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Abstract

Over the last years, a radical change regarding diagnosis of cervical neoplasia has been prepared.
Classic procedure involving biopsy may be replaced by  in vivo non invasive optical biopsy. In this
thesis, we are studying a model that estimates for each combination of 4 biological parameters, the
spatiotemporal curves of diffused reflectance versus time, that are produced during the acetowhitening
phenomenon. We aim to solve the reverse problem, estimating the bio-parameters given the curve,
efficiently in terms of both accuracy and speed. Initially, we used several curve matching algorithms to
decide which is optimal for the problem. Then, we used k-means clustering on the model dataset to
reduce  comparisons  and  lower  procedure  duration.  Finally,  we  correlated  curve  features  to  bio-
parameters and created a decision rule  for instant bio-parameter estimation through optimization
with decision regions. Judging from the estimation accuracy and the calculations on execution times,
we have strong confidence in the future of the method.
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Chapter 1 – Introduction

1.1 Motivation & Thesis Outline

Motivation

There is a strong motivation to search in this scientific area and this particular problem. Over the years,
scientists continue to strive towards a more efficient treatment for Cervical Cancer, making it one of the most
preventable.  We  are  blessed  to  belong  in  a  laboratory  with  many  years  of  experience  and  significant
achievements in this field.

We hope to discover and implement new ideas that will improve parts of the overall diagnostic and treating
procedure and ultimately make a positive impact on the patients' lives.

At the same time, we aim to expand our knowledge in various scientific methods and familiarize ourselves
with different fields from those we are to study as Electrical and Computer Engineers.
 

Thesis Outline

In Chapter 1, we make an introduction to cervical cancer and the present state regarding diagnosis and
treatment.

In  Chapter  2,  we  will  present  pieces  of  information  regarding  biology behind  neoplasia  progress and
conclusions and findings from related previous work.

In Chapter 3, we analyze the mathematical background supporting everything we used in this thesis.

In Chapter 4, we describe in detail the methodology behind every part of our work.

Chapter 5 features the results for every technique used and also execution times for the general procedure.

Chapter 6 contains conclusions and related future work.



1.2 Thesis Contribution

In this thesis,  we had to deal efficiently with a curve matching problem, in terms of both accuracy and
speed,. Higher result quality is equivalent to better estimation regarding the biological parameters of the
cervix, while improvement in execution times, up to running in real time, is translated to tremendous value
and potential for widespread future usage of the procedure.   

Estimating  those  bio-parameters  is  considered  as  crucial  in  monitoring  evolution  of  the  disease.  It  is
currently a task varying from being time consuming to being impossible and this highlights the significance
of developing innovative methods like the one we are contributing to.

Contribution

We compared many alternative metrics and concluded on the best algorithm for the curve matching problem.
We also used K-means clustering technique and achieved significant improvements on procedure execution
times. Finally, we created a test for instant bio-parameter estimation using random variable correlation and
decision regions, which offers concurrently an interesting and promising way of reducing the number of
curve comparisons and thus accelerating the procedure.



1.3 Introduction to Cervical Cancer

Cancer is a disease featuring abnormal cell behavior. According to [1] and [2], there are common biological
capabilities, also known as “Hallmarks of Cancer”, which cancer cells have during their reproduction:

1) They can sustain proliferative signals.
2) They ignore anti-growth signals.
3) They resist programmed cell death (apoptosis).
4) They are multiplied without limits (replicative immortality).
5) They request nutrition and waste disposal from the body.
6) They activate Invasion and Metastasis. 
7) They reprogram energy metabolism.
8) They evade immune system's identification and elimination.

Cancer is the second leading cause of death in the United States [3] (it causes 25% of deaths), exceeded only
by heart disease. In 2016, the latest year for which incidence data are available, 1,658,716 new cases of
cancer were reported and 598,031 people died of cancer. This equals to 436 new cases and 156 deaths per
100,000 population.

In 2018, an estimated 1,735,350 new cases of cancer will be diagnosed in the United States and 609,640
people will die from the disease [4].

Cervical Cancer

In 2012 [5],  cervical  cancer was the fourth most  diagnosed cancer worldwide for females with 527,600
estimated new cases and the fourth leading death cause amongst cancers with 265,700 estimated deaths. In
many parts of Africa it was the leading cause of death between all cancers.

The American Cancer Society's estimates for cervical cancer in the US for 2019 are [6]:

 About 13,170 new cases of invasive cervical cancer will be diagnosed (8.00 per 100,000 population)
 About 4,250 women will die from cervical cancer (2.58 per 100,000 population)

International Agency for Research on Cancer data for Greece in 2012 are [7]: 

 421 new cases of invasive cervical cancer were diagnosed (7.42 per 100,000 population)
 208 women died from cervical cancer (3.66 per 100,000 population)

It was reported in 2018[8] by a former Greek official that (Greek) National Neoplasia Archive (EAN) had
officially recorded 600 new cases per year of diagnosed cervical cancer (10.75 per 100,000 population)

It is important to keep in mind that cervical pre-cancer (neoplasia) is diagnosed far more often than invasive
cervical cancer.

Figure 1.1 Female Reproductive System[9]

Amongst gynecologic cancers, Uterine cancer is the most common, Ovarian cancer causes the most deaths
and Cervical cancer is the most preventable; also the only one with a screening test and a vaccine [10].



Relative Survival

The definition or relative survival is the probability of surviving for the overall population divided by the
probability of surviving having a disease for a defined time frame in years.

Figure 1.2 5-year (2005-2009) Relative Survival Worldwide, for each cancer site and region

5-year (2012-2016) Relative Survival in the US for Cervical Cancer is 67.6% [3] which is 1.1% higher than
average Survival Rate of all Cancer Sites for females.

Figure 1.3 5-year Relative Survival in US
Risk Factors [11]

Cervical Cancer is almost only caused by human papillomavirus (HPV) infections [5]. Although everyone is
a candidate for HPV infections and most people will  have an HPV infection at some point, chances are
increased when women become sexually active at an early age and also when they have had numerous sexual
partners. 

For instance the extremely low cervical cancer rates in the Middle East and in other parts of Asia is attributed
to the low HPV infections due to the disapproval of extramarital sexual activity of the respective societies.

In addition, the probability of HPV infection turning into cancer is affected by many factors like smoking,
weak immune system, as well as a high number of childbirths (3+) and chronic usage (5+ years) of birth
control pills.

Symptoms [12]

If  the  disease  is  at  an  early stage,  there  may be  no  signs.  When the  situation  escalates,  there  may be
abnormal, heavier or longer menstrual bleeding and bleeding after sex or between regular periods. 



1.4 Cervical Neoplasia Categorization

[13] Usually, a cervical neoplasia passes through a long phase of being pre-invasive. Over the years, disease
progression and histological  grade were correlated through observation.  Furthermore,  researchers started
considering as continuous, the process of how a normal epithelium gradually evolves into invasive cancer. 

Figure 1.4 General stages of precancer evolving into invasive cancer

The stage in which the disease is in pre-invasive phase is called Cervical Intraepithelial Neoplasia (CIN)
followed by a grade showing the extent of cell abnormality and ultimately the severity of the case. As the
disease progresses, the thickness of the epithelium layer is gradually affected.

CIN 1 is associated with mild dysplasia when approximately one third of the epithelium layer of the cervix is
affected.  CIN 2  indicates  moderate  dysplasia  meaning  that  around  two  thirds  of  the  epithelium layers
affected. CIN 3 means severe dysplasia up to Carcinoma In Situ.

Cytology screening (Pap test) reports its findings of abnormal squamous cells using a system called The
Bethesda System.

Result in The Bethesda System Description

Atypical squamous cells (ASC) Cells do not look normal

ASC – undetermined significance (ASCUS) Some cells do not look completely normal. It is unclear
what the cell changes mean.

Low-grade squamous intraepithelial lesion (LSIL) Cells  do  not  look  normal,  but  usually  they  are  not
precancerous. Considered mild abnormality.

ASC  –  cannot  rule  out  high-grade  squamous
intraepithelial lesion (ASC-H)

Cells  do  not  look  normal.  It's  unclear  what  the  cell
changes mean.  HSIL can't  be ruled out.  The abnormal
changes may be pre-cancerous.

High-grade squamous intraepithelial lesion (HSIL) There are  abnormal  or  precancerous cells  present.  The
cells may develop into cancer if they are not treated.

Squamous cell carcinoma (SCC) There are cancerous cells present.

Table 1.1 Pap test result categorization

In case of HSIL, proceeding to immediate treatment is imperative. The 3 histological grades are connected
with the cytology grades; CIN 1 with LSIL and CIN 2 and CIN 3 with HSIL.



Figure 1.5 Stages of Cervical Intraepithelial Neoplasia (CIN) [14]

It is important to note that some cases show regression over time, some show persistence and some progress
into a worse case. This happens with different probabilities depending on the CIN category as the following
table containing statistical results from studies between 1950 and 1993 shows:

CIN category Regression Persistence Progression to CIN 3 Progression to invasive cancer

CIN 1 57% 32% 11% 1%

CIN 2 43% 35% 22% 1.5%

CIN 3 32% 56% - 12%

Table 1.2 Probabilities of CIN Evolution 

Respectively, there are statistics showing the probabilities of regression and progression over a period of 24
months,  of  each category of  cytology result.  They come from a meta-analysis  of  27,000 cases  back in
1999[15]:

Cytological
Abnormality

Regression to normal Progression to HSIL Progression to
invasive cancer

ASCUS 68,2% 7,1% 0,3%

LSIL 47,4% 20,8% 0,2%

HSIL 35,0% 23,4% (persistence) 1,4%

Table 1.3 Natural history of SIL

The overall  conclusion of studies in the 1990s is  that most  low-grade lesions (CIN 1) are transient and
regress to normal given a short time period, or do not progress to more sever forms. On the contrary, CIN 2
and CIN 3 are much more likely to progress into an invasive cancer stage despite the fact that some cases
regress or persist.



1.5 Diagnosis and Treatment

The American Cancer Society recommends[16] that women follow a screening procedure with its main goal
being to detect cervical cancer early. This can ease the treatment and avoid severe measures for the patient.

Ages Screening Method Time Frame

21-29 Pap Test Every 3 years

30-65 Pap Test + HPV Test
(recommended)

Every 5 years

30-65 Pap Test (sufficient) Every 3 years

Abnormal
Pap Test

Follow-up Pap Test in 6-12 months
(doctor may recommend combining with HPV Test)

65+ Stop testing unless they have had serious precancer

Table 1.4 Testing Recommendations for Early Detection 

Vaccinating against HPV does not make screening unnecessary.

Incidence rates in the US for the disease dropped by more than 50% between 1975 and 2015 due in part due
to an increase in screening, which can detect cervical changes before they turn cancerous[17]. The Pap test,
when combined with a regular program of screening and appropriate follow-up, can reduce cervical cancer
deaths by up to 80%.

[18] If there are certain symptoms that are worrisome for cancer, or if the Pap test detects abnormal cells, it is
followed by referral to colposcopy, which determines the location of the most severe dysplastic region for
biopsy sampling. 

Figure 1.6 Next actions according to Pap and HPV Test results 

During colposcopy,  the doctor will  place a speculum in the vagina to see the cervix and apply a weak
solution of acetic acid to the cervix to make abnormal areas more visible. If an abnormal area is seen, a
biopsy (removal of a small piece of tissue) will be performed. 

A biopsy is said to be the best way to tell for certain whether an abnormal area is a pre-cancer, a true cancer
or neither. Cervical biopsy may cause discomfort, cramping, bleeding or even pain in some women.



Main problems of colposcopy are:

 Low sensitivity (55-65%) and specificity (70-90%)
 52% of screening failures, including missed lesions 
 Unnecessarily repeated tests and diagnostic delays [19]

These are added to the low sensitivity problem of Pap test (59%).

These weaknesses of colposcopy are critical to diagnostic reliability because the biopsy will  inform the
doctor on the condition of a small sample tissue representing the area of the colposcopy suggestion. It is up
to the colposcopy to identify accurately the most dysplastic region. 

The performance of colposcopy can be improved by the assistance of Dynamic Spectral Imaging (DSI) as we
will later present.

Treatment

[20] Treatment of Cervical Cancer can be performed in several ways depending on its type and how spread it
is. Treatments include surgery, chemotherapy, cryotherapy and radiation therapy.

 Surgery is an operation in which doctors will remove the cancer tissue.

 Chemotherapy is a procedure involving special medicines to  kill the cancer or  shrink its size.  The
patient receives the treatment through oral or intravenous adninistration, or sometimes both.

 
 Cryotherapy uses liquid nitrogen of around -50o C temperature, to destroy precancerous cells on the

cervix [46].

 Radiation can be used to kill the cancer by using high-energy rays (similar to X-rays).

Realizing the value of early detection so as not to end up using extreme treating means is imperative. 



1.6 Dynamic Spectral Imaging

As we mentioned previously, the quality of colposcopy affects the reliability of the biopsy and is crucial for
the whole diagnostic procedure. Dynamic Spectral Imaging System (DySISTM) is a system offering enhanced
colposcopy. 

Colposcopy uses the acetowhitening phenomenon that occurs when a weak (3-5%) solution of acetic acid is
applied to the cervix. Its key element is that it temporarily changes optical properties of the area from the
interaction of the acid with abnormal cells. Conventional colposcopy uses observation to estimate the most
dysplastic region. On the other hand, DySIS measures the changes of reflective properties and it can produce
substantially more accurate findings with this systematic approach.

Firstly,  before  applying the acetic  solution,  DySIS measures  the  black body radiation for  normalization
reasons. Then it applies the acid and takes snapshots of the cervix every 7 seconds (29 images in total).

The important part of the phenomenon lasts around 3-4 minutes, during which the reflective properties of the
lesions are affected from the acid and that is translated to changes in the optical signal (pixel luminosity) on
the received images.

Then the system processes the images and measures the intensity of Diffused Reflectance (DR) versus time
for every pixel which represents a small area of the cervix. To correctly do that for every small area, it
‘smartly’ aligns pictures to remove spatial ‘noise’ caused by patient movement during the procedure. Now
the output accurately describes the dynamic changes due to the acetowhitening phenomenon. Eventually, the
measurement is normalized and a 1x29 vector of DR versus time is created for each pixel. 

The DySIS colposcope produces a high resolution output (1024*768 = 786432 pixels - curves). 

Curve analysis has led to a connection with disease categories that have been tested with biopsy results.
Below we can see centroid curves for different categories [21].

Figure 1.7: Representation of seven clinical reference centroids reflecting the clinical trends. 

Τhe system processes the curves in real time and creates a DySIS map which highlights in detail, using
pseudocoloring, the estimation for the disease category of each cervix region and how spread the damage is.
This  explicit  output  describing  the  areas  of  interest,  helps  doctors  tremendously and  the  system's  high
sensitivity makes misjudging a rare occasion.

If a high grade neoplasia is detected and there is need for a biopsy follow-up, DySIS map guidance will
contribute decisively to the procedure by improving the spatial accuracy.



Figure 1.8: DySIS map, result of colposcopy[22]

DySIS had its diagnostic value confirmed in large international clinical trials [23] [24], where it performed
63% better in sensitivity over Pap test and colposcopy.

DySIS Colposcopy Cytology

Sensitivity 79% 49% 53%

Specificity 76% 89% 86%

Diagnostic Odds Ratio 11.81 7.91 6.88

Table 1.5 The Sensitivity and Specificity values of DySIS™ vs values of Pap and Colposcopy. 

To sum up, DySIS colposcopy clarifies the current health situation, offers a quality guidance for biopsy,
leads to reliable diagnosis for patients and provides the health system with an efficient way to detect cervical
neoplasias with regard to both sensitivity and cost.

Figure 1.9: Comparing colposcopy with and without DySIS map [25]



1.7 Prediction Model

Relevant research to the topic showed that the DR versus time curves are shaped according to the values of a
combination of biological parameters of the cervix and that by having knowledge on those values, we can
accurately predict the respective curve. We will present information on that research and its conclusions in
Chapter 2.

This brings us to the next considerable step in this project and what this thesis is all about. That is exploring
the reverse route of the curve prediction model and determining whether the accurate estimation of cervical
bio-parameters given the curve, is feasible.

As the values of experimental bio-parameters form a continuous space, the produced curves will differ from 
those of our model so we are looking for the closest match from the of model curves to them. It has to be 
noted, that the model has suitably small step in each bio-parameter value to cover the continuous space 
efficiently. 

Optimally, figuring out the closest match and thus the bio-parameter combination, has to be done in real time
to help not only patients but also the health system.



Chapter 2 – Theory and Related Work / Prior Art

2.1 Biological Features of Neoplasia

Research on biology regarding the cervical area and about parameters and conditions promoting neoplasia
growth, has increased our knowledge and enables us to focus our attention to biological mechanisms and
chemical concentrations and develop new techniques to diagnose the patients' state. Similar techniques can
be also used to monitor the progress on neoplasia growth and provide doctors with a full image regarding
each case.

Now we will present pieces of information acquired by this research over the years:

[26] , [27] Epithelial cells consider maintaining the intracellular pH close to neutral (7-7.5) as vital for their
existence and use a set of short and long term mechanisms to restore this value after an acute acid load. 

Short  term  mechanisms  last  for  a  second  or  less  and  they  perform  three  passive  processes:  1)
Physicochemical buffering, 2) Metabolic processing and 3) Organellar buffering.

Long term mechanisms are called ion pumps and are activated to aid the passive processes in pH regulation.
They should achieve their goal within a few minutes.  

Under  high  acidic  load  conditions,  short  term  mechanisms  are  proven  to  have  limited  capacity  to
successfully regulate the pH and the extrusion of the acid is done actively by buffers yielding back H+ from
previous consumption, leading to pH level stabilization. 

Tumor cells have almost the same intracellular pH as normal cells, however their extracellular pH is lower.
This is associated with the production is lactic acid under anaerobic conditions and to the hydrolysis of
adenosine triphosphate in an energy-deficient environment [28] , [29]. Extracellular pH at normal epithelium
is around 7.3 and in tumors 6.8.

The intracellular pH regulating mechanisms are surprisingly not affected by the progress of neoplasia while
the extracellular ones are severely influenced.

Furthermore,  it  has  been  shown  experimentally  that  H+  flow  to  peritumoral  normal  tissue  provokes
extracellular matrix degradation and normal cell necrosis. Concurrently, tumor cells develop resistance to
acid-induced toxicity during carcinogenesis and this allows spreading and invasion over the damaged normal
tissue. 

Lastly, promotion of cancer progression and metastasis has been associated with alteration in the tight juction
complexes [34].



2.2 Model Analysis

We know neoplasia growth creates problems in functional (extracellular acidity) and structural (extracellular
space and number  of  abnormal  layers)  parameters.  The changes have been correlated undoubtedly with
increased  intensity  of  diffused  reflectance  (DR)  versus  time  during  the  acetowhitening  (AW)
phenomenon[30].

There have been significant efforts to identify all the biological parameters regarding the AW effect on the
optical properties of cervix that are translated to changes in DR versus time curves. Gradually, a model was
invented, the equations of which are in accordance with Fick's Law and Goldman-Hodgkin-Katz constant
field equation.

The equations are too brilliant to be analyzed here. However, we will present the scientific processes that
were used to identify the neoplasia-specific biological features that decisively determine the changes on the
characteristics of the optical  signal.  That  requires combination of theory and algorithms quantifying the
impact each bio-parameter has. Ultimately, low-impact parameters will be removed if the estimation does not
lose its accuracy.

Theory suggests that parameter N, number of dysplastic epithelial cell layers, is known to be correlated with
neoplasia growth; it is even the biopsy measurement for grading the lesions. In addition, parameters N and b
(Extracellular Space) are known to be increasing with neoplasia progress [31].

In addition, parameter pHES  (ES = Extracellular Space) has been recently linked, according to the “acid-
mediated tumor invasion model” with the ability of tumor cells to form invasive cancers [32].

After including the facts analyzed in chapter 2.1, extra parameters were added to the model such as b ES and
bIS  which  are  ion  buffering  parameters,  KV that  refers  to  solute  diffusion  rate  at  the  tissue  basement
membrane interface and gTJ  which stands for the porosity fluctuation due to the alteration of tight junction
geometrical properties [33].

A set of 9 in total parameters affecting the optical signal was initially introduced.

Table 2.1 The initial set of model parameters

It is important to note that both pHES and  βIS  which are determining factors are functional parameters and
cannot be measured in vitro because the biopsy samples are dead tissues. This fact highlights even more the
need for optical biopsy and the estimation of their values through solving the inverse problem, going from
DR versus time curves to bio-parameters [35]. 



Global Sensitivity Analysis (GSA)

The purpose of GSA is to quantify the effect of each parameter on the DR curves and ultimately construct a
subset of the initial set containing as few parameters as possible without losses in the accuracy. That will
occur only if all the high impact parameters are included on the subset.

Generally, GSA does not require a priori knowledge of a relationship between input and output and it is
suitable  for  providing sensitivity inferences  for  complex and possibly non-linear  systems [36].  In  cases
whrere the model is a highly nonlinear algorithm and cannot be expressed with a single analytical function,
GSA methods  are  much  more  superior  than  classical  local  sensitivity  that  has  linearity  and analytiticy
limitations [37].

In this complex model, parameter N is more than an independent variable of the differential equation system,
it also defines the number of differential equations.

To continue, variance-based GSA methods are particularly suitable for the problem because of their model-
independent approach. Those methods split the model's uncertainty and associate it to the input parameter
variations causing it.

Furthermore, variance-based GSA performs 2 distinct processes, factor prioritization and factor fixing. The
goal of the first is to rank the parameters according to their importance by measuring each input factor to the
output variance. Highly ranked parameters should be dominant in the formation of the model's output line
shape, which, theoretically, maximizes the possibility for their identification. On the other hand, factor fixing
process is defining the low impact parameters that are more or less unrelated with the output variance and
can be fixed to their nominal values.

The GSA calculations performed is the model creation were based on the improved Sobol's method [38]
which considers the variances of a specific model equation as multidimensional integrals and estimates them
using a quasi-Monte Carlo algorithm. [40] Computation of variances using Monte Carlo method creates an
error in the estimations which is inversely proportional to the number of simulations. For this reason, Sobol
introduced the “probable error” as an estimate of variability.

Figure 2.1 First and Total Order sensitivity of the set parameters [37]

This result shows that the number of dysplastic layers (N), the size of Extracellular space (b), pH ES , the size
of  intracellular  space  (a)  and  the  tissue's  porosity  (gTJ)  are  highly ranked.  It  also  shows  potential  for
dimensionality reduction as the βIS, βES and pHIS do not pass the combined high sensitivity and identifiability
criteria and can be kept constant at around their nominal values without accuracy dropping. KV was excluded
because its Total Order Sensitivity was found 0 at all time points. 

The results match well with the theoretical knowledge because there is no evidence suggesting the latter 3
bio-parameters are changing with neoplasia growth [39]. On the other hand, the correlation of the other
parameters with neoplasia progress has been ascertained. As a result, the dimensionality reduction is not
expected to affect negatively the potential information gain.

GSA outcomes can be used as an input to figuring out the level of interactions and correlations between the
identifiable parameter sets. High level of interactions and correlations will result in poor estimability.

As a result of GSA methods, the initial nine input parameter of the model are now 4. Estimation of them
using Differential Evolution algorithm achieves 99% accuracy [42].



The 4 bio-parameters affecting the DR versus time curves most are:

 N, the number of cervix layers where there is cancerous activity.

 ECS, the size of extracellular space (also known as parameter b). It is known to increase with the
neoplasia progress. Cancerous cells occupy less space, thus higher ECS equals to a worse situation.  

 pHES  , the acidity level of the extracellular space. It tends to be more acidic around lesions due to
anaerobic glycolysis.

 TP, Tissues Porosity, (known as parameter gTJ). In general, Cervical Intraepithelial Neoplasia (CIN)
carcinogenesis disrupts the state of the tissue adhesion structures which has been associated with
increased tissue permeability [16]. A healthier tissue will dispose the acetic acid more efficiently and
will have a low TP value.

Table 2.2 List of the important set of bio-parameters and their value space in the model

The model has predicted curves for every possible combination of bio-parameters and has created a dataset
of 10 * 41 * 11 * 23 = 103730 curves, each one represented by a 1x29 vector.

Behavior of curves with high pHES:
 Rise until peak ~ (t = 50 sec)
 Higher decrease when higher PH

Behavior of curves with low pHES:
 Rise until peak ~ (t = 50 sec)
 Slight decrease when higher PH (6.2-6.4) no decrease or even slight steady increase for very low

(6.0-6.1) PH; peak is at the final value

In all curves, the peak decided primarily by N and secondarily on ECS as we will see in chapter 5.3.

N for CIN 1 case is 1-4, for CIN 2 case is 5-8 and for CIN 3 case is 9+

Figure 2.2 Diffure Reflectance versus time for CIN cases

Bio-parameters Min Value Max Value step # of values
N 1 10 1 10

ECS 4*10-7 8*10-7 0.1*10-7 41
pHES 6 7 0.1 11
TP 7*10-10 18*10-10 0.5*10-10 23



Chapter 3 – Mathematical Background

3.1 Curve Matching Algorithms

In our thesis, one of the main tasks is to find the optimal way of comparing random curves to those of our
model  and accurately connect  them to  their  best  matches.  To do  that,  we used  several  curve  matching
algorithms.

Each algorithm calculates a metric and considers as best match the maximum or minimum metric value,
depending on the logic behind its construction. Each has advantages and disadvantages, scientific regions
and applications that strives on and is used most.  

The  two  elements  that  characterize  the  algorithms  for  our  purpose  are  the  quality  of  results  and  the
comparison speed. The first has to do with how relevant in reality the most similar curves to the original are,
which for this thesis ultimately is how close the bio-parameter combination of the random curve to its best
matches is. The second mainly depends on the algorithm complexity, however, some level of complexity is
essential  to  have  quality  in  the  results.  There  is  a  clear  tradeoff  between  those  two  criteria  for  the
performance evaluation of each metric.

We evaluated the following metrics:

1) Euclidean Distance

2) Pearson Correlation Coefficient

3) Cosine Distance

4) Adaptive Wiener Normalization (AWN)

5) Spectral Angle Mapper (SAM)

6) Spectral Correlation Mapper (SCM)

We will now briefly present some information about each algorithm.

Euclidean Distance

Formula:

Matlab Command: 

pED = norm(x-y);

Euclidean Distance is one of the most widely used metrics. Also known as L2 norm, it calculates distances
between vectors. It has a simple formula and is one of the fastest algorithms of its kind. It can be used as
reference to evaluate the speed of other metrics.



Pearson Correlation Coefficient

Formula:

Matlab Commands: 

C = cov(x,y); % returns a 2x2 matrix with 1,2 element being C_xy
pPCC = C(2) / (std(x)*std(y)); % C(2) = C(1,2) , std is standard deviation

Pearson Correlation Coefficient considers the 2 vectors as random variables and the metric represents the
linear correlation between them. It takes values in space [-1,1]. Values close to 1 or -1, mean there is a strong
positive  or  negative  correlation  and  close  to  0  mean  no  correlation.  Similar  curves  should  be  highly
correlated.

Cosine Distance

Formula:

Matlab Command: 

pCOS = pdist([x;y],'cosine');

Cosine Distance or Cosine Similarity is connected to the dot product of two vectors which is:

The Matlab command calculating the metric, returns the value 1 – cos(x,y). If the vectors x and y are similar,
their angle is close to 0o and the cos(x,y) goes to 1 so the best match has its metric value close to 0 (if x = y
then metric equals to 0). 

Adaptive Wiener Normalization (AWN)

Matlab Command: 

a = 0.5; % parameter for AWN
xNorm = x./sum(x);
yNorm = y./sum(y);
pAWN = a*mean(abs(xNorm-yNorm))+(1-a)*max(abs(xNorm-yNorm));

AWN metric is related to spectral imaging field. To use AWN, one has to normalize the compared vectors.
This has the advantage of focusing on each vector shape rather than amplitude. The result of AWN is the
middle point between average and max absolute difference of those normalized vectors x and y. 



Spectral Angle Mapper

Formula:

Matlab Command: 

pSAM = acos ( dot (x,y) ./ (norm(x).*norm(y) ) );
% acos(x) = cos-1(x), the reverse function of cosine; 
% 'dot' produces the dot product shown above in Cosine Distance details. 

SAM algorithm is widely used when comparing spectra aiming to find the best similarities. It returns the
angle between the compared vectors x and y in radians with the lower metric value showing the higher
similarity.

Note: The result of SAM is effectively the same with that of Cosine Distance with a different translation of
the same finding. However, SAM is much faster because of the difference in Matlab commands used (the
simpler commands are executed faster).

Spectral Correlation Mapper (SCM)

Formula:

Matlab Commands:

a = x - mean(x);
b = y - mean(y);
pSCM = sum(a.*b)./(sqrt(sum(a.^2)).*sqrt(sum(b.^2)));

SCM calculates the Pearson's Correlation Coefficient, a metric analyzed above. Again, there is significant
difference in speed because of the different Matlab commands.



3.2 K-means Clustering

When facing problems like curve matching, clustering can be particularly helpful with reducing execution
time. The basic idea of clustering is to organize the model's dataset into teams/clusters and to compare the
random curves with a few of them, which are a small fraction of the total, rather than pointlessly wasting
time comparing curves that differ significantly. 

K-means is a clustering algorithm that has been extensively used in many scientific problems. It  has an
iterative logic and converges to the final cluster structure after a number of repetitions. Initially, K-means
executes the following steps, given a clustering algorithm and the number of clusters, K:

1) Randomly (or selectively if user has prior knowledge) pick K curves (or points in a different problem) and
consider them cluster centroids, meaning they represent their cluster in comparisons.

2) Compare all curves with every centroid using the selected clustering algorithm and find the closest match
according to that metric.

3) Place each curve into the cluster having the centroid with the closest match. After this step all curves
belong somewhere and the initial structure is complete.

4) Optimize the teams by choosing the optimal centroid from the set of curves belonging there. The aim is to
reduce the inner distance of the curves to their centroid, thus making each team more balanced and the
current structure stronger.

After these steps the first iteration is done. Now, K-means repeats steps 2, 3 and 4 with the new centroids.
After a number of iterations depending on the complexity and size of the problem, the repetition does not
lead to a better structure because K-means has converged to that final result.  

It  is  important  to  remember  that  K-means  may produce  different  structures  given  the  same  clustering
algorithm and number of clusters due to the random initialization. This is the reason there is need to repeat
the whole procedure 3 to 5 times for each K to safely determine the structure's strength and consequently the
optimal K.

There are multiple ways to evaluate the structure produced by K-means and determine optimal K. In this
work, we used Silhouette index and Elbow method.

Silhouette index [43]

The idea of silhouette index is to compare the similarity of each curve with curves of its assigned cluster and
the similarities with curves of other clusters. The Silhouette Index is defined as: 

S = (b-a) / max (a,b)

'a' is the average distance of the curve with the elements of the same cluster and 'b' is the minimum average
distance of all different clusters for that curve.

Each curve receives a value inside [-1,1] depending on how well placed it is. Higher value not only means
the curve is well placed but also that changing cluster for the curve would cause a poor placement. The mean
value of all curves is assigned to the structure and describes how well built it is.

In case of a low Silhouette index, improvement to structure's strength might  happen from increasing or
decreasing K.



Silhouette Index Structure Strength
0.71 – 1.0 A strong structure has been found
0.51 – 0.7 A reasonable structure has been found

0.26 – 0.50 The structure is weak and could be artificial. Try additional methods of data analysis
< 0.25 No substantial structure has been found

Table 3.1 Structure Strength given Silhouette Index

Elbow method [44] 

The idea of the Elbow method is  to estimate the optimal number of clusters by calculating the Sum of
Squared Error (SSE) of each curve from its centroid, for all clusters. SSE is defined as:

Ci is the centroid of cluster i. Low SSE means the cluster elements are close to their respective centroids and
thus, it is an indication for a strong structure.
 

As K increases, SSE decreases due to the fact that a higher number of clusters enables “smaller” clusters
having centroids continuously closer to the rest of cluster curves. The improvement of SSE also declines
until a point where increasing K improves the overall result very slightly. 

The SSE vs K plotted diagram has the shape of the elbow and the optimal point is right on the “edge” of the
elbow. That is the K value whose increase offers less from that point on.



3.3 Correlation and Decision Regions

Correlation

Theory says that when 2 random variables are strongly correlated, they tend to increase or decrease together
if  the  correlation is  highly positive,  or  one increases  as  the  other  decreases  if  there  is  highly negative
correlation between them. 

Mediocre  correlation  means  that  there  are  exceptions  to  that  rule  and  the  uncertainty  regarding  curve
behavior grows as correlation drops.

Figure 3.1 Shape of dataset points for various correlation values

To calculate the correlation coefficient between random variables X and Y, we should know the following
quantities:

μX and μY, which are the mean values of X and Y respectively

σX and σY, which are the variances of X and Y respectively

Correlation Coefficient is given by this formula:

E[ ] is the mean value of what is inside the brackets.

Decision Regions

I came across the way of estimating through Decision Regions in the Telecommunications field. The basic
problem they are involved in, is the following:

There are 2 random variables, possibly with a different value space. One has a known distribution (or we
make  an  assumption  about  it)  and  we  also  know that  the  2  random variables  are  linked;  usually  one
represents the input and the other one the output.

Decision Regions method is about estimating the values of the unknown random variable for every value of
the known variable. To do that efficiently, we want to maximize the probability of being correct. In the
following equation, we decide the value of random variable y, given x; it is the y value that has the highest
chance of being correct amongst all y values, given x:



Xy = { x | p(y|x) ≥ p(y′|x) for all y′ ≠ y}. 

And here is how to combine what we presented above:

We can list some statistics regarding curve behavior (amplitude, rhythm of increase/decrease, integral) and
calculate the statistic values for each curve. As a result, numerous random variables are formed (one for each
statistic) and by measuring the correlation coefficient of them to the bio-parameters, we can see if there is a
connection. 

If there is a high correlation between a random variable representing a curve statistic and a bio-parameter, we
can gradually create a test that will eventually be splitting the value space of the selected statistic into regions
and associate each region with an estimated bio-parameter value.

Finally,  for  every curve we can calculate the value of that  statistic and immediately decide on the bio-
parameter with the prediction accuracy increasing with the strength of the correlation.



Chapter 4 – Methodology

4.1 Evaluating Algorithms

First task of the project is to determine the best curve matching algorithm for future curve comparing. As
mentioned earlier, each curve is a 1x29 vector that has unique association with a set of 4 bio-parameters.

Our target behind curve matching is to estimate the bio-parameters of the sample curve accurately. Therefore,
we  define  the  best  algorithm as  the  one  showing as  most  similar  curves,  those  that  have  similar  bio-
parameters. Furthermore, the task must be executed at a rapid pace, so speed is another important factor
along estimation accuracy.

Each algorithm is tested using the same procedure. Firstly we choose 1,000 random curves, that is, almost
1% of dataset; they are to be tested by all algorithms. Then we compare each curve with the whole dataset,
storing values of similarity in a vector and measuring execution time. Then we sort the vector concurrently
with a vector of initial positions to keep track of the reference of similarity values to the original curves. 

To proceed, we check if the algorithm rates closer matches with lower or higher metric value and we pick
curves from the beginning or the end of the sorted vector accordingly. Normally, the closest match is the
same curve as the original as the sample curves exist in the compared set of curves. We can pick any number
of similar curves we want; we choose the top 20 most similar curves.

Now it’s time to check how accurate the results are. We compare each of the 4 bio-parameters of the sample
curve to those of the top 20 and calculate accuracy percentages. Highest score would be 100%, 20,000 /
20,000, because there are 1000 sample curves and 20 most similar to each one. Lowest score would be 5%,
1000 / 20,000, because each top 20 contains at least the original sample curve.

In the end, we calculate accuracy for each bio-parameter “by majority” when at least 11 of the 20 most
similar  curves  have the correct  parameter  value and by “strong majority”  for  14 correct  out  of  20 and
execution time for each algorithm. The most accurate and fast algorithm is declared the most suitable for the
problem. 



4.2 K-means Clustering

Now the task is to use K-means to cluster the dataset and see how that affects the bio-parameter estimation
accuracy. It is well known that clustering improves execution speed decisively because each sample curve
will be compared to a fraction of the dataset. 

To begin with, we choose Euclidean Distance and Cosine Distance as algorithms with whom to cluster the
dataset. Then we perform clustering on the dataset for various K values and create different structures each
time.

It is important to remember from Chapter 3.2 that the K-means clustering command might produce different
structures and thus we need to repeat the clustering 3-5 times for each K to be certain about the value of a
structure with K clusters.
 
The  structures  have  different  “strength”;  that  is  how well  placed  in  clusters  the  curves  are.  The  more
strength, the more successful the clustering is. To rate the structure’s strength, we use the silhouette index
metric and compare the values for each structure to determine the optimal K.

To continue, we handle a second way to estimate the best number of clusters, the elbow method. In each
structure we sum the distance of each curve from the cluster centroid for every cluster. As K increases, the
sum decreases, but with a slower rhythm. We use theory behind the elbow method; we plot the diagram of
distances for each K and a second estimation of optimal number of clusters is ready.

Finally, we test the impact of clustering with the most practical way. We compare curve matching results
when the dataset is clustered vs. when non-clustered. When there is no clustering, we use the methodology
described in Chapter 4.1. If clustering has been performed, we initially compare each of the 1,000 sample
curves to every centroid curve. Then we compare the sample curve with the collection of curves that belong
to the team having the most similar centroid curve.

Again we choose the top 20 most similar curves, however this time they all  belong to the same cluster.
Finally, we compare the quality of the results of each case; if there is no difference, then clustering has only
positive impact on overall performance.  

The procedure was repeated a second time with 5,000 other samples to ascertain the findings. 



4.3 Creating Decision Regions

The process of creating Decision Regions starts like this:

Initially we study theory behind the curve prediction model and focus on curve features and how they are
affected by the bio-parameters. Then we make a list of statistics related with the DR vs. time curves.

We continue by editing and extending the Bio-parameter vector which is initially 103,730x4; we add extra
dimensions, one for every statistic we have chosen. In those dimensions we assign values that are calculated
for each curve. For instance, let us assume 5 th dimension refers to max curve value. We calculate the peak
value of curve x and store it in position x,5. The calculations continue for all curves and all statistics that are
associated with the new dimensions. After that, we have created the new Parameter vector whose dimensions
are 103,730 x (4 + number of statistics).

Then we proceed by calculating the matrix containing all correlations between random variables. This is
done by using the following Matlab command [45]: 

R = corrcoef (A) % returns the matrix of correlation coefficients for A, where the columns of A represent
random variables and the rows represent observations. 

The output matrix is rectangular with dimensions (4 + number of statistics) x (4 + number of statistics) and
its  elements show how strong the correlation between bio-parameters and statistics is.  If there is  strong
correlation between a bio-parameter and a statistic, we can continue by splitting the dataset into teams with
curves having that bio-parameter as common value.   

Next step is measuring minimum, maximum and average statistics for each team. This is followed by the
optimization  part.  Here,  we  begin  by splitting  the  value  space  of  the  statistic,  making  initial  heuristic
Decision Regions. Then we receive each dataset curve and calculate its statistic value. We decide on what the
bio-parameter value should be based on the current Decision Region and see how accurate we are for every
curve.

Then we automatically move frontiers between regions and test every time if we are improving or not. The
plan is to improve the accuracy by every single change and in the end we will have the optimal Decision
Regions that  offer maximum accuracy.  This iterative optimization changes in every repetition almost all
frontier values and eventually will end when there is no room for further improvement.  

We followed the above methodology selecting the statistic  max value / 28th value which was found to be
strongly correlated to bio-parameter pHES. After defining the initial Decision Regions heuristically, we kept
improving them for many iterations and slowly the frontier values converged into the final ones. 

Later, we calculated 2 matrices; one is the distribution of probability of estimation given the true value and
the other and more useful, the probability of distribution of true values given the estimation of the test which
is based on the Decision Regions. The later matrix determines which teams of curves are safely excluded
each time our test makes a decision. This helps substantially with reducing compared dataset as we will see
later in Chapter 5.3.



Chapter 5 – Results

5.1 Algorithmic Performance Evaluation

We obtained the following results with regard to (relative) speed (CPU is an i5 @ 3.4GHz):

Algorithm Comparisons per second Full dataset curve comparison
(103730 curves)

Euclidean 791,832 0.131 sec

Pearson 8,793 11.80 sec

AWN 60,029 1.727 sec

Cosine 10,856 9.56 sec

SAM 76,610 1.354 sec

SCM 30,172 3.438 sec

Table 5.1 Curve comparison speed per algorithm

As expected, the simple Euclidean Distance is significantly faster than the other algorithms. Spectral Angle
Mapper (SAM) is next, followed by Adaptive Wiener Normalization (AWN). The rest of them lack in speed
for this speed-demanding procedure / application. 

We obtained the following results with regard to the bio-parameter values of top 20 most similar curves:

Algorithm -3 or less -2 -1 Correct +1 +2 +3 or more

Euclidean 1,29% 4,55% 16,54% 56,86% 15,42% 4,29% 1,07%

Pearson 0,03% 0,33% 4,36% 91,82% 3,40% 0,06% 0%

AWN 0,02% 0,36% 5,05% 90,54% 3,89% 0,16% 0%

Cosine 0,03% 0,32% 4,06% 92,36% 3,19% 0,07% 0%

SAM 0,03% 0,32% 4,06% 92,36% 3,19% 0,07% 0%

SCM 0,03% 0,33% 4,36% 91,82% 3,40% 0,06% 0%

Table 5.2 Bio-parameter N of top20 curves, 1000 samples

Difference -16,7%
or less

-15%..
-11,67%

-10% …
-6,67%

-5% ...
-1,67%

Correct +1,67%...
+5%

+6,67%...
+10%

+11,67%...+15% +16,7%
or more

Algorithm -1.0 or
less

-0.9...-
0.7

-0.6...-
0.4

-0.3...-
0.1

Correct +0.1...+0.3 +0.4...+0.6 +0.7...+0.9 +1.0 or
more

Euclidean 15,10% 4,64% 3,69% 17,74% 15,57% 18,27% 3,93% 5,04% 16,02%

Pearson 9,67% 10,52% 14,37% 14,90% 5,61% 14,63% 13,75% 9,41% 7,15%

AWN 8,87% 10,26% 14,52% 15,24% 5,69% 15,18% 13,98% 9,26% 7,00%

Cosine 9,75% 10,71% 14,09% 14,63% 5,55% 14,49% 13,62% 9,70% 7,46%

SAM 9,75% 10,71% 14,09% 14,63% 5,55% 14,49% 13,62% 9,70% 7,46%

SCM 9,67% 10,52% 14,37% 14,90% 5,61% 14,63% 13,75% 9,41% 7,15%

Table 5.3 Bio-parameter ECS of top20 curves, 1000 samples



As we explained in Chapter 4, the procedure was to find the closest 20 curves from the dataset to the sample
curve. Those curves must have something different to the original as every bio-parameter combination is
unique. This means that when estimating the four parameter combination, one of them must be inaccurate so
that the other 3 parameter estimations are close to perfection. 

Undoubtedly, all the algorithms consider ECS to be the least impactful to the curve’s shape and thus they
choose curves with same bio-parameters N, PH and TP. 5% correct ECS is the lowest possible percentage for
the values top 20 most similar curves as every algorithm finds the original curve as the perfect match.

Difference -4,65% or
less

-3,1% -1,55% Correct +1,55% +3,1% +4,65% or
more

Algorithm -0.3 or less -0.2 -0.1 Correct +0.1 +0.2 +0.3 or more

Euclidean 0,47% 1,44% 7,91% 80,85% 7,75% 0,98% 0,60%

Pearson 0% 0% 0,08% 99,79% 0,12% 0,01% 0%

AWN 0% 0% 0,31% 99,46% 0,22% 0,01% 0%

Cosine 0% 0% 0,09% 99,75% 0,15% 0,01% 0%

SAM 0% 0% 0,09% 99,75% 0,15% 0,01% 0%

SCM 0% 0% 0,08% 99,79% 0,12% 0,01% 0%

Table 5.4 Bio-parameter pH of top20 curves, 1000 samples

We know from theory and is confirmed later in table 5.17, that pHES strongly affects the DR vs. time curve’s
derivative after the peak. 

All the algorithms find most similar curves, the ones having the pH and N the same as the original sample
curve, sensing correctly that those 2 parameters affects the most the shape of the curves.

 Difference -28% or
less

-20% or
-24%

-12% or
-16%

-4% or
-8%

Correct +4% or
+8%

+12% or
+16%

+20% or
+24%

+28% or
more

Algorithm -3.5 or
less

-2.5 or
-3.0

-1.5 or
-2.0

-0.5 or
-1.0

Correct +0.5 or
+1.0

+1.5 or
+2.0

+2.5 or
+3.0

+3.5 or
more

Euclidean 11,47% 6,82% 10,20% 16,30% 12,74% 15,72% 9,63% 6,22% 10,90%

Pearson 1,49% 1,03% 1,45% 5,91% 82,30% 4,74% 1,17% 0,86% 1,05%

AWN 2,70% 1,32% 1,17% 6,64% 79,35% 4,79% 1,02% 1,07% 1,94%

Cosine 1,58% 1,00% 1,27% 5,74% 82,82% 4,46% 1,09% 0,90% 1,14%

SAM 1,58% 1,00% 1,27% 5,74% 82,82% 4,46% 1,09% 0,90% 1,14%

SCM 1,49% 1,03% 1,45% 5,91% 82,30% 4,74% 1,17% 0,86% 1,05%

Table 5.5 Bio-parameter TP of top20 curves, 1000 samples

The tables 5.2 – 5.5 show that the algorithms will estimate N PH and TP with a high chance of being right
and their estimation on ECS is purely irrelevant.

We chose Spectral Angle Mapper (SAM) as the best algorithm in terms of accuracy and speed combination
and proceeded with determining the estimation accuracies for each bio-parameter:



Majority correct (11/20 or more) Big Majority Correct (14/20 or more)

97,30% 90,60%

Table 5.6 Estimation of bio-parameter N (#dysplastic layers), top 20 curves, 1000 samples

Majority correct (11/20 or more) Big Majority Correct (14/20 or more)

100% 99,80%

Table 5.7 Estimation of pHES, top 20 curves, 1000 samples

Majority correct (11/20 or more) Big Majority Correct (14/20 or more)

89,10% 76,10%

Table 5.8 Estimation of TP (Tissue's Porosity), top 20 curves, 1000 samples

Estimation of ECS (Extracellular Space) is meaningless, as we mentioned earlier.

We know from theory and is  confirmed  in  table  5.17,  that  N strongly affects  the  DR vs  time  curve’s
maximum amplitude.

Every algorithm apart  from Euclidean  Distance  performs  well  in  estimating  N problem.  That  happens
because the other algorithms are more suitable for the curve features that include varying derivatives. Their
better accuracy is a tradeoff for their lower speed. 

The algorithms, except Euclidean Distance, estimated Tissue’s Porosity with a high accuracy, around 90%.

Algorithm Speed N estimation ECS
estimation

pH
estimation

TP
estimation

Usefulness

Euclidean Excellent Low Bad Good Bad Some
SAM Good Excellent Bad Excellent Good High (Best)
AWN Good Excellent Bad Excellent Good High
SCM Low Excellent Bad Excellent Good Mediocre
Cosine Bad Excellent Bad Excellent Good Low
Pearson Bad Excellent Bad Excellent Good Low

Table 5.9 Assessment of overall algorithmic performance

Conclusions:

The optimal combination of accuracy and speed is given by Spectral Angle Mapper (SAM) due to the high
performance and the best speed amongst the other high accuracy algorithms.

Adaptive Wiener Normalization was a bit worse than SAM in every estimation category, and was 21.6%
slower in curve comparison.

Spectral Correlation Mapper, Cosine Distance and Pearson Correlation do not improve the bio-parameter
estimation so they are left aside due to their low speed caused by their higher algorithmic complexity.

Euclidean Distance’s comparison speed (10 times more than SAM) might prove useful for an earlier stage,
when deciding if there is need for further examining an experimental curve. That is left for future work.  



5.2 K-means Structure Evaluation

Silhouette Index

We used Silhouette index to rate the clustered structure and to determine the best K, the number of clusters.
We obtained the following results:

Euclidean Distance: 

Figure 5.1 Silhouette Index for Euclidean Distance Clustering

Cosine Distance:

Figure 5.2 Silhouette Index for Cosine Distance Clustering

Silhouette Index Structure Strength
0.71 – 1.0 A strong structure has been found
0.51 – 0.7 A reasonable structure has been found

0.26 – 0.50 The structure is weak and could be artificial. Try additional methods of data analysis
< 0.25 No substantial structure has been found

Table 5.10 Structure Strength given Silhouette Index

 

According to the silhouette index metric that rates the structures produced by K-means clustering for various
K, no structure was rated “strong” when Euclidean and Cosine distance were used.



Elbow method

We used Elbow method to determine the best number of clusters and we obtained the following results:

Euclidean Distance:

Figure 5.3 SSE for K-means Clustering using Euclidean Distance

According to Elbow metric, Euclidean Distance optimal K equals to 10-12. 

Clustering with Euclidean Distance is often efficient at low number of clusters (8-12). 

Cosine Distance:

Figure 5.4 SSE for K-means Clustering using Cosine Distance

According to the Elbow metric, Cosine Distance optimal K equals to 25-30. 

Clustering using Cosine Distance or an algorithm focused on correlation of curve features, will normally be
efficient at higher number of clusters because of the more complex nature of the clustering algorithm.

Another factor that makes higher K more suitable is the 6 digit number of curves. 



We ommited clustering using Euclidean Distance because of the low estimation accuracy of the algorithm
and we calculated the accuracy of bio-parameter  estimation for  Cosine Distance clustering with several
number of clusters K. Curve matching is done by using Spectral Angle Mapper for higher speed, which is
equivalent to Cosine Distance (see chapter 3.1):

Number of Clusters K Majority correct (11/20 or more) Strong Majority Correct (14/20 or more)

1 (unclustered) 97,30% 90,60%

30 97,03% 89,80%

40 97,03% 89,80%

50 97,07% 90,23%

70 96,73% 89,67%

100 96,90% 89,63%

150 96,90% 89,80%

Table 5.11 Estimation of bio-parameter N (#dysplastic layers), top 20 curves, 1000 samples

Number of Clusters K Majority correct (11/20 or more) Strong Majority Correct (14/20 or more)

1 (unclustered) 100% 99,80%

30 100% 99,80%

40 100% 99,67%

50 99,87% 99,63%

70 99,90% 99,70%

100 99,90% 99,70%

150 99,60% 99,20%

Table 5.12 Estimation of pHES, top 20 curves, 1000 samples

Number of Clusters K Majority correct (11/20 or more) Strong Majority Correct (14/20 or more)

1 (unclustered) 89,10% 76,10%

30 88,80% 75,10%

40 88,50% 74,80%

50 88,40% 75,20%

70 88,13% 74,73%

100 87,83% 74,40%

150 88,40% 74,60%

Table 5.13 Estimation of TP (Tissue's Porosity), top 20 curves, 1000 samples

After confirming that the clustering using cosine distance is beneficial, we repeated the procedure for 5000
other samples:



Number of Clusters K Majority correct (11/20 or more) Strong Majority Correct (14/20 or more)

30 97,20% 89,26%

40 96,98% 88,90%

50 97,20% 89,34%

70 96,92% 88,98%

100 96,86% 89,28%

150 96,98% 88,74%

Table 5.14 Estimation of bio-parameter N (#dysplastic layers), top 20 curves, 5000 samples

Number of Clusters K Majority correct (11/20 or more) Strong Majority Correct (14/20 or more)

30 99,90% 99,80%

40 99,94% 99,78%

50 99,90% 99,72%

70 99,92% 99,72%

100 99,94% 99,78%

150 99,86% 99,58%

Table 5.15 Estimation of pHES, top 20 curves, 5000 samples

Number of Clusters K Majority correct (11/20 or more) Strong Majority Correct (14/20 or more)

30 90,16% 75,44%

40 88,82% 75,10%

50 89,94% 75,28%

70 89,68% 74,88%

100 89,64% 75,20%

150 89,66% 74,50%

Table 5.16 Estimation of TP (Tissue's Porosity), top 20 curves, 5000 samples

We see that we can cluster the dataset with Cosine Distance using high number of K; for instance 50-100,
without trading much of the upper bound of estimation accuracy.

This is normal because there are 11 different pH teams and 10 different N teams and SAM thinks they are
well separated; each cluster may have unique pH and N values, 11*10 = 110 clusters. For higher K values,
bio-parameter estimation becomes less reliable.

Conclusion:

For this application, K-means clustering has tremendous beneficial impact by lowering procedure time of 
curve comparing because of leaving a 1/K fraction to be compared. This substantial improvement is done 
without affecting much the estimation quality.



5.3 Bio-parameter Estimation Accuracy through Decision Regions

We obtained the following results regarding correlation between curve statistics and Bio-parameters:

Correlation with 5) Correlation with 6) Correlation with 7)

1) N 0,0454 0,8716 0,8484

2) ECS 0,0016 0,3810 0,3807

3) PHES 0,8280 0,0288 0,1044

4) TP 0,0850 0,1604 0,1875

5) max value / 28th value 1

6) max value 1

7) integral 1

Table 5.17 Correlation of Curve Statistics and Bio-parameters

The measured correlations are strong enough to proceed as the following table suggests:

Random Variable Correlation Coefficient Description

< 0,3 little if any (linear) correlation

0,3 – 0,5 low correlation

0,5 – 0,7 moderate correlation

0,7 – 0,9 high correlation

0,9 – 1,0 very high correlation

Table 5.18 Description of Correlation Strength given Coefficient

We continued the analysis selecting the statistic max value / 28th value which is strongly correlated to pH
and shows how much the curve’s amplitude decreases after its peak.

We continued by splitting the dataset into teams according to methodology, obtaining the following results:

Team’s 
pH Value

Team’s Minimum Statistic Team’s Maximum
Statistic

Team’s Average Statistic

6,0 1 1 1

6,1 1 1,0100 1,0010

6,2 1 1,0415 1,0146

6,3 1 1,0942 1,0483

6,4 1 1,1728 1,1025

6,5 1 1,2789 1,1781

6,6 1 1,4202 1,2765

6,7 1,0015 1,6015 1,4008

6,8 1,0155 1,8217 1,5569

6,9 1,0440 2,1050 1,7510

7,0 1,0868 2,4692 1,9900

Table 5.19 Statistic Values of each Curve Team



By using optimization that was described in Chapter 4.3, we obtained the following splitting of value space
into Decision Regions:

Statistic (max / 28th) Value Region pH Value Decision

1 6,0

1,0000001 – 1,007717 6,1

1,007718 – 1,040007 6,2

1,040008 – 1,093706 6,3

1,093707 – 1,171033 6,4

1,171034 – 1,274265 6,5

1,274266 – 1,411475 6,6

1,411476 – 1,588933 6,7

1,588934 – 1,805585 6,8

1,805586 – 2,086017 6,9

2,086018 – 2,4693 7,0

Table 5.20 pH Decision Regions

Figure 5.5 Statistic Value Distribution of each Team and pH Decision Regions



We obtained the following results in accuracy for instant pH estimation using the Decision Regions:

Real Value
minus 
Estimated Value

-0.1

(correct)

0 +0.1 +0.2 +0.3 +0.4 +0.5

Percentages 0,57% 59,04% 20,76% 8,73% 4,82% 2,91% 2,33%

Table 5.21 Accuracy of pH estimation with Decision Regions

Method Advantages:

 Highest estimation speed.
 Will not undersell the situation. Estimated value is almost the lower bound.
 Can be extended as a method by combining statistics.

Method Disadvantages:

 In rare cases, the estimation might be far off the real value.

In the following chart we see the distribution of real values for every estimated value from the test:

Estimated
Values

Real Values

6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

6.0 42,13% 27,01% 13,31% 7,88% 4,43% 3,53% 1,72%

6.1 56,95% 16,06% 10,04% 8,87% 1,94% 5,14% 1,00%

6.2 1,51% 64,39% 14,10% 5,78% 4,21% 2,47% 6,20% 1,35%

6.3 0,31% 64,37% 15,65% 7,76% 2,81% 3,05% 4,20% 1,41% 0,45%

6.4 0,05% 63,92% 15,74% 8,39% 3,95% 3,74% 2,76% 1,45%

6.5 0,20% 63,58% 17,13% 7,14% 4,94% 5,29% 1,72%

6.6 0,77% 58,48% 21,07% 8,04% 5,82% 5,83%

6.7 0,83% 56,88% 24,18% 10,63% 7,49%

6.8 0,83% 59,57% 26,98% 12,62%

6.9 1,43% 66,33% 32,24%

7.0 1,96% 98,04%

Table 5.22 Distribution of Real Values for every Estimated Value



In the following chart we see the distribution of estimated values from the test for every real value: 

Real
Values

Estimated Values

6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

6.0 100%

6.1 64,11% 34,52% 1,37%

6.2 31,60% 9,73% 58,37% 0,30%

6.3 18,70% 6,09% 12,78% 62,39% 0,05%

6.4 10,51% 5,38% 5,24% 15,16% 63,51% 0,20%

6.5 8,39% 1,18% 3,82% 7,52% 15,64% 62,64% 0,82%

6.6 4,07% 3,12% 2,24% 2,73% 8,34% 16,87% 61,81% 0,83%

6.7 0,60% 5,62% 2,96% 3,92% 7,03% 22,27% 56,86% 0,73%

6.8 1,22% 4,07% 3,71% 4,87% 8,49% 24,17% 52,41% 1,06%

6.9 1,37% 2,75% 5,21% 6,15% 10,63% 23,73% 49,22% 0,95%

7.0 0,43% 1,44% 1,70% 6,16% 7,49% 11,10% 23,92% 47,75%

Table 5.23 Distribution of Estimated Values for every Real Value



5.4 Improvement on Comparing Procedure

We now turn our attention to what knowledge Table 5.14 offers. Basically, it says that for each pH estimated
value, some teams are automatically excluded from the similarity search. For instance, if the prediction is
6.7, teams with 6.0 to 6.5 are excluded and the search will follow the path where the probabilities of finding
the correct team are higher. 

It is important to note that, as we saw in chapter 5.1, the good algorithms show all most similar curves
having the same pH value as the original. This means, after adopting the knowledge from the Correlation
into Decision Regions idea, we only need to determine the correct team and the most similar curves will
all belong there!

Now we quantify the improvement from this knowledge using the number from table 5.14. Each team has 
9430 curves. We will calculate how many teams we need to check every time:

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

42,13% 9430 3973

27,01% 18860 5094

13,31% 28290 3765

7,88% 37730 2972

4,43% 47150 2089

3,53% 56580 1997

1,72% 66010 1135

Total: 21026,07

Table 5.24 Average Number of Curve Comparisons for Estimated pH = 6.0

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

56,95% 9430 5370

16,06% 18860 3029

10,04% 28290 2840

8,87% 37730 3346

5,14% 47150 2424

1,94% 56580 1098

1,00% 66010 660

Total: 18766,64

Table 5.25 Average Number of Curve Comparisons for Estimated pH = 6.1



Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

64,39% 9430 6072

14,10% 18860 2659

6,20% 28290 1754

5,78% 37730 2180

4,21% 47150 1985

2,47% 56580 1397

1,51% 66010 997

1,35% 75440 1018

Total: 18063,17

Table 5.26 Average Number of Curve Comparisons for Estimated pH = 6.2

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

64,37% 9430 3973

15,65% 18860 5094

7,76% 28290 3765

4,20% 37730 2972

3,05% 47150 2089

2,81% 56580 1997

1,41% 66010 1135

0,45% 75440 339

0,31% 84870 263

Total: 17362,52

Table 5.27 Average Number of Curve Comparisons for Estimated pH = 6.3

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

63,92% 9430 6028

15,74% 18860 2969

8,39% 28290 2374

3,95% 37730 1490

3,74% 47150 1763

2,76% 56580 1562

1,45% 66010 957

0,05% 75440 38

Total: 17179,57

Table 5.28 Average Number of Curve Comparisons for Estimated pH = 6.4



Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

63,58% 9430 5996

17,13% 18860 3231

7,14% 28290 2020

5,29% 37730 1995

4,94% 47150 2329

1,72% 56580 973

0,20% 66010 132

Total: 16676,01

Table 5.29 Average Number of Curve Comparisons for Estimated pH = 6.5

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

58,48% 9430 5515

21,07% 18860 3974

8,04% 28290 2275

5,83% 37730 2199

5,82% 47150 2744

0,77% 56580 436

Total: 17141,85

Table 5.30 Average Number of Curve Comparisons for Estimated pH = 6.6

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

56,88% 9430 5364

24,18% 18860 4560

10,63% 28290 3007

7,49% 37730 2825

0,83% 47150 391

Total: 16147,93

Table 5.31 Average Number of Curve Comparisons for Estimated pH = 6.7



Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

59,57% 9430 5617

26,98% 18860 5088

12,62% 28290 3570

0,83% 37730 313

Total: 14589,15

Table 5.32 Average Number of Curve Comparisons for Estimated pH = 6.8

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

66,33% 9430 6255

32,24% 18860 6080

1,43% 28290 405

Total: 12739,93

Table 5.33 Average Number of Curve Comparisons for Estimated pH = 6.9

Probability of Correct
Estimation

Number of Curve
Comparisons

Average Comparisons
(Number * Probability)

98,04% 9430 9245

1,96% 18860 370

Total: 9614,83

Table 5.34 Average Number of Curve Comparisons for Estimated pH = 7.0

Then we calculate the probability the test estimates each value to find average number of comparisons:

Estimated Value Estimation Probability

6.0 21,58%

6.1 5,51%

6.2 8,24%

6.3 8,81%

6.4 9,03%

6.5 8,96%

6.6 9,61%

6.7 9,09%

6.8 8,00%

6.9 6,75%

7.0 4,43%

Table 5.35 Distribution of Test Estimated Values for every Real Value



We see that the test estimates pH value equal to 6.0 far more often than the rest values because many curves
have their statistic equal to 1, meaning they never decline and their peak is right at the final value.

Estimated Value Estimation
Probability

Total Average Number of
Comparisons per Estimated Value

Weighted Average
Number of Comparisons

6.0 21,58% 21026,07 4537,43

6.1 5,51% 18766,64 1034,04

6.2 8,24% 18063,16 1488,40

6.3 8,81% 17362,52 1529,64

6.4 9,03% 17179,57 1551,32

6.5 8,96% 16,676,01 1494,17

6.6 9,61% 17141,85 1647,33

6.7 9,09% 16147,93 1467,85

6.8 8,00% 14589,15 1167,13

6.9 6,75% 12739,93 859,95

7.0 4,43% 9614,83 425,94

Total: 17203,19

Table 5.36 General Average Number of Curve Comparisons

Conclusion: 

If we search for the best curve similarities on the whole dataset, we need 103730 comparisons. If we take this
test into account and use the knowledge it offers, we need on average 17203 comparisons which represent a
mere 16,58% of the dataset (83,42% less comparisons).

That improvement happens because we search with specific order (higher probability of appearing decides
the order) and we also exclude teams with PHES with 0 probability of appearing.

If we smartly pick the correct team with few comparisons, we might achieve the lower bound of number of
comparisons of this method which is 9430 plus the few extra comparisons to determine the correct team. To
do that we need tested similarity thresholds to ensure the quality of the result.

Then we can also optimize the comparisons inside the team by first choosing smartly the correct space value
of bio-parameter N and possibly lower the comparisons into around 2000 in total (1886 is the number of
curves with 2 different N values inside a team, so as not to miss something) in total which would be the best
achievable target for this procedure.



5.5 Use Cases – Indicative Timings

We  will  now  present  statistics  about  execution  times  for  the  predefined  procedures  /  use  cases  and
estimations for more generic future procedures.

We studied the case in which we need to compare a sample curve and efficiently, both in accuracy and speed,
determine it's bio-parameters by listing the most similar curves to our sample. We suggested two ways to
improve this procedure and we will now measure and compare them.

Method 1:

Use clustering on the dataset with Cosine Distance (we know it is effectively the same with Spectral Angle
Mapper which is the one we consider best for curve comparison regarding this problem). The sample curve
is compared with the team having the most similar centroid to that curve. 

Depending of number or clusters K, the procedure becomes faster. For high K, the accuracy declines as we
showed in Chapter 5.2. We also showed there that,  for cosine distance, picking a high K value without
trading the speed gain to accuracy loss is feasible, for instance K = 50.

Every curve is compared with approximately K + 103730 / K curves = 50 + 103730 / 50 = 2075 comparisons

Method 2:

Alternatively, we showed we can use what correlation and decision regions combination can offer and lower
the number of comparisons. Unoptimized result is 17200 comparisons on average while estimated feasible
lower bound is 2000 comparisons per curve.

Relative (to processor and programming enviroment) comparison speed of SAM is 76610 comparisons per
second. So the time required to perform the procedure for a single sample curve for each method is:

Method 1 : 2075 / 76610 = 27,1 ms
Method 2 (unoptimized, current upper bound) = 17200 / 76610 = 224,5 ms
Method 2 (optimized, estimated lower bound) = 2000 / 76610 = 26,1 ms

Generic Procedure

What we analyzed before is just a part of the big picture of the general problem. When we deal with the full
problem, estimating bio-parameters for all the cervix area, we just need to calculate efficient how many little
one curve problems we have to solve. We will try to analyze future optimizations and estimate the execution
time of the full problem. We consider as input a future full HD DySIS Map image (1920x1080 = 2,073,600
pixels = curves). 

Initially we may use euclidean distance and quickly exclude around 95% of the curves as areas of no interest.
This requires a T1 execution time. To continue, in the interesting areas we can do a sampling; only in case
future work proves no critical information is lost. That may be true if we assume that little areas very close to
each other have the same bio-parameters That sampling may reduce the 5% of the curves left to 1% of the
total number of curves.

Then we have 2,073,600 * 1% = 20,736 curves to compare. By method 1 we need 20,736 * 27.1 ms = 561.5
sec, by method 2 unoptimized, we need 20,736 * 224.5 ms = 4655 sec and by method 2 optimized, we need
20,736 * 26.1 ms = 541.2 sec. 

That can be further improved with the use of GPUs. Clearly, this application has the potential to run in real
time.



Chapter 6 – Epilogue

6.1 Summary

This thesis was aimed at exploring possibilities of estimating cervical bio-parameter from curves produced
during acetowhitening phenomenon. 

Although the analysis is concerning only theoretical model curves, we are pretty confident by the results we
demonstrated in the algorithmic evaluation, that parameter estimation can be done accurately and, with some
future improvements, in real time. Spectral Angle Mapper (SAM) offers the best combination of quality and
speed for this problem.

In addition, the results from clustering are promising for further performance optimization.   

Finally,  the  problem handling  with  decision regions offered  worthy results  showing the potential  many
interesting scientific methods have in this innovative topic.

6.2 Future work

This rich area/field of research has a lot of interesting dimensions and multiple problems to focus on in the
future. Some of them are:

 Testing procedure with experimental data.

 Finding a cutoff regarding DR curves for healthy/unimportant areas, possibly by using the speed of
Euclidean Distance.

 Estimating % of spatial reduction for the cervix area. Close pixels should have same bio-parameters
and produce exactly the same curves and there is no need to test them all especially in the absence of
abnormalities.

 Calculating speed acceleration when using GPUs (helps substantially with vectors).
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