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“I think it is much more interesting to live with uncertainty than to live with
answers that might be wrong. ”

Richard Feynman
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Extetapévn MepiAnym

INa meplocdTEPO ATO EVAV ALOVA Ol OTOTIOTIKEG 1810TNTEG TG YEVEDT|G TOCO
TOV MIPOCEICHAOV 000 KL TOV HETAOELTHOV EXOLV YIVEL AVTIKEIPEVO PEAETNG QIO
TIOAAOUG EMOTIHOVEG € OXEOT HE TIG TOAVTTAOKEG SIOSIKOOIEG YEVEDT|G TV OEl-
OpQV. TToOAAG 0TOXOOTIKA HOVTEAQ, EPTIEIPIKEG OXETELG KO VOLOL £X0LV TIpOTaDEel
wote va e&nynbel ko va avanapaotabel TOLAGYIOTOV éva HEPOG Ao TA TIAPO-
TNPOVHEVH XOPAKTNPLOTIKA IOV eK@pdlovy Kabe oelopikn akoAovbia. INa mapd-
SELyH, KATIOLEG AV OALEG OTO PLBLO TNG CEICHIKOTNTAG, |IE TN XPT|ON OTHTIOTL-
KOV HOVTEA®V, PTIOPOLV va BempnBolv TIPOSPOH QOIVOPEVT 1OXVPWV CELCHMV.
EXTO¢ Op®G amd TNV TPOYVMOOT) TV CEIOH®V, 1| HEAET TOV GEIGHIKOV XKOAOL-
Blov amoteAel éva TOAD Xprio1po epyaieio otny ipoomdbeia Siepelvnong TV O€l-
OHOTEKTOVIK®V 1010TNT®OV TOL PA0100 NG I'ng, 0TV amok&ALYm g oelopoyEve-
0TG, TNG YE®HETPIOG KABDEG KA TNG KIVIHATIKNG TOV PNYHATOV.

Avtikeipevo g mapoLoag SITAOUATIKNAG EpYXTing €IV N OTATIOTIKN HEAETN
TOV GEIOUIKQOV YEYOVOT®V TPV TOV KUPLO O€lop0 G ZakvvBou (6.6 M) mov
élafe yopa otig 25 Oktwfpiov Tov 2018 KABOG KAl TNG HETAROEITHIKTG OKOAOV-
Biag mov mpokANBnKe amo avtodv.

IMa v avaivon xpnotlpono)Bnkav dedopéva amod Tov KATAAOYO GELCH®V
Tov [N'ewduvapikoL Ivotitovtov oL EBvikod Aotepookoneiov ABnvav (NOA).
Ta Sedopéva auTta ava@épovtal aTn Xpovikr epiodo amnd 1 Iovviov tov 2016 éwg
kot 31 Maiov tov 2019 kot mepAapBAvouY TIG CUVIETAYHEVEG TV CEIGHQV, TO
HeyeBog toug, to BdBog KabBmg Kat TV aKpPr) NHEPOUNVIA KOl P KATAYPAPTG.
Aq@opovyv pia meploxn HeAETNG 0TV eLpLTEPN TomoBeaia TG ZakvvOou, pe cuvo-
An| éktaon nepinov 20.000 tetpaywvika xthdpetpa. H meployn peA€étng anote-
Ael Tpunpa Tov EAANVIKOU T0&0L Kot mapouotdilel TOAD €VTOVN GEICHIKT] §paoTn-
promta. Ta Sedopéva xopiomrav oe §00 doelg. H mpot apopa Toug oelopong
TPV aTI0 TNV TIEPL060 TOL 10KLVPOL GELGHOL (6.6 M| ) Kol avoQEPETAL GTNV XPOVIKN
nepiodo amo 1 Iovviov, 2016 €wg kon 25 OktwPpiov, 2018 pe cuvoAkn Stdpkelx
2 xpovov Kot 5 pnves. H debtepn @domn a@opd v HETACEIOUIKT| TiEPiodo, wg
QMOTEAEG A TOL 1OYLPOV GEITHOD (6.6 M) Kot ava@épetal ot mepiodo amo 25
Oxtwppiov, 2018 ¢wg ko 31 Maiov, 2019 pe ovvoAikn Sidpkela 7 pnvev. To
oLVOAO TV 6eSOpEVOY TIOL PEAETONKaVY Yyl auTh TNV Ttepiodo meptAapfavouy
11778 oelopikd yeyovota and ta onoia 2112 ava@époviat 6TouG GELCHOVG TIPLV
TOV KUPLO GEIOHO KAl T LITOAOITX 9666 OTOVLG PHETATEIGHOVG, GLUHTIEPIA PavVO-
HEVOL KOl TOL KOPLoL €100V, OAX To GELOPIKAE YEYOVOTQ IOV XPTOOTOoI OnKay
a@OPOVV GEITHOVG [e péyefog peyaddtepo kKot ioco tov 1 My (tomikoL peyéfoug)
KOl QVAQEPOVTAL OE EMPAVEINKOVE GEITHOVG [E pNxO P&Bog €wg kan 40 1AOe-
PO

Yy apyn ¢ epyaciog yivetal pia eKTEVIG avAALOT| TWV OTOTIOTIKQOV €p-
yoAeiwv Kot peBOSwv mov Xpro1HOToI0VVTAL OTH EMCTI U TG GELIOHOAOYING KO-
B¢ Kat Tov Bewpn koD LIIOPAEBPOL TTOL APOP& TA XAPOKTIPLOTIKA TOV CELCHADV.
AvoAlovTal EKTEVOG Ol S1QOPETIKEG KAIHOKEG TTOL XPNOHOTIOLOVVTOL V1O Th HE-
TPNOT TV OEIOPOV KAB®EG KOl 01 ERTIEIPIKEG OYETELG IOV €XOLV TIPOTHOEl QMo
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&évoug ala kot EAAnveg emotipoveg. EmnpooBeta yiveton pia mepypaen twv
BaoKOV VOHWV 0AAG KO OYXEGEMV TG OEL0HOAOYING KHBOG KO 1 EQapoyn TOLG
OTNV TOPOVOA SUTA®HATIKT].

AoV avalubel eMaPKOG TO OTATIOTIKO, TO GEIOHIKO XAAG Ko To BepnTiko
unoabpo, akoAovBei to Tétapto Ke@aAoio mov aoyoAeital je T OTATIOTIKT aVA-
Avon TV Sl@opv KAIHAK®V HETPTONG ToL HeyéBoug Twv oelop®y. O meplo-
00TEPEG KAIpaKeg, Baoilovion oe KOPATH TTOL KAADTITOUV HOVO €va PEPOG TOL
QAOHATOG, TA HEVEDN TV KAIHAK®V QUT®V OMOTEAODV HETPA TNG EVEPYELRG TTIOV
akTvoPoAgital ota avtioTola TapaBupa CLXVOTNT®V Kal OXL TNG OAKNG EVEP-
YE1aG Tov gelopov. Tla avtod Tov Adyo €xel dnptovpynBel pia kKAipoka peyédoug n
omoia 8¢ Baoiletan o€ KOPATH TTEPIOPIOHEVOL PAGHATOG CLXVOTHTAOV, GAAX OTO
OUVOAIKO Qdopa. Autn N KAIpoKa ovopdletal KAIpoKa peyéfoug oelopIKng po-
¢, My. XNV mapovoa epyacia Snpiovpyndnke pia epmelpikr e§icwon n onoia
TIEPLYPAPEL TN OXEON HETAEL TOL TOMKOL peyEBoug (apyxikd Sedopéva) Kol Tou
HeyéBoug g oelopikng pormg. o va dnpiovpynBel autn n ox€on xprotponor-
Onke pux evpvtepn xpovikn mepiodog dedopévav (2009-2019) s vt to My, givan
TEPITTAOKO VO KATAYPAQEL KOl VX DTIOAOYLOTEL GLVETIMG 01 KATAAOYOL GEITHMV TIE-
PLEXYOLY TTOAD Alyeg (avEMAPKELG) KaTaypa@EéG auToL ToL peYEBoLg. AlXTNPOVTHG
v 181 akp1adg meproyr HEAETNG TNG ZaKOVOOUL KOl Yo A TIO EKTETAPEVT TiEPi-
060 10 xpovwv peAetrOnkav 55 oelopikd yeyovota. H oxéon mov dnpiovpyrdnke
QTIo KUTA €ivat amoTEAeTH A TNG CUYLOHEVTG AVAALOT|G TRAIVOPOHNOTG KO APOpi
o€10p0V¢ peyéboug amo 2.7 My ewg kot 6.6 Mj. AUt 1 EUTEPIKT] GYEOT) TIOL
KOTOOKEVAOQHE EQAPHLOOTNKE oTa apXIK& dedopéva (2016-2019) g avaAvong
HOG Y10 VO EKPYPAOOVE T OELOPIKK YEYOVOTa o€ peyeBog oelapikng porng (My).
AkoAoVB®G Yyl TNV OMTIKOTOINGOT TV AMOTEAEOUATWV, KATAOKELAOTNKAY O R
nePBEAAOV TIPOYPApHATIOHOD Ta ypaenpata (1) Tov peyéBoug OEIOHIKTNG POTTG
®G TIPOG TOV XPOVO Kal (2) TNG aBpOloTIKIG KATAVOUTG TNG GELOUIKNG POTTG MG
TIPOG TOV XPOVO.

Z1n cuvéxela TG avaAuong pag peAetnBnke oto Ke@ahoo mevte n ouxvotnta
EHPAVIONG OEIOPQV OE OYEOT HE To peyeBog Toug. o T peAéTn vt xpnoipo-
nowBnke o vopog tov Gutenberg - Richter, o omoiog ava@épel 0T 0 ap1BpOg TV
OEI0HMV €ivVal YPAHHIKT] GLVAPTNOT TOU HEYEBOLG TV GEIOPOV. MEoa amo auTh
™ oxéon mpoadiopileton n petafAnt b 1} b-value n omoia eivon TOAD onpavTikn
Ko ouvnBwg o€ Kavovikég ouvOnkeg Bpioketat kovid oto 1. H onpaoia g ogei-
A€TO 0TO YeYovOG OTL PTiopel va eptypaiel Tov BaBpo TNG OHOLOYEVELNG TV LAL-
KQV KO TNV KOTAOTAOT] TOV TAGEMV TIOL EMIKPATOLV OTNV €0TIOKN Tieploxn [69].
[Ma v e@appoyr OP®G TOL VOHOL AVTOV EIVOL TIPOXTAITOVHEV T) YVOOCT] TOU |IE-
y€Boug mAnpotntag, M., mov opiletal g To eAdX1oTo PéyeBog ato omoio to 100%
TV CEIOHQOV £XEL KaTaypaeel amod éva §iktuo oelopoloyikav otabuav. H cootn
ekTipnon tov peyeboug avtoL eivar Kpiopn, KaBAOG pia peyoAvTtepn TN oméd v
Kavovikn] odnyei oe vmodetypatoAnyia twv Sedopévav, amoppintovtag Xpriotpa
dedopéva, eve i YapnAdtepn Tipr odnyet oe AavBaopévo mpoadloplopd Twv
OEL0HIKQV TIAPAPETP®Y ATIO TN XPproT ateA@v dedopévmy. I'a v ektipnon tov
peyeboug auton, SokipaotKav 3 SaopeTikeg pEBodor pe TN xprion evog epya-
Agiov oTO MpoypappATIOTIKO TiepBaAAov g MatAaun [74]. H npotn pébodog
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givon 1 p€Bodog tov cuvoAikov gvpoug peyebov (EMR), n onoia kKataokevddel
éval HOVTEAO TO 0Tol0 TIEPLYPAPEL OAO TO €VPOG TV SEGOPEVMV XPT|O1HOTIOLOVTOG
mv e§lowomn G-R kot v aBpolotikn kavovikn katavour. H evtepn elvon i) pé-
Bod0¢ péyromg kapmuAomtag (MAXC) n onoia Bpiokel To onpeio ekeivo OOV
n KN aBpoloTikn Katavopn ep@aviel t peyaAdtepn KapmoAn. H tpitn elvon n
doxipn kaAng npooappoyrg (GFF) omov pe avt ) peBodo vmoAoyideton n Tipn
NG AmOAVTNG S1IXPOPAG TOL APLBROV TOL GEIGHOV PETASD TIPAYHATIK®OV KOl 0LVOE-
TIKQOV KATAVOH®V. AQPOL Tpoad10ploTodV T KATAAANAOTEPA pEYEDT TTANpOTNTOG
Yl TOUG GELGHPOVG TIPIV TOV KOPLO CELCHO KAl Y1 TOUG HETAOEIOHOVE (2.0 My, Kat
2.5 My, ) vmoAoyieton | mapapetpog b. Xtnv npatn nepintwon vnoAoyileton ov-
HTEPIAXH Bavop€vou Tou KUPLOL GEICHOV Kot oTn SeVTEPT iEPIMT®ON LIOAOYile-
TOL 1) TAPAUETPOG b ¥wpig TOV KUPLO OE1oP0. LT CLUVEXELX PeAeTaTON 1] €§dpTNON
™G Mapapétpov b and to péyeBog M, kou oTig SVO TEPITTOOCELS (TPV KOl HETK
TOV KUPL0 0€10H0). AKoAoDOwG e€etaletaon 1 €EEAEN NG TIUNG TG TXPAHETPOL
b w¢ pog Tov XpOvo PAVO Yl TOUG GELTHOVE TIPLV TOV KUPLO GELGHO, Xwpilovtag
Tot GELOHIKA yeyovota ava 200. TEAOG Y1 TNV YPOPIKT] OTIEIKOVIOT] TV OMOTEAE-
OPATWV XPNOHOTOONKE eVOG KOSIKAG 0T MATAQUT KATROKEVAGHEVO OTIO TOV
K.XplotomovAo [27].

To €KTO KEQAAXIO AQPOPA TN OTATIOTIKI] AVAALOT] TWV XPOVAV OVOHOVIG HE-
TaéV S1a80YIKOV GEICH®V. TNV avaALOT QUTH, EQXPHOCTNKAY 5 SIOPOPETIKEG
katavopég (Weibull, Gamma, Pareto, Exponential, Lognormal) ota §edopéva twv
OEIOH®V TPV OTI0 TOV KVPLO OEIOHO KOl TV HETHOEIGHAV, e 0TOXO0 TNV Siepev-
VIOT] NG KXAVTEPNG TTPOCAPHOYTG TOLG. O1 XpOVOL AVOpOVG HETAED S1A80XIKOV
OEI0HWV LTTIOAOYIOTNKAV OTO TIPOYPUHHATIOTIKO TiEpIaAAoV TG R, apaipmvtag
TOV XpOVO TOUL TIPOTNYOVHEVOL GELTHOV OO TOV ENOpEVO. O xpOvol auTol meptAap-
Bavouv Ta oEIoPIKA SESOPEVA TIOV IKAVOTIOIOVV TO HEYEDOG TANPOTNTAC, TO OTOI0
éxel Bpebet 2.0 My, Yy TOUG OELCPOVG TPV KO TOV KOO, HE aplBpo 1262 kat
2.5 My, Y& TOUG PHETAOEIOHOVG, [iE aplBpO peTacelop®Y 4692, X pro1poTolOVToG
aLTOVG TOUG XPOVOLG (0€ HOVASK HETPNOTG AETITAOV) KATXOKEVAOTNKE EVX 10TO-
YPOHHO YIX TOVG GELTHOVG TIPLV QTIO TOV KUPLO KOl VA Y10 TOUG HETAOELGHOVG. XN
OULVEXELN UTOL 01 XPOVOL AVAOVIG DTIOAOYIOTNKAV O MPEG KAl KATAOKELAOTH)-
Kav 4 Baoika ypagnpata (l0TOYpoHHa XpOVRV, 4-q YPAGNHA, SIAYPOHHO GLVAP-
TNOTG KAVOVIKTG KATAVOUNG KOl p-p Yp&enua). ['a v obykplomn Kot TV emAoyn
TOU KOTOXAANAOTEPOL HOVTEAOL emAéXONKav T Kprtipla mAnpogoplov Akaike
(AIC) kon ta MANpo@oplaka Kpttrpla KataAAnAotntag Bayesian (BIC). H pikpo-
Tepn T Tov divouv ko T Svo kprtrpla AIC ko BIC givon n Tipr) mov avtiotouyel
OTNV TO KATAAANAT KATAVOWT.

TéAog, 010 €800 KEQPAANO AVAADONKE T) GLUXVOTITA TNG HETROEITHIKTG KO-
AovBiag g ZakvvBou. Eidikotepa egpappootnke o Nopog tov Omori-Utsu kot
TPOCS10pioTNKAY Ol TOPAHETPOL TOL VOHOU. [ TN peTacelopikn akoAouBia xpn-
oonorOnkav 6Aot ot oelopoi ano tig 25 Oktwfppiov, 2018 ¢wg Tig 31 Maiov,
2019 pe péyebog peyadtepo amod to péyeBog mMANPOTNTAG, TO OTOI0 €XEL LITOAOYL-
oTel mapandve. AQapaOvIag AoUtov OAOVLE TOLG HETAGEITHOVE HE péyeBog HIKpO-
TEPO TOL 2.5 My, pevouv 4692 GEICHIKA YEYOVOTQ IV OTA OTIola EQapOLETAL
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10 povtéAo tov Omori-Utsu yia 220 pépeg. To GUYKEKPLHEVO HOVTEAO EQAPHO-
OTnKe MOAD KaAd ota Sedopéva, Sivoviag tig e€ng mapapétpoug: p = 1.57, k =
30531.70, ¢ = 35.79. £ ouvExela peEAeTONKE 1) EAPTNOT) TV TAPAUETPROV V-
TV (1) ano 1o péyebog mMANpoOTNTAG KAl (2) Ao ToV XpOvo. Q¢ Tpog TNV e§&pTNnon
aro 1o péyeBog mAnpotntag Ppédnke 0T N TN Tov p emppeaetar Kabwg pe
mv avénon tov M, ovvnBwg peltdvetal. Q¢ pog v €§APTNON A0 TOV XPOVO,
vroAoyiotnkav K&Be @opa Sla@opeTikol TapapeTpotl Tov vopov Omori-Utsu kot
Xpnolponolevtag éva mapaBupo 20 nuepav. Emmiéov, ouykpibnkav ta amoteAé-
OHOTO TOV TIAPAUETP®V TNG ZaKOVOOL (1) HE Ta AMOTEAECUATH TOV TIAPALETPWV
NG PETAOEIOPIKNG akoAovBiag Tov oelgpoL otny nieployr] Hokkaida-Nansei-Oki
ot lanovia ko (2) pe T0 AMOTEAETHATO TV TIHPAPETP®V TOV OELOHIKOV OKO-
Aovbiov g Keparoviag kot g Agukadag. Ot tpeig autég ouykpioelg éytvav
&10m (1) o oewopog g neproyr Hokkaida-Nansei-Oki, Ianwvia eixe mapopoiax
XPOVIKT] S1dpKelx PETAOEIOPIKNG Spaotnprotntag (262 pépeg) kan meptAdpfave
TIAPOROL0 KPIBPO HETAOEIGHAY, eved (2) N Kepaiovia ko n Agukada (§Uo vnow
010 16vi0) Bplokovton mave amo 1o EAAnviké Toéo, onwg ko n ZakuvvBog, ocuve-
TG EPEAVI{OLY TTAPOHOIX CELITHOTEKTOVIKA XXPAKTNPLOTIKA KO O1 HETOAOELITHIKEG
ToLG akoAovBieg elyav mpokAnBei amo cgelopong pe mapopolo péyebog 6.1 My kot
6.5 M, akoAo0OOKG.

Ta MO ONUAVTIKG CUUTEPATHATH TIOV TIPOKVTITOLY ATIO TNV avaALoT| glval Ta
akoAova :

H e&lowon mov dnpiovpyndnke ypnoponoievtag tm péBodo g (UYIoHEVNG
avdAvon g TRAVOPOUNOTG Y1 VO TIEPLYPAPEL 1) OX€0T HETAED TOV TOTIKOV HEYE-
Boug pe to péyebog OEIGHIKNG POTG, MMOPEL VA LTTOEKTIHG (LTIO TIEPIMTWOELG)
TO AMOTEAECHATA OE OXECT HE TIG EUTIEIPIKEG OYEOELG EEV@V AN Kat EAANvav
oglopoAoyav. TTapoAa auTd, N GYEOT] LTI EKQPACEL Pior XPKETR EOTIOGHEV TIE-
plLoxm, YOpw amd tn Zakuvlo Kot TepypaQEl pie TOV KaADTEPO TPOTO T SeSopEva
avtd amod to 2009-2019. Eivanl onpavtiko va avagepbei 0t tar Sedopéva auta
propet va S1EMovTaL amo TuXaia KAAX KOl CUOTNHATIKA COAALATA, T OTIOL E10G-
yovtat ota dedopéva Katd tny Stadikaoia kataypapng kat eneéepyaciag toug. Ta
VX0 CPAAPATA TIPOKVTITOLY OO TOV AVOPOMIVO TIHPAYOVTH TTIOL LTIELCEPYETAL
OTNV TIAPATAPNON TGV XPOVAOV AQOLENG TV KUHATOV Kol G MOKVEG TPOTWPLVEG
BA&Beg ToL GEIGHOAOYIKOD SIKTVOU T] KOl GTNV AVTIKATAOTHOT] TOV TIHANLQOV 0p-
YAV@V HE VEX OELOPOPETPA. Ta oLOTNHATIKA CEAApOTa oxeTi(ovTal e TG offe-
Bo0TNTEG TOL HOVTEAOL TIOL XPTOLHOTOLEITAL YO TOV LTTOAOYIOHO TV XPOV®V
S1adpopnG KabBag Kot oe aAAay€EG TOL TPOTIOL LITOAOYLOHOD TV peyeBav (xpron
SLOQOPETIKOV EUTIEIPIKOV OXETEMV) OTO TEPAGHA TOV XPOVOL (S1dpKelx HEAETNG
10 xpovwv). Emiong moAA& c@dApata prmopei va dnpiovpynBoiv amd 1o ovo-
LIEVO TOL KOPEGHOV TOL TOTIKOV HeEYEBOLC. ALTO OTHAiveEL OTL yix peyGAOLG O€l-
OHOVG TO TOTIKO HEYEDOG LTIOEKTLHA TO TIPAYHATIKO HEYEDOG TOL oelopoL. Ta pnKkn
KOHOTOG TV KUHATOV UT®V €lval HIKPG € OXEOT HE TIG S10TACELG TRV PrYHA-
TV € QMOTEAECHA VO PNV €NMMpeGleTAl TO TARTOLG TOLG OO TNV AVENOT TWV
S100TACEDV TOL PIYHATOG.

Ocov agopa TNV ekTipnomn tov M, Kot v epappoyn Tov vopov G-R yia tov
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LTTOAOYIOHO TNG TaPApETPOL b-value. Ot Tpeig Stxpopetikég peBodor mov xpnot-
pomomfnkav pog §ivouy TOAD KOVTIVE AIOTEAEGHATA Y1 TOUG OELOHOVE TIPLV TOV
KOplo o€lop0 pe péon tpun M = 2.1 + 0.1 My, Kot yio T HETOCEITHIKT OKO-
AovBia M, = 2.5 £+ 0.1 My,. Ano v avaivon g oxeong tov M, pe to b-value
Topatnpr|OnKe OTL LTIAPXEL piax e€aPTNOT KA OTL e TNV avnomn Tov M, avéavetat
Ko 1) TIien tou b-value. Kot otig §00 mepintmoelg, mpiv Kot HETd ToV KOPLO GEIGHO
10 b-value Bp€bnke kovtd oto 1 pe b-value = 1.18 mpiv 10 o€1opd ko b-value =
1.00 yio petd. Ot Tipég autég eivan Kovta oto 1 1o omoio onpaivel 6t n meployn
HEAETI HOG EXEL TO AVAHEVOHEVO OEIOHIKO LTTIOBaBpo. [TapoAavta Ba epipévapie
Ol TIHEG TOL b-value piv 1o G€10|0 Vi givat HIKPOTEPEG KOt PETA TOV OELOUO HEYO-
A0tepeg oLpQava e T BifAoypagia. To avtioTpo@o avTo PovopEVO pmopel va
e&nynOet pe v mBavn ap&n CUNVOCEIGHIKNG SPACTNPIOTNTOG. LUYKEKPIHEVA
napatnpriOnke ot pv Tov Mdaptio tov 2017 épgavideton pia évrovn avénon g
TIUNG Tov b-value pe péylotn Tipn kKovia oto 1.52, @atvopevo mov LTOSNAGVEL TNV
mBavn vnapén opnvooelopav [5]. EmmAéov, moAAol oglopoAdyot vmootnpidovv
OTL TIPLV OTIO €VA PHEYAAO OEIOHO LIIAPYEL Hia HIKPT TTITWOT) 0TV TN Tov b-value.
AvTO 10 @avopevo apatnpriOnke oto ypd@npa 5.2 OOV TX CEITHIKA YEYOVOTX
TIPLV TOV KUPLO 10O ywplotnkav o€ 10 opddeg pe 200 oelopikd yeyovota to
KaBéva. Xuykekpipéva ano tov Aeképfplo, 2017 péxpt ko tov Maio, 2018 ma-
patnprnke pia mtoon g Tipng tov b-value, n onoia Ba propovoe va BewpnBel
TIPOdyyeAOG TOL Kupiov GELGHOV.

H otoamotikn] avaAuvon tewv XpoOvev avopovhg HETAED S1a60XIK®OV GELCHMV
¢6woe ta akOAovBa anoteAeopata. H katavopun n onoia meptypd@el KaAOTEPQ
TOUG XPOVOUG OVOHOVTG TOV CEIOH®V TIPIV TOV KOPLO GELOHO EIvVaL ] KATAVOUT)
Weibull. Eveo katavopun mov epappolel KaADTEpX GTOVG XPOVOLG AVAHOVIG TRV
HETaOEOPQV elvan N Pareto. Ot katavopeg autég Ba popovoav va pofAéPovy
TN CUUTIEPLPOPH TNG PETATEITHUIKNG akoAovBiag.

TeAog, 0TV av&ALOT) TNG HETROELOHIKTG KKOAOLBING HE TNV EQAPOYT) TOV VO-
pov Omori-Utsu (O-U), mapatnprfnke moAD KaAr e@appoyn ToV dpxIKev dgdo-
HEV@V NG ZakLvBou e ta dedopéva mpoAeymng tov vopov. Ot TapapETPOL EKTL-
pronkav g p = 1.57, k= 30531.70 ko ¢ = 35.79, TIpéG avApPEVOHEVEG COHPOVX
e ) PifAoypagia. Amo ) avaAvon g eEAPTNONG TOV TAPAHETPROV KAl GUYKE-
KPIHEVA TNG TIHPAUETPOL p KataAnéape ota €€ng ovpnepacpata : (1) Yndpyet
ERQQVIG €EGPTNOT) TOL pEYEBOLG TTANPOTNTAG HE TN TIAPAHETPO P KAl OUYKEPKPL-
HEVA OTNV THPOVOA HEAETN €lvan avTIoTPOPOG avaAoya. (2) Q¢ pog Tnv e§aptnon
QIO TOV XPOvo, mapatnprndnke 6t g mpateg 20 pe 40 NEEPEG TNG HETACEICHIKTG
akoAovBiag n Tipn p ektipatan apketa xapnAn (0.38 kou 0.40) eve HeTa To TEPQ-
OHO TV 3 HNVOV EREaVILEL TIHEG KOVTIA KOl peyoALTEpEG oo To 1. AuTo pmopetl
va oupPaivel eite S10TL N peTacelopIKT| akoAovBia dev evepyomot|Onke apECKG
elte ylati HeTd amo 3 Prveg €xel eMaveADEL N KAVOVIKT] OELOPUIKOTN TN TG TTEPLOXTIG
Kot €xel dnpovpynBel pia aAANAOKGALYIM NG HETHOEIOPIKNG aKOAOLBING pE TO
KOVOVIKO GELOHIKO LTTOBaBpo. X1 cLvEXELR, amd T OUYKPLOT TV AMOTEAEGHA-
TV pog pe My lonwvia KataAnéape oto 0Tl oTa QNOTEAETHATH TG ZakLvBou
T TIOPAHETPOG P ELPAVILEL APKETA PEYAAVTEPEG SIAKVHAVOELG WG TIPOG TO HEYE-
Bog MANPOTNTAG O OXEOT HE TIG SIKKLPAVOELG TNG MAPAUETPOL P @G TPog M,
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Tov €xouv vroAoyloTel amo tov Utsu yix v oelopikn akoAovBia g meploxmng
Hokkaida-Nansei-Oki. Ano tn oUYKp1OT] T®V OMOTEAECHATOV TV dV0 NNnolov
tou Toviou pe ™ ZdxuvBo kataAnyovpe ota €€ng: (1) OewpOVTNG HETHOEIOHIKN
akoAovBia pe Sapkela 20 nuepwv n ZakvvBog ko  KepaAovia eppavidouvy kot
01 8V0 apKeTa xapNAEG TipEG p (0.38, 0.46) Ko TXPOHOLA PIKPT] TLHT] TAPAYRDYIKO-
mrog k, 172.35 ko 229.1, avrtiotoya. Eved n Agukada epgavilel Tiun mg napa-
péTpou p = 1.08 pia Tipr KOvVTa& 0To 1 Kot HeYorAUTEPT) QTIO TNG TIPOAVAPEPOVOEG.
Ot napapétpot tov vopov Omori-Utsu Sev givon akdpn Eekabapo amo mov mpo-
€PYOVTNL KO OTIO Tl EEHPTAOVTAL, OLVENAG XPEIRLETAL TAPATIAV®D S1EPELVNON TWV
TIPAHETPROV XVTAOV.
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Abstract

Earthquakes are one of the most dangerous natural disasters that can cause
widespread damage and loss of human life. For more than a century the com-
plex generating mechanisms and the statistical properties of both foreshock
and aftershock sequences have been studied by many scientists. Stochastic
models, empirical relations, and seismological laws have been proposed to
explain and represent at least some of the observed characteristics of seismic
sequences.

The aim of this dissertation is the statistical analysis of the seismic se-
quence before the main earthquake (6.6 My ) of Zakynthos, Greece that took
place on October 25, 2018 and the aftershock sequence that resulted from it.
The data used in this analysis were obtained from the earthquake catalog of
the Institute of Geodynamics of the National Observatory of Athens (NOA).
They refer to the period from 1/06/2016 to 31/05/2019 and extend over an
area which is part of the Hellenic Trench and has intense seismic activity.

The relation between earthquake magnitude scales was studied, and an
empirical relation between local magnitude ( My ) and moment magnitude
(Mw) was established using weighted linear regression analysis. In order to
establish this relation and due to insufficient data in the seismic catalogs with
recordings on the moment magnitude scale, it was necessary to study a data
set covering a more extended period (2009-2019). The empirical relation
was used to express earthquake magnitudes in the moment magnitude (Mw)
scale, and the plots of moment magnitude and cumulative seismic moment
evolution over time were created in the R programming environment.

Then, the frequency of earthquakes in relation to their magnitude was
studied (Gutenberg-Richter law), and the b-value parameter was estimated.
A prerequisite for the Gutenberg-Richter analysis is the determination of the
magnitude of completeness ( M, ), which was estimated with three different
methods: (1) by the method of entire magnitude range (EMR), (2) by the
method of maximum curvature (MAXC) and (3) with the Goodness of fit
(GFF). Furthermore, the dependence of the b-value parameter on the mag-
nitude of completeness ( M, ) and the variation of this parameter over time
before the main earthquake were examined. The interevent times distribu-
tion between successive earthquakes was subsequently studied, for both prior
and after the main event, by applying 5 different probability distributions
(Weibull, Gamma, Pareto, Exponential and Lognormal). The Akaike infor-
mation criterion (AIC) and the Bayesian information criterion (BIC) were
used to compare the distribution models and to select the optimal model.
The distribution that provides the best fit for the interevent times before
the main event is the Weibull distribution, while the one that gives the best
fit for the aftershock sequence is the Pareto distribution.

Finally, the frequency of seismic events in the Zakynthos aftershock se-
quence was investigated by applying Omori-Utsu’s (O-U) law; the param-
eters of this law were estimated as p = 1.57, k = 30531.70 and ¢ = 35.79.
In addition, the dependence of the O-U parameters (1) on the magnitude
of completeness and (2) on time was studied. The results of the parameters
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of Zakynthos were compared (1) with the results of the parameters of the
aftershock sequence in Hokkaida-Nansei-Oki, Japan (1993), and (2) with
the results of the parameters of the aftershock sequences of the Kefalonia
(26/1/2014) and Lefkada (17/11/2015) main events.

The most important conclusions derived in this thesis are summarized
below:

1. The empirical equation of Mw with Mj is in good agreement with
the empirical relations proposed by seismologists, but in some cases it may
underestimate the moment magnitude.

2. The implementation of the Gutenberg-Richter law and the estima-
tion of the b-value parameter give expected values close to 1 for the earth-
quakes before the main event but also for the aftershock sequence. Analyzing
the b-value parameter over time, we observed an increase in its value from
September 2016 until April 2017. This observation indicates the existence
of swarm activity. On the other hand, from May 2018 until shortly before
the main earthquake, there was a drop in b-value which could be viewed as
a precursor to the main earthquake.

3. The aftershock sequence is in good agreement with Omori-Utsu’s law,
and the O-U parameters are close to literature results.

4. The O-U exponentpwas found to depend on time (proportionally) and
on the magnitude of completeness (inversely proportionally).

5. The O-U exponent p estimated for the Japan earthquake shows small
dependence on the magnitude of completeness in contrast with the Zakyn-
thos p parameter which depends on M, .

6. Assuming an aftershock sequence with duration of 20 days the values
of the O-U exponent p for Zakynthos and Kefalonia are smaller than one
(0.38 and 0.48 respectively), while the respective parameter for Lefkada p
= 1.08 is close to one.
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Chapter 1

Introduction

1.1 Motivation

During the 20" century, earthquakes, both directly and indirectly, have
caused much suffering and damage to mankind. In Greece, more than 200
deaths have been recorded during that period, but more than 2000 people
were injured [72]. Earthquakes have a direct social relevance because of their
significant influence on human societies.

The genesis of earthquakes is an unsolved mystery in the earth sciences,
due to the complexity of understanding, monitoring, and accurately predict-
ing them. The underlying physical mechanisms are yet unknown. Unlike the
weather, which can be predicted with some precision for a couple of days
in advance, earthquake forecasting remains an elusive goal, because of the
lack of direct observations and the fact that the governing equations are still
unknown.

Additionally, earthquakes generally occur suddenly thus, they are consid-
ered the most feared natural hazards. Floods develop gradually, hurricanes
can be tracked, a variety of precursory phenomena precedes volcanic erup-
tions, and measurable atmospheric conditions cause tornados. Earthquakes,
however, occur without warning and often without precursory indicators.

This thesis is motivated by the fascinating unknown of this phenomenon,
earthquake, and the innate need to apply geostatistical approaches to un-
derstand the triggering mechanism and tackle the problems it can bring.
Preventing the disasters that society has to handle after every significant
event, by predicting where and when an earthquake will struck, also moti-
vates this thesis.
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1.2 Data and Study Area

The study area is the island of Zakynthos (Greece), one of the Tonian Islands,
located in the western part of Greece. Zakynthos is the third largest island of
the Ionian Islands, has a population of 39.737, and covers an area of 405.55
km? [24].

On October 25, 2018 22:54 UTC, a significant earthquake of 6.6 My,
magnitude occurred in Zakynthos Island, which is located at a complex plate
boundary region. It struck approximately 40 km to the NW of the Strofades
island and 36 km to the SW of Zakynthos. According to the manual solution
of National Observatory of Athens[53], it was a shallow crustal event with a
focal depth at 10 km. EMSC determined the epicenter of the earthquake at
37.53°N 20.62 °E, south of Zakynthos island coast.

Limited structural damages were reported mainly on the dock of the Za-
kynthos harbour and at the Strofades monastery [36]. Tsunami alert mes-
sages, based on the earthquake parameters, were issued within ten minutes
after the event by both the Italian and the Greek Tsunami Service Providers.
The earthquake generated a small tsunami recorded by some tide gauges,
including those located at Katakolo and Kyparissia in Greece, and Crotone
and Le Castella in Italy.

The aftershock activity lasted for a long time, through which the perma-
nent seismological networks of Greece recorded a lot of weak events. During
the first ten (10) days, the seismicity was denser, while in this period the
largest aftershocks took place. The 15 strongest events that followed the
main event ranged between 4.4 M; and 5.5 M) magnitude, while the ma-
jority of those occurred in depth shallower than 13 km.

According to Sokos et al. [73] and Mouslopoulou et al. [49], the 2018
mainshock consisted of two fault segments: a low-dip thrust, and a domi-
nant, moderate-dip, right-lateral strike slip, both in the crust. Slip vectors,
oriented to Southwest, are consistent with plate motion. The sequence re-
sults from rupture of upper-plate faults shown in fig. 1.1 with varying strike
and kinematics [49].


https://www.emsc-csem.org/Earthquake/earthquake.php?id=720235
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Ficure 1.1: The 2018 Zakynthos earthquake sequence.
Foreshock Mw 4.8 (yellow star and focal mechanism plot),
mainshock epicenter (green star), centroid moment tensor
(CMT; green square and focal mechanism plot), and activ-
ity in the first 24 hr, superimposed on bathymetry. The
Cephalonia transform fault (CTF) and the subduction back-
stop (SBS) are shown. Three characteristic plate-velocity
vectors are included. Retrieved from [73].
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Seismicity of Zakynthos

Zakynthos Island is located within Greece in the Ionian Sea, at the western
part of the Hellenic Trench. It is divided into the western part of Zakyn-
thos, which lies in the Pre-Apulian Zone and the eastern part, which lies
in the Ionian Zone, the most western zones of Greece. These two zones are
divided by the Ionian thrust fault [35]. The Pre-Apulian zone consists of
an eastward dipping succession of Upper Cretaceous to Miocene carbonates
overlain by Pliocene-Quaternary alluvia.

Zakynthos is located very close to the convergent boundary between
African and Eurasian plates, as shown in Fig. 1.2, and is undergoing very
rapid and intense ground deformations (around 26 mm/yr) [64]. The island
has a complex palacogeographic history due to the westward migration of
external Hellenides, which played the key role in the syn and post collisional
phases.
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FIGURE 1.2: (A) Simplified map of Greece showing the Hel-

lenic trench, the major fault systems and the study area Za-

kynthos Island and (B) map of western Greece with the main

fault systems and the Ionian Island Zakynthos, Kefalonia and
Lefkada. Retrieved from [4].

The specific tectonic characteristics of Zakynthos create an intense crustal
deformation in the Central Ionian Sea, leading to earthquakes ranging be-
tween moderate and strong. All those attributes classify the Ionian Sea as
a seismotectonically complex area of high seismicity.

The most destructive earthquake in Greece in the last century occurred
there, in the area of the Ionian Islands on August 12, 1953, with a magnitude
equal to 7.2 My, causing a total destruction of the town of Zakynthos, shown
in figure 1.3. The third most destructive earthquake, which is studied in this
thesis, occurred on October 25, 2018 , 65 years after.
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F1GURE 1.3: The results of the catastrophic earthquake in
Zakynthos, 1953. Retrieved from [62]

The most significant events since the 20" century are listed in Fig. 1.4

and include those events on November 18, 1997 (6.5 My), SW of Zakyn-
thos Island, December 2, 2002 ( 5.5 My,), a sequence of earthquakes during
October 2005 (5.6 My,) and April 2006 (5.5-5.7 My,) south of Zakynthos,
June 8, 2008 ( 6.4 My,) at Andravida (Peloponnisos), January 26, 2014 ( 6.1
My,) at Paliki (Cephallonia) and November 17, 2016 ( 6.4 My,) in Lefkas.
Clustering is noticeable in the figure. One cluster occurred in 2011 and 2015
at the place of the 2006 Zakynthos sequence, and one cluster was repeat-
edly activated three times (twice in 2016 and once in 2017) very near the
1997 and 2018 events. With the white star the epicenter of every major
earthquake is presented in Fig.1.4.
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FIGURE 1.4: Space distribution of earthquakes 2011-2018

(until the 2018 mainshock). The centroids of significant

earthquakes southwest of Zakynthos, in 1997 [40], 2006 [70],
and 2018 [73], occurred near two localized clusters.

The complete and detailed knowledge of the historical earthquakes, the
past earthquake environmental effects and the respective seismic intensities
has become significant in recent years due to the fact that among others it
serves as a valuable tool for revealing and highlighting sites of significant
earthquake related hazards. The more we learn about a specific area’s past
seismicity, the more we understand and we can predict and prevent a priori
large catastrophes.
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Chapter 2

Statistical Methods in
Seismology

From a statistical point of view, an earthquake catalog is the available data
on earthquakes in a space-time window. Statistical analysis can then be used
to find a suitable model for the underlying earthquake process. Such a model
provides a theoretical description of the seismic activities in the study region
and makes it possible to estimate the probabilities of future events. There-
fore, fitting an appropriate statistical model to a given earthquake catalog
is of great importance in the probabilistic assessment of seismic hazard. In
this Chapter, a variety of statistical tools and methods are described, which
where used to understand and model better the behaviour of an earthquake.
In addition, the properties of an earthquake and how those are measured,
are explained; as they appear prerequisite to the analysis. By applying and
testing different statistical methods on the earthquake events, we extract
crucial information that help us to understand, explain and even predict
earthquakes.

2.1 Probability Distributions

An earthquake sequence can be modeled as a stochastic variable via statis-
tical analysis. The first step that has to be carried out is the investigation
of the best fitted distribution to the data of the sequence data. Tomo-
hiro Hasumi et al. [76], shown that the time interval distribution for the
earthquakes occurring on a single fault can be described by the Weibull
distribution, and that the Weibull exponent increases with the increase of
the magnitude threshold. In the following sections various probability dis-
tributions, including the Poisson, Normal, and Pareto and some others are
presented.

2.1.1 Poisson-distribution

A Poisson distribution is a probability distribution that characterizes dis-
crete events occurring independently of one another in time.

The distribution is popular for modeling the "number of times an event
occurs in an interval of time or space”.
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A discrete random variable X is said to have a Poisson distribution with
parameter A > 0, if, for £ = 0, 1, 2, ..., the probability mass function of X
is given by:

Ake=?
k'
where e is Euler’'s number (e = 2.71828...) and k! =1x2 x 3...k is the
factorial of the integer number £.
The positive real number A is equal to the expected value of X | as well
as to its variance

flk;A) =Pr(X =k) = (2.1)

A = E(X) = Var(X).

The Poisson distribution can be applied to systems with a large number
of possible events, each of which is rare. The number of such events that
occur during a fixed time interval is, under the right circumstances, a random
number with a Poisson distribution.

In earth science, we can use Poisson distribution to forecast earthquakes
since big earthquakes are rare, assuming that earthquakes are independent
and homogeneous events. However, many seismologist [86] state that almost
no catalog fits the Poisson distribution exactly. For research purposes its role
as a base-line model for ‘standard seismicity’ has been replaced by the ETAS
model (see Section 3.2.3), which provides a much better approximation to
the clustering properties of smaller earthquakes.

2.1.2 The Normal Distribution

The normal distribution, also known as the Gaussian distribution, is the
most important distribution in statistics. It is often encountered in natural
phenomena as a result of the Central Limit Theorem. The latter —loosely
expressed— states that the normal distribution is an attractor for averages
of identically distributed random variables so long as their probability dis-
tributions do not have heavy tails. Its crucial property is that any affine
combination of independent normal random variables is in addition nor-
mal. An affine combination of vectors x1,...,x, is a vector Y ;' ;a;x; =
a1x1 + arxp + - - - + ayxy, called a linear combination of x1, ..., x,, in which
the sum of the coefficients is equal to 1, thus, /' ; a; = 1. The probability
density function (pdf) of a normal distribution [1] is given as follows:

i\ 2
flx;u,0) = ! e 2 () (2.2)
oV 27
where p is a location parameter, equal to the mean, and ¢ is the standard
deviation. For y = 0 and ¢ = 1 we refer to this distribution as the stan-
dard normal distribution. In many connections it is sufficient to use this
simpler form since # and ¢ simply may be regarded as a shift and scale pa-
rameter, respectively. In Fig. 2.1 and Fig. 2.2 different types of the normal
distribution are presented.
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FIGURE 2.2: Plot of the cumulative distribution function for
the Normal Distribution.
Skewness

Skewness is defined in terms of the centered third-order moment of the
distribution, is a measure of the symmetry or asymmetry of the probability
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density function. The skewness of the normal distribution and all other
symmetric distributions is equal to zero[l]. Any data with a symmetric
empirical distribution should also have a skewness near zero.

The skewness of a distribution is defined as

2
s = % = 0. (2.3)
2

Kurtosis

Kurtosis is defined in terms of the centered fourth—order moment of the
distribution, and is a measure of whether the data are more or less concen-
trated near the peak relative to a normal distribution. The kurtosis for the
standard normal distribution is equal to three, calculated by

. Ua
kurtosis = — = 3. 2.4
]423 ( )

2.1.3 The Gamma Distribution

The Gamma distribution is a two parameter family of continuous probability
distributions. It can be considered as the generalization of the exponential
distribution.

A random variable X that is gamma—distributed with shape a and scale
b is denoted as:

X ~T(a,b) = Gamma(a,b). (2.5)

The corresponding probability density function in the shape-rate parametriza-
tion is

f(x;a,ﬁ):wx;(—:;m forx >0 « B >0, (2.6)

where I'(«) is the gamma function.

Skewness

Skewness of the gamma distribution is equal to 2/+/a, and depends only
on the shape parameter a. The gamma distribution approaches a normal
distribution when a is large (approximately when a > 10).

Median

Unlike the mode and the mean which have readily calculable formulas based
on the parameters of the gamma distribution, the median does not obey to
a closed form equation. The median for this distribution is defined as the
value v such that

14

1 1 _x 1

I“(a)bﬂ/xa le bdx:E. (2.7)
0
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F o atX)

FIGURE 2.4: Plot of the cumulative distribution function for
the Gamma Distribution.

If X; follows a Gamma(a;, b) distribution for i = 1,2,..., N (i.e., all dis-
tributions have the same scale parameter b), then

N N
Y Xi~ Gamma | Y _a;,b |, (2.9)
i=1 i=1

where ~ denotes equality in distribution, provided all X; are independent.

2.1.4 Weibull Distribution

The Weibull distribution is a continuous probability distribution and can
be considered as the generalization of the exponential distribution. The
probability density function of a Weibull random variable is:

(5) et x>0,

2.10
x <0, ( )

S >

ﬂmkﬂz{

where k£ > 0 is called shape parameter an A > 0 is called the scale parameter
of the distribution. Weibull distributions with k < 1 have a decreasing
failure rate, whereas Weibull distributions with k > 1 have an increasing
failure rate. A value k = 1 indicates a constant failure rate over time [10].
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FIGURE 2.5: Plot of the probability density function for the
Weibull Distribution.

FIGURE 2.6: Plot of the cumulative distribution function for
the Weibull Distribution.
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2.1.5 Generalized Pareto Distribution (GPD)

The Pareto distribution is a family of distributions with two parameters. It
has been successfully used to describe statistical problems related to finance,
environmental phenomena such as the sizes of earthquakes or hydrology, or
the interevent times or distances between such environmental disturbances.
It is often used to model the tails of another distribution [68].

The probability density function (pdf) of X ~ GPD(u,0,¢)is:

_ 11
fuom(x) = }T (1+M)( ; >,

where the support of x is x > p when ¢ > 0, and y < x < p — /¢ when

¢ <0.
The cumulative distribution function of X ~ GPD(u, o, )
(MeR,0>0<,and ¢ € R) is

1-— (1+§xay> for ¢ # 0,

Fuoe)(x) =
(mo.g) 1— exp <_¥> for £ =0,

where the support of X is x > p when ¢ > 0, and y < x <y — /¢ when
¢<0.
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07 v=2¢25
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FIGURE 2.7: Plot of the probability density function for the
Paareto Distribution.
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FIGURE 2.8: Plot of the cumulative distribution function for
the Pareto Distribution.

2.1.6 Exponential Distribution
The probability density function (pdf) of the exponential distribution is

Ae M x>0,
0 x <0

f(x:A)Z{

where A > 0 is usually the rate parameter. The distribution is supported
on the interval [0, 00). If a random variable X has this distribution, we write
X ~exp(A).

The cumulative distribution function is given by

1—e ™ x>0,
0 x < 0.

F(x;A) = {

The mean or expected value of an exponentially distributed random vari-
able X with rate parameter A is given by

1

EX|=—.

X] = 5

In light of the examples given above, this makes sense: if you receive

phone calls at an average rate of 2 per hour, then you can expect to wait
half an hour for every call.

The variance of X is given by

Var[X] = %
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so the standard deviation is equal to the mean.
The moments of X, for n € IN are given by
n!

E[x"] = 3.

£,00

FI1GURE 2.9: Plot of the probability density function for the
Exponential Distribution.
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FIGURE 2.10: Plot of the cumulative distribution function
for the Exponential Distribution.

2.1.7 Log-normal Distribution

In probability theory, a log-normal or lognormal distribution is a continuous
probability distribution of a random variable whose logarithm is normally
distributed. Thus, if the random variable X is log-normally distributed,
then Y = In(X) has a normal distribution. Equivalently, if Y has a normal
distribution, then the exponential function of Y, X = exp(Y), has a log-
normal distribution. A random variable which is log-normally distributed
takes only positive real values [31].

Let Z be a standard normal variable, and let  and ¢ > 0 be two real
numbers. Then, the distribution of the random variable

X = el

is called the log-normal distribution with parameters y and ¢ . These
are the expected value (or mean) and standard deviation of the variable’s
natural logarithm, not the expectation and standard deviation of X itself
[31].

The probability density function (pdf) of a lognormal distribution is

1 1 (Inx — u)?

where u and ¢ are the expected value (or mean) and standard deviation,
respectively.
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The cumulative distribution function is given by
1 _
Fu) = o (22071),

where @ is the cumulative distribution function of the standard normal
distribution [31].
This may also be expressed as follows:

1 Inx —pu 1 Inx —u

L1 4 et (—>] = Lertc (_—) ,

2 { oV2 2 oV2
where erfc is the complementary error function and y and ¢ are the expected
value (or mean) and standard deviation.

FiGURE 2.11: Plot of the probability density function for
the Log-Normal Distribution.
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FIGURE 2.12: Plot of the cumulative distribution function
for the Log-Normal Distribution.

2.2 Cross—Validation Error Measures

In order to assess the model performance certain statistical measures need
to be evaluated. These measures include: the mean error (bias) (ME),
the mean absolute error (MAE), the mean absolute relative error (MARE),
the root mean square error (RMSE), the root mean square relative error
(RMSRE), Pearson’s linear correlation coefficient (RP) and Spearman (rank)
correlation coefficient (RS). Below we define these measures in the case of
leave—one—out cross validation. For the following measures, x*(s;) and x(s;)
are, respectively, the estimated (based on the N — 1 data that do not include
point s;) and true value of the field at point s;, m denotes the spatial
average of the data and x*(s;) the spatial average of the estimates, while N
is the number of observations.

Mean error (bias) (ME)

Mean error represents a systematic error in the process of data collection. It

results in misleading results. This can occur in any of a number of ways, from

calibration errors, sample bias to underestimation of earthquake magnitude

due to the inability of measuring the total released energy (saturation).
The mean error (or bias) is calculated as follows:

1 N
€rins = Nz‘; [x*(si) — x(s)] - (2.11)
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Mean absolute error (MAE)

Mean absolute error (MAE) is a measure of errors between paired observa-
tions expressing the same phenomenon. The mean absolute error is calcu-
lated as follows:

1 N
= 7 o b ()~ (30 (212)

Mean absolute relative error (MARE)

Mean absolute relative error (MARE) is a measure of prediction accuracy

of a forecasting method in statistics, for example in trend estimation, In

addition used as a loss function for regression problems in machine learning.

The mean absolute relative error is calculated as follows:

x*(si) — x(si)
x(si) '

(2.13)

1 N
fMAR:NZ;
=

Root mean square error (RMSE)

Root mean square error (RMSE) is a frequently used measure of the differ-
ences between values (sample or population values) predicted by a model
or an estimator and the values observed. The RMSE represents the square
root of the second sample moment of the differences between predicted val-
ues and observed values or the quadratic mean of these differences. These
deviations are called residuals when the calculations are performed over the
data sample that was used for estimation and are called errors (or predic-
tion errors) when computed out-of-sample. The root mean square error is
calculated as follows:

[x*(s1) — x(s1)]%. (2.14)

1=

1
Erms = Ni

I
—

Root mean square relative error (RMSRE)

Root mean square relative error (RMSRE) is relative to what it would have
been if a simple predictor had been used. More specifically, this simple
predictor is just the average of the actual values. Thus, the relative squared
error takes the total squared error and normalizes it by dividing by the total
squared error of the simple predictor. By taking the square root of the
relative squared error one reduces the error to the same dimensions as the
quantity being predicted. The root mean square relative error is calculated
as follows:

1§ [Mr 215
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Pearson’s Linear correlation coefficient (RP)

The correlation coefficient, p, is the statistic that is most commonly used to
summarize the relationship between two variables. The formula for Pearson’s
linear correlation coefficient p is [30]

cov(X,Y)  E[(X—pux)(Y —puy)]
Pxy = = :
ox0y Ox0y

In case of cross—validation for a sample of size N, p is defined as
TN [xsi) = x(s0)] [ (s0) = ¥ (s9)]

VI [0 — 3] 2 [0~ 2]

The correlation coefficient measures the dispersion of estimates with re-
spect to the observed values. This relation can best be illustrated in terms
of a scatterplot. If p = +1, the scatterplot is a straight line with a positive
slope; if p = —1, the scatterplot is a straight line with a negative slope.
For |p| < 1 the scatterplot appears as a cloud of points that becomes more
diffuse as |p| decreases from 1 to 0 [30].

ox,x+ =

Spearman (rank) correlation coefficient (RS)

It is important to note that p provides a measure of the linear relationship
between two variables. If the relationship between two variables is not lin-
ear, the correlation coefficient may be a very poor summary statistic. It
is often useful to supplement the linear correlation coefficient with another
measure of the strength of the relationship, the rank correlation coefficient.
To calculate the rank correlation coefficient, one applies Eq. (2.2) to the
ranks of the data values rather than to the original sample values:

o =1-— 621211(12961' — Ryi)z
rank N(NZ o 1) 4

where Ry, is the rank of x; among all the other x values. The rank is usually
calculated by sorting the x values in ascending order; the rank of a given
value is equal to its order of appearance in the sorted list. The lowest x
value appears first on a sorted list and therefore receives a rank of 1; the
highest x value appears last on the list and receives a rank of N.

Large differences between p,,,x and p are often quite revealing about the
existence of extreme pairs on the scatterplot. Unlike the traditional correla-
tion coefficient, the rank correlation coefficient is not strongly influenced by
extreme pairs. Large differences between the two may be due to the location
of extreme pairs on the scatterplot. A high value of prank and a low value
of p may be due to the fact that a few erratic pairs have adversely affected
an otherwise good correlation. If, on the other hand, it is p that is quite
high while p,;,k is quite low, then it is likely that the high value of p is due
largely to the influence of a few extreme pairs.

(2.16)
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Differences between p and p,,,x may In addition reveal important fea-
tures of the relationship between two variables. If the rank correlation co-
efficient is 41, then the ranks of the two variables are identical: the largest
value of x corresponds to the largest value of y, and the smallest value of x
corresponds to the smallest value of y.

The value of p is often a good indicator of how successful we might be
when trying to predict the value of one variable from the other with a linear
equation. If |p| is large, then for a given value of one variable, the other
variable is restricted to only a small range of possible values. On the other
hand, if |p| is small, then knowing the value of one variable does not help
us very much in predicting the value of the other [30].

2.3 Linear Regression

Regression analysis is a powerful and commonly used statistical method that
allows to examine the relationship between two or more variables of interest.
Linear regression attempts to find a relation between two variables by fitting
a linear equation to observed data. More precisely, it is the process of finding
a line that best fits the data points available on the plot. In that way we can
use it to predict output values for inputs that are unavailable in the data set
we have, with the confidence that those outputs would fall on the line. The
simplest form of the regression equation with one response variable and one
predictor variable is defined by the formula

y=a-+b-x, (2.17)

where y denotes the estimated response or dependent variable score, a is a
constant, b is the regression coefficient, and x is the score on the predictor
or independent variable.

While there are many types of regression analysis, at their core they
all examine the influence of one or more predictor variables on a response
variable. For more than one independent variable, the process is called
multiple linear regression [16].

In linear regression, the relations are modeled using linear predictor func-
tions whose unknown model parameters are estimated from the data. Such
models are called linear models. Most commonly, the conditional mean of
the response given the values of the explanatory variables (or predictors) is
assumed to be an affine function of those values; less commonly, the condi-
tional median or some other quantile is used [16].

2.3.1 Ordinary Least Squares (OLS)

The most commonly tested and the simplest technique for establishing a
linear relation between two variables is the Ordinary least squares (OLS)
fitting. OLS regression is a statistical method of analysis that estimates the
relationship between one or more independent variables and a dependent
variable. The method estimates the relationship by minimizing the sum of
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the squares in the difference between the observed and predicted values of
the dependent variable configured as a straight line.
The sum of squared residuals (SSR), also called the error sum of squares

(ESS) or residual sum of squares (RSS), is a measure of the overall model
fit:

S(b) =) _(yi—x;b)* = (y — Xb)'(y — Xb),

where T denotes the matrix transpose, and the rows of X, denoting the
values of all the independent variables associated with a particular value of
the dependent variable, are Xi = xi’. The value of b which minimizes this
sum is called the OLS estimator for B [23].

2.3.2 Weighted Least Squares (WLS)

In this study weighted least squares method was used to determine a re-
lation between two different magnitude scales. It is also called Weighted
Linear Regression and it is consider an extension of Ordinary Least Squares
regression in which the errors covariance matrix ! is allowed to be different
from an identity matrix. Non-negative weights are attached to data points.
It is used when we have a situation where data points should not be treated
equally.

The determination of the correct weight can be a really challenging task.
Usually as ideal weight is consider the reciprocal of the variance of the error.
However, this is in most situations incalculable and other approaches must
be used.

The squared predictor or the reciprocal of a predictor if the variance is
proportional to a predictor. It needs experience combined with trial and er-
ror to determine what works. Values based on literature, theory or previous
research.

In most cases, observations with large variances should have relatively
small weights and observations with small variances should have relatively
large weights. Specifying a column of weights does not affect the degrees of
freedom. However, if you specify a weight of zero for one or more observa-
tions, it will remove it from the analysis and thus decreases your degrees of
freedom [42].

2.4 Bootstrapping

In statistics, bootstrapping is any metric or test that is based on random
sampling with replacement. Bootstrapping is a technique that allows as-
signing measures of accuracy (defined in terms of variance, bias, prediction
error, confidence intervals or some other such measure) to sample estimates.

lis a square matrix giving the covariance between each pair of elements of a given

random vector. [80].
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It allows estimation of the sampling distribution of almost any statistic using
random sampling methods [79].

Simplicity is a great advantage of bootstrap. It is a straightforward way
to derive estimates of confidence intervals and standard errors for complex
estimators of complex parameters of the distribution. Such as percentile
points, odds ratio, proportions and correlation coefficients. Bootstrap is
an appropriate way to check and control the stability of the results [14].
Despite the fact that for most problems it is impossible to know the pre-
cise confidence interval, bootstrap method is asymptotically more accurate.
Especially, in comparison with the standard intervals obtained using as-
sumptions of normality and sample variance. In addition, bootstrapping is
a convenient method because it avoids the cost of repeating the experiment
to get other different groups of sample data.

While bootstrapping is, under some conditions, asymptotically consis-
tent, it does not give general finite-sample guarantees. It is possible for the
results to depend on the representative sample [14]. The apparent simplic-
ity may conceal the fact that important assumptions are being made when
undertaking the bootstrap analysis (e.g. independence of samples) where
these would be more formally stated in other approaches. In addition boot-
strapping method can be time-consuming.

2.5 Maximum Likelihood Method

The Maximum likelihood estimation method (MLE) is an indispensable tool
used for parameter estimation and is preferred for a variety of mathematical
modelling techniques when the data is non-normal [43]. Suppose that x; are
independent and identically distributed values, then the likelihood is defined
as:

L(6) = ﬁf(xi o),

where L(6) signifies the observing probability for the given data as a function
of 6. In order to maximize the product of the previous function, we maximize
the log likelihood, using the fact that the logarithm is an increasing function:

1(6) = élog(f(xi 0)),

This method can be performed on data so as to extract as much information
as possible [43].

2.5.1 Information Criteria

Information criteria are useful for model selection. In this thesis those cri-
teria are used to determine which distribution model is most appropriate
for a given set of interevent times between successive earthquakes. The
mathematical expressions of these criteria are written below:
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o AIC : Akaike Information Criterion
The AIC approach aims to clarify the best fitted model of the observed
data via the principles of MLE and negative entropy .

AIC = —2log L(0) + 2k (2.18)

« BIC : Bayesian Information Criterion
The BIC approach aims to identify the best fitted model of the ob-
served data by comparing probabilities, under the consideration that
each of the candidate models is the true model [7].

BIC = —2log L(8) + klog(n) (2.19)

Concisely, both criteria can be used in order to reassure the robustness
of a model’s fit. These criteria are giving optimal model selection results
under defined conditions, whereas fail to fully describe the complexity of a
real model problem. Hence, the understanding of the nature of the problem
Is necessary.

2.6  Statistical Methods Used to Estimate
the Magnitude of Completeness.

The magnitude of completeness is defined as the lowest magnitude above
which all of the earthquakes in a specific area are detected. A correct es-
timate of M, is crucial, since a value too high leads to under-sampling, by
discarding usable data, while a value too low leads to erroneous seismicity
parameters.

In seismicity studies, it is frequently necessary to use the maximum num-
ber of events available for high-quality results.

There are two methods for calculating the M.. The first is based on the
properties of the seismic network, while the second is based on earthquake
lists. In addition there are two groups of M, estimation methods based
on earthquake lists. The first assumes that during night there is a lower
detectability limit of earthquakes, due to the lack of noise [83]. Therefore,
the M, is determined by calculating the ratio of the frequency of earthquakes
that were occurred by day to those occurred by night. The second is based
on the auto-correlation of the process of generating earthquakes. In this
way, the frequency-magnitude distribution of earthquakes can be simulated
by the Gutenberg-Richter power law (G-R).

In this analysis, three different methods were chosen, based on earth-
quake lists method, to estimate the magnitude of completeness. Those statis-
tical methods are the Maximum curvature method (MAXC), the Goodness-
of-fit (GFF), and the Entire magnitude range (EMR) method.

'Measure of divergence of normality [7].



36 Chapter 2. Statistical Methods in Seismology

2.6.1 Maximum Curvature (MAXC)

The Maximum Curvature technique (MAXC) [84] is a fast and straightfor-
ward way to estimate the magnitude of completeness M, by defining the
point of the maximum curvature by computing the maximum value of the
first derivative of the frequency-magnitude curve. In practice, this matches
the magnitude bin with the highest frequency of events in the non-cumulative
FMD. Despite the easy applicability of this approach, M, is underestimated
in the case of gradually curved FMDs, and the use of other techniques provid-
ing more conservative estimates, such as GFF or EMR, has been suggested
[81], [83]). However, Mignan et al. [47] showed that MAXC does not under-
estimate M, when considering a local data set in which heterogeneities in
M, are minimized. The MAXC technique has, moreover, the advantage of
requiring fewer events than other techniques to reach a stable result [47].

2.6.2 Goodness-of-fit (GFF)

The Goodness-of-fit test (GFF), proposed by Wiemer and Wyss [81], calcu-
lates the magnitude of completeness (M.) by comparing the observed fre-
quency magnitude distribution (FMD) with synthetic ones. The goodness-
of-fit is evaluated by the parameter R, the absolute difference of the number
of events in each magnitude bin between the observed and synthetic G-R
distributions. Synthetic distributions are calculated using the estimated a
and b-values of the observed data set.

The measurements of goodness of fit of a statistical model is an essential
step on data analysis in order to examine if the initial hypotheses about the
observation process fit a model adequately as well as if we can consider it
consistent with those hypotheses.

2.6.3 Entire Magnitude Range (EMR)

Woessner and Wiemer [83] proposed a method to estimate the magnitude
of completeness (M,) that uses the entire magnitude range (EMR), thus
including events below M,. They provided a model consisting of two parts:
the G-R law for the complete part, and the cumulative normal distribution
for the incomplete part of the non-cumulative FMD. The model attempts to
reproduce the entire frequency-magnitude distribution, thus fits the incom-
pletely observed part, a technique, which has been questioned.

The main distinction is whether they are parametric (GFT, EMR) or
non-parametric (MAXC). Parametric techniques are based on fitting the
FMD while non-parametric techniques are based on the evaluation of changes
in the FMD (e.g., possible breaks in the slope). The above methods provide
reasonable values for all data sets and can be used for the magnitude of
completeness determination.
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2.7 Statistical Properties and Measurement
of Earthquakes

Any sudden movement of the Earth’s lithosphere is defined as an earthquake.
Characteristics such us the size, the duration, the focal depth, the vibrations
caused by an earthquake, e.g; vary each time and are those to describe the
singularity of each earthquake. An earthquake can be roughly characterized
by magnitude size and intensity measure. To keep track of an earthquake,
the seismic waves, which are released need to be measured by precise de-
vices, called seismographs. Magnitude is determined in seismograms from
measurements on seismographs and describes the energy, released at the
source of the earthquake. At the same time, intensity measures the strength
of vibration produced by the earthquake at a certain location.

2.7.1 Seismograph, Seismogram and Seismometer

It is essential to perceive how earthquakes are being recorded in order to
understand how they are measured. To record seismic waves and measure
their intensity, geologists use special measuring devices sensitive to vibra-
tions which called seismographs. Seismographs can detect movements of the
Earth’s surface.

Generally, a seismograph consists of a weight, called mass attached to
a fixed base, and works on the principle of a pendulum: a heavy, inert
mass with a certain resistance to movement, inertia, due to its weight is
suspended from a frame by a spring that allows movement. The energy from
any seismic activity excites this “proof mass” as it is called by geophysicists,
making it vibrate. The base moves and the mass does not. The relative
motion between the mass and the frame provides a measurement of the
vertical ground motion. A rotating drum is attached to the frame and a
pen is attached to the mass, recording any ground motion in a seismogram
(Fig. 2.13).

The wide variety of ground motion, both in terms of the amplitude and
the vibration period of oscillation make it impossible for a single seismo-
graphs to record all different types of motion. Therefore, gathering the
records of many stations, geologists can investigate the propagation of seis-
mic waves and study the distribution of seismic energy in space and time.

Nowadays research seismographs are electronic and are called seismome-
ters. As a substitute for the drum and the pen, the relative motion between
the weight and the frame generates an electrical voltage that is recorded by a
computer. By modifying the arrangement of the spring, frame, and weight,
seismographs are able to record motions in all directions. Furthermore, seis-
mographs commonly record ground motions caused by a wide variety of
natural and human-made sources, such as cars and trucks on the highway,
trees blowing in the wind and ocean waves crashing on the beach. That
ground motion is considered as noise and it needs to be remove from the
seismogram.
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FIGURE 2.13: Seismograph an instrument which detects

and records ground motion (and especially vibrations due

to earthquakes) along with timing information. Retrieved
from [52].

2.7.2 Energy Release

All earthquakes in nature are radiating energy in the form of different kinds
of seismic waves. Those seismic waves consist of individual characteristics
that reflect the surface they travel through, which in this case is the Earth’s
crust, and the nature of the rupture.

The determination of magnitude, occurred by an earthquake, generally
involves identifying specific kinds of these waves and then measuring some
of their characteristics, such as its amplitude, timing, frequency, orientation,
or duration [19]. As the energy is released from an earthquake, it transmit in
many different frequencies. In order to calculate an accurate value of energy
or magnitude, it is necessary to include all those frequencies of shaking for
the entire event.

Seismologists have determined that the energy radiated by an earthquake
is a function of both the duration and the amplitude of the waves of the
earthquake. A very small event is over in less than a second, while for a
greater earthquake, the fault may continue to slip for more than 300 seconds.

Using the empirical formula, developed by Bath [8], the energy release
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can be roughly estimated by converting the moment magnitude to energy
according to this equation:

log E = 5.24 + 1.44M,, (2.20)

where My, is the moment magnitude (see 3.1.2) and E, energy is expressed in
units of joules. This equation was established for earthquakes with moment
magnitude greater than 5 My,.

By applying equation (2.20), the energy released by a 5 My, earthquake
is about 2.8 x 102 joule. A 6 M,, earthquake releases 7.8 x 10! joules, and
a 7 My radiates 2.1 x 10 joules.

For comparison reasons the bomb dropped on Hiroshima released about 7.4
x 1012 joules.

Some other empirical studies [33] have stated that, energy is proportional

to local magnitude according to this relation:

E = 1015Mt

where M| (see 3.1.1) is the local magnitude.

Energy Release
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FiGureE 2.14: Correlation between the number of earth-
quakes and their magnitude with an energy release equiva-
lent (in kg of TNT). Downloaded from [29].The right side
of the figure represents the amount of high explosive (TNT)
required to produce the energy released by the earthquake.
Equally, the left side of the figure illustrates the magnitude
scale, which is determined by the amount of energy released
at the hypocenter.

In the Fig. 2.14 we can observe the exponential increase of the energy
radiate in comparison with the increasing magnitude values. We notice the
number of earthquakes strike worldwide per year and compare it with the
magnitude and the energy released. For example, each year approximately
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1000000 earthquakes with magnitude 2 M are recorded while for 5 My
around 1500. An earthquake of 5 Mj and 7 My can be as deadly as the
energy released from approximately 1800000 kg and 1800000000 kg of ex-
plosive, respectively. In addition, some catastrophic earthquakes that have
marked history during the centuries are presented.

2.7.3 Intensity

Apart from the energy released when an earthquake occurs, another mea-
surement can describe it, this is the intensity of the earthquake. Every
earthquake comes in hand with a ground motion shaking. That shaking is
measured as the intensity of an earthquake. The shaking at each location
depends on the distance from the fault rupture area and varies from one
area to another. However, intensity can be affected not only by the rapture
distance of each different location but in addition from the direction the
earthquake ruptured and the different type of surface morphology and ge-
ology. Whereas the magnitude of an earthquake is one value that describes
the size, there are many intensity values for each earthquake distributed
across the geographic area around the earthquake epicenter.

The intensity scale used, is called the Mercalli Intensity Scale. Intensities
are expressed in Roman numerals, for example, VI, X, etc. It starts from
intensity one (I) described as “Not felt” and ends up in intensity twelve (XII)
described as “Extreme”. Traditionally, the intensity is a subjective measure
derived from observations and reports which are made not by instruments
but by humans. Those observations describe the felt shaking and structural
damage. Those observations have been particularly useful in estimating the
relative severity of historical earthquakes that were not recorded by any
seismographs or did not occur in populated areas.

The correlation between magnitude and intensity is not absolute. It
depends on several factors , including the hypocenter’s depth, the distance
from the epicenter, the terrain, and faults. For example, an earthquake,
according to USGS, [77] with a magnitude 4.5 in Salta, Argentina, 2011,
was 164 km deep and had a maximum intensity of I . While an earthquake
in Barrow in Furness, England, 1865 which was measured as a 2.2 magnitude
with a depth about 1 km, had a maximum intensity of VIII [46].
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Chapter 3

Empirical Relations and Laws
of Seismology

In order to study earthquakes and apply the laws of seismology we must
first find a way to measure the size of earthquakes. The relative size that
characterizes an earthquake is defined as magnitude. Magnitude is based
on the measurement of the maximum motion recorded by a seismograph or
seismometer. Several scales have been defined for numerous reasons and are
explained in detail in the following chapter.

3.1 The Concept of Magnitude and its Dif-
ferent Scales

Charles Richter [65] was the pioneer to conceive the idea of the local mag-
nitude scale of earthquakes, labeled as My, in 1935 and published it in the
Bulletin of the Seismological Society of America.

FicURE 3.1: Charles Richter with his seismograph, 1976
Caltech.

3.1.1 Local Magnitude, M

According to Richter [66], the magnitude of an earthquake M| is defined
as the logarithm (to base 10) of the maximum amplitude A, traced on a
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seismogram by a standard torsion horizontal-component seismograph, at
distant 100 km from the epicentre.
The original formula is:

My, = log,y A —logy, Ao(A) = log,y[A/Ao(A)], (3.1)

where A is the maximum excursion of the Wood—Anderson seismograph,
A, is the distance-correction function that reflects the overall attenuation
attributes in the region of interest, and A is the distance from the event (in
kilometers unless otherwise specified).

Because of the logarithmic basis of the scale, each whole number increase
in magnitude represents a tenfold increase in measured amplitude (shown in
Fig. 3.2). In terms of energy, each whole number increase corresponds to an
increase of about 31.6 times the amount of energy released, and each increase
of 0.2 corresponds to approximately a doubling of the energy released.
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FI1GURE 3.2: Procedure for calculating the magnitude. Con-

necting the amplitude of the seismic wave (shown on the

right) with distances calculated from S minus P arrival times

gives us the Richter’s magnitude scale. The scale is logarith-

mic, which means that one increase in magnitude correspond
to ten times larger amplitude. Retrieved from [66]
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As the number of seismograph stations was increased all around the
world, it became apparent that the Richter’s local magnitude scale, was
strictly valid only for certain frequency and distance ranges. In order to
take advantage of that global growth, new magnitude scales (Fig. 3.1) that
are an extension of Richter’s original definition were created. The different
magnitude scales represent various ways of deriving the size of an earthquake
from different information of seismic waves. The logarithmic scale is retained
to all magnitudes and they are adjusted so that the mid-range approximately
correlates with the original Richter scale or local magnitude scale.

TABLE 3.1: Symbols used to indicate different magnitudes.

Magnitude definition

My, local magnitude

M; surface wave magnitude
My, moment magnitude
M, seismic moment

M, energy magnitude
my, body magnitude

Since 2005, the International Association of Seismology and Physics of
the Earth’s Interior [28] has standardized the measurement procedures and
equations (described in the following section) for the principal magnitude
scales, My , Mg , mg and My,.

3.1.2 Different Scales of Magnitude
Moment Magnitude, My,

In 1979, Hanks and Kanamori introduced the scale of moment magnitude,
which became the most commonly used method of describing the size of an
earthquake [22]. Moment magnitude measures the size of events in terms
of how much energy is radiated. Specifically, moment magnitude relates to
the amount or better the distance of movement along a fault or fracture
and the area of the fault or fracture surface. Since moment magnitude
can describe something physical about the event, calculated values can be
easily compared to magnitude values for other events. As it is derived from
the seismic moment, M, is a reliable estimate of the magnitude since it is
calculated using much longer periods; the attenuation is not greatly affected
by near-surface structure [33]. Further, full waveform modelling eliminates
the variability of the radiation pattern. The formula that Kanamori [34]
proposed is the following :

2
M, = 3 log,, Mo —10.7, (3.2)

where M, is the seismic moment of earthquake in dyn-cm. The moment
magnitude has the advantages (as a measure of size in earthquakes) that it
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does not saturate at the top of the scale, and has a sounder theoretical basis
than other magnitude scales. The saturation process is described in section
3.1.3.

Seismic Moment, M,

The seismic moment M, is an indispensable earthquake parameter because
it measures the total deformation at the source. Seismic moment is measured
in units of Newton meters (N-m) or Joules, or (in the older CGS system)
dyne-centimeters (dyn-cm).

It is a quantity, generated by a slipping fault, which is used to measure
the amount of energy released by an earthquake [38]. The seismic moment
is roughly defined as:

M, = rigidity - fault area - fault slip. (3.3)

The rigidity (or resistance) is a number that characterizes the stiffness of
rocks near the fault, while fault area and fault slip can be estimated from
the analysis of seismograms.

Historically, the first calculation of an earthquake’s seismic moment from
its seismic waves was made by Keiiti Aki for the 1964 Niigata earthquake
[2]. First, he used data from distant stations of the World-Wide Standard-
ized Seismograph Network (WWSSN) to analyze long-period (200 seconds)
seismic waves (wavelength of about 1000 km) to determine the magnitude
of the earthquake’s equivalent double couple. Additionally, he drew upon
the study of Burridge and Knopoff on dislocation to determine the amount
of slip, the energy released, and the stress drop (essentially how much of the
potential energy was released) [15]. In that way, he derived the Eq. (3.3),
which relates an earthquake’s seismic moment to its physical parameters.
Hence, according to Aki Eq. (3.3) is defined more detailed as:

My=p-u-85, (3.4)

where y is the rigidity (or resistance) when moving a fault with surface area
S over an average dislocation (distance) 7. Modern formulations replace u - S
with the equivalent D - A, known as the “potency” or “ geometric moment”.

Kanamori studied great earthquakes from all around the world, span-
ning 15 years from 1950 to 1965, and established a new magnitude relation
between seismic moment and moment magnitude [34]:

3
log Mo = EMw +10.7, (3.5)

where M, is the seismic moment in dyn-cm (equal to 10°Nm) and My,
the moment magnitude. The constants in this equation allows the moment
magnitude scale to describe great earthquakes while matching other mag-
nitude scales such as the local magnitude and the surface wave magnitude,
at smaller scale magnitudes. An earthquake with My, equal to or greater
than 8.0, which on average occurs about every 1.5 years, is classified as a
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great earthquake. An alternative definition for seismic moment M, is given
in terms of the torque that results in inelastic (permanent) displacement
or distortion of the earth’s lithosphere [37]. Nevertheless, the seismic mo-
ment is regarded as the fundamental measure of an earthquake’s size and is
considered as more direct than other parameters.

Surface and Body Wave Magnitude, Mg and m,

For large earthquake events, government earthquake monitoring agencies,
such as the United States Geological Survey [77] and the Japan Meteoro-
logical Agency, often provide initial earthquake magnitudes to the public
by using the body-wave and surface-wave scales first. Earthquake magni-
tude calculations using these methods are less complex than determining
the moment magnitude,M, and they allow these agencies to rapidly report
an earthquake’s relative size to the public. As time and resources allow,
earthquake magnitudes are adjusted later by using the moment magnitude
scale.

The surface wave magnitude M;, according to Gutenberg [19] is defined,
for shallow focus earthquakes, as:

M = log,y A+ alog,,(A) + B, (3.6)

where A is the maximum amplitude of the ground motion for surface waves
having 20 s period, and A is the distance from the event. Representative
values of &« and B for the horizontal component of Rayleigh waves from
shallow earthquakes are 1.66, and 1.82, respectively [75].

For deep earthquakes, Eq. (3.6) is not applicable and body wave mag-
nitudes must be defined. The most commonly used formula, proposed by
Gutenberg and Richter (1956) [66], to calculate the body wave magnitude
my 18:

my, = logyo(A/T) + Q(h,A), (3.7)

where A is the maximum amplitude(um), T is the measured wave period
(sec) and Q is an empirical function of focal depth that depends on distance
from the event A and depth of the event h (tables of Q are used) .

The empirical relation between my;, and Mg for shallow earthquakes is
defined as [75] :

mp = 2.5 + 0.63Ms. (3.8)

Surface wave magnitude, M; is found to be a strong function of wave
frequency and tends to an upper limit for great earthquakes while, the mo-
ment magnitude, My, provides a more uniform scale. The empirical relations
were extended to cover earthquakes of significant focal depth and to enable
independent magnitude estimates from body and surface wave observations.
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3.1.3 Saturation on Magnitude Scales

Most magnitude scales are incomplete because they are obtained from partial
seismic wave-train generated by an earthquake. This results in a systematic
underestimation of magnitude in certain cases, a condition called saturation.
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FI1GURE 3.3: Saturation of moment magnitude, surface and
body wave magnitudes. Retrieved from [66]

The effect of underestimating the magnitude, in different scales, is illus-
trated in Fig. 3.3 and reflect the underestimation of the dimensional size or
strength (potential shaking) of the earthquake. Magnitude saturation also
occurs in body-wave magnitude (m;) and surface-wave magnitude (M) es-
timations as earthquake magnitudes approach or exceed magnitude 8. More
accurately, a systematic underestimation of magnitude concerning a true
non-saturating moment grows linearly and everywhere, with the same slope
proportional to M,. The underestimation of a non-reference magnitude
is then due to the slower increase of its related measurement amplitudes
with growing My when they are measured at frequencies outside the dis-
placement plateau. For example, for earthquake events estimated using the
original Richter scale, those that are greater than 6.5 are miscategorized as
6.5 M| earthquake events. Magnitude saturation was the reason that the
Chile earthquake of 1960 was initially registered as a 8.3 magnitude event
on the surface-wave magnitude scale before it was recalculated a few years
later with the moment magnitude scale as a 9.5 magnitude event.

Although local magnitude, M; may saturate for large earthquakes, it
was introduced as a way to quantify earthquake size by measuring the peak
value of ground motion at local to regional distance. The fact that the
local magnitude is computationally inexpensive to calculate has made it an
indispensable part of routine processing in seismological observatories. On
the contrary, moment magnitude, My, is based on the seismic moment M,,
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a physical quantity proportional to the energy released by a seismic source,
therefore it does not saturate even for very large earthquakes [22].
Seismicity studies require homogeneous earthquake catalogs, that is, cat-
alogs in which earthquake magnitudes are expressed on the same scale and
preferably in the moment magnitude scale, M. Unfortunately, the calcu-
lation of seismic moment, M,, which leads to My, is more demanding com-
putationally and is usually achieved after inversion of regional or teleseismic
wave forms of earthquakes exhibiting significant energy in lower frequencies
(< 0.1 Hz). As a result, moment magnitudes are available for only a lim-
ited number of strong and recent earthquakes. To overcome this problem,
many seismologists proposed empirical relations. Papazachos [60] proposed
relations custom made for the Greek region. Thus, it is easier to estimate
moment magnitudes for earthquakes in Greece using empirical relations.

3.2 Law of Seismology

The statistical description of various phenomena such as the random seis-
micity distribution over time, or the fact that smaller earthquakes occur
more frequently than large ones, are fundamental concepts for estimating
seismic hazards. Seismologists that observe those phenomena and try to de-
scribe them, establish different empirical relations that are frequently used
nowadays.

3.2.1 Gutenberg-Richter Law

In 1956, Charles Francis Richter and Beno Gutenberg were measuring the
magnitudes of earthquakes when they noticed that smaller earthquakes were
more frequent than large ones. They were the first to notice the linear re-
lation between the magnitude of an earthquake and the frequency that is
triggered. Later that year, they published the relationship between earth-
quake magnitude and frequency, widely known as the Gutenberg and Richter
Law, with publication title "Magnitude and Energy of Earthquakes”, 1956
[13].

In any region on the Earth, the logarithm of the total number of earth-
quakes greater than any magnitude, is proportional to the magnitude. That
observation conducts the empirical relation between magnitudes and the
frequency of earthquake occurrences [20]. The Gutenberg and Richter Law,
also known as Gutenberg-Richter Law or G-R Law, satisfy the following
formula:

logN =a—0bM, (3.9)

where N is the cumulative number of earthquakes with magnitude greater
than the minimum magnitude of completeness (M), and a and b are con-
stants. Constant a is a measure of the activity level of seismicity and b,
which is also known as b-value, is the slope of the frequency magnitude
distribution, which is typically close to one [66].
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F1GURE 3.4: Plots of Gutenberg Richter law that show the
impact of different b-values. Retrieved from [20].

The G-R magnitude distribution is possibly the most widely used sta-
tistical relationship in seismology. Its slope, b or b-value, characterizes the
ratio of small to large magnitudes. In Fig. 3.4 is illustrated the impact of
different b-values following the G-R law. Gutenberg and Richter were the
first to estimate these constants known as seismicity parameters [20]. The
parameters exhibit significant variations from region to region as they de-
pend on the level of seismicity, the period of observation, the length of the
considered area, and the size of the earthquakes. The b-value usually varies
between 0.5 and 1.5, but during earthquake swarms, it can reach values as
high as 2.5 [5].

On the other hand, some scientist proposed that the b-value for tectonic
earthquakes does not differ significantly from 1.0. This opinion was derived
from the observation that the distribution of the seismic moment, whose
logarithm is proportional to the magnitude, is very stable in space and time
[32]. Either way, this empirical relation is a powerful tool for describing and
predicting earthquakes, and it is still widely used in seismology studies.

3.2.2 Omori-Utsu Law

In the late nineteenth century, the Japanese seismologist Fusakichi Omori,
a devoted student of John Milne, discovered the first law of earthquake
physics. On 28 October 1891, an earthquake with the magnitude 8 My,
took place in Japan. Milne’s seismographs registered numerous aftershocks.
Their analysis allowed Omori to formulate a law in 1894 that bears his name.
It is worth mentioning that he was only 26 at that time. The Omori law
states that after a strong earthquake, the frequency of aftershocks, decays
with time, on average, according to the hyperbolic law which states that the
rate of aftershocks decreases hyperbolically with time [58].
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k
nt) =-——-, 3.10
where t is the time after the large event, ¢ is a case-dependent time scale
and k is a productivity that depends on the main shock magnitude.
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FiGure 3.5: Frequency of Earthquakes at Gifu, Japan

(1890-1893). The first curve represents the monthly earth-

quake frequency, the second curve the 12 hours earthquake

frequency and the third curve represents the yearly earth-
quake frequency. Retrieved from [58].

Omori created numerous curves (some of them are illustrated in Fig. 3.5)
representing the frequency of earthquakes in Japan, under diverse conditions,
and documented them in his state of the art work 'On the After shocks of
Earthquakes’ [58]. Those curves validate his theory that after the main
shock, the frequency of aftershocks decreases roughly with the reciprocal of
time. The curves at the Fig. 3.6 represent his observation, and the applica-
tion of his formula and its integrated form fitted to the data from October
28, 1891 (0.474 days after the main shock) until December 31, 1899.

Since then, there has been a vast amount of literature on this formula,
and the importance of its discovery has been universally recognized. There
is, however, a profound division of opinion as to the interpretation of the
law. Some argue that Omori just proposed a simple data-fitting formula
and replaced it with a power-law one with a negative fractional exponent,
whereas for others, the Omori law makes physical sense [18].
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In seismology, when analyzing aftershock sequence it is common to re-
place Omori’s Law (3.10) with the modified version proposed by Utsu. It is
defined as:

k
n(t) = L (3.11)
where p is a third constant which modifies the decay rate and typically falls
near one in most cases.

This modified version of Omori’s law, proposed by Utsu is commonly
referred as the O-U law, or modified Omori formula. The power law exponent
p, varies from location to location and from case to case, but usually has
values near 1 [78].

From a physical point of view, such spatiotemporal clustering of earth-
quakes indicates that a large earthquake somehow triggered the following
ones, which are called aftershocks or aftershock sequence. It is proven that
earthquakes, independent of their sizes, can trigger other earthquakes and
there is no physical distinction in the relaxation mechanism between after-
shocks and other earthquakes. This implies a significant challenge if one
wants to verify the Omori-Utsu law and estimate its parameters, since one
must first determine which earthquakes are connected, either directly or indi-
rectly, in order to identify aftershock sequences. Estimating the parameters
in the Omori—Utsu law is especially important since the time delay before
the onset of the power law aftershock decay rate (the ¢ value) is thought to
give direct insight into the state of the underlying stress field in the brittle
seismogenic layer [51].
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FiGURE 3.6: The top figure shows the decay of the occur-
rence rate of recorded shocks at Gifu (Japan), using Omori’s
data from October 28, 1891 (0.474 days after the main shock)
until December 31, 1899. The bottom figure is a graph of
the cumulative number of felt shocks using the same sets of
data. The curves at the top and bottom figures represent
the Omori formula and its integrated form fitted to the data
from the reported period [58].
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According to Eq. (3.10) and (3.11), the rate of aftershocks decreases
quickly with time. The rate of aftershocks is proportional to the inverse
of time. That means that the main earthquake and this relation can be
used to predict the probability of future aftershock occurrence. Whatever
the probability of an aftershock is on the first day and assuming that p is
equal to 1, the second day will have 1/2 the probability of the first day and
the tenth day will have approximately 1/10 the probability of the first day.
These patterns characterize only the statistical behavior of aftershocks.

The actual times, locations, and numbers of the aftershocks are stochastic
while tending to follow these patterns. Because of the law’s empirical nature,
values of the parameters are obtained by fitting to data after a main shock
has occurred, and they imply no specific physical mechanism in any given
case. In addition to the empirical Omori formula, a theoretical one has
been also obtained, as the solution of a differential equation describing the
evolution of the aftershock activity, where the interpretation of the evolution
equation is based on the idea of deactivation of the faults in the vicinity of
the main shock of the earthquake [71]. More recently, [67] a published study
proposed a double power law model that shows the number density decay
after an intense earthquake, by applying a fractional solution of the reactive
equation.

3.2.3 The ETAS Model

The initials standing for Epidemic Type Aftershock Sequence, ETAS model,
is the most popular stochastic model used to describe earthquake occurrence,
forecast earthquakes, and detect fluid/magma signals or induced seismicity.

The temporal ETAS model was suggested by Ogata (1988) [57] with the
conditional intensity function of:

expla(m — myp)]

At)=u+Ko), o (3.12)
where u (shocks per unit time) represents the rate of background seismicity,
the summation is taken over aftershocks occurring before time t, and my
represents the cut-off magnitude of the fitted data. In the above equation,
the coefficient & (magnitude™!) is a measure of the efficiency of a shock in
generating aftershock activity relative to its magnitude, kg represents the
productivity of an event of threshold magnitude mg, and ¢ (unit of time)
and p are the parameters in the Omori-Utsu law for describing the decay of
the aftershock sequence.

According to some studies [21], the published algorithms have never been
rigorously tested, leading to the conclusion that the ETAS model estimation
might result ambiguous values. However, other scientists [86] have stated
that the most critical point about ETAS is not what the model can describe,
but the phenomena that the model cannot describe. One of the main out-
comes of model building is determining aspects of the observed process that
the model cannot describe. Even though spatiotemporal models are more
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challenging to implement and apply to earthquake data, they are much more
robust in analyzing seismicity than their simple temporal-only counterparts.

3.2.4 Bath Law

Apart from the Omori-Utsu and the G-R law, a third empirical scaling law
for aftershocks sequences was proposed by Bath in 1966 [8].

Bath’s law states that the average magnitude difference between a main
shock and its largest aftershock is ~ 1.2, independent of the main shock
magnitude [8]:

Am = (mpy —my) (3.13)

with mp; the magnitude of the mainshock, m 4 the magnitude of the largest
detected aftershock, and Am approximately a constant typically taken 1.2
Many studies have validated Bath’s law, with however large fluctuations of
a difference (Am) between 0 and 3 from one sequence to another one.

In our analysis, we have tested the Bath Law and between the four largest
earthquakes of the aftershock sequence we result with an average difference
equal to 1.327 M. The difference between the main shock and its largest
aftershock was found Am = 1.1 M.

This empirical law plays a fundamental role in some stochastic aftershock
models, such as the branching aftershock sequence (BASS) model [50], but
not in others like the epidemic-type-aftershock sequence (ETAS) model (see
section 3.2.3) . According to a study [26], the origin of Bath’s law is to be
found in the selection procedure used to define mainshocks and aftershocks
rather than in any difference in the mechanisms controlling the magnitude
of the mainshock and of the aftershocks. In addition, this law is often
interpreted as evidence that mainshocks are physically different from other
earthquakes and have a different magnitude distribution.

However, from a societal viewpoint, Bath’s law’s importance is found in
the fact that it predicts the expected size of the potentially most destructive
aftershock that follows the mainshock.
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Chapter 4

Statistical Analysis of
Earthquake Magnitude

After clarifying to a great extent the concept of magnitude and its differ-
ent variations or forms in section 3.1, we examined the existing empirical
relations and created a new relation between the local and the moment
magnitude. The local magnitude (M} ) was derived from the catalog, while
the moment magnitude (M) and the seismic moment (M,), which are un-
known, were estimated in this Chapter. To decide upon the most suitable
regression analysis model, we must first observe how the seismic events are
distributed in time.

For the following calculations, the seismic data sequence with magnitudes
M; > 1 for the time period from 1/6/2016 to 31/5/2018, including the main
shock, was used. The cumulative number of earthquakes in the region of
Zakynthos during those three years is illustrated in Fig. 4.1 (created in R
environment). Right after the main shock of 6.6 M| that stroke Zakynthos in
October 25", 2018, a sharp increase in the number of seismic events followed.
This increase means that this strong earthquake of 6.6 Mj, was able to
trigger many smaller earthquakes in this broad area of Zakynthos, creating
an aftershock sequence. According to Mouslopoulou et al. [49], the majority
of those aftershocks mark the activation of other faults. This phenomenon
is investigated by many scientists [78, 20, 60], and many empirical laws and
relations have derived from it.

For the particular dataset, the aftershock period is seven months, where
the total number of aftershocks recorded equals to 9666. Thus, approxi-
mately 82% of the total earthquakes studied in this analysis refer to after-
shock events. Moreover, it is noteworthy that the aftershocks (82%) occurred
during the last 20% percent of the total investigation period (3 years). The
complementary 18% describes the seismic events before the main shock, dis-
tributed over 80% of the time (2 years and five months).

As mentioned before, the most common measure to characterize the size
of an earthquake is the local magnitude scale, M. Because of the numerous
combinations of wave types and recording instruments, any earthquake can
have several magnitudes assigned to it. Although local magnitude may sat-
urate for large ( > 6.5) earthquakes (see section 3.1.3), it is expected not to
affect events of lower magnitude. Because the majority of the seismic events
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FIGURE 4.1: Plot of the cumulative number of earthquakes
with magnitude greater and equal to 1.0 My, from 2016 to
2019. The bluish-green line corresponds to the earthquakes
in Zakynthos, while the red circle represents the main event.

for this study correspond to magnitude smaller than 6.5, we can charac-
terize them as reliable. The fact that the calculation of local magnitude is
computationally inexpensive established it as an indispensable part of rou-
tine processing in seismological observatories. However, since the magnitude
scale is mainly empirical, there are many problems regarding the association
of the fault parameters with the physical model.

To overcome the aforementioned shortcomings, it is urgent to establish
more relationships between the different magnitude scales or find more reli-
able ways to describe the size of an earthquake. Moment magnitude is the
most common scale method used to calculate the relative size of earthquakes
(especially for the large ones) because it avoids the problem of magnitude
saturation, which lies in measurements of the earthquake’s total energy.

4.1 Empirical Relation Between Local and Mo-
ment Magnitudes

For the study area, during 2016-2019, 11778 events were recorded in terms
of the local magnitude scale, while only 14 of them were also calculated in
moment magnitude scale (My) and registered in the NOA earthquake cata-
logs. That amount of earthquakes measured in My, is insufficient, making it
nearly impossible for any statistical analysis. Computing complexity may be
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one reason for the shortage of moment magnitude data, while the strength
may be another one since strong events are required for the calculation.

Considering the small amount of linked data (14), backdated seismic
data from 2009 to 2019 (10 years) were acquired, corresponding to the same
domain as the case study. Hence, the statistical analysis of the relation be-
tween the magnitude scales became possible. The additional data available
from the earthquake catalog of the Institute of Geodynamics of the National
Observatory of Athens [53] for the backdated seven years (2009-2015) were
41, summing up to 55 linked data for the entire ten year period (2009-2019).
The data listed in Table 4.1 is used to establish the mathematical relation-
ships coupling local M and moment M, magnitude.

Moreover, Table 4.1 has information on other parameters than local and
moment magnitude. The first four columns accommodate information about
the origin date (GMT), the latitude, the longitude, and the depth (km).
The local magnitude is presented in the fifth column and has values ranging
between 2.7 and 6.6 My, while the moment magnitude shown in the sixth
column varies from 3.4 to 6.7 My,.

TABLE 4.1: Dates and coordinates for the 55 earthquake oc-
currences (2009-2019) used to establish the relation between
local and moment magnitude scales.

Date (Y-M-D) Latitude(°) Longitude(®) Depth (km) Mp My
2018-10-30 37.45 20.45 5.5 55 538
2018-10-27 37.47 20.64 5.1 46 44
2018-10-26 37.42 20.59 6.7 45 44
2018-10-26 37.37 20.53 7.3 46 5.1
2018-10-26 37.47 20.52 10.0 42 45
2018-10-26 37.36 20.51 3.1 48 5.1
2018-10-25 37.34 20.51 9.9 6.6 6.7
2018-10-25 37.35 20.55 5.0 49 48
2018-10-17 37.33 20.56 41 42 41
2018-02-21 37.79 20.34 17.7 48 47
2017-09-28 37.53 20.89 12.8 41 4.1
2017-06-19 37.99 21.20 9.7 4 4.1
2017-02-28 37.90 20.15 7.0 41 41
2016-10-03 37.76 21.19 28.7 39 45
2016-03-29 37.34 20.06 12.9 52 52
2015-12-13 37.81 21.16 27.6 39 39
2015-12-12 37.83 21.16 28.9 46 45
2015-07-06 37.34 2091 12.1 39 39
2015-07-06 37.49 20.34 10.8 41 4
2014-02-06 37.81 21.17 10.7 41 42
2014-01-18 37.85 21.03 25.1 37 3.6
2014-01-11 37.84 21.01 74 47 48
2013-09-09 38.03 20.77 219 43 44

2013-07-28 37.95 20.98 17.9 39 4
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2013-02-17 37.16 20.52 14.6 5 4.9
2012-11-10 37.89 20.90 12.6 39 4

2012-08-11 37.68 20.84 20.7 39 42
2012-06-05 37.34 20.45 224 39 42
2012-05-03 37.79 21.05 21.0 37 4

2012-02-14 37.69 20.77 12.8 43 43
2011-12-05 37.85 20.10 5.5 36 3.7
2011-10-25 37.96 20.83 14.5 39 4

2011-08-14 37.33 20.25 13.1 38 38
2011-08-06 37.30 20.13 17.7 3.8 4.1
2011-06-24 37.56 20.95 15.4 42 45
2011-06-04 37.94 21.09 14.4 4 4

2011-05-26 37.93 21.16 16.8 45 4.6
2011-05-26 37.94 21.14 17.4 3.8 36
2011-05-26 37.93 21.14 15.7 27 3.6
2011-05-25 37.93 21.12 13.4 49 48
2011-02-04 38.05 21.23 16.8 36 3.6
2011-01-31 37.37 20.49 22.0 34 39
2011-01-17 37.82 21.07 15.0 39 42
2010-12-18 37.28 20.22 24.0 47 4.6
2010-11-04 37.30 20.18 15.0 3.8 39
2010-10-08 38.03 21.02 15.0 39 38
2010-08-15 37.14 20.81 17.0 44 45
2010-06-20 37.40 20.28 18.0 38 4.1
2010-05-22 37.40 20.27 18.0 3.7 39
2010-05-03 37.46 20.40 16.0 4 34
2010-04-20 37.47 20.52 19.0 42 4

2010-03-19 37.96 20.96 13.0 4 4.1
2010-01-28 37.42 20.79 18.0 3.7 37
2010-01-25 37.74 20.88 16.0 37 37
2010-01-21 37.15 20.73 10.0 3.7 3.6

Detailed studies on different least-squares linear regression techniques
and other regression techniques for magnitude scales are carried out by many
scientists, to establish relationships between different magnitude scales. For
example, the standard least-squares, minimizes the square of the vertical
offsets to the best fit line,or the inverted standard least-squares, which min-
imizes the square of the horizontal offsets, while the orthogonal regression,
minimizes the square of the perpendicular offsets to the best fit line. Method-
ologies such as the above have been widely utilized for the comparison of
the different magnitude estimates. While the most simple and commonly
applied method for establishing a linear relationship between two magnitude
scales is the Linear least squares fitting, Castellaro [9] support that orthog-
onal regression is a more appropriate technique to deal with least-squares
magnitude scales in which dependent and independent variables are both
affected by uncertainty.



4.1. Empirical Relation Between Local and Moment Magnitudes 59

In this study, a generalization of ordinary least squares (OLS or general-
ized least squares GLS), as well as the weighted least squares (WLS) linear
regression methodologies, were applied. As explained in section 2.17 in WLS
the errors covariance matrix is allowed to be different from the identity ma-
trix. With the correct weight, this procedure minimizes the sum of weighted
squared residuals to produce residuals with a constant variance. The weight
adopted for this study is the square root of each value of moment magni-
tude. We chose the square root because we wanted to emphasize the larger
seismic events, measured in My, scale, as they tend to be the most reliable
measures [22]. In addition, large earthquakes recorded in local magnitude
scale tend to be underestimated due to saturation. The regression outcome,
which describes those 55 seismic events (2009-2019), results in the following
equation:

My, = 0.924 - M; + 0.401, (4.1)
for earthquakes inside the local magnitude range 2.7<Mj; < 6.6.

+ Data
L —Fit
45 ATET [ Confidence bounds| |

FIGURE 4.2: Scatter plot of the relationship between local
magnitude and moment magnitude values obtained for the
period from 2009 to 2019. The moment magnitude was ob-
tained by means of weighted linear regression according to
the Eq. (4.1). The bluish-green symbols (crosses) correspond
to the local and moment magnitude values; the solid red line
denotes the optimal fit, and the red dashed lines denote the
confidence bounds.

The validation measures presented in Table 4.2, combined with Fig. 4.2,
create a complete “image” of the WLS model’s performance. It is apparent
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TABLE 4.2: Cross validation performance measures calcu-
lated for the WLS estimations (y = a - x 4+ ) for 55 seismic
events.

Values Estimate Standard Error

B 0.401 0.212
x 0.924 0.050

that the two magnitude scales are convey a strong dependence since they
both follow along the solid red line. The coefficient of determination R? is es-
timated as 0.866 and the p-value of this model is found 8.13e=2°. Very small
p-values, as in this case, indicates high significance of the statistical results.
The confidence levels (95%) appear narrower for magnitudes values from 3.5
to b, as in this range, we have the majority of the seismic events. Extreme
values seem to deviate from the suggested model, indicating that the further
we go from the median magnitude value, the higher the uncertainty. The
standard error for the scale parameter a of the linear model equals 0.212,
while the offset parameter B is 0.050, which results in the equation:

My = (0.92 +0.05) - My + (0.40 +0.21). (4.2)

Many seismologists have also proposed relationships between local and
moment magnitude scales. The most common and widely used equation
follows the simple relation stating that moment magnitude is equal to the
local magnitude increased by 0.5 magnitude [39]. It is routinely applied
to the seismic events in Greece in cases where moment magnitude is not
available. It is expressed as:

My = My +0.5, (4.3)

where My, refers to the moment magnitude and M refers to the local mag-
nitude.

Additionally, Papazachos [60] applied regression analysis to 245 seismic
events, concerning the period from 1969 to 1987 (18 years), and proposed
the following equation for Greece

My = (0.97 +0.02) - My + (0.58 4 0.09), (4.4)

for earthquakes inside the local magnitude range 3.0< My < 6.0.

Both aforementioned Eqs. (4.3) and (4.4) result in higher M, values
opposed to results based on Eq. (4.1) proposed in this study. Therefore, to
assess the performance of the proposed equation, certain statistical measures
need to be evaluated. The error measures are presented in Table 4.3.

Where mean error (ME) also know as bias was calculated using Eq. (2.11),
mean absolute error (MAE) was calculated using Eq. (2.12) and mean ab-
solute relative error (MARE) (INF if z contains zeros) was calculated us-
ing Eq. (2.13). The root mean square error refers as RMSE calculated by
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TABLE 4.3: Error measures of the estimated M, based on
Eq. (4.1) versus the recorded M.

ME | MAE | MARE | RMSE | RMSRE | R | Rg | ErrMin | ErrMax

0.083 | 0.171 | 0.044 | 0.246 | 0.070 |0.921 | 0.876 | -0.600 | 0.900

Eq. (2.14) while the root mean square relative error refer as (RMSRE). The
Pearson’s linear correlation coefficient (R), calculated by Eq. (2.2), equals
0.92, which translated to a high linear correlation. The Spearman (rank)
correlation coefficient (Rg), estimated by Eq. (2.16), is equal to 0.88, a high
value indicating a strong monotonic correlation. Furthermore, MAE and
RMSE yielded low values, indicating a good model. Finally, both differ-
ences between minimum prediction and minimum sample value (ErrMin)
and between maximum prediction and maximum sample value (ErrMax)
result in low values proving the high performance of the model.

4.1.1 Estimates of Moment Magnitude

After creating the empirical Eq. (4.1) to connect Mp with My and vali-
date its reliability, we applied it to the initial 11778 seismic events of our
study, which were registered in local magnitude My, and calculated the
corresponding moment magnitude My,.

This empirical relationship was created by using earthquakes with mag-
nitude higher than 2.7 Mj; consequently, it can describe sequences above
that limit more accurately. However, in this analysis, the formula was ap-
plied to the complete dataset, including events lower than the 2.7 limit,
starting with 1.0 M} magnitude. Further research is needed to determine
such relationships for smaller magnitudes.

In addition Eq. (4.1), might underestimate the moment magnitudes,
which will be referred to as converted moment magnitudes from now on.
For example the 6.6 M} main shock, according to NOA was estimated [53]
at 6.7 My, while with Eq. (4.2) developed herein, it was estimated rang-
ing between 6.0 to 7.0 My,. If we apply other proposed relationships such as
Eq. (4.3) or Eq. (4.4), we will result in greater converted moment magnitude
values. Respectively, the main shock is estimated at 7.1 My according to
Eq. (4.3) and between (6.76 - 7.20) My, according to Eq. (4.4). Nonetheless,
the proposed Eq. (4.1) found to be the most appropriate for those specific
seismic events in this particular 20000 km? area of Zakynthos and will be
used to illustrate the distribution of converted moment magnitude over time
fig. 4.3.

In Fig 4.3 the main event of 6.5 converted moment magnitude, is marked
with a red circle, while the seismic events are illustrated with the bluish-green
color. The more opaque the colour the denser earthquakes were recorded.
By observing this figure, we notice a relative decrease in the number of
earthquakes from August 2017 until right before the main shock. As many
seismologists propose, it is common to observe an inactive period preceding
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strong earthquakes. It is called seismic quiescence and can be used to prelude
a strong earthquake [17]. After this strong earthquake of 6.5 converted My,
the frequency of the earthquake aftershocks has increased. This is expected,
as large earthquakes trigger strong aftershock sequences. It is also apparent
since the aftershocks for the case study are 9666 (80% of the total events)
for a significantly shorter time period (20% of the total time), as opposed
to the 2112 earthquakes before the main shock.

Moment Magnitude (Mw) over time

Moment Magnitude , Mw
SN

Time (years)

FIGURE 4.3: Plot of the converted moment magnitude, My,
during a period of 3 years from 2016 to 2019. The conversion
was carried out according to Eq. (4.1). The bluish-green
circles represent the 11778 earthquake events and the big
red circle corresponds to the main earthquake of Zakynthos,
in 25/10/2018. The red dashed line divide the earthquakes
to the before the main shock sequence and to the aftershock
sequence.

4.1.2 Estimates of Seismic Moment

Moment magnitude uniquely speaks to the physics of the fracture though
the seismic moment (see section 3.1.2), which need to be estimated in the
following analysis. The converted moment magnitude My, is used in a for-
mula established by Papazachos, to estimate the unavailable seismic moment
values. It is common to calculate the moment magnitude using the seismic
moment and not the opposite, as the seismic moment is a quantity, gen-
erated by a slipping fault, which is used to measure the amount of energy
released by an earthquake. However, by reversing the procedure, we can
extract the seismic moment quantity. In this section, the seismic moment
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M,, also unavailable from the catalog, was calculated from the converted
My,. Essentially, M, is a measure of the energy that brings forth permanent
displacement or distortion of the earth’s crust. It is necessary to estimate
its value as the potential destructiveness of an earthquake depends, among
other factors, on how much of the energy in total is converted into seismic
waves [6].

To estimate the seismic moment, we utilize moment magnitude (My,)
and Eq. (4.5) developed by Papazachos [61] and presented in the book “The
Earthquakes of Greece”. In this analysis, Papazachos studied 169 seismic
events in Greece, where he applied linear regression analysis (assuming a
slope equal to 3/2 [34]) and concluded to the following regression model:

3
log M, = EMw + 15.99. (4.5)

The equation proposed by Papazachos is inspired by Hiroo’s Kanamori
equation and consist of a modification of his original one. Kanamori’s pro-
posed equation [33] is widely used in seismology and is described as:

The Eq. (4.5) was applied in this analysis as it refers to the Greece
region. Moreover, it is more representative since it describes shallow earth-
quakes such as the Zakynthos events. Using a model derived from the same
seismotectonic environment and described by the same seismic character-
istics (shallow depth) as those observed in Zakynthos, will result in more
accurate values.

By applying the selected empirical equation to the converted moment
magnitudes, we result in the seismic moment values, measured in dyn-cm.
Following, we illustrate in Fig. 4.4 the cumulative seismic moment over time.

The calculated cumulative seismic moment in dyn-cm is displayed, from
2016 to 2019. The thicker the green color appears, the more frequent the
earthquakes are. The red circle represents the main earthquake in Zakyn-
thos, on October 25", 2018. In the period before the mainshock, we notice
an apparent lower cumulative energy release compared to that after the
mainshock. One ambiguous phase and three clear temporal phases are de-
termined, each one refer to a pattern of tectonic seismic series. The first
phase (the ambiguous one) starts in June 2016 and finishes near November
2016, and includes about 420 earthquakes. In this phase, the reduced release
of energy may indicate a change in the recording quality or even describe
the insufficiency of the seismic station’s recording means. The second phase
spans from November, 2016, to 15" of February, 2018 and represent a stable
energy release. In the third phase, from 16" of February, 2018 until October
250 2018, there is a profound increase in energy release. This might be the
result of increased seismic activity. On the other hand, it might also indi-
cate the installment of new seismic equipment. The most probable scenario
is that the energy release spike comes from the third stronger earthquake
recorded on the dataset before the main event, which happened on February
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FIGURE 4.4: Plot of cumulative seismic moment release,

measured in dyn- cm and calculated from the empirical

Eq. (4.5). The bluish-green circles represent the cumulative

number of the earthquakes during the period from 2016 to
2019. The red circle stands for the main event.

215% 2018, with 4.8 My,. Finally, the last phase spans from October 25
2018 to May 2019, which includes 9666 events that sum up to almost 82%
of the total number of earthquakes. The released energy and the released
seismic moment in this fourth phase are by far the strongest, although ac-
cumulated over a smaller duration. The strongest earthquake of the entire
seismic sequence with magnitude 6.5 My, was recorded during this fourth
phase. The total released seismic moment for the whole sequence equals
5.91-10% dyn-cm.
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Chapter 5

Statistical Analysis of
Earthquake Frequency

This chapter aims to investigate the frequency of earthquakes concerning
their magnitude scale. We accomplish this by applying the Gutenberg
Richter Law (see section 3.2.1) to estimate the b-value both for the earth-
quakes prior to and after to the main event. The seismic events, used in this
section refer to the scale of the converted moment magnitude (My). The
b-value in the Gutenberg Richter relationship provides vital information for
understanding the background seismicity, and seismotectonics, and can be
used for seismic hazard analysis. Firstly, it is necessary to estimate the mag-
nitude of completeness M, to achieve an appropriate b-value. Magnitude
of completeness is a crucial parameter as it gives the minimum magnitude
above which all earthquakes within our region are reliably recorded. For
conciseness, with the term foreshocks, we will describe all the earthquakes
before the main event starting from June 15, 2016 until the main shock on
October 25, 2018. Aftershocks, consist of all the earthquakes from October
250 2018 till May 315, 2019.

5.1 Determination of the Magnitude of Com-
pleteness

The magnitude of completeness is defined as the lowest magnitude above
which all of the earthquakes in a specific area are detected. This definition
assumes that a percentage of earthquakes smaller than M, are not recorded
by the network: (1) because they are too small to be recorded from several
stations, (2) because seismic network operators have decided that earth-
quakes below a specific limit will not be analyzed, or (3) in the case of an
aftershock sequence, some earthquakes are too small to detect because they
are overlapping with the larger ones. The correct estimate of M, is crucial,
since a value too high leads to under-sampling, by discarding usable data;
while a value too low leads to erroneous seismicity parameter values and
thus to a biased analysis, due to the data incompleteness.

In seismicity studies, there are several different methods for calculating
the magnitude of completeness. Here, we will focus on three different meth-
ods based on earthquake lists method (see Section 2.6): (1) the Maximum
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curvature method (MAXC), (2) the Goodness-of-fit (GFF), and (3) the En-
tire magnitude range (EMR) method. For the calculation of the different M,
estimates, we used a Matlab module called Basic Statistical Seismology [74].

The maximum curvature technique (MAXC), which is described in Sec-
tion 2.6.1, works by finding the point where the non-cumulative distribution
has the highest curvature [82].

The goodness of fit (90%, 95%) (GFF), described in Section 2.6.2, com-
pares observed frequency magnitude distribution (FMD) with synthetics on
a per bin basis.

The entire magnitude range (EMR), described in Section 2.6.3, uses a
model that fits the whole data range by using the power G-R law for the
complete part and cumulative normal distribution for the incomplete part
of the non-cumulative frequency magnitude distribution (FMD) [56].

The main distinction is whether they are parametric (GFF, EMR) or
non-parametric (MAXC). Parametric techniques are based on fitting the
frequency magnitude distribution (FMD), while non-parametric techniques
are based on the evaluation of changes in the FMD (e.g., possible breaks
in the slope). In the present study, there is no consensus about which
technique optimally calculates M., since as shown in the tables all of them
provide similar results. Wiemer and Woessner [83] found that bootstrap un-
certainty decreases with increasing sample size, and that both MAXC and
EMR approaches result in reasonable values in small data sets.

In an aftershock sequence, some events are too small to be detected
within the larger aftershock activity, as the noise is higher [56]. This results
in a M, value higher for the aftershock period (shown in Table 5.2). Tempo-
ral changes in M, originate not only from a large aftershock sequences but
also from the evolution of the seismic network (pseudo permanent changes)
or are due to swarm activity.

Depending on the method, Tables 5.1, and 5.2 summarize the results on
M, for the foreshocks and aftershocks sequences, respectively. The results
are divided into two sections, with and without the use of the bootstrapping
method. Bootstrapping methodology uses random sampling methods and it
is briefly described in Section 2.4, MAXC refers to the maximum curvature,
and GFF and EMR refer to the goodness of fit and the entire magnitude
range, respectively.

TABLE 5.1: Estimation of the magnitude of completeness

M., based on three different methodologies, the MAXC | the

GFF, and the EMR, with and without Bootstrapping. For
the earthquakes before the main event.

Method | MAXC GFF EMR

Bootstrapping 2.1 2.0 2.0
No Bootstrapping 2.2 2.2 2.1

Evident in Tables 5.1, 5.2, the application of the three methodologies
yielded similar results. The average difference between those methods for
the M¢, both for the foreshock and the aftershock periods, is approximately
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TABLE 5.2: Estimation of the magnitude of completeness

M., based on three different methodologies, the MAXC , the

GFF, and the EMR, with and without Bootstrapping. For
the earthquakes after the main event.

Method | MAXC GFF EMR

Bootstrapping 2.5 2.4 2.4
No Bootstrapping 2.4 2.6 2.5

+ 0.1My. Seismologists [84, 81, 56], accept equally the GFF, EMR, and
MAXC methodologies, thus every result shown on Tables 5.1, 5.2 can be used
for further analysis. In addition, those values are close to the respective M,
values obtained in a recent study by Mouslopoulou et al. [49], which refers to
the same area in a similar time window. They estimated the M, prior to the
mainshock at 2.0 £ 0.1, which is close to our estimated 2.1 £ 0.1. For the
aftershock period Mouslopoulou et al. [49] found that M, abruptly increases
to 3.5 after the mainshock while it returns to pre-mainshock values close to
2.0 about 120 days after the mainshock. While we reckoned one M, value
for the aftershock sequence equal to M, = 2.5+ 0.1. The determination of
the initial value for the magnitude of completeness plays an important role
in the predicted b-value.

The magnitude of completeness (Mc) in the ZES prior to the mainshock
is 2.0+£0.1, it abruptly increases to 3.5 after the mainshock (Fig. 2b) while it
returns to pre-mainshock values ( 2.0) about 120 days after the mainshock
(Fig. 2b).

1.4

* b-value Before

—«-Confidence Interval

* b-value After

—+«-Confidence Interval

1 1
1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
Magnitude of Completeness (Mc)

0.8 ‘ ‘

FIGURE 5.1: Plot of the relationship between the b-value

and the M, for all the earthquakes. The solid blue line (on

the left) illustrate that relationship for the foreshocks, while

the solid purple line (on the right) illustrates the same rela-
tionship but for the aftershocks.

In Fig. 5.1, the dependence of b-value against the magnitude of com-
pleteness, is illustrated. For the foreshock sequence, the resulting values of
M. vary from 1.9 to 2.3, with the corresponding b-values ranging between
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1.08 and 1.25. Although the above methods obtained the optimal M, val-
ues, which vary from 2.0 to 2.2, we estimate and plot a more extensive value
range to examine the relationship between the magnitude of completeness
against b-value. An M, equal to 2.0 give a b-value equal to 1.18 and an
M. equal to 2.2 give a b-value equal to 1.27. If we take into account the
entire range of the confidence intervals, the b-value for the foreshocks when
magnitude of completeness M, is set to 2, can range between 1.12 and 1.25.

Subsequently, the M, estimations of 2.4, 2.5 and 2.6, derived from the
MAXC, GFF and EMR methods, are illustrated in the same way Fig. 5.1.
To demonstrate the dependence of b-value with magnitude of completeness
for the aftershock period, we set M. in the range 2.3 to 2.7. The confidence
intervals of b-value for the aftershock sequence are significantly narrower,
compared to the foreshock intervals. This can be explained because the
seismic events of the foreshock are by far fewer from the aftershock seismic
events. Hence, this leads to a more complete data set, allowing the model
to estimate the b-value better and display lower fluctuations.

Moreover, the M, is found consistently higher, 0.4 My,, in the aftershock
period, probably due to the large aftershock activity in 2018. It is common
to expect a temporary increase in the magnitude of completeness values after
a big earthquake [32, 25]. Moreover, studies on typical background seismic-
ity periods have shown that M, changes over time, and more specifically,
decreases. That decrease may be attributed to the continuously increas-
ing number of seismographs established and the employment of improved
methodologies to the estimation [82].

5.2 Estimation of b-value

After deciding upon the magnitudes of completeness, we proceed in the
following analysis. To estimate the parameter b-value from the Gutenberg-
Richter Law we used the three different M, calculated in Section 5.1. The
code used was created by Dionisis Hristopulos in 2011 in the Matlab pro-
gramming environment [27].

The b-value for any region can be computed using several methods, such
as linear regression or maximum likelihood. In this module, the maximum
likelihood method was used as it is the most robust and widely accepted
method [2]. The maximum likelihood methodology weights all the earth-
quakes equally in the estimation of the parameter values. On the contrary,
the estimates based on the least squares method are biased towards the ends
of the distribution. All the data from the seismic catalog greater or equal to
each M, were used. The analysis was performed for two different versions
of the same dataset, with or without the mainshock’s inclusion.

Despite the simple meaning of b-value—an indicator of the relative pro-
portion of smaller and larger earthquakes in a seismic catalog— the accurate
estimation within uncertainty bounds can have significant implications in
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seismic hazard studies, faulting and earthquake physics. The b-value is con-
sidered to be characteristic for any given region, and many authors support
that it decreases slightly before large earthquakes [69, 44, 55].

Evolution of b-value before the main shock

—o—b-value

P i ——-Confidence interval

1.6 0 - - g ——-Confidence interval

1 2 3 4 5 6 7 8 9 10
Cluster index(200 events per cluster)

FIGURE 5.2: Evolution of the b-value over time before the

main shock. The 6 cluster refers to the period from April

2017 to July 2017, the 7*" cluster lasts from August 2017

until December 2017, the 8" cluster last from January 2018

until May 2018 and the 9" cluster starts from June and ends
at September 2018.

Figure 5.2 illustrates the b-value of the events from June 2016 to 25
October 2018, divided into 10 clusters. Each cluster includes 200 events
except from the last one (10'" cluster), which includes the remainder from
the seismic catalog, resulting in 113 events. In the 10" cluster the last event
considered (the 113'") is the main shock. For every 200 events, one b-value
was estimated using the maximum likelihood method. Thus, the b-value
for each cluster is represented in chronological order from 2016 to 2018.
Essentially, we can see the evolution of the b-value across a two year and
five month period. According to Fig. 5.2, from the first until the 7t cluster,
b-value ranges mostly between 1.0-1.5. Those values are falling into the
expected b-value range for a normal sequence. However, after the 8™ cluster,
a slight decrease of the b-value is observed, and specifically below 1. This
decrease, according to seismologists, might indicate a probable trigger for a
large earthquake. The 10" cluster was not taken into account, as it contains
the main shock and a smaller sample. A point of interest that could drive
further studies is whether the evolution of the b-value and more accurately,
its systematic decrease, can be used as a guideline for the prediction of an
imminent earthquake.

Tables 5.3 and 5.4 contain the b-values estimated for the foreshock and
the aftershock sequence, calculated via the maximum likelihood method —
each different magnitude of completeness result in different b-value (Fig. 5.1).
The M, is referring to the magnitude of completeness, b stands for the
Gutenberg-Richter exponent.
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For further analysis, we selected to use for the foreshock sequence M, =
2.0, and for the aftershock sequence M, = 2.5. We based our decision on
the fact that those values were inside the optimal value range computed
from the maximum likelihood method (Tables 5.1, 5.2), and simultaneously
yielded the closest to one b-values (Tables 5.3, 5.4).

TABLE 5.3: Estimated b-value parameters for the foreshocks
using the maximum likelihood method. The M, is the mag-
nitude of completeness, b stands for the Gutenberg-Richter
exponent, hbint, and lbint represents the upper and the
lower confidence bound for the G-R exponent, respectively.
The symbol b10 stands for the G-R exponent (base 10) and
hbint10, and lint10 the corresponding confidence bounds for
the G-R exponent (base 10). The bold font distinguishes
the M. and the b-value used for further analysis. Graphical
representation shown in Fig. 5.1.

M:; b lbint hbint bl10  lbint10 hbint10

1.9 249 236 261 1.08 1.02 1.14
2.0 272 257 287 1.18 1.1 1.25
2.1 286 268 3.04 124 1.17 1.32
22 293 273 313 127 1.19 1.36
23 288 265 310 1.25 1.15 1.35

TABLE 5.4: Estimated b-value parameters for the after-
shocks using the maximum likelihood method. The symbols
are described in Table 5.3.

M. b lbint hbint bl0  lbint10 hbint10

23 200 195 205 087 0.8 0.89
24 216 211 222 094 095 0.97
2.5 230 223 237 1.00 0.97 1.03
26 242 235 250 105 1.01 1.09
2.7 251 242 260 1.09 1.05 1.13

On average, b-value is close to 1 for most seismically active regions on
Earth, but in some cases varies between 0.5 and 1.5 [81]. This means that
for a given frequency of magnitude 4.0 or larger events to occur, there will
be 10 times as many magnitude 3.0 or larger earthquakes, and 100 times as
many magnitude 2.0 or larger earthquakes. In this study, for all the exam-
ined M, values (5.1), b-value varies between 0.94 and 1.27, falling within
the expected range. However, a detailed mapping of b-value often reveals
significant deviations (Fig. 5.2). A notable example is the variation of the
estimated b-values during earthquake swarms, where b-value can become as
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high as 2.5 [5]. On the other hand, high b-values are reported for areas with
increased geological complexity, indicating the importance of multi fracture
areas [69)].

5.2.1 Plots of Estimated b-value for Earthquakes Prior
to the Main Event

Our results indicate that the b-value estimates for the earthquakes before
the main event are within the expected values. The histogram of proba-
bility density function (PDF) for foreshock sequence Fig. 5.3 was created
with M. = 2.0, and the b-value estimate corresponds to this magnitude of
completeness. According to the data values shown in Fig. 5.3, larger mag-
nitudes seem to deviate more from the theoretical line drawn based on the
G-R law with a b-value equal to 1.18. This observation is especially true
for earthquakes with magnitude greater than five, which are located outside
the confidence bounds, diverging from the Gutenberg Richter model. Par-
ticularly, for a magnitude greater than 6.5 we have only one earthquake, the
main shock and for a magnitude near 5 only two earthquakes. While from
the other hand for a magnitude near 4 we have around 27 events and for a
magnitude near 3 around 70 events and continues to increase with a decrease
of magnitude. Nevertheless, the data marked with the cyan circle displays
the expected behavior in terms of the frequency, presenting a difference by
one order of magnitude for the frequency when the magnitude differs by 1
unit (for earthquakes less than 5.5 My,).
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FI1GURE 5.3: Histogram of probability density function ver-
sus event magnitude for foreshocks, using logarithmic verti-
cal scale.

In the histogram presented in Fig. 5.4 we can observe the number of
earthquakes before the main event versus the magnitude. Apparently, most
earthquakes have magnitude near 2.0, which is also the estimated minimum
magnitude for the foreshocks. From the initial 2112 seismic events refer to
the earthquake prior to the main event only 1260 meet the M, = 2.0. They
are represented with the cyan columns in the histogram. The orange line
fitting the data matches the Gutenberg Richter curve.
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FiGURE 5.4: Histogram of the number of foreshocks per
magnitude and fit to the optimal exponential (GR curve).

By removing the main shock from the foreshocks’ data set, the estimated
b-value for those foreshocks decreases slightly compared to estimates that
included the main shock. This decrease in the b-value from 1.18 to 1.15 is
shown Fig. 5.5. In this case, the data follow better the G-R distribution,
while the histogram of the number of foreshocks without the main event
Fig. 5.6 seems to be more evenly distributed.
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5.2.2 Plots of Estimated b-value for Aftershock Se-
quence

In terms of the aftershock sequence, the M. used to estimate the b-value
equals 2.5. The resulting b-value is 0.998. Figure 5.7 refers to the histogram
of PDF versus the magnitude of the aftershocks, including the main shock.
Only half of the initial 9666 recorded aftershocks are greater or equal to
M, = 2.5. However, in terms of the abundance of the data for processing,
having 4700 events is better than the 1260 foreshocks. The adequate amount
of data could eventually lead to more reliable results, as shown in Fig. 5.7.
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FIGURE 5.7: Histogram of probability density function ver-
sus event magnitude for aftershocks, using logarithmic ver-
tical scale.
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FiGURE 5.8: Histogram of the number of aftershocks per
magnitude and fit to the optimal exponential (GR curve).

Using the same parameters, M. and number of bins, we estimated the
b-value, but this time, without the main event. The resulting histogram of
PDF 5.9, indicates that the seismic events are more evenly distributed ac-
cording to G-R Law, in the same way that it was evident in the foreshock set
without the main event (Fig. 5.5). Opposed to the foreshock b-value estima-
tion, which decreased by 0.030, the b-value for the aftershocks increased by
0.012 when calculated with or without the main event. In addition, the his-
togram 5.10 of the number of aftershocks, without the main shock appears
smoother.

The b-value for a region reflects the relative proportion of the number
of large and small earthquakes in the area and relates to the region’s stress
condition.

Previous studies concerning Zakynthos have studied the swarm in 2006
and estimated a b-value equal to 1.27 [59]. A b-value slighter higher than our
results, since it is usual for b-value to take higher values during earthquake
swarms [5].

More recent studies [49] that studied the seismic sequence of 2018; esti-
mated the b-value near and below 1 for the foreshocks and at 1.18 4= 0.12 for
the aftershock sequence. Between 2016 and 2017, they characterized that
6-month time-period as swarm-like activity, resulting in higher b-values. We
have also estimated those higher b-values in our analysis. In Fig. 5.2, they
are represented from the period between September 2016 to April 2017, and
correspond to the 3™, 4™ and 5% cluster. While it has been shown by
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[60], that the b-value is smaller for earthquakes prior to the main event, we
observe the opposite pattern. Those higher values than expected might be
affected by the swarm activity that was observed between September 2016
to April 2017. A more specific analysis, in a manner of time, will proba-
bly result in a lower b-values for the foreshocks compare to the b-values of

aftershock.
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Chapter 6

Interevent Times Probability
Distribution

In the present Chapter, the distribution of interevent times between succes-
sive earthquakes before the main event and after it is studied. The interevent
time is defined as the time (t) between two consecutive events. In our case,
interevent times are considered the times between earthquakes greater and
equal to 2.0 My, for the earthquakes before the main event and greater and
equal to 2.5 My for the aftershocks. A total of 1262 earthquakes before
the main event were obtained from seismic data collected over 2 years and
5 months, while 4692 aftershocks were obtained from seismic data collected
over 7 months. Both seismic events before and after the main event were
used to estimate the interevent times and represent their distribution over
time for the periods from June 2016 to October 25, 2018, and from October
25, 2018 to May 2019, respectively. Different distribution were examined in
the R programming environment, using the fitdistrplus package.

Before fitting one or more distributions to our data sets, it is useful to
choose suitable candidates among a set of distributions. This choice may
be guided by the knowledge of stochastic processes governing the modelled
interevent times or by the observation of their empirical distribution.

Several papers study the distribution of interevent times between suc-
cessive earthquakes in various data sets from all around the world [45]. Al-
varez [3] proposed the Weibull distribution for the interevent times for a
sequence in Turkey during the 20", where he estimated the parameters via
maximum likelihood in conjunction with the transition probabilities. Fur-
thermore, Tomohiro Hasumi et al. [76], has shown that the Weibull distri-
bution can describe the distribution of the time intervals for earthquakes
occurring on a single fault, and that the Weibull exponent increases with
the increase of the magnitude threshold.

In this analysis, we will investigate five different distributions, Weibull,
Gamma, Pareto, Exponential, and Lognormal (see section 2.1). The tem-
poral distribution of earthquakes before the main event, and especially for
the aftershocks, might reveal interesting key features of the deep rupture
complexity or underlying seismicity of the earthquake.
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6.1 Interevent Times Probability Distribution
For earthquakes before the main event

The time interval between each earthquake is estimated in minutes and it is
illustrated in Fig. 6.1. According to our results it requires less than a day,
equivalent to 1440 minutes, for a foreshock to be triggered after another
foreshock for more than 80% of the interevent times. In addition, more than
65 % of the interevent times differ less than 720 minutes, and 50% of the
interevent times occur in less than 411 of a day. This means that the majority
of the earthquakes from 1/6/2016 to 25/10/2018 are triggered in less than
a day.
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FIGURE 6.1: Histogram of time intervals between earth-
quakes before the main event. Time intervals are being cal-
culated using in minutes.

In Fig. 6.1 the histogram of the interevent times before the main event
is shown. In the following section we present the results for the interevent
sequence and the fitted probability distributions (Weibull, Gamma, Pareto,
Exponential and Lognormal). The distributions are described in Section 2.1
and their parameters are estimated using the maximum likelihood method
(section 2.5).

To compare and choose the optimal model, we used the AIC and BIC
(Section 2.18 and 2.19) information criteria. The plots of all the fitted
distributions for the interevent times are presented in Fig. 6.2. The red
colour refers to the Weibull distribution, the yellow refers to the gamma,
the blue refers to the Pareto, the black refers to the exponential, and the
pink refer to lognormal distribution. According to AIC (Eq. (2.18)) and
BIC (Eq. (2.19)) criteria, the distribution that provides the best fit for the
interevent times before the main event is the Weibull distribution, presented
in Table 6.1.



6.1. Interevent Times Probability Distribution For earthquakes before tgf
main event

Histogram and theoretical densities Q-Q plot
0.20 +
300 4
0.15 8
= +
200
b 1]
2 010 5
a g
1 2 100
0.05 [ 5
Ii\.-\
0.00 rﬁiﬁﬁﬂ}ﬁﬁ—-— = P— S 0
0 25 50 75 100 125 1000 2000 3000
data Theoretical quantiles
Empirical and theoretical CDFs P-P plot
1.00 e 1.00
%]
[45)
S 0.75
=
©
=]
o
& 050
K
L
£ 025
Ll
0.00
0 100 200 300 0.00 0.25 0.50 0.75 1.00
data Theoretical probabilities
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TABLE 6.1: Akaike Information Criterion and Bayesian

Information Criterion for the earthquakes before the main

event calculated according to Eq.(2.18) and Eq.(2.19) respec-

tively. According to the AIC and BIC criteria the best dis-

tribution model for the earthquakes before the main event is
the Weibull distribution.

Criterion Weibull Gamma  Pareto Exponential Log-normal
AIC 9108.861 9181.553 9153.408 9626.907 9155.173
BIC 9119.142 9191.834 9163.689 9632.047 9165.454

The Weibull distribution fitting the interevent time for the earthquakes
before the main shock is presented in Fig. 6.3. The histogram of interevent
times on a density scale appears on the top left corner of the plot, while
the empirical cumulative distribution function(CDF') appears on the bottom
left corner. On the right side of the plot, on the top corner appears the
quantile-quantile plots or Q-Q plot, which draws the correlation between
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a given sample and the distribution, while on the bottom the P-P plot or
probability plot of the values is presented. Besides the information criteria,
we can also visually observe a good agreement between the interevent times
and the fitted distribution. The Weibull shape and scale parameters are
presented in Table 6.1. The scale parameter is found at 11.866, and the
shape parameter is estimated at 0.649, indicating a decreasing failure rate
over time (see section 2.1.4).

Histogram and theoretical densities Q-Q plot

0.15 | v
| & 300
o
=
> 010 S 200
£ =
c —_
8 | S
0.05 ‘£ 100
o
E
L
o.00 M 0
0 25 50 75 100 125 0 100 200
data Theoretical quantiles
Empirical and theoretical CDFs P-P plot
1.00 o 1.00
QL
=
0.75 5 0.75
©
o)
8 050 S 050
. o U
@) =
[]
2
0.25 £ 0.25
o
i
0.00 0.00
0 100 200 300 0.00 0.25 0.50 0.75 1.00
data Theoretical probabilities

FIGURE 6.3: Fit of the interevent times of the earthquakes
before the main event sequence to the Weibull distribution.
Top left: Density histogram of the data and fit to the Weibull
PDF. Top right: quantile-quantile plot. Bottom left: Cumu-
lative distribution function. Bottom right: P-P plot.

TABLE 6.2: Fitting of the Weibull distribution by means of
maximum likelihood

Parameters estimate Std. Error

shape 0.649 0.014
scale 11.866 0.544

The rest of the distributions studied herein are attached to the appendix
(Fig. 9.3 for Gamma distribution, Fig. 9.5 for Exponential distribution,
Fig. 9.6 for Lognormal distribution and Fig. 9.4 for Pareto distribution),
since they represent inferior fitted models for the given dataset.
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6.2 Interevent Times Probability Distribution
For Aftershocks

The time between each aftershock triggered after the main shock, calculated
in minutes, is presented in Fig. 6.4. It is clear in the figure that the majority
of the events occur with time difference shorter than 100 minutes. Specifi-
cally, 80% of the interevent times for the aftershock sequence in Zakynthos
differ less than 518 minutes, and more that 50% of the times differ less
than 26 minutes. Approximately, the 24% of those interevent times differ
less than 10 minutes (l}ﬂ of a day). The majority of the aftershock from

25/10/2018 to 31/5/2019, happen in less that 3 of a day.
1200-

900 -

600 -

count

300-

0 200 400 600
Time intervals (minutes)

FIGURE 6.4: Histogram of interval times between after-
shocks. Time intervals are expressed in minutes.

It is apparent that the aftershocks, in this case, are triggered faster com-
pare to the interval times of the earthquakes before the main event. In the
previous Chapters, we observed that aftershock sequence is denser, and in
this analysis we confirm that the aftershocks are triggered consecutively.

For the interevent time series after the main event, the same distributions
were fitted, and they are presented in Fig. 6.5.

In order to assess the models’ performance, the AIC and BIC criteria
were used. The results of the criteria are presented in Table 6.3. In the case
of the interevent times for the aftershocks, the Pareto distribution gives the
best fit.
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FIGURE 6.5: Fit of the interevent times of the aftershock

sequence for the five different distributions. Top left: Den-

sity histogram of the data and fit to the Weibull PDF. Top

right: quantile-quantile plot. Bottom left: Cumulative dis-

tribution function. Bottom right: P-P plot. Red colour refer

to Weibull distribution, yellow to gamma, blue to Pareto,
black to exponential and pink to lognormal.
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TABLE 6.3: Akaike Information Criterion and Bayesian In-
formation Criterion for the aftershocks calculated according
to Eq. (2.18) and Eq. (2.19) respectively. According to the
AIC and BIC criteria, the best distribution model for the
aftershocks is the Pareto distribution.

Criterion Weibull ~Gamma  Pareto Exponential Log-normal
AIC 9347.918 9730.835 8844.955 10372.23 8864.526
BIC 9360.825 9743.743 8857.862 10378.68 8877.433

The Pareto distribution fitting the interevent time for the earthquakes
after the main shock is presented in Fig. 6.3. The histogram of interevent
times on a density scale appears on the top left corner of the plot, while the
empirical cumulative distribution function(CDF) appears on the bottom left
corner. On the right side of the plot, on the top corner appears the quantile-
quantile plots or Q-Q plot, which draws the correlation between a given
sample and the distribution, while on the bottom the P-P plot or probability
plot of the values is presented. The Pareto shape and scale parameters are
presented in the table 6.4, and equal to values 1.885 and 1.04, respectively.
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FIGURE 6.6: Fit of the interevent times of the aftershock

sequence to the Pareto distribution. Top left: Density his-

togram of the data and fit to the Pareto PDF. Top right:

quantile-quantile plot. Bottom left: Cumulative distribution
function. Bottom right: P-P plot.

TABLE 6.4: Fitting of the Pareto distribution by means of
maximum likelihood

Parameters estimate Std. Error

shape 1.8853 0.0782
scale 1.0469 0.0622

The rest of the distributions studied herein are attached to the appendix
(Fig. 9.8 for Gamma distribution, Fig. 9.9 for Exponential distribution,
Fig. 9.10 for Lognormal distribution and Fig. 9.7 for Weibull distribution),
since they represent inferior fitted models for the given dataset.

The interevent time between two earthquakes expresses the same in-
terevent time between two releases of energy from the fault. Knowing the
interevent time between earthquake occurrences can be useful for predicting
the next earthquake occurrence. Hence, the interpretation, even if these
interevent times are probabilities, provides vital information for humanity.
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Chapter 7

Analysis of Aftershock
Frequency

It has been known since the beginning of the 20" century that aftershock

activities following large earthquakes continue for months, years, or even
longer. Omori’s [58] proposed formula represents the decay of aftershock
activity with time. Seismologists have widely used this formula and its mod-
ified form (a.k.a. Omori-Utsu law) as one of the few established empirical
laws.

This Chapter presents an analysis of the aftershock sequence’s temporal
distribution, with the implementation of the Omori-Utsu Law (see section
3.2.2). In addition the three different parameters that express the Omori-
Utsu Law (U-O), p, c and k, are estimated. Their dependence on the mag-
nitude of completeness and on time is also investigated. A comparison of
the estimated O-U parameters for Zakynthos with Hokkaido-Nansei-Oki O-
U parameters, estimated by Utsu, is made because they appear to have
similar quantitatively (amount of aftershocks) and temporal (duration of
aftershock sequence ~ 250 days) characteristics. Finally, a comparison is
presented for the estimated O-U parameters between Zakynthos, and Ke-
falonia and Lefkada, which are also islands on the Ionian sea in Greece, and
affected by the Hellenic trench.

7.1 Implementation of the Omori Law

Any aftershock sequence can be explained by the Omori or the Omori-Utsu
law, which is unique for its power law dependence on time. The power
law implies the long-lived nature of activity in contrast to the exponential
function present in most decay laws in physics. Sometimes it is difficult to
identify an earthquake as an aftershock triggered by the main shock, because
it might reflect the background seismicity and not the aftershock sequence.
However, according to Omori, the ambiguity in identifying aftershocks does
not significantly affect the conclusion in many studies [78].

The aftershock sequence in this study involves all the earthquakes oc-
curred near Zakynthos from 25" of October, 2018 until 315 of May, 2019 in
an area of &~ 20000 km?. In particular, the aftershock sequence used in the
following sections is a subset of the aftershock sequence where the magnitude
is equal or greater than the 2.5 My magnitude of completeness (see section
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5.1). It is imperative to note that a different M, value will result in different
Omori-Utsu parameters. While this magnitude of completeness, M, gener-
ally considered a good estimate, the situation directly after a big earthquake
it is often different, as some smaller earthquakes might be missed due to the
incapacity of detectors. Both M. and b-value, which was estimated in pre-
vious chapters (see Section 5.2), are prerequisites for the application of the
Omori law and Omori Utsu Law analysis.

Regarding the law of Omori and Utsu, the temporal decay of the rate n
with time is typically described as :

k

n(t) = (R (7.1)

where t is the time after the large event, p /& 1 is a rather universal exponent,
c is a case-dependent time scale, and k is the productivity that depends on
the main shock magnitude.

This means that the number of aftershocks per unit time, n(t), triggered
by a main earthquake, decreases at a rate of p. This rate increases signif-
icantly in a specific area after large earthquakes. The duration of seismic
activity might last for months to even years.
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FIGURE 7.1: The decreasing rate of aftershocks since the

main shock on 25, October 2018. The bluish-green circles

represent the amount of earthquake events with magnitude

greater than 2.5 My, which happened per day. The after-

shock sequence in this study lasts for 220 days after the main
shock.

In Fig. 7.1, we can observe an expected decrease in the number of
aftershocks as the days pass. It fits well the aforementioned law. Especially,
on the first day after the main event, 109 aftershocks were triggered, as
opposed to the last 10 days of the sequence (210th day to 2200 day) when
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less than 10 aftershocks were recorded per day. Each day after the main
shock, fewer earthquakes were recorded.

7.2 Estimation of Omori-Utsu (O-U) Param-
eters

Continuing with the analysis of aftershock sequence, we proceed to the im-
plementation of Omori-Utsu law. For the Omori-Utsu (7.1) application, a
Matlab module called Basic Statistical Seismology [74], created by Brendan
Sullivan and Zhigang Peng was used. The following results are illustrated
in Fig. 7.2 and the estimated parameters of O-U law are concentrated in
table 7.1). Parameters p, ¢ and k describe the optimal predicted curve
of Omori-Utsu law that fits the original data of the aftershock sequence of
Zakynthos.
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FIGURE 7.2: Estimated Omori-Utsu Law parameters (p, c,
k) for the aftershock sequence. Observed versus predicted
data in Zakynthos.

Figure 7.2 illustrates the cumulative number of earthquakes versus the
time in days. The earthquakes following the main shock of 25 October 2018
are greater than or equal to a magnitude of completeness which equals 2.5
M;. This means that all the earthquakes below this magnitude were re-
moved for this analysis. The first curve with the blue colour denotes the
observed data, and the second one with the green dashed line indicates the
predicted data. The prediction is really close to the observed data as the
curves fit very well. In the first 50 days after the main shock we notice
approximately 2750 earthquakes, while the following 50 days we see a no-
ticeable decrease, appending another 1000 earthquakes. One hundred fifty
days after the main shock until the end of the seismic sequence, only roughly
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500 earthquakes were added to the aftershock sequence and as the days pass
even fewer earthquakes were recorded. This verifies that the rate of the
aftershocks decreases with time, as proposed in the Omori-Utsu empirical
Eq. (7.1).

It is important to mention that this Matlab module has some strict
boundaries for the estimates of the ¢ and k parameters. This means that
the resulting ¢ and k would not represent the true seismic background. For
this reason we expanded those limits to 50 and 50000, respectively. Also the
p value according to literature is close to 1, and in this Matlab module its
value can range from 0.2 to 2.7. During the last 57 years, more than 300
p value estimates have been published in at least 100 papers for aftershock
sequences in various parts of the world. According to Utsu [78] p values are
distributed from 0.6 to 2.5 with a median of about 1.1.

The parameters for the aftershock sequence lasting 220 days after the
main shock are shown in the Table (7.1) below:

TABLE 7.1: Omori-Utsu law parameters for Zakynthos af-
tershock sequence, as result from the Matlab module Basic
Statistical Seismology.

p c k
1.57 35.79 30531.70

The power law exponent p is equals to 1.57, which is within the range of
the stated values. The productivity k is 30.532, and the ¢ parameter, which
depends on a variaty of physical parameters, is 35.79.

7.3 Investigation of O-U parameters

7.3.1 Dependence of O-U Parameters on Mc

If the p value is significantly dependent on the lowest limit of magnitude M,
the proportion of small to large aftershocks must vary with time. This means
that the b-value of the Gutenberg-Richter formula, or the mean magnitude
of the aftershocks, alters with time.

Omori [58], among some other seismologists seem to believe that the
size of the aftershocks gradually declines with the frequency. Richter [66]
attached little importance to the Omori formula, because he thought that
its meaning was doubtful due to "the simple counting” aftershocks without
regard to their rapidly diminishing magnitudes.

Richter recommended Benioff’s strain release curves, but we rather say
that its physical meaning is not clear, because the shape of the curve depends
on the choice of the minimum magnitude M, [66]. Using two examples, he
showed that the dependence of the decay constant on magnitude level does
not seem to be so systematic.

Utsu [78] investigated the p values for aftershock sequences for the 1957
Aleutian earthquake (9.1 M), the 1958 Central Alaska earthquake ( 7.3
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My), and the 1958 southeastern Alaska earthquake (7.9My,) by taking three
different levels of M., and found no evidence that p and ¢ values depend on
M. This result is consistent with the magnitude stability (constant mean
magnitude) during an earthquake sequence reported later by Lomnitz [41],
Papazachos [12], and others. Yamakawa [54], who studied the aftershock
sequences of the 1963 southern Kuril earthquake and the 1968 Tokachi-Oki
earthquake, also suggested that p and M, are independent. Papazachos in
1968 obtained almost equal p values (p ~ 0.70) for the Kremasta reservoir
(Greece earthquake of 1966) for three different levels of M., 2.3, 2.9, and
3.5 [12]. However, Motoya and Kitagamae [48] reported in 1970 that the
p value for the 1969 Hidaka Mountain earthquake increased slightly with
increasing M, (p =1.1 for M, > 1.8 and p =1.2 for M, > 2.8).

FiGurE 7.3: Maximum likelihood estimates of the param-

eters of the modified Omori formula for the aftershocks of

the 1993 Hokkaido-Nansei-Oki earthquake for various cutoff
magnitudes. Retrieved from Utsu [78].

M, N K P ¢ (day)

32 2,363 906.50 +97.52 1.256 +0.028 1.433+0.170
34 1,582 510.43 4 54.93 1.250+0.030 0.87940.124
3.6 902 237.38 4 26.83 1.2424+0.035 0.477 +0.088
38 449 91.26+10.77 1.23540.042 0.190+0.052
40 210 34.73+ 4.68 1.246+0.054 0.075+0.034
4.2 117 16.30+ 2.46 1.304+0.071 0.029 +0.024
4.4 81 11.79+ 2.22 1.31040.087 0.037 4+0.033
4.6 54 6.60+ 1.34 1.157+0.083 0.004 +0.024
4.8 30 3.55+ 0.96 1.107+0.106 0.0004-0.031
5.0 14 1.59+ 0.60 1.283+0.184 0.0004-0.035

Utsu analysis Table 7.3 presents the maximum likelihood estimates with
standard errors of p, ¢ and k parameters. They concern the aftershock
sequence of the Hokkaida-Nansei-Oki, Japan, earthquake of July 12, 1993
(7.8 M,) for various M, ranging from 3.2 to 5.0 with a 0.2 step. Considering
the standard errors, no systematic variation of p with M, is evident, and
a value p = 1.25 seems to be appropriate, as the average value for this
sequence. On the other hand, the ¢ value decreases with increasing M, and
becomes zero for M, = 4.8.
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TABLE 7.2: The dependence of the p value and the other
two parameters on the magnitude of completeness (M.). All
aftershocks were used from 25" of October, 2018 till the 315
of May of 2019. N is the number of aftershock for each M.

M, N p c k

24 4693 1.57 35.78 30531.70
26 3295 159 29.10 2434297
2.8 2247 149 1549 6993.29
3.0 1471 145 894  2874.43
3.2 908 132 450 855.09
34 534 116 1.66 172.75
3.6 317 111 0.99 98.34
3.8 175 1.01 0.37 37.60
4.0 78 1.09  0.20 17.20
42 50 1.05 0.25 10

Following a similar analysis, different p , ¢ and k values are estimated
using different values of magnitude of completeness, M.. Table 7.2 concen-
trates all the variations of the O-U parameters depending on the M, and
counts the number (N) of the included aftershocks each time. It is apparent
that all three parameters, more or less, decrease with the increase of the
magnitude of completeness.

Specifically, with a consistent increase of 0.2 magnitude (M,), we can
notice a decrease in the p value in almost all cases. Productivity k also
shows a decreasing rate with the increase of M., because the higher the
magnitude the fewer number of aftershocks are included in the formula of
Omori-Utsu (N). The ¢ value decreases with increasing M, and approaches
a value close to zero for M. =4, corresponding to less than 5 hours.

Summing up, the p parameter varies from 1.01 to 1.57, with an average
value of p = 1.28 and indicates a dependence on the the magnitude of
completeness. The ¢ and k parameters follow a more rapid decrease with
the increase of the magnitude M.

Comparing the results of Zakynthos Table 7.2 with the parameters of
the Hokkaida-Nansei-Oki Table 7.3 we came across the following results.
Both cases examine the similarity in the duration of the aftershock sequence
lasting 262 days in Japan and 220 days in Greece. The magnitude of com-
pleteness M, in the first case, varies from 3.2 to 5.0 and in the second one
from 2.4 to 4.2. We notice that in Hokkaida-Nansei-Oki the M, generally
takes higher values, probably due to Japan’s intense seismic background. In
both cases, a decaying rate of Omori-Utsu ¢ and k parameters is apparent
with respect to the increase of M. While in Hokkaida-Nansei-Oki the p
value generally remains consistent with a small variation and no indication
of dependency on M., in Greece, the p values seems to depend on M, and
present a more intense variation. The average p value in our data equals
1.28, a value close to the 1.25 p parameter of Japan analysis. Moreover, ¢
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parameters of Japan tend to have much smaller values in comparison to the
¢ parameters in Zakynthos. This might be explained by the wide boundaries
of ¢ parameter inside the Matlab code.

The exact nature of the law parameters and their dependencies are still
in discussion. For example, the exact origin of the parameter c is still under
debate. The most recent results suggest that it is of physical rather than
instrumental origin [63], and it varies according to the faulting system and
the underlying stress [51]. In addition, these recent results speculate that c
parameter might depend on how aftershocks are defined (dependence with
M.), as opposed to the former opinions of the 20" century.

In the following Figure 7.4, 7.5, and 7.6 the dependence on M, with each
parameter of Omori-Utsu law is presented. The started value of magnitude
of completeness is 1.8 with step 0.2.
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0.2 I L L L I L L L L L L L
1.8 2 22 24 26 28 3 32 34 36 38 4 42 4.4
Magnitude of Completeness

FIGURE 7.4: Dependence on p parameter with magnitude
of completeness M. The 4.4 M, include 22 events, while
1.8 M., 2 M, and 2.2 M, include 8541, 7423, 6111 events,

respectively.
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7.3.2 Dependence of O-U Parameters over time

This section examines the evolution of Omori-Utsu parameters over time
and if and how much they depend on it. The following Table 7.3was created
for the estimation of the O-U parameters using a time window of 20 days
for the aftershock sequence of Zakynthos. After defining the parameters of
Zakynthos, we compare them with the O-U parameters of Kefalonia and
Lefkada.

TABLE 7.3: The evolution of Omori-Utsu parameters using

a time window of 20 days for the aftershock sequence with

M. equal to 2.5 M. The step that is used is 20 days, from

the day after the main shock 25" of October until the 315
of May, 2019.

Days p c k

20 038 1.55 172.35
40 040 1.88 183.67
60 119 22.65  4675.47
80 1.40 2799 12167.76
100 130 2576  7817.45
120 123 2345  5559.93
140 1.42 30.03 14010.73
160 1.52 33.60 23080.90
180 1.59 36.58 34094.51
200 1.53 34.17 24254.59
220 1.57 35.79 30531.70

The evolution of p parameter as illustrated in Fig. 7.7 indicates a gen-
erally upward trend over time. The same behaviour is also noticeable both
for ¢ and k parameters as they are illustrated in the same figure. The p
parameter is closest to one, two months (= 57 days) after the main shock,
where ¢ equals 22.65 and k equals 4675.47.

Small p values, as appeared here for a period shorter than 40 days, have
often been reported for superposed sequences. The superposed sequences
consist of mostly small sized sequences (one or a few aftershocks). A portion
of these may not be real aftershocks; they may only represent background
seismicity [78]. Relatively small p values have also been found for aftershock
sequences in China in a study by Zhao et al. [85]. They obtained maximum
likelihood estimates of p and ¢ values for 32 aftershock sequences. The p
value ranges from 0.63 to 1.54, with a mean of 0.95.
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7.3.3 Comparison of O-U Parameters with Kefalonia
and Lefkada

D. Chorozoglou and E. Papadimitriou [11] investigate the parameters of
Omori-Utsu law for Kefalonia and Lefkada, two Ionian islands close to Za-
kynthos. For Kefalonia, the aftershock sequence started on 26/1/2014 with
a main shock equal to 6.1 My, and for Lefkada the main shock of 6.0 My, be-
gan on 17/11/2015. Because all three islands belong to a similar, if not the
same, tectonic background (Hellenic trench), and are affected by the same
faulting systems, we compare the estimated Omori-Utsu parameters in the
following Table 7.4. In addition, their main shocks 6.1 M, for Kefalonia and
6.0 My for Lefkada, are close to Zakynthos 6.6 M; main shock.

TABLE 7.4: Comparison of the Omori-Utsu law parameters

of Zakynthos with two Ionian islands. The aftershock se-

quence lasts for 20 days in each case. The N in the table

refers to the cumulative number of earthquakes. The data

used for Zakynthos was calculated while for Kefalonia and
Lefkada it was retrieved from paper [11].

Case Days N p c k
Zakynthos 20 1400 0.38 1.55 172.35
Kefalonia 20 1600 0.46 5 229.1

Letkada 20 1800 1.08 4.886 1277.1

In Table 7.4, we notice similar results for the cumulative number of earth-
quakes for all of the islands, with Zakynthos having the fewer.This depends
on the choice of M.; a high value of M, might exclude many aftershocks,
while a value too low might include a lot more earthquakes than needed.
Kefalonia and Lefkada might use a small M., which leads more frequent
aftershocks with smaller magnitudes.

The parameter p appears to be very low, with values 0.38 for Zakynthos
and 0.46 for Kefalonia. Literature suggests that the p parameter expresses
the rate of the aftershock sequence and usually takes values close to 1. The
low values of Zakynthos and Kefalonia in a time period of 20 days represent
a slow rate and may indicate that the aftershock sequence has not finished
and perhaps not even started yet. On the contrary, Lefkada’s p value equals
1.08 (near 1), which might indicate the end of the aftershock sequence after
20 days. This also agrees with the high productivity in Lefkada compared
to Zakynthos and Kefalonia. Usually, a high productivity k corresponds to
a high rate.

For strong main earthquakes, the failure of observing systems at stations
close to the epicenter makes small events more difficult to detect. In such
circumstances, the ¢ value may be overestimated. If the observation of the
aftershock sequence starts immediately after the main shock, the true c val-
ues become less challenging to estimate. When data is taken from ordinary
earthquake catalogs, the estimated ¢ value may partially reflect the effect
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of incomplete detection of small aftershocks shortly after the main shock.
The exact nature of the law parameters and their dependencies are still in
discussion. Finally, more investigation is needed to define the duration of
aftershock activity. More specifically, the time required for aftershock ac-
tivity to decrease to the level of normal background seismicity and, if high
or low p, can contribute to that definition.
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Chapter 8

Conclusions and Future
Directions

In the present study, different statistical and geostatistical tools were ap-
plied to the seismic sequence of the island of Zakynthos. The aim was to
investigate the intense main shock of October 25, 2018, measured at 6.6
My, which was felt in the entire country. Specifically, the study focuses on
the magnitudes and times of the seismic events in the period from June 2016
until May 2019, i.e., a period of three years. The area’s seismic activity (as
measured by the number of events) was much more intense after the main
earthquake. We studied both the earthquakes prior to and after the main
event. The study has four distinct objectives.

The first objective was to perform an exploratory analysis of the seismic
event sequence. First, we found the optimal relationship between the local
magnitude scale and the moment magnitude scale using regression analysis.
The events used for the investigation are 55 events around Zakynthos, ac-
quired for an extended time period between backdated from 2010 to 2019.
Our results for the relationship between My and My, are based on weighted
linear regression, using a weight equal to the square root of the moment mag-
nitude. The estimated transformation (4.2) is in agreement with available
empirical equations in the literature. The coefficient of determination R? is
estimated at 0.866, and the p-value of this model equals 8.13¢2°, indicating
high significance of the statistical results.

We then used this empirical relation to derive the moment magnitude
from the recorded local magnitudes, for the initial period of this study. By
plotting those magnitudes over time, a seismic quiescence was noticed from
August 2017 until right before the main shock. Subsequently we estimated
the seismic moment, for our initial data set by applying an empirical equation
proposed by Papazachos’ Papazachos’ equation was used because it refers
to an area and earthquakes with the same seismotectonic background and
characteristics as the Zakynthos sequence. By plotting the seismic moment,
four phases describing the energy release were determined. The first phase
was ambiguous, the second appeared stable,and in the third and fourth
phases, a small and larger increase in energy release was noticed, respectively.

The second objective focuses on the investigation of the Gutenberg Richter
Law. In particular, we determined the magnitude of completeness (M,) and
the b-value from the above earthquake catalog. We studied the sequences
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of earthquakes separately before the main event and aftershocks. We tested
three different methods for estimating M., and we found that their results
differ by no more than + 0.1 My, both for earthquakes before the main
event and aftershocks. The average values for M. are 2.1 My, and 2.5 My,
respectively. The next step was to apply the estimated M, in the Gutenberg
Richter equation in order to determine the b-value. As expected, different
M, values led to different b-values. We selected as optimal the M, value
which yields a b-value close to 1.

For the earthquake sequence before the main shock the resulting b-value
equals 1.18, using M, equal to 2.0 M. For the aftershock sequence the
resulting b-value equals 1.0 using an M, equal to 2.5 My,. Both b-values are
generally in agreement with b-values observed worldwide, which are near
unit [66]. In addition, they are close to the respective b-values obtained
in a recent study by Mouslopoulou et al. [49], referring to the same area
with a similar period. Their mean b-value of the aftershock sequence is 1.18
4+ 0.12. Moreover, in their analysis, they report a decrease of the b-value
calculated for the period from May 2017 until the main shock on October 25,
2018, compared to the b-value estimated for earlier times. This decrease of
the b-value appeared also in our study (shown in Fig. 5.2), where we found
b-values below 1 during the period from April 2017 to September 2018.
While it has been shown [60], that the b-value is smaller for earthquakes
prior to the main event than for the aftershocks, in our case, we observe the
opposite situation. Those elevated values is probably the outcome of the
swarm activity observed from September 2016 to April 2017.

The third objective was to analyze the temporal distribution between
earthquakes. We aimed at finding the distribution that fitted best the in-
terevent times, both prior to and after the main event. By applying five
different probability distributions (Weibull, Gamma, Pareto, Exponential,
and Lognormal) and utilizing the Akaike information criterion (AIC) as well
as the Bayesian information criterion (BIC), those distribution models were
compared, and the optimal model was selected. The distribution that pro-
vided the best fit for the interevent times before the main event was the
Weibull distribution, while the one that gave the best fit for the aftershock
sequence was the Pareto distribution. These distributions could be used to
predict the evolution of the aftershock sequence in the future.

The fourth objective focuses on the analysis of the temporal distribution
only for the aftershock sequence of Zakynthos. The analysis was divided
into the implementation of both Omori and Omori-Utsu (O-U) Law, and the
investigation of the O-U parameters dependencies. The aftershock sequence
is related to all the earthquakes near Zakynthos island from 25/10/2018
to 31/5/2019 in an area of ~ 20000 km?. Moreover, the sequence used
corresponds to values with magnitude equal or greater to the magnitude of
completeness, which was found to be 2.5 My,. The predicted curve of Omori-
Utsu law fitted very well the original data of the aftershock sequence. The
resulting O-U parameters for the aftershock sequence of Zakynthos were
estimated as p = 1.57, ¢ = 35.79 (days) and k = 30531.70.

Following the analysis of the parameters, the dependence of them on
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the magnitude of completeness was tested. Even though many seismologists
[78, 54, 41] support the independence between p and M., we found a slight
dependence of M. on all three parameters. In particular, we found that
an increase of M, resulted in a constant decrease of the O-U parameters.
To confirm our results, a comparison of the estimated O-U parameters for
Zakynthos with Hokkaido-Nansei-Oki, Japan parameters, estimated by Utsu
[78], was made because they appear to have similar quantitatively (amount
of aftershocks) and temporal (duration of aftershock sequence ~ 250 days)
characteristics. The results indicated that the p parameter for Zakynthos
depended on M., while there was no apparent systematic variation for the
Hokkaido-Nansei-Oki p parameter.

Finally, an investigation was performed on dependencies of these O-U
parameters for Zakynthos on time (20 days time window) and a comparison
with the estimated O-U parameters estimated for Kefalonia and Lefkada
(for a 20-day aftershock sequence). These two islands belong to Greece and
especially to the Ionian sea, thus they are affected by the Hellenic trench,
and they should appear to have the same seismotectonic characteristics. The
results indicated that for the 20 days aftershock sequence, Zakynthos’ and
Kefalonia’s p parameters appeared very low (0.38 and 0.46, respectively),
while for Lefkada it appeared close to 1. Even though we confirmed the va-
lidity of the proposed O-U hypothesis and its parameters fitted very well to
the original data for Zakynthos, the parameters dependencies on time and
magnitude of completeness need more investigation. While they appear to
depend both on time and on M., these dependencies might reflect a back-
ground seismicity or even express the underlying stress. The exact nature
of the law parameters and their dependencies are still in discussion. Finally,
more investigation is needed to define the duration of aftershock activity.
More specifically, the time required for aftershock activity to decrease to the
level of normal background seismicity and, if high or low p, can contribute
to that definition.

Future Directions

In future research, the relationship between moment-local magnitude and the
distance of the seismic stations could be examined exhaustively. Since there
are indications that seismic stations near the epicenter tend to overestimate
the magnitudes, more investigation about this dependence is needed.

In addition, a comparison of magnitude data set derived from identical
record data sets (describing the same seismic events) could be made by
applying both traditional (seismograph) and new standard measurement
procedures (seismometer). In this way, it is possible to minimise errors that
refer to incapacity and inaccuracy of equipment and create standardized
conversion relationships. Another point of interest could be to find if there is
any dependency between seismic quiescence and b-value (Gutenberg Richter
law). Since both might prelude an earthquake it would be interesting to find
a relation, if any, and reduce the boundaries of uncertainty.
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The two proposed models from the temporal distribution analysis of the
interevent times (Chapter 6), can be further analysed to create models to
predict the upcoming seismic behavior or detect any unusual sequence.

Finally, for the estimation of the p parameter (Chapter 7), the Omori
Utsu law was used; there are alternative methods that could estimate the p
parameter. One of them is the Epidemic Type Aftershock Sequence, ETAS.
A model of ETAS could be created to estimate the p, and then the respective
values could be compared with those drawn from the present analysis. In the
same analysis, additionally, the duration of the aftershock sequence could
be investigated. Subsequently, more research need to be done on the p
parameter to determine whether it could be treated as an indicator of the
duration of aftershock sequence.



103

Chapter 9

Appendix

Estimation of b-value for the aftershocks with M, = 3.5 Mjy,.
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Histogram and theoretical densities Q-Q plot

& 300
o
=
> 0.10 S 200
£ =1
c —_
a g
0.05 ‘= 100
o
E
L
0.00 Dfbrerens - 0
0 25 50 75 100 125 0 50 100 150 200
data Theoretical quantiles
Empirical and theoretical CDFs P-P plot
1.00 — . o 1.00
QL
=
0.75 F 0.75
©
o)
8 050 S 050
. o U
O =
[o]
2
0.25 £ 0.25
o
£
0.00 W 600
0 100 200 300 0.00 0.25 0.50 0.75 1.00
data Theoretical probabilities

FiGURE 9.3: Fit of the interevent times of the earthquakes
before the main event to the Gamma distribution. Top left:
Density histogram of the data and fit to the Gamma PDF.
Top right: quantile-quantile plot. Bottom left: Cumulative
distribution function. Bottom right: P-P plot.

TABLE 9.1: Fitting of the Gamma distribution by means of
maximum likelihood

Parameters estimate Std. Error

shape 0.5290 0.0175
rate 0.0317 0.00161
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Histogram and theoretical densities Q-Q plot
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FIGURE 9.4: Fit of the interevent times of the earthquakes
before the main event to the Pareto distribution. Top left:
Density histogram of the data and fit to the Pareto PDF.
Top right: quantile-quantile plot. Bottom left: Cumulative
distribution function. Bottom right: P-P plot.

TABLE 9.2: Fitting of the Pareto distribution by means of
maximum likelihood

Parameters estimate Std. Error

shape 1.3438 0.1018
scale 8.8161 1.0818
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Histogram and theoretical densities Q-Q plot
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FIGURE 9.5: Fit of the interevent times of the earthquakes
before the main event to the Exponential distribution. Top
left: Density histogram of the data and fit to the Exponen-
tial PDF. Top right: Quantile-quantile plot. Bottom left:
Cumulative distribution function. Bottom right: P-P plot..

TABLE 9.3: Fitting of the Exponential distribution by means
of maximum likelihood

Parameters estimate Std. Error

rate 0.0600 0.0017
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Histogram and theoretical densities Q-Q plot

0.15
& 300
| o
=
010 S 200
£ =1
[ —
a g
0.05 ‘£ 100
o
E
"mT'Hw--_ -
0.00 Al 0
0 25 50 75 100 125 0 500 1000 1500 2000
data Theoretical quantiles
Empirical and theoretical CDFs P-P plot
1.00 o 1.00
Q0
=
0.75 B 0.75
©
0
LL (=]
Q 0.50 5 0.50
©
L
0.25 025
o
£
0.00 W 0.00
0 100 200 300 0.00 0.25 0.50 0.75 1.00
data Theoretical probabilities

FIGURE 9.6: Fit of the interevent times of the earthquakes
before the main event to the Lognormal distribution. Top
left: Density histogram of the data and fit to the Lognor-
mal PDF. Top right: quantile-quantile plot. Bottom left:
Cumulative distribution function. Bottom right: P-P plot.

TABLE 9.4: Fitting of the Lognormal distribution by maxi-
mum likelihood

Parameters estimate Std. Error

Logarithmic mean 1.6233 0.0504
Logarithmic standard deviation  1.7922 0.0357
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Different distributions tested for the aftershocks.

Histogram and theoretical densities Q-Q plot
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FIGURE 9.7: Fit of the interevent times of the aftershock

sequence to the Weibull distribution. Top left: Density his-

togram of the data and fit to the Weibull PDF. Top right:

quantile-quantile plot. Bottom left: Cumulative distribution
function. Bottom right: P-P plot.

TABLE 9.5: Fitting of the Weibull distribution by means of
maximum likelihood estimation.

Parameters Estimate Std. Error

shape 0.73672 0.0077
scale 0.8806 0.0185
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Histogram and theoretical densities Q-Q plot
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FIGURE 9.8: Fit of the interevent times of the aftershock

sequence to the Gamma distribution. Top left: Density his-

togram of the data and fit to the Gamma PDF. Top right:

quantile-quantile plot. Bottom left: Cumulative distribution
function. Bottom right: P-P plot.

TABLE 9.6: Parameters of the Gamma distribution obtained
by means of maximum likelihood estimation.

Parameters estimate Std. Error

shape 0.6581 0.0115
rate 0.5925 0.0149
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Histogram and theoretical densities Q-Q plot
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FIGURE 9.9: Fit of the interevent times of the aftershock
sequence to the Exponential distribution. Top left: Den-
sity histogram of the data and fit to the Exponential PDF.
Top right: quantile-quantile plot. Bottom left: Cumulative
distribution function. Bottom right: P-P plot.

TABLE 9.7: Fitting of the Exponential distribution by means
of maximum likelihood

Parameters estimate Std. Error

rate 0.9002 0.0131
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Histogram and theoretical densities Q-Q plot
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FIGURE 9.10: Fit of the interevent times of the aftershock
sequence to the Lognormal distribution. Top left: Density
histogram of the data and fit to the Lognormal PDF. Top
right: quantile-quantile plot. Bottom left: Cumulative dis-
tribution function. Bottom right: P-P plot.

TABLE 9.8: Parameters of the Lognormal distribution esti-
mated by means of maximum likelihood.

Parameters estimate Std. Error

Logarithmic mean —0.8208 0.0206
Logarithmic standard deviation  1.4135 0.0146
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