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Abstract 

 

The way someone is driving a road vehicle has an important impact on the fuel 

consumption, thus the term eco-driving was recently introduced to denote a driving style that 

reduces fuel consumption. This is correlated with many recent advances and developments that 

are taking place in vehicle communications and automated driving. One application of vehicle 

connectivity is to receive information about the next signal switching time, when a vehicle 

approaches a traffic light. Based on this information, appropriately developed systems, known as 

GLOSA (Green Light Optimal Speed Advisory), compute a fuel-efficient velocity profile for the 

vehicle to cross the traffic lights, e.g. without stopping, and provide drivers with speed advice. 

The main goal of this work is to generate optimal trajectories for vehicles crossing a 

signalized junction, with traffic signals operating in real-time (adaptive) mode. Specifically, the 

switching time of the traffic signal is decided, in real time, based on the prevailing traffic 

conditions and is therefore uncertain in advance. This extended (stochastic) GLOSA problem is 

addressed by using probabilistic traffic lights information and calculates a velocity profile for the 

vehicle based on the vehicle's initial state (position and speed) and a fixed final destination state. 

The problem is cast in the format of a stochastic optimal control problem, assuming 

availability of a time-window of possible signal switching times, along with the corresponding 

probability distribution, and is solved numerically using stochastic dynamic programming(SDP) 

techniques. As an ingredient of the stochastic solution, an appropriate deterministic optimal 

control problem is also formulated and solved analytically via Pontryagin’s Minimum Principle 

for the case of know switching times; the deterministic problem solution is used, as an initial 

trajectory for some extended SDP techniques that solve the problem in a significantly less 

amount of time compared to the standard SDP approach. 

The extended SDP techniques used in this work are the Discrete Differential Dynamic 

Programming (DDDP) method and the Differential Dynamic Programming (DDP) method.With 

these approaches, the workload and computational time are both significantly reduced, making 

the proposedapproaches applicable in real time. 
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Chapter 1: Introduction 

 

1.1: Prolegomena 

 

 As a result of cheap and productive energy resources shortage, lack of big scale energy 

storage ability and of course the excessive environmental pollution, it isbecoming more and 

morenecessary for transportation systems to operate with increased fuel efficiency. In the event 

of road vehicles, fuel efficiency relates to economic aspects, as fuel economy means fewer 

expenses for the driver, but also to the protection of the environment in an era of climate crisis, 

which is escalating day by day. Positively, a wide range of technologies have been developed in 

the past few years, in order to decrease fuel consumption of vehicles, including efficient engines, 

adjusted vehicle designs and lighter chassis. Additionally, considerable efforts in the field of 

road vehicle’s transportation development and deployment of efficient intelligent transportation 

systems (including real-time traffic signals) lead to reduced congestion and fuel consumption. 

First of all, traffic signals secure the safe crossing of vehicles at urban junctions in cities 

around the world. Therefore, enforcing safety via traffic lights implies that some vehicles will 

have to stop in front of a red light, and then accelerate after the traffic light switching to green, 

something that clearly increases significantly the fuel consumption of road vehicles. In order to 

reduce the resulting vehicle delays and number of stops, number of algorithms have been created 

and used over the last decades, pointing at optimizing the traffic signals operation. Fixed-time 

signal plans are derived off-line for respective times-of-day (e.g., rush hours like early morning 

congestion or in the afternoons, off-peak etc.) by use of appropriate optimization codes based on 

historical constant demands and are applied without deviations.Still, something like that implies 

that switching times of the traffic lights are always known in advance. On the other hand, real-

time signal control methods make use of real-time measurements to calculate in real time 

suitable signal settings. Depending on the selected signal control strategy, the control update 

period may cover an area from one second to one signal cycle. Plainly, for real-time signals, the 

next switching time is unknown before the switching decision is actually made. It isalso 

important to be noted that real-time methods and implementations are deemed to be more 

advanced and possibly more efficient and productive than a fixed signal application. Fuel 

consumption is growingly considered as an optimization or evaluation criterion while developing 

and deploying signal control systems. 

Suppose a vehicle is approaching a red traffic light at a given and known speed. If the 

vehicle continues its course with this speed, it may reach the traffic light after it has switched to 

green, in which case no fuel-intensive acceleration needs to be applied, although, the constant-

speed vehicle might also reach the traffic light before it turns to green, so it will have to stop and 
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accelerate to a higher speed after the light turns from red to green. On the contrary, if the vehicle 

decelerates smoothly in view of the red light, this may prove beneficial, or not, also depending 

on the time of the green switch. This quandary of vehicle movement in the direction of a red 

traffic signal may be addressed by appropriately designed systems. Some of the first attempts 

were displaying, on road-side dynamic advisory speed signs, the speed that would allow a 

vehicle to cross the downstream signalized junction at green. But if you take into consideration 

the emerging advances in vehicle communications, the current state and timing of a traffic signal 

can be transmitted to equipped vehicles, or applications that the driver possess, in order to enable 

sensible approaching speed decisions. Dependingon signal information, it is possible to navigate 

the driver or the vehicle itself (in the case of an automated vehicle) all the way from the current 

state to the traffic signal by giving speed advice, leading to the fuel consumption and gas 

emissions minimized, or at least decreased in a significant level. Systems or applications that 

optimize the vehicle approach to traffic lights are often referred to as Green Light Optimal Speed 

Advisory systems (GLOSA)[1]. 

In the presence of fixed signals and with prior knowledge of the next switching time, e.g. 

via broadcasting of corresponding messages by the signal controller, the problem of how to 

optimize the approach to traffic signals has been directed in different ways. In various 

researches, such us [2], speed profiles havebeen compared to their energy demand. Rule-based 

algorithms have been employed in different works (i.e. in [3]) in order to be speed advisors for 

vehicles approaching traffic signals, with the goal of reducing fuel consumption and emissions. 

However, rule-based algorithms are not always capable of finding the optimum, and may deliver 

sub-optimal results, in particular when the dynamic vehicle kinematics are not accounted for, 

such us a case with no vehicle acceleration, but the only thing involved is the vehicle’s speed. 

Optimal control approaches (i.e. [4]), considering only the vehicle kinematics, are, by their 

nature, more qualified in producing fuel-optimal speed profiles for vehicles approaching fixed 

traffic signals.  

Working under even more complicated circumstances,referring to the existence of real-

time signals with very short (e.g. second-by-second) control update periods, so it can be 

observed that exact prior knowledge of the next switching time is not available even with the 

signal controller. In this case, the most accurate information about the next signal switching can 

be presented as an estimate or as a probabilistic distribution. There are systems/applications (i.e. 

[5]) available that does not need communication to the infrastructure but relies only on an 

ensemble of the driver’s mobile phone data, in order to detect and foretell the traffic signal 

timing. A mobile phone is able to detect current traffic signals with its camera, cooperatively 

communicate and learn traffic signal timing patterns and eventually predict their future timing. 

An estimate of those future timings can be used as a proxy for any of the GLOSA systems that 

need a given switching time, along with the proper consideration about the consequences of 

estimation inaccuracy. 
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Integrated probabilistic information, unlike a single estimation for the next signal 

switching time can be produced in form of a probability distribution for the next switching time 

inside a short-term future time-window, by use of statistics gathered from previous signal 

operations over an enough rolling horizon. An approach to produce probability distribution for 

the next switching time, based on past signal switching, can be considered,although the available 

probability distribution is used heuristically instead of being used optimally, to accordingly time-

weigh the objective function, within a deterministic optimal control problem that is solved via a 

Dynamic Programming algorithm. The problem can be solved via a discrete Stochastic Dynamic 

Programming (SDP) algorithm, giving us the ability to support the idea that an appropriate 

utilization of the available probabilistic distribution of the next signal switching time is taking 

place, within a stochastic optimal control problem. However, the formulated optimal control 

problem extends only up the point in time where the next switching time becomes known, thus 

neglecting the cost incurred after this time until the vehicle’s final state is reached, something 

that may drives us away from the optimal, and subsequently the wanted trajectories.  

In the current work, the problem of producing fuel-optimal vehicle trajectories for a 

vehicle approaching a traffic signal (GLOSA) for the scenario of probabilistic, namely stochastic 

switching times is investigated. Firstly, the problem is formulated with known probability 

distribution, and the problem is cast in the format of a stochastic optimal control problem, which 

is solved numerically using SDP algorithms. The difference with previous works is that, the 

analytic solution of the fixed switching time problem is being exploited by the stochastic 

approach, which is formulated as an optimal control problem with pertinent final state for the 

vehicle and is solved analytically via Pontryagin’s Minimum Principle, something that provides 

that the obtained solution is consistent, separately of the actual switching time occurrence. This 

approach, as stated before, can be readily generalized to allow for switching time decisions to be 

taken at any time in advance of the actual switching time, not necessarily only between the last 

time period prior to the actual switching time. 

Furthermore, twomodified SDP techniques are going to be used, known as theDiscrete 

Differential Dynamic Programming (DDDP) methodand the Differential Dynamic Programming 

(DDP) method. Regarding the DDDP method, each iteration of the corresponding algorithm 

solves a stochastic problem in a reduced state space, which is formed around the last solution 

trajectory. The initial trajectory to start the iterations is the analytic solution of the pessimistic 

case, which assumes that the traffic signal will switch at the latest possible time. With this 

approach, the work load and computation cost is significantly reduced, making the method 

applicable and realtime, i.e. capable of processing the given data to obtain the solution of the 

stochastic problem in few seconds. 

The second method, DDP, solves analytically, in every iteration, quadratic approximation 

of the initial SDP problem, based on the trajectory of the previous iteration. A main advantage 

ofthe DDP method is that there is no need of use a discrete SDP approach, thanks to the 

quadratic approximation of the problem that allows for an analytical solution. Consequently, the 
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computational time of the algorithm is reduced, making this approach feasible and accurate for 

real-time application. 

 

`1.2: Related work 

 

Vehicle trajectory specification systems, in presence of traffic lights, have gained interest 

from different research domains, such as computer science, civil engineering, transportation 

research and more. This increasing interest in this particular field led to the creation of a broad 

range of simulations,along with real-world implementations, but also various terminologies, 

applications and systems installed in a vehicle. In the following, there are summarized relevant 

publications in the context of technical and real-time evaluation of vehicle (optimal) trajectory 

specification systems when a traffic light is encountered (some, not all, with prejudice of course).  

Proposing a sustainable predictive control in urban traffic networks based on general 

smoothening methods,  Jamshidnejad et al. [6], along with gradient-based approaches, which can 

be applied to smooth optimization problems, state that they have proven efficient enough, both 

computationally and performance-wise, in finding optima of optimization problems. In their 

paper, an MPC system (model-predictive control) is proposed for an urban traffic network that 

covers a gradient-based optimization approach to solve the control optimization problem. The 

controller uses a new smooth integrated flow-emission model, with the purpose of getting a 

balanced tradeoff amid reduction of the congestion and of the total gas emissions. There are also 

introduced efficient smoothening methods for non-smooth mathematical models of physical 

systems. 

While traffic signals are necessary to safely control competing flows of traffic, they 

inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces 

traffic flow and causes traffic jams, as Koukoumidis et al. [5]states. Situations like these can be 

decreased in a significant portion, by providing drivers and their onboard computational devices, 

like a mobile phone, with information about the schedule of the traffic signals ahead, and after 

that the application installed in the device, based on the timing when the signal turn green can 

advice the driver or the vehicle to adjust his/its speed. Also, the computational device that the 

driver or the vehicle has can suggest an efficient detour that will eliminate stops and long waits 

at red lights ahead. This application is called SignalGuru and by using the mobile phone’s 

camera, detects current traffic signals, communicate and learn traffic signal schedule patterns and 

finally predict a future pattern of theirs. The innovativeness in this work and also the horizons 

that opens for further implementations and research are really significant, providing the 

transportation community with a really helpful tool, but most importantly with new paths and 

knowledge, in terms of control competing flows and fuel consumption.  
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Lopez et al.[7] states that their preliminary results show that 25% savings are within 

range in urban circuits, by introducing and evaluating them, comparing with an established 

model called «Intelligent Driver Model» (IDM), a proper driver model (IDMP), in which a 

wireless sensor network has been proposed to deliver to the driver or the vehicle the needed 

information (data). The IDM model is used in order to simulate the longitudinal dynamics of the 

vehicles used in the various examinations. The difference among the two models is that, the 

IDMP model takes advantage of an extra knowledge that can be acquired from the upcoming 

traffic light, by using a wireless sensor network, that collects and distributes future time of red 

and green lights on the wanted street. In this work it is shown that, taking advantage of all the 

available knowledge of the system’s environment, the chances of developing a more advanced 

model are highly increasing.  

Looking back in the middle ‘80s, when Leersum[8], obtained and stated that dynamic 

advisory speed signs could be created and programmed in order to display speeds at which 

motorists can travel smoothly through downstream signalized intersections, appeared to be 

beneficial for both the national economy (and later the environmental crisis, that was even then 

operating, «underground», but still operating), along with the driver. Modifications to the traffic 

simulation program TRANSYT have enabled some of these benefits to be quantified on a typical 

urban road network. Taking as a fact that the greater proportion of motorists obey the signs, it is 

concluded that fuel consumption can be reduced by as much as 13% and the total number of 

stops by up to 38%. 

Borkar et al. [9]discusesa proposed system for predicting the next intersection timing and 

generating the needed trajectories (speed) at the present intersection, in favor of crossing the next 

intersection without stopping. The system is speed module for next intersection prediction 

ingrained in intelligent traffic light control system at intersection. It can also be constructed for a 

GPS based navigation system. In order to efficiently predicting the needed time and speed for 

crossing next intersection (or a traffic light in case of a urban road, instead of a highway) without 

taking into consideration a centralized static approach, the distance between current intersection 

and next intersection and traffic signal timings of next intersection are considered as an input to 

the system. 

Considering a multi-car system, a proper formulated algorithm by Asadi et al. for the 

purpose of receiving upcoming traffic light information to minimize idle at the lights and reduce 

fuel use, and further simulations shows exactly that in [10]. An optimal control algorithm is 

formulated for each equipped vehicle that usesa prediction ofshort range radar and traffic signal 

information to create an optimum velocity trajectory for the vehicle. The objectives are timely 

arrival at green light with the minimum usage of their breaking systems, maintaining safe 

distance among other vehicles and navigating at or near set speed. The Predictive Cruise Control 

(PCC) concept proposed in this paper reveals the capability of reducing the fuel consumption and 

consequently the CO2 emissions, and also the driving times, by utilizing preview information of 

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8


6 
 

traffic signal timing and phase, and all that can be shown from the quite promising results this 

paper feeds back. 

A paper by Hounsel et al.[11], focuses particularly on signalized junctions within 

computer-controlled urban traffic control (UTC) systems, which, as they state, are increasingly at 

the heart of traffic control in cities around the world, due toa feature of most urban networks, 

which is the high density of city streets with numerous road junctions, which require efficient 

control mechanisms in order to contain possible congestion. They also state that, traffic signals 

have become the most widely used form of control, with increasing sophistication in detection 

and real-time optimization providing new levels of efficiency, so it is needed to embrace and use 

them as a tool in order to achieve their goals (optimization of fuel consumption etc.). 

A system studied by Wang et al. [12], refereed as Self-Adaptive Traffic Signal Control 

System, which is based on future traffic environment. The self-adaptive traffic signal control 

system actually is an effective measure for relieving urban traffic congestion. The system is able 

to adjust the signal timing parameters in real time according to the seasonal changes and short-

term alternation of traffic request, leading in improvement of the efficiency of traffic operation 

on urban road networks. According to them, the evolution of information technologies has 

created a sufficient abundance of acquisition means for traffic data, which include the increase of 

available amount of holographic data, available data types, and accuracy. Also, the development 

of commonly used self-adaptive signal control systems in the world is explored, along with their 

technical features, the current research status of self-adaptive control methods, and the signal 

control methods for diversified traffic flow composed of connected vehicles and autonomous 

vehicles. 

Typlados et al. state in [4] that themainpurposeoftheir 

workistogenerateoptimaltrajectoriesforvehiclescrossingasignalizedjunction,withtraffic 

signalsoperatingineitherfixed-timeorreal-time(adaptive)mode.Inthelattercase,thenext 

switchingtimeisdecidedinrealtimebasedontheprevailingtrafficconditionsandistherefore 

uncertaininadvance.TheGLOSAproblemisaddressed as an optimal control 

problem,byusingtrafficlightsinformationand 

calculatingatrajectoryandvelocityprofileforthevehiclebasedonthevehicle'sinitialstate 

(positionandspeed)andafixedfinaldestinationstate. Forthecaseofreal-

timesignals,availabilityofatime-window of possible signal switching times, along with the 

corresponding probabilitydistribution, 

isassumed,andtheproblemiscastintheformatofastochasticoptimalcontrolproblemandis solved 

numerically using Stochastic Dynamic Programmingtechniques, with 

anappropriateoptimalcontrol problembeingformulatedandsolvedanalytically at 

first,viaPontryagin'sMinimumPrincipleforthecase ofknownswitchingtimes. 
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1.3: What is a GLOSA system 

 

The highest fuel consumption on urban arterials is associated with driving in congested 

traffic, characterized by higher speed fluctuations and frequent stops at intersections. One way to 

reduce excessive stop-and-go driving on urban streets is to optimize signal timings, as stated 

before. New methods in traffic signal optimization have incorporated changes in driver’s 

behaviour to achieve optimum performance at signalized intersections. Connected vehicles 

technology provides a two-way wireless communication environment enabling vehicle-to-

vehicle and vehicle-to-infrastructure communications, which can be used for a variety of 

mobility and safety applications. All the above can be summarized, as a GLOSA system [13].  

The goal of Green Light Optimal Speed Advisory (GLOSA) systems is to lower 

CO 2 emissions and to avoid unnecessary stopping in intersection approach scenarios by giving 

speed advices to drivers based on current and future traffic light signal phase timings. So, 

basically it is a system that provides the driver (or the vehicle in presence of automated systems 

and vehicles) with speed advises any time he/it needs them, in order to achieve all the above.  

After extended researches, tests and evaluation of those systems, it can be stated that a 

potentially reduce of CO2 emissions and fuel consumption can be done, in a percentage of 13% 

and potentially upper than that, and also up to 89% in average stop time[14],[15].The initial 

trajectories that are needed for a GLOSA system to calculate the optimal speed and feed it back 

to the driver/vehicle, are the distance to the next traffic light, along with the time to the next 

signal change. 

GLOSA strategies can be categorized into two different sectors, as singe segment or as 

multi segment. In the single segment approach speed advisory is calculated for the segment 

preceding the nearest traffic signals, as soon as a vehicle enters the segment. It is presumed that 

traffic signals are pre-timed and traffic conditions allow vehicles to adapt their speed. In 

addition, vehicles have access to traffic signal schedules. In the case of the multi-segment 

GLOSA, a vehicle calculates a set of optimal speeds (one speed advice per each segment) before 

entering the first segment. The advisory speed for each segment is established as the average 

speed that a vehicle should travel on the segment[16]. 

Similar systems are going to play a major role in the field of future international 

transportations and should be available for every different type of adaptive traffic lights. 

Adaptive traffic lights range from semi-adaptive controllers that don't change the order of signals 

but only alter their length to fully adaptive controllers with the ability to change every aspect of 

its program. The most important inputs for these traffic lights (and what separate them) are 

detectors, who are capable of counting vehicles, detecting waiting pedestrians, or identifying 
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approaching buses or emergency vehicles. Every one of them stimulates the controller and can 

alter its behavior. As you can see, it is critical for a prognosis algorithm to consider these 

detectors as they have a significant impact on the signal transitions of an adaptive traffic light. 

Predominantly, GLOSA functionality is based on two message types: SPAT and 

MAP [4]. In favor of getting information about current and upcoming traffic light phases from the 

traffic light, a connection to the traffic light controller is established. A Signal Phase and Timing 

Message (SPAT) informs about the vehicle’s current state, current phase and next phase for each 

lane of an intersection. Continuing Map Data Messages (MAP) provides information about the 

topology of an intersection such as number of lanes and turning constrains. In order to give the 

wanted speed advices to the driver, a vehicle must receive at least one message of every type and 

link them using the intersection’s singular identification included in the messages that have been 

sent. When a message is received, the GLOSA application generates geometry from the MAP 

message to match the vehicle's position and determines the corresponding lane number. By the 

time the lane that the vehicle is on is finally known, signal phases and timing data related to this 

lane number can be matched. The way that SPAT and MAP messages are transmitted is by 

single-hop broadcast. 

The application collects information about all vehicles that can currently communicate 

with the infrastructure. For every vehicle that is approaching a traffic signal, the system 

determines a range of feasible speeds, which in case of implementation, are able to assist the 

vehicle to pass through an intersection, or in our case from a traffic light without stopping, which 

means pass when the light is green. In case of having a speed price that belongs already within 

this range, the application examines the next incoming vehicle [17]. In that way, it is guaranteed 

that the GLOSA system is going to send a speed advice to a driver or to a vehicle only if it is 

necessary, and the word necessary aims to the situation when this action would prove beneficial, 

so pointless and no needed actions are avoided. So, the algorithm affects only those 

drivers/vehicles that if keep on travelling with the same speed, would arrive at a traffic light in its 

red phase. 

 

1.4: Goals of this work 

 

The main target of this work is to generate optimal trajectories for vehicles crossing a 

signalized junction, with traffic signals operated in real-time. The next switching time is decided 

in real time based on the prevailing traffic conditions and is therefore uncertain in advance. The 

GLOSA problem is addressed by using traffic lights information and calculating a trajectory and 

velocity profile for the vehicle based on the vehicle's initial state (position and speed) and a fixed 

final destination state.  
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In this particular work, focus is on real-time traffic signals, in order to reach and 

approachthat could be used and transformed in the futureto a viable application, that would be a 

very useful tool for every driver, and of course for the environment as well (directly or 

indirectly), by giving the appropriate speed advices to the driver or the vehicle, making driving 

an environmentally orientated process. 

The first algorithm that was developed, by Typaldos et al. [4], had the same principals with 

the algorithm introduced in this thesis, which is no other than the provision of the needed optimal 

trajectories (position and speed), in order to assist the driver or the vehicle to cross the traffic 

light optimally, meaning, with the least possible cost (which is fuel, CO2 emissions etc.). The 

main difference amidst the previous algorithm implemented by Typaldos et al. in [4] and the 

algorithm introduced in this work, is that the workload – computational time of the previous 

algorithm was way too big considering with the method used in the current algorithm, that is 

presented analytically in the following chapters, and so the application was not able to be 

developed as a real-time one. So, the new algorithmdo not provide better results (respectively), 

but they can provide the same results in a substantial less amount of time, due to the decrease of 

the workload the application has to deal with.  
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Chapter 2: Optimal Control Problem 

 

Optimal Control Problems (OCPs) are obtained in the time state and their solution calls 

for initiating an operation index for the system. Due to the dynamic genre of the decision 

variables confront, optimal control problems are much more challenging to solve, resembled to 

normal optimization where the decision variables are scalars, in addition to the fact that OCPs 

become more demanding when uncertainty in any parameter or variable is involved[18]. 

 

2.1: Continuous Time Dynamic Systems formulation 

 

 The Optimal Control Problem refers to either continuous time dynamic systems, or to 

discrete time dynamic systems. In case of continuous time, the following problem is formulated:  

Given the initial state 𝑥(0) = 𝒙0, 0 ≤ 𝑡 ≤ 𝑡𝑒
∗, the time functions of the control variables 

𝒖∗(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑒
∗ are requested, along with the time functions of the state variables 𝒙∗(𝑡), 0 ≤

𝑡 ≤ 𝑡𝑒
∗, and also the final time 𝑡𝑒

∗, which minimize the cost criterion (also, with no violation of 

generality of the problem, the initial time t is being set as 𝑡0 = 0) 

 𝐽 = 𝜕[𝒙(𝑡𝑒), 𝑡𝑒] + ∫ 𝜑[𝒙(𝑡), 𝒖(𝑡), 𝑡]𝑑𝑡
𝑡𝑒
0

 (2.1) 

and taking into consideration the following constrains ∀𝑡 ∈ [0. 𝑡𝑒] 

 𝒙̇ = 𝒇[𝒙(𝑡), 𝒖(𝑡), 𝑡] (2.2) 

 𝒉[𝒙(𝑡), 𝒖(𝑡), 𝑡] ≤ 0 (2.3) 

here𝜕𝒉 𝜕𝒖⁄  the (fully graded) Jacobi table, and the final target  

 𝒈[𝒙(𝑡𝑒), 𝑡𝑒] = 0 (2.4) 

Following, a graphical illustration of the OCP (with no violation of generality):  
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Figure 1: OCP example. Adapted with permission from [20]. 

Figure 1 explains graphically the OCP for a supposed, one dimensioned system. The 

initial state 𝒙0 of the system (ii) needs to be transferred in the final trajectory (iv), avoiding the 

restricted areas, which are being specified by the set of inequalities (iii). There are usually quite 

enough permissible control time functions 𝒖(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑒 , that render feasible this particular 

transfer. Among them, the solution of the OCP is achieved by the time functions 

𝒖∗(𝑡), 𝒙∗(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑒
∗, which minimize the cost criterion Eq. (2.1). 

 The Optimal Control Problem has been formulated above in its general form. Depending 

on the data of every different application, there a series of specific instances:  

a) Known final time 𝑡𝑒: 

a1) Known final state 𝒙(𝑡𝑒) = 𝒙𝑒 

a2) Free final state 

a3) Final trajectory 𝒈[𝒙(𝑡𝑒)] = 0. 

b) Free final time 𝑡𝑒: 

b1) Known final state 𝒙(𝑡𝑒) = 𝒙𝑒 

b2) Free final state 

b3) Final trajectory. 

 Also, in the case of a continuous-time OCP, the following function, known as the 

Hamiltonian function is defined [19]: 

 𝐻(𝑥, 𝑢, 𝑡) = 𝐿(𝑥, 𝑢, 𝑡) + 𝜆𝑇𝑓(𝑥, 𝑢, 𝑡) (2.5) 

where the Lagrange multipliers are defined as 𝜆 ∈ 𝑅𝑛.  

According to the above, the Pontryagin’s Principle of Optimality deliver the below essential 

constraints (see [19]): 
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 𝑥̇ =
𝜕𝐻(𝑥,𝑢,𝑡)

𝜕𝜆
 (2.6) 

 𝜆̇ =
𝜕𝐻(𝑥,𝑢,𝑡)

𝜕𝑥
 (2.7) 

 𝑢 = 𝑎𝑟𝑔min
𝑢

𝐻(𝑥, 𝑢, 𝑡) (2.8) 

 

2.1.1: Free final time 

  

 In the presence of free final time (𝑡𝑒), the optimal control vector 𝑢(𝑡) for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒 

needs to be calculated, along with the final time 𝑡𝑒, so the minimization of the cost criterion Eq. 

(2.1) could be achieved. 

 The following equations determines the value of the final time 𝑡𝑒: 

 𝐻[𝑥(𝑡𝑒), 𝑢(𝑡𝑒), 𝜆(𝑡𝑒), 𝑡𝑒] + 𝜃𝑡𝑒 = 0 (2.9) 

Eq. (2.9) along with the initial and final conditions provide the following boundary constrains, 

which can be used in order to solve the two point value problem, and also in order to compute 

the value of 𝑡𝑒. 

 𝑥(𝑡0) = 𝑥0 (2.10) 

 𝑔[𝑥(𝑡𝑒), 𝑡𝑒] = 0 (2.11) 

 𝜆(𝑡𝑒) = 𝜃𝑥(𝑡𝑒) + 𝑔𝑥(𝑡𝑒)
𝑇 𝑣 (2.12) 

 𝐻[𝑥(𝑡), 𝑢(𝑡), (𝑡), 𝑡𝑒] + 𝜃𝑡𝑒 = 0 (2.13) 

 

2.2: Discrete Time Dynamic Systems formulation 

 

The Optimal Control Problem in the case of discrete time is being formulated in a similar 

way as the previous one considering continuous-time dynamic systems, as follows:  

 Given the initial state 𝑥(0) = 𝒙0 and the disorders 𝑧(𝑘), 0 ≤ 𝑘 ≤ 𝐾∗ − 1, the time 

functions of the control 𝑢∗(𝑘), 0 ≤ 𝑘 ≤ 𝐾∗ − 1 and state variables 𝑥∗(𝑘), 0 ≤ 𝑘 ≤ 𝐾∗ − 1, are 

being wanted, as well as the final time 𝐾∗, which minimize the cost function:  

 𝐽 = 𝜕[𝑥(𝐾),𝐾] + ∑ 𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘]𝐾−1
𝑘=0  (2.14) 
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by taking into consideration the following constraints ∀𝑘 ∈ [0, 𝐾 − 1]: 

 𝒙(𝑘 + 1) = 𝒇[𝒙(𝑘), 𝒖(𝑘), 𝑘] (2.15) 

 𝒉[𝒙(𝑡), 𝒖(𝑡), 𝑡] ≤ 0 (2.16) 

as well as the final target 

 𝒈[𝒙(𝐾),𝐾] = 0. (2.17) 

All the explanations, specifications and special cases that were given and presented in 

above, in section 2.1, considering the OCP for a continuous-time dynamic system, are valid in 

the case of a discrete-time dynamic system.  

 

2.2.1: Free final time 

 

 When the final time is free in this occasion of the Optimal Control Problem (on a discrete 

time dynamic system), the final time  𝑡𝑒 is considered as a variable for optimized, along with the 

control variable. The control vector 𝑢(𝑘), 𝑘 = 0,… , 𝐾 − 1and the final free time 𝑡𝑒 needed for 

the optimization of the criterion: 

 𝐽[𝑥(𝑘), 𝑢(𝑘), 𝑘] = 𝜕[𝑥(𝐾)] + ∑ 𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘]𝐾−1
𝑘=0  (2.18) 

where the number of time-steps K is finite, and also  

 𝑡𝑒 = 𝐾𝑇 (2.19) 

under the constraints  

 𝑔[𝑥(𝐾), 𝑡𝑒] = 0 (2.20) 

 𝑥(𝑘 + 1) = 𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘, 𝛥𝑡] (2.21) 

 𝑥(𝑥0) = 𝑥0 (2.22) 

where 𝑇 is considered as the time-step. 
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Chapter 3: Dynamic Programming 

 

Dynamic Programming is a method developed during the 1950 decade by the American 

mathematician R. E. Bellman. Dynamic Programming is based on the Principal of Optimality, 

which is nothing more than a very simple and understandable capacity of the optimal control 

problems solution. The properties of this particular principal are quite significant, leading to the 

creation of a vast number of algorithms in order to cope with problems in the field of dynamics, 

and also with combinatorial optimization problems, deterministic and stochastic. The 

applications of Dynamic Programming (DP)  are many and also expand in various areas, such as 

Operational Research, Economics etc, along with different types of problems (organization, 

automatic control, design and many more) [20].  

 

3.1: Introduction in Discrete Time Optimal Control 
 

 Considering the minimization of the discrete time cost criterion  

 𝐽 = 𝜕[𝑥(𝐾)] + ∑ 𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘]𝐾−1
𝑘=0  (3.1) 

with defined time-horizon K, taking into consideration the statutory constrains 

 𝒙(𝑘 + 1) = 𝒇[𝒙(𝑘), 𝒖(𝑘), 𝑘] (3.2) 

and initial state 𝒙(0) = 𝒙0 and final target which is define by  

 𝒈[𝒙(𝐾)] = 0 (3.3) 

or with every other possible way of defining a set of points 𝒙(𝐾), and only in those are permitted 

to end up the state x of the problem. It is also important to mention that, the results of this 

chapter can be applied in the particular case of the absence of a final target[20]. In this section, 

for convenience purposes, only the given final time K instance is being taken into consideration. 

Generalization of the results in case of free final time will be examined in subsection 3.4. 

 The allowed control area is defined as 

 𝒖(𝑘) ∈ 𝓤[𝒙(𝑘), 𝑘] = {𝒖(𝑘)|𝒉[𝒙(𝑘), 𝒖(𝑘), 𝑘] ≤ 0} (3.4) 

and it is supposed that the Jacobi table 𝜕𝒉 𝜕𝒖⁄  is a full degree table. This admission is not 

fulfilled if there are state inequality constrains. If that happens, the following inequality 

constrains are assumed 
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 𝒙(𝑘) ∈ 𝖃(𝑘) = {𝒙(𝑘)|𝒉𝑋[𝒙(𝑘), 𝑘] ≤ 0} (3.5) 

with𝖃(𝑘) being the allowed state area. Moreover, when it is considered necessary, the following 

equality constrains can be assumed  

 𝑮[𝒙(𝑡), 𝒖(𝑡), 𝑡] = 0 (3.6) 

along with discrete control or state areas 

 𝑢𝑖(𝑡) ∈ 𝓤𝑖 = {𝑢𝑖,1, 𝑢𝑖,2, … }. (3.7) 

 

 

Figure 2: Graphical explanation of the discrete time OCP. Adapted with permission from [20]. 

 

 In the event of discrete time 𝑘 = 0,1,2, … , 𝐾 this particular problem can be considered as 

a multiple decision - multiple step problem, so an approach can be considered, based on the 

Bellman’s Principal of Optimality[21], according to which: Every residual 𝒖∗(𝑡), 𝑡 ∈ [𝑡1, 𝑡𝑒], 0 ≤

𝑡1 ≤ 𝑡𝑒, of the optimal control trajectory 𝒖∗(𝑡), 𝑡 ∈ [0, 𝑡𝑒], is an optimal trajectory for thetransfer 

of the corresponding intermediate state 𝒙∗(𝑡1) to the final trajectory 𝒈[𝒙(𝑡𝑒), 𝑡𝑒] = 0. For this 

purpose, an absolute minimum of the problem is presupposed.   
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3.2: Bellman’s Recursive Equation 
 

 For the application of the Principal of Optimality in an Optimal Control Problem with 

discrete times, the residual cost, or cost-to-go 𝐽𝑘 is defined, for the transportation of a state 𝑥(𝑘) 

to the final target Eq. (3.3) as following 

 𝐽𝑘 = 𝜃[𝒙(𝐾)] + ∑ 𝜑[𝒙(𝜅), 𝒖(𝜅), 𝜅]𝐾−1
𝜅=𝑘  (3.8) 

 Fora specific problem, the minimum cost-to-go  𝐽𝑘
∗ = 𝑚𝑖𝑛𝐽𝑘 (satisfying all the necessary 

constrains), depends exclusively on the transporting state 𝑥(𝑘) and the time 𝑘. This minimum 

cost is named 𝑉[𝒙(𝑘), 𝑘] with  

 𝑉[𝒙(𝑘), 𝑘] = 𝑚𝑖𝑛𝐽𝑘 = 𝑚𝑖𝑛{𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘] + 𝐽𝑘+1} (3.9) 

where the minimum is considered among all trajectories 𝒖(𝜅), 𝜅 = 𝑘,… , 𝐾 − 1, that satisfies Eq. 

(3.2) - (3.5). By applying the Principal of Optimality on Eq. (3.9) 

 𝑉[𝒙(𝑘), 𝑘] = 𝑚𝑖𝑛{𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘] + 𝑉[𝒙(𝑘 + 1), 𝑘 + 1]}. (3.10) 

Replacing 𝑥(𝑘 + 1)from Eq. (3.2) to Eq. (3.10) the outcome is 

 𝑉[𝒙(𝑘), 𝑘] = 𝑚𝑖𝑛{𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘] + 𝑉[𝒇(𝒙(𝑘), 𝒖(𝑘), 𝑘), 𝑘 + 1]} (3.11) 

The right member of Eq. (3.11), bears the name Bellman’s Recursive Equation [22], and 

it depends on 𝒖(𝑘), not from the subsequent 𝒖(𝜅), 𝜅 = 𝑘 + 1,… , 𝐾 − 1. Therefore, 

minimization on Bellman’s Recursive Equation is understood only for the control variables of 

time 𝑘, meaning for 𝒖(𝑘), of course always with respect to the constrains (3.4) and (3.5). This 

one-step minimization can be performed independently for every step, starting from the final 

time, for 𝑘 = 𝐾 − 1,𝐾 − 2,… ,0, so the initial multiple-step decision problem is distributed in 

𝐾one-step decision problems. Following, there is a detailed presentation of this step-process [20] 

(which is also known as Dynamic Programming): 

 

 Step K-1: For every 𝑥(𝐾 − 1) ∈ 𝖃(𝐾 − 1) the corresponding 𝒖(𝐾 − 1) is determined, 

which minimises    

𝐽𝐾−1 = 𝜃[𝒙(𝐾)] + 𝜑[𝒙(𝐾 − 1), 𝒖(𝐾 − 1), 𝐾 − 1] 

under 𝒙(𝐾) = 𝒇[𝒙(𝐾 − 1), 𝒖(𝐾 − 1), 𝐾 − 1] 

𝒈[𝒙(𝐾)] = 0 
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𝒖(𝐾 − 1) ∈ 𝓤[𝒙(𝐾 − 1), 𝐾 − 1] 

𝒙(𝐾) ∈ 𝖃(𝐾). 

The outcome of this one-step minimization for every 𝒙(𝐾 − 1) ∈ 𝖃(𝐾 − 1) is expressed 

via  𝒖(𝐾 − 1) = 𝑹[𝒙(𝐾 − 1), 𝐾 − 1]. The corresponding minimum values of  𝐽𝐾−1 are being 

illustrated with the function 𝑉[𝒙(𝐾 − 1), 𝐾 − 1]. 

 

 Step K-2: For every 𝑥(𝐾 − 2) ∈ 𝖃(𝐾 − 2)the corresponding 𝒖(𝐾 − 2) is determined, 

which minimises 

𝐽𝐾−2 = 𝑉[𝒙(𝐾 − 1), 𝐾 − 1] + 𝜑[𝒙(𝐾 − 2), 𝒖(𝐾 − 2), 𝐾 − 2] 

 

under 𝒙(𝐾 − 1) = 𝒇[𝒙(𝐾 − 2), 𝒖(𝐾 − 2), 𝐾 − 2] 

𝒖(𝐾 − 2) ∈ 𝓤[𝒙(𝐾 − 2), 𝐾 − 2] 

𝒙(𝐾 − 1) ∈ 𝖃(𝐾 − 1). 

The final target, Eq. (2.7) doesn’t need to be taken into consideration. The results of this 

one-step optimization are being illustrated with the functions 𝑉[𝒙(𝐾 − 2), 𝐾 − 2]and 𝑅[𝒙(𝐾 −

2), 𝐾 − 2]. 

  

Step K-3 

    

(every iteration follows the same path as before, with the appropriate             

changes of course each time) 

 

Step 0: For 𝒙(0) = 𝒙0 the corresponding 𝒖(0) is defined, which minimizes  

𝐽0 = 𝑉[𝒙(1), 1] + 𝜑[𝒙(0), 𝒖(0), 0] 

 

under 𝒙(1) = 𝒇[𝒙(0), 𝒖(0), 0] 
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𝒖(0) ∈ 𝓤[𝒙(0), 0] 

 𝒙(1) ∈ 𝖃(1).  

The outcome of this one-step minimization is expressed via 𝒖(0) = 𝑹[𝒙(0), 0]and 

𝑉[𝒙(0), 0]. 

In some steps there might be states 𝒙(𝑘) ∈ 𝖃(𝑘) in which the corresponding one-step 

minimization problem does not have a solution, because the feasible area that occurs from the 

constrains is empty. Such points  𝒙(𝑘) cannot be transferred to the final target, satisfying all the 

constrains.  

In the end of the presented K-step Dynamic Programming procedure, there have been 

calculated not just the optimal trajectories for the transfer of the initial state 𝒙(0) = 𝒙0 to the 

final targetEq.(3.3), but instead, an optimal closed loop rule, which is expressed from the results 

of the one-step minimization problems  

 𝒖(0) = 𝑹[𝒙(𝑘), 𝑘], 𝑘 = 0,1, … , 𝐾 − 1. (3.12) 

In order to determine the field of applications of the optimal control rule, the 

aforementioned problem for the 0 step can be solved, for every 𝒙(0) ∈ 𝖃(0).Eq. (3.12) includes 

sufficient elements for the optimal transfer not only regarding 𝒙0, but for any 𝒙(𝑘) ∈ 𝖃(𝑘), 𝑘 =

0,1, … , 𝐾 − 1for the final target (3.3), under the condition that the transfer is feasible.  

The one-step minimization in every step can be attempted either analytically or 

numerically (with the help of a personal computer). Analytical solutions are generally applied for 

slightly simple problems. It is also worth mentioning that, Dynamic Programming leads to an 

absolute minimum of the discrete time OCP, if only the calculated one-step minimums are also 

absolute ones.  

 

3.3: Discretization 
 

 The general numeric solution of a discrete time OCP is possible, if a discrete grid of 

points is entered in the feasible areas 𝖃(𝑘) and 𝓤[𝒙(𝑘), 𝑘] (see Figure 3below). The discrete 

intervals 𝛥𝒙(𝑘) and 𝛥𝒖(𝑘) can be chosen depending on the specific problem and the desirable 

solution’s precision. In case of an unlimited feasible state or control area, it is necessary to attach 

appropriate bounds, in order to have a finite number of discrete points. 

 If someone applies in a discrete state 𝒙𝑖(𝑘) all the discrete controls 𝒖𝑗(𝑘), there are a 

finite number of transitions to the next step 𝑘 + 1, with the corresponding costs 
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𝜑[𝒙𝑖(𝑘), 𝒖𝑗(𝑘), 𝑘]. Applying this procedure in all discrete state points of all the discrete times, 

the result is a discrete decision multiple-step system.  

 The application of a discrete control 𝒖𝑗(𝑘) in a discrete state 𝒙𝑖(𝑘) leads to the state 

 𝒙(𝑘 + 1) = 𝒇[𝒙𝑖(𝑘), 𝒖𝑗(𝑘), 𝑘] (3.13) 

of the step 𝑘 + 1. There are two particular cases that need to be taken into consideration: 

• State 𝒙(𝑘 + 1) is out of the feasible area 𝖃(𝑘 + 1). In this case, this particular transition 

does not be taken into consideration.  

• State 𝒙(𝑘 + 1) does not coincides with a discrete point of step 𝑘 + 1. In this case, it can 

approximately be considered that the state 𝒙(𝑘 + 1) concurs with the closest discrete 

point. However, if a more precise solution is wanted, the answer is a linear interpolation 

approach. Also need to be stated that, if the problem is statutory, Eq. (3.2) is invertible as 

to 𝒖(𝑘) (something that presuppose that dim(𝑥) = dim⁡(𝑢)), meaning that if  

 𝒖(𝑘) = 𝑭[𝒙(𝑘), 𝒙(𝑘 + 1), 𝑘] (3.14) 

can be educed analytically from Eq. (3.2), then there is no need of discretization of the feasible 

control area in advance. Instead of that, for every transition from a discrete point 𝒙𝑖(𝑘) to a 

discrete point 𝒙𝑗(𝑘 + 1) of the next step, the necessary control 𝒖𝑖𝑗(𝑘) = 𝑭[𝒙𝑖(𝑘), 𝒙𝑖(𝑘 + 1), 𝑘] 

can be computed through Eq. (3.14), and if 𝒖𝑖𝑗(𝑘) ∈ 𝓤[𝒙𝑖(𝑘), 𝑘], then the transition is feasible, 

otherwise, the transition violates the control constrains and consequently, it does not taken into 

consideration.  
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Figure 3: Discretization of the feasible state area for a two-dimension system. Adapted with 

permission from [20]. 

 

Final target 𝒈[𝒙(𝐾) = 0] needs also to be adjusted into the problem’s discrete 

environment. By entering a tolerance zone ±𝛿around the final target, the following discrete final 

target is formulated  

 𝒬 = {𝒙(𝐾)|∃𝜷:⁡|𝒙(𝐾) − 𝜷| ≤ 𝛿, 𝒈(𝜷) = 0} (3.15) 

 It can now be assumed that the final target has been fulfilled (approximately), provided 

that 𝒙(𝐾) ∈ 𝒬.  

 

3.4: Computational time 
 

Suppose 𝑎𝑖(𝑘), 𝑖 = 1,… , 𝑛, the number of discrete points of the component 𝑖 of the 

vector 𝒙(𝑘) and 𝛽𝑗(𝑘), 𝑗 = 1,… ,𝑚, the number of discrete points of the component 𝑗 of the 

vector 𝒖(𝑘). The total state grid includes  

 ∑ ∏ 𝑎𝑖(𝑘)
𝑛
𝑖=1

𝐾
𝑘=0  (3.16) 
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discrete points and the number of transitions for each point is  

 ∏ 𝛽𝑗(𝑘)
𝑚
𝑗=1 . (3.17) 

 If, for convenience purposes, it is assumed that 𝑎𝑖(𝑘) = 𝑎 and 𝛽𝑗(𝑘) = 𝛽 for each 𝑖, 𝑗, 𝑘, 

then the needed computational time 𝜏 for processing the multi-step procedure of a Discrete 

Dynamic Programming problem is equal to the total number of nods,  

 𝜏~𝐾 ∙ 𝑎𝑛 ∙ 𝛽𝑛. (3.18) 

The necessary storage space of the table that stores the control rule is 𝑚 values for each 

discrete point 𝒙𝑖(𝑘); for the m components of the control 𝒖𝑙(𝑖)(𝑘) vector, and in total 

 𝑚∑ ∏ 𝑎𝑖(𝑘) = 𝑚 ∙ 𝐾 ∙ 𝑎𝑛𝑛
𝑖=1

𝐾
𝑘=0  (3.19) 

values to store. Eq. (3.18), (3.19 )point out that computational time during a Discrete Dynamic 

Programming application increases exponentially with the 𝑛,𝑚 dimensions of the problem, 

something that constitutes a major disadvantage of this, and similar to this, method. Following, 

an example is presented in order to understand better the term exponential increase [20]. 

 

Example 2 

 Assume 𝐾 = 10 steps and one dimension control (𝑚 = 1). Also assume 𝛼 = 𝛽 = 100 

discrete points and 𝜏𝑠 = 100⁡𝜇𝑠the required computational time for the computation of the cost 

for one transition. Using Eq. (3.18), the necessary computational time of the total solution 

through a Discrete Dynamic Programming approach is estimated, as stated next: 

 for 𝑛 = 1⁡𝜏 = 10⁡𝑠 

 for 𝑛 = 2⁡𝜏 = 17⁡𝑚𝑖𝑛 

 for 𝑛 = 3⁡𝜏 = 28⁡ℎ 

 for 𝑛 = 4⁡𝜏 = 3,9⁡𝑚𝑜𝑛𝑡ℎ𝑠 

 for 𝑛 = 5⁡𝜏 = 32⁡𝑦𝑒𝑎𝑟𝑠 

 

Due to the exponential increase of the computational time, narrow limits are being 

instated on a problem’s dimensions, which can be solved with a Discrete Dynamic Programming 

method. An inquiry regarding a problem’s dimensions limits can be performed as follows: 



22 
 

• For each particular problem, it is necessary to check if the feasible state and control area 

can be further confined, aiming to the reduction of the corresponding number of points of 

the grid, and also the number of transitions. Nevertheless, that extra constrain needs to be 

performing in a way that it does not excluding optimal solutions, something that it is 

frequently difficult to be assessed before the problem’s solution.  

• The length of the discrete intervals 𝛥𝒙(𝑘) and 𝛥𝒖(𝑘) needs to be chosen as big as 

possible, meaning, not smaller than necessary. Nevertheless, bigger intervals usually lead 

to less precise solutions. A reliable (in advance) assessment of the solution’s precision is 

demanding, if not difficult in many applications.  

• There have been some suggestions, regarding variations and simplifications of the 

Discrete Dynamic Programming method, aiming to the reduction of the workload and 

eventually the computational time. Such algorithms (DDDP and DDP) have been used in 

this work, which are being presented in the next chapters.  

• The latest and ongoing evolution and changes in the field of computer science are being 

used, in order to investigate the dimensions of the Discrete Dynamic Programming 

applications. The simple structure of the Dynamic Programming multi-step procedure is 

offered for parallel processing in multiple computer systems. 

 

3.5: Discrete Differential Dynamic Programming (DDDP) 

 

The Discrete Differential Dynamic Programming algorithm solves in every iteration the 

discretized problem introduced in subsection 2.2.1, with the following, additional, constrains 

 |𝑥𝑖(𝑘) − 𝑥𝑖
(𝑙−1)(𝑘)| ≤ 𝛥𝑖

(𝑙)
, 𝑖 = 1,… , 𝑛 (3.20) 

where𝑥𝑖
(𝑙−1)

 is the determined optimal trajectory for the last iteration 𝑙 − 1. In other words, the 

discretized problem is solved in every iteration into a corridor with 𝛥(𝑙)(𝑘)width, about the 

previous approximation 𝑥𝑖
(𝑙−1)(𝑘), which reduces significantly the corresponding work load and 

computational time. The selection of the 𝛥(𝑙)(𝑘)width, and also the discrete intervals 

𝛥𝒖(𝑙), 𝛥𝒙(𝑙), can all be different (meaning, they can be changing from iteration to iteration) in 

every iteration, with declining tendency of course. The convergence criterion is satisfied if  

 ‖𝒖(𝑙)(𝑘) − 𝒖(𝑙−1)(𝑘)‖
∞
< 𝜀⁡⁡⁡⁡∀𝑘 ∈ [0, 𝐾 − 1] (3.21) 

where𝜀 > 0is a tolerance limit, and ‖𝒖(𝑘)‖∞ = max
𝑖
(|𝑢𝑖(𝑘)|).  

Below, an example is presented, aiming to the better understanding of the method [20]. 
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Example 2 

Minimization of  

𝐽 =
1

2
∑[𝑥(𝑘)2 + 𝑢(𝑘)2]

3

𝑘=0

 

considering 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑢(𝑘), 𝑥(0) = 2, 𝑥(4) = 0 

𝖃 = {𝑥(𝑘)|0 ≤ 𝑥(𝑘) ≤ 2} 

𝓤 = {𝑢(𝑘)|−2 ≤ 𝑢(𝑘) ≤ 0} 

As an initial trajectory the feasible trajectory 𝑢(0)(0) = 𝑢(0)(1) = 0, 𝑢(0)(2) =

𝑢(0)(3) = −1 is designated, which corresponds to 𝑥(0)(0) = 𝑥(0)(1) = 𝑥(0)(2) = 2, 𝑥(0)(3) =

1, 𝑥(0)(4) = 0, with cost equal to 7.5. In Figure 4 below, a graphic approach of the problem’s 

solution is being presented, using the DDDP method, displaying for every iteration 𝑙 = 1,… ,5: 

• The previous state approximation 𝑥(𝑙−1)(𝑘), presented by a solid line. 

• The discrete points of the solution’s corridor.  

• The new state approximation 𝑥(𝑙)(𝑘), presented by a dashed line, and the corresponding 

cost (presented by a circled number on top of the initial state). 
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Figure 4: Consecutive approximations, regarding Example 2. Adapted with permission from 

[20]. 

 

 In every iteration, the width of the corridor is considered to be equal to a discrete interval 

𝛥𝑥. The width of the corridor is equal to zero for times 0 and 4, due to the specified initial and 

final state. It is also considered that the corridor doesn’t expand to not feasible areas, meaning it 

is restrained from 0 to 2, (0 ≤ 𝑥(𝑘) ≤ 2) in this particular problem, and generally specified 

depending on the problem constrains.  

 The first three iterations taking place under the discrete intervals 𝛥𝑥 = 𝛥𝑢 = 1. During 

the first iteration, the cost criterion is being reduced from 7.5, to 4, and continuing, during the 

second iteration declines from 4 to 3.5. In the third iteration, it is obvious that no further 

improvement can be achieved. Reducing the discrete intervals from  𝛥𝑥 = 𝛥𝑢 = 1to 𝛥𝑥 = 𝛥𝑢 =

0.5, a cost criterion reduction is achieved, as it declines from 3.5 to 3.375 during the fourth 

iteration.  In the fifth iteration no further improvement can be achieved, so the process can be 

stopped here, or it could be continued by further reduction of the discrete intervals, in order to 

improve further the problem’s solution. 

 



25 
 

3.5.1: Advantages and Disadvantages of the DDDP method 

 

 This particular method is well-known and used in a variety of applications, due to the 

reduction in the workload and the faster results compared to other similar methods, as it can be 

observed by Feng et. al. in [23], that the “curse of dimensionality” (mentioned in Chapter 2) is 

posing a great challenge to the optimal operation of a hydropower system (OOHS) due to the 

exponential growth of the computational cost, with the increasing number of plants and the 

DDDP method is used, as well as Heidariet. al. state in [24], where an approach to water 

resources systems optimization is presented, based on Discrete Differential Dynamic 

Programming. According to [24], ,the  major  factors that  led to a DDDP approach in their paper 

were  the  inherent  drawbacks and disadvantages of a «traditional» dynamic programming 

approach, such as, memory, capacity and computer time requirements. By limiting optimization 

to a few points grid around the initial trajectory, the memory requirements appear to have been 

curbed considerably. So, a DDDP method can be quite applicable in many cases, if the workload 

of a DP method is considered, versus the one that a DDDP algorithm has to overcame, which is 

substantially less, as stated before. 

 The percentage of saved computational time, through a DDDP method depends on 𝜟, the 

corridor’s width, and also the number of iterations performed, which generally depends on the 

corridor’s 𝜟 width. In a problem with 𝑛 = 5 and 𝑎 = 100 for example, according to Eq. (3.20), 

the computational time of the problem is equal to 1005 = 1010⁡𝑠𝑒𝑐. Considering a corridor’s 

width equal to five discrete points, for every iteration of the DDDP algorithm there is 

computational time equal to 55 = 3125⁡𝑠𝑒𝑐. However, the exponential increase of 

computational time still exists in a DDDP algorithm, but with a much smaller impact compared 

to a Discrete Dynamic Programming algorithm.  

 The disadvantages of a DDDP algorithm compared to a Discrete Dynamic Programming 

algorithm are: 

• Convergence of the algorithm can be proved only if relevant restrictive admissions take 

place. 

• The possibility of convergence in a relative minimum cannot be excluded, except of 

specific problem categories.  

• A control rule is computed only for the last iteration’s corridor, and not for the whole 

feasible state area 𝖃(𝑘). 

Concluding, it is clear that someone can argue that there are available methods faster than a 

DDDP algorithm, and the convergence times are even lower. Nevertheless, it is important to take 

into consideration that a DDDP algorithm provides us with high precision results, in a quite 

small amount of time, mostly due to the use of the corridor 𝛥, considering the computational 

time that a DP algorithm is going to need to solve the exact same problem and also provide the 
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same results. It is important to be mentioned that, the initial SDP algorithm [4], needs 

approximately from 10 to 20 minutes to solve and provide back the wanted results of a certain 

OCP. On the contrary, a same formulated problem, using a DDDP algorithm, and specifically the 

one that is described in chapter 5, is under the barrier of a second, meaning that a significant 

amount of computational time and workload is being avoided.  

 

3.6: Differential Dynamic Programming (DDP) 
 

Differential Dynamic Programming avoids the exponential increase of computational 

time, by leading in a quadratic convergence, inside an area around the wanted minimum, 

meaning that  

 ‖𝒖(𝑙)(𝑘) − 𝒖∗(𝑘)‖
∞
≤ 𝐴[‖𝒖(𝑙−1)(𝑘) − 𝒖∗(𝑘)‖

∞
]
2
, where 𝐴 < 1. (3.22) 

 In terms of better understanding, the DDP method is going to be presented for the case of 

graded state 𝑥(𝑘) and graded control 𝑢(𝑘). Generalization of the method in a vector instance 

does not present any methodology difficulties, although its presentation includes some quite 

complicated vector terms [20]. 

 Let’s consider the OCP from section 3.1, without taking into consideration the final target 

(3.3) and also without the inequality constrains (3.4) and (3.5). Except that, the admission that 

functions 𝜃, 𝜑 and 𝑓 are sufficiently differentiable for the following calculations is being made, 

something that narrows the implementation amplitude of the method. In order to properly present 

the algorithm, the following equations are being defined  

 𝛿𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑙−1)(𝑘) 

 𝛿𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑙−1)(𝑘) (3.23) 

 The basic principle of the algorithm lies on the solution, for each iteration 𝑙, of a 

quadratic approximation of the initial OCP, based on the last solution 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘). The 

advantage of this procedure emanates from the fact that the solution of a quadratic approximation 

of the OCP; with no constrains involved, is possible analytically, without the use of a 

discretization variable, something that prevent the workload from increasing exponentially.   

 The procedure starts with the last step 𝐾 − 1, according to the algorithm presented in 

section 3.1, assuming the Bellman’s retroactive Eq. (3.11). The under minimization term of Eq. 

(3.11), for 𝑘 = 𝐾 − 1, is  

 𝜑[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1] + 𝜃[𝑓[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]] (3.24) 
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The quadratic approach of this term, under the values 𝑥(𝑙−1)(𝐾 − 1), 𝑢(𝑙−1)(𝐾 − 1) returns 

𝑄[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1] =
1

2
𝐷(𝑘 − 1)𝛿𝑥(𝐾 − 1)2 + 𝐸(𝐾 − 1)𝛿𝑥(𝐾 − 1)𝛿𝑢(𝐾 − 1) +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡
1

2
𝐹(𝐾 − 1)𝛿𝑢(𝐾 − 1)2 + 𝐺(𝐾 − 1)𝛿𝑥(𝐾 − 1) + 𝐻(𝐾 − 1)𝛿𝑢(𝐾 − 1) (3.25)  

where the zero grade constant term was omitted, because it does not affect the outcome of 

minimization. Matrices𝐷, 𝐸, 𝐹, 𝐺 and 𝐻of Eq. (3.25) can be computed as follows (with the same 

principles as for array D below): 

 

𝐷(𝐾 − 1) =
𝜕2𝜑[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]

𝜕𝑥(𝐾 − 1)2
+
𝜕2𝜃[𝑥(𝐾)]

𝜕𝑥(𝐾)2
[
𝜕𝑓[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]

𝜕𝑥(𝐾 − 1)
]

2

+
𝜕𝜃[𝑥(𝐾)]

𝜕𝑥(𝐾)

𝜕2𝑓[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]

𝜕𝑥(𝐾 − 1)
 

  (3.26) 

where every term is being computed for 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘). 

 Minimization of the quadratic approach 𝑄, Eq. (3.25), with respect to 𝑢(𝐾 − 1) produces  

 𝑢(𝐾 − 1) = 𝑢(𝑙−1)(𝐾 − 1) + 𝛿𝑢(𝐾 − 1) (3.27) 

with 

 𝛿𝑢(𝐾 − 1) = 𝑎(𝐾 − 1) + 𝛽(𝐾 − 1)𝛿𝑥(𝐾 − 1) (3.28) 

 𝑎(𝐾 − 1) = −𝐹(𝐾 − 1)−1𝐻(𝐾 − 1) (3.29) 

 𝛽(𝐾 − 1) = −𝐹(𝐾 − 1)−1𝐸(𝐾 − 1) (3.30) 

Using again Eq. (3.9), the approximate function 𝑉̂[𝑥(𝐾 − 1), 𝐾 − 1], without the constant term, 

from the minimum value of 𝑄 is 

 𝑉̂[𝑥(𝐾 − 1), 𝐾 − 1] =
1

2
𝐴(𝐾 − 1)𝛿𝑥(𝐾 − 1)2 + 𝐵(𝐾 − 1)𝛿𝑥(𝐾 − 1) (3.31) 

with 

 𝐴(𝐾 − 1) = 𝐷(𝐾 − 1) − 𝐸(𝐾 − 1)𝐹(𝐾 − 1)−1𝐸(𝐾 − 1) (3.32) 

 𝐵(𝐾 − 1) = 𝐺(𝐾 − 1) − 𝐸(𝐾 − 1)𝐹(𝐾 − 1)−1𝐻(𝐾 − 1) (3.33) 

Computation of steps below 𝐾 − 1 is done in a similar way. Suppose that the by 

quadratic approximation function 
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 𝑉̂[𝑥(𝑘 + 1), 𝑘 + 1] =
1

2
𝐴(𝑘 + 1)𝛿𝑥(𝑘 + 1)2 + 𝐵(𝑘 + 1)𝛿𝑥(𝑘 + 1) (3.34) 

is already been computed. Defining 𝑄[𝑥(𝑘), 𝑢(𝑘), 𝑘] as a quadratic approximation of the term 

𝜑[𝑥(𝑘), 𝑢(𝑘), 𝑘] + 𝑉̂[𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘], 𝑘 + 1], with respect to 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘) and without 

the constant term, the corresponding equation to Εq. (3.25) for the interval 𝑘 is  

 𝑄[𝑥(𝑘), 𝑢(𝑘), 𝑘] =
1

2
𝐷(𝑘)𝛿𝑥(𝑘)2 + 𝐸(𝑘)𝛿𝑥(𝑘)𝛿𝑢(𝑘) +⁡

1

2
𝐹(𝑘)𝛿𝑢(𝑘)2 + 𝐺(𝑘)𝛿𝑥(𝑘) +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝐻(𝑘)𝛿𝑢(𝑘)  (3.35) 

Arrays𝐷, 𝐸, 𝐹, 𝐺 and 𝐻 of the above equation can be calculated as follows (using the same 

principles as for array D below): 

𝐷(𝑘) =
𝜕2𝜑[𝑥(𝑘), 𝑢(𝑘), 𝑘]

𝜕𝑥(𝑘)2
+ 𝐴(𝑘 + 1) [

𝜕𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘]

𝜕𝑥(𝑘)
]

2

+ 𝐵(𝑘 + 1)
𝜕2𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘]

𝜕𝑥(𝑘)
 

 (3.36) 

where every term is being computed for 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘). 

 Function 𝑄 can now be minimized, with the same principles as in interval 𝐾 − 1, with 

respect to 𝑢(𝑘), 

 𝑢(𝑙)(𝑘) = 𝑢(𝑙−1)(𝑘) + 𝑎(𝑘) + 𝛽(𝑘)𝛿𝑥(𝑘) (3.37) 

where𝑎(𝑘), 𝛽(𝑘) are being calculated according to Eq. (3.29) and (3.30). From this minimization 

the approximation 𝑉̂[𝑥(𝑘), 𝑘] =
1

2
𝐴(𝑘)𝛿𝑥(𝑘)2 + 𝐵(𝑘)𝛿𝑥(𝑘) also transpires, where 𝐴(𝑘), 𝐵(𝑘) 

are being calculated using Eq. (3.32) and (3.33). Vectors 𝑎(𝑘), 𝛽(𝑘), need to be stored in every 

step of the method, counter to arrays 𝐴(𝑘 + 1) and 𝐵(𝑘 + 1), which do not have a further use 

and can be erased from the computer’s memory.  

 After the calculation of all the steps of the problem, an improved version of the control 

variable, for every iteration 𝑙, can be formulated 

 𝑢(𝑙)(𝑘) = 𝑢(𝑙−1)(𝑘) + 𝑎(𝑘) + 𝛽(𝑘)𝛿𝑥(𝑘) (3.38) 

 𝑥(𝑙)(𝑘 + 1) = 𝑓[𝑥(𝑙)(𝑘), 𝑢(𝑙)(𝑘), 𝑘], 𝑥(0) = 𝑥0 (3.39) 

In some instances, the use of the following Eq. (3.40) might be needed, instead of Eq. (3.38), in 

order to avoid a possible deviation of the algorithm. 

 𝑢(𝑙)(𝑘) = 𝑢(𝑙−1)(𝑘) + 𝜀[𝑎(𝑘) + 𝛽(𝑘)𝛿𝑥(𝑘)], 0 < 𝜀 ≤ 1 (3.40) 

Nevertheless, it is possible even with this precaution (the use of constant 𝜀), that, derivation of 

the algorithm might occur, so, other measures need to be taken. It is also important to mention 
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that, the state and control variables do not have bounds, meaning that 𝒙⁡and 𝒖are not bordered 

amidst some ensuing regions. 

 

3.6.1: Advantages and Disadvantages of the DDP method 

 

 The DDP method solves the initial OCP without the use of a discretization value, since 

the quadratic approximation problem is being solved analytically, so the computational time is 

being reduced even more than the DDDP method, something that makes this a very useful and 

vastly used method, like in an interesting work by Tassaet. al. [25], considering ways for 

generating goal-directed robot motion using a DDP algorithm, as well as in a similar work 

released by Levine and Koltun, [26], considering Variational Policy Search via trajectory 

optimization, using also DDP algorithmic implementations. 

 Α Differential Dynamic Programming application can be also expanded in problems with 

linear inequality constrains. In this particular case, in every step of every iteration, a quadratic 

programming problem is being solved, something that increases the workload, however, retains 

the increase of the computational time as to the dimensions of the problem in a polynomial way. 

 The disadvantages of the DDP method, compared with a Discrete Dynamic Programming 

method can be summarized below  

• The possibility that the algorithm does not converge, always exist. 

• The possibility that the algorithm converges to a relative minimum. 

• There is a difficulty taking into consideration generic inequality constrains, or 

allowed discrete range of values.  

As stated by Pan et. al. [27], comparing a DDP algorithm with global optimal control 

approaches, the local optimal DDP shows superior computational efficiency and scalability to 

high-dimensional problems, due to the fact that is derived based on linear approximations of the 

nonlinear dynamics along state and control trajectories, therefore it relies on accurate and explicit 

dynamics models.  

 As specified by Levine et. al. [26], their results show that the developed algorithm (which 

is based on a variant of DDP called iterative LQR)  outperforms prior methods because of two 

advantages: the use of  a model-based trajectory optimization algorithm instead of random 

exploration, which allows the algorithm to outperform model-free methods,  and also due to the 

decomposition of the policy search into two simple optimization problems that can each be 

solved efficiently by standard algorithms, which leaves this specific method less vulnerable to 

local optima than more complex methods like Guided Policy Search (GPS), introduced by 

Levine et. al. in [28]. 
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Chapter 4: GLOSA problem formulation 

 

 This chapter contains the GLOSA problem implemented in this thesis, from its 

mathematic viewpoint, starting from the OCP with known signal switching times, which is a 

simplified version of the problem that is being researched. Continuing, the OCP with unknown 

signal switching times is being presented, which is a lot more complicated than the previous one, 

and along with that, the workload and the CPU-time are exponentially increasing, and that is the 

main reason that the two methods mentioned in this chapter (Discrete Differential Dynamic 

Programming and Differential Dynamic Programming) are being used in order to solve the 

Optimal Control Problem investigated in this thesis.  

 

4.1: Optimal Control Problem with Known Signal Switching Time 
 

In this subsection the theoretical background and the method followed of the algorithm 

introduced in [4] are presented, when the switching time is known in advance. Taking into 

consideration Figure 5, the studied vehicle starts from an initial state 𝒙0 = [𝑥0, 𝑣0]
𝑇, with 𝒙0 a 

given initial position and 𝑣0 a given initial speed of the vehicle, which intends of reaching a final 

position 𝑥𝑒 with a final speed 𝑣𝑒, with the limitation that the vehicle isn’t able to pass through the 

traffic light (which current position is at let’s say 𝑥1) before the time 𝑡1, which is the time that 

the traffic light turn from red into green. The purpose of the driver is to reach at his final 

destination, with the minimum possible fuel consumption, by regulating his acceleration 

accordingly with respect to the initial and final conditions 𝒙0and 𝒙𝑒, along with not violating the 

traffic signal constraint. In order to avoid a possible myopic operation of the developed 

algorithm, it is necessary to take into consideration that the final position 𝒙𝑒 needs to be adequate 

downstream of the traffic signal, e.g. 75 m., along with the final speed 𝑣𝑒, which needs to be 

sufficiently high (e.g. 11 m/s).  

The purpose of the driver is to reach at his final destination before the time that the traffic 

light turn from red into green. 
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Figure 5: A vehicle starting from a given position 𝑥0 and speed 𝑣0, starting from a known initial 

state[𝑥0, 𝑣0]
𝑇, the traffic light with known position 𝑥1 and also known switching to green time 

𝑡1.The main target is to enable the vehicle (by adjusting appropriately its speed and acceleration, 

which in this particular case acceleration is also our control variable) to reach at a wanted and 

also given state 𝑥𝑒 with a speed 𝑣𝑒 without stopping at the traffic light, which means passes it at 

the right time, meaning when the light is turned into green. 

 

4.1.1: Problem formulation 

 

The minimization problem presented above is formulated as an optimal control problem 

which accounts for the vehicle kinematics through the following state equations: 

 𝑥̇ = 𝑣 (4.1) 

 𝑣̇ = 𝑎 (4.2) 

where𝑎is the vehicle’s acceleration which has the role of the control variable. The target is to 

navigate the driver or the vehicle from the initial state 𝒙0 = [𝑥0, 𝑣0]
𝑇to the determined final 

condition 𝒙𝑒 = [𝑥𝑒 , 𝑣𝑒]
𝑇within the final time 𝑡𝑒 ,while minimizing the cost criterion  

 𝐽 = 𝑤 ∙ te +⁡
1

2
∫ 𝑎2𝑑𝑡
te
0

 (4.3) 

Furthermore, the green light constraint 𝑡𝑠 ≥ 𝑡1 must be respected, in which 𝑡𝑠 is the time 

vehicle crosses from the signal position 𝑥1. Also, the final time 𝑡𝑒 is free (penalized by the 

parameter w), due to the desire to have a flexible problem formulation that applies to a multitude 

of certain instances of: initial positions (near and far beyond the traffic signal), initial speeds 

(low or high) and switching times. In addition, if the above not accounted for in the cost 

criterion, there is a chance of problem instances emerging and eventually leading to immoderate 

final time. After consideration, a minimum acceleration cost (𝑎2) is accomplished withw = 0, but 

with a high enough price for the final time 𝑡𝑒 and therefore, an appropriate trade-off amidst the 
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acceleration cost and time 𝑡𝑒was found with a value of 𝑤 equal with 0.1, and the explanation of 

why 𝑤 is equal to 0.1, is presented in the following paragraph, along with Figure 7. Finally, 

lower and upper limits can be placed to speed and acceleration 𝑎, bounding the speed in the 

middle of minimum (which in this case is zero) and maximum values, between minimum and 

maximum values for the acceleration.  

Tracking and finally choosing the proper weighting factor (𝑤) for every particular 

scenario investigated, plays a significant role in the shape and the outcome of the optimal 

trajectories. By creating the following diagram using the setup of Scenario 2, the behaviour of 

the weighting factor 𝑤 in relation to the final free time 𝑡𝑒 seems to be the exact opposite, since 

for different weighting factor values, but with identical boundary values, as 𝑤 increases, the final 

free time decreases analogously. 

 

Figure 7: Optimal final time, acceleration cost, in comparison with weight 𝑤. Adapted with 

permission from [4]. 

 

4.1.2: Analytical solution 

 

Firstly, the use of the Hamiltonian function [29], [19] is necessary in favour of the 

necessary conditions of the analytical solution of the problem  

 𝐻(𝑥, 𝜆) = 𝜑(𝑥, 𝑎) + 𝜆𝛵𝑓(𝑥, 𝑢) (4.4) 
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in which 𝜆 represents the co-state vector for the analogous state equations and𝜑(𝑥, 𝑎) =
1

2
𝑎2 

represents the running cost. For this exact problem, the Hamiltonian function is:  

 𝐻(𝑣, 𝑎, 𝜆1, 𝜆2) =
1

2
+ 𝜆1𝑣 + 𝜆2𝛼. (4.5) 

Following are presenting the necessary (for this particular problem’s formulation) conditions of 

optimality  

 𝑥̇ =
∂𝛨

∂λ1
= 𝑣 (4.6) 

 𝑣̇ =
∂𝛨

∂λ2
= 𝑎 (4.7) 

 𝜆1̇ = −
∂𝛨

∂𝑥
= 0 (4.8) 

 𝜆2̇ = −
∂𝛨

∂𝑣
= −𝜆1 (4.9) 

 
∂𝛨

∂𝛼
= 0 (4.10) 

 All the above equations must be fulfilled, along with the initial and final state conditions 

for certain problem formulation. Except that, as a result of the free final time 𝑡𝑒, an extra 

condition for optimality [29], [19] is added 

 𝐻(𝑡𝑒) + 𝑤 = 0. (4.11) 

Initially, the unconstrained problem (UP) is taking into consideration, which means that 

the intermediate green light constraint is not considered. Eq. (4.8) – (4.10)promptly wield an 

analytic linear-in-time optimal acceleration solution in this specific problem that is considering 

in this chapter [30], [31] 

 𝑎(𝑡) = 𝑐1𝑡 + 𝑐2 (4.12) 

and after integration in agreement with Eq. (4.6), (4.7), also the speed and position solutions are 

 𝑣(𝑡) =
1

2
𝑐1𝑡

2 + 𝑐2𝑡 + 𝑐3 (4.13) 

 𝑥(𝑡) =
1

6
𝑐1𝑡

3 +
1

2
𝑐2𝑡

2 + 𝑐3𝑡 + 𝑐4 (4.14) 

where𝑐1, … , 𝑐4 are four integration constants, which, along with the optimal final time 𝑡𝑒,  may 

be considered as the solution of a system of five algebraic equations, including the initial and 

final states and the final time condition Eq. (4.11).  
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Continuing with the constrained problem (CP), at which the vehicle’s position is required at 

some given time 𝑡𝑐 to be at the traffic signal, i.e. 𝑥(𝑡𝑐) ⁡= ⁡ 𝑥1. In this instance, all necessary 

conditions (Eq. (4.6)-(4.11)) remain the same, but there is an additional necessary condition that 

must be fulfilled (see[19]), which, for this particular problem, suggests that the co-state 𝜆1(𝑡) 

may be dis-continuous at the intermediate time 𝑡𝑐. This and Eq. (4.8)-(4.10)then compose a 

continuous two-branch piece-wise linear optimal acceleration solution  

 𝑎(𝑡) = {
𝑐1𝑡 + 𝑐2⁡⁡⁡⁡0 ≤ 𝑡 ≤ 𝑡𝑐

−

𝑐5𝑡
′ + 𝑐6𝑡𝑐

+ ≤ 𝑡 ≤ 𝑡𝑒
 (4.15) 

and after integration with Eq. (4.6), (4.7), the corresponding speed and position solutions are  

 𝑣(𝑡) = {

1

2
𝑐1𝑡

2 + 𝑐2𝑡 + 𝑐3⁡⁡⁡0 ≤ 𝑡 ≤ 𝑡𝑐
−

1

2
𝑐5𝑡

′2 + 𝑐6𝑡
′ + 𝑐7𝑡𝑐

+ ≤ 𝑡 ≤ 𝑡𝑒
 (4.16)  

 𝑥(𝑡) = {

1

6
𝑐1𝑡

3 +
1

2
𝑐2𝑡

2 + 𝑐3𝑡 + 𝑐4⁡⁡⁡0 ≤ 𝑡 ≤ 𝑡𝑐
−

1

6
𝑐5𝑡

′3 +
1

2
𝑐6𝑡

′2 + 𝑐7𝑡′ + 𝑐8𝑡𝑐
+ ≤ 𝑡 ≤ 𝑡𝑒

 (4.17)  

where𝑡′⁡ = ⁡𝑡⁡ − ⁡𝑡𝑐 and 𝑐1, … , 𝑐8 are eight integration constants, which, along with the optimal 

final time 𝑡𝑒, may be specified as the solution of a system of nine algebraic equations, including 

the initial and final states, the final time condition Eq. (4.11), the continuity conditions for 

control and states 𝑎(𝑡𝑐
−) ⁡= ⁡𝑎(𝑡𝑐

+), 𝑣(𝑡𝑐
−) ⁡= ⁡𝑣(𝑡𝑐

+), 𝑥(𝑡𝑐
−) ⁡= ⁡𝑥(𝑡𝑐

+) and the intermediate 

condition 𝑥(𝑡𝑐) ⁡= ⁡𝑥1.  

𝐽𝐶𝑃(𝑡𝑐)is denoted as the optimal objective value of the constrained problem (CP) as a 

function of 𝑡𝑐 and 𝐽𝐶𝑃, the optimal objective value of the unconstrained problem (UP). 

Considering CP was derived by additional constraining of UP, 𝐽𝐶𝑃(𝑡𝑐) ≥ ⁡ 𝐽𝑈𝑃 ⁡⁡∀𝑡𝑐, and, as a 

matter of fact, 𝐽𝐶𝑃(𝑡𝑐)obtains its minimum value for𝑡𝑐 = 𝑡𝑠,𝑈𝑃 , where 𝑡𝑠,𝑈𝑃 isthe time when the 

UP trajectory attains the traffic signal position 𝑥1. Additionally, it was verified that, as expected, 

the function 𝐽𝐶𝑃(𝑡𝑐) increases monotonically for 𝑡𝑐 ≥ 𝑡𝑠,𝑈𝑃. 

These observations conclude to the following approach for finding the solution of the 

original GLOSA problem in presence of a traffic signal at 𝑥1 and switching time to green𝑡1:  

a) Solve the Unconstrained Problem (UP). If 𝑡𝑠,𝑈𝑃 ≥ 𝑡1, the GLOSA problem is solved, 

as the UP solution respects the green-light constraint. Otherwise: 

b) Solve the Constrained Problem (CP). with 𝑡𝑐 = 𝑡1 to acquire the GLOSA solution.  

Regarding the indications above, the solution of UP or CP for a specific problem instance 

requires the solution of a corresponding system of five or nine, respectively, algebraic equations. 

Those solutions were obtained analytically (yielding lengthy formulas) using symbolic 
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differentiation tools (e.g. Mathematica [32]). The numerical solution of those analytical formulas 

to obtain the solution of (UP) or (CP), and subsequently of the GLOSA problem for a specific 

problem instance, needs only fractions of a second of computation time and as a result it can take 

place within the vehicle once the next switching time becomes known. Also, it may be 

reasonable to continuously update the vehicle trajectory, in a model predictive control (MPC) 

loop,to account for possible deviations from the first computed vehicle trajectory, something that 

may happen as a consequence of a variety of disturbances, for instance, a slower vehicle ahead. 

For a given junction, the final state is the same for any initial vehicle state 𝒙0 and any switching 

time 𝑡1. Therefore, the optimal value of the cost criterion,Eq. (3.7), of the deterministic GLOSA 

problem depends on these variables, and is denoted as𝐽𝐶𝑃
∗ (𝑥0, 𝑡1). 

 

4.2: Optimal Control Problem with Uncertain Signal Switching 

Time 
  

 The fact that this particular problem cannot be approached analytically, leads to the use 

of various discrete techniques in order to reach a complete solution of the OCP. Following, the 

case of uncertain signal switching times is being presented. 

In this section, the case of not known traffic light switching times is being presented, or when 

subjected in of short term decisions due to real-time signals. When that happens, based on proper 

statistics from past signal switching activity, vacancy of a time-window of viable signal 

switching times, along with the equivalent probability distribution can be  presumed, in which 

case the problem can be transformed into a stochastic optimal control  problem, which may be 

solved numerically using SDP (Stochastic Dynamic Programming) techniques. Except that, the 

analytical solution of the deterministic GLOSA optimal control problem obtained in 

section4.1and 4.1.2 is used within the stochastic approach, which is presented and explained 

following.   

4.2.1: Problem variables and state equations 

 

 Stochastic Dynamic Programming algorithms have the need for a discrete-time system 

the discrete-time version of the vehicle kinematics with time-step 𝑇 is formulated as shown 

following [33]:  

 𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)𝑇 +
1

2
𝑎(𝑘)𝑇2 (4.18) 

 𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎(𝑘)𝑇 (4.19) 
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where 𝑥(𝑘), 𝑣(𝑘)relate to the vehicle’s position and speed at discrete times 𝑘 = 0,1,2, …  while 

the acceleration (control variable) 𝑎(𝑘) remains constant during every time period 𝑘. The 

following feasible regions (Eq. (4.20) and Eq. (4.21)) bound the state and control variables 

 𝒙(𝑘) ∈ 𝑿 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] (4.20) 

 𝒂(𝑘) ∈ 𝑈 = [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] (4.21) 

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥 are the upper and lower bounds of the state and control 

variables. The traffic light’s switching time 𝑘1 is not certain, but it is assumed that 𝑘1exist in a 

known range 𝑘𝑚𝑖𝑛 ≤ 𝑘1 ≤ 𝑘𝑚𝑎𝑥, where 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are the minimum and maximum 

possible switching times. 

 In order to achieve an appropriate problem formulation, a virtual state 𝑥̃(𝑘) is introduced, 

which accounts for the stochasticity of the traffic light’s operation 

 𝑥̃(𝑘 + 1) = 𝑥̃(𝑘) ∙ 𝑧(𝑘) (4.22) 

 𝑥̃(0) = 1  

where𝑧(𝑘) is a discrete stochastic variable represented as 

 𝑧(𝑘) = {
0⁡⁡𝑖𝑓⁡𝑡𝑟𝑎𝑓𝑓𝑖𝑐⁡𝑙𝑖𝑔ℎ𝑡⁡𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠⁡𝑎𝑡⁡𝑡𝑖𝑚𝑒⁡𝑘 + 1⁡
1⁡⁡⁡𝑒𝑙𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 (4.23) 

Based on Eq. (4.22), (4.23), the virtual state 𝑥̃(𝑘)is either equal to 1, if the traffic light has not 

yet switched until time  𝑘 − 1, or equal to zero if switching takes place at time 𝑘 or before. The 

virtual state 𝑥̃(𝑘)is assumed measurable, meaning that the system is aware at each time 𝑘𝑇 of 

any switching that has taken place or not, within the last time period [(𝑘⁡ − ⁡1)𝑇, 𝑘𝑇]. 

 The stochastic variable 𝑧(𝑘) is independent from its previous values 𝑧(𝑘⁡ − ⁡1), 𝑧(𝑘⁡ −

2), … and takes values in according to a time-dependent probability distribution 𝑝(𝑧|𝑘). 

Depending on the statistics of previous signal switching activity, availability of an a-priori 

discrete probability distribution 𝑃(𝑘), 𝑘𝑚𝑖𝑛 ⁡≤ ⁡ 𝑘1 ⁡≤ ⁡ 𝑘𝑚𝑎𝑥 is assumed, for signal switching 

within the time-window, where ∑ 𝑃(𝑘) = 1
𝑘𝑚𝑎𝑥
𝜅=𝑘𝑚𝑖𝑛

. In view of no switching takes place for 𝑘⁡ ≤

⁡𝑘𝑚𝑖𝑛 ⁡− ⁡1,  then 

 𝑝(0|𝑘) = 0⁡𝑓𝑜𝑟⁡𝑘 < 𝑘𝑚𝑖𝑛 − 1. (4.24) 

When 𝑘 = 𝑘𝑚𝑖𝑛, traffic light switching may take place, with a-priori probability 𝑃(𝑘𝑚𝑖𝑛). 

Consequently 

 𝑝(0|𝑘𝑚𝑖𝑛 − 1) = 𝑃(𝑘𝑚𝑖𝑛). (4.25) 
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In the case of the traffic light has not switched at time 𝑘⁡ = ⁡𝑘𝑚𝑖𝑛, the probabilities of switching 

at some point later within the time-window are increased, contrasted with the respective a-priori 

distribution, and the updated probabilities can be computed through “crop and scale”[34], which 

means that the a-priori probability 𝑃(𝑘𝑚𝑖𝑛) is distributed analogously to increase the 

probabilities of the remaining discrete times, inside of course the time-window. Using this same 

argument, the crop-and-scale procedure for updating the switching probabilities need to be 

carried out at each following time step, as long as the switching has not taken place. This update 

may be accomplished by use of the following crop-and-scale formula that applies for 𝑘𝑚𝑖𝑛 ⁡≤

⁡𝑘⁡ ≤ ⁡𝑘𝑚𝑎𝑥 ⁡− ⁡1 and for any a-priori distribution 𝑃(𝑘) 

 𝑝(0|𝑘) = 𝑃(𝑘 + 1) [1 +
∑ 𝑃(𝑘)𝑘
𝜅=𝑘𝑚𝑖𝑛

∑ 𝑃(𝑘)
𝑘𝑚𝑎𝑥
𝜅=𝑘+1

] (4.26) 

where the term inside the square brackets displays the crop and scale update.  

 

4.2.2: Objective criterion 

 

The cost criterion of the stochastic problem is the same as in the deterministic case Eq. 

(4.3). Nevertheless, in the stochastic case, the exact value of the criterion depends on the 

stochastic variable’s realization, and consequently its expected value is being minimized 

 𝐽 = 𝐸 {𝑤 ∙ te +⁡
1

2
∫ 𝛼2𝑑𝑡
te
0

} (4.27) 

where the expectation refers to the stochastic variable 𝑧(𝑘), 𝑘⁡ = ⁡0, . . . , 𝑘𝑚𝑎𝑥 ⁡− ⁡1. Also, when 

the switching time becomes known at time 𝑘1, while the vehicle is at state 𝒙(𝑘1), proceeding to 

the traffic signal, the problem immediately turns into a deterministic GLOSA problem, and the 

corresponding optimal cost-to-go is 𝐽𝐷𝐺
∗ [𝒙(𝑘1), 𝑘1], which will be denoted as the escape cost. 

According to the Principle of Optimality [35], obtained from Eq. (4.27), after introducing 

discrete-time notation 

 𝐽 = 𝐸 {
1

2
∑ 𝑎(𝑘)2 +
𝑘𝑚𝑎𝑥−1
𝑘=0 𝐽𝐷𝐺

∗ [𝒙(𝑘1), 𝑘1]} (4.28) 

To obtain a formally proper cost criterion [33], the stochastic variable 𝑧(𝑘) and the virtual 

variable 𝑥̃(𝑘) introduced earlier are used, replacing the state 𝒙(𝑘1),  from Eq. (4.18), (4.19) as a 

function of the state and acceleration of the previous time period. This yields the objective 

function in the necessary form, which is 

 𝐽 = 𝐸 {𝑥̃(𝑘)∑ [
1

2
𝑎(𝑘)2 + [1 − 𝑧(𝑘)]𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘 + 1]]
𝑘𝑚𝑎𝑥−1
𝑘=0 } (4.29) 
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Eq. (4.18)-(4.26)and Eq.(4.29)constitute an ordinary stochastic optimal control problem. 

Denoting the corresponding optimal cost-to-go function by 𝑉[𝑥(𝑘), 𝑥̃(𝑘), 𝑘],the Bellman’s 

Recursive Equation [33], for 0⁡ ≤ ⁡𝑘⁡ ≤ ⁡𝑘𝑚𝑎𝑥⁡– ⁡1reads 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑉[𝑥(𝑘), 𝑥̃(𝑘), 𝑘]= min
𝑎(𝑘)∈𝑈

{𝐸 {
1

2
𝑎(𝑘)2 + [1 − 𝑧(𝑘)]𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘 + 1] +

+⁡𝑉[𝑥(𝑘 + 1), 𝑥̃(𝑘)𝑧(𝑘), 𝑘 + 1]}} = min
𝑎(𝑘)∈𝑈

{
1

2
𝑎(𝑘)2 + 𝑝(0|𝑘) ∙ 𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘 + 1] +

+⁡[1 − 𝑝(0|𝑘)] ∙ 𝑉[𝑥(𝑘 + 1), 1, 𝑘 + 1]}  (4.30) 

with boundary condition 𝑉[𝑥(𝑘𝑚𝑎𝑥),1, 𝑘𝑚𝑎𝑥] ⁡= ⁡0. The minimum is required with respect to 

𝑎(𝑘) ∈ 𝑈 only, as typical in Dynamic Programming, which facilitates the numerical solution.  

In this formulation, it is assumed that the decision on traffic light switching is taken 

between the last time period before the actual switching. The generalization to the case of taking 

a switching decision 𝜅 timeperiods ahead of the actual switching is simple. Accordingly, the time 

𝑘1 and the definition of the stochastic variable 𝑧(𝑘)reflect the decision time (instead of the 

switching time), and the only change needed in the above equations is that the escape function 

𝐽𝐷𝐺
∗  needs to include as an argument for the switching time 𝑘⁡ + ⁡𝜅 instead of 𝑘⁡ + ⁡1. 

 

4.3: Numerical solution algorithm 
 

For the sake of implementation of the discrete Stochastic Dynamic Programming 

algorithm for the numerical solution of the problem, the state and control variables need to be 

discretized. The level of discretization has an important impact on computational time, memory 

requirements and the amount of workload the application has to overcome, but also on the 

accuracy of the computed solution. Consequently, an appropriate trade-off needs to be specified 

concerning reasonable computation requirements against achievable solution quality.  

For the discretization, firstly the discrete time-interval has been set as 𝑇 = 1 s, which is a 

reasonable choice for the problem at hand. Continuing, is assumed a general discretization 

interval 𝛥 for the problem variables and the discretization interval of acceleration is set as𝛥𝑎⁡ =

𝛥. Taking into consideration Eq. (3.19), it is obvious that the speed and acceleration intervals are 

equivalent, and, hence, the discretization interval of speed can also assume the same value 

(𝛥𝑣⁡ = ⁡𝛥𝑎⁡ = ⁡𝛥). By the same logic, in view of Eq. (3.18), the discretization interval for the 

position has being set according to the following  

 𝛥𝑥 =
1

2
𝛥 ∙ 𝛵2 (4.31) 
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Based on the above, it can be proved that, if 𝑥(𝑘), 𝑣(𝑘), 𝑎(𝑘) are discrete points, then 𝑥(𝑘⁡ + ⁡1) 

and 𝑣(𝑘⁡ + ⁡1) (resulting from Eq. (4.18)and(3.19)) are also discrete points. It is then assumed 

that 

 𝑥(𝑘) = 𝑛𝛥𝑥 (4.32) 

 𝑣(𝑘) = 𝑚𝛥𝑣 = 𝑚𝛥 (4.33) 

 𝑎(𝑘) = 𝑙𝛥𝑎 = 𝑙𝛥 (4.34) 

where𝑛,𝑚, 𝑙 are positive integers. From Eq. (4.18) 

𝑥(𝑘 + 1) = 𝑛𝛥𝑥 +𝑚𝛥 ∙ 𝛵 +
1

2
𝑙𝛥 ∙ 𝑇2 

=
1

2
𝑛𝛥 ∙ 𝑇2 +𝑚 ∙ 𝛥 +

1

2
𝑙𝛥 ∙ 𝛵2 

 =
1

2
𝛥 ∙ 𝑇2 (𝑛 +

2

𝑇
𝑚 + 𝑙) = 𝛥(𝑛 + 2𝑚 + 𝑙)  

  (4.35) 

which proves that 𝑥(𝑘⁡ + ⁡1) is indeed a discrete point, and the same holds trivially true for 

𝑣(𝑘⁡ + ⁡1) also in view of Eq. (4.19). 

It is now easy to apply the discrete SDP algorithm to obtain an optimal closed-loop 

control law 𝑎(𝑘)∗ = 𝑅[𝒙(𝑘), 𝑘], which, for any specific vehicle state 𝒙(𝑘) and time 𝑘carries out 

and delivers the optimal acceleration 𝑎(𝑘). A full vehicle trajectory can also be achieved by 

beginning at an initial state and time and following the optimal encountered acceleration values, 

and stop when the final state is reached.  

The SDP algorithm is described as follows: 

 

𝑉[𝒙(𝑘𝑚𝑎𝑥), 𝑘𝑚𝑎𝑥] = 0⁡⁡⁡⁡⁡⁡⁡∀𝒙(𝑘𝑚𝑎𝑥) ∈ 𝑿 

𝐟𝐨𝐫⁡each⁡𝑘 = 𝑘𝑚𝑎𝑥 − 1,… ,0⁡𝐝𝐨 

 𝐟𝐨𝐫⁡each⁡discrete⁡state⁡𝒙(𝑘) ∈ 𝑿⁡𝐝𝐨 

  𝐟𝐨𝐫⁡each⁡discrete⁡control⁡𝑎(𝑘) ∈ 𝑈𝐝𝐨 

   Calculate⁡𝑥(𝑘 + 1), 𝑣(𝑘 + 1) 

   𝐢𝐟⁡𝒙(𝑘 + 1) ∉ ⁡𝑿 

    𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘] ← ∞ 
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    𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐞 

   𝐞𝐧𝐝⁡𝐢𝐟 

   𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘] ←
1

2
𝑎(𝑘)2 + 𝑝(0|𝑘) ∙ 𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘] + [1 − 𝑝(0|𝑘)] ∙

𝑉[𝒙(𝑘 + 1), 𝑘 + 1] 

  𝐞𝐧𝐝⁡𝐟𝐨𝐫 

  𝑉[𝒙(𝑘), 𝑘] = min{𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘]} ∀𝑎(𝑘) ∈ 𝑈 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅[𝒙(𝑘), 𝑘] = 𝑎(𝑘)∗ = argmin
𝑎(𝑘)∈𝑈

{⁡𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘]} , with⁡𝑎(k)∗ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡the⁡optimal⁡control⁡of⁡point⁡[𝒙(𝑘), 𝑘] 

 𝐞𝐧𝐝⁡𝐟𝐨𝐫 

𝐞𝐧𝐝⁡𝐟𝐨𝐫 

 

In the above formulation, there is an implicit assumption that the red light is active when 

the vehicle reaches for the first time on the link, at time 𝑡 = 0, like in the deterministic case. The 

approach can of course be extended to an instance where the traffic light is green at the initial 

time, and its time duration is uncertain, but probabilistic information is available regarding the 

switching time from green to red. The generalized problem can be developed in a similar way as 

in this chapter, while using a longer time horizon, which involves two periods of switching 

uncertainty: one starting from red and then turning into green, and an earlier one, reflecting the 

uncertain switching from green to red.  

This algorithm (SDP) needs several minutes (as will be reported in the next chapter) for a 

standard personal computer (AMD Ryzen 5 2400G 3.60 GHz processor, 8.00 GB RAM 

memory) to execute and achieve the optimal trajectories for the given vehicle. That is the main 

reason why this solution cannot be obtained in real time on the vehicle side. Nevertheless, the 

solution that the SDP provides is comprehensive, because it feeds back optimal acceleration for 

all feasible positions and speeds of a given vehicle. So, the SDP algorithm is being used as a 

basis, and continuing by developing other methods and algorithms, that, combined, can provide 

with those optimal results, in an affordable amount of time. 
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4.4: Discrete Differential Dynamic Programming 
 

 Continuing from the above, the DDDP method introduced in chapter 3 is used, in order to 

create an algorithm that can provide the results of the SDP, but in a substantial less amount of 

time. The course of action that was followed is briefly presented in the following 

paragraphs.Also, this section contains the way that the DDDP method was actually implemented. 

As stated before, for application of the discrete SDP algorithm for numerical solution of the 

problem, the state and control variables must be discretized. The level of discretization has a 

significant impact on computational time and memory requirements, but also on the accuracy of 

the computed solution. The trajectories (position and speed) for each optimal control are being 

calculated according to Eq. (4.18)and(4.19), with the state and control variable being bounded 

amid the feasible regions, described by Eq. (4.20)and(4.21). Also, the algorithm needs initial 

trajectories in order to operate, due to the fact that, it creates around these trajectories a corridor. 

These initial trajectories are taken from the deterministic GLOSA problem, by solving the 

pessimistic case of the problem, which assumes that the traffic signal will switch at the latest 

possible time. 

Knowing that discretization in every iteration can be changed,the first thought was that after 

every iteration of the algorithm, the discretization should be decreased. This approach worked 

properly, but after consideration and tests, it was concluded that, it does not necessarilyneed to 

downgrade the discretization variable of what it previously was in every iteration, because it 

might be working, but it adds extra workload and computation time. Therefore, a constrain was 

added, in which, if the cost of the previous iteration is equal to the cost of the current iteration, 

then thediscretization for the next iteration is being reduced. 

Also, considering the corridor 𝛥, there two ways that 𝛥 can be implemented, a fixed corridor, 

and a dynamically changing corridor, and the dynamic approach was selected, and the reason 

why will be justified in Chapter 5. The user chooses a length of 𝛥, which corresponds to the 

allowed points, so the user indirectly chooses the number of the allowed points 𝛥𝑐.There is a 

trade-off between computational time, number of iterations and this variable and the length of 

corridor 𝛥.So,the user has the opportunity of choosing amidst more iterations within a small 

amount of time, or less iterations but within a larger amount of time, by using a bigger corridor. 

Having fixed discrete points is also a way of reducing computational time, since the unnecessary 

and quite large increase of those points after every iteration is being avoided, which gives us 

nothing else but taken computer memory space, with no actual use. 

Continuing, the algorithm’s termination criterion needs also to be analysed properly. The 

algorithm should be working and keep doing the tasks that has to do in every iteration, until it 

will converge to an optimal solution, and then stop.  The termination criterion used, Eq. (3.23) 

from [19], and it is the norm of the subtraction, of the control variables for the current iteration 
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and the previous one,which should be smaller or equal to a variable𝜀. As 𝜀 gets smaller values, 

the accuracy that corresponds in the fuel consumption is increased, but after a certain point, the 

better accuracy given is quite insignificant, since the reduction on the fuel consumption is 

minor.Regarding the trade-offofabout the optimal selection of corridor 𝛥, further analysis and 

investigation, with the proper justification and explanation will be present in the 

followingChapter 5, with the form of figures and tables. 
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Chapter 5: Results 

 

In this section are being presented the investigated scenarios, examinedwith the use of the 

DDDP algorithm described in the above Chapters 3 and 4, along with the results of the 

algorithm, for the different scenarios tested.  

Firstly, the following variables used in each scenario are being clarified.  

• 𝑥0: initial position of vehicle in meters, 

• 𝑥𝑒: final position of vehicle in meters, 

• 𝑣0: initial speed of vehicle in m/s,  

• 𝑣𝑒:target (final) speed of vehicle in m/s 

• 𝑥1: traffic signal position in meters. 

• [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]: switching time range for the traffic light in seconds. 

• [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]:position bounds in meters 

• [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]:speed bounds in m/s 

• [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]: control bounds in m/s2 

 

Scenario 1: 𝑣0 = 5
𝑚

𝑠
, 𝑣𝑒 = 11

𝑚

𝑠
, 𝑥0 = 0⁡𝑚, 𝑥𝑒 = 220⁡𝑚, 𝑥1 = 150⁡𝑚, 𝑤 = 0.1 

Scenario 2: 𝑣0 = 11
𝑚

𝑠
, 𝑣𝑒 = 11

𝑚

𝑠
, 𝑥0 = 0⁡𝑚, 𝑥𝑒 = 220⁡𝑚, 𝑥1 = 150⁡𝑚, 𝑤 = 0.1 

Scenario 3: 𝑣0 = 11
𝑚

𝑠
, 𝑣𝑒 = 11

𝑚

𝑠
, 𝑥0 = 75⁡𝑚, 𝑥𝑒 = 220⁡𝑚, 𝑥1 = 150⁡𝑚, 𝑤 = 0.1 

 

5.1: Experimental results on known switching times 
  

 This section contains results from Scenario 1 and 2, in the case of known signal switching 

times, with the switching time of the traffic light 𝑡1, where 𝑡1 = 18𝑠.In these two scenarios, the 

initial and final position, the traffic light’s position and switching time are the same, but the 

initial speed of the vehicle is different.  

Consequently, in Scenario 1 the vehicle’s optimal trajectory, resulting from UP (see 

subsection 4.1.2), does not interfere with the red light constraint and the vehicle passes from the 

traffic light through the green light phase, so there is no need of adjusting the vehicle trajectories 

through the CP. However,in Scenario 2 the solution of UP violates the green light constraint, so 
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the vehicle’s trajectory,derived from CP(see subsection 4.1.2),guides it to pass through the traffic 

light the exact moment that it turns from red to green.  

Figure 6, a and b, demonstrates the vehicle’s optimal acceleration, speed and position 

trajectories, for both Scenario 1 and 2.As far as Scenario 1 is concerned, the initial speed is less 

than the final speed, as a result the vehicle accelerates in order to reach the final states. In this 

case, as the UP solution leads the vehicle to reach the traffic signal during the green phase, no re-

adjustment of the trajectories, via solution of CP, is needed.On the other hand, inScenario 2, 

since the initial and final speed of the vehicle is the same, the only reasons for a change are either 

a possible case of wanting to reach the final position in a shorter amount of time, so the vehicle 

would increase and the decrease its speed, or another possible case of crossing the traffic signal 

during the red light phase, something that would demanded a decrease and then an increase in 

the vehicle’s speed. 

It can be observed in Figure 6 that the solution UP behaves according to the first reason, 

but fails to satisfy the traffic light constraint.On the contrary, the CP seems to identify the second 

reason (decrease and the increase of the vehicle’s speed) and guide the vehicle to, first,decelerate 

with the purpose of passing the traffic light in the exact moment that it turns from red to green, 

and then accelerate in order to satisfy the final conditions. In both scenarios the finalposition and 

speed are both fulfilled at the final time 𝑡𝑒 as they should, and also without violation of the 

traffic signal constraint. 

 

Figure 6: Optimal vehicle trajectories (blue solid lines) for Scenario 1 (a) and Scenario 2 (b), 

with the corresponding trajectories of the UP solution (red doted lines).Also, the straight red and 

green solid lines represent the red and green light phases[4]. 
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5.2: Experimental results on unknown switching times 
  

In this section, the results of the proposed DDDP approach, for all three Scenarios 1-3,are 

presented.In Scenario 1, the vehicle starts with a low initial velocity, which leads the vehicle to 

mostly accelerateuntil it reaches the final destination point, and, in the meantime, it has to pass 

through the traffic light at an optimal time and also minimize the cost criterion. In Scenario 2, the 

vehicle has the same objective, but the initial velocityis larger than the one of Scenario 1, which 

now leads the vehicle to, mostly, decelerate. Scenario 3has the same set up with Scenario 2 but 

now the vehicle starts from a position closer to the traffic light, in order to investigate the case 

where the vehicle is forcedto stop atthe red light, wait, and then accelerate after the traffic light 

turns green from red. The states and control bounds are set to [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] = [0,150] m, 

[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] = [0,16] m/s,[𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] = [−3, 3] m/s2, respectively. The time step 𝑇 is 1 s, 

which verifies the discretization properties mentioned in Chapter 4. The switching time range for 

the traffic light is [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] = [10, 30] with uniform a-priori probability distribution.For the 

initial discretization, 𝛥𝑎 = 𝛥𝑣 = 0.5 is used, which leads to 𝛥𝑥 = 0.25 and the initial corridor 

length is set to 𝛥 = 4. 

Another thing worth mentioning is that, there are two dashed red lines in the figures 

representing the vehicle’s velocity and position, among the lines that represent the initial and 

optimal trajectories, which constitute the corridor that was mentioned above. This is actually the 

corridor that the algorithm is forced to work under. So, the initial thought was that the algorithm 

should be working under a fixed corridor [−𝛥,+𝛥]. But soon it was determined that this 

approach increases the complexity and computational time in a not affordable scale, by making 

the algorithm searching for the optimal in a much bigger area. So, the searching radius was 

expanding vastly, but with nothing in return. 

Consequently, the corridor is being implemented in a slightly different way, by 

multiplying the discretization variable 𝛥𝑈 with the allowed points, because with this approach, 

every time the discretization variable is being reduced, the corridor’s length is being reduced as 

well. As far as speed is concerned, the corridor is [−(𝛥 ∗ 𝐷𝑈),+(𝛥 ∗ 𝐷𝑈)] , but for the position 

of the vehicle there is a difference, since the range of values for the position of the vehicle is 

[0,150], and speed between [0,16], so the interval [−(𝛥 ∗ 𝐷𝑈),+(𝛥 ∗ 𝐷𝑈)] satisfies speed, but 

not the position, since a (𝛥 ∗ 𝐷𝑈) addition on the position’s corridor is not equivalent to a 

similar addition to the speed’s corridor for example. So, after some tests and consideration the 

corridor for the position of the vehicle was implemented as follows: [−(𝛥 ∗ 𝐷𝑈 ∗ 𝑒),+(𝛥 ∗ 𝐷𝑈 ∗

𝑒)], in order to have equivalent corridors for the vehicle’s trajectories ( the control variable does 

not have a corridor, since the bounds are fixed), where e is an integer, with values that the user 

sets, according to his/her preferences.  
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Figures 8-10 represent the evolution of the optimal state and control trajectories over 

each iteration of the DDDP for Scenarios 1-3. Specifically,in eachiteration we consider a 

corridor 𝛥(𝑙) = [−𝛥 ⋅ 𝛥𝑈, 𝛥 ⋅ 𝛥𝑈] around the given initial state trajectories, which cannot of 

course extend out of the state bounds. That means that the problem’s feasible region is reduced, 

which means that the DDDP solves, in each iteration, a reduced problem in terms of state 

space.Note that, the initial trajectory of the first iteration of the DDDP is the optimal solution of 

the deterministic GLOSA problem, assuming that the traffic light will switch from red to green at 

the latest possible time, that is, at 𝑡1 = 𝑘𝑚𝑎𝑥, so as to be on the safe side. 

The dashed blue line represents the initial trajectory, the solid orange lines represents the 

optimal trajectories and the red dashed lines posing as the corridor.Also note that the traffic light 

phases are represented, in the position trajectories, as a straight line which is red for the red light 

phase, yellow for the stochastic switching period and green for the rest.It can be observed from 

Figures 8 - 10that, starting with the initial chosen discretization, in the first iterations the DDDP 

manages to improvethe initial trajectories, leading in better solutions, up to a point (i.e. Iteration 

3 of Scenario 1) where no further improvement can be achieved. Reducing the discretization, a 

reduction in the corridors can be also observed, which is expected as its length depends on both 

𝛥𝑈and the chosen length of corridor 𝛥. This reduction enables furtherimprovement of 

thetrajectories, again up to the pointwhereno better solution can be achieved and the procedure 

goes on until one ofthe terminal criterions is fulfilled.Following, the graphical representation of 

the vehicle’s position, speed and acceleration for every iteration of the algorithm, considering 

Scenario 1: 

   

   

(a) 
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(b) 

 

   

   

(c) 
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Figure 9: Initial and Optimal position (a), speed (b) and acceleration (c) of the vehicle, 

considering Scenario 1. 

 

Continuing now to Scenario 2, in which the same as the above Scenario 1 apply for the 

shown figures, with a difference in the nature of the scenario itself, since the initial speed (𝑣0 =

11⁡𝑚/𝑠) is the same as the targeted final speed (𝑣𝑒 = 11
𝑚

𝑠
). Following, the graphical 

representation of the vehicle’s position, speed and acceleration for every iteration of the 

algorithm: 
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(a) 
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(b) 
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(c) 

Figure 8: Initial and Optimal position (a), speed (b) and acceleration (c) of the vehicle, 

considering Scenario 2. 

 

 Coming now to Scenario 3, which is a different scenario in relation with the other two, 

because the vehicle initiates its course from a position quite closer to the traffic light, and so the 

vehicle one accelerates, there is no deceleration or stopping for the vehicle in this scenario. Also, 

in the figures considering the vehicle’s speed, it can be observed that the lower bound of the 

corridor, as long as with some values of the trajectory itself are identical with the x-axis, which is 

actually value 0, since zero is the lower bound of the vehicle’s speed. 

 

   

   

(a) 
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(b) 

   

   

(c) 

Figure 10: Initial and Optimal position (a), speed (b) and acceleration (c) of the vehicle, 

considering Scenario 3. 
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5.3: Comparison of the discretization variable 𝜟𝑼 in relation to cost 

and computational time, considering the DDDP method 

 

 In this section, the resulting cost and the overall computing time of the DDDP algorithm 

are being presented, in relation to the discretization variable𝛥𝑈used in every iteration of each 

algorithm,along with the length of the corridor for the vehicle’s trajectories,which constitutes an 

important way of comparing the algorithm, in order to locate its strengths and weaknesses. 

As far as the DDDP method is considered, different values of the corridor’s length𝛥, 

which eventually correspond in the allowed points (𝛥𝑐) are being tested, in order to properly 

compare, present and evaluate the trade-off between cost and computational time, and the 

«golden section» that there is and should be followed as well.  

Taking now into consideration the discretizationvariable 𝛥𝑈, initially is being set equal to 

0.5, and as the algorithm progresses, 𝛥𝑈 decreases, until it reaches the value 0.125, or 

beforethat, ifEq. (3.23) is satisfied. The choice of the discretization variable can be explained by 

the results of the Table 1, Table 3 and Table 5.It can be observed that, as expected, as the 

discretization interval is reduced, the obtained optimal cost is reducing as well.  

 

5.3.1 Scenario 1 considering the DDDP method 

 

The table below presents the differences between CPU-time, number of iterations and 

cost for different 𝐷𝑈 values: 

  𝜟𝑼 = 𝟏. 𝟎   𝜟𝑼 = 𝟎. 𝟓  

𝜟 Iterations CPU-time 

(in s.) 

Cost  Iterations  CPU-time 

(in s.) 

Cost  

2 19 1.6782 1.19993 20 1.9529 1.19331 

3 19 3.6527 1.17698 8 1.6026 1.17517 

4 15 4.4220 1.17517 6 1.8073 1.17517 

5 12 5.3904 1.17517 6 2.7874 1.17517 

6 10 6.1789 1.17517 6 3.8851 1.17517 

7 10 8.1823 1.17517 6 5.2753 1.17517 

8 8 7.7466 1.17517 6 6.2245 1.17517 

9 8 9.2272 1.17517 8 10.2638 1.17517 

       

  𝜟𝑼 = 𝟎. 𝟐𝟓   𝜟𝑼 = 𝟎. 𝟏𝟐𝟓  

𝜟 Iterations CPU-time 

(in s.) 

Cost  Iterations  CPU-time 

(in s.) 

Cost  
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2 10 1.0061 1.19331 5 0.8835 1.19331 

3 6 1.2317 1.17907 5 1.13924 1.17907 

4 7 2.2774 1.17517 6 2.1347 1.17517 

5 6 2.9560 1.17517 5 2.6782 1.17517 

6 5 3.2154  1.17517 4 2.8837 1.17517 

7 4 3.8502  1.17517 3 2.9937 1.17517 

8 4 4.3872  1.17517 3 3.7152 1.17517 

9 4 5.6701 1.17517 3 5.2839 1.17517 

Table 3: Number of iterations and CPU-time consumed, for every value of 𝛥, considering 

Scenario 1,for the DDDP algorithm,for different values of 𝐷𝑈. 

 

The following tables represent for different values of the corridor’s length (𝛥), the cost 

and CPU-time for every iteration of the algorithm, considering Scenario 1. 

Δ=2 Δ=3 Δ=4 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 
1 1.54512 0.1059 1 1.53603 0.1960 1 1.35775 0.3019 

2 1.53625 0.0677 2 1.35775 0.1770 2 1.35775 0.3198 

3 1.53446 0.0671 3 1.35775 0.1487 3 1.22327 0.2936 

4 1.53446 0.1000 4 1.23237 0.1873 4 1.22327 0.2443 

5 1.35933 0.1052 5 1.22327 0.1469 5 1.17517 0.2970 

6 1.31703 0.1114 6 1.22327 0.1582 6 1.17517 0.2972 

7 1.30435 0.1047 7 1.17517 0.1694    

8 1.28450 0.0950 8 1.17517 0.1652    

9 1.28143 0.0761       

10 1.27362 0.0812       

11 1.26617 0.0906       

12 1.26617 0.0871       

13 1.22864 0.0916       

14 1.22864 0.0962       

15 1.21013 0.0847       

16 1.20945 0.0820       

17 1.19898 0.0982       

18 1.19339 0.0983       

19 1.19331 0.0743       

20 1.19331 0.0844       

(a) 

Δ=5 Δ=6 Δ=7 

Iteration Cost CPU-

time (in 

Iteration Cost CPU-

time (in 

Iteration Cost CPU-

time (in 
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s.) s.) s.) 
1 1.35775 0.5514 1 1.35775 0.6466 1 1.35775 0.9426 

2 1.35775 0.4883 2 1.35775 0.5310 2 1.35775 0.8020 

3 1.22327 0.3988 3 1.22327 0.5636 3 1.22327 0.7956 

4 1.22327 0.4312 4 1.22327 0.5653 4 1.22327 0.7632 

5 1.17517 0.4658 5 1.17517 0.5966 5 1.17517 0.9038 

6 1.17517 0.4471 6 1.17517 0.5613 6 1.17517 0.8712 

(b) 

Δ=8 Δ=9 
Iteration Cost CPU-time (in 

s.) 
Iteration Cost CPU-time (in 

s.) 
1 1.35775 1.1894 1 1.35775 1.3973 

2 1.35775 0.9249 2 1.27815 1.2454 

3 1.22327 1.0600 3 1.27815 1.1488 

4 1.22327 0.9523 4 1.22716 1.1881 

5 1.17517 1.0219 5 1.22327 1.2635 

6 1.17517 1.0247 6 1.22327 1.2105 

   7 1.17517 1.3151 

   8 1.17517 1.3633 

(c) 

Table 4: Number of iterations, cost and CPU-time per iteration, considering Scenario 1, for the 

DDDP algorithm, for different values of 𝛥. Table 4 is constituted by (a), (b) and (c). 

 

5.3.2 Scenario 2 considering the DDDP method 

 

 The table below presents the differences between CPU-time, number of iterations and 

cost for different 𝐷𝑈 values: 

 

  𝜟𝑼 = 𝟏. 𝟎   𝜟𝑼 = 𝟎. 𝟓  

𝜟 Iterations CPU-time 

(in s.) 

Cost  Iterations  CPU-time 

(in s.) 

Cost  

2 30 2.8955 3.90985 18 1.6486 3.90985 

3 22 3.9694 3.90683 14 2.5773 3.90683 

4 14 4.0992 3.90683 10 3.0272 3.90683 

5 11 4.6326 3.90683 7 3.1107 3.90683 

6 14 7.8569 3.90683 10 5.8131 3.90683 

7 13 9.5328 3.90683 9 6.8251 3.90683 

8 11 9.8620 3.90683 8 7.8471 3.90683 
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9 11 11.9533 3.90683 8 10.0214 3.90683 

 

 

      

  𝜟𝑼 = 𝟎. 𝟐𝟓   𝜟𝑼 = 𝟎. 𝟏𝟐𝟓  

𝜟 Iterations CPU-time 

(in s.) 

Cost  Iterations  CPU-time 

(in s.) 

Cost  

2 16 1.6298 3.90985 21 2.3273 3.90985 

3 12 2.3428 3.90683 18 3.7644 3.90683 

4 8 3.4996 3.90683 13 4.4034 3.90683 

5 8 3.7985 3.90683 11 5.3552 3.90683 

6 7 4.3817 3.90683 9 5.8370 3.90683 

7 6 4.9782 3.90683 7 7.5078 3.90683 

8 6 6.7829 3.90683 7 8.4172 3.90683 

9 6 8.2920 3.90683 6 9.2536 3.90683 

Table 1: Number of iterations and CPU-time consumed, for every value of 𝛥, considering 

Scenario 2, for the DDDP algorithm, for different values of 𝛥𝑈. 

 

The following tables represent for a number of different number of allowed discrete 

points (𝛥), the cost and CPU-time for every iteration of the algorithm, considering Scenario 2.  

 

Δ=2 Δ=3 Δ=4 

Iteration Cost CPU-

time(ins.) 
Iteration Cost CPU-

time(in 

s.) 

Iteration Cost CPU-

time(in 

s.) 
1 4.33065 0.1134 1 4.32185 0.2067 1 4.30026 0.3122 

2 4.31389 0.0740 2 4.23127 0.1614 2 4.23127 0.3215 

3 4.23179 0.0872 3 4.23127 0.1626 3 4.23127 0.2753 

4 4.23127 0.0833 4 4.01207 0.1772 4 4.01207 0.2759 

5 4.23127 0.0865 5 3.99559 0.1625 5 3.98839 0.2486 

6 4.03823 0.0849 6 3.98839 0.1490 6 3.95883 0.2782 

7 4.01207 0.0729 7 3.96973 0.2034 7 3.94089 0.2866 

8 3.99559 0.0694 8 3.95883 0.1627 8 3.94089 0.2686 

9 3.98839 0.1020 9 3.95795 0.1552 9 3.90683 0.2604 

10 3.96973 0.0801 10 3.94089 0.1609 10 3.90683 0.2947 

11 3.96973 0.0908 11 3.94089 0.1635    

12 3.93029 0.0851 12 3.90742 0.2159    

13 3.92264 0.0837 13 3.90683 0.1721    

14 3.91749 0.0853 14 3.90683 0.1773    

15 3.91420 0.0834       

16 3.91324 0.0733       

17 3.90985 0.0895       
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18 3.90985 0.0960       

(a) 

Δ=5 Δ=6 Δ=7 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 
1 4.23127 0.5551 1 4.23127 0.7581 1 4.19245 0.8663 

2 4.18934 0.3856 2 4.18934 0.5241 2 4.17807 0.6983 

3 4.18934 0.3940 3 4.17807 0.5402 3 4.17807 0.7084 

4 3.94089 0.4086 4 4.17807 0.5193 4 3.96989 0.7158 

5 3.94089 0.4035 5 3.98414 0.5387 5 3.95101 0.7663 

6 3.90683 0.3934 6 3.95176 0.5552 6 3.94089 0.7286 

7 3.90683 0.3917 7 3.94089 0.5743 7 3.94089 0.7319 

   8 3.94089 0.6760 8 3.90683 0.8348 

   9 3.90683 0.6171 9 3.90683 0.7827 

   10 3.90683 0.5571    

(b) 

Δ=8 Δ=9 
Iteration Cost CPU-time(in 

s.) 
Iteration Cost CPU-time(in 

s.) 
1 4.18934 1.0430 1 4.18934 1.2102 

2 4.17807 0.9024 2 4.17807 1.0632 

3 4.17807 0.8494 3 4.17807 1.1143 

4 3.95717 0.9979 4 3.95717 1.2115 

5 3.94089 0.9719 5 3.94089 1.1760 

6 3.94089 0.9531 6 3.94089 1.2845 

7 3.90683 1.0161 7 3.90683 1.2803 

8 3.90683 0.9751 8 3.90683 1.2844 

(c) 

Table 2: Number of iterations, cost and CPU-time per iteration, considering Scenario 2, for the 

DDDP algorithm, for different values of 𝛥.Table 2 is constituted by (a), (b) and (c). 

 

 

5.3.3 Scenario 3 considering the DDDP method 

 

The table below presents the differences between CPU-time, number of iterations and 

cost for different 𝐷𝑈 values: 
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  𝜟𝑼 = 𝟏. 𝟎   𝜟𝑼 = 𝟎. 𝟓  

𝜟 Iterations CPU-time 

(in s.) 

Cost  Iterations  CPU-time 

(in s.) 

Cost  

2 13 1.0205 7.91072 9 0.5784 7.91072 

3 13 1.6152 7.91072 8 0.8797 7.91072 

4 9 1.5052 7.91072 6 1.0955 7.91072 

5 9 2.0637 7.91072 6 1.4627 7.91072 

6 9 2.6626 7.91072 6 1.9729 7.91072 

7 8 3.1769 7.91072 6 2.5854 7.91072 

8 8 3.6823 7.91072 6 3.2006 7.91072 

9 8 4.5075 7.91072 6 3.6189 7.91072 

 

  𝜟𝑼 = 𝟎. 𝟐𝟓   𝜟𝑼 = 𝟎. 𝟏𝟐𝟓  

𝜟 Iterations CPU-time 

(in s.) 

Cost  Iterations  CPU-time 

(in s.) 

Cost  

2 8 0.6222 7.91072 9 1.5783 7.91072 

3 7 0.9870 7.91072 6 1.5243 7.91072 

4 5 1.0847 7.91072 5 1.3862 7.91072 

5 5 1.4656 7.91072 4 1.5857 7.91072 

6 4 1.5759 7.91072 4 1.9679 7.91072 

7 4 1.9250 7.91072 4 2.5323 7.91072 

8 4 2.3415 7.91072 3 2.3917 7.91072 

9 4 3.1505 7.91072 3 3.2373 7.91072 

Table 5: Number of iterations and CPU-time consumed, for every value of 𝛥, considering 

Scenario 3, for the DDDP algorithm, for different values of 𝛥𝑈. 

 

The following tables represent for a number of different values of 𝛥, the cost and CPU-

time for every iteration of the algorithm, considering Scenario 3. 

Δ=2 Δ=3 Δ=4 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 
1 8.09149 0.0751 1 8.09149 0.1315 1 8.09149 0.1874 

2 8.09149 0.0469 2 8.09149 0.0915 2 8.09149 0.1286 

3 7.97288 0.0509 3 7.95554 0.1042 3 7.95198 0.1917 

4 7.95198 0.0496 4 7.95198 0.0945 4 7.95198 0.1563 

5 7.95198 0.0475 5 7.95198 0.0858 5 7.91072 0.1603 

6 7.92050 0.0424 6 7.91526 0.0952 6 7.91072 0.1524 

7 7.91526 0.0438 7 7.91072 0.1051    

8 7.91072 0.0473 8 7.91072 0.1057    

9 7.91072 0.0572       
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(a) 

Δ=5 Δ=6 Δ=7 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 

Iteration Cost CPU-

time (in 

s.) 
1 8.09149 0.2420 1 8.09149 0.3073 1 8.09149 0.3905 

2 8.09149 0.2247 2 8.09149 0.2683 2 8.09149 0.3497 

3 7.95198 0.2409 3 7.95198 0.3216 3 7.95198 0.4618 

4 7.95198 0.2387 4 7.95198 0.2490 4 7.95198 0.3372 

5 7.91072 0.2184 5 7.91072 0.3212 5 7.91072 0.4309 

6 7.91072 0.2721 6 7.91072 0.3412 6 7.91072 0.4348 

(b) 

Δ=8 Δ=9 
Iteration Cost CPU-time(in 

s.) 
Iteration Cost CPU-time(in 

s.) 
1 8.09149 0.5114 1 8.09149 0.5665 

2 8.09149 0.4788 2 8.09149 0.4773 

3 7.95198 0.5085 3 7.95198 0.6212 

4 7.95198 0.4377 4 7.95198 0.5722 

5 7.91072 0.5191 5 7.91072 0.6041 

6 7.91072 0.5118 6 7.91072 0.6346 

(c) 

Table 6: Number of iterations, cost and CPU-time per iteration, considering Scenario 3, for the 

DDDP algorithm, for different values of 𝛥. Table 6 is constituted by (a), (b) and (c). 

 

 Considering and studying the tables above, for every one of the scenarios investigated, it 

can be observed that for small values of 𝛥 (e.g. 𝛥 = 2, or 𝛥 = 3), the cost does not converge 

fully. Therefore, the choice of values of 𝛥is avoided, even if the CPU-time is significantly low. 

As the values of 𝛥increases though, the cost seems to converging properly, so the choice of a 

price for 𝛥between 4 or 5 allowed discrete points is the reasonable thing to do. Taking now into 

consideration the fact that the computational time increases as the allowed points increase as 

well, so the choice of 𝛥𝑐 between 5 − 9 isn’t preferred, due to the CPU-time increase. So, the 

choice of 𝛥 = 4 is considered, as the best one, considering the above mentioned trade-off. 

 It can also be concluded from Table 2, Table 4 and Table 6 that, the computational time 

does not seem to be increasing from iteration to iteration, for any given values of 𝛥, due to the 

fact that the discretization variable decreases, so the corresponding (to corridor 𝛥) allowed 

points𝛥𝑐 become more after every decrease of variable𝛥𝑈, but in the same time the corridor is 
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reduced as well, so there is a balance that does not allow the increase of the CPU-time after 

every iteration. 

   

5.4: Investigating the use and the impact of thecorridor 𝜟(𝒍)(𝒌) 
 

 As it was mentioned in section 4.4, that the corridor 𝛥(𝑙)(𝑘)(or 𝛥), is being implemented 

in a slightly different waythan the initial implementation (which was a fixed interval [−𝛥,+𝛥]), 

by multiplying the discretization variable 𝛥𝑈 with the length of the corridor. With this approach, 

every time the discretization variable is being reduced, the corridor is being reduced as well, 

making it particularly smaller, so the computational time is significantly diminished, since the 

algorithm has a limited searching area, in which the optimal is included, but the redundant points 

are not part of that area. 

 In this section, the usefulness and the necessity of the dynamically implemented corridor 

is going to be observed, through an example, in which two different cases are being 

investigated.Considering for Scenario 2, the corridor’s length (𝛥 = 4) and the same 

discretization variable (𝛥𝑈 = 0.5), the problem will be solved two times, one with a fixed 

corridor, and the other one with the corridor being able to be reduced accordingly and 

analogously with the discretization variable 𝛥𝑈. The following table presents those two cases: 

 

Iteration 𝜟𝑼 Cost CPU-time 

(in s.) 

Total CPU-

time(in s.) 

1 0.5 4.17807 1.8428 73.6321 

2 0.5 4.17807 1.5150 

3 0.25 3.94089 6.0468 

4 0.25 3.94089 6.8988 

5 0.125 3.90683 26.1620 

6 0.125 3.90683 25.8061 

Table 7: Fixed corridor and 𝛥 = 4. 

 

Iteration 𝜟𝑼 Cost CPU-time 

(in s.) 

Total CPU-

time(in s.) 

1 0.5 4.30026 0.3166 2.9176 

2 0.5 4.23127 0.3267 

3 0.5 4.23127 0.2592 
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4 0.25 4.01207 0.2787 

5 0.25 3.98839 0.2632 

6 0.25 3.95883 0.2502 

7 0.25 3.94089 0.2809 

8 0.25 3.94089 0.2715 

9 0.125 3.90683 0.2593 

10 0.125 3.90683 0.2582 

Table 8:Dynamically changing corridor and 𝛥 = 4. 

 

 It can be observed from Table 7 and Table 8that the existence of the dynamically 

changing corridor is a necessity, since the differences considering the computational time are 

quite remarkable, something that can be observed from the CPU-times per iteration, but also 

from the total times. In Table 7, the total CPU-time is equal to 73.6 seconds, almost one and a 

half minute, and on the contrary, in Table 8, the total CPU-time drops to 2.9 seconds, due to the 

fact  that the corridor changes and becomes smaller every time the discretization variable is 

reduced. 

 

5.5: Comparison of the DDDP algorithm with the SDP algorithm 
 

 In this section, the DDDP algorithm that was implemented as a part of this thesis, is being 

compared with the Stochastic Dynamic Programming algorithm developed in[4], considering the 

CPU-times of each one, and also the optimal trajectories that each algorithm found. Continuing, 

for every scenario investigated, Figure 11, Figure 12 and Figure 13present the optimal 

trajectories of each algorithm, and also,Table 9, Table 10 and Table 11 present the CPU-time 

that each algorithm needs in order to reach the same cost value. 

Below, the following figures present the optimal derived trajectories and the control 

variable, considering Scenario 1, for each one of the two algorithms. 
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Figure 12: Control comparison, between the SDP and the DDDP algorithms. 

 

 Following, the tables mentioned above, comparing the computational time between the 

two methods:  

 

 Cost CPU-time (in seconds) 

SDP algorithm 1.1752 613.8641 

DDDP algorithm  1.1752 1.8073 

Table 10: Comparing the SDP and the DDDP algorithms, considering CPU-time and cost 

reached, considering Scenario 2. 
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 Below, the following figures present the optimal derived trajectories and the control 

variable, considering Scenario 2, for each one of the two algorithms. As it can be observed, the 

trajectories in the first iteration of the algorithm are quite different from the optimal ones (the 

SDP algorithm’s), during the fifth iteration they seem to be closing up to one another and finally 

in the last iteration (the 10th ) they are completely identical, which is the wanted outcome, due 

the fact that this indicates that the two algorithms have the exact same outcome, with the only 

differences in the operation and the CPU-time needed for each one.  

 

   

   

   

Figure 11: Trajectory and control comparison, between the SDP and the DDDP algorithms. 

 

Following, the table mentioned above, comparing the computational time between the 

two algorithms:  
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 Cost CPU-time (in seconds) 

SDP algorithm 3.9068 617.5173 

DDDP algorithm  3.9068 2.9176 

Table 9: Comparing the SDP and the DDDP algorithms, considering CPU-time and cost 

reached, considering Scenario 1. 

 

Below, the following figures present the optimal derived trajectories and the control 

variable, considering Scenario 3, for each one of the two algorithms. 

 

   

   

   

Figure 13: Control comparison, between the SDP and the DDDP algorithms. 
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Following, the tables mentioned above, comparing the computational time between the 

two methods:  

 

 Cost CPU-time (in seconds) 

SDP algorithm 7.9107 610.5573 

DDDP algorithm  7.9107 1.0955 

Table 11: Comparing the SDP and the DDDP algorithms, considering CPU-time and cost 

reached, considering Scenario 3. 

 

 Summarizing, it can be noticed from the figures and tables above that, the two algorithms 

converge to the optimal, and the final trajectories are identical in both cases, meaning that the 

DDDP algorithm is doing the exact same assignment, and with the same accuracy, as the SDP 

algorithm, only within a substantial less amount of time, as it can be clarified from Table 9, 

Table 10 and Table 11, making the DDDP algorithm capable of being used in an online vehicle 

trajectory specification algorithm.  
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Chapter 6: Conclusions and Future Steps 

 

6.1: Conclusions 
 

 A stochastic GLOSA approach was developed, being basically the extension of the 

deterministic and stochastic GLOSA methodologies of Typaldos et. al. [4]. This particular 

method is the Discrete Differential Dynamic Programming Method. The GLOSA problem was 

formulated as an optimal control problem and solved firstly numerically through the DDDP 

method for the case of uncertain switching time of the traffic light. In both cases, the traffic 

light’s switching time is assumed to be stochastic, with a given a-priori probability distribution 

between a known time interval[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥], which is properly updated as time advances. Also, 

the algorithm introduced in [4], is used to compare with the algorithms implemented in this 

work, in order to get a clearer view of what the suggested methods can accomplish. 

Regarding the DDDP method, eachiteration of the corresponding algorithm solvesa 

stochastic problem in a reduced state space, which is formed around the last solution trajectory. 

The initial trajectory to start the iterations is the analytic solution of the pessimistic case,which 

assumes that the traffic signal will switch at the latest possible time.With this approach, the work 

load and computation cost is significantly reduced, making the method applicable and realtime 

orientated, i.e. capable of processing the given data to obtain the solution of the stochastic 

problem in few seconds.The DDDP algorithm has a considerable advantage over other methods, 

as it solves areduced problem in terms of state space. With this approach, it is consequent that 

the amount of computational time and the workload that the algorithm has to overcome, is 

reduced significantly, something that save a lot of time, examining trajectories that cannot be 

part of the problems solution.  

 

6.2 Future Steps 
 

 As far as it concerns any future work and extensions of what is done in this work, here 

are some of the ideas that stand out, due to the fact that they are applicable in the imminent 

future, and also will probably elevate the quality of the work that has already been done.  

 To begin with, the adaptation of the DDDP algorithm implemented in this work into a 

usable application is considered, since these algorithms are developedin a way that makes them 

able to fulfil their tasks under the barrier of one second, meaning that the online trajectory 
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specification is viable. For example, a cell-phone application that would be able to give online 

speed advices to a vehicle’s driver, or a pre-installed application in the vehicle’s electronics 

systems, or even a modified GPS (Global Position System) version with an installed speed 

advisor algorithm.This is one of the next steps, consisting another challenge (and the word 

"another" is being used, because of theobstacles and the roller-coaster troubleshooting process 

regarding the formulation of the algorithm, considering that building and deploying an 

application needs further actions and knowledge. With each algorithm’s code been written, a 

number of steps have already been completed, leaving operations like creating mock-ups for the 

application (a rough sketch of the application’s layout, also describing the flow and the 

interactions), making a graphic design (which contains graphic effects, image assets, even 

motion and animation design), building a landing page for the application (that explains what the 

application does, why it might provide useful for someone and generally giving a briefly 

explanation of its purpose, giving the opportunity to discover from early on potential users and 

people who are willing to test it and give back their opinion), yet to be done.  

 Furthermore, appliance of the method examined and used in this work in a multi-vehicle 

control system is contemplated. This endeavour is important due to the fact that, the optimization 

of a vehicle’s trajectory towards a traffic light would be viable for a number of vehicles, along 

with the aspect that this implementation can obtain further use, e.g. safer and less pollutive urban 

and highway transportation profile. As a result, an even higher level of fuel consumption and less 

gas (CO2 mostly) emissions could be achieved, as well as a safer transportation environment 

prospect. A multi-vehicle control system presupposes the use of other methods and approaches, 

and it is a really demanding endeavour, so the implementation and the adaptation of the 

examined methods in such systems could be puzzling, but not impossible to happen. Also, the 

addition of scenarios with other vehicles or obstacles along the way is another important step, so 

the vehicle examined can either surpass the other vehicles from the second (speeding) lane, or 

stay behind them and adjust its velocity and acceleration accordingly.  

 Continuing, a complete overview of the DDP method is an also important step, since the 

investigation of the method has already started, but the completion of an overview and a 

thorough examination of this method is yet to be done. 

 Last but not least, a different and also interesting problem formulation is being examined, 

where a traffic signal exist along the course of the vehicle, and that particular traffic light when 

the vehicle approaches is under its green phase and gradually proceeding to the red phase.  
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Chapter 7: Appendix 

 

In this appendix are being presented the figures that represent the vehicle’s position, in 

each time-step of the DDDP algorithm implemented, for every one of the three scenarios 

examined, from the initial position 𝑥0 = 0⁡𝑚 until the final target 𝑥𝑒 = 220⁡𝑚. The algorithm 

solves the problem with the DDDP method from 𝑥0 = 0⁡𝑚 to 𝑥1 = 150⁡𝑚 where the traffic light 

is located, and from 𝑥1 until 𝑥𝑒 the algorithm solves the analytical constrained problem (CP). So, 

in the following figures the trajectory that the analytical solution provides is being shown, along 

with the trajectory from 𝑥0 to 𝑥1 which the DDDP method provides. It can be observed that the 

corridor (red dashed lines) stops on 𝑥1 and does not continue further, which is logical, since an 

analytical problem is being solved from there and on. 

 

7.1 Appendix A 
  

 Considering Scenario 1:  

   

   

Figure 14: Initial and Optimal position of the vehicle, along with the analytical problem solution 

from 𝑥1 to 𝑥𝑒, considering Scenario 1. 
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Continuing now with Scenario 2: 

   

   

   

 

  

Figure 15: Initial and Optimal position of the vehicle, along with the analytical problem solution 

from 𝑥1 to 𝑥𝑒, considering Scenario 2. 
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Closing with Scenario 3: 

   

   

Figure 16: Initial and Optimal position of the vehicle, along with the analytical problem solution 

from 𝑥1 to 𝑥𝑒, considering Scenario 3. 

 


