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Evyaplotieg

[Mpata am’ 6Aa, BEA® va evxaploTio® tov emMPAENOVIO TNG SITAOHATIKNG €Pyaciag Hov, K.
T'ewpylo Ztavpakakn, ya vy moAvTiun forbeia ko kaBodrynom touv Katd t SidpKelx NG SOLAELNG
pov. Emiong, elpol evyvopwv ota vmoAoma pEAN NG €SETAOTIKNG EMTPOMNG TNG OSUTAWHOTIKIG
epyaoiag pov, tov K. Zepfakn MianA, kabnyntm HMMY ko t Ap. Zepyaxn EAevBepia, péhog EAILI,
Yl TNV TIPOCEKTIKT] AVAYV®OT] TNG EPYNCING HOL Kol Yl TG TOAVTIEG LTIOSEIEELG TOVG,.

Ba NBeAa emiong va evxaploTonm tov vroyneo Sidaktopa k. MmAaldkn Kwvotavtivo, o
0TI010G POV TIXPOXWPTOE To SESOPEVA KATAVAAMOTG NAEKTPIKNG €VEPYELNG, HE KabBodrynoe pe Tig
OLHPOVAEG TOL KaBOAN TN SApPKELX TNG €PELVAG Kol pe PorBnoe va QMOKTNO® M EIKOVA YlX TO
OLUVOAIKO TpOPANUa. H epmelpia Tov AV OTNV AVIXVELOT] PEVHOTOKAOTIG KOl Ol EPEVVITIKEG
epyaoieg Tov Mave oto BEpA, amodeiyBnKav KATHAVTIKEG Yo TNV 0AOKAT|P®ON QUTHG TG SUTA®HATIKIG.

[Mave o’ 0Aa, elpal EDYVOH®V GTOLE YOVEIG HOL, Y& TNV OAOYLXN QYQTI KOl LTTOCTHPLEN TOLG
OAX VTG TA XPOVIA. APIEPOVK AT TNV EPYATIA GTNV UNTEPA OV KA1 OTOV TIATEPX HOV.



Abstract

The main issue for which we have written this thesis is non-technical losses detection in a smart
electrical system. With the implementation of data mining techniques for analyzing the electricity
consumption patterns of consumers, we identify the illegal consumers based on irregularities in their
consumption data.

Distribution of electricity involves significant Technical Losses (TL) as well as Non-Technical
Losses (NTL). Illegal consumption of electricity or electricity theft constitutes a major part of NTL.
This thesis presents four different algorithmic approaches which are used to detect abnormalities in the
received energy consumption readings.

First of all, we gathered the energy consumption data, taken from a real smart grid network in
Ireland [50] and prepared them for each method. Applying features, normalization techniques and
principal component analysis for the dimensional reduction of smart meter readings, we managed to
adjust the energy consumption data to a better form to work with. Then we tested the five algorithmic
methods in order to classify the consumers to legal or illegal.

The tools that used in this thesis in order to create neural networks for the classification of
illegal and legal consumers, were Fast Artificial Neural Network Library (FANN) and Deep Learning
Toolbox (or Neural Network Toolbox). For comparison, we implemented three more methods, which
were not based on neural networks. The first used the LibOPF library for the design of optimum-path
forest classifier, the second Support Vector Machines (SVM) and the third Neuro-Fuzzy Inference
Systems.

Finally, we discussed the results of the above electricity theft detection techniques we
experimented with. We observed that almost all the algorithmic methods which were used, gave us very
satisfactory results for the detection of irregularities in energy consumption data.



ITepiAnym

H pevpatokAonn eivon éva S1adedopévo @avopevo OX1 HOVO OTIG DTTOXVATITUKTEG XWPEG OAAG o€ OAO
TOV KOOP0. MeA€teg Selxvouv avénon twv MocooTaV KAOTG NAEKTPIKIG EVEPYELONG OE TIOAAEG XWPEG
KOl Ol OIKOVOHIKEG OMAOAEIEG Y1 OPIOHEVH CUOTNHATA €1val TOGO OTNUAVTIIKEG OOTE Ol EMYXEIPNOELG
KOWIG O@EAELOG va BploKovTon o€ XPNHOTOMOTOTIKN avaTapay. Zav anoteAeopa, dev eivor Suvatn N
Tpaygatonoinon enevéuoemy Yy T BeATi®on TOL GCLOTAPATOG Kol TNV TPOcONKn TPdobetng
SUVOHIKOTNTOG, OTIWG emiong dev eivan duvatn N KAALYM Savelwv Kot TANPOH®V KOl 0 KOTXVOA®TIG
QAVTIHETOTILEL aUENPEVH TEAT NAEKTPIKTG EVEPYELRG. AKOUT KOl O AMOSOTIKA GLOTHHOTA, Ol ATTOAELEG
NAEKTPIKNG EVEPYELNG AOY® KAOTITG, HTIOPOVV VO ATIOQEPOLY EKATOHHUPIX SOAAPLA €TNOIWG O€ YUHEVA
¢goda.

Ta peAhoviikd €§umva diktua Ba mpémel va embei§ovv KaADTEpT €MONTEIX 0€ SIAPOPOLG TIAPAYOVTES
ot Siktua Stavopng, va avénoovy TNV A&lOMOTIH TOLG, TNV €LEAISIX TOLG KOL VO HEIOOOLV TIG
OMOAELEG PETOQOPAG Kol Otvopr)g. Me v avamtuén TPONYHEVNG TEXVOAOYIOG HETPNTAV OTO
NAEKTPIKO SIKTLO, N KAOTIN EVEPYELNG YIVETAL TILO TIEPITTAOKT Kol LIOBETOVVTAL TTIOAAEG VEEG TEXVOAOYIEG
ywx v emiAdvon outod tov mpoBAnpatog. H kAomr NAEKTpIKNG eVEPYELRG OTIG SIAPOPEG HOPPEG TNG
propel va pelwbel ko va StatnpnBel vmo €Aeyxo poOvo amd TNV 1o¥LPN Kol Suvapikn Spaomn Twv
OPYOAVAOEDV TOL €vepyelakoL Topéa. H otpatnyikn kot n Spaon mpénel va Boaoilovior otn TANpN
Katavonon g €181kng evong tov npofAnpatog g kAommg. Kabe odotnua 1ox00g €xel Tig §1kEG TOUL
HOVASIKEG 1810TNTEG Kol HOVO yVvopilovTag To oOOTNHA KAl TO TPOBANHA HTTOPOUV va oXeS100TOOV Kot
VO EQAPHOCTOVY AMOTEAECHATIKEG AVOELG.

Aebopévou 011 Eva LYMAOG emtinedo KAOTING NAEKTPIKTG EVEPYELNG GLVOEETAL PE TN StapBopd, N avaAvon
8ev pmopel va TEPLOPIOTEL OTIG TEXVIKEG KO SLOEIPIOTIKEG TIPOOTTIKEG KOl TIPETIEL VA EPAPHOOTEL
Slemotnpovikn mpooéyylon. H kAo w¢g Spactnplotnta o€ OplopéVA CUOTHHATO CUVEEETOL OTEVQ |IE
T SoKLBEPVNOT Kal |E TO KOWVMVIKO, OIKOVOHIKO KOl TTIOAITIKO TEPIBAAAOY. L€ H1a YEVIKT] KOUATOUPO
S1apBopdg w¢g Tpomo (WG, N KAOTH NAEKTPLOPOD PTopel va pelwbel oe pPETpla eminmeda e TEXVIKES /
HNXOVIKEG PEeBOSOUG, aAAG givan pia Gvion péyn ya va pelnbel Spaotikd o puBpog KAomg NAEKTPIKOD
PELHNTOG OG0 cuveyiletan 1 ekTeTapEVn Sta@Bopd. H peiwon g pevpatokAonmg Kot 1] S1atrpnon g
evtog evAoywV oplwv eival MBAVOTEPO VA €ival EMTUXNG O€ CLOTHHOTA HE Pl KAl KLBEpVNTIKN
TOATIKI. AUTO OQEIAETAL OTO YEYOVOG OTL Ol HNXaVIGHOL HelwoNg peLHATOKAOTIG Bpiokouy éva PLAIKO
nePBAAAOV Y1 TNV €QAPHOYT KA1 TN AELTOLPYia TOUG.

O1 texvoloyikég KouvoTopieg (€§umvol HeTpNTEC) KAB1oTOOV oUTO TO €PYyo TO EVKOAO OV LTIAPXOLV KO
oL avahoyeg SlaxelploTikég  0elotnTeg. T OCLOTHHOTK NAEKTPIKIG  EVEPYEG HTOPOLV V&
avadiapBpwboly oe kK&Be TOpER TOLG €TO1 MOTE VO AELTOVPYOVV G€ TAQLOIN EVLYEVI] AVTOYWVIGHOU,
OTIOL T ATMOSOTIKOTNTN KAl 1| OTMOTEAECUATIKOTNTA GTNV TIOPOXT] LTINPECIOV VA €ival TOCO OPETEG OO0
KOl OVAYKEG.



O KUplOg AGYOG NG CLYYPAPNG QLTIG TNG epyaoiag gival N aviyveLON TOV PN TEXVIKOV OMMOAELQOV OE
éva €Eumvo NAeKTpIKO OikTvo. Me T Xpron aAyopiBHEV-TEXVIKGOV Yyl TNV avdAvon TV HoTifwv
KATAVAAWOTG TRV TTEAXTAV, avayVePi{OLE TOLG TTAPAVOHOUG KATAVOADTEG HE BEon TIg avepaAieg TTov
evromi{ovtal ot SeSOPEVH KATAVAADOTG TOUG.

H Stxvopr| Ko HETAQOPG TOL NAEKTPIKOD PEVHATOCG TIEPIANHPAVEL ONHAVTIKEG TEXVIKEG OTIWG EMOTG KO
HN TEXVIKEG amwAeleg. H mapavopn KatavaAwon ToL NAEKTPIKOD pELHATOG ATOTEAEL OHAVTIKO HeEPido
TOV [N TEXVIK®OV OMOAEWV. Me TNV €A€U0T| TIPONYHEVWV TEXVOAOYIOV HETPNONG, SeSopéva
KOTaVAAWOTNG evEpyelag eivatl StaBéoipa 0TIg LMINPETIEG G TPAYHATIKO XPOVO ,TIPAYHN TIOL PTOPEL va
XpropononBei yioo v avayvaopion Tov mapavopwv meAatav. H SimAopatikn autn napovotddlel 5
O10QOPETIKEG OAYOPLOHIKEG TIPOCEYYIOELG TIOV XPTOTHOTOLOVVTINL YA TNV AVAYVOPLOT] AVOHOAQV 0T
KATAVAAWOT) EVEPYELNG.

ITpata, Stafdlovpe Ta SeSopHEVA KATAVAANOOTG NAEKTPIKTG EVEPYELNG TV KATAVOAMTOV, T OTIOL0 UG
napoyopnnkav and éva mpaypatiko NAeKTpko diktvo otnv IpAavdia [50]. Ta dedopéva avtd, Onwg
HTIOpEiTE va SelTe MO avaALTIKG 0TO KEQAAL0 3, Tepleiyav 6 TEPIMTOOELS [E SIAPOPETIKA TTOCOOTH KAl
€161 KAOTN G av& TTEPIMTWOT). ZUYKEKPIPEVQ, ElYAE

Aebopéva pe pepikn khomn 30-50%

Aebopéva pe pepikn khomn 50-70%

Aebopéva pe vepoptwon 40-60%

Aebopéva pe vepoptwon 60-80%

Aebopéva pe vepeoptwon 80-100%

Aebopéva pe vepeoptwor 60-80% kan pepikn kAomr 50-70%

EAéy&ape kabe mepintwon KAOTG NAEKTPIKNG eVEPYELNG oo TIG Tapamave o€ 30Aemteg (SnAadn| yx
K&Be kKatavohwt eiyope pia pétpnon avé 30 Aemtd) HETPOEIG OMOL €iYHHE OTN KOTOXN HOGC.
Metatpéyape ti¢ 30Aemteg petprioelg o€ 8wpeg (SNAadn yia kabe Katavodwtr eiyape pia pétpnon avd
8 wpeg) ko SovAéyiape Kupiwg pe auTéG KOBDG Ta amoteAéopata o oUykplon pe g 30Aemteg
HETPNOELG TV O€ YEVIKEG YpappEG 181a. Emetta, pe ) eéaywyr| features amd ta deSopéva , TEXVIKQOV
Kavovikomoinong kot ) péBodo PCA (principal component analysis) ene&epyaotkape ta deSopéva
€T01 WOTE va elval o amoSoTIKA yia TI¢ 5 StpopeTikeg aAyoplBpikég peBodoug mov akoAovBnoav pe
OTOXO VO KOTNYOPLOTIOU|O0LV TOUG KOTAVOA®TEG O VOMIHOLG 1] mapavopous. Ot peBodol mou
Xprotponodnkav eivan ot €§n¢:

Multilayer Artificial Neural Networks pe ypnon tne Fast Artificial Neural Network (FANN) Library

H FANN B1BA0Bnkn mov xpnoiponowmfnke oe autn mn pebodo peow teppatikov Linux, ntav e0koAn
otn Xpnon, ypnyopn (taxvtepn onmd OAeg Tig GAAeg peBodoug ektog amd TN péBodo pe xpron g
LibOPF [ifAoBnkng) kot €véANKTn (MMOPOLCHHE VX TIPOCOPHOCOVLHE TOAAEG TOPOAHETPOUG KOl
Aertovpyieg oe kivnomn). Ta SeSopéva NAEKTPIKNG EVEPYEING XPEIAOTNKAV KATOWX eMe&epyaoia yia va
HTIoOpoLV va xpnotponoinfolv wg eicodo otn PipAodnkn, aAAd ta amoteAéopata autng g pebodov
pog empPBpafevouy.



ATo 0Aeg Tig peBoSoug oL SOKIPAOTNKAY O QLT TN SMAWHATIKY, N pEBodog pe multilayer artificial
neural networks ntav pa and g KaALTEPEG OG0 otV anodoon 660 Kal otnv Taxvtnta. H anddoon
EVIOMOPOD PEVHATOKAOMNG Kupaivovtav oo 89% -97% (avdAoya pe v mepimtwon mov
SOKIHAOTNKE) Kol Y1 'aLTO GLUVIOTATAL ATOAVTA Y1) TV AVIXVELOT| PEVHATOKAOTIG.

Neural Networks pe ypnon tov Deep Learning Toolbox

H pébodog avtn éywve pe xprion tov Aoylopikov g Matlab ko cuykekpipéva touv epyaieiov Deep
Learning Toolbox. Onw¢ pmopeite va Seite ko otov mivaka 0.1, Aeltovpynoe MOAD KoA& oTnVv
aVOYyVOPLOT] TV TOPAVOL®V KOTOHVOA®T®V HE TNV amodoCT OTNV OVIXVELOT] PEVHATOKAOTNG VO
Kopaivetat ano 84%-93% . QoTO00 LIIAPYOLY KATIOLX HELOVEKTIHATA O€ LT T HéBodo:

* Aut N péBodog eivar poxkpav n mo xpovoPopa péBodog mov €xel SoKipaoTeEl 0 QLTH TN
Sm\epoatikn. Mia mpocopoiwon e 0Aovg Toug eAdteg (3273) TOL lxape 0TN KATOXT| HOG, HTTOPOVOE
va Slopkéoel g kat 10 Aentd akOpn Ko pe TN xprion g principal component analysis, n onoia
HELOVEL SPUOTIKA TOV XPOVO HlaG TIANPNG eKTEAEONC (6ev SoKIPAOTNKE XWPIg TN Xprion G pca Kabag
QMAITOVOE OKOWN TIEPLOTOTEPO XPOVO).

* Ta Tuyaia Bapn Yl T0 VELPWVIKO SIKTLO TIOL €MAEYOVTOL TUYOIX QMO TO pattern recognition
app ¢ Matlab, pe to onoio VAOTIOINOAUE TO VELPWVIKO HAG SIKTLO, O8NYOUV HEPIKEG POPEG OE PETPLEG
anodooelg (OTIAVIa ElYOE HEPIKEG TIPOCOHOIWOELS e akpifela 74-80% AOY® QUTNG TG EVEPYELNG)

duoka, avt N HEB0SOG eKpETOAAEDETOL TO AOYloHIKG TG Matlab amd dmoymn TeXVIKGOV ameKOVIoNG
(visualization), evkoAiog xprong kol eveM&iag. LUVOAKG, OcovV a@opd TV amodoon avtn 1 péBodog
NTav n Tpitn KaAOTEPN OV SOKIPHAOTNKE O QLTI TN SITAGHATIKT] Ko amoTeAel pia moAD KaAr) péBodo
QVIXVELOTG KAOTING NAEKTPLOHOD.

Support Vector Machine Classification

v pébodo ovtr, xpnolpomowmocape support vector machines classifier yia v avixvevon tov
AVOHOAL®V 0TI HETPTOEIS TOV TAPAVOHOV KOTAVOADT®V. YAomomnke oto Aoylopiko ¢ Matlab
KaBag mpoTipnBnke ano v LibSVM Adyw evkoAiag xpriong tg Matlab. Ot support vector machines
classifiers pmopoov va mapayovv akpipn ko evpwota amoteAéopata classification oe pla cwot
Bewpnuikny Pdom, oakdun ko Otav Ta SeSopEva €10080VL €lval pn HOVOTOVO KOl YPOHHIKE pn
Saywpiopa. ‘Etor prmopovv va BfonBroovv otnv a&loAdynon mo OXETIKWV TANPOPOPLOV HE EvaV
BoAikd tpdmo. MdaAota, N akpifela twv anmoteAeopatwy dev Baoileton oV MOWOTNTA TNG KPIONG NG
EUTELPOYVOHOCVUVNG TOL avOp®TOL Yl TN BEATIOTN €MAOYT TG CLVAPTNONG YPAHHIKOTIOINONG TV |N
YPOHHIKOV SeSopévmv €10080V0 Kal €101 Be@polVIOL XPrOH0 €PYOAEID YA TNV OMOTEAECHOTIKN
OLUTIANPWOT] TV TIANPOPOPLOV TIOL AMOKTMVTAL OTIO TIG KAAOIKEG TEXVIKESG YPUHHKOU classification.

To SVM kan ta Texvnta Nevpwvikd Alktoa gival 600 SNUOQEIAEIG OTPATNYIKEG YA TNV EMOTTEVOHEVT
pnxavikn pabnon ko classification. Ot SVM classifiers ,w¢ classifiers evaioBntog oto kbdotog,
HTIOPOUV VO AELITOLPYNOOLY OMOSOTIKA OKOHX KOl O€ pn looppommnpeva 6edopeva. OAa ta GAAa
nmAeovekpata Twv SVM classifiers e§aptovtor and tov topéa kol To €idog g epyaciag mov
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emnteitar. O SVM classifiers eivor kahol oe ovLykpion pe aAAouvg classsifiers, kaBag amoirtovv
HIKPOTEPT] LIIOAOYLOTIKT] TTOAVTTAOKOTITA €VQ Tapovolalovv avénpévn amodoon oto classification oe
OUYKPLOT] HE OO0V IoTE GAAO N Ypop ko classifier.

Iy mepimtwon pog, Onwg pnopeite va deite and tig petpnoelg anodoong oto mivaka 0.1, n axkpifeia
Kopowvotav ano 79% éwg 87% (avaAoya pe v nepintwon mov dokipdotnke). Ta anoteAéopata eival
OPKETA KOAX OAAG Sev @TAVOLV Ta emimeda Twv SVO TPONYOVHEVAOV HEBOOWV TIOL SOKIPHACTNKAV.
Yuykekppéva, oty 1n (vmepeoptwong 40% -60%) kou otnv 4n (pepikng kAommg 30% -50%)
TePINMTwOT, Ol PETPNOELG amddoong HeElwOnKav AOYy®m TOL yeyovoTtog OTL 0TI TIEPUTTOOELS OUTEG TA
Selypata T@vV KoTavoA@Tov €ival mapamAnoia (8ev Sla@épouv apketd ta samples €vog VOMIpOL
KOTAVOA®TH OO OUTA €VOG TIPAVOLOL KaTavaAwTr)) HETa&D toug Kot o clasiffier Sev prmopovoe evkoAa
v Olakpivel Ttov TMOPAVOHO amd TOV VOUIHO KotavoAwtr. Edv ta dedopéva ntav Atyotepo
1o0oppomnpEVY, To amoteAéopata Ba ntav mbaveg kaAdTepa, KabBag ol mepioootepol classifiers 2-
KAGOE®V  Aeltoupyolv KaAdtepa pe avtdv Ttov Tpomo [52]. Qotoc0, o€ yeviKd TAaiola, TX
QMOTEAECPATA QLTHG NG HEBOSOL NTAV KPKETA EVOXAPPLUVTIKA Y10t TNV AVIXVELOT| TNG PEVHATOKAOTIG
OTIG TIEPUTTMOELG TTOL EEETAOTNKAV.

Optimum Path Forest Classifiers pe yprjon tn¢ LibOPF Library

Yy pébodo avtr xpnowponowoape optimum path forest classifier pe m xprion ™mg PiBAodnKNg
LibOPF oe teppatikd Linux, pe okomd v aviyvevon peLHOTOKAOTNG. Q0Td00, ONMG UTOPEITE vV
Seite kol amo tov mivaka 0.1, ta anmoteAdéopata autng G peBddov Sev Ntav 18waitepa emrtuyn. H
akpifela kKupaiveton and 61,52% €wg 80,91%, kabiotwvrag avtr ) HEB0SO O)L KAl TOGO AMOSOTIKT).
Avtd 1o Ybdopa omv akpifeix ovpPaivel mBavag emedn ot OPF classifiers eivol evaioBnrtot oto
BopuPo kol oe peyddeg amokAioelg twv Tipov. Ta mpwtdtuna emAéyovion pe Bdon to Minimum
Spanning Tree (MST) kot ®¢ amotéAeopa emAéyovv BopuBadn OSeiypata 1 vmepPoAikég LYMAEG-
XOHNAEG TIHEG Y va Yivouv TIpeTOTLUTIA. ALTE Tor ‘Kokd’ Selypata €xouv peydAn emidpoaon oTig
amo@doelg Tov OPF classification.

ITpokepévov va k&vovpe TN pEBOSO aLT VA OMOEEPEL KOHAVTEPA OTMOTEAECHOTX TIPOPNKAHE OF
OPKETOVG TEIpapaTIoHoVG. TIpoonabrioape va Staxwpicovpe ta dedopéva oe dedopéva ekmaidevong
(training data), dedopéva enaAnbevong (validation data), deSopéva eAéyyouv (test data) yeipoxivnta
oA Ko pe To TpoETAeYHEVO TIpOYpappa TG BiBA0ONKNG, mpoomabroape va aAAGEOLE To TOCOOTG
Saipeong twv oet defopévav TOL avaPEPBNKAY, TEIPAHATIOTIKANE HE SIHQOPETIKEG TAPAPETPOUG,
XPNOHOTOoaE Sld@opa eVAAAXKTIKG epyoAeia mov mpocégepe N PiAodnkn, xpnolpomomrjoajie
Srapopetika features wg €l0060 OAAG TAVTH KATOHANYOHE OE TAPOHOLX ATOTEAECHOATA.

Emnpdobeta, n poper apxeiov mov n PifAodnkn anottovoe kg €l00d0 ylo va SOVAEPEL NNTAV APKETA
SduokoAo va SnpovpynBel and 1o apyKd oVVOAO dedopévwv Tov eiyape oty Katoyr pag. OAeg ot
nAnpo@opieg petady k&be @daong tov classification amoBnkevovtav oe apyeia .dat Kol ®G AMOTEAECHA
dev pmopovoape va eaydyoupe otidnmote BéAape. TéAog, Ta epyaleia-ipoypdppota Tov Xpnolponotel
n BBAobnkn LibOPF ywx to classification eivon «kAeildwpéva» oe apyela kol dev UMOPOLCUE v
napépfoupe 0Tov KOSIKA TOLG. AUTOG €ival 0 AOyog mov Sev HTOPOVOAHE Vo LTOAOYIoOLpE GAAEG
petprnoelg emobooelg nEpa oand Vv akpifela mov n PifAobnkn vroAoyilel amd povn g pE TO
npoypappa «opf_accuracy».
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ZuvoAka, aut n peEBodog dev avtamokpifnke otig mpoodokieg mov eiyape otav Sxfalape ya avth
OTNV €PEVLVA HOG OXETIKA HE TIG TEXVIKEG AVIXVELOTG KAOTNG NAEKTPIKIG EVEPYELRG TIPLV SEKIVI|OOLE
ot ™ SMAOPATIKT. To AMOTEAEGHATO HTTOPOVV VA XXPAKTNPLOTOLV [N IKAVOTIOUTIKA, TIOAPOAO TIOU
OTWG amodeiytnke eivar N tayLtepn HEBOSOG, G GUYKPLOT HE TIG LTOAOUTEG TIOL SOKIHAOTNKAV.
duoika, vmdpyel n MBavOTNTA va N LAOTIONONKE COOTA aMO PEPOLG Hag 1 avTh N HEBodog va pnv
elval 1000 KAatdAANAN 000 ot GAAeg Y To €180G TOL TPOPBANHATOG HAG T Y Ta SeSOPEVA NNAEKTPIKTG
EVEPYELOG TIOL elyape. Xiyovpa agiepaoape Aydtepo xpovo oe autn T HéEBodo amd Tig GAAEG, aAAG
avTtd OPEIAETOL OTO Yyeyovog OTL Ta amoTEAETHATA SeV TV KABOAOL KAVOTIOUTIK& amd TnV apxn.
LUUTEPACHATIKA, HETH OO OAeg QLTEG TIG HEBOSOLG TIOL €XOLHE €EETACEL OE QLT TN SUTA®HATIKNA
avtr N péBodog alyovpa §ev GLVIOTATAL, TOVAGYXIOTOV QIO EUAG, YO AVIXVELOT] TNG KAOTIG NAEKTPIKNG
EVEPYELNG,.

Neuro-Fuzzy System pe yprjon tov Neuro-Fuzzy Designer App

Avt n pébodog omwg pnopeite va Seite kot and 1o mivaka 0.1 anédwoe eéompetikd anoteAéopata. H
akpifela kupowvotav and 92% wg 99% avaAoya pe N epinTwon KAomrg mov dokipdotnke. O Neuro-
Fuzzy Designer g Matlab, mov ypnoiponoumifnke yia m dnpovpyia tov poviédov FIS |, ftav evkoAog
0TI XPNOT KOl OXPKETA ELENKTOG (HTOPOVCAHE VX TIPOCKPHOCOVE OTOLOSNTIOTE MOPAHUETPO KPKETK
€0KOAX). Amd 6Aeg Tig peBodoug mov e€etdoTnKav o auth TN StMA®PATIKY avt) N péBodog NTav n
KaAOTEPT 0600V aopd v amodoor). Ziyovpa dev Ntav 1 mo ypryopn HeBodog, kabBmg 1 ekmaidevon
ToU povtéAov FIS anaitovoe apKeTod xpovo aAAG ta amoteAéapata G peBOSoL avuThg Pag avTtapeuay.
Onwg amodeiydnke, o cuvévaopog multilayer neural networks pe fuzzy logic mov vAomnoieiton péow tov
FIS povtéhou eivan and 11 Kahvtepeg peBOS0LE Yo TOV EVIOTOHO PEVHATOKAOTNG.



IMopokdtew PAénovpe éva mivoko pHe TG €mbooelg Twv HeBOdwvV mov vAomowBnkav o€ avuty
SMA@HOTIKT o€ KABE S100QOpETIKT| TEPIMTWOT] IOV EEETROTNKAV.

Methods Overload | Overload | Overload PTEEtel; l PTEEtel; l Partial Theft 50-70%
_600° _ano, _ [o) _ano
40-60% 60-80% |80-100% 30-50% | 50-70% & Overload 60-80%

FANN 89% 93% 95% 92% 97% 95%

Deep
Learning 86% 87,8% 89,2% 84,8% 92,6% 91,8%
Toolbox

SVM 80% 83% 85% 79% 87% 85%
LibOPF 61,52% 64,75% | 69,15% | 71,46% | 80,91% 75,44%
Neuro-

Fuzzy 93% 97% 99% 96% 99% 92%
System

Table 0.1 Anédoon SAwv TV peBdSwy yia k&be mepintwon mov eéetdotnke

Ev xataxAeid, n epyacia pog €6e1§e evBappuVTIKA AMOTEAECUATH Y1 TNV AVIXVELOT] PEVHATOKAOTING
070 NAeKTPIKO SikTvo. H SovAeid pog faciotnke oe mpaypatikd 6e50pEVa KATAVAA®DOT|G EVEPYELXG OTIO
éva NAeKTPIKO Siktvo oty IpAavéia. Ano 0Aeg Tig peBddovg, Eexmpioav, 0G0 agopa TNV anoddoaon, 1
HéBodog pe multilayer artificial neural networks pe xprion g FANN B1BAt00nkng kaBwg kon nj pébodog
pe Neuro-Fuzzy System. Amodotikr, av Kol apKetd xpovofopa, nrtav emiong n pébodog pe neural
networks pe 1t xpnon tov Deep Learning Toolbox evéd ko n péBodog pe SVM classifiers frav
a&loAoyn. AvtiBétmg, n pébodog pe Optimum Path Forest classifiers dev anédwoe avtd mov mepipévape
otav Slafalape yio quTr| TNV EPELVA HAG KAL §EV CLUVIOTATAL, CUYKPLTIKK HIE TIG GAAEG.

ZUVOAIKY, elpooTe TOAD ELXXPLOTNHEVOL HE TX OMOTEAEOHATH TIOU €MTELXONKAV Katd TN SidpKelx
aLTAG TNG SUTA®HATIKNG KAl oiyovpa avtamokpibnke tig mpoodokieg pag.
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1. Introduction

1.1 Problem Definition

The Generation, Transmission and Distribution (T&D) of electricity, involve many operational losses.
These operational losses are divided in two categories, technical losses that cannot be avoided and non-
technical losses due to electricity theft from illegal activities of consumers. The magnitude of these
losses is rising at an alarming rate in several countries. With a view to enhance the economy of the
utilities, as well as the efficiency and the security of the grid, we propose some methods of analyzing
electricity consumption patterns of consumers and identifying illegal behaviours.

1.2 Dissertation Objectives and Scope

The power losses are a common reality for the electric utilities and can be classified as technical or
non-technical losses. Losses that occur during generation can be technically defined, but Transmission
and Distribution (T&D) losses cannot be quantified completely. The present transmission and
distribution losses in several countries have been reported to be over 30% [11]. Substantial quantity of
losses proves the involvement of Non-Technical Losses (NTL) in distribution networks. Total losses
during T&D can be evaluated from the information like total load and the total energy billed, using
established standards. NTL are caused mainly by factors external to the power system. Electricity theft
constitutes a major chunk of the NTL. It is estimated that utilities worldwide lose more than $25 Billion
every year due to illegal consumption of electricity [53]. It has also been identified that the illegal
consumption of electricity by local business sectors is increasing. Total losses incurred by utilities due
to electricity theft are huge. As the impact of these losses is huge, it is essential to force the
implementation of a mechanism that reduces NTL and identifies illegal consumers.

Detection of illegal consumers is an extremely challenging problem nowadays due to the large amount
of money that are not imputable to the state. This dissertation presents some methods that use energy
consumption patterns to detect illegal consumers in a smart grid environment. To realize this solution,
initially, this dissertation conducts an extensive survey on the methods implemented in pilfering
electricity and technologies involved in smart energy meters.

In general, utilities collect real-time energy consumption information from their consumers several
times a day. We had the chance to work with some real energy consumption data from an electrical grid
in Ireland [50]. After some energy consumption data processing, we apply specific classification
methods which are implemented to identify illegal and legal consumers and could lead to a motivated
and strategic progression towards achieving objectives and features of a smart grid.
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1.3 Literature Review

From our research on electricity theft we have found several techniques that were proposed to control
illegal consumption or identify illegal consumers of electricity in the recent past. We present some of
these methods :

[1] Bandim et al. (2003). Proposed utilization of a central observer meter at secondary terminals of
distribution transformer. Value of energy read by the central observer meter is compared with the sum
of energy consumption values read by all energy meters in range. These two values of current are
compared to estimate the total quantity of electricity that is being consumed illegally.

[2] Anand and Naveen (2003). Vigilant energy metering system (VEMS) is an advanced energy
metering system that can fight electricity theft. It provides the data acquisition, transfer and data
processing capabilities among the energy meters, local area stations and the base. It also facilitates load
forecasting and control, identifies potential areas of theft, losses and takes measures to rectify it.

[3] Nagi et al. (2009). Proposed a novel approach of using genetic algorithm-support vector machines
(GA-SVM) in detecting electricity theft. Load consumption data of all customers is collected and data
mining techniques are used to filter and group these customers based on their consumption patterns.
Customers are grouped into different classes based on the extent of the abnormality in load profile and
then the customers with high probability of theft are inspected.

[4] Nizar and Dong (2009). The main objective here is to base the investigation on comparing the
efficacy of the Support Vector Machine (SVM) technique with the newly emerging techniques of
Extreme Learning Machine (ELM) and its OS-ELM variant as means of classification and prediction in
this context. Non-technical Losses (NTL) represent a significant proportion of electricity losses in both
developing and developed countries. The ELM-based approach presented here uses customer load-
profile information to expose abnormal behaviour that is known to be highly correlated with NTL
activities. This approach provides a method of data mining for this purpose and it involves extracting
patterns of customer behaviour from historical kWh consumption data. The results yield classification
classes that are used to reveal whether any significant behaviour that emerges is due to irregularities in
consumption. In this paper, ELM and online sequential-ELM (OS-ELM) algorithms are both used to
achieve an improved classification performance and to increase accuracy of results. A comparison of
this approach with other classification techniques, such as the Support Vector Machine (SVM)
algorithm, is also undertaken and the ELM performance and accuracy in NTL analysis is shown to be
superior.

[5] Pasdar and Mirzakuchaki (2007). Power line communications (PLC) presents an interesting and
economical solution for automatic meter reading (AMR). If an AMR system via PLC is set in a power
delivery system, a detection system for illegal electricity usage may be easily added in the existing PLC
network. In the detection system, the second digitally energy meter chip is used and the value of energy
is stored. The recorded energy is compared with the value at the main kilowatthour meter. In the case of
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a difference between two recorded energy data, an error signal is generated and transmitted via PLC
network. This paper describes a prototype of the detector system for illegal electricity usage using the
power lines. The target of this study is to discover new and possible solutions for the lack of literature
concerning this problem.

[6] Zeng et al. (2009) proposed a new method to monitor the street lamp power cables, as well as the
theft of electric transmission cables. In this method, resonant frequency and equivalent capacitance of
the cable are calculated by sending a frequency varying current signal to the street lamp power system.
These values are used to detect the theft of electric transmission cables and then the location where the
event happened.

[7] Jamil et al. (2004) proposed a microcontroller based energy meter which facilitates the utility
company to monitor and control the power supply to its spatially distributed consumers. This meter acts
as a check meter to detect the meter tampering. However, e-metering systems can collect and process
data, and can detect abnormalities in load profiles indicating electricity theft (De et al., 2003)

[8] Saptarshi De, Rabul Anand and Sirat Moinuddin et al (2004) Proposes the e-metering as an
efficient method of power measurement. The e-metering data possess unique characteristics and the
network needs innovative technology to record, monitor and process the data. The data are processed to
collect information of customers, power usage profile of an area and of a consumer, supply outage time
and losses incurred in distribution system The system is capable of measuring and estimating the
quality of power supplied to the consumers. It consists of data acquisition, transmission and processing
components among the energy meters, local area stations and base stations. The application of the e-
metering system is extended to streamline power distribution with online monitoring of power quality,
real time theft detection and automatic billing.

[9] Mano et al. (2004) Suggest proper design and implementation of rules for investigation of illegal
consumers. Revenue Assurance and Audit Process is targeted at improving revenues for utility
companies by reducing commercial losses by about 20% each year.

[10] Perez et al. (2005). Suggest that proper implementation of strategies in deployment and
maintenance of the distribution networks can control commercial losses. In addition, strengthening the
transformers at substations with higher configuration ones is also suggested. These suggestions can also
be implemented in other African countries with the similar situations in order to improve the efficiency
in transmission and distribution system.

[11] Soma Shekara Sreenadh Reddy Depuru (2010). This paper proposes an architectural design of
smart meter, external control station, harmonic generator, and filter circuit. Motivation of this work is
to deject illegal consumers, and conserve and effectively utilize energy. If a considerable amount of
NTL is detected, harmonic generator is operated at that feeder for introducing additional harmonic
component for destroying appliances of the illegal consumers.
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[12] Solomon Nunoo et al. (2011). The method includes receiving meter data of the measured power
consumed by a customer, receiving delivered power data that includes data of the power delivered to
the customer, determining a difference between the meter data and the delivered power data,
determining that the difference between the meter data and the delivered power data is greater than a
predetermined amount, and indicating a discrepancy if the difference between the meter data and the
delivered power data is greater than a predetermined amount.

[13] Rong Jiang et al (2014). They discuss the background of Advanced Metering Infrastructure (AMI)
and identity major security requirements that AMI should meet. Specifically, an attack tree based threat
model is first presented to illustrate the energy-theft behaviors in AMI. Then, they summarize the
current AMI energy-theft detection schemes into three categories, i.e., classification-based, state
estimation-based and game theory-based ones, and make extensive comparisons and discussions on
them.

[14] Soma Shekara Sreenadh Reddy Depuru (2012). This paper designs and implements an encoding
procedure to simplify and modify customer energy consumption data for quicker analysis without
compromising the quality or uniqueness of the data. This paper parallelizes overall customer
classification process. The parallelized algorithms have resulted in appreciable results as displayed in
the results section of the paper.

[15] P.kadurek et al.(2010). This paper provides insight into the illegal use or abstraction of electricity
in the Netherlands. The importance and the economic aspects of theft detection are presented and the
current practices and experiences are discussed. The paper also proposes a novel methodology for
automated detection of illegal utilization of electricity in the future distribution networks equipped with
smart metering infrastructure. The necessary data requirements for smart meters and distribution
substations are defined, in order to unlock this feature in distribution network. The paper also proposes
the measures, which should be undertaken by the smart metering standards.

[16] Shih-Che Huang et al (2013). In this paper, a state estimation based approach for distribution
transformer load estimation is exploited to detect meter malfunction-tampering and provide
quantitative evidence of non-technical loss (NTL). A measure of overall fit of the estimated values to
the pseudo feeder bus injection measurements based on customer metering data aggregated at the
distribution transformers is used to localize the electricity usage irregularity.

[17] Robert Czechowski and Anna Magdalena Kosek et al (2017). The paper presents not only the
factors encouraging energy consumers to engage in dishonest behavior and the techniques they use to
achieve the intended result, but also technical measures aimed at detecting such actions. The discussed
technical issues proved useful in designing increasingly refined security measures and ways to detect
electricity theft

[18] Caio C. O. Ramos , Andre N. Souza, Joao P. Papa, Alexandre X. Falcao et al (2010). This article
proposes an innovative and accurate solution for non-technical losses identification using the
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Optimum-Path Forest (OPF) classifier and its learning algorithm. Results in two datasets demonstrated
that OPF outperformed the state of the art pattern recognition techniques and OPF with learning
achieved better results for automatic nontechnical losses identification than recently ones obtained in
the literature..

[19] Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler et al (2013).
This paper proposes the use of the knowledge-discovery in databases based on artificial neural
networks applied to the classifying process of consumers to be inspected. An experiment performed in
a Brazilian electric power distribution company indicated an improvement of over 50% of the proposed
approach if compared to the previous methods used by that company.

[20] Patrick Glauner et al (2019). This thesis compares expert knowledge-based decision making
systems to automated statistical decision making. It proposes a method for visualizing prediction results
at various granularity levels in a spatial hologram. This approach allows domain experts to put the
classification results into the context of the data and to incorporate their knowledge for making the final
decisions of which customers to inspect. Moreover, it presents a machine learning framework that
classifies customers into NTL or non-NTL using a variety of features derived from the customers'
consumption data as well as a selection of master data. The methodology used is specifically tailored to
the level of noise in the data.

[21] Awais Khan and Wei Xie et al (2018). This research project modeled and designed the hardware
prototype of automated anti-theft electricity distribution system. The proposed system detects the
illegal load and burns it by sending high voltage signals from a capacitor bank. The legal load is made
safe and uninterrupted during execution of illegal load.

[22] Ali Akbar Ghasemi and Mohsen Gitizadeh et al (2018). In this paper, a combined method is
proposed to detect both types of illegal consumptions. Customer energy consumption pattern
classification method based on probabilistic neural network and mathematical model based on
Levenberg-Marquardt method are used to detect the first and second type of illegal consumption,
respectively. Moreover, the impact of Distributed Generation (DG) sources on illegal consumption of
electricity is analyzed and proposed detection algorithm is modified to compensate it. Experimental
results are presented to show the effectiveness of this method in detection of both types of illegal
consumption.

[23] Jawad Nagi, Keem Siah Yap, Sieh Kiong Tiong, Syed Khaleel Ahmed and Malik Mohamad et al
(2010). This paper presents a new approach towards nontechnical loss (NTL) detection in power
utilities using an artificial intelligence based technique, support vector machine (SVM). The fraud
detection model (FDM) developed in this research study preselects suspected customers to be inspected
onsite fraud based on irregularities in consumption behavior. This approach provides a method of data
mining, which involves feature extraction from historical customer consumption data. This SVM based
approach uses customer load profile information and additional attributes to expose abnormal behavior
that is known to be highly correlated with NTL activities. The result yields customer classes which are
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used to shortlist potential suspects for onsite inspection based on significant behavior that emerges due
to fraud activities.

[24] Konstantinos Blazakis and Georgios Stavrakakis et al (2019). This article presents a computational
method of analyzing and identifying electricity consumption patterns of consumers based on data
mining techniques in order to identify illegal residential consumers. Combining principal component
analysis (PCA) with mean shift algorithm for different power theft scenarios. The overall research has
shown encouraging results in residential consumers power theft detection that will help utilities to
improve the reliability, security and operation of power network.

1.4 Thesis Outline

Chapter 1: Discusses the problem definition and scope of dissertation and also provides a literature
review in power theft detection techniques.

Chapter 2: Provides an insight to methods of stealing electricity, methodology for tamper detection but
also the factors and consequences of electricity theft.

Chapter 3: Describes the energy consumption data we worked with in our thesis, the features that have
been tested and some accuracy metrics.

Chapter 4: Outlines the first electricity theft detection method based on multilayer artificial neural
networks (Fast Artificial Neural Network Library).

Chapter 5: Expounds the second electricity theft detection method based on neural networks (Deep
Learning Toolbox).

Chapter 6: Introduces the third electricity theft detection method based on Support Vector Machines
classification.

Chapter 7: Presents the final electricity theft detection method based on Optimum Path Forest
classifiers (LibOPF library).

Chapter 8: Discusses the experimental results and further research for improving power theft detection
techniques.

19



2. Methods, Factors and Consequences of Power Theft

Generally, electricity consumers may be classified as genuine-legal consumers, partial illegal
consumers, and completely illegal consumers. This chapter refers to technical and non-technical losses
in a power grid, presents several simple and sophisticated methods used in pilfering electricity,
discusses factors that influence illegal consumers to steal electricity and discusses consequences of
electricity theft.

2.1 Technical and Non Technical Losses

Generation, Transmission, and Distribution of electricity involve many losses. The losses can
technically be classified as direct losses and indirect losses (technical and non-technical losses).

Technical losses occur naturally due to power dissipation in transmission lines, power transformers and
measurement systems . These losses are normally computed based on the information about the load on
the grid and the energy billed to the consumer. The most common examples of technical losses include
the power dissipated in transmission lines and transformers due to their internal electrical resistance.
Technical losses are possible to compute and control, provided by the power system infrastructure.
Computation tools for calculating power flow, losses, and equipment status in power systems have been
developed for some time. Improvements in information technology and data acquisition have also made
the calculation and verification of technical losses easier. These losses are calculated based on the
natural properties of components in the power system, which include resistance, reactance, capacity,
voltage, and current. Loads are not included in technical losses because they are actually intended to
receive as much energy as possible. Two major sources contribute to technical losses: load losses which
consist of the ohmic losses I’R and impedance losses I°X of the various system elements, and no-load
losses which are independent of the actual load served by the power system. The majority of the no-
load losses are due to transformer core losses resulting from excitation current flows. The technical
losses are generally computed at 4-12% depending on various factors including delivery systems,
networks and the technology that is used. There is a need to manage and reduce these losses through
efficient management and operation [11],[54],[57].

Non technical Losses (NTLs) refer to losses that occur independently of technical losses in power
systems. NTLs are caused by actions external to the power system and also by the loads and conditions
that technical losses computations fail to take into account. Non-technical losses account for about 4—
40%, depending on their generating capacity and geographical area. However, computing non-technical
losses is complicated and can only be estimated. Non-technical losses are related to energy theft,
component breakdowns , faulty meters or metering components, billing cycles on the customer, etc. Of
all the non-technical losses, electricity theft takes the major chunk and includes illegal tapping,
bypassing and tampering meters and several other physical methods including defaulting and evading
payment to utility companies. No power system is 100% safe and secure from theft. Energy theft,
especially electricity is a common problem and is predominant across the globe. It is fundamentally due
to these inherent problems, electricity theft, cannot be computed precisely but can only be quantified as
an estimate [54].
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2.2 Methods of Stealing Electricity

The power distribution monitoring is an important factor in electric power systems and electricity theft
defence is one of the chief steps in distribution network reconstruction. Even though the power supply
departments have made huge investments of manpower and material, the phenomenon of electricity
theft has increased and not abated, and the methods of stealing electricity is continuously improving.

The calculation of electricity quantity measured by single-phase electric energy meters is mainly
according to the relationship with voltage, electric current and power-factor angle. If any factor is
changed, the electric energy meter turns slowly, stalls and will even cause a reversal, so the purpose of
electricity stealing is attained. According to the investigation analysis, there have been dozens of
electricity-stealing tricks tampering single-phase electric energy meter. The methods could be
approximately divided into under voltage, undercurrent, phase-shifted and difference expansion (DE)
to their principles [57],[58],[25].

Figure 2.1 Method of stealing electricity.

A. Stealing electricity by under voltage technology
Electricity thieves adopt all kinds of technology to deliberately change the wire splice of voltage circuit
which is measured by electrical energy, or cause a malfunction in measuring a voltage circuit and
voltage curve of pressure loss, thus measuring less electric power [57]. Here are some common tricks:
1) Unhooking technology of electricity-stealing. Secretly destroy the lead sealing of electric
energy meter, open voltage hook of terminal in junction box, and make no electric current
through, all using quantity of electricity steal.
2) Loose zero curve technology. Open input zero curve of meter, ground output zero curve of
meter.
3) One fire one ground technology. Take the ground wire as naught line, generally take the
water pipe or caliduct as ground wire, the risk is bigger.
4) Violated wire connection.
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Figure 2.2 Method of stealing electricity.

B. Stealing Electricity by Undercurrent Technology
Electricity thieves adopt all kinds of technology to deliberately change the wire splice of voltage circuit
which is measured by electrical energy, or cause a malfunction in measuring a voltage circuit and
voltage curve of pressure loss, thus measuring less electric power [57]. Here are some common tricks
1) Loop of short electric current, which makes the electric energy meter shift slow.
2) Bypassing meter with a wire in order to reel across electrical energy meter, which allows no
or little electric current through.
3) Exchange fire wire and zero wire.

Figure 2.3 Method of stealing electricity.

C. Stealing Electricity by Phase-Shifted Technology

Electricity thieves adopt all kinds of technology to deliberately change normal wire connection of
electric energy meter, take use of specifically connecting methods of inductance or capacitance to
change the normal phase relationship of voltage and current in the loop of electric energy meter, thus
making the electric energy meter shift slow and even causing reversal [57]. Here are some common
tricks:
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1) Reverse the in and out fire wire. Make electric current in the current coil reverse, and the
electric energy meter reverse.

2) Make the electric meter reverse by using external power supply. Adopt hand generator with
voltage and current output or inverter power supply to join into the electric meter, make the
electric energy meter reverse rapidly.

Figure 2.4 Method of stealing electrzczty

D. Stealing Electricity by Difference Expansion (DE) Technology

Electricity thieves disconnect electric energy meter privately, adopt all kinds of technology to change
inner structural performance of electric energy meter to cause itself error increase. They make use of
current or mechanical force to destroy electric energy meter, and change its installation conditions in
order to make less electric energy records.

Besides the four electricity-stealing methods listed above , the worst is that the user illegally and
improperly draws or connects a wire in order to steal electricity without a reporting meter. This stealing
method with no meter always causes injuries, fire accidents and so on. These people should be brought
to justice and punished strictly [57].

Figure 2.5 Method of steallng electrzczty
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2.3 Methodology for Tamper Detection

A system for detection of tampering with a utility meter provides not only an indication that tampering
has occurred but also sufficient information to enable an estimation of actual consumption to be made
as opposed to the tampered meter consumption.

Neutral Tampering

This tampering is done by disconnecting the neutral wire in the domestic electricity meter. With the
Neutral disconnected, there is no voltage input and thus no output would be generated by the power
supply. The component used for the neutral tampering detection circuit is an Optocoupler connected in
parallel to the Voltage coil. When the neutral wire from the electricity meter is disconnected, the power
supply to the LED is also disconnected and hence it does not glow.

Solution: As long as the neutral and the phase are connected to the voltage coil, the parallely connected
Optocoupler LED produces a high output thereby biasing the base of the photo transistor which
produces an output at the emitter. As soon as the LED fails to glow, the photodiode is unbiased and its
output drops to low level or logic “0” signal and it is sent to the micro controller [58].

Magnetic Tampering

Magnetic tampering technique is done by bringing a high powered magnet in close proximity of the
domestic electricity meter. When this happens, the rotor disc is exposed to a high magnetic field. Then
the resultant opposing magnetic field to the rotor is highly increased leading to slowing down of rotor
or perfect stopping of the disc rotation. The idea is to saturate the core of the sensors or distort the flux
in the core so that output is erroneous. This effectively results in less billing.

Solution: When a high power magnet is brought in proximity of the electricity meter in the presence of
the Reed switch two leads come in contact with each other and result in the closed circuit thereby
helping in detection of the signal by the micro controller. Thus the tampering is detected effectively and
the microcontroller receives the information, which tis passed on to the LCD unit and the GSM modem
[58].

Reverse Current

Reverse Current occurs when the phase and neutral are wired to the wrong inputs, causing current to
flow in the direction opposite to normal. Figure shows the Neutral Wire connection is swapped thus
causing current IN to flow in the reverse direction. Due to the reverse current flow through Neutral,
metering firmware will show wrong signs in active power readings. The polarity of current transformer
(CT) changes when any of the two currents has an opposite sign to the one expected.

Solution: To overcome this, metering firmware always uses the absolute value of active power for
driving the energy pulse, thus reverse current has no effect on energy calculation or accurate billing
[58].
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Partial Earth Fault Condition

Partial earth fault means some of the load has been connected to another ground potential and not the
neutral wire. In normal condition current going through the Phase wire is the same as coming out of the
neutral wire (IP = IN). In case of partial Earth Fault Condition, the current in the neutral wire IN is less
than that in the Phase or live wire IP.

Solution: To detect this condition, firmware monitors the currents on both energy wires - Phase and
Neutral, and compares them. If they differ significantly, the firmware uses the larger of the two currents
to determine the amount of energy to be billed and signals a "fault" condition [58].

2.4 Consequences of Power Theft

In daily basis operation utilities attempt to maintain a good power factor, flat voltage profile and
sufficient reactive power along the feeders. These operations may become difficult to perform due to
dynamic and inadequate load flow information. Although, illegal consumption of electricity might
affect the performance of appliances connected to grid.

Primarily, electricity theft affects the utility company and then its customers. Electricity theft places
severe impacts on utility companies and the consumers in general. It adversely affects the quality of
power supply, overloads the generation units thereby resulting in overall losses as the utility companies
cannot explicitly estimate its net supply to the consumer be it legal or illegal, forcing utility companies
to buy more electricity from the market thereby increasing the load on the generators to produce more.
Though the generation unit keeps tracks of the amount of power generated at any given instance, it
makes it difficult for the production units to keep track of the exact amount of energy transmitted to the
grid to the utility companies. The increase of power overload may also result in high voltage or low
voltage affecting the performances and even result in damages to appliances of the consumers. This
erratic and unpredictable additional loads will lead to blackouts and burnouts during peak load periods
In addition to erratic power distribution to the consumers, theft affects economies of the utility
companies adversely. Utility companies earn their money as a return for the service provided. About
10-40% of revenue is lost due to NTL. These losses need to be compensated, if the salaries of
employees, overhead costs, and maintenance costs need to be met, forcing the electricity companies to
increase the tariff on the consumer, thus impacting the real consumers directly. Theft also raises many
safety concerns like electric feeder shocks resulting in the death of a person tapping the electricity
illegally, the risk of electrical fire which may cause a major disaster. Improper handling of the
distribution feeder might pose danger to the whole community, as these wires might start sparking and
may cause fire during extreme weather conditions [30],[55],[28].
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2.5 Factors That Influence Illegal Consumers

The factors that influence consumers to steal electricity depend upon various local parameters that fall
into multiple categories like social, political, financial, literacy, law, managerial, infrastructural, and
economical. Of these factors, socio-economic ones influence people to a greater extent in stealing
electricity [25],[28].

In essence, electricity theft is proportional to the socio-economic conditions of the consumer. The most
important factors are:

» Higher energy prices, unemployment or weak economic situation of the consumers.

» The belief that it is dishonest to steal something from a neighbor but not from a utility (public or
large entity which have a lot of money).

* Some consumers might not be literate about the issues, laws and offenses related to the energy
theft.

» Corrupt politicians and employees of the utilities are responsible for billing irregularities. In
some cases, total money spent on bribing utility employees is less than the money that would
have been paid for consuming the same amount of electricity legally.

* Reasons to hide total energy consumption (e.g. Consumers who grow marijuana illegally or
small-scale industries to hide overall production).

» Tax Purposes. Different tax in an electrified house.

* Weak accountability and enforcement of law.
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3. Energy Consumption Data Manipulation, Features and Metrics

With the rapid development of electrical grids, the power industries have to face the increasingly severe
problem of electricity theft. Theft of electricity has negative effects on many socioeconomic aspects,
including the impact on the economy for power enterprises and social development. The traditional
anti-theft means require officers checking the integrity of kilowatt-hour meter and the correctness of
wiring house by house, which requires enormous manpower and material resources. With the advent of
modern information collecting technology, power enterprises now possess relatively complete database
of power consumption. As a result, performing data mining on existing database and identifying
abnormal users has become a hot topic in the field of information technology.

Nowadays, smart meters have been installed in over 60% of the most developed countries' households,
Energy consumption data is more widely available than ever before and is delivering benefits to
consumers, including more accurate billing and more reliable forecasts and alerts. Electric utilities are
also using this granular data to improve operations in several ways.

3.1 Energy Consumption Data Description

For the implementation of this thesis we had the chance to obtain some real energy consumption data
from an electricity consumer behavior trial by the Irish Commission for Energy Regulation (CER). This
data is based on the real data from approximately 5000 Irish households monitored for one and a half
years [50]. The work of this thesis is based on these data. The real energy consumption measurements
we had in our possession was a struct of data (you can see in figure 3.1) with different kinds and
percentages of electricity theft in each data table. These data had also the corresponding “target” data,
which is data that define if the customer is fraudster or non fraudster.

[E| 1x1 struct with 12 fields

Field Value

Data_with_theft_overload_40 60
Data_with_theft_overload_80_20
Data_with_theft_overload_280_100
Data_with_theft_pt_30_30
Data_with_theft_pt_50_70
Data_with_theft_pt_50_70_owverload_60_80

=)

&

)

5

=)
e e i~
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=]

target_Data_with_theft_overload_40_60 %3273 douhl

target_Data_with_theft_overload_80_20 x3273 double
target_Data_with_theft_overload_80_100 %3273 double
target_Data_with_theft_pt_30_50 %3273 double
target_Data_with_theft_pt 50_70 %3273 double
target_Data_with_theft_pt 50_70_overload_&0_80 %3273 double

Figure 3.1 Energy Consumption Data.
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Every data table has 1608 rows and 3273 columns. Each column from these data tables is a different
consumer and each row is an 8 hour measurement in kw/h for a specific time. The initial data had one
measurement per 30 minutes for each consumer, but we averaged them with one measurement per 8
hours. Of course, this change didn’t affect the performance of our methods. So, in total, we have 536
days of measurements (3 measurements per day, so 1608/3=536) and 3273 customers. You can see in
figure 3.2 the form of the energy consumption data.

FileData.Data_with_theft_pt_30_70_overload_60_280

1 2 3 4 5 6 7 8 9 10
1 0.3862 0.6566 0.1554 0.1493 0.5415 0.4289 0.1078 0.2514 0.0971
2 0.0741 03755 13332 03129 0.2320 0.6325 1.3283 04311 0.7949 02108
3 0.0750 0.7498 11387 0.6419 03722 17791 14843 0.5168 1.0840 0.1499
4 0.0497 04527 0.7041 0.2243 0.1547 0.7840 0.3553 0.1051 0.2538 0.1158
5 0.1362 06163 0.8240 0.6177 03582 1.0845 1.0641 0.3926 12299 0.1375
6 00915 05972 15227 0.3956 0.5602 16031 1.2518 0.6513 0.5503 0.3074
7 0.0545 0.5703 0.5640 0.2464 0.1025 0.4949 0.4139 0.1121 0.1694 0.1305
3 01387 0.7478 04755 0.3866 0.2204 0.6727 1.0883 0.0878 0.5098 0.1650
9 0.0787 0.6831 0.9952 03180 0.6934 14758 20222 0.2233 11786 0.1919
10 0.0630 0.5842 0.6201 02533 0.1580 0.6175 0.4263 0.1037 0.2469 0.0994
11 0.1069 05892 0.8867 05720 03012 11334 0.7459 0.0866 0.5528 0.1549
12 0.0869 08911 14137 0.6383 0.4666 0.7529 1.5531 0.1832 14536 0.2693
13 0.0803 0.7004 09210 0.1481 0.0807 0.6042 0.4665 0.0928 0.2558 0.0919
14 0.1050 0.5078 0.5646 0.8268 03370 0.7290 0.7999 0.2678 13106 0.1888
15 01275 0.7441 0.7154 0.8621 03526 14575 13324 0.1301 0.7989 0.1861
16 00523 0.3608 0.6874 0.1683 0.0814 0.7450 0.3334 0.1282 0.2586 0.1007
7 0.1054 04594 0.9016 12513 0.1511 09759 0.5598 0.1304 0.4693 0.2277
13 0.0846 0.7614 2.0242 03113 03156 2.5976 0.8395 0.3031 13246 01977
19 0.0633 04046 0.6410 0.2049 0.1470 0.6478 0.4628 0.0924 04016 01115
20 01335 05728 1.0691 0.6229 02103 09225 0.6048 0.1503 0.3556 02217

Figure 3.2 Measurements from the energy consumption data.

Every target table has 1 row and 3273 columns. Like before, each column from these target tables is a
different consumer. These target tables reveal the identity of each consumer, accordingly to the number
that corresponds to him. If the number is:

. -1, then he is Genuine-Legal Consumer
. 2, then he is Illegal Consumer, Partial Theft
. 5, then he is Illegal Consumer, Overload

You can see a target table in the figure 3.3
FileData target_Data_with_theft_pt_50_70_overload_60_80

1 2 3 4 5 6 7 3 9 10
1 3 R 1 1 1 5 g 1 4 2
2
3

Figure 3.3 Target table.

The target tables are necessary because we need to validate the results of our methods with the
information of the tables in order to see how good our detection of electricity theft was. Moreover, the
neural network methods that were tested in this thesis, demanded a target table as output for validation.
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3.2 Data Manipulation and Features

In order to use the data table that described in the previous sub-chapter we had to use data manipulation
techniques and some features for better results.

Feature extraction involves reducing the amount of resources required to describe a large set of data.
When performing analysis of complex data one of the major problems stems from the number of
variables involved. Analysis with a large number of variables generally requires a large amount of
memory and computation power, also it may cause a classification algorithm to overfit to training
samples and generalize poorly to new samples. Feature extraction is a general term for methods of
constructing combinations of the variables to get around these problems while still describing the data
with sufficient accuracy. Many machine learning practitioners believe that properly optimized feature
extraction is the key to effective model construction [31],[28],[37].

Below we present all the features and the methods we used in our work. Some of the features below
used in combination and some others used only for some tests. Notice that the data manipulation was
done in Matlab. For the theft detection techniques which were implemented outside of Matlab software,
we just extracted the manipulated data into csv, binary or txt files depending on the method.

3.2.1 Features

Average

Relative mean based technique of feature extraction is a robust technique used for content
identification.

The initial data had one measurement per 30 minutes for each consumer but we averaged them to one
measurement per 8 hours. In our code, we created several averaged data tables from the original data
tables. Specifically, we created one table with one measurement per day for each customer (average of
3 measurements, since one measurement is per 8 hours),one table with one measurement per month for
each customer (average of 90 measurements, since one day has 3 measurements), one table with one
measurement per 5 days for each consumer (average of 15 measurements, since one day is 3
measurements) and one table with one measurement per 10 days for each customer (average of 30
measurements, since one day is 3 measurements). We experimented with all these averaged tables and
we ended up using the table with one measurement per day.

Correlation Coefficient

A correlation coefficient is a numerical measure of some type of correlation, meaning a statistical
relationship between two variables. The variables may be two columns of a given data set of
observations, often called a sample, or two components of a multivariate random variable with a known
distribution.
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Several types of correlation coefficient exist, each with their own definition and own range of usability
and characteristics. They all assume values in the range from —1 to +1, where 1 indicates the
strongest possible agreement and O the strongest possible disagreement. As tools of analysis,
correlation coefficients present certain problems, including the propensity of some types to be distorted
by outliers and the possibility of incorrectly being used to infer a causal relationship between the
variables [39].

The correlation coefficient of a data table was computed with Matlab function:

CC = corrcoef (x),
where x is the data table.

Range

In statistics, the range of a set of data is the difference between the largest and smallest values.
However, in descriptive statistics, this concept of range has a more complex meaning. The range is the
size of the smallest interval which contains all the data and provides an indication of statistical
dispersion. It is measured in the same units as the data. Since it only depends on two of the
observations, it is most useful in representing the dispersion of small data sets [38].

The range of the measurements for each customer was computed in Matlab, with the use of min-max
functions :

Range Data (i)=max (Data(:,1i))-min(Data(:,1)),
where Data is our data table

Mean

In probability and statistics, the population mean, or expected value, are a measure of the central
tendency either of a probability distribution or of the random variable characterized by that distribution.
In the case of a discrete probability distribution of a random variable X, the mean is equal to the sum
over every possible value weighted by the probability of that value; that is, it is computed by taking the
product of each possible value x of X and its probability p(x), and then adding all these products
together. An analogous formula applies to the case of a continuous probability distribution.

For a finite population, the population mean of a property is equal to the arithmetic mean of the given
property while considering every member of the population. For example, the population mean height
is equal to the sum of the heights of every individual divided by the total number of individuals. The
sample mean may differ from the population mean, especially for small samples. The law of large
numbers dictates that the larger the size of the sample, the more likely it is that the sample mean will be
close to the population mean [40].

The mean of the measurements for each customer was computed with Matlab function :
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Mean data=mean (Data),
where Data is our data table.

Variance

In probability theory and statistics, variance is the expectation of the squared deviation of a random
variable from its mean. Informally, it measures how far a set of (random) numbers are spread out from
their average value. Variance has a central role in statistics, where some ideas that use it include
descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo
sampling. Variance is an important tool in the sciences, where statistical analysis of data is common
[42].

The variance is the square of the standard deviation, the second central moment of a distribution, and
the covariance of the random variable with itself, and it is computed with Matlab function:

Variance Data=var (Data),
where Data is our data table.

Skewness

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random
variable about its mean. The skewness value can be positive , negative or undefined. For a unimodal
distribution, negative skew commonly indicates that the tail is on the left side of the distribution, and
positive skew indicates that the tail is on the right. Skewness in a data series may sometimes be
observed not only graphically but by simple inspection of the values. This is how we used skewness as
a feature in our work.

The skewness of the measurements of each consumer was computed with Matlab function:

SK data=skewness (Data(:,C)),
where Data is our data table and C is a consumer.

Standar Deviation

In statistics, the standard deviation (SD, also represented by the lower case Greek letter sigma o or the
Latin letter s) is a measure that is used to quantify the amount of variation or dispersion of a set of data
values. A low standard deviation indicates that the data points tend to be close to the mean (also called
the expected value) of the set, while a high standard deviation indicates that the data points are spread
out over a wider range of values.
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The standard deviation of a random variable, statistical population, data set, or probability distribution
is the square root of its variance. It is algebraically simpler, though in practice less robust, than the
average absolute deviation. A useful property of the standard deviation is that, unlike the variance, it is
expressed in the same units as the data.

In addition to express variability of a population, the standard deviation is commonly used to measure
confidence in statistical conclusions. For example, the margin of error in polling data is determined by
calculating the expected standard deviation in the results if the same poll were to be conducted multiple
times. This derivation of a standard deviation is often called the "standard error" of the estimate or
"standard error of the mean" when referring to a mean. It is computed as the standard deviation of all
the means that would be computed from that population if an infinite number of samples were drawn
and a mean for each sample were computed.

It is very important to note that the standard deviation of a population and the standard error of a
statistic derived from that population (such as the mean) are quite different but related (related by the
inverse of the square root of the number of observations). The reported margin of error of a poll is
computed from the standard error of the mean (or alternatively from the product of the standard
deviation of the population and the inverse of the square root of the sample size, which is the same
thing) and is typically about twice the standard deviation—the half-width of a 95 percent confidence
interval [41].

The standard deviation of the data table was computed with Matlab’s function :

STD Data=std(Data),
where Data is our data table.

3.2.2 Data Mining Techniques

Data Normalization

Data normalization is one of the main strategies that needs to be employed before performing
classification. The basic purpose of data normalization is to keep check on the attributes having greater
range of numeric values, so that the smaller sized values are not neglected. Normalization is a rescaling
of the data from the original range so that all values are within the range of 0 and 1. Normalization
requires that you know or are able to accurately estimate the minimum and maximum observable
values. The minimum and maximum value of a table can be found with Matlab max() and min()
functions.

A value is normalized as follows:

y=(x-min)/ (max-min),
where the minimum and maximum values pertain to the value-table x that are being normalized.
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Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. The number of principal components is less than or
equal to the number of original variables. This transformation is defined in such a way that the first
principal component has the largest possible variance, and each succeeding component in turn has the
highest variance possible under the constraint that it is orthogonal to the preceding components. The
resulting vectors are an uncorrelated orthogonal basis set. The principal components are orthogonal
because they are the eigenvectors of the covariance matrix, which is symmetric. PCA is sensitive to the
relative scaling of the original variables.

o 4 Feature 2
Principal comp. Principal comp.
wdirection 2 direction 1
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< - -
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Figure 3.4 Principal Component Analysis

PCA is mostly used as a tool in exploratory data analysis and for making predictive models. PCA can
be done by eigenvalue decomposition of a data covariance (or correlation) matrix or singular value
decomposition of a data matrix, usually after mean centering (and normalizing or using Z-scores) the
data matrix for each attribute. The results of a PCA are usually discussed in terms of component scores,
sometimes called factor scores (the transformed variable values corresponding to a particular data
point), and loadings (the weight by which each standardized original variable should be multiplied to
get the component score).

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can be
thought of as revealing the internal structure of the data in a way that best explains the variance in the
data. If a multivariate dataset is visualized as a set of coordinates in a high-dimensional data space (1
axis per variable), PCA can supply the user with a lower-dimensional picture, a projection or "shadow"
of this object when viewed from its (in some sense) most informative viewpoint. This is done by using
only the first few principal components so that the dimensionality of the transformed data is reduced,
while maintaining great variance [44],[28].

The principal component analysis of our data table was computed with Matlab’s function :

PCA Data=pca (Data),
where Data is our data table.
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3.3 Performance Metrics

Once you have built your model, the most important question that arises is how efficient it is. So,
evaluating your model is the most important task in the data science project which delineates how
satisfying your predictions are. Below we describe the most important metrics that we have used in our
work. Some of them were not used in all the techniques we worked with, due to the programming
environment or the limited tools the method could offer [49].

True positives and true negatives are the observations that are correctly predicted . We want to
minimize false positives and false negatives so they are shown in red color. These terms are a bit
confusing. So let’s take each term one by one and understand it fully.

True Positives (TP)- These are the correctly predicted positive values which means that the value of
actual class is yes and the value of predicted class is also yes. E.g. when a consumer is classified as
illegal (say class I) and he is actually an illegal consumer (belongs to class I).

True Negatives (TN)- These are the correctly predicted negative values which means that the value of
actual class is no and value of predicted class is also no. E.g. when a consumer is classified as legal
(say class L) and he is actually a legal consumer (belongs to class L).

False positives and false negatives, these values occur when your actual class contradicts with the
predicted class.

False Positives (FP)- When actual class is no and predicted class is yes. E.g. when a consumer is
classified as illegal (say class I) but he is actually a legal consumer (belongs to class L).

False Negatives (FN)—- When actual class is yes but predicted class in no. E.g. when a consumer is
classified as legal (say class L) but he is actually an illegal consumer (belongs to class I).

After these four parameters, we can calculate Accuracy, Precision, Recall and F1 score, which are the
most important performance metrics.

Accuracy- Accuracy is the most intuitive performance measure and it is simply a ratio of correctly
predicted observation to the total observations. One may think that, if we have high accuracy then our
model is best. Yes, accuracy is a great measure but only when you have symmetric datasets where
values of false positive and false negatives are almost the same. Therefore, you have to look at other
parameters to evaluate the performance of your model.

True Negatives+True Positives

Accuracy = , — — .
True Negatives+True Positives+False Positives+False Negatives
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Precision- Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations. High precision relates to the low false positive rate.

True Positives

Precision = — —
True Positives+False Positives

Recall (Sensitivity) - Recall is the ratio of correctly predicted positive observations to all the

observations in actual class.

True Positives
Recall =

True Positives+False Negatives

F1 score- F1 Score is the Harmonic Mean between precision and recall. The range for F1 Score is [0,
1]. Tt tells you how precise your classifier is (how many instances it classifies correctly), as well as how
robust it is (it does not miss a significant number of instances). Intuitively it is not so easy to perceive
the accuracy, but F1 is usually more useful than accuracy, especially if you have an uneven class
distribution. Accuracy works best if false positives and false negatives have a similar cost. If the cost of
false positives and false negatives is very different, it’s better to look at both Precision and Recall. High
precision but lower recall is extremely accurate, but it then misses a large number of instances that are
difficult to classify. The greater the F1 Score, the better the performance of our model is.
Mathematically, it can be expressed as:

2x(Recall*Precision)
F1 Score =

Recall+Precision

Mean Squared Error

Mean Squared Error (MSE) is quite similar to Mean Absolute Error, the only difference being that
MSE takes the average of the square of the difference between the original values and the predicted
values. The advantage of MSE being that it is easier to compute the gradient, whereas Mean Absolute
Error requires complicated linear programming tools to compute the gradient. As, we take square of the
error, the effect of larger errors become more pronounced than smaller error, hence the model can now
focus more on the larger errors. This is computed in most cases with default functions.
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Confusion Matrix

Confusion Matrix, as the name suggests, gives us a matrix as output and describes the complete
performance of the model. As you can see from the figure 3.5, the green squares shows the true
positives (square [1.1]) and true negatives (square [2.2]) while the red squares shows the false positives
(square [1.2]) and false negatives (square [2.1]). The grey square shows the accuracy of the
classification. You can see many of them in chapter 5, where we plot them with Matlab Deep Learning

Toolbox in each case of electricity theft that was tested.
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Figure 3.5 Confusion Matrix
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4. Power Theft Detection Via Multilayer Artificial Neural Networks

This chapter describes the implementation of an artificial neural network with the use of the Fast
Artificial Neural Network Library, called FANN. The library is written in ANSI C and its work is to
implement multilayer feedforward networks with support for both fully connected and sparse
connected networks. The library is designed to be fast, versatile and easy to use and as it turned out it
offers great results for the detection of electricity theft.

4.1 About Artificial Neural Networks

First of all, lets talk about artificial neural networks which are the main reason of using this library. It is
not possible (not at the moment at least) to make an artificial brain, but it is possible to make simplified
artificial neurons and artificial neural networks (ANNs). These ANNs can be made in many different
ways and can try to mimic the brain in many different ways. ANNs are not intelligent, but they are
good for recognizing patterns and making simple rules for complex problems. They also have excellent
training capabilities which are often used in artificial intelligence research. ANNs are good at
generalizing from a set of training data. E.g. this means an ANN given data about a set of animals
connected to a fact identifying them as mammals or not, is able to predict whether an animal outside
the original set is a mammal from its data. This is a very desirable feature of ANNs, because it is not
necessary to know the characteristics defining a mammal, the ANN will find out by itself. In our case,
we use the ANN for the detection of illegal consumers of electricity.

This ANN library that I have chosen to use, implements multilayer feedforward ANNs, which is the
most common kind of ANN. In a multilayer feedforward ANN, the neurons are ordered in layers,
starting with an input layer and ending with an output layer. Between these two layers are a number of
hidden layers. Connections in these kinds of network only go forward from one layer to the next. In the
figure below we can see a fully connected multilayer feedforward network with one hidden layer. As
you can see, all the neurons in each layer are connected to all the neurons in the next layer. This is
called a fully connected network and although ANNs do not need to be fully connected, they often are
[61],[62].
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Input layer Hidden layer Cutput layer

A

Figure 4.1 A fully connected multilayer feedforward network with one hidden layer.

Multilayer feedforward ANNs have two different phases: A training phase (sometimes also referred to
as the learning phase) and an execution phase. In the training phase the ANN is trained to return a
specific output when given a specific input, this is done by continuous training on a set of training data.
In the execution phase the ANN returns outputs on the basis of inputs. The way the execution of a
feedforward ANN functions is: An input is presented to the input layer, the input is propagated through
all the layers until it reaches the output layer, where the output is returned. In a feedforward ANN an
input can easily be propagated through the network and evaluated to an output. It is more difficult to
compute a clear output from a network where connections are allowed in all directions (like in the
brain), since this will create loops [61].

Two different kinds of parameters can be adjusted during the training of an ANN, the weights and the t
value in the activation functions. This is impractical and it would be easier if only one of the
parameters should be adjusted. To cope with this problem a bias neuron is invented. The bias neuron
lies in one layer, is connected to all the neurons in the next layer, but to none in the previous layer and
it always emits 1. Since the bias neuron emits 1 the weights, connected to the bias neuron, are added
directly to the combined sum of the other weights, just like the t value in the activation functions. A
modified equation for the neuron, where the weight for the bias neuron is represented as wn+1, is
shown in equation 4.1:

1 4.1)

g(:z:) - 1 + e—Zsm

Adding the bias neuron allows us to remove the t value from the activation function, only leaving the
weights to be adjusted, when the ANN is being trained. A modified version of the sigmoid function is
shown in equation 4.2:

y($> =g (wn—i—l Zﬂ:wzﬁ-a) (4.2)
=0

We cannot remove the t value without adding a bias neuron, since this would result in a zero output
from the sum function if all inputs where zero, regardless of the values of the weights. Some ANN
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libraries do, however, remove the t value without adding bias neurons, counting on the subsequent
layers to get the right results. An ANN with added bias neurons is shown in the figure below.

Input layer Hidden layer Dutput layer

Figure 4.2 A fully connected multilayer feedforward network with one hidden layer and bias
neurons.

When training an ANN with a set of input and output data, we wish to adjust the weights in the ANN,
to make the ANN give the same outputs as seen in the training data. On the other hand, we have to
avoid making the ANN too specific, because it will give precise results for the training data, but
incorrect results for all other data. When this happens, the ANN has been over-fitted. The training
process can be seen as an optimization problem, where we wish to minimize the mean square error of
the entire set of training data. This problem can be solved in many different ways, ranging from
standard optimization heuristics like simulated annealing, through more special optimization
techniques like genetic algorithms to specialized gradient descent algorithms like backpropagation. The
most used algorithm is the backpropagation algorithm [61].

Backpropagation algorithms are a family of methods used to efficiently train artificial neural
networks (ANNs) following a gradient descent approach that exploits the chain rule. The main feature
of backpropagation is its iterative, recursive and efficient method for calculating the weights updates to
improve the network until it is able to perform the task for which it is being trained.

The backpropagation algorithm works in much the same way as the name suggests. After propagating
an input through the network, the error is calculated and the error is propagated back through the
network while the weights are adjusted in order to make the error smaller. Although we want to
minimize the mean square error for all the training data, the most efficient way of doing this with the
backpropagation algorithm, is to train on data sequentially one input at a time, instead of training on the
combined data. However, this means that the order the data is given in is of importance, but it also
provides a very efficient way of avoiding getting stuck in a local minima [61],[62].
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4.2 Neural Network Design

When creating a network it is necessary to define how many layers, neurons and connections it should
have. If the network becomes too large, the ANN will have difficulties learning and it will tend
eventually to over-fit, meaning that it will be fitted precisely to this set of training data and thereby
loose generalization. If the network becomes too small, it will not be able to represent the rules needed
to learn the problem and it will never gain a sufficiently low error rate.

The number of input and output layers can be defined by the data of the project and its requests.
However, the number of hidden layers is also very important and it is a parameter that can only be
specified with experimentation. Generally speaking, if the problem is simple it is often enough to have
one or two hidden layers, but as the problems get more complex, so does the need for more layers.

In order to measure the quality of our ANN implementation, we have to check the mean square error
values it can produce during a fixed period of training. The mean square error value is calculated while
the ANN is being trained. Some functions of FANN library are implemented, to use and manipulate this
error value. It is always hard to test the quality of an ANN implementation. How well a library
performs on a given problem is a combination of a number of factors, including the initial weights, the
training algorithm, the activation function and the parameters for this function. Especially the initial
weights are tricky because they are set at random. For this reason two training sessions with the same
data can give different results. Another problem is finding good datasets. ANN libraries perform
differently on different datasets, meaning that just because one library is better at one problem does not
mean that it is better at another problem [61]. For this reason, quality benchmarks were tested on
several different datasets with different kinds and percentages of electricity theft in each data table. You
can see all the data tables that have been used in the figure 3.1 in chapter 3.1.

In our implementation of the neural network for electricity theft detection using the FANN library we
made a lot of experiments in order to conclude to the “optimal” neural network parameters. For the
network sizes, the datasets are separated with 50% for training, 25% for validation and 25% for testing.
However I didn’t do validation while training and for this reason I decided to use both the validation
and test sets for testing. I did the quality benchmarks by training ANNs with training sets for a fixed
period. Specifically, I was stopping the training phase every 100 echoes in order to write information
about the mean square error for the training data and the testing data. For the calculation of the mean
square error I used the same function on all the different libraries, to make sure that differences in this
calculation does not affect the result. In figure 4.3 we display information about the mean square error
for the training data during the network’s training phase.

Figure 4.3 Display information about mse in training phase.
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4.3 Neural Network Parameters and Input Data

Creating the neural network architecture therefore means coming up with values for the number of
layers of each type and the number of nodes in each of these layers.

The number of input layers is completely and uniquely determined once you know the shape of your
training data. In our case, is depended of the feature extracted from our data and used as input. After a
lot of experiments we conclude that the best input for our neural network was a normalized average of
the electricity consumption measurements. Each customer’s measurement was averaged in order to
represent one day of electricity consumption. In total, we had 1608 measurements for each customer (3
measurements per day) which were used to create 536 (1608/3) measurements (on average). So, the
number of input layers for our neural network was 536.

Like the input layers, every NN has also output layers. Its size (number of neurons) is completely
determined by the chosen model configuration. Our NN runs in Regression Mode (the ML convention
of using a term that is also used in statistics but assigning a different meaning to it is very confusing).
In the neural networks that run in Regression Mode like ours, the output layer has a single node and
returns only one value. This value defines if the consumer is fraudster (in this case the output will be
close to -1) or non-fraudster (in this case the output will be close to 1) [46],[43].

The number of hidden layers is something that cannot be defined in theory. For most problems, one
could probably get decent performance by setting the hidden layer configuration using just two rules:
(i) number of hidden layers equals one and (ii) the number of neurons in that layer is the mean of the
neurons in the input and output layers. However, none of these actually gave good results for our neural
network. So after a lot of experiments with different numbers of hidden layer, we ended up using 35
hidden layers.

The FANN Library couldn’t use the Matlab original energy consumption data with their default form.
So, we had to export the data (the energy consumption data) in a .data file format, while making some
adjustments to it. Firstly, we had to write to the first line the number of samples, the number of input
layers and the number of output layers. Then we have the measurements-samples of each consumer
followed by the target’s table element (defines if the consumer is legal or illegal and it is used for
validation of the results) that corresponds to the consumer. You can see figure 4.4 for a better
understanding:

3273 536 1

13239583 .18691667 .18320833 .173e4167 .2108125 .16329167 .16789583 .12322917 .080145833 ©.13877083 .1339375 .21570833
14683333 .45454167 .15383333 .1779375 .15316667 .16260417 .19716667 .175875 .18489583 .13964583 .175625 .2961875
38508333 .067 .12829167 .49429167 .17e125 .164375 .373 .30102083 .16739583 .086895833 0.18010417 .181
19614583 .16077083 .16254167 .18254167 .15604167 .18845833 .14575 .2613125 .16325 .16939583 .218375 .13108333
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95469815 .0158109 .2210978 .0370934 .59843505 .79555258 .91427188 .1462408 .94438998 .66961054 .77286758 .11791e9
3572779 .1878592 .e381102 .0496455 .2402416 .0309225 .4573443 .2216939 .85515766 .001681 .85890928 .2126479
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Figure 4.4 Form of energy consumption data for input to FANN library.
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4.4 Creating, Training and Testing the Neural Network

The whole procedure of creating, training and testing the neural network achieved with FANN Library
on a Linux terminal using the gcc compiler. After the data processing we mentioned in the previous
subchapter, we used FANN’s functions with some improving adjustments in order to create, train and
test the neural network. Specifically, we set our parameters (layers size, epochs etc.) for the neural
network and we created a makefile which is used to “run” all the functions which implement the neural
network. These functions are:

Training phase

fann_create : Creates the ANN with a connection rate (1 for a fully connected network), a learning rate
(0.7 is a reasonable default and the one we used) and a parameter saying how many layers the network
should consist of (including the input and output layer). After this parameter follows one parameter for
each layer (starting with the input layer) saying how many neurons should be in each layer.

fann_train_on _file : Trains the ANN for a maximum of max_epochs (we used the default price of
1000 epochs) epochs, or until the mean square error is lower than the desired error (we set the desired
error to 0, a price that is actually unreliable). A status line is written every 100 epochs between reports
epoch. We noticed that by increasing the number of max_echoes the neural network results was much
better, but in this case the neural network tends to over-fit to specific data losing generalization.

fann_save : Saves the ANN to a file, in order to use it later during execution.

fann_destroy : Destroys the ANN and deallocates the memory it used. The conguration file saved by
fann_save contains all the information we needed in order to recreate the network.

Execution phase

fann_create_from _file : Creates the network from a conguration file, which has earlier been saved by
the training program with fann_save function.

fann_run : Executes the input on the ANN and returns the output from the ANN.

fann_type : Is the type used internally by the fann library. This type is float when including
floatfann.h, double when including doublefann.h and int when including fixedfann.h. In our case we
used double type (including doublefann.h).

The above six are the basic (with the fann_type described) functions of the FANN library. Of course,
we worked with more library functions inside the code but not as basic as the above six.
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The test of the artificial neural network gives an output in the range [-1,1] like you can see in figure 4.5
below:
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Figure 4.5 Testing phase of the neural network.

In order to find the accuracy of the neural network we implement a “rule” model which decides,
depending on the output of the neural network, if the consumer is fraudster or non-fraudster. As you
can see in the image above we have a price called difference, which tells the numerical difference
between the output of the neural network and the desired outcome (which is known from the target data
table). As we have already said in the previous chapter the value 1 corresponds to a legal consumer and
the value -1 corresponds to an illegal consumer. So we use this difference value in order to see if the
neural network output is closer to 1 or -1 and depending on that we make the final decision about the
consumer. In most cases this rule model works great but as you can see in the last line of the image
above the neural network had made a fault estimation about the consumer (so the rule model based on
this estimation will decide wrongly). Luckily cases like this one are minimal and the performance of
the neural network remains very good.
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4.5 Results

As we mentioned in the beginning of chapter 3, the real-time energy consumption measurements we
have in our possession is a struct of data with different kinds and percentages of electricity theft in each
data table. We tested the performance of our neural network in each of these cases as you can see in the
images below. The procedure was very fast with this method, so we used all the consumers (3273) for
the classification. The accuracy is representative of the average accuracy in each case. Each case tested
5-10 times in order to end up to the images below.

An overview of the neural network:
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Figure 4.6 Overview of the neural network
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Below we quote some images with the accuracy metrics of the neural network in each case we
experimented with. Because this method was implemented in a Linux terminal we could not have
visual presentation for the results as we did with the methods in Matlab.

1% CASE : Theft with overload 40%-60%

Figure 4.7 Performance Metrics for Case 1

2" CASE : Theft with overload 60%-80%

. epochs 168@. Desired error: ©.8008080880.
hs ] ; i
hs
hs
hs
hs
hs
hs
hs

hs

ACCURACY = 93.808 X%

45



e
als
1s

Figure 4.8 Performance Metrics for Case 2
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Figure 4.9 Performance Metrics for Case 3
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4" CASE : Partial theft 30%-50%
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Figure 4.10 Performance Metrics for Case 4

5% CASE : Partial theft 50%-70%
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Figure 4.11 Performance Metrics for Case 5

6" CASE : Theft with overload 60%-80% and partial theft 50%-70%
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Figure 4.12 Performance Metrics for Case 6
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As you can see from table 4.1 the performance metrics of this method were very satisfying in all cases.
These results are largely due to the “rule” model we applied at the output of the neural network and
based on that, we decided about each consumer’s legality with great success.

CASES | Accuracy | Recall | Precision Sfolre P(l:tl;ses Negltli‘i/es P(iéil:is:es Nel;zlltsif/es T;:)l )
1% Case 89% 0,9511 | 0,8967 |0,9231| 2162 751 249 111 105
2" Case| 93% 0,9753 | 0,9295 |0,9519 | 2217 832 168 56 111
3" Case| 95% 0,9806 | 0,9513 |0,9657 | 2229 886 114 44 121
4™ Case | 92% 0,9494 | 0,9494 |0,9494 | 2158 885 115 115 117
5" Case | 97% 0,9758 | 0,9809 |0,9783 | 2218 957 43 55 126
6" Case | 95% 0,9810 | 0,9574 |0,9691 | 2230 901 99 43 129

Table 4.1 Performance Metrics

Generally, the FANN library that was used in this method, was easy to use, fast (faster than all the other
methods, except of the method with optimum path forest classifiers) and versatile (we could adjust
many parameters easily).

From all the methods that were tested in this thesis, the method with the multilayer artificial neural
networks was one of the best, both in performance and speed and for this reason is totally
recommended for electricity theft detection.
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5. Power Theft Detection Via Neural Networks

This chapter describes the implementation of a neural network with Deep Learning Toolbox in Matlab.
Deep Learning Toolbox (formerly Neural Network Toolbox) provides a framework for designing and
implementing neural networks with algorithms, pretrained models, and apps. You can use convolutional
neural networks (ConvNets, CNNs) and long short-term memory (LSTM) networks to perform
classification and regression on image, time-series, and text data.

5.1 About Deep Learning Toolbox

Matlab and Deep Learning Toolbox provide command-line functions and apps for creating, training,
and simulating neural networks. The apps make it easy to develop neural networks for tasks such as
classification, regression (including time-series regression), clustering and plots help you visualize
activations, edit network architectures, and monitor training progress.

The Deep Learning Toolbox has 4 categories of “wizards-apps”, each one of those is suitable for
solving a different kind of problem. Specifically these apps are:

. Fitting app: In fitting problems, the neural network have to map between a data set of numeric
inputs and a set of numeric targets. Examples of this type of problem include estimating house prices
from such input variables as tax rate, pupil/teacher ratio in local schools and crime rate (house_dataset
estimating engine emission levels based on measurements of fuel consumption and speed
engine_dataset) or predicting a patient's bodyfat level based on body measurements (bodyfat_dataset).
The Neural Fitting app has everything needed for data selection, creating-training a network and
evaluating its performance with mean square error and regression analysis.

. Pattern Recognition app: In pattern recognition problems, the neural network have to classify

inputs into a set of target categories. For example, recognize the vineyard that a particular bottle of
wine came from, based on chemical analysis (wine_dataset) or classify a tumor as benign or malignant,
based on uniformity of cell size, clump thickness, mitosis (cancer_dataset). The Neural Pattern
Recognition app has everything needed for data selection, creating-training a network and evaluating
its performance with cross-entropy and confusion matrices.

. Clustering app: In clustering problems, the neural network have to group data by similarity. For
example: market segmentation done by grouping people according to their buying patterns, data mining
can be done by partitioning data into related subsets, a bioinformatic analysis has to group the genes
with related expression patterns. The Neural Clustering app includes everything needed for data
selection, creating-training a network and evaluating its performance with a variety of visualization
tools.
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. Time Series app: Prediction is a kind of dynamic filtering, in which past values of one or more

time series are used to predict future values. Dynamic neural networks, which include tapped delay
lines, are used for nonlinear filtering and prediction. There are many applications for prediction. For
example, a financial analyst might want to predict the future value of a stock, bond or other financial
instrument. An engineer might want to predict the impending failure of a jet engine. Predictive models
are also used for system identification (or dynamic modeling), in which you build dynamic models of
physical systems. These dynamic models are important for analysis, simulation, monitoring and control
of a variety of systems, including manufacturing systems, chemical processes, robotics and aerospace
systems.

For the detection of electricity theft in this method, we used the Pattern Recognition app. As the results
showed, this app detect to a great extend the patterns in electricity consumption irregularities.

5.2 Neural Network Parameters and Input Data

Creating the neural network means coming up with values for the number of layers of each type and the
number of nodes in each of these layers.

The number of input layers is completely and uniquely determined once you know the shape of your
training data. In our case, it depends on the feature we extracted from our data and used as input. After
a lot of experiments we conclude that the best input for our neural network was the principal
component analysis of the daily average of electricity consumption measurements. Each consumer’s
measurement was averaged in order to represent one day of electricity consumption. In total, we had
1608 measurements for each customer (3 measurements per day) which were used to create 536
(1608/3) measurements (on average). Then, we used the principal component analysis into our
averaged data. This is done by using only the first 20 principal components (88% variance) so that the
dimensionality of the transformed data is reduced.

Like the input layers, every NN has also output layers. Its size (number of neurons) is completely
determined by the chosen model configuration. In our case, we have 2 output layers. The output layer
value defines if the consumer is fraudster (in this case the output will be 2) or non-fraudster (in this
case the output will be 1). Actually, the pattern recognition app outputs a vector with values 1 or 2
depending on the predicted result.

The number of hidden neurons is something that cannot be defined in theory. For most problems, one
could probably get decent performance by setting the hidden neuron configuration using just two rules:
(i) number of hidden neurons equals one and (ii) the number of neurons in that layer is the mean of the
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neurons in the input and output layers [46]. However, none of these actually gave good results for our
neural network. So after a lot of experiments with different numbers of hidden neurons, we ended up
changing the number of hidden neurons depending on the dataset we worked with. As we described in
chapter 3, the data was a struct of datasets with different kinds and percentages of electricity theft. For
each dataset we tested multiple times the neural network in order to conclude to the number of hidden
neurons for each dataset. So we have:

. For the dataset with partial theft 30%-50% we used 28 hidden neurons

. For the dataset with partial theft 50%-70% we used 32 hidden neurons

. For the dataset with overload 40%-60% we used 37 hidden neurons

. For the dataset with overload 60%-80% we used 23 hidden neurons

. For the dataset with overload 80%-100% we used 37 hidden neurons

. For the dataset with overload 60%-80% and partial theft 50%-70% we used 32 hidden neurons

Preprocessing the network inputs, targets and parameters is very important in the implementation of
neural networks as it improves the efficiency of neural network training and as a result its performance.

Moreover we had to increase the neural network’s ability to generalize, which helps to prevent
overfitting, a common problem in neural network design. Overfitting occurs when a network has
memorized the training set and does not generalize new data inputs. Overfitting produces a relatively
small error on the training set but a much larger error when new data is presented to the network.

Two solutions to improve generalization include [63]:

. Regularization modifies the network’s performance function (the measure of error that the
training process minimizes). By including the sizes of the weights and biases, regularization produces
a network that performs well with the training data and exhibits smoother behavior when presented
with new data.

. Early stopping uses two different data sets: the training set, to update the weights and biases,
and the validation set, to stop training when the network begins to overfit the data.
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5.3 Creating, Training and Testing the Neural Network

Each neural network application we described in chapter 5.1 is unique, but developing the neural
network typically follows these steps:

»  Preparing vour data and configuring the network’s inputs and outputs

As we already mentioned, we averaged the electricity consumption measurements, so that each
measurement corresponds to one day. We combine this averaged data with principal component
analysis in order to reduce the dimensions of our datasets (while keeping great variance), speed up the
neural network and improve the performance of the neural network. The neural network inputs and
outputs are determined from the “shape” of our dataset and the hidden layer size chosen by multiple
experiments.

*  Creating the neural network

After setting all the parameters of the neural network we used Matlab function patternnet which is a
function that creates a feedforward neural network (or pattern recognition network in this case) that can
be trained to classify inputs according to target classes.

e Training the neural network

Before training the neural network (or pattern recognition app) we had to choose the neural network
training function that updates weight and bias values. We experimented with different training function
before concluding to Matlab function trainlm. trainlm is a neural network training function that
updates weight and bias values according to Levenberg-Marquardt optimization. It is the fastest
backpropagation algorithm in the deep learning toolbox, and is highly recommended as a first-choice
supervised algorithm, although it does require more memory than other algorithms.

Then, after multiple experiments we decided about the setup division of data for training, testing and
validation. We divided up every sample randomly (with Matlab) and concluded that the best
configuration was to use 80% for training, 10% for testing and 10% for validation.

We chose the msereg (mean squared error with regularization performance function) as the neural
network’s performance function . It measures network performance as the weight sum of two factors:
the mean squared error and the mean squared weights and biases.

Lastly we used the Matlab’s function train() in order to train the neural network.
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» Testing, validating and plotting the neural network

We used Matlab function perform() for testing the neural network and recalculating training, testing
and validation performance. Then we computed some neural network’s accuracy metrics like confusion
matrices, precision, recall and F1. In the end we used some plots in order to view the neural network,
the confusion matrices, the performance etc.

5.4 Results

As we mentioned in the beginning of chapter 3, the real-time energy consumption measurements we
have in our possession is a struct of data with different kinds and percentages of electricity theft in each
data table. We tested the performance of our neural network in each of these cases as you can see in
figure 6.1. The accuracy is representative of the average accuracy in each case. Each case was tested 5-
10 times, which lead to the images below.

An overview of the neural network:

Meural Network

Hidden Qutput
Input ( - Qutput
ﬁ <t ]ih. = .:;_l
20 n n 2
32 2

Algorithms
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Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mise)
Calculations:  MEX

Figure 6.1 Overview of the neural network

Below we quote some images with the performance, the error histograms and the confusion matrices of
the neural network in each case we experimented with. The images below is from simulations with 500
consumers in order to save time. A full simulation of the 3273 consumers could take up to 10 minutes.
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Figure 6.2 Performance and Error Histogram 1st CASE

All Confusion Matrix

; 325 51 86.4%
65.0% 10.2% 13.6%
7]
th
m
O 19 105 84.7%
52 3.8% 21.0% 15.3%
a N o . o b e
ren)
=]
O

67.3% 86.0%
32.7% 14.0%
P e

Target Class

Figure 6.3 Confusion Matrix 1st CASE



2" CASE : Theft with overload 60%-80%

Mean Squared Error (mse)

56

Best Validation Performance is 0.2108 at epoch 13

0l :
iy Train
: Validation
_TESt
PR BESt
10-1 L L L L L L - L L L
0 2 4 6 8 10 12 14 16 18

19 Epochs

Instances

400

360

300

250 1

2001

150

1001

50

-0.96825
-0.8875
-0.8125
-0.7375
-0.6625
-0.5875
-0.5125
-0.4375
-0.3625
-0.2875
-0.2125
-0.1375
-0.0625

Error Histogram with 20 Bins

I zining
[ v alidation
[ st

Zero Error

0.0125
0.0875
0.1625
0.2375
0.3125
0.3875
0.4625

Errors = Targets - Outputs

Figure 6.4 Performance and Error Histogram 2nd CASE

All Confusion Matrix

; 330 39 89 4
66.0% 7.8% 10.6%
w
]
=
e 5 22 109 83.2
5 4.4% 21.8% 16.8%
o
firary
=
O
3 8o 87.8%
6.3Y 12.2%
N 0

Target Class

Figure 6.5 Confusion Matrix 2nd CASE



3¢ CASE : Theft with overload 80%-100%
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5% CASE : Partial theft 50%-70%
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6" CASE : Theft with overload 60%-80% and partial theft 50%-70%

Mean Squared Error (mse)
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The table 6.1 shows some accuracy metrics we computed from the simulations of each case that have
been examined. Of course these numbers differentiated with each simulation due to the random initial
weights of the neural network. The performance metrics that you can see below represent the average
simulations.

CASES | Accuracy | Recall | Precision| F1 P(l:tl;ses Negltliies P(iéil:is:es Nel;zlltsif/es T(i:)le
1" Case | 86% 0,8644 | 0,9448 | 0,9028 325 105 19 51 218
2" Case| 87,8% |0,8799 | 0,9574 |0,9170 337 102 15 46 223
3" Case | 89,2% |0,8950 | 0,9606 |0,9266 341 105 14 40 215
4™ Case | 84,8% |0,8971 | 0,8815 |0,8892 305 119 41 35 229
5" Case | 92,6% |0,9326 | 0,9623 |0,9472 332 131 13 24 236
6" Case | 91,8% | 0,9294 | 0,9536 |0,9413 329 130 16 25 211

Table 6.1 Total Performance Metrics

Generally, this method as you can see from the accuracy metrics in table 6.1, yielded good results. The
accuracy metrics ranged from 84%-93% (depending on the case that was tested). However, it has some
disadvantages:

. This method is by far the most time consuming method that has been tested in this thesis. A
simulation with all the customers (3273) could take up to 35-40 minutes even with the use of principal
component analysis, which drastically reduces the time of a full simulation.

. The random weights that the pattern recognition app chooses by default sometimes lead to
moderate classifications (we rarely had some simulations with 76-80% accuracy due to that act)

Of course, this method takes advantage of Matlab software in terms of visualization, facility and
versatility. As you can see from the images in this subchapter we plotted a lot of things like confusion

matrices, error histograms and performance.

In total, in terms of performance this method was one of the best that was tested in this thesis and
constitutes one very good method for electricity theft detection.
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6. Power Theft Detection with Support Vector Machine Classifiers

Support Vector Machines (SVMs, also support-vector networks) are supervised learning models with
associated learning algorithms that analyze data used for classification and regression analysis. In this
chapter we used support vector machine classifier in order to classify the consumers of electricity into
fraudster or non-fraudster. The support-vector machines classification implemented in Matlab.

6.1 SVM definition

Classifying data is a common task in machine learning. Let’s assume some given data points each
belong to one of two classes, and the goal is to decide into which class a new data point will belong to.
In the case of support-vector machines, a data point is viewed as a dimensional vector (a list of
numbers), and we want to know whether we can separate such points with a dimensional hyperplane.
This is called a linear classifier. There are many hyperplanes that might classify the data. One
reasonable choice as the best hyperplane is the one that represents the largest separation, or margin,
between the two classes. So we choose the hyperplane so that the distance from it to the nearest data
point on each side is maximized. If such a hyperplane exists, it is known as the maximum margin
hyperplane and the linear classifier it defines is known as maximum margin classifier or equivalently,
the perception of optimal stability.

More formally, a support-vector machine constructs a hyperplane or set of hyperplanes in a high or
infinite-dimensional space, which can be used for classification, regression or other tasks like outliers
detection. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to
the nearest training-data point of any class (so-called functional margin), since in general the larger the
margin, the lower the generalization error of the classifier.

Whereas the original problem may be stated in a finite-dimensional space, it often happens that the sets
to discriminate are not linearly separable in that space. For this reason, it was proposed that the original
finite-dimensional space be mapped into a much higher-dimensional space, presumably making the
separation easier in that space. To keep the computational load reasonable, the mappings used by SVM
schemes are designed to ensure that dot products of pairs of input data vectors may be computed easily
in terms of the variables in the original space, by defining them in terms of a kernel function k(x,y)
selected to suit the problem. The hyperplanes in the higher-dimensional space are defined as the set of
points whose dot product with a vector in that space is constant, where such a set of vectors is an
orthogonal (and thus minimal) set of vectors that defines a hyperplane. The vectors defining the
hyperplanes can be chosen to be linear combinations with parameters of images of feature vectors that
occur in the data base. With this choice of a hyperplane, the points in the feature space that are mapped
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into the hyperplane are defined by the relation:

)., ik(zi,z) = constant (6.1)

Note that if k(x,y) becomes small as y grows further away from x , each term in the sum measures the
degree of closeness of the test point x to the corresponding data base point x;. In this way, the sum of
kernels above can be used to measure the relative nearness of each test point to the data points
originating in one or the other of the sets to be discriminated. Note the fact that the set of points x
mapped into any hyperplane can be quite convoluted as a result, allowing much more complex
discrimination between sets that are not convex at all in the original space [47].

6.2 SVM applications

SVMs can be used to solve various real-world problems:

. SVMs are helpful in text and hypertext categorization, as their application can significantly
reduce the need for labeled training instances in both the standard inductive and transductive settings.
Some methods for shallow semantic parsing are based on support vector machines.

. Classification of images can also be performed using SVMs. Experimental results show that
SVMs achieve significantly higher search accuracy than traditional query refinement schemes after just
three to four rounds of relevance feedback. This is also true for image segmentation systems, including
those using a modified version SVM that uses the privileged approach as suggested by Vapnik.

. Hand-written characters can be recognized using SVM.

. The SVM algorithm has been widely applied in Biology and other sciences. They have been
used to classify proteins with up to 90% of the compounds classified correctly. Permutation tests based
on SVM weights have been suggested as a mechanism for interpretation of SVM models. Support-
vector machine weights have also been used to interpret SVM models in the past. Posthoc
interpretation of support-vector machine models in order to identify features used by the model to make
predictions is a relatively new area of research with special significance in the biological sciences [47].
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6.3 Classification Procedure
In order to implement an SVM classification we had to follow some steps for achieving better results:

1) We prepared the data loading the struct of datasets with different kinds and percentages of electricty
theft. Then we divided the data to train and test set. Specifically, we used 80% of the data as train set
and 20% of the data as test set. The selection of the samples for the train/test sets was totally random
using Matlab’s functions.

2) We prepared validation set out of training set (which will be used later for k-fold CV) with Matlab
function called cvpartition() which, depending on the arguments we gave, will give a number of sets
for the cross validation (we gave 10, so we had 10 sets for cross validation).

3) Then we used fitcsvm() function in order to train a support vector machine classifier for two class
learning(fraudster or non-fraudster). Afterwards we used predict() function for comparing the results of
trained model we created with fitcsvm() with the actual results and see how wrong the prediction was.
The prediction in this situation will not be so good, as we did not choose the best parameters (we
executed this step just for training the classifier and used it for the next step to find the best
hyperparameters)

4) We used the trained model from the previous step in order to select specific features from the dataset
(chose the consumer’s samples which could be more useful for the classification) with Matlab’s
function sequentialfs(). The number of the features-columns we are going to extract was depending on
the argument we used in the function. In our case we used 2,4 or 10 features-columns of all the dataset,
according to the case of electricity theft that we examine. Then using these features that were best for
the classification we used fitcsvm() again in order to train the model again, but this time with the best
parameters or hyperparameters.

5) Finally, using the best parameters for the test set, we compared with predict() function the trained
model (created with fitcsvm() in the previous step) with the prediction of the function and the results
were greatly improved. We also used matlab’s functions resubLoss() and kfoldLoss() to find the
accuracy. Then using some plots functions we visualize the hyperplane with samples from our work.
You can see the results in the next chapter.
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6.4 Results

As we mentioned in the beginning of chapter 3, the real-time energy consumption measurements we
have in our possession is a struct of data with different kinds and percentages of electricity theft in each
data table. We tested the performance of our support vector machine classification in each of these
cases, as you can see in the images below. The accuracy is representative of the average accuracy in
each case. Each case was tested at least 5 times in order to lead to the images below. We tested the svm
classification with all customers but the images below are from simulations with 500 consumers for
time saving. With 500 consumers a full classification could take approximately 4 minutes but with all
the consumers it could take up to 20 minutes.

In the images below we choose to present you the hyperplane and the graph of minimum objective vs
function evaluations. The matlab’s command window that you can see, shows the features-columns (2-
4 or 10 depending on the case) that sequentialfs() function choose from the dataset in each case in order
to use it for the classification as well as the optimization process. The 30 iterations (you can see only 20
for space brevity) conclude to best estimated feasible points for BoxConstraint and KernelScale.

For BoxConstraint, the basic idea is that when the data is not perfectly separable, the training algorithm
must allow some mis-classification in the training set. In this case it is applying a cost to the
misclassification. The higher the box-constraint the higher the cost of the misclassified points, leading
to a more strict separation of the data.

The KernelScale is also called gamma. Gamma is related to how spread out the data points are. If they
are very far from each other (which would happen in a very high dimensional space for example), then
you don't want the kernel to drop off quickly, so you would use a small gamma.
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1° CASE : Theft with overload 40%-60%

- True True False False Time
CASE | Accuracy | Recall | Precision | F1 o . - .
Positives | Negatives | Positives | Negatives | (s)
st 0
1™ Case 80% 0,9571 | 0,7976 |0,8701 67 13 17 3 261
Table 6.1 Performance Metrics
Min objective vs. Number of function evaluations
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Fiqure 6.1 Hyperplane and Function evaluations
Command \ ow
Start forward seguential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, added column 10, criterion walus 0.2275
Step 2, added column 372, criterion wvalue 0.18
Final columns included: 10 372
| I
| Iter | Ewval | Ckjectiwve | Ckjectiwve | BestSoFar | BestSoFar | BoxConstraint]| EernelScale |
| | result | | runtime | (okserved) | (estim.) | 1 |
| I
| 1 | Best | 0.3175 | 1.0438 | 0.3175 | 0.3175 | 0.2e731 | 0.0057638 |
] 2 | Accept | 0.3625 | 0.31409 | 0.3175 | 0.32064 | 459,48 | 0.045843 |
] 3 | Best | 0.315 | 0.20158 | 0.315 | 0.31518 | 0.003362 | 0.96082 |
] 4 | Accept | 0.315 | 0.24198 | 0.315 | 0.31499 | 0.012858 | 313.42 |
| 5 | Accept | 0.315 | 0.48066 | 0.315 | 0.31495 | 0.13514 | 0.0080274 |
] 6 | hccept | 0.315 | 0.14395 | 0.315 | 0.315 | 0.0010019 | 0.084943 |
l 7 | RAccept | 0.315 | 0.13165 | 0.315 | 0.31497 | 0.050312 | 83.078 |
] 8 | Best | 0.1825 | 0.15456 | 0.1825 | 0.18251 | 0.077111 | 0.55623 |
| 9 | Accept | 0.1325 | 0.17272 | 0.1825 | 0.1825 | 0.13035 | 0.8397 |
] 10 | Rccept | 0.185 | 0.13986 | 0.1825 | 0.1825 | 0.1349 | 0.3372 |
] 11 | Rccept | 0.1825 | 0.22403 | 0.1825 | 0.18177 | 0.105 | 0.51463 |
] 12 | Best | 0.1825 | 0.22967 | 0.1825 | 0.18222 | 0.66612 | 0.85773 |
| 13 | Best | 0.1325 | Q.1082 | 0.1825 | 0.18221 | 0.61316 | 2.2765 |
] 14 | RBccept | 0.185 | 0.20563 | 0.1825 | 0.18214 | 2.7293 | 2,551 |
] 15 | Best | 0.1775 | 0.20512 | 0.1775 | o] 759 | 1.2334 | 1.6711 |
] 16 | Rccept | 0.1825 | 0.14025 | 0.1775 | 0.17757 | 2.5643 | 0.82153 |
| 17 | Accept | 0.315 | 0.19936 | 0.1775 | 0.17756 | 180.51 | 261.58 |
] 18 | Rccept | 0.18 | 0.16604 | 0.1775 | 0.1786 | 1.4679 | 1.4231 |
] % | Best | 0.175 | 0.14252 | 0.175 | 0.17746 | 1.1979 | 1.6334 |
fe 20 | Rhccept | 0.18 | 0.10329 | 0.175 | 0.17805 | 1.0874 | 1.7202 |
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2" CASE : Theft with overload 60%-80%

- True True False False Time
CASE | Accuracy | Recall | Precision | F1 o . . .
Positives | Negatives | Positives | Negatives | (s)
2" Case 83% 0,9718 | 0,8214 | 0,8903 69 14 15 2 276
Table 6.2 Performance Metrics
2 Min objective vs. Number of function evaluations 0
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Figure 6.3 Hyperplane and Function evaluations
Command |
Start forward sequential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, added column 313, criterion walus 0.2175
Step 2, added column 372, criterion walus 0.1825
Final columns included: 313 372
| I
| Iter | Eval | Chjective | Chjective | BestSoFar | BestSoFar | BoxConstraint| KernelScale |
| | resulc | | runtime | (ocbserved) | (estim.) | | |
| I
] 1 | Best | 0.285 | 0.79927 | 0.285 | 0.285 | | 214.16 |
] 2 | Accept | 0.3375 | 0.23138 | 0.285 | 0.28799 | | 0.023988 |
] 3 | Accept | 0.2875 | 0.17459 | 0.285 | 0.28T65 | 0.0012123 | 0.070236 |
] 4 | Accept | 0.2875 | 0.13855 | 0.285 | 0.285 | 0.0062901 | 47.175 |
] 5 | Accept | 0.3575 | 0.42712 | 0.285 | 0.285 | 955,46 | 0.10175 |
] 6 | Rccept | 0.2875 | 0.079634 | 0.285 | 0.28501 | 2.2757 | 419.85 |
l 7 | Accept | 0.2875 | 0.14371 | 0.285 | 0.28501 | 915.05 | S45._.94 |
] 8 | Accept | 0.2875 | 0.15671 | 0.285 | 0.28501 | 0.0010005 | 0.0016925 |
] S | Rccept | 0.29 | 0.16886 | 0.285 | 0.28501 | 26.406 | |
] 10 | Rccept | 0.2875 | 0.21903 | 0.285 | 0.28501 | 0.001036 | |
] 11 | Best | 0.1875 | 0.13033 | 0.1875 | 0.27277 | LES | |
] 12 | Rccept | 0.2875 | 0.26791 | 0.1875 | 0.27369 | L16 | |
] 13 | Best | 0.1825 | 0.17913 | 0.1825 | 0.2586 | .54 | |
] 14 | Rccept | 0.1825 | 0.15229 | 0.1825 | 0.18249 | .72 |
] 15 | Reccept | 0.185 | 0.18503 | 0.1825 | 0.18249 | .58 | |
] 16 | Rccept | 0.185 | 0.17192 | 0.1825 | 0.18248 | .25 | |
| 17 | Rccept | 0.185 | 0.088468 | 0.1825 | 0.18248 | .22 | |
] 18 | Best | 0.1825 | 0.11267 | 0.1825 | 0.18231 | 39 | |
] 1% | Reccept | 0.185 | 0.15442 | 0.1825 | 0.18223 | L16 | |
] 20 | Best | 0.18 | 0.18472 | 0.18 | 0.18003 | .62 | |
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3" CASE : Theft with overload 80%-100%

- True True False False Time
CASE | Accuracy | Recall | Precision | F1 o . . .
Positives | Negatives | Positives | Negatives | (s)
3" Case 85% 0,9594 | 0,8554 | 0,9006 71 14 12 3 293
Table 6.3 Performance Metrics
s Min objective vs. Number of function evaluations 0s
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Figure 6.5 Hyperplane and Function evaluations
Commanc dow
Start forward seguential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, added column 21, criterion wvalue 0.2
Step 2, added column 372, criterion walue 0.1725
Final columns included: 21 372
| I
| Iter | Eval | Cbjective | Chjective | BestSoFar | BestSoFar | BoxConstraint]| EernelScale |
1 | result | | runtime | (observed) | (estim.) 1 | |
| I
| 1 | Best ] 0.2%9 | 0.9958 | 0.29 | 0.2%9 | 599,63 | 246.23 |
| 2 | Accept | 0.2975 | 0.3034 | 0.29 | 0.25045 | 0.10131 | 0.044154 |
1 3 | Bcocept | 0.3025 | 0.27562 | o.29 | 0.29058 | 666.14 | 0.0038781 |
| 4 | Accept | 0.2975 | 0.14473 | 0.29 | 0.25001 | 0.010914 | a78.04 |
| 5 | Best ] 0.185 | 0.27936 | 0.185 | 0.2745 | 599.14 | 052 |
| & | Best ] 0.1725 | 0.16757 | 0.1725 | 0.17251 | 965.01 | 693 |
1 7 | hccept | 0.2975 | 0.13308 | 0.1725 | 0.17252 | 0.0010847 | 57.627 |
| 8 | Accept | 0.215 | 0.17362 | 0.1725 | 0.17252 | 994,77 | 231.6 |
| S | Rccept | 0.1725 | | 0.1725 | 0.1725 | S06.76 | 25.531 |
| 10 | Rccept | 0.175 | | 0.1725 | 0.17247 | 55,19 | 1254 |
1 11 | Recept | 0.175 | ] 0.1725 | 0.17253 | 967.15 | 20.133 |
| 12 | Rccept | 0.18 | | 0.1725 | 0.17258 | 540.28 | 63.775 |
| 13 | Rccept | 0.175 | | 0.1725 | 0.17329 | 937.02 | 19.817 |
| 14 | Rccept | 0.175 | | 0.1725 | 0.17367 | 835.41 | 5.1674 |
1 15 | Recept | 0.18 | 3.0401 | 0.1725 | 0.17366 | 941 .58 | 1.336 |
| 16 | Best ] 0.17 | 0.3341 | 0.17 | 0.17078 | EEEN 3.3717 |
| 17 | Rccept | 0.175 | 0.75576 | 0.17 | 0.17098 | 856.56 | 2.3565 |
| 8 | Best ] 0.1675 | 0.3227 | 0.1875 | 0.16919 | 504.26 | 3.7658 |
1 19 | Recept | 0.1725 | 0.41876 | 0.1875 | o.l&s78 | I 3.0855 |
fe l 20 | Rccept | 0.175 | 0.36524 | 0.1875 | 0.17121 | | 4.0329 |
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4™ CASE : Partial theft 30%-50%

.. True True False False Time
CASE | Accuracy | Recall | Precision | F1 o . . .
Positives | Negatives | Positives | Negatives | (s)
h
4" Case 79% 0,9305 | 0,8072 | 0,8644 67 12 16 5 242
Table 6.4 Performance Metrics
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Figure 6.7 Hyperplane and Function evaluations

Function evaluations

mmand Window

Start forward sequential feature selection:

Initial columns included: none

Columns that can not be included: none

Step 1, added column 1, criteriom walus 0.3075

Step 2, added column 510, criterion walue 0.265

Final columns included: 1 510

|

| Icer | Eval | Cejective | Chjective | BestSoFar | BestSoFar | BoxConstraint| KernelScale

1 | result | | runtime | (ocbserved) | (estim.) | |

|

| 1 | Best ] 0.3075 | 0.85947 | 0.3075 | 0.3075 | 0.0024579 | 747.11

| 2 | Accept | 0.335 | 0.30446 | 0.3075 | 0.30895 | 171.85 | 0.030031

| 3 | Rhccept | 0.3075 | 0.26986 | 0.3075 | 0.3075 | 0.030105 | 0.0011248

| 4 | Accept | 0.3075 | 0.14761 | 0.3075 | 0.30807 | 30.485 | S56.53

| 5 | RAccept | 0.3075 | 0.30862 | 0.3075 | 0.3075 | 0.016007 | 0.0019279

| & | Rccept | 0.3075 | 0.083748 | 0.3075 | 0.30749 | 0.34871 | 986.9

| 7 | Accept | 0.3075 | 0.0804 | 0.3075 | 0.3075 | 0.0036861 | 52.937

1 8 | Best | 0.305 | 0.12615 | 0.305 | 0.305 | 27.712 | 5.6771

| S | Rccept | 0.3075 | 0.085028 | 0.305 | 0.305 | 0.0013575 | 2.6101

| 10 | RBccept | 0.3075 | 0.08206 | 0.305 | 0.305 | 2.6098 | 17.111

1 11 | Rccept | Q.3075 | 0.08204 | 0.305 | 0.30501 | 895.76 | 171.7

| 12 | RBccept | 0.3075 | 0.083839 | 0.305 | 0.30501 | 0.0035829 | 5.6187

| 13 | Best ] 0.285 | 0.14976 | | | 983,05 | 3.9551

1 14 | Best | 0.28 | 0.6218%9 | . | | g6z2.22 | 2.088

| 15 | Best ] 0.275 | 1.0902 | 0.275 | | SE6.88 | 1.3198

| 16 | RBccept | 0.2775 | 1.517 | 0.275 | | 591.02 | 1.0753

| 17 | Best ] 0.2725 | 0.73463 | 0.2725 | | 816.56 | 1.2743

| 8 | Accept | 0.275 | 0.94746 | 0.2725 | | 977.23 | 1.2747

| 1% | RBccept | 0.275 | 0.94388 | 0.2725 | | 54,82 | 1.1834
fe | 20 | RBccept | 0.3075 | 0.080769 | 0.2725 | | 0.0010474 | 0.18339

Fiqure 6.8 Command Window with sequential feature selection and parameters optimization.
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5% CASE : Partial theft 50%-70%

.. True True False False Time
CASE | Accuracy | Recall | Precision | F1 o . . .
Positives | Negatives | Positives | Negatives | (s)
h
5" Case 87% 0,8904 | 0,9286 | 0,9091 65 22 5 8 246
Table 6.5 Performance Metrics
Min objective vs. Number of function evaluations
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Figure 6.9 Hyperplane and Function evaluations

Command Window

Start forward sequential feature selection:

Initial columns included: none

Columns that can not be included: none

Step 1, added column 333, criterion wvalus 0.215

Step 2, added column 510, criterion wvalus 0.175

Final columns included: 333 510

|

| Iter | Eval | Chjective | Cbjective | BestSoFar | BestSoFar | BoxConstraint| EernelScale

| | result | | runtime | (obsexrved) | (estim.) |

|

| 1 | Best | 0.3075 | 0.78983 | 0.3075 | 0.3075 | 4.828 | 0.0060545

| 2 | RAccept | 0.32 | 0.21144 | 0.3075 | 0.30827 | 0.74383 | S.854%5

| 3 | Accept | 0.32 | 0.14082 | 0.3075 | 0.3075 | 0.0012878 | 1.822

| 4 | Best | 0.1775 | 0.20131 | 0.1775 | 0.17751 | 197.74 | 1.7097

| 5 | RAccept | 0.32 | 0.32269 | 0.1775 | Q. | T05.04 | 844.78

| & | Rccept | 0.1775 | 0.177 | 0.1775 | Q. | 173.17 | l.6641

| T | RAccept | 0.1775 | 0.27632 | 0.1775 | Q. | 606.72 | 1.1384

| 8 | Accept | 0.1825 | 0.19144 | 0.1775 | 0. | 116.01 | 0.70577

| S | RAccept | 0.185 | 0.23672 | 0.1775 | Q. | . | 3.48%9

| 10 | ARccept | 0.22 | 0.45145 | 0.1775 | Q. | 8935.74 | 0.08885%9

| 11 | ARccept | 0.18 | 0.22486 | 0.1775 | Q. | 318.8 | 1.2655

| 12 | Best | 0.1775 | 0.22222 | 0.1775 | Q. | 354.2 | 1.581

| 13 | Rccept | 0.1825 | 0.179592 | 0.1775 | Q. | 59.87 | 2.1008

| 14 | ARccept | 0.18 | 0.5179 | 0.1775 | Q. | 966.72 | 1l.1842

| 15 | Rccept | 0.185 | 0.15378 | 0.1775 | Q. | 206.36 | 2.2588

| 1le | Rccept | 0.1775 | 0.15149 | 0.1775 | Q. | 52.484 | 1.1e34

| 17 | Rccept | 0.1775 | 0.13276 | 0.1775 | Q. | 2.4419 | 0.3534%

| 18 | Best | 0.1725 | 0.15727 | 0.1725 | Q. | 5.5223 | 0.65243

| 19 | ARccept | 0.1775 | 0.12689 | 0.1725 | Q. | 3.5571 | 0.70341
j% | 20 | RAccept | 0.1775 | 0.13696 | 0.1725 | Q. | 8.5112 | 0.4371%9
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6" CASE : Theft with overload 60%-80% and partial theft 50%-70%

.. True True False False Time
CASE |Accuracy | Recall |Precision| F1 o . . .
Positives | Negatives | Positives | Negatives | (s)
6" Case| 85% |0,9315| 0,8718 |0,9007 68 17 10 5 298
Table 6.6 Performance Metrics
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Figure 6.11 Hyperplane and Function evaluations
Command Window
Start forward sequential feature selection:
Initial columns included: none
Columns that can not be included: none
Scep 1, added column 510, criterion walue 0.23
Step 2, added column 372, criterion walue 0.1575
Step 3, added column 15, criterion wvalue 0.1325
Step 4, added column 529, criterion walue 0.1325
Step 5, added column 20, criterion wvalue 0.14
Step &, added column 353, criterion walue 0.14
Step 7, added column 13, criterion wvalue 0.1425
Step 8, added column 141, criterion walue 0.1375
Step 8, added column 196, criterion walue 0.1375
Step 10, added column 200, criterion wvalue 0.13
Final columns included: 13 15 20 141 1%6€ 200 353 372 510 32%
| |
| Iter | Eval | Chjective | Ckjective | BestSoFar | BestSoFar | BoxConstraint| EKernelScale |
| | result | | runtime | (observed) | (=stim.) | | |
| |
| 1 | Best | 0.2975 | 0.76775 | 0.2975 | 0.2975 | 0.0044538 | 10.39%
| 2 | Best | 0.27 | 0.30331 | 0.27 | 0.27144 | 367.43 | 1.1075
| 3 | Rccept | 0.2975 | 0.1552 | 0.27 | 0.27 | 0.043464 | 0.040526
| 4 | Rccept | 0.2975 | 0.20009 | 0.27 | 0.27 | 1.807 | 737.81
| 5 | Rccept | 0.2975 | 0.3509 | 0.27 | Q.27002 | 998.31 | 111.33
| &€ | Best | 0.26 | 0.16994 | 0.26 | 0.2634 | 647.21 | 0.7430& |
| 7 | Best | 0.25 | 0.15635 | 0.25 | 0.25071 | 946.9 | 0.53758 |
| | Best | 0.2375 | 0.14447 | 0.2375 | 0.23751 | 990.81 | |

fx
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The table 6.7 shows the accuracy metrics we computed from the simulations of each case that have
been examined. Of course these numbers differentiated slightly with each simulation. The performance
metrics that you can see below represent the average simulations.

CASES | Accuracy | Recall | Precision| F1 | oo J00 |\ | poitives | Negatives | ()
1“Case | 80% | 09571 | 0,7976 |0,8701| 67 13 17 3 261
2" Case | 83% | 09718 | 08214 [0,8903| 69 14 15 2 276
39Case | 85% |0,9594 | 0,8554 |0,9006| 71 14 12 3 293
4"Case | 79% |0,9305| 0,8072 |0,8644| 67 12 16 5 242
5" Case | 87% | 0,8904 | 0,9286 [0,9091| 65 22 5 8 246
6" Case | 85% | 09315 | 08718 [0,9007| 68 17 10 5 298

Table 6.7 Total Performance Metrics

Support Vector Machines can produce accurate and robust classification results on a sound theoretical
basis, even when input data are non-monotone and non-linearly separable. So they can help to evaluate
more relevant information in a convenient way. Since they linearize data on an implicit basis by means
of kernel transformation, the accuracy of results does not rely on the quality of human expertise
judgement for the optimal choice of the linearization function of non-linear input data. For these
reasons SVMs are regarded as a useful tool for effectively complementing the information gained from
classical linear classification techniques.

SVM and Artificial Neural Networks are two popular strategies for supervised machine learning and
classification. SVM benefits depend on a particular project. The SVM classifier is a great choice for
unbalanced data. As a cost-sensitive classifier it can solve the problem of unbalanced data. All other
benefits really depend on the domain and task. But even if the number of positive and negative
examples are not similar SVM would work fine if we normalize the data or may be projected into the
space of the decision boundary which separates the two classes. SVM quite good compared to other
classifiers as the computational complexity is reduced and classification efficiency is increased when
compared to any other non linear classifier [52].

As you can see from the performance metrics above the support vector machine classification achieved
satisfying results but not as good as the previous two methods that have been tested. Specifically, in the
1% and the 4™ case the performance metrics dropped due to the fact that in these cases the consumers’s
samples are very similar to each other and the classifier could not distinguish easily the fraudster from
the non-fraudster. If the data was less balanced the results would probably be better as most of 2-class
classifier works better that way, but generally the support vector machine classification was not so bad
for the detection of electricity theft.
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7. Power Theft Detection with Optimum Path Forest Classifiers

Optimum Path Forest is another interesting framework that leads to a very powerful tool for pattern
recognition classification with graph-based methods. Basically, such methods model the machine
learning task as a problem formulated in the graph theory: the dataset samples, which are represented
by their corresponding feature vectors, are the graph nodes, that are further connected by an adjacency
relation. Without loss of generality, a graph-based method aims at removing or adding edges using
some heuristic in order to create connected components, which stand for a group of samples that share
some similar characteristics [32].

In our work the optimum-path forest (OPF) clustering algorithm has been employed to identify
irregular and regular profiles of consumers obtained from a Irish electrical power company. The
optimum path forest classification has been implemented with the use of LibOPF library in a Linux
terminal.

7.1 OPF Classifier

Optimum Path Forest (OPF) is a new framework for graph-based pattern recognition, which addresses
the graph partition task as a competition process among some key (prototype) samples in order to
conquer the remaining nodes according to a path-cost function. The idea is based on the Image
Foresting Transform (IFT), which works similarly to OPF, but in the context of designing image
processing-like operators. Both OPF and IFT follow the idea of the ordered communities formation, in
which an individual(node) will belong to the community (cluster) that gives him/her the best reward
(path-cost function value).

Generally, this is how optimum a path forest classifier works: Let Z1 be training set, Z2 evaluation set
and Z3 test set with |Z1|, |Z2| and |Z3| samples of a given dataset. This division of the dataset is
necessary to validate the classifier and evaluate its learning capacity from the errors. Z1 is used to
project the classifier and Z3 kept unseen during the project. A pseudo-test on Z2 is used to teach the
classifier by randomly interchanging samples of Z1 with misclassified samples of Z2. After learning, an
improvement in accuracy on Z3 is expected . Let A(s) be the function that assigns the correct label i,
i=1, 2,...,c, to any sample sEZ1UZ2UZ3, SCZ1 be a set of prototypes from all classes, and v be an
algorithm which extracts n features from any sample sEZ1UZ2UZ3 and returns a vector v(s) r . The
distance d(s,t)>0 between two samples, s and t, is the one between their corresponding feature vectors
v(s) r and v(t) r . One can use any distance function suitable for the extracted features. The most
common is the Euclidean one. Our problem consists of projecting a classifier which can predict the
correct label A(s) of any sample s€Z3. Training consists of finding a special set S*cZ1 of prototypes
and a discrete optimal partition of Z1 in the feature space (i.e., an optimum-path forest rooted in S*).
The classification of a sample s€Z3 (or s€Z2) is done by evaluating the optimum paths incrementally,
as though it were part of the forest, and assigning to it the label of the most strongly connected
prototype [32].
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7.2 Datasets extraction

First of all, we had to convert the datasets with electricity measurements to the file format that the
LibOPF demand. Specifically, the original dataset and its parts training, evaluation and test sets must be
in the following BINARY file format:

<# of samples> <# of labels> <# of features>
<0> <label> <feature 1 from element 0> <feature 2 from element 0> ...
<1> <label> <feature 1 from element 1> <feature 2 from element 1> ...

<i> <label> <feature 1 from element i> <feature 2 from element i> ...
<j+1> <label> <feature 1 from element i+1> <feature 2 from element i+1> ...

<n-1> <label> <feature 1 from element n-1> <feature 2 from element n-1> ...

The first line of the file, <# of samples> <# of labels> <# of features>, contains, respectively,

the dataset size, the number of labels (classes) and the number of features in the feature vectors.

The first number of each line, <0>, <1>, ... <n-1>, is a sample identifier (for n samples in the dataset),
which is used in the case of precomputed distances. However, the identifier must be specified anyway.
The <label> is the kind of class the samples belongs to and <features> are the samples we used.

So we shaped the datasets into this format in Matlab and exported it as a .txt file. Then using LibOPF
tool txt2opf we managed to convert our dataset into the binary file format (.dat) that the library needs
for reading the datasets as input.

7.3 Classification Procedure

As we mentioned in the beginning of chapter 3, the real energy consumption measurements we have in
our possession is a struct of data with different kinds and percentages of electricity theft in each data
table. We tested the performance of our optimum path forest classifier in each of this cases as you can
see in the images below. The accuracy is representative of the average accuracy in each case. Each case
was tested at least 5 times and the results are shown in the images below .We tested the classification of
the opf classifer with all the customers we had in our possession (3273) as the classification with the
LibOPF Library was very fast even with all the customers. The accuracy metrics, however, were not so
good.

LibOPF library has all the tools that are needed for the opf classification with default files and
functions which did all the work.
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First of all, we used the ‘opf_split’, which depending on the arguments we gave , randomly splits the
dataset into training, testing and/or evaluation set. It also normalizes the dataset according to our
selection (the features are normalized with the following equation: N_i = (F_i - M_i)/S_i, where F_i,
M_i and S_i are, respectively, the feature i, the average of F_i and the standard deviation of F_i in the
dataset.)

Secondly, we used the ‘opf_train’, which takes over the training procedure of the classifier (execute the
training phase.). The program  designs a classifier and outputs it in a file, which is used by
'opf_classify' for testing the dataset. Instead of ‘opf_train’ we used ‘opf_learn’ when the examined
datasets was large (thousands of samples). The difference between ‘opf_train’ and ‘opf_learn’ is that
the last learns from the classification errors in the evaluation set without increasing the training set size,
and outputs a final classifier in a file, which is used for testing by the program 'opf_classify' like the
‘opf_train’ do.

Thirdly, we used the 'opf_classify'. This uses the file with the classifier, which ‘opf_train’ or
‘opf_learn’ exported in the previous step, and executes the test phase by classifying the test set. It
outputs a file which contains the predicted labels and will be used for computing the accuracy in the
next step

Lastly, we used the 'opf_accuracy' ,which is a program to compute the accuracy over training and/or
test set. The ‘opf_accuracy’ will look for a classified file, which has been exported from the
'opf_classify' in order to compute the accuracy of that classification. We had added some extra code
here in 'opf_accuracy' file in order to compute the other accuracy metrics too.

This is the procedure we follow in order to simulate an opf classification model. Of course we change a
lot of things in each tool-file-program in order to set it to the parameters that have the best results.All in
all, the opf classification does not have such good results as the other methods but this is something
you will see in the next subchapter.

7.4 Results

As we mentioned in the beginning of chapter 3, the real-time energy consumption measurements we
have in our possession is a struct of data with different kinds and percentages of electricity theft in each
data table. We tested the performance of our optimum path forest classifier in each of these cases, as
you can see in the images below. The accuracy is representative of the average accuracy in each case.
Each case was tested at least 5 times in order to lead to the images below. This method, just as the
method with the FANN Library, is very fast and we didn’t have limitations in the number of consumers.
So we used all the consumers (3273) for the opf classification. The results though are not as
encouraging as the results of the other methods.
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Following the procedure we described in the previous subchapter, we convert the energy consumption
data, exported from Matlab, to BINARY file format using the txt2opf tool.

to conver iles written in the OPF ASCII format to the OPF binary format.
number of : !

number of ¢
number of

Figure 7.1 Original file conversion to BINARY file format

Then, using the opf_split tool we split the data set into training, evaluation and test set. We split the
dataset as you can see in 80% training,10% testing and 10% evaluating.

$ bin/fopf_split data/CASE_1l.dat 8.8 8.1

enerates training, ewvaluation and te B for the OPF classifier

Figure 7.2 Data division to training, evaluation and test sets

Next, using the opf_learn tool instead of opf_train (because opf_learn is for large datasets) we trained
the classifier. As you can see the classifier keeps learning from errors in the evaluation set with multiple
iteration until the accuracy of evaluation set becomes 100%.
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$ bin/opf_learn training

~am that executes t ~ the OPF classifier

LibOPF version 2

aluation set:
running iter: oo ] C in e evaluation se
running iter: ven 2 F_AcCc in e evaluation set:

Final opf

Figure 7.3 Training Phase

Then, using the classifier we just trained, we execute the test phase of the opf classifier.

$ bin/opf classify

g time: @ seconds

Figure 7.4 Testing phase

Lastly, using the opf_accuracy tool we compute the accuracy of the classification in each case of
electricity theft that have been examined. All the previous steps were executed each time we examined
each case of electricity theft but for brevity we only show you one time. Below you can see the
accuracy of each case.
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1% CASE : Theft with overload 40%-60%

testing.dat

F version 2.6

in output file
memory ... OK

Figure 7.5 OPF classification accuracy

2" CASE : Theft with overload 60%-80%

testing.dat

ram that computes OPF accuracy of

OPF wersion 2.8

data file
t file

Figure 7.6 OPF classification accuracy
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3¢ CASE : Theft with overload 80%-100%

$ bin/opf_accuracy testing.dat

Figure 7.7 OPF classification accuracy

4™ CASE : Partial theft 30%-50%

$ bin/fopf accuracy testing.dat

Program that computes OPF acc

Figure 7.8 OPF classification accuracy
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5" CASE : Partial theft 50%-70%

Program that computes OPF

t file

Figure 7.9 OPF classification accuracy

6" CASE : Theft with overload 60%-80% and partial theft 50%-70%

Program that computes OPF

LibOPF vers

Reading data file
output file

in outp
mory

Figure 7.10 OPF classification accuracy

80



The table below shows the accuracy metrics we computed from the simulations of each case that have
been examined with the optimum path forest classifier. Of course, these numbers differentiated slightly
with each simulation. The performance metrics that you can see below represent the average
simulations.

CASES Accuracy | Time (s)
1*' Case - overload_40_60 61,52% 33
2" Case - overload_60_80 64,75% 37
3" Case - overload_80_100 69,15% 31
4™ Case - partial_theft_30_50 71,46% 41
5™ Case - partial_theft_50_70 80,91% 36
6™ Case- overload_60_80_&_partial_theft 50_70 | 75,44% 43

Table 7.1 Accuracy and time of execution of all the cases

As you can see from the table above, the performance of this method is quite disappointing. The
accuracy ranges from 61,52% to 80,91% and that is actually a great chasm. This chasm probably
happened because OPF is sensible to noise and outliers(since the prototypes choosing were based on
the MST) and so it chooses noisy samples or outliers to become prototypes. These samples have great
influence on OPF’s classification.

As much as we experimented with this method we could not make this technique to achieve better
results. We tried splitting the dataset manually and with library’s default program, we tried changing
the division of the training, testing and evaluating set, we experimented with different parameters, we
used multiple tools that the library offered, we used different features as input, but always ended up
with similar disappointing results.

Apart from the disappointing results, the file format that the library demanded as input in order to work
was very hard to be composited from the original dataset we had in our possession. All the information
between each phase of this procedure was saved in .dat files and as a result we couldn’t extract
anything we wanted. Lastly, the tools-programs that the LibOPF library use for the classification is
‘locked’ into files and you cannot intervene into their code. That is the reason that we couldn’t compute
any other metrics besides accuracy, which was computed with library’s program ‘opf_accuracy’.

All in all, this method did not reach the expectations we had when we carried out our research about
electricity theft detection techniques before starting this thesis. The results are not encouraging, even
though as you can see from the table 7.1, it is the faster method compared to the others. Of course,
there is a possibility that we did something wrong when using this method or this method is not as
appropriate as the others for the energy consumption data we had in our possesion. I dedicated less time
on this method than on the others, but this is because the results were not desirable from the beginning.
In conclusion, after all these methods that I have experimented within this thesis, this method is
definitely not recommended for detection of electricity theft.

81



8. Power Theft Detection Via Neuro-Fuzzy System (NFS)

Neuro-fuzzy hybridization results in a hybrid intelligent system that synergizes these two techniques by
combining the human-like reasoning style of fuzzy systems with the learning and connectionist
structure of neural networks. Neuro-fuzzy hybridization is widely termed as fuzzy neural network
(FNN) or neuro-fuzzy system (NFS) in the literature. Neuro-fuzzy system (the more popular term is
used henceforth) incorporates the human-like reasoning style of fuzzy systems through the use of fuzzy
sets and a linguistic model consisting of a set of “if-then” fuzzy rules. The main strength of neuro-fuzzy
systems is that they are universal approximators with the ability to solicit interpretable “if-then” rules
[68].

8.1 Architecture of Neuro-Fuzzy Inference System

A neuro-fuzzy inference system or network-based fuzzy inference system is a kind of artificial neural
network that is based on Takagi—Sugeno fuzzy inference system [67]. Since it integrates both neural
networks and fuzzy logic principles, it has potential to capture the benefits of both in a single
framework. Its inference system corresponds to a set of fuzzy “if-then” rules that have learning
capability to approximate nonlinear functions. Hence, neuro-fuzzy inference system is considered to be
a universal estimator. It has uses in intelligent situational aware energy management system [65].

It is possible to identify two parts in the network structure, namely premise and consequence parts. In
more details, the architecture is composed by five layers. The first layer takes the input values and
determines the membership functions belonging to them. It is commonly called fuzzification layer. The
membership degrees of each function are computed by using the premise parameter set, namely
{a,b,c}. The second layer is responsible of generating the firing strengths for the rules. Due to its task,
the second layer is denoted as "rule layer". The role of the third layer is to normalize the computed
firing strengths, by diving each value for the total firing strength. The fourth layer takes as input the
normalized values and the consequence parameter set {p,q,r}. The values returned by this layer are the
defuzzificated ones and those values are passed to the last layer to return the final output [65].

...............................................................

Figure 8.1 A Neuro-Fuzzy System.
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8.2 Neuro-Fuzzy Designer App

Our work in this method was based on the Neuro-Fuzzy Designer app, a Matlab tool which let you
design, train and test Takagi-Sugeno fuzzy inference systems using input/output data. Using Neuro-
Fuzzy Designer app, we could:

Tune membership function parameters of Takagi-Sugeno type fuzzy inference systems.
Automatically generate an initial inference system structure based on our training data.
Modify the inference system structure before tuning.

Prevent overfitting to the training data using additional checking data.

Test the generalization ability of our tuned system using testing data.

Export our tuned fuzzy inference system to the Matlab workspace.

Despite the complexity of the neuro-fuzzy inference systems, the Neuro-Fuzzy Designer app was easy
to use and versatile and provided many advantages for the implementation of neuro-fuzzy inference
systems. In figure 8.2 you can see the neuro-fuzzy designer app which we used for the analysis and
classification of consumers to normal and fraudulent respectively.

Checking data: + FIS output: * — FiShfo. -
* *
*
# of inputs: 4
# of outputs: 1
# of input mfs:
4444
*
-2 st Structure
0 100 200 300 400 500 Clear Plot
Index
[ Load data | [ GenerateFIS — ][ TrainFIs 1 TestFIs
Type: From: Optim. Method:
() Training () Load from file backpropa Plot against:
D e file: ID Load from worksp. Error Tolerance: Cl Training data
Grid partiti 0,004 Testing dat
i® Checking () worksp. ® Grid parttion Epochs: (0 Testing data
D Demo D Sub. clustering 200 @ Checking data
Load Data... | Clear Data | Generate FIS ... | Train Now | Test Now

Figure 8.2 Neuro-Fuzzy Designer App.
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8.3 Classification Procedure

As we mentioned in the beginning of chapter 3, the real energy consumption measurements we have in
our possession is a struct of data with different kinds and percentages of electricity theft in each data
table.

For every case of electricity theft the most common features were tested. These features were : Average
(average of daily measurements), Mean, Skewness, Variance, Standard Deviation, Correlation
Coefficient and Range. After a lot of experimentations, we ended up using as inputs, the 4 features
which maximized the accuracy of the classification process. These features are: the Average, the Mean,
the Skewness and the Standar Deviation.

Afterwards, the dataset for each case of electricity theft were split into training, checking and testing
datasets with a ratio of 70% (2291 consumers), 15% (491 consumers) and 15% (491 consumers),
respectively. We exported these datasets as .dat files (.dat is the type of file that neuro-fuzzy designer
app demand for training, checking and testing datasets) and loaded them to the neuro-fuzzy designer
app. Then we generated and trained the FIS model with the configurations you can see in table 8.1.

MF type Generalized bell-shaped
Number of MFs 4

Output MF Constant
Optimization Method | Backpropagation Algorithm
Error Tolerance 0.004

Number of epochs 200

Table 8.1 Configurations of FIS Model

Finally, we tested the FIS model and estimated the performance based on its predicted values. As you
can see in the figure 8.3, the red “stars” (*) represent the predicted values and the blue “crosses” (+)
represent the actual classes (1 for legal consumers and 5 for fraudsters).

- Checking data : + FIS output:*

* *
w3

Output

0 100 200 300 400 500
Index

Figure 8.3 FIS Predicted Values
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Based on the FIS predicted values we make the final decision about the consumer:

s If the predicted value is closer to 1, we classify the consumer as legal.
++ If the predicted value is closer to 5, we classify the consumer as illegal.

Of course, the predicted values don’t lead always to correct estimations about the consumers. Luckily,
cases like these are minimal and the performance of the FIS model remains very good.

8.4 Results

Below you can see the confusion matrices for each case of electricity theft that was tested.

1% CASE : Theft with overload 40%-60%

1

90%
3 10%
O 99.1%
E] 0.9%
5 87.1% | 99.3% | 93%
© 12.9% | 0.7% | 7%
1 2

Target Class

2" CASE : Theft with overload 60%-80%

. 92.6%

% 7.4%
O 4 98.4%
‘g 1.6%
=) 95% | 97.6% | 97%
O 5% | 2.4% | 3%

1 2
Target Class
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3¢ CASE : Theft with overload 80%-100%

98.2%
o 1.8%
= 99.4%
o 0.6%
% 98.8% | 99.1% | 99%
e 1.2% 0.9% 1%

1 2
Target Class

4" CASE : Partial theft 30%-50%

91.7%
o " 8.3%
T
= 97.7%
O
= O 2.3%
g“ 94.3% | 96.6% 96%
o 5.7% 3.4% 4%

1 2
Target Class

5% CASE : Partial theft 50%-70%

_ 98.2%
2 1.8%
O 99.4%
= 0.6%
£ 98.8% | 99.1% [ 99%
o 1.2% | 09% | 1%
1 2

Target Class




6" CASE : Theft with overload 60%-80% and partial theft 50%-70%

_ 96.7%
2 3.3%
O 90.5%
5 9.5%
g 77.3% | 98.8% | 92%
o 22.7% | 12% | 8%
1 2
Target Class

As you can see from table 8.2 the performance metrics of this method were very satisfying in all cases.

CASES Accuracy | F1 Score | Precision | Recall
1* Case - overload_40_60 0.93 0.88 0.90 0.87
2" Case - overload_60_80 0.97 0.95 0.93 0.95
3" Case - overload_80_100 0.99 0.99 0.98 0.99
4™ Case - partial_theft_30_50 0.96 0.93 0.92 0.94
5™ Case - partial_theft_50_70 0.99 0.99 0.98 0.99
6™ Case - overload_60_80_&_partial_theft_50_70 0.92 0.86 0.97 0.77

Table 8.2 Total Performance Metrics

Generally, this method as you can see from the accuracy metrics in table 8.2 yielded great results. The
accuracy metrics ranged from 92%-99% (depending on the case that was tested). The Neuro-Fuzzy
Designer that was used in this method for the implementation of the FIS model, was easy to use and
versatile (we could adjust many parameters easily). From all the methods that were tested in this thesis,
the method of this chapter was the best in performance. Certainly, it was not the faster method, as the
training of the fis model took quite some time but the results were very positive. This combination of
multilayer artificial neural networks with fuzzy logic proved the best method for detection of electricity
theft.
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9. Conclusions

Power theft is a widespread phenomenon not only in undeveloped countries, but all around the world.
The evidence points to the increasing levels of power theft in many countries and the financial losses
for some systems are so immense that the utilities are in financial turmoil. Investment in improving the
system and adding additional capacity cannot be undertaken, loans and payments cannot be met, and
the consumer faces increased electricity charges. Even in efficient systems, theft losses can account for
millions of dollars each year in lost revenue.

The transition toward future smart networks should enhance the insight into the distribution networks,
increase their reliability, flexibility and reduce the transmission and distribution losses. With the
development of advanced metering infrastructure in smart grid, a more complicated situation in energy
theft has emerged and many new technologies are adopted to try to solve this problem. Electricity theft
in its various forms can be reduced and kept in check only by the strong and assertive action of power
sector organizations. The strategy and the action should be based upon a thorough understanding of the
specific nature of the theft problem. A strong case can be made that each power system (including
consumer’s attitudes and behavior) has its own unique qualities and only by knowing the system and
the problem can effective solutions be designed and implemented. Since a high level of power theft is
linked with corruption, the analysis cannot be confined to technical and managerial perspectives and
needs to be multi-disciplinary in approach. Theft as an activity in some systems is closely intertwined
with governance and with the social, economic and political environment. Corruption and electricity
theft thrives off each other. In an overall culture of corruption as a way of life, electricity theft can be
reduced to moderate levels by technical/engineering methods. But it is an uphill battle to reduce the
electricity theft rate drastically as long as extensive corruption continues. Reduction in power theft and
keeping it within reasonable bounds is more likely to be successful in systems with a good governance
culture. This is because the theft reduction mechanisms find a friendly environment for initiation and
implementation. As part of generating and sustaining good governance in communities, electric power
systems have the opportunity to take the lead in promoting sound corporate governance. The
technological innovations make this task easier, provided that the managerial skills and desire exist.
Electric power systems can be restructured to make power sector organizations operate in competitive
environments where efficiency and effectiveness in service delivery are both virtues and necessities.
Smart meters are essential for this restruction. The theft detection should be considered as one of the
important aspects of future distribution networks, as well.

The main contribution of this thesis is the proposal of four methods for automated detection of illegal
use of electricity in the low voltage distribution networks :

Multilayer Artificial Neural Networks with FANN Library

The FANN library that was used in this method, was easy to use, fast (faster than all the other methods
except of LibOPF) and versatile (we could adjust many parameters and features easily). The dataset
needed some fairly easy preparations in order to use as input into the library.

From all the methods that were tested in this thesis, the method with the FANN Library was one of the
best, both in performance and speed. The accuracy metrics ranged from 89%-97% (depending on the
case that was tested) and that’s why it is totally recommended for electricity theft detection.
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Neural Networks with Deep Learning Toolbox

This method, as you can see from the accuracy metrics in table 9.1, worked very well. The accuracy
metrics ranged from 84%-93% (depending on the case that was tested). However, it has some
disadvantages:

. This method is by far the most time consuming method that has been tested in this thesis. A
simulation with all the customers (3273) could take up to 10 minutes even with the use of principal
component analysis, which drastically reduce the time of a full simulation.

. The random weights that the pattern recognition app chooses by default sometimes lead to
moderate classifications (rarely we had some simulations with 76-80% accuracy due to that act).

Of course, this method takes advantage of Matlab software in terms of visualization, facility and

versatility. In total, in terms of performance this method was the third best that was tested in this thesis
and constitutes one very good method for electricity theft detection.

Support Vector Machine Classification

Support Vector Machines can produce accurate and robust classification results on a sound theoretical
basis, even when input data are non-monotone and non-linearly separable. So they can help to evaluate
more relevant information in a convenient way. Since they linearize data on an implicit basis by means
of kernel transformation, the accuracy of the results does not rely on the quality of human expertise
judgment for the optimal choice of the linearization function of non-linear input data. For these reasons
SVMs are regarded as a useful tool for effectively complementing the information gained from
classical linear classification techniques.

SVM and Artificial Neural Networks are two popular strategies for supervised machine learning and
classification. SVM benefits depend on a particular project. The SVM classifier is a great choice for
unbalanced data. As a cost-sensitive classifier it can solve the problem of unbalanced data. All other
benefits are really depending on the domain and task. But even if the number of positive and negative
examples are not similar, SVM would work fine if we normalize the data or may be projected into the
space of the decision boundary which separates the two classes. SVM is quite good compared to other
classifiers as the computational complexity is reduced and classification efficiency is increased when
compared to any other non linear classifier [52].

As you can see from the performance metrics the support vector machine classification achieved
satisfying results but not as good as the previous two methods that have been tested. The svm
classification’s accuracy ranged from 79% to 87% (depending on the case that was tested). Certainly,
the results are not negative but not as great as the previous two methods that were tested. Specifically,
in the 1st (overload 40%-60%) and the 4th (partial theft 30%-50%) case the performance metrics
dropped due to the fact that in these cases the consumers’ samples are very similar to each other and the
classifier could not distinguish easily the fraudster from the non-fraudster. If the data was less balanced
the results will probably be better as most of 2-class classifier works better that way but generally the
support vector machine classification was encouraging for the detection of electricity theft.
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Optimum Path Forest Classification

As you can see from the table 9.1, the performance of this method is not encouraging. The accuracy
ranges from 61,52% to 80,91% and that is actually a great chasm. This chasm is probably happening
because OPF is sensible to noise and outliers, since the prototypes choosing were based on the
Minimum Spanning Tree (MST), it chooses noisy samples or outliers to become prototypes and these
samples have great influence on OPF’s classification decision.

As much as we experimented with this method we could not make this technique achieve better
results. We tried splitting the dataset manually and with the library default program, we tried changing
the division of the training, testing and evaluating set, we experimented with different parameters, we
used multiple tools that the library offered, we used different features as input but always ended up
with similar disappointing results.

Apart from the disappointing results, the file format that the library demanded as input in order to work
was very hard to be composited from the original dataset we had in our possession. All the information
between each phase of this procedure was saved in .dat files and as a result we couldn’t extract
anything we wanted. Lastly, the tools-programs that the LibOPF library uses for the classification is
‘locked’ into files and you cannot intervene into their code. That is the reason that we couldn’t compute
any other metrics besides accuracy, which was computed with library’s program ‘opf_accuracy’.

All in all, this method did not reach the expectations we had when we carried out our research about
electricity theft detection techniques before starting this thesis. The results are not encouraging, even
though as you can see from table 7.1, it is the faster method compared to the others. Of course, there is
a possibility that we did something wrong when using this method or this method is not as appropriate
as the others for the energy consumption data we had in our possesion. I dedicated less time on this
method than the others but this is because the results were not desirable from the beginning. In
conclusion, after all these methods that I have experimented with in this thesis, this method is definitely
not recommended for detection of electricity theft.

Fuzzy Inference System with Neuro-Fuzzy Designer App

This method as you can see from the accuracy metrics in table 9.1 yielded great results. The accuracy
metrics ranged from 92%-99% (depending on the case that was tested). The Neuro-Fuzzy Designer that
was used in this method for the implementation of the FIS model, was easy to use and versatile (we
could adjust many parameters easily). From all the methods that were tested in this thesis, the method
of this chapter was the best in performance. Certainly, it was not the faster method, as the training of
the FIS model took quite some time but the results were very positive. The combination of multilayer
artificial neural networks with fuzzy logic, through the FIS model, proved to be one of best method for
electricity theft detection.
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Below you can see a general table with the accuracy of each method that was implemented in this
thesis in each case of electricity theft that was tested.

Methods Overload | Overload |Overload P:F;tel;l P:F;tel;l Partial Theft 50-70%
_600° _ano, _ [0) _ano,

40-60% 60-80% |80-100% 30-50% | 50-70% & Overload 60-80%

FANN 89% 93% 95% 92% 97% 95%

Deep

Learning 86% 87,8% 89,2% 84,8% 92,6% 91,8%

Toolbox

SVM 80% 83% 85% 79% 87% 85%

LibOPF 61,52% 64,75% | 69,15% | 71,46% | 80,91% 75,44%

Neuro-

Fuzzy 93% 97% 99% 96% 99% 92%

System

Table 9.1 Total Performance Metrics

In conclusion, the overall research has shown encouraging results for the detection of abnormalities in
the electrical grid. This thesis illustrates various cases, issues and setbacks in the operation of
electricity theft controlling devices. Our work was based on real energy consumption data from an
electrical grid in Ireland. We tested each case of electricity theft with 8-hour and 30-minutes
measurements but the results were quite similar and we didn’t notice great differences. Overall, we are
very pleased with the results that have been achieved over the course of this thesis and we have surely
met our expectations.

9.1 Further Research

This thesis showed an attractive approach for the identification of energy consumption irregularities in
a smart grid. However, there are a number of gaps in our knowledge and deficiencies in the utilities
around electricity theft, that would benefit from further research in order to extend and further test what
we have developed here:

. Detection algorithms can be enhanced by introducing more real-world parameters and variables
(both technical and non-technical), so that the process of mapping energy patterns into irregularities is
further strengthened. Integration of these new technical and non-technical parameters into classification
algorithms may come into light after complete implementation of smart grid. This inclusion will ensure
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the impact of such parameters on algorithms for identification of illegal consumers. Real world
parameters and variables can be the economic situation of a person or illegal activity in the past.

. Enhancements of the analysis on the impact of Time Base Pricing (TBR) and Distributed
Generation (DG) on customer energy consumption patterns in collaboration with DSM and smart home
management tools can be made. Study on the impact of Time Base Pricing and Real Time Pricing
(RTP) on illegal consumption of electricity will be one of the most significant factors of future home
energy management. This kind of analysis will benefit both genuine customers and utilities.

. Illegal consumption of electricity may be controlled by focusing on cyber security (designing
stronger firewalls or enhancing firmware in view of cyber security). For example, complicating the
process of meter tampering and reducing the hackings of smart meters through the establishment of
certain standards. These standards are envisioned to control the flexibility of illegal consumers in
installing external devices or software or firmware updates from third-party developers on their smart
meters.

. Economically examine the scenario to place more than one sum meters in a line so as to localize
more accurately the illegal consumers.
. Localization of a customer who does not have a smart meter and steal electricity from the power

line directly.

. Integration of Geographic Information System (GIS) for real-time visualization of a customer’s
energy consumption, pattern of irregularities and power generated from DG sources on customer
premises. This portion of the work can be further extended to thematic mapping, e.g. economy and
illegal consumption of electricity or literacy and illegal consumption of electricity. Thematic mapping
provides an extensive understanding of the impact of illegal consumption on a large geographic entity.

. Definition of the most dangerous groups for power theft.

. Inclusion of the impact of illegal consumption in tools that perform dynamic optimization of
Voltage and Vars are used to reduce the load on the grid.

. Artificial Intelligence (AI) algorithms which will sift through energy consumption readings in
order to detect abnormal usage.
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