second query in I2 index—assuming that those boundaries are [2, 5] for salary
attribute and [1, 2] for the age attribute we retrieve the node N2,5N1,2 of the I2 index, i.e.,
the N1,2 inner node from the N2,5 outer node.

We provide the MRSE-B scheme below:

k ← Setup(1λ). Generate and output SE keys k1.l one for each attribute and k2 for I2,
which now is the same for all dimensions.

I ← BuilIndex(k,D). For each l ∈ [1, d], build SE index I1.l using T1.l (as in SRC-i2)
with key k1.l and index I2 using the d-dimensional TDAG2 with key k2, which is
properly sorted as we describe above. Output (I1.l, I2).

t← Trpdr(k,w). This is an interactive algorithm which runs in 2 rounds. Round 1: For
each l ∈ [1, d], parse k = (k1.l, k2) and range w.l = [i.l, j.l] and generate SE tokens
t1.l = (t11.l, t12.l) with k1.l for keywords (i.l, R.l) and (j.l, L.l). Round 2: Decrypt
the answers to retrieve the new range w′. Generate SE token t2 with k2 for the SRC
node on the d-dimensional TDAG2 that covers w′, and output (t1, t2).

X ← Search(t, I). This is an interactive algorithm which runs in 2 rounds. Parse t =

(t1.l, t2), t1.l = (t11.l, t12.l) and I = (I1.l, I2). Round 1: Retrieve t1.l from the owner,
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invoke the Search algorithm of SE for t11.l, t12.l on I1.l and send the results to the
owner. Round 2: Retrieve t2 = t1.1||t1.2||...||t1.d from the owner, invoke the Search
algorithm of SE on I2 and output the result X.

We describe the leakages of MRSE-B more formally:

−L1(D,A) = ⟨m,n, d⟩.

D is the dataset, A is a vector of the domain sizes of the d query attributes, n is the
cardinality of D, m is the sum of the domain sizes of the query attributes and d is the
number of the distinct attributes in the where-clause of the query.

−L2(D,A,W ) = ⟨σ(W ), µ(wi,L), µ(wi,R))∀i∈[1,d], µ(RC(w′)), id(RC(w′))⟩.

W corresponds to the multi-dimensional range query and is in the form of w = (w1, w2, ..., wd),
where wi is the range for the i-th attribute (i ∈ [1, d]) in the where-clause of the query.
The leakage contains: σ(W ) which is the search patterns of w1, w2, ..., wd; for each wi a
tuple that consists of an alias µ(wi,L) and an alias µ(wi,R) for the tokens returned by the
first encrypted indexes; for the new request range w′ it contains an alias µ(RC(w′)) in I2

and the list of tuple ids id(RC(w′)) associated with the keyword RC(w′) in I2.

Finally, the storage for the MRSE-B is O(dm+ dlogdn) and the false positives are O(min(ri)).

Qualitative Comparison. We observe that MRSE-B has asymptotically the same false positive
bound with MRSE-A; however we observe in Section 4 that MRSE-B significantly reduces the
false positives compared with MRSE-A scheme. In addition, MRSE-B has better leakage profile
compared with MRSE-A. The main drawbacks of MRSE-B are (i) that MRSE-B asymptotically
increases the index size, and (ii) still the search time/false postives are not bounded by the actual
result size.

3.1.3 MRSE-C

MRSE-C is based on the Logarithmic-SRC-i1 presented in Section 2.1.2.1. For the d-dimensional
query setting, define as A = {α1, α2, · · · , αd} the sequence of attributes in the order that appear
in a query. For the MRSE-C scheme we have a double index I = (I1, I2) where I1 is a TDAG1

based index built over the domain of the α1 attribute. I2 index follows the structure of TDAG2

and is built based on the sorted document collection D on α1 attribute while each of its nodes
is a chain of d nested (I1, I2) pairs. Note that each node in the initial I2 index spans/contains a
subset of the original document collection. So at each node using only this subset of documents,
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Figure 3.3: MRSE-C for 2 dimensions (Salary and Age)

we store a new pair of I1 and I2 indexes that are built upon α2 attribute. Then we apply the
same procedure recursively; for each node of this (I1, I2) pair we build a new set of indexes
based on the corresponding subset of the document collection D and α3 attribute. The same
follows until we reach αd attribute. The procedure explained above in a node-level is applied
for every node of the initial I2 index.

For example, we provide in Figure 3.3 the new index of MRSE-C for 2 attributes—salary and
age attribute. We consider the following order for those 2 attributes: A = {salary, age}. Thus,
we build a I1 index over the salary domain and a I2 index over the sorted document collection
on salary. Then we build new pairs of Iage = {I1, I2} double indexes; one for each node of
salary’s I2 index. We omit in Figure 3.3 the index I1 of the salary attribute.

To give a more concrete description, observe that the root of I2 index for the salary attribute
points to the document collection D. Therefore, the new index Iage = {I1, I2} is built over D

accordingly. On the other hand, in any other node we process only the subset of documents
that corresponds to it. Let us use node N0,3 of I2 for salary as an example. Observe that the
node contains D′ = {d0, ..., d3} ⊆ D which means that Iage is built only using D′.

To further illustrate how MRSE-C works, we consider the following examples:

• σsalary=[3K−6K]
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Using I1 index for the salary attribute, we get that Dres1 = {d3, d4, d5}, which is best
covered by N2,5 node. Since age is set to ALL, using I1 index for the age attribute of N2,5

node, we get N0,15 node. Using I2, we retrieve the node N2,5N0,15.

• σage=[25−35]

Using I1 index for the salary attribute witch is set to ALL, we get the N0,16 node. Then,
using I1 index for the age attribute of N0,15 node, we get that Dres2 = {d10 − d14} which
is best covered by N8,15 node. Using I2, we retrieve the node N0,15N8,15.

• σsalary=[3K−6K]∧age=[25−35]

Using I1 index for the salary attribute, we get that Dres1 = {d3, d4, d5}, which is best
covered by N2,5 node. Then, using I1 index for the age attribute of N2,5 node, we get that
Dres2 = {d10 − d14} which is best covered by N8,15 node. Using I2, we retrieve the node
N2,5N8,15.

We provide the MRSE-C scheme below:

k ← Setup(1λ). Generate and output SE keys k1.l one for each attribute and k2 for I2,
which now is unique for all dimensions.

I ← BuilIndex(k,D). For each l ∈ [1, d], build SE index I1.l using T1.l (as in SRC-i2)
with key k1.l and index I2 using a d-dimensional TDAG2 as described above with
key k2. Output (I1.l, I2).

t← Trpdr(k,w, i). This is an d + 1-interactive algorithm where i denotes the current
round and takes values in the range [1, . . . , d + 1]. Round i ≤ d: Parse k.i and
range w.i. Generate SE token t1.i with k1.i for the SRC node in current TDAG1

that covers w.i and send the answer to the server. Round i = d+ 1: Decrypt the
previous answer (for i = d) to retrieve the new range w′.d. Generate SE token t2

with k2 for the SRC node on TDAG2 that covers w′.d, and output (t1, t2).

X ← Search(t, I). This is an d + 1-interactive algorithm. Parse t = (t1.l, t2) and I =

(I1.l, I2). Round 1: Retrieve t1.1 from the owner, invoke the Search algorithm of SE
on I1.1 and send the results to the owner. Round i ≤ d: Retrieve t1.i which depends
on the previous search (for i − 1), invoke the Search algorithm of SE on I1.i and
send the results to the owner. Round d+ 1: Retrieve t2 from the owner, invoke the
Search algorithm of SE on I2 and output the result X.

We describe the leakages of MRSE-C more formally:
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−L1(D,A) = ⟨m,n, n′, d⟩.

D is the dataset, A is a vector of the domain sizes of the d query attributes, n is the
cardinality of D and m is the sum of the domain sizes of the query attributes. In addition,
n′ is a vector with the unique values for the d attributes (n′ = [n′

1, n
′
2, ..., n

′
d]) and d is the

number of the distinct attributes in the where-clause of the query.

−L2(D,A,W ) = ⟨σ(W ), (µTDAG1(RC(wi)))∀i∈[1,d], µTDAG2(RC(w′)), (uqv(RC(wi)))∀i∈[1,d], id(RC(w′))⟩.

W corresponds to the multi-dimensional range query and is in the form of w = (w1, w2, ..., wd),
where wi is the range for the i-th attribute (i ∈ [1, d]) in the where-clause of the query.
The leakage contains σ(W ), which is the search patterns of w1, w2, ..., wd. For each wi the
leakage contains a tuple that consists of an alias µTDAG1(RC(wi)) for the node returned
by the range covering RC(wi) in I1.i along with the distinct values of the range wi. It
also contains an alias µTDAG2(RC(w′)) for the final query in the index I2 and the list of
tuple IDs id(RC(wi)) associated with the keyword RC(w′)

Qualitative Comparison. We observe that MRSE-C can asymptotically bound the number of
false positives to be proportional to actual result and range size at the expense of more leakage
and increased number of interactions. The main drawbacks of MRSE-C are (i) that MRSE-C
asymptotically increases the index size, (ii) d interactions are required, and (iii) the d interactions
introduce more leakage than MRSE-A and MRSE-B schemes.

3.1.4 MRSE Schemes With New Trade-offs Between Index Size and False
Positives

The main drawback of the MRSE schemes described in Sections 3.1.1-3.1.3 is the increased size
of the encrypted indexes. We describe an approach to address the aforementioned limitation
by introducing a new trade-off between space and false-positives. The idea is that instead of
storing all the levels for the indexes in MRSE-A,MRSE-B and MRSE-C, we only we store s

evenly distributed levels for each dimension; the missing levels increase the number of false
positives. In particular, for the MRSE-A and MRSE-B schemes we only apply this technique
for the I2 indexes for which we store only s levels since the space for I1 is linear in m. Finally
for MRSE-C, we keep only s levels both for I1 and I2 indexes. As we mentioned above, this idea
introduces more false positives; we observe that the number of false positives will be increased
by a factor of 2

logn
s = n1/s.
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3.2 Oblivious MRSE (OMRSE)

OMRSE scheme creates an oblivious searchable R-tree. In particular, we create a plaintext
R-tree, and we store each node in a non-recursive Path-ORAM [11] (P1). For each node we
choose at random a leaf i (in P1) and we insert the node in the chosen leaf. In order to be able
to traverse the oblivious R-tree, we organize each R-tree node in the following way:

((id, data), childrenID, childrenPos)

id is the key for the searches in the R-tree, data corresponds to the actual data of the cor-
responding plaintext node of the R-tree, childrenID is an array which stores the ids for the
node’s children and childrenPos is an array which stores the P1 leaf numbers for the node’s
children.

The client only stores the position of the R-tree’s root in order to be able to obliviously search
the R-tree. For a given query, we first retrieve and decrypt the root, based on the root’s data we
know in which of root’s children nodes we have to continue the search; having their ids and their
positions in P1 we are able to continue the search until we retrieve the result of the requested
query.

After a search query, we need to store all the “touched” nodes to new positions in P1 (choosing
at random for each touched node a new leaf). We perform the re-mapping in a bottom-up
manner—starting from the leaves of the R-tree and continuing to their parents until we reach
the root node. The above traversal guarantees that when a parent node have to be placed in
P1 the new locations of its children have been determined.

Finally, the storage for the OMRSE is O(n) and search efficiency O(t(n) · log2 n) assuming that
the search complexity for the plaintext R-tree is t(n).

We describe the leakages of OMRSE more formally:

−L1(D,A) = ⟨n⟩.

n is the cardinality of D.

−L2(D,A,W ) = ⟨ϕ(W )⟩.

W corresponds to the multi-dimensional range query and is in the form of w = (w1, w2, ..., wd),
where wi is the range for the i-th attribute (i ∈ [1, d]) in the where-clause of the query.
ϕ(W ) denotes the number of “touched” nodes in the plaintext R-tree for answering the
query W .
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Qualitative Comparison. We observe that OMRSE significantly reduces both L1 and L2 leak-
ages. OMRSE is the first scheme that requires linear index size (MRSE-A, MRSE-B, MRSE-C
schemes require super-linear index size). The search complexity of OMRSE depends on the
search complexity of the plaintext R-tree. The worst case search efficiency of OMRSE is the
same with MRSE-A, MRSE-B, MRSE-C when s is tuned to be 1 (choosing the index size in all
of these schemes to be similar).
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Chapter 4

Experimental Evaluation

4.1 Setup

We implemented our solutions in C++ and conducted our experiments on a 64-bit machine
with an Intel® CoreTM i7-3540M CPU at 3.0GHz and 16GB RAM, running Linux Ubuntu
16.08. We utilized the OpenSSL library for the entailed cryptographic operations and we used
AES128-CBC for encryption. In addition, we experimented both with a real-world dataset and
a synthetic one. The real- world dataset is from the U.S. Postal Service (www.app.com), called
USPS, and contains almost 400K employee records. The query attributes of the USPS dataset
we used in our experiments are the annual salary field with domain A1 = {0, ..., 276840}, fund
name with domain A2 = {0, ..., 16}, country name with domain A3 = {0, ..., 60} and total salary
with domain A4 = {0, ..., 392877}.

We also generated a synthetic dataset with 4 query attributes; salary, age, dept_code and
monthly hours. The domain for the salary attribute, which follows a skewed distribution with
mode equal to 15, 000, is A1 = {0, 1, ..., 300, 000}. Next, we use a skewed distribution with mean
equal to mean 40, standard deviation 36, skew equal to 0.3 and kurtosis kurt equal to 3 for the
age attribute with domain A2 = {18, 19, ..., 75}. For the dept_code attribute with domain
A3 = {100, ..., 600} we use a uniform distribution while for the monthly hours attribute with
domain A4 = {0, ..., 300} we use a gaussian distribution with mean equal to 150 and standard
deviation equal to 22.

28



4.2 False Positives/Search Time

For the evaluation of the proposed schemes, we first conduct a series of experiments so as to
observe their behavior with regards to the result sizes retrieved for a set of random queries. In
particular, we are interested in observing how many more results each of the schemes returns
in comparison to the true number of tuples that answer a given query.

To begin with, in figures 4.1, 4.2 and 4.3 we provide the experimental results using a random
set of queries answered by 20%, 40% or 60% respectively of the domain of each attribute in
the query while the dimension of the queries varies from 1 up to 4. From the theoretical
analysis of our schemes, we expect that MRSE-A will be the one with the worst false positive
behavior since the result size always matches the size of the smallest result set among the d

results sets. However, for MSRE-B although in the worst case the false positives could match
those of MRSE-A, in the average case it improves the false positives. The upper bound for
MRSE-B can be reached in the case when a query is answered from nodes that are closer to
the root; the closer to the root a node is, the more tuples it spans. From the experimental
evaluation, we observe that indeed MRSE-B reduces the false positives of MRSE-A while in the
special case of 1-dimensional queries the two schemes are identical(since the I1, I2 indexes have
the same structure). Subsequently, for MRSE-C we observe that its false positives outperform
those of MRSE-A and MRSE-B while we increase the number of dimensions and the percentage
of the tuples that answer a query per dimension. When the actual result size increases both
MRSE-A and MRSE-B will pick a node closer to the root which spans in the worst case the
whole database. However, by construction of the I2 index the corresponding node in MRSE-C
contains only the proper subset of documents that answer the query. Finally, the perfomance of
OMRSE when the indexes of MRSE schemes are fully stored cannot compete any of the MRSE
schemes. Nonetheless, as we will discuss in section 4.4 when we reduce the size of the indexes of
MRSE schemes so that it is comparable to the size of the index in OMRSE, the latter starts to
competitively compare with the former schemes for small range sizes and dimensions. In other
words, we observe a trade-off between storage and false positive between OMRSE and MRSE
protocols. To sum up, MRSE-B experimentally reduces the false positives of MRSE-A while
MRSE-C, which is the only scheme that bounds the number of false positives to be proportional
to the actual result and range size, performs best when d and range size get larger.
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4.3 Index Size

In Figure 4.4, we observe how the memory space required to store the indexes of each of the
MRSE increases with the respect to the size of the original database for different numbers of
dimensions d that vary from 1 up to 4. In the special case of 1-dimensional queries, MRSE-A
and MRSE-B are identical since their double index I = (I1, I2) is the same but as the number of
dimensions increases the storage required for MRSE-A is less as expected from the theoretical
analysis. MRSE-C is the scheme that requires the more space, although it may not seem obvious
from the analysis where constants do not appear. Finally, OMRSE as explained before is the
one that requires the least space of all.

4.4 Index Size and False Positives/Search Time for s=2 Levels

In this section, we compare OMRSE and MRSE schemes under the same memory configuration.
In order to reduce the space for the MRSE schemes, we store only s = 2 levels for each dimension
of the original structure. Under this setting, as presented in figures 4.5, 4.6, 4.7, OMRSE is
competitively better(up to 100× speed-up) than MRSE schemes for small range sizes and small
number of dimensions while it can be up to 2× worse when the range sizes and dimensions
increase. However, the trade-off between storage and false positive rate between the OMRSE
and the MRSE schemes is significant since OMRSE generally requires less space than the other
schemes, even when we store s = 2 levels per dimension. All in all, OMRSE does not always
outperform the MRSE schemes even comparable memory configurations but the sacrifice in false
positives performance is significantly comparable with the gain in storage.
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Figure 4.1: 20% Range Query Size for each dimension (s=ALL)
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Figure 4.2: 40% Range Query Size for each dimension (s=ALL)
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Figure 4.3: 60% Range Query Size for each dimension (s=ALL)
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Figure 4.4: Index Size (s=ALL)
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Figure 4.5: 20% Range Query Size for each dimension (s=2)
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Figure 4.6: 40% Range Query Size for each dimension (s=2)
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Figure 4.7: 60% Range Query Size for each dimension (s=2)
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Figure 4.8: Index Size (s=2)
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Figure 4.9: 20% Range Query Size for each dimension (s=ALL) (Synthetic data)
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Figure 4.10: 40% Range Query Size for each dimension (s=ALL) (Synthetic data)
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Figure 4.11: 60% Range Query Size for each dimension (s=ALL) (Synthetic data)
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Figure 4.12: Index Size (s=ALL) (Synthetic data)
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Figure 4.13: 20% Range Query Size for each dimension (s=2) (Synthetic data)
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Figure 4.14: 40% Range Query Size for each dimension (s=2) (Synthetic data)
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Figure 4.15: 60% Range Query Size for each dimension (s=2) (Synthetic data)
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Figure 4.16: Index Size (s=2)
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Chapter 5

Conclusions and Future Work

In this work, we study the problem of Multi-Dimensional Range SE (MRSE) schemes and
we provide four new novel schemes with different security and efficiency trade-offs (MRSE-A,
MRSE-B, MRSE-C, OMRSE). Our MRSE-A, MRSE-B and MRSE-C constructions are based
on extending prior RSE schemes to multiple dimensions, while OMRSE combines ideas from
R-trees (very efficient data structures for multi-dimension range queries with linear index size)
and ORAMs (schemes that are more secure and expensive than SE schemes). We experi-
mentally show that OMRSE scheme is not only more secure than MRSE schemes but it has
comparable/better search performance (up to 2× slow-down,up to 100× speed-up) than MRSE
schemes when all are tuned to have similar space. In our future work, we could try to combine
ORAM techniques with other spatial indexes in order to further improve the performance of
MRSE/OMRSE schemes. Another importance research direction is to efficiently and securely
combine MRSE/OMRSE schemes with other query operators, such as join and group-by queries.
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