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Abstract

This work studies the decoder of a low Earth orbit (LEO) micro-satellite (Cube-

Sat) that transmits a GFSK telemetry in the UHF frequency band and specifically at

437.225 MHz. The first stage of the decoding process is FM demodulation, which con-

verts the GFSK signal to a PAM waveform. The PAM symbols are time-synchronized

by the Mueller and Mller algorithm, which exploits the structure of a Phase Locked

Loop and estimates the time delay of the receiver sampling clock and the optimal

sampling time. Next, the symbol samples are convolutionally decoded and frame

detection is performed. Finally, descrambling and Reed-Solomon decoding follows.

Frame synchronization and bit detection of this decoder are sub-optimal, so a different

decoding scheme is proposed. We suggest performing preamble-based frame synchro-

nization first, using correlators. The bits of the detected frame are decoded using

a non-coherent FSK detector, a convolutional decoder, a descrambler and a Reed-

Solomon decoder. The simulation results showed that for uncoded and unscrambled

signals, the suggested decoder achieved approximately a 2 dB gain. Finally, the pro-

cess of capturing and decoding the satellites GFSK signal is thoroughly explained.

The signal is captured using a low-cost software-defined radio (SDR) receiver and

a Yagi antenna. The decrypted telemetry bits in the GFSK signal give indications

about the status of the satellites electronics, such as the current and voltage of the

its transmitter and receiver, the PLL status and the temperature of the CubeSat

microcontroller.

Thesis Supervisor: Professor Aggelos Bletsas
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Chapter 1

Introduction

A satellite is an object in space that orbits or circles around a bigger object. There are

two kinds of satellites: natural (such as the moon orbiting the Earth) or artificial (such

as the International Space Station orbiting the Earth). Artificial satellites, however,

did not become a reality until the mid-20th century. The first artificial satellite was

Sputnik, a Russian beach-ball-size space probe that lifted off on Oct. 4, 1957. It was

not until 2003 with the launch of the first CubeSat, that satellite launching became

affordable. CubeSats are miniature satellites that are commonly used in low Earth

orbit, have been used for educational purposes, and recently for applications such as

remote sensing, scientific experimentation, or communications. As engineers become

more familiar with the technology, CubeSats are also being considered for flights

outside Earth’s orbit: to locations such as the Moon, Mars, or Jupiter.

Considering the importance of CubeSats in today’s world, we study the GFSK

(Gaussian Frequency Shift Keying) decoder of the Chinese CubeSat, LilacSat-2. The

decoder is part of the gnu-radio application gr-satellites [1], developed by Daniel Es-

tevez. The decoder of the specific CubeSat exploits FM radios to detect the transmit-

ted GFSK signal. In this thesis, it is explained why an FM receiver is not optimal for

GFSK/FSK detection and an alternative bit detection scheme is proposed. Further-

more, suggestions for a more efficient frame synchronization are made. Considering

these, a new decoding scheme is presented. Finally, the process of capturing and

decoding a satellite signal is thoroughly explained.

A brief overview of the thesis follows. In Chapter 2, we will discuss about the

CubeSat LilacSat-2, focusing on it’s GFSK telemetry. In Chapter 3, the concept

of symbol timing synchronization is studied and the Muller and Müeller algorithm is

thoroughly explained. In Chapter 4, we analyze the process of convolutional encoding

and decoding. In Chapter 5, we explain why the bit and frame detection scheme

of the decoder presented in Chapter 2 is sub-optimal and a new decoding scheme

is suggested. In Chapter 6, experimental results about capturing and decoding the

LilacSat-2 GFSK are shown. Finally, Chapter 7 contains conclusions and future work.
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Figure 1.1: Three small CubeSats float above the Earth after deployment from the
International Space Station. Astronaut Rick Mastracchio tweeted the photo from the
station on the 19th of November, 2013. (Image credit: Rick Mastracchio (via Twitter
as @AstroRM)).
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Chapter 2

LilacSat-2 Cubesat

LilacSat-2 is CubeSat for education, amateur radio communication and technology

demonstration, built by a team of 15 students at Harbin Institute of Technology,

China. It is a cube-shaped 20cm × 20cm × 20cm satellite with a weight of 11kg

that was launched along with eight other amateur radio satellites on September 19,

2015. The satellite transmits a CW beacon on 144.39MHz, a 4800 baud rate GFSK

telemetry on 437.225MHz and a 9600 baud rate BPSK telemetry on 437.200MHz [2].

Figure 2.1: Illustration of LilacSat-2 satellite.

2.1 Orbital Elements

Kepler’s first law states that the path followed by a satellite around its primary (earth)

will be an ellipse. This ellipse has two focal points (foci) F1 and F2 as shown in figure

2.2. Center of mass of the Earth (heaviest object) will always present at one of the

two foci of the ellipse.
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Figure 2.2: Kepler’s First Law

The satellite’s orbital elements are six and are shown in table 2.1.

LilacSat-2 Orbital elements
Eccentricity 0.0014329
Inclination 97.4913◦

Argument of Perigee 249.2150◦

Longitude of the ascending node 205.9813◦

Mean anomaly 178.6614◦

Semi-major axis 6901 km

Table 2.1: LilacSat-2 orbital elements table

The length of Semi-major axis defines the size of satellites orbit. It is half of the

major axis. Eccentricity indicates the deviation of the orbit’s shape from a circle. If

the lengths of semi major axis and semi minor axis of an elliptical orbit are α and b,

then the mathematical expression for eccentricity (e) will be:

e =

√
a2 − b2
a

(2.1)

For a satellite, the point which is closest from the Earth is known as Perigee. Mean

anomaly (M) gives the average value of the angular position of the satellite with

reference to perigee. Inclination defines the orientation of the orbit by considering

the equator of earth as reference.

Satellite orbit cuts the equatorial plane at two points. The first point is called

as descending node, where the satellite passes from the northern hemisphere to the

southern hemisphere. The second point is called ascending node and is the point

where the satellite passes from the southern hemisphere to the northern hemisphere.

Argument of perigee (ω) is the angle between ascending node and perigee. Longitude

of ascending node (Ω) is the angle between line of Aries and ascending node towards

east direction in equatorial plane.
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2.2 LilacSat-2 GFSK Telemetry

The satellite carries the linear transponder ADF7021-N. The transmit power is 400mW

and its bandwidth is 40kHz [3]. For GFSK (Gaussian Frequency Shift Keying) trans-

mission, the modulated bits are given by:

x(t) = A(t) cos

(
2πfct+ 2πh

∫ t

−∞
m(t)dt

)
, (2.2)

where A(t) is the signal amplitude, fc is the carrier frequency, h = 2Tfd is the

modulation index, and m(t) is the Gaussian-shaped information bits, given by

m(t) =
N∑
n=0

angs(t− nT ), (2.3)

where an are the NRZ (non-return to zero) information bits and gs(t) is the Gaussian

shaping pulse. The Gaussian pulse gs(t) of the transponder ADF7021-N has a nor-

malized 3-dB bandwidth equal to 0.5. Also, the frequency seperation is Fsep = 2fd =

h/T = 9.6kHz.

2.2.1 Packet structure and decoder

Packet structure

As shown in figure 2.5, the telemetry information bits of LilacSat2 are in a CSP

(CubeSat Protocol) packet of N bytes [2]. CSP is a Network layer protocol, specially

designed for communication with cubesats and follows the TCP/IP (Transmission

Control Protocol/Internet Protocol) model. The protocol is using a 32-bit header

which contains transport and network layer information. After this header, follow

the telemetry bits. The packet also ends with a CRC (Cyclic Redundancy Check),

used by earth stations as a final check that the entire frame and all packets were

received correctly. Before the CSP packet, there is a byte for the packet length. The

KISS (Keep It Simple Stupid) protocol is applied on the resulting PDU (Protocol

Data Unit). The KISS protocol is used for packet delimiting. The resulting KISS

stream is Reed-Solomon (R-S) encoded. Reed-Solomon is a class of powerful burst er-

ror correcting codes. Then, a scrambler (or randomizer) randomizes the R-S encoded

KISS stream. A scrambler randomizes bits in a known manner and the ASM (At-

tached Sync Marker) is a frame synchronization bit sequence that is placed before the

scrambled bits. Finally, the resulting non-return to zero bit sequence is convolution-
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ally encoded. The convolutional code used is the CCSDS NASA GFSC (Consultative

Committee for Space Data Systems NASA Goddard Space Flight Center).

Decoder

The gnuradio application gr-satellites, developed by Daniel Estevez [1], includes many

CubeSat decoders, including one for LilacSat-2. The decoder is displayed in figure

2.3 and a simplified block diagram for the whole decoding process is displayed in 2.4.

The input to the decoder is the down-converted and FM-demodulated received signal.

For a GFSK signal, FM demodulation gives an Pulse Amplitude Modulated (PAM)

signal:

xFM(t) =
d∠xbb(t)

dt
= 2πhm(t), (2.4)

where ∠xbb(t) is the phase of baseband equivalent of x(t) from equation (2.2). The de-

coder employs a clock synchronization algorithm to obtain the correct symbol samples,

since the receiver is not synchronized with the PAM signal. Clock synchronization or

symbol timing synchronization will be further discussed in Chapter 2.

Then, the symbol samples need to be convolutionally decoded. To find the bit

corresponding to each codeword, the Viterbi algorithm is employed. In the specific

decoder, two Viterbi decoders are needed, because the specific convolutional encoder

produces a two bit codeword for each information bit and the input signal to the

decoder is not frame-synchronized. The convolutional decoding process is studied in

Chapter 4.

Frame synchronization is made by detecting a 32-bit preamble (sync-word or ASM)

from the convolutional decoded bit sequences. After that, descrambling and Reed-

Solomon decoding is performed. Descrambling is the process of recovering the scram-

bler’s input bits. From the KISS stream, we can easily obtain the telemetry data bits

in each CSP packet, using the block ’KISS to PDU’.
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Figure 2.4: Simplified block diagram illustrating the decoding process.

Figure 2.5: Packet structure of LilacSat-2 GFSK.
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Chapter 3

Symbol timing synchronization

In wireless communication systems, a receiver must know the exact symbol timing

instants in order to correctly demodulate the transmitted waveform. Assuming pulse

amplitude modulated symbols, the matched filter output is given by:

y(t) =
∑
k

αkg(t− kT − τ) + n(t), (3.1)

where αk are the transmitted symbols, g(t) = gT (t)~gT (T − t) is the shaping pulse at

the matched filter output, T is the symbol period, τ is an unknown timing delay and

n(t) ∼ CN (0, No) is the circularly symmetric additive white Gaussian noise. Ideally,

(3.1) should be sampled at t = kT + τ . Since the timing delay τ is unknown to the

receiver, it must be estimated.

To sample at the correct symbol timing, the decoder of LilacSat-2 employs the

Mueller and Müller algorithm, which exploits the structure of a Phase Locked Loop.

3.1 Phase Locked Loops

A phase locked loop (PLL) is a simple device that constantly adjusts the phase of an

oscillator to the phase of an input signal. We assume that the input signal is given

by:

yin(t) = cos(2πft+ φin(t)). (3.2)

A PLL has three key elements: an oscillator, a phase detector and a loop filter. The

oscillator produces a periodic signal yosc(t) with a specific frequency and phase.

yosc(t) = cos(2πft+ φosc(t)). (3.3)

In an analog PLL, the oscillator is called VCO (Voltage Controlled Oscillator), while

in a digital PLL, it is called DDS (Direct Digital Synthesizer) . For a noisless input

signal, the phase detector calculates a function of the phase offset θe(t) between the
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Figure 3.1: Block diagram of an analog PLL.

input and the oscillator signal:

epd(t) = g(θe(t)) = g(φin(t)− φosc(t)). (3.4)

To linearize the loop, we assume that for small phase errors epd(t) ≈ Kpdθe(t), where

Kpd is the phase detector gain. The phase detector output is filtered by the loop

filter, which establishes the dynamic performance of the loop. In addition, noise and

high-frequency signal components often are suppressed by the loop filter. The VCO

adjusts its phase according to the control voltage v(t), produced by the loop filter:

φosc(t) = K0

∫ t

−∞
v(t)dt, (3.5)

where K0 is the oscillator gain. Equations (3.2) to (3.4) also apply to a digital PLL,

by setting t = nTs. The DDS adjusts its phase according to

φosc(nTs) = K0

n−1∑
k=−∞

v(kTs), (3.6)

where Ts is the sampling period. A PLL is locked when the phase error becomes zero

or has small flactuations (noisy case).

3.1.1 Proportional-plus-integral Loop Filter

If the Loop Filter is a proportional-plus-integral (PI) filter, the PLL tracks frequency

and phase offsets. Considering an analog PLL, the output of the PI filter for the
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Figure 3.2: Block diagram of a digital PLL.

phase detector output epd(t), is given by:

epi(t) = ep(t) + ei(t) = Kpepd(t) +Ki

∫ t

−∞
epd(t)dt, (3.7)

where Kp and Ki is the proportional and integral gain, respectively. The proportional

filter ep(t) tracks constant phase shifts, while the integral filter ei(t) tracks frequency

offsets. For a digital PLL, the PI filter is given by:

epi(nTs) = ep(nTs) + ei(nTs)

= Kpepd(nTs) + ei((n− 1)Ts) +Kiepd(nTs).
(3.8)

To understand how a PI filter works, it is important to define the terms of instanta-

neous phase and instantaneous frequency. Consider a cosine wave

x(t) = cos(2πfot) = cosφ(t), (3.9)

where the argument of the cosine is called instantaneous phase. The instantaneous

frequency of x(t) is given by:

f =
1

2π

dφ(t)

dt
. (3.10)

A phase shift in x(t) occurs if the instantaneous phase is incremented by a constant

factor ∆θ:

φ(t) = 2πfot+ ∆θ. (3.11)

This of course does not change the instantaneous frequency of the signal:

f =
1

2π

dφ(t)

dt
=

1

2π

d[2πfot+ ∆θ]

dt
= fo. (3.12)
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(a) Instantaneous phase φ(t) due to
a constant phase shift ∆θ at t = 0.

(b) Instantaneous phase due to a
constant frequency shift ∆ω at t = 0.

Figure 3.3: The instantaneous phase due to a step (a) and ramp (b) input at t=0.
The unit step function is denoted as u(t).

(a) Analog PLL with PI filter (b) Digital PLL with PI filter

Figure 3.4: Phase Locked Loops employed with a PI filter.

Assuming a frequency shift ∆f , the change in the instantaneous phase is modeled

as a phase ramp:

φ(t) = 2πfot+ ∆ft = 2πfot+ θ(t). (3.13)

A phase ramp results to a shift in the instantaneous frequency of the signal:

f =
1

2π

dφ(t)

dt
= fo + ∆f = f̂ . (3.14)

Hence, the integrator filter integrates the phase errors to generate a phase ramp

error, which corresponds to a constant frequency error.
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3.1.2 Phase lock and Loop Filter gains

Considering a PLL with PI filter, the time to achieve phase lock depends on the noise

bandwidth Bn and the damping factor ζn of the loop. From [4], the phase lock time is

approximated by:

TLOCK ≈ TFL + TPL, (3.15)

where TFL denotes the time for phase lock and TPL denotes the time to achieve

frequency lock. Their values can be approximated by:

TFL ≈ 4
(∆f)2

B3
n

and TPL ≈
1.3

Bn

, (3.16)

where ∆f is the frequency offset. It is possible for the frequency offset ∆f to be so

large that the loop can never acquire lock. The range of frequency offsets for which

the loop can acquire lock is called pull-in range ∆f and is well approximated by:

(∆f)pull−in ≈
(

2π
√

2ζ
)
Bn (3.17)

The damping factor and the noise bandwidth is determined by the designer of the

loop. Assuming thatK0 andKpd are known, the gains of the PI filter can be calculated

from the transfer function of the loop. It occurs that the gains of the PI filter are

calculated by [4]:

Kp =
4ζBn(
ζ + 1

4ζ

) 1

K0Kpd

and Ki =
4B2

n(
ζ + 1

4ζ

)2 1

K0Kpd

, (3.18)

for an analog PLL and

Kp =

4ζ

(
BnTs
ζ+ 1

4ζ

)
1 + 2ζ

(
BnTs
ζ+ 1

4ζ

)
+

(
BnTs
ζ+ 1

4ζ

)2 and Ki =

4

(
BnTs
ζ+ 1

4ζ

)2

1 + 2ζ

(
BnTs
ζ+ 1

4ζ

)
+

(
BnTs
ζ+ 1

4ζ

)2 , (3.19)

for a digital PLL.

3.2 Mueller and Müller

Mueller and Müller (M&M) is a clock synchronization algorithm that applies to binary

or multi-level PAM signals. The input to the M&M algorithm is the baseband signal
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y(t) of Equation (3.1). The output of the algorithm is the samples/decisions at the

correct symbol timing instances. The algorithm block diagram is shown in figure 3.5.

3.2.1 The Mueller and Müller PLL

Figure 3.5: Block diagram of Mueller and Müller Clock Recovery.

Timing Error Detector and Decision device

The Timing Error Detector (TED) estimates the timing (phase) error of the receiver

clock from sampling optimally, using the samples of the matched filter output. The

optimal timing instants are approximately located at the peaks of the input signal.

The TED function is given by:

zk =
1

2

ykak−1 − yk−1ak
E[a2k]

, (3.20)

where αk and αk−1 are obtained by performing hard decisions on the current and

previous symbol sample, yk and yk−1, respectively. The expectation of the timing

error is equal to the timing error function f(τ) [5], which computes the symmetry

error of a symbol’s impulse response:

f(τ) = E[z(k)] =
1

2
(g (τ − T )− g(τ + T )) ,

1

2
(g−1 − g1) . (3.21)
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The symmetry error f(τ) becomes zero when g1 = g−1, or equivalently, when the

sample taken is at the peak of the symbol impulse response. If the symmetry error is

not zero, the sampling time for the next symbol should be corrected. The samples g−1

and g1 are located T timing instants before and after a symbol sample g0, respectively.

The M&M timing error function is an approximation of f(τ), because the samples

g1 and g−1 are not directly available in the matched filter output. This is due to the

fact that transmitted signal r(t) is the superposition of the delayed symbol impulse

responses.

Figure 3.6: Impulse response of a symbol with g(τ − T ) = g(τ + T ) or f(τ) = 0,
which implies that the sampling time for a symbol is correct.

Figure 3.7: Impulse response of a symbol with f(τ) > 0, which implies late symbol
timing.
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Loop Filter

Assuming a PI filter, its output is a timing phase to compensate a step and a ramp

timing phase error, in Ts units:

epi(k) = ep(k) + ei(k) = Kpz(k) + ei(k − 1) +Kiz(k) (3.22)

Interpolation Control

The Interpolation Control uses the timing phase error from the Loop Filter to compute

the optimal sampling time for the next symbol:

tk+1 = tk + epi(k) + L, (3.23)

where L = T/Ts is the nominal period of receiver clock in units of Ts. Using (3.23),

we compute the following values:

mk+1 = btk+1c and µk+1 = tk+1 − btk+1c, (3.24)

where mk+1 is called the basepoint index and µk+1 the fractional interval. The base-

point index is an exact multiple of the sampling period, while the fractional interval

is a fraction of the sampling period. To compute the sample at the optimal sampling

instant, we need to obtain from the sampled matched filter the sample (mk+1 +µk+1).

The sample at the basepoint index is already available. The sample at the basepoint

index, delayed by µk+1, is calculated by an interpolation filter.

Ideal interpolation filter

In time domain, the reconstruction of a continuous signal from samples can be consid-

ered as an interpolation process of filling the gaps between neighboring samples. From

the Sampling Theorem, we know that for perfect signal reconstruction, all frequencies

exceeding the Nyquist frequency should be discarded. Thus, the ideal interpolation

filter HI(ω) is an ideal low-pass filter that discards all frequencies exceeding the

Nyquist frequency.

HI(ω) =

Ts, if | ω
2π
| < 1

2Ts

0, otherwise
(3.25)
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where Ts is the sampling period. In the time domain, the ideal interpolation function

is given by:

hI(t) , sinc(t). (3.26)

Hence, to ideally reconstruct a signal y(t) from its samples:

y(t) =
∞∑

n=−∞

y(nTs)hI(t− nTs). (3.27)

Let TI = (mk + µk)Ts, where mk is the basepoint index (integer) and µk is the

fractional interval (fractional number). The sample x(TI) is calculated by resampling

(3.27) at t = TI :

y(TI) = y((mk + µk)Ts) =
∞∑

n=−∞

y(nTs)hI(TI − nTs). (3.28)

FIR interpolation filter

The ideal interpolation filter is IIR (infinite impulse response), thus a FIR (finite

impulse response) estimation would reduce the large computational cost of using such

filter. Assuming that hI(t) takes significant values in the interval −I1Ts < t < I2Ts:

y(TI) =

mk+I1∑
n=mk−I2

y(nTs)hI((mk − n)Ts + µkTs). (3.29)

Changing the summation index of the above equation into i = mk − n, gives:

y(TI) =

I2∑
i=−I1

y((mk − i)Ts)hI(iTs + µkTs). (3.30)

To compute (3.30), a Minimum Mean Square Error (MMSE) interpolation filter is

employed. An MMSE Interpolation filter calculates a finite number of filter taps

hn(µk) by minimizing the quadratic error between the frequency response of the IIR

ideal interpolator and its FIR approximation [6], [7]:

E(µ) =

2πB∫
−2πB

∣∣∣∣∣HI

(
ejωTs , µ

)
−

N−1∑
n=−N

hn(µ)e−jωTsn

∣∣∣∣∣
2

dω, (3.31)
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where N is the filter order, B = 1
NTs

its one-sided bandwidth. The frequency response

of the ideal interpolation filter for a fractional interval µ is given by [6] [7]:

HI

(
ejωTs , µ

)
=

1

Ts

∞∑
n=−∞

HI

(
ω − 2π

Ts
n, µ

)
, (3.32)

where HI(ω, µ) is the Fourier transform of the ideal interpolation filter, delayed by

µTs:

HI(ω, µ) =

Ts exp(jωµ), if | ω
2π
| < 1

2Ts

0, otherwise
(3.33)

The MMSE filter taps hn(µ) are calculated by minimizing the error function E(µ),

so we set the gradient of (3.31) to zero [8]:

∂E(µ)

∂hl(µ)
= 0, (3.34)

for −N ≤ l ≤ N − 1. After the calculation of the filter taps for a specific fractional

index µ, the optimal symbol sample for the M&M algorithm is obtained from Equation

(3.30).

M&M clock siynchronization for binary PAM.

1: eI(0)← 0 . initialize integrator

2: k ← 1 . initialize symbol counter

3: µ1 ← 0.5 . initiliaze fractional interval

4: L← T/Ts . receiver clock period in Ts
5: while mk ≤ length(y) do

6: yk ←
∑N−1

n=−N y(mk − n)hn(µk) . interpolation filtering

7: if yk > 0 then . hard decision

8: ak ← 1

9: else

10: ak ← −1

11: zk ← (αk−1yk − αkyk−1)/2E[α2
k] . M&M TED function

12: eP (k)← Kpz(k) . proportional filter

13: eI(k)← eI(k − 1) +KIz(k) . integator filter

14: ePI(k)← eI(k) + eP (k) . PI filter

15: tk+1 ← tk + ePI(k) + L . optimal sampling time

16: mk+1 ← btk+1c . update basepoint-index

17: µk+1 ← tk+1 − btk+1c . update fractional interval

18: k ← k + 1 . increment symbol counter
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3.3 Symbol timing synchronization for LilacSat-2

The FM demodulated LilacSat2 GFSK signal, which has become a binary PAM,

is given as input to the M&M algorithm, to find the samples at the correct timing

instants. The proportional gain of the PI Loop Filter was selected K1 = 0.175 and the

integral gain is a function of the proportional gain, K2 = 0.25K2
1 . The integral gain

was set very small compared to the proportional gain, to avoid large frequency shifts

that may drive the PLL out of lock. The frequency range to achieve lock (∆f)pull−in

is set to 0.5%L and the interpolation filter order is N = 4.

3.3.1 Simulation results

Assuming that the receiver sampling is late by τ seconds, we show the symbol sam-

ples of an FM demodulated LilacSat-2 GFSK signal, before and after M&M clock

synchronization. The receiver, without M&M, fails to sample at the optimal timing

instants (peaks of the binary PAM signal, located at {−1,+1}), due to the unknown

timing delay τ . After performing the M&M algorithm on the sampled signal, the

symbol samples are brought closer to the peaks of the PAM signal. The SNR for the

GFSK signal is defined as in equation (5.12) of Chapter 5.

Figure 3.8: SNR= 16dB, τ = 0.3
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Figure 3.9: SNR= 16dB, τ = 0.4

Figure 3.10: SNR= 16dB, τ = 0.5
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Chapter 4

Viterbi convolutional decoding

4.1 Convolutional encoder

The rate of a convolutional code is given by

r =
n

k
,

where n is the number of input bits to the encoder and k is the codeword length.

A convolutional encoder consists of a shift register with M stages and k adders.

Each adder generates a codeword bit by adding the input bits and the contents of

the memory elements that it is connected to (modulo-2 addition, or equivalently, an

exclusive-or operation). The constraint length of a convolutional code, denoted as

K, is the number of codewords a single information bit can affect. A convolutional

encoder may be represented by a set of k generator polynomials. Each polynomial

gi(s) is of degree K−1 or less and describes the connection of the shift register to the

ith adder, where the coefficient of each term is either a 1 or a 0, depending on whether

a connection exists or does not exist between the shift register and the adder. For

the simple encoder illustrated in Figure 4.1, the generator polynomials are given by:

g1(s) = s2 + s+ 1 and g2(s) = s2 + 1

Figure 4.1: Encoder of a (r,K) = (0.5, 3) convolutional code
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Figure 4.2: State diagram of the encoder illustrated in Figure (4.1). For each state
transition the notation up/v1v2 is used, where up is the input bit to the encoder and
v1v2 the corresponding encoded message.

Each time n input bits are fed into the M -stage shift register, k output bits are gen-

erated and the contents of the shift register are shifted to the right. A convolutional

encoder is a discrete linear time-invariant system and can be viewed as a finite-state

machine (FSM) with 2M states. The state of the encoder at each timing instant is

described by the contents of the M -bit shift register after the right-shift operation.

At t = 0 the shift register resets to zero. A new state transition is caused by a new

input to the encoder.

4.2 Decoding of Convolutional Codes

The Viterbi algorithm is the most widely used method for the maximum-likelihood

(ML) decoding of convolutional codes with low constraint length (typically K ≤ 8).

Viterbi finds the most likely transmitted sequence x sent for a received sequence y.

This leads to the maximization of the joint probability:

x̂ = arg max
x

P (x,y). (4.1)

Assuming equiprobable data, it is equivalent to maximizing the a-posteriori proba-

bility:

arg max
x

P (x|y)P (y) = arg max
x

P (x|y)

= arg max
x

P (y|x)
P (x)

P (y)

= arg max
x

P (y|x).

(4.2)



4.2. Decoding of Convolutional Codes 31

We define the branch metric (BM) and path metric (PM) as the log-likelihood function

of the corresponding conditional probability functions as follows:

BM(xi,yi) = lnP (yi|xi), (4.3)

PM(x,y) = lnP (y|x). (4.4)

Then we can write the path metric as the sum of the branch metrics

PM(x,y) =
N∑
i=1

lnP (yi|xi). (4.5)

From (4.1) to (4.5), we get that Viterbi maximizes the path matric or equivalently,

the sum of branch metrics.

4.2.1 Soft decision decoding

Assuming that the modulation used to transmit the encoded message is binary PSK,

the jth bit of a codeword ci =
[
ci1 · · · cij−1 cij · · · cik

]
may be expressed as:

xij(t) =

x(t) if cij = 1

−x(t) if cij = 0
(4.6)

where x(t) is a signal that is zero outside the time interval T and has energy equal to

E . To perform soft decision decoding, the channel must experience Additive White

Gaussian Noise. The input to the decoder is the sampled matched filter output.

Considering this, the ith received codeword yi may be expressed as:

yi = hxi + ni (4.7)

where ni is a vector of independent complex Gaussian random variables nij ∼ CN (0, No)

and h ∼ CN (0, 1). Since the channel is AWGN, the likelihood probability is given by

the Gaussian probability density function:

P (yij|xij) = e
−(xij−yij)

2

2σ2 · 1√
2πσ2

. (4.8)



4.2. Decoding of Convolutional Codes 32

The log-likelihood of this probability is given by:

lnP (yij|xij) = −(xij − yij)2

2σ2
− ln
√

2πσ2, (4.9)

For a k-bit codeword, we get that the log-likelihood is

lnP (yi|xi) =
k∑
j=1

lnP (yij|xij) =
k∑
j=1

−(xij − yij)2

2σ2
− ln
√

2πσ2, (4.10)

Maximizing the above quantity leads to:

arg max
xi

lnP (yi|xi) = arg max
xi

{
k∑
j=1

−(xij − yij)2

2σ2
− ln
√

2πσ2

}

= arg min
xi

k∑
j=1

(xij − yij)2

2σ2

= arg min
xi

k∑
j=1

(xij − yij)2.

(4.11)

According to (4.11), the branch metric for soft decision decoding is given by

BMsoft[xi,yi] =
k∑
j=1

(xij − yij)2. (4.12)

The path that maximizes the a-posteriori probability is the one that minimizes the

sum of Branch Metrics:

arg max
x

ln(P (y|x)) = arg max
x

N∑
i=1

lnP (yi|xi)

= arg max
x

{
N∑
i=1

k∑
j=1

−(xij − yij)2

2σ2
− ln
√

2πσ2

}

= arg max
x

−
N∑
i=1

k∑
j=1

(xij − yij)2
1

2σ2

= arg min
x

N∑
i=1

BMsoft(xi,yi)
1

2σ2

= arg min
x

N∑
i=1

BMsoft(xi,yi),

(4.13)
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where N is the number of transmitted codewords.

4.2.2 Hard decision decoding

In this section, Viterbi decoding in the case of a Binary Symmetric Channel (BSC)

will be discussed. We assume that the BSC alters a bit of a transmitted codeword

with probability q < 0.5. Hence, the input to the decoder is hard symbols (bits). Due

to the BSC channel, the jth bit of a codeword ci at the receiver may be expressed as:

yij =

1− cij, with pr = q

cij, with pr = 1− q
(4.14)

If a received codeword yi differs d bits from the transmitted codeword xi = ci, the

probability of this event is given by the Bernoulli probability density function:

P (yi|xi) = qd(1− q)k−d (4.15)

where k is the codeword length and dH(xi,yi) = d is the Hamming distance between

the transmitted and received codeword. Maximizing the log-likelihood of this event

gives:

arg max
xiεC

lnP (yi|xi) = arg max
xiεC

{dH(xi,yi) ln q + (k − dH(xi,yi)) ln (1− q)}

= arg max
xiεC

{
dH(xi,yi) ln

(
q

1− q

)
+ k ln (1− q)

}
= arg max

xiεC

{
dH(xi,yi) ln

(
q

1− q

)}
,

(4.16)

Since q < 0.5 we get that:

q < 0.5→ q

1− q
<

0.5

1− q
→ ln

(
q

1− q

)
< ln

(
0.5

1− q

)
. (4.17)

Since 1− q > 0.5 we get that:

ln

(
0.5

1− q

)
< ln 1 = 0 (4.18)
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Considering this, (4.16) transforms to:

arg max
xiεC

lnP (yi|xi) = arg min
xiεC

dH(xi,yi) ln

(
q

1− q

)
= arg min

xiεC
dH(xi,yi).

(4.19)

Thus, the BM for the hard decision decoding is given by:

BMhard(xi,yi) = dH(xi,yi). (4.20)

The path that maximizes the overall log-likelihood is the one that minimizes the sum

of Branch Metrics:

arg max
x

lnP (y|x) = arg max
xiεC

N∑
i=1

lnP (yi|xi) = arg min
xiεC

N∑
i=1

dH(xi,yi). (4.21)

A hard decision Viterbi decoder can also be employed when the communication chan-

nel experiences AWGN. In this case, the sampled matched filter output must be

quantized.

4.3 LilacSat-2 convolutional code

4.3.1 Encoder

In LilacSat-2, a convolutional code with (r,K) = (0.5, 7) is employed. The generator

polynomials are the following:

g1(s) = 1 + s+ s2 + s3 + s6 and g2(s) = 1 + s2 + s3 + s5 + s6

This convolutional encoding is called CCSDS (Consultative Committee for Space

Data Systems) GSFC (Goddard Space Flight Center). Since the shift register consists

of M = 6 stages, the finite state diagram of the encoder has 26 = 64 states.

4.3.2 Decoder

The decoder of CCSDS NASA GSFC may be the Viterbi algorithm with soft or hard

decision decoding. We assume that the channel is AWGN. Viterbi with hard decision

decoding requires to decide for each symbol before decoding. Due to noise addition,
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Figure 4.3: Encoder of CCSDS GFSFC convolutional code.

some symbol decisions might be wrong, which will deteriorate the performance of the

hard decision decoder. On the other hand, a soft decision decoder uses the sampled

matched filter output, avoiding erroneous decisions.

Simulation Results

Assuming an AWGN channel modeled as n(t) ∼ CN (0, No), the signal to noise ratio

is defined as:

SNR = r log2(M) · Eb
No

, (4.22)

where r is the rate of the code, M the modulation order and Eb is the average energy

per bit. The average energy of noise is No. For transmitting a CCSDS GSFC encoded

binary PAM over an AWGN channel, we get that:

SNR =
1

2

Eb
No

, (4.23)

where Eb = 1. As expected, a soft decision Viterbi decoder achieves a lower bit error

rate than a hard decision Viterbi decoder. In gr-satellites, the Viterbi convolutional

decoding is made using the GNU Radio FECAPI Viterbi decoder, which performs

soft decision [9].
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Figure 4.4: Hard and Soft decision decoding of CCSDS GSFC NASA for an AWGN
channel.
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Chapter 5

Satellite FSK signal detection

Most satellite decoders employ FM radios to extract information from an FSK signal.

While FM demodulation is a very simple technique, it is not efficient for decoding an

FSK signal. Considering this, we suggest an alternative FSK demodulation method.

Additionally, we show how frame synchronization can be made in a more efficient

manner. The signal studied is the GFSK telemetry of LilacSat-2.

5.1 Receiver signal model

The spinning of the satellite and its antennas in free space might cause polarization

misaligments with the receive antenna. These polarization misalignments introduce

spin-fading. Assuming that spin-fading is modeled by a quasi-static Rayleigh flat

fading channel, the received GFSK signal is given by:

r(t) = h(t)A(t) cos (2πfct+ φ(t)) + n(t)

=h(t)A(t) cos

(
2πfct+ 2πh

∫ t

−∞
m(τ)dτ

)
+ n(t)

=h(t)sm(t) + n(t)

(5.1)

where h(t) ∼ CN (0, 1) models a quasi-static Rayleigh flat fading channel, n(t) ∼
CN (0,Wo) is the circular symmetric additive white Gaussian noise, φ(t) is the scaled

integral of the Gaussian-shaped information message m(t), h = 2fdT is the modula-

tion index and fc is the carrier frequency.

5.2 Bit detection

In this section, we discuss about two different bit detection schemes for an FSK

signal. The first scheme is an FM demodulator and the second is a non-coherent FSK

detector.
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5.2.1 FM demodulator

As seen in equation (2.4) of Chapter 2, to perform FM demodulation on a signal,

we need to extract the phase of its baseband equivalent. However, this phase does

not only contain the phase of the transmitted signal, but also a phase due to AWGN,

fading and time asynchronism between the receiver and transmitter clocks. The phase

due to AWGN, fading and symbol timing asynchronization, adds unwanted noise in

the demodulator output. Considering a time delay τ between the transmitter and

receiver clocks, the baseband equivalent of (5.1) is given by:

rl(t) = r(t)e−j2πfct = h(t)sml(t− τ)e−j2πfcτ + nl(t) with 1 ≤ m ≤M. (5.2)

where sml(t) is the lowpass equivalent of the transmitted GFSK message sm(t), M

is the modulation order, nl(t) ∼ CN (0, 2No) is the circular symmetric AWGN in

baseband. Extracting the phase of (5.2), gives:

θ(t) = ∠rl(t) = φ(t) + φn(t)− 2πfcτ, (5.3)

where φn(t) is the phase due to AWGN and spin-fading.

Another problem with FM demodulation is the threshold effect [10]. Threshold

effect is the phenomenon that occurs when the SNR at the detector input decreases

below a critical level. Below this level, the resulting output signal gets heavily dis-

torted by noise. Experimentally, it has been verified that the threshold level of FM

for the input SNR is roughly 10dB. The noise performance of FM can be improved

if the input to the FM demodulator is low-pass filtered. Selecting a filter bandwidth

slightly smaller than the bandwidth of the signal, assures that a large amount of noise

is rejected, while only a small amount of message power is lost. An upper bound for

the bandwidth of a frequency modulated signal is given by the Carson Rule:

BW = 2(fd + 1/T ). (5.4)

According to the Carson rule, the bandwidth of the LilacSat-2 GFSK is:

BW = 2(4.8 + 4.8)kHz = 19.2kHz. (5.5)

For the simulation results of this chapter, the MATLAB function fir1() was used

to filter the downconverted FM signal. The specific function creates a lowpass filter

with cutoff frequency Wn. In the MATLAB documentation, Wn is defined as the
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frequency at which the normalized gain of the filter is 6 dB. It was found that the

cutoff frequency Wn that gained the best BER performance for the FM demodulation

of LilacSat-2 GFSK was 7kHz.

5.2.2 Non-coherent FSK detector

The input to the non-coherent FSK detector is the low-pass equivalent of the received

signal. Assuming that the effect of a time shift τ on sml(t) is negligible, (5.2) becomes:

rl(t) = h(t)e−j2πfcτsml(t) + nl(t). (5.6)

If the fading channel adds a phase φspin to the signal, an unknown phase θ(t) =

−2πfcτ + φspin is introduced between the transmitter and receiver. Since τ and

φspin are random, we suppose that θ(t) is a random variable uniformly distributed

between 0 and 2π. Under these assumptions, the detection of such signal is called

non-coherent. A non-coherent detector for FSK correlates (5.6) with the baseband

tones for each modulating frequency:

〈rl, sml〉 =

∫ ∞
−∞

rl(t)s
∗
ml(t)dt. (5.7)

For binary FSK, the tones for each modulating frequency fm are given by:

s1l(t) = ej2πf1t and s2l(t) = ej2πf2t, (5.8)

where f1 and f2 are the frequencies for transmitting zero and one, respectively. These

frequencies are given by:

f1 = fc − fd and f2 = fc + fd, (5.9)

where fd = h/2T is the frequency deviation. The detector decides for the tone with

the maximum absolute value. Hence, the decision rule for a non-coherent binary FSK

detector is given by:

m̂ = arg max
1≤m≤M

∣∣∣∣∫ ∞
−∞

rl(t)s
∗
ml(t)dt

∣∣∣∣ . (5.10)

The bit error probability of a non-coherent FSK detector under an AWGN channel

is given by:

pb =
1

2
e

−SNR
2 , (5.11)
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Figure 5.1: Theoretical BER for non-coherent FSK detection under AWGN chan-
nel versus experimental BER for non coherent detection of GFSK with quasi-static
Rayleigh flat fading channel. Synchronized transmitter and receiver clocks were con-
sidered.

where SNR is the signal to noise ratio which is defined as:

SNR =
Ps
Pn

=
Ps

2NoB
, (5.12)

where 2No is the power spectral density of noise and B the signal bandwidth. The

latter can be computed by the Carson Rule. The average power ber symbol is denoted

as Ps in (5.12) and is given by:

Ps =
L

M

M∑
n=1

|sml(n)|2, (5.13)

where L is the oversampling factor and M the number of samples in the signal. Non-

coherently detecting the GFSK signal of equation (5.6) results to a higher bit error

probability than pb. This is due to the symbol interference introduced by the Gaussian

filter and spin-fading.

5.3 Frame synchronization

In the gr-satellites decoder, frame synchronization is performed on the output of

the Viterbi decoders. This means that the GFSK signal has already been demodu-

lated and convolutional decoded. Frame synchronization after bit detection should be
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avoided, because any occurring errors on the preamble bits will reduce the probability

of synchronizing to a frame. To avoid this, we suggest performing frame synchroniza-

tion prior to bit detection. Also, if the start of the frame is found correctly, the

symbol timing asynchronism is no longer a problem.

5.3.1 Frame synchronization with correlation

In this section, we show how frame synchronization prior to bit detection can be made,

using correlators. To implement the correlators, the MATLAB function xcorr() was

used. This function computes the true correlation between two signals. To perform

frame synchronization, the receiver creates a low-pass GSK signal p(t), which carries

the convolutionally encoded preamble bits. Assuming that rl(t) is the baseband equiv-

alent of the received signal, the receiver correlates it with p(t). The true correlation

of rl(t) and p(t) is given by:

Rx,p(m) = E {rl(t+m)p∗(t)} =
1

N

N−m−1∑
n=0

rl(t+m)p∗(t). (5.14)

The xcorr() function computes the non-normalized version of (5.14):

R̂x,p(m) =
N−m−1∑
n=0

rl(t+m)p∗(t). (5.15)

The m that maximizes (5.15) is called the lag index and denotes the delay in samples

to find the most probable starting point of a packet in the received signal.

5.4 Suggested decoder model

In this section, we suggest a new decoding scheme for the LilacSat-2 GFSK signal.

A preamble-based frame synchronization is performed first, using correlators. Then,

non coherent FSK detection is made on the captured frame. Convolutional decoding

is performed using a hard decision Viterbi decoder, since the non coherent FSK

detector output gives bits and not samples. Descrambling, Reed-Solomon decoding

and telemetry bit extraction from the resulting protocol data unit can be made using

the corresponding blocks from gr-satellites.
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Figure 5.2: Suggested decoder for LilacSat-2 GFSK Telemetry.

5.4.1 Simulation results

In this section, we compare the performance of the gr-satellites decoder and the

suggested decoding scheme, which is illustrated in figure 5.2.

To sample at the correct symbol timing instants, the gr-satellites decoder employs

a clock synchronization algorithm. The decoder we suggest does not need a clock

synchronization algorithm, since the receiver locks to a frame before symbol detection.

For the simulation results of this section, the gr-satellite decoder locks to the frame

with the minimum error of preamble bits, while the suggested decoder locks at the

most probable starting point of a frame equation (5.15) gives. The simulation results

in figure (5.3) show that the suggested decoder achieves approximately a 2dB gain.

Figure 5.3: Frame synchronization and bit detection of uncoded LilacSat2 GFSK for
quasi-static Rayleigh flat fading channel.
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Chapter 6

Experimental Results

6.1 Description

In this chapter, we demonstrate the process of capturing and decoding a satellite

signal. The satellite signals were captured using an 8-dollar RTL-SDR receiver con-

nected to a hand-held Yagi antenna at the UHF band. The captured signal was

decoded using free-to-use Windows and Linux programs.

(a) The Yagi antenna. (b) The RTL-SDR receiver.

6.2 Capturing and decoding LilacSat-2 GFSK

To identify the position of the satellite flying overhead, the azimuth and elevation of

the satellite were measured, using the application Gpredict [11].
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Figure 6.2: Caption from the Gpredict application.

The program SDR Sharp [12] is used to record the satellite signal. The user connects

the Gpredict application to SDR Sharp for the Doppler shift correction. Doppler

shift is the actual change in frequency, due to relative motion of source (satellite) and

observer (ground station).
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Figure 6.3: Caption from the Gpredict application. Selection of the port that Gpredict
will send the Doppler shift to the SDR Sharp application.

Figure 6.4: Caption from the Gpredict application. The user selects the satellite
from Target and presses Track and Engage. Now Gpredict sends to SDR Sharp the
Doppler shift.
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Figure 6.5: Caption from the SDR Sharp application. SDR Sharp is connected to
Gpredict via the specified port.

Figure 6.6: Caption from the application SDR sharp, displaying the waterfall of a
signal. At 437.188MHz, there is a GFSK packet of LilacSat-2 telemetry. Next to it,
at 437.165MHz, there is a BPSK packet of LilacSat-2 telemetry.

The satellite signal is also FM demodulated by the application SDR sharp. Ad-

ditionally, a bandpass filter of adjustable bandwidth is used to remove the noise. In

SDR sharp, the measuring unit of the Fourier transform is dBFS (Decibels relative
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Figure 6.7: Caption from the application SDR sharp, displaying the Fourier of a
signal, measured in dBFS. At 437.188MHz, there is a GFSK packet of LilacSat-2
telemetry. The shaded region is the bandwidth of the bandpass filter. The red arrows
show the option for NFM (Narrow FM) and WFM (Wideband FM) demodulation.

to full scale), which is calculated by:

|XFS(F )| = 20 log10

(
|X(F )|)
FS

)
, (6.1)

where |X(F )| is the absolute value of the signal’s Fourier transform and FS is the

full-scale factor. The value 0 dBFS corresponds to 100% full scale (FS) and is the

maximum allowed value the Fourier transform can get.

The FM demodulated satellite signal from SDR Sharp is then recorded by Audacity [13]

into a 48kHz .wav file. The generated .wav file is sent to the gr-satellites decoder,

using the gnuradio application gr-frontends. The gr-satellites decoder is displayed in

figure 2.3 of Chapter 1.

Figure 6.8: The gr-frontends gnuradio application.

The output of the gr-satellites application is a hexdump file (figure 6.9), that

contains the CSP packet.
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Figure 6.9: Decoded LilacSat-2 GFSK telemetry in hexadecimal form using gr-
satellites.

To show the telemetry information graphically, first the CSP packet should be

converted to a KISS packet (figure 6.10).

Figure 6.10: The gr-satellites decoder. The CSP packet is converted to a KISS
packet (PDU to KISS). The Linux machine that runs the gr-satellites decoder sends
to a Windows machine the KISS file via a TCP socket.

The KISS packet is sent via a TCP socket to the client of the Windows program

GetKiss [14].
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Figure 6.11: The application GetKiss in the Windows machine receives the KISS
packet (which is printed in the terminal of the application).

The GetKiss program automatically creates a .kss file that contains the KISS

stream obtained from gr-satellites. The .kss file is given as input to the DK3WN

Telemetry Decoder for LilacSat-2 [14], which is a graphical tool that can be used to

display the telemetry of LilacSat-2 graphically from the KISS file.

Figure 6.12: Decoded LilacSat-2 GFSK telemetry from the DK3WN Telemetry De-
coder program.

The satellite transmits to earth information regarding its receiver and transmitter

(current,voltage etc), the temperature of its microcontroller (STM32 Temperature)

and power amplifier (PA temperature), the RSSI (Received Signal Strength Indicator)

etc.
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Conclusions

This work gave insight to important elements of a satellite decoder. The concepts of

symbol timing synchronization and Viterbi convolutional decoding were thoroughly

explained. Also, a new decoder for the CubeSat LilacSat-2 GFSK telemetry was

suggested. This decoder employed an FSK non-coherent bit detector and used a

preamble-based correlation frame synchronization scheme. The simulation results

showed that for uncoded LilacSat-2 GFSK signals, the suggested decoder achieves

approximately a 2dB gain. Also, the process of capturing and decoding a satellite

signal was explained in detail.

As future work, the decoders should be tested for encoded satellite signals. Addi-

tionally, a gnuradio implementation of the suggested decoder could be made. Finally,

the same bit and frame synchronization scheme could be used for other CubeSat

decoders.
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Chapter 8

Appendix

The Gaussian shaping pulse gs(t) is given by [15]:

g(t) = h(t) ~ χ(t) (8.1)

where h(t) is a rectangular pulse of amplitude 1/T on the interval [-T/2,T/2] and

χ(t) is the impulse response of a Gaussian filter with passband at -3dB equal to B:

χ(t) =

√
2π

ln 2
B exp

{
−2π2B2t2

}
/ ln 2 (8.2)

After resolution of the convolution product, the function gs(t) can be written in the

form:

gs(t) =
1

2T

[
erf

(
πB

√
2

ln2

(
t+

T

2

))
− erf

(
πB

√
2

ln2

(
t− T

2

))]
(8.3)

where T is the symbol period and erf(x) represents the error function, defined by:

erf(x) =
2√
π

∫ x

0

exp{−u2}du (8.4)

The normalized bandwidth BT allows the time spreading of function gs(t) to be fixed.
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