
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Reinforcement Learning
for Swing Up and Balancing

of Three-Dimensional Humanoid Model

Author:
Panagiotis PAPADIMITRIOU

Supervisor:
Associate Prof.

Michail G. LAGOUDAKIS
Committee:

Prof. Michalis ZERVAKIS
Dr. Vasilis DIAKOLOUKAS

A thesis submitted in fulfillment of the requirements
for the degree of Engineering Diploma

in the

Intelligent Systems Laboratory
School of Electrical and Computer Engineering

April 6, 2021

http://https://www.tuc.gr/
https://www.ece.tuc.gr/
https://www.ece.tuc.gr/

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Διπλωματική Εργασία

Ενισχυτική Μάθηση

για Αιώρηση και Ισορροπία

ενός Τρισδιάστατου Ανθρωποειδούς Μοντέλου

Συγγραφέας:
Παναγιώτης

ΠΑΠΑΔΗΜΗΤΡΙΟΥ

Επιβλέπων:
Αναπληρωτής Καθηγητής

Μιχαήλ Γ. ΛΑΓΟΥΔΑΚΗΣ
Εξεταστική επιτροπή:

Καθηγητής

Μιχάλης ΖΕΡΒΑΚΗΣ

Δρ. Βασίλης ΔΙΑΚΟΛΟΥΚΑΣ

Διπλωματική εργασία

για την απόκτηση του διπλώματος Μηχανικού

στο

Εργαστήριο Προγραμματισμού και Τεχνολογίας Ευφυών Υπολογιστικών

Συστημάτων

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

6 Απριλίου 2021

http://https://www.tuc.gr/
https://www.ece.tuc.gr/
https://www.ece.tuc.gr/
https://www.ece.tuc.gr/

iii

Declaration of Authorship
I, Panagiotis PAPADIMITRIOU, declare that this thesis titled, “Reinforcement Learn-
ing
for Swing Up and Balancing
of Three-Dimensional Humanoid Model” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for an engineering
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: Panagiotis Papadimitriou

Date: April 6, 2021

v

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Engineering Diploma

Reinforcement Learning
for Swing Up and Balancing

of Three-Dimensional Humanoid Model

by Panagiotis PAPADIMITRIOU

Reinforcement Learning, as a subfield of Artificial Intelligence and Machine Learn-
ing, has gained a lot of traction in recent years. From trained agents playing video
games or chess at expert level to self-driving cars in the streets, a lot of ground-
breaking results have been achieved thanks to advances in Reinforcement Learning.
The combination of Reinforcement Learning and Robotics has the additional ad-
vantage that agents trained in simulation could eventually be carried over to real
robots that can be utilized in varying tasks to aid humans. In this diploma thesis,
we construct a 3-dimensional humanoid model hanging below a horizontal bar (an
acrobat) within a realistic simulation environment, based on humanoid model ori-
ginally made for walk learning experiments. The goal of the agent that controls the
actions of the humanoid model is to swing up and eventually balance the humanoid
model on the bar. The challenge in this problem is the high-dimensional and conti-
nuous state and action space, since the model has 19 degrees of freedom (joints) and
17 actuators (motors), a case where conventional learning approaches do not apply.
We try out two Reinforcement Learning algorithms: Deep Deterministic Policy Gra-
dient (DDPG) and Advantage Actor-Critic (A2C) to train the agent using thousands
of trials and we demonstrate the learning progress. A simple reward scheme was
adopted that rewards the agent proportionally to the height reached at any time, but
does not reveal any information about the nature of the problem. Through the exten-
sive experimentation we conducted with both algorithms and some variations of the
model, we deduced that the most efficient algorithm and a better fit to the problem
at hand was DDPG, which through some tuning of the problem parameters yielded
satisfying results. The resulting agent after learning is able to complete the task in
most trials from any starting pose.

HTTP://HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Περίληψη

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Δίπλωμα Μηχανικού

Ενισχυτική Μάθηση

για Αιώρηση και Ισορροπία

ενός Τρισδιάστατου Ανθρωποειδούς Μοντέλου

Παναγιώτης ΠΑΠΑΔΗΜΗΤΡΙΟΥ

Η Ενισχυτική Μάθηση, ως υποπεδίο της Τεχνητής Νοημοσύνης και της Μηχανικής Μά-
θησης, έχει γίνει αρκετά δημοφιλής τα τελευταία χρόνια. Από εκπαιδευμένους πράκτορες
που παίζουν βιντεοπαιχνίδια ή σκάκι σε επίπεδο εμπειρογνωμόνων έως και αυτοοδηγού-

μενα οχήματα στους δρόμους, έχουν επιτευχθεί πολλά πρωτοποριακά αποτελέσματα χάρη
στις εξελίξεις στην Ενισχυτική Μάθηση. Ο συνδυασμός της Ενισχυτικής Μάθησης και
της Ρομποτικής έχει το πρόσθετο πλεονέκτημα ότι πράκτορες εκπαιδευμένοι σε προσο-

μοίωση θα μπορούσαν τελικά να μεταφερθούν σε πραγματικά ρομπότ που μπορούν να

χρησιμοποιηθούν σε ποικίλες εργασίες για να βοηθήσουν τους ανθρώπους. Σε αυτή τη
διπλωματική εργασία, κατασκευάζουμε ένα τρισδιάστατο μοντέλο ανθρωποειδούς που κρέ-
μεται από μια οριζόντια ράβδο (ένας ακροβάτης) μέσα σε ένα ρεαλιστικό περιβάλλον προσο-
μοίωσης, βασιζόμενοι σε μοντέλο ανθρωποειδούς που αρχικά κατασκευάστηκε για πειρά-
ματα μάθησης για βάδισμα. Ο στόχος του πράκτορα που ελέγχει τις κινήσεις του μοντέλου
ανθρωποειδούς είναι να αιωρηθεί προς τα πάνω και τελικά να εξισορροπήσει το μοντέλο αν-

θρωποειδούς πάνω στη ράβδο. Η πρόκληση σε αυτό το πρόβλημα είναι ο πολυδιάστατος
και συνεχής χώρος κατάστασης και δράσης, καθώς το μοντέλο έχει 19 βαθμούς ελευθερίας
(αρθρώσεις) και 17 ενεργοποιητές (κινητήρες), μια περίπτωση όπου οι συμβατικές προσεγ-
γίσεις μάθησης δεν εφαρμόζονται. Δοκιμάζουμε δύο αλγόριθμους ενισχυτικής μάθησης:
Deep Deterministic Policy Gradient (DDPG) και Advantage Actor-Critic (A2C) για
να εκπαιδεύσουμε τον πράκτορα χρησιμοποιώντας χιλιάδες δοκιμές και καταδεικνύουμε

την πρόοδο της μάθησης. Εφαρμόστηκε ένα απλό σχήμα ανταμοιβής που επιβραβεύει τον
πράκτορα ανάλογα με το ύψος που έχει φτάσει ανά πάσα στιγμή, αλλά δεν αποκαλύπτει
πληροφορίες σχετικά με τη φύση του προβλήματος. Μέσα από τον εκτεταμένο πειραμα-
τισμό που πραγματοποιήσαμε και με τους δύο αλγόριθμους και με κάποιες παραλλαγές

του μοντέλου, καταλήξαμε στο συμπέρασμα ότι ο πιο αποτελεσματικός αλγόριθμος και η
καλύτερη προσέγγιση στο πρόβλημα ήταν ο DDPG, ο οποίος μέσω κάποιων ρυθμίσεων
των παραμέτρων του προβλήματος απέδωσε ικανοποιητικά αποτελέσματα. Ο πράκτορας
που προέκυψε μετά τη μάθηση μπορεί να πετύχει τον στόχο στις περισσότερες δοκιμές

ξεκινώντας από οποιαδήποτε αρχική στάση.

HTTP://HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

ix

Acknowledgements
First and foremost I would like to express my gratitude to my supervisor Associate
Prof. Michail G. Lagoudakis for his guidance and advice throughout my studies. I
would also like to thank my colleagues for their assistance and support. . .

xi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 2

2 Background 5
2.1 MuJoCo . 5

2.1.1 MuJoCo Models . 5
2.2 Reinforcement Learning . 5

2.2.1 Q-Learning . 8
2.2.2 Artificial Neural Networks . 8
2.2.3 Deep Q-Learning . 11
2.2.4 Policy Gradients . 11
2.2.5 Deep Determenistic Policy Gradient 12
2.2.6 Advantage Actor-Critic (A2C) 13

2.3 OpenAI Gym . 14

3 Experimental Setup 15
3.1 Overview . 15
3.2 Environment Setup . 15

3.2.1 MuJoCo Model . 15
3.2.2 OpenAi Gym . 18

3.3 Algorithms . 21
3.3.1 Deep Deterministic Policy Gradient 21
3.3.2 Advantage Actor-Critic . 21

4 Experiments and Results 23
4.1 Humanoid Bar Balance without random initial position 23

4.1.1 DDPG . 23
4.1.2 A2C . 27

4.2 Humanoid Bar Balance with random initial position 29
4.2.1 DDPG . 29
4.2.2 A2C . 42

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future Work . 43

Bibliography 45

xiii

List of Figures

1.1 Cartpole-v1 Gym Environment . 2
1.2 Pendulum-v0 Gym Environment . 2
1.3 Acrobot-v1 Gym Environment . 3
1.4 InvertedDoublePendulum-v2 Gym Environment 3
1.5 Humanoid-v2 Gym Environment . 4

2.1 Reinforcement Learning Framework . 7
2.2 Simple Artificial Neural Network . 9
2.3 Mathematical Visualization . 10

3.1 Humanoid . 16
3.2 Humanoid XML . 16
3.3 Humanoid Bar . 17
3.4 Possible initial positions . 20

4.1 First training results . 24
4.2 First testing results . 25
4.3 Best pose in first results . 26
4.4 A2C training results . 27
4.5 First Training results with random initial position 29
4.6 First Testing results with random initial position 29
4.7 First Training results with random initial position and xpos rewards . 30
4.8 First Testing results with random initial position and xpos rewards . . 31
4.9 Training results for 50000 episodes . 32
4.10 Testing results for 50000 episodes . 33
4.11 PPO reference trained Humanoid-v2 rewards 34
4.12 Humanoid not able to move . 35
4.13 Initial and improved humanoid . 35
4.14 Improved Training results for 50000 episodes 36
4.15 Improved Testing results for 50000 episodes 37
4.16 Balanced positions . 38
4.17 Episode frames from a right side initial position. 39
4.18 Episode frames from a left side initial position. 40
4.19 Episode frames from an upright initial position. 41
4.20 A2C average for 8 environments . 42

xv

Dedicated to my beloved supporting family. . .

1

Chapter 1

Introduction

The human brain and body movements, have always been a challenging task and an
inspiration for the field of Artificial Intelligence. The human intellect has been the
milestone in generating software that can mimic human behaviour. The simplest
human behaviours and actions such as standing up, walking and speaking that a
person learns in the earliest stages of its life can be quite challenging for a computer
software to learn.
The main idea of training a human or an animal how to behave correctly is to reward
them when they follow the correct behaviours. This is the same idea that Reinforce-
ment Learning is based on, where an agent is trained to do a task on which it has no
prior knowledge on and step by step through trial and error with rewards or penal-
ties the agent will potentially learn to do the task at hand. With recent advancements
in these fields, Reinforcement Learning agents can be successful in tasks with high
complexity, including real life or simulated robotic environments, with the end goal
being the use of properly trained robots to be used in society.
Reinforcement Learning combined with robotics could eventually provide reliable
robots that can help humans with numerous demanding tasks where a human could
struggle or be used in the place of a human where there is danger involved. Robots
could also be trained in other miscellaneous tasks as the one described below.

1.1 Problem Statement

In this thesis we aim to formulate a problem and find its solution using Reinforce-
ment Learning. The problem is the training of a 3D humanoid model, that hangs
below a bar, to swing up and maintain balance on the bar. To do so, the model has to
be designed using a physics engine, the environment has to be created and the algo-
rithms have to be implemented. In Reinforcement Learning, the agent interacts with
the environment and receives rewards, based on its actions and states it reaches. The
states in this problem are the humanoid model’s joint positions and velocities and
the actions are torques applied on the joints’ actuators, both presented in the form of
vectors. Rewards are manifested, when the environment is designed.
The agent has to be trained in an environment that follows emulated real-world
physics laws and restrictions, such as gravitation pull and body moves that a nor-
mal human being can perform. For that the MuJoCo physics engine is chosen.
The environment is based on already existing OpenAi Gym environments and the
algorithms used to try and solve the manufactured problem are chosen through a
multitude of Reinforcement Learning algorithms and are Deep Deterministic Policy
Gradient and Advantage Actor-Critic.

2 Chapter 1. Introduction

1.2 Related Work

When experimenting with OpenAi Gym, one of the environments to start from is
the Cartpole-V1 environment [8]. In Cartpole-v1 (Figure 1.1) there is a pole attached
on a cart that moves left or right on a track. In the environment the goal is to keep
the pole standing upright, whilst applying force to the cart (-1 or 1) to move slightly
left or right.

FIGURE 1.1: Cartpole-v1 Gym Environment

Another basic OpenAi Gym problem is the Pendulum-v0 [11] (Figure 1.2). In
this environment the goal is to swing up and balance the pendulum by controlling
its angular velocity with applied force.

FIGURE 1.2: Pendulum-v0 Gym Environment

1.2. Related Work 3

Moving on to more complex environments, still in the 2D field, we come accross
the Acrobot-v1 [6] (Figure 1.3), an environment like the Pendulum-v0, but with two
links connected with an extra joint and consequently with more freedom of move-
ment and more complexity.

FIGURE 1.3: Acrobot-v1 Gym Environment

Looking through the 3D MuJoCo environments, we see InvertedDoublePendulum-
v2 [10] (Figure 1.4), which combines the previous environments in the 3-Dimensional
space.

FIGURE 1.4: InvertedDoublePendulum-v2 Gym Environment

4 Chapter 1. Introduction

Another known MuJoCo environment is the Humanoid-v2 [9] (Figure 1.5), which
is a humanoid robotic model with 19 joints, that tries to walk in the upright position
without falling down by applying torques to 17 joints.

FIGURE 1.5: Humanoid-v2 Gym Environment

Combining the goal of the previous environments, the swing up and balance, with
the high complexity of the humanoid environment we got the idea of the environ-
ment and task of this thesis.

5

Chapter 2

Background

2.1 MuJoCo

As stated on the MuJoCo website [MuJoCo] "MuJoCo stands for Multi-Joint dynam-
ics with Contact. It is being developed by Emo Todorov for Roboti LLC. Initially it
was used at the Movement Control Laboratory, University of Washington, and has
now been adopted by a wide community of researchers and developers". MuJoCo
is a physics engine used to render and simulate environments, it provides a number
of gym environments and models in the form of .xml files. The physics engine itself
is implemented in C++, but the open-ai gym environment used here makes use of
the python wrappers provided by MuJoCo. The MuJoCo library generally requires
a paid 1-year license, but there is also a student license which is free.

2.1.1 MuJoCo Models

The MuJoCo models are implemented in .xml files, which contain a number of bod-
ies, geoms, joints, cameras, light, etc.

• Body–Multiple bodies are used to construct a model. These bodies are con-
nected to each other in a tree-like topology, called the kinematic tree, meaning
that to connect a body to another in order to create the model the bodies have
to have a parent-child relationship inside that tree. The top-level (root) body is
called the worldbody.

• Geom– Geoms are elements attached to each body and define its appearance
and collision properties.

• Joint–Joint elements create the degrees of freedom between child and parent
bodies. The absence of a joint in a body means that a body is rigidly attached
to its parent. Cameras and lights define the rendering part of the models and
scene brightness.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is one of the subcategories of Machine Learning. It is
a mix of supervised learning (SL) and unsupervised learning (UL). In contrast to SL
being a static function (e.g. a classifier that gives you a certain result for a certain
input), RL is more like a loop of actions chosen to achieve a certain goal with respect
to time. The major characteristic of RL is that there is no target for each step, instead
there is an end-goal that the agent is trying to achieve. That means that the RL agent
has to figure out the optimal sequence of actions that would lead to the end goal and
not the optimal action for each step. Basic Definitions of RL follow:

6 Chapter 2. Background

• Agent – The learning and acting part of a Reinforcement Learning problem,
which tries to maximize the rewards it is given by the Environment. The Agent
is the model which RL scientists try to design.

• Environment – The environment can be everything which isn’t the Agent; ev-
erything the Agent can interact with, either directly or indirectly. The environ-
ment changes as the Agent performs actions.

• State, Action, Reward – A state can be described as the configuration of the
environment at a certain point in time. E.g. in a game of chess environment
the state is described by the position of each piece on the board. An action is
a move that the agent can make. E.g. in the same example actions are all the
possible moves of each pawn. The reward is a return, a number, that the agent
gets after each step or episode. Rewards are used to improve agent training.

• Policy – The policy π is essentially the rule that the agent follows in order to
take an action a at a state s, for example in a greedy policy the optimal action
is the action with the highest value.

• Off-Policy / On-Policy – RL algorithms can be either Off-Policy or On-Policy,
the difference between them is in the way that an algorithm estimates the opti-
mal policy. While in the exploration part of training On-Policy algorithms will
use the same policy that the algorithm behaves with to update the Q-Values,
an Off-Policy algorithm will use a different one.

• Q-Value – Q-value is the expected discounted reward for an agent that follows
a policy π and takes an action a based on that policy, at a state s given by :

Qπ(s, a) = Rs(a) + γ ∑
s′

Pss′ [π(a)]Vπ(s′) (2.1)

with Rs(a) being the reward value at state s after taking action a, γ the discount
factor, Pss′ [π(a)] being the probability of moving from state s to s′ after taking
action a following the policy π and Vπ(s′) the value of state s′.

• Markov Decision Process -A MDP describes a reinforcement learning system.
In a MDP, we describe the environment with the state-transition probability,
which is the probability of arriving at a state s′ at a time t + 1 and getting the
reward R given the state s at time t and taking the action a.

p(St+1, Rt+1|St, At) (2.2)

An MDP consists basically of an agent and an environment interacting with
each other. The agent gets the current state from the environment and decides
based on a policy what action to take. After the action is done the environ-
ment is updated based on that action and returns a new state and a reward.
The agent then again reads the new state and decides an action and the same
process repeats.

• Policy Gradient – Policy gradient algorithms are widely used in reinforcement
learning problems with continuous action spaces. The basic idea is to repre-
sent the policy by a parametric probability distribution πθ(a|s) = P[a|s; θ] that
stochastically selects action a in state s according to parameter vector θ. Policy
gradient algorithms typically proceed by sampling this stochastic policy and
adjusting the policy parameters in the direction of greater cumulative reward.

2.2. Reinforcement Learning 7

FIGURE 2.1: Reinforcement Learning Framework [14]

8 Chapter 2. Background

2.2.1 Q-Learning

Q-Learning [16] is a model-free RL algorithm. In Q-learning the agent given that
the state is s evaluates the actions available by the immediate reward that the action
yields after it is chosen and an estimate of the next state/states rewards with respect
to the state-transition probability described previously. The Q-Value equation is :

Q(s, a) = Rs(a) + γ max
a′

Q(s′, a′) (2.3)

with γ being the discount factor used to achieve convergence. By trying-exploring
all the actions available in all states repeatedly the algorithm generates a table of
size S[s1, ..., sn](statespace)× A[a1, ..., am](actionspace). Based on that table the best
actions are chosen based on long-term discounted reward. At the beginning of the
training either the table values are given or set to 0 and some of the initial actions are
chosen randomly in order to explore the action space and get a base for the Q-values.
As the training proceeds the values are updated based on the following equation and
they become more and more correct.

Q-Value update Equation :

Q′(st, at) = (1− α) ·Q(st, at) + α · (rt + γ ·max
a′

Q(st+1, a′)) (2.4)

Overall in Q-Learning the agent is tasked with finding an optimal policy π, one that
maximizes the total discounted expected reward. The action selection is based on
maximizing the Q-Value :

at = arg max
a′

Q(st, a′) (2.5)

2.2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) [3] are information processing or computation
models used for computations, especially applied in machine learning, that are in-
spired from the way the human brain performs. A computer can be superior to a
human brain in functions, such as data storage or complex math, but it can struggle
in learning behaviours or in recognizing even the simplest patterns, in which a hu-
man brain excels at.
From the above observation, the ANNs were inspired. A brain has many neurons
that send signals through it and process the data that it receives, in the same way
ANNs have processing units that are simplified versions of the human neurons,
called also neurons.

2.2. Reinforcement Learning 9

Output

Hidden
layer

Input
layer

Output
layer

FIGURE 2.2: Simple Artificial Neural Network

10 Chapter 2. Background

The neurons in a NN do not have a random topology, each neuron can either be
an input, an output or hidden, based on its placement. The simplest topology (Fig-
ure 2.2) consists of one input layer, that takes inputs from the outside world, com-
puter or algorithm, an output node that outputs the data to the outside world, com-
puter or algorithm (depending on the use of the ANN) and a hidden layer placed
between these two layers, the hidden neurons take inputs from other neurons and
passes it through to other ones. Each layer’s neurons are connected to all the next
layer’s neurons, making the NN fully connected. The connections passing data from
neuron to neuron have an important role in the ANN, they weight the data that is
passed through. In most NNs the multiple inputs of a neuron are summed, a bias
(b) can also be in the sum, and in less common implementations substracted.
All the above leads to the mathematical calculation that if the neuron’s output is xi
and the weight is wij the next neuron’s j input is

yj = ∑
i

xiwij + b (2.6)

Each neuron that outputs info can have an activation function f , making its output
xj = f (yj) Figure 2.3. Activation functions are a vital part of the NN training, when
the data are complex, because they aid in mapping the output values to a desired
range that is more manageable. Two of the most common activation functions are :

• ReLU
R(z) = max(0, z) (2.7)

• Tanh

tanh(z) =
e2z − 1
e2z + 1

(2.8)

Neuron connections can either connect each neuron to the next layer, making the
ANN Feedforward or can have more complex connextions, to the previous layers
making them Recurrent.
ANNs can be Multilayer perceptrons (MLPs). MLP is a category of feedforward
ANN sometimes loosely connected to any feedforward ANN, sometimes strictly to
refer to networks composed of multiple layers of perceptrons (with threshold acti-
vation).

FIGURE 2.3: Mathematical Visualization

2.2. Reinforcement Learning 11

2.2.3 Deep Q-Learning

Although Q-learning yields good results for games with small state spaces, most RL
problems nowadays have large state and action spaces, making Q-Learning not the
ideal tool for solving them. The Q-Table that the algorithm makes use of, highly in-
creases the time and space complexity of the algorithm for RL tasks with large states
spaces. An accurate example are video games, in which the state at a certain time
point is the configuration of pixels on the screen. This configuration of pixels even
for a low resolution game, like atari games, makes of a very large state space. E.g.
Atari-Breakout has a resolution of 210x160x3, even if it is converted to black and
white there are still 210x160=33600 pixels making the state space and Q-table great
in size thus rendering the Q-Learning method almost unusable, considering that the
agent would require multiple weeks to be trained for a simple game. In [Derele]
deep learning agent trained to play atari games using a Convolutional Neural Net-
work (CNN) instead of Q-table with raw pixels as inputs and a value function esti-
mating future rewards as output is introduced. The NNs used are referred to as Deep
Q-Networks (DQNs). Two new terms are introduced here: the loss function and the
experience replay. The Neural Network with weights θ, known as Q-Netrwork, is
trained by minimising a sequence of loss functions Li(θi). In supervised learning the
loss function is defined as

(Target− Prediction)2, (2.9)

whereas in Q-learning there is no predifined target, but rather an estimate of a target
depending on the model’s prediction and the Loss Function looks as follows :

Li(θi) = Es,a∼p(·)[(yi −Q(s, a))2], (2.10)

where yi is the estimated target

Es′ [r + γ max
a′

Q(s′, a′)|s, a] (2.11)

The experience replay mechanism makes use of the replay memory that stores the
agent’s past experiences of each time-step, random mini-batches of these experiences
are used to perform Q-updates on the NN’s weights. This technique smooths out the
learning and helps avoid divergence in the parameters.

2.2.4 Policy Gradients

In [15] the argument that sole value function approach has limitations is made.
Firstly it is oriented toward finding deterministic policies, whereas the optimal pol-
icy is often stochastic, selecting different actions with specific probabilities. Secondly,
an arbitrarily small change in the estimated value of an action can cause it to be, or
not be selected.
To improve these limitations, the policy gradient methods are introduced. Rather
than approximating a value function and using that to compute a deterministic pol-
icy, we approximate a stochastic policy directly using an independent function ap-
proximator with its own parameters. In policy gradient methods, the reward func-
tion is calculated as :

J(θ) = ∑
s∈S

dπ(s)Vπ(s) = ∑
s∈S

dπ(s) ∑
α∈A

πθ(α|s)Qπ(s, α) (2.12)

12 Chapter 2. Background

where dπ(s) is the stationary distribution of the corresponding Markov chain for πθ

(on-policy state distribution under π).
To maximize the returns using gradient ascent with the above expression is ploblem-
atic, because it depends on both the action selection (directly determined by πθ)
and the stationary distribution of states following the target selection behavior (in-
directly determined by πθ). Given that the environment is generally unknown, it is
difficult to estimate the effect on the state distribution by a policy update. And the
policy gradient theorem to ease things is introduced :

∇θ J(θ) = ∇θ ∑
s∈S

dπ(s) ∑
a∈A

Qπ(s, a)πθ(a|s)

∝ ∑
s∈S

dπ(s) ∑
a∈A

Qπ(s, a)∇θπθ(a|s)
(2.13)

2.2.5 Deep Determenistic Policy Gradient

In Deep Q-Learning there is always talk about the value function Q(s,a). In DQN,
the state and action that describe a Q-value are not both inputs of the NN, instead
the state is an input and there are a number of outputs, one for each possible action
at state s.
In some RL problems including the one in this thesis, the action space is continuous
meaning that there are, if not infinite possible actions, a large number of them. Hav-
ing infinite possible actions makes the use of DQNs impossible, because that would
require NNs with an infinite number of outputs. As it is stated in [2], DQN cannot
be straightforwardly applied to continuous domains, since it relies on finding the ac-
tion that maximizes the action-value function, which in the continuous valued case
requires an iterative optimization process at every step.
A new algorithm is introduced Deep Deterministic Policy Gradient (DDPG) which
is based on the Deterministic Policy Gradient (DPG) [12] with some modifications
inspired by DQN. DDPG makes use of the actor-critic principle, in which there are
two basic models interacting with each other, the actor and the critic. The actor is a
function approximator tasked with choosing an optimal action at a state s and the
critic is another function approximator that evaluates the action the actor chose. In
DDPG there is a determenistic policy µ(s) which is represented by a NN with input
the state s that outputs an optimal action a (Actor).
The action is chosen based on the equation :

at = µ(st|θµ) (2.14)

The above equation is not sufficient enough to ensure proper exploration of the en-
vironment so a Gaussian Noise N is added :

at = µ(st|θµ) +Nt (2.15)

The critic is also represented by a NN that takes as input the state s and action a
which is the output of the policy network and outputs the Q-Value. Both the µ and
Q networks have two instances, the main and the target network.
As in DQN, the DDPG algorithm makes use of experience replay buffers that store
previous state-action transitions. The main actor is being updated at each step with
the goal of maximizing the total expected rewards and the critic in order to minimize
the loss function.
A new way of updating the target networks is used in DDPG, called "soft" target

2.2. Reinforcement Learning 13

updates. In "soft" target updates rather than copying over all the weights from the
main network periodically, a fraction of the weights is copied over at each step as
shown below :

θµ′ ← τθµ + (1− τ)θµ′ (2.16)

θQ′ ← τθQ + (1− τ)θQ′ (2.17)

with τ << 1 providing a slow rate of updates that ensures a great stability in learn-
ing.

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ

Initialize target network Q′ and actor µ′ with weights θQ′ ← θQ and θµ′ ← θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t=1, T do

Select action at = µ(st|θµ) +Nt according to the current policy and explo-
ration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) inR
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′)
Update critic by minimizing the Loss: L = 1

N ∑i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ(s, a|θQ)|s=si ,a=µ(si)∇θµ µ(s|θµ)|si

Update the target networks :

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end for
end for

2.2.6 Advantage Actor-Critic (A2C)

In [4] multiple asynchronous RL algorithms are described, one of them being Asyn-
chronous Advantage Actor-Critic (A3C). As it is obvious from its name A3C is an
actor critic algorithm, meaning that there are two NNs the actor or the policy net-
work π(a|s, θπ) and the critic or value network V(s, θv). The advantage A in A3C
is the term used to measure the difference between the actual return at a state s and
the state’s value V(s)

A(st, at) = Q(st, at)−V(st) (2.18)

where Q(st, at) is the expected return for selecting an action a at a state s and V(st)
is the expected return from state s. The update performed on the policy network can
be seen as ∇θ′ log π(at, st; θ′)A(st, at; θ) and the value network is updated with the

14 Chapter 2. Background

loss function being the squared error between the actual return and the predicted
value Lv = (Q(st, at)−V(s, θv))2.
To encourage exploration and avoid premature convergence to sub-optimal policies
the entropy of the policy H is added to the policy loss function making the final
policy update function :

∇θ′ log π(at, st; θ′)A(st, at; θ) + β∇θ′H(π(st; θ′)) (2.19)

with β being a regularization constant that controls the strength of the regularization
term.
The word Asynchronous in the name of A3C comes from the framework proposed
in [4], in this framework multiple actor-learners called workers each of them seeing
its own version of the environment running on threads of the same CPU. The idea
behind this setup is that each worker can have different policies and explore differ-
ent parts of the environment, making it more efficient than a single agent exploring
the environment. Each of the workers has its own policy and value networks and
there is also a global target network that gets updated slowly.
The algorithm makes use of the n-step update method to update the networks mean-
ing that n number of steps are taken in the environment to calculate the returns.
In an openai blog post ([7]) a variation of the A3C algorithm was introduced called
Advantage Actor-Critic (A2C), taking out the asynchronous part of A3C. As stated in
the post " AI researchers wondered whether the asynchronus element improved per-
formance , or if it was just an implementation detail that allowed for faster training
with a CPU-based implementation.", which encouraged them to experiment with a
synchronous deterministic variation of A3C, which proved to yield equal or better
results (on GPUs) than the original A3C. In the A2C implementation the workers
wait for each other to finish their segment (n-steps of the environment) and then
perform the synchronous update. One major difference with A3C is that since the
updates are now synchronous there is no need for each worker to have its own Neu-
ral Network instead there is one global NN that each worker uses a copy of and the
updates are performed over the average results of the workers.

2.3 OpenAI Gym

OpenAI Gym [1] is a toolkit for reinforcement learning research. It essentially pro-
vides a selection of environments on which RL algorithms can be applied.
It can be considered as a benchmark for RL researchers to test agents on. Different
agents can be tested on the same environments that the OpenAI Gym provides and
their results can be compared with its scoreboard setting. As stated in [1], the re-
sult sharing aspect of the OpenAI Gym is aimed towards sharing code and ideas for
agents and environments, rather than a competion.
It contains a variety of environments in the categories listed below :

• Classic Control and toy text : small-scale tasks from the RL literature.
• Algorithmic : perform computations, such as adding multi-digit numbers and

reversing sequences.
• Atari : a selection of classic Atari games for agents to learn to play.
• 2D and 3D robots : simulation of robots with control problems using the Mu-

JoCo engine.

The environment created and used in this thesis falls in the final category of 3D
robots on the MuJoCo engine. All available environments can be found here [5].

15

Chapter 3

Experimental Setup

3.1 Overview

In this chapter a description of the procedure that was followed to design and im-
plement the model, setup the training environments and implement the training
algorithms and the libraries used in each part.

In Section 3.2 the MuJoCo humanoid model design and details are described and
a description of the OpenAi gym environment. In Section 3.3.1 the DDPG algorithm
implementation and in Section 3.3.2 the baselines library and the A2C implementa-
tion are described.

3.2 Environment Setup

3.2.1 MuJoCo Model

For the creation of a MuJoCo environment a XML file is required. This XML file is
the model that will be simulated.

One of the most well-known OpenAi gym MuJoCo environments is the ’Humanoid-
v2’ which is a 3d humanoid robot designed in order for the agent to learn how to
walk and keep walking without falling, the ’Humanoid-v2’ can be seen in Figure 3.1.

Part of the XML file code for the humanoid can be seen in Figure 3.2. This part is
the code that designs and specifies the arms hands and their joints.

The environment used in the experiments of this thesis is a modified version
of the environment described above. The problem here is different to the initial
one, that one was for the humanoid to learn how to walk. Now the goal is for the
humanoid, that starts in the initial position of hanging on a bar, that is shown in
the simulate tool that MuJoCo provides in Figure 3.3, to learn via training to swing
up and eventually balance itself on that bar, similar to the well known CartPole and
Pendulum problems, but in a significantly more complex environment.

16 Chapter 3. Experimental Setup

FIGURE 3.1: Humanoid-v2 initial state.

FIGURE 3.2: Body elements for humanoid hands from XML file.

3.2. Environment Setup 17

FIGURE 3.3: Humanoid Bar initial state.

18 Chapter 3. Experimental Setup

Firstly, the bar was added as a child to the worldbody, as a body placed at a fixed
position in the plane. To specify the position of a body the x, y, z coordinates have
to be set, for the bar the x, y, z values are 0, 0, 2.06. We define the z coordinate set to
2.06, as HEIGHT.

To define how the bar looks, a geom element has to be created. The bar consists
of 3 geoms, the first one is for the bar itself and it is a capsule type geom as most
of the geoms on the humanoid model, the other two geom type elements are two
capsules at which the humanoid’s hands are attached to, as described below. In the
Humanoid-v2 walking problem the humanoids hands do not have any particular
use, thus only being geoms. But in this balancing problem the hands are a main
component, as they are the part that attaches the humanoid to the bar. In order to
be able to do that in MuJoCo, they were made into body elements with the geoms as
their child.

In order to attach two bodies in MuJoCo, an equality constraint has to be estab-
lished. Equality constraints essentially keep a distance at an axis between two geoms
constant during a simulation. Equality constraints were set between each hand and
the bar, but that was not enough as the humanoid was sliding sideways on the bar.
To solve that, the two geoms mentioned above were added at the spots on the bar
that the hands should be on and one more equality constraint was used to connect
each of the hands at the desired spot and keep the humanoid from sliding sideways.

In MuJoCo physics the bodies can move by having joints that provide a freedom
of movement.
The joints have ’motors’ and ’gears’ that in a free translation describe the bodies
strength by defining how sharp or delicate the moves can be. As the problem of
swinging up and balancing the humanoid on the bar would require more torque on
the upper body of the humanoid compared to the walking problem, the gear value
of both the left and right shoulders and elbows was increased.

To set the optimal values for the problems many tests were done with different
gear combinations with different outcomes, e.g. for some the humanoid lacked the
ability to swing itself above the level of the bar due to the gear setting being too low,
or on the other extreme, when setting the gears to a higher than needed setting, the
moves would be too sharp and the humanoid would arrive to a position curled up
around the bar and not moving.

3.2.2 OpenAi Gym

An OpenAi gym 3D robot MuJoCo environment has a python file with 3 basic func-
tions :

• init : in this function the XML file to load in the environment is defined.

• step : runs one timestep in the environment by taking an action as input, per-
forming that action in the environment and returning the observation, reward,
done from the new state that the action lead to.

• reset : resets the model to its initial state, by resetting the joints degrees of free-
dom. In MuJoCo that is done by setting values to qpos and qvel, the joints po-
sition and velocity, because the states in MuJoCo environments are described
by the qpos and qvel vectors.

In the step function, the reward function is presented. In the experiment of this
thesis, the reward is calculated as the sum of the position of each of the humanoid’s
bodies on the vertical axis (y) minus 2.06 which is the position the bar is placed on

3.2. Environment Setup 19

the y axis, referred to as HEIGHT in Section 3.2.1. This means that as the humanoid
sits under the bar the rewards will be negative and as some of its components get
above the bar the rewards will get closer to positive values and be at its max when
the humanoid is doing a handstand on the bar.

R =
15

∑
n=1

(xpos[n, 2]− HEIGHT) (3.1)

In the reset function the model is reset to its initial position as shown in Fig-
ure 3.3. During the training experiments, it was obvious that the agent did not have
enough knowledge of the upper part of the environment, essentially the positions
where positive rewards would be awarded, and the humanoid would not swing up
to a sufficient point.
To fix the lack of knowledge for the environment some randomness for exploration
was introduced. At each new episode the humanoid would spawn at one of eight
random poses around the bar shown in Figure 3.4 so that eventually full knowledge
of the environment would be acquired.
To do this the simulate tool, provided by MuJoCo was used to set the humanoid at
the desired poses. Using the simulate tool, it is possible to apply forces on the hu-
manoid model and see the position and velocity values for the humanoid’s bodies
and joints. Enough force was applied on the humanoid for it to spin arround the
bar, the simulation was paused at the desired poses. For each of those poses, the
joint positions were copied and saved in the humanoid.py file. Each time the reset
function is called one of the poses is randomly chosen using the random.choice()
python function, and the returned pose is passed with the set_state() function of the
MuJoCo environment.

20 Chapter 3. Experimental Setup

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 3.4: Possible initial positions

3.3. Algorithms 21

3.3 Algorithms

3.3.1 Deep Deterministic Policy Gradient

For the DDPG algorithm to be implemented in code as explained in Section 2.2.5
we need Neural Networks the Q and the µ and their respective target networks. To
create those NNs, the TensorFlow library was used.
Both the Q and µ NNs have the same architecture. This means that they have the
same size of hidden layers, in this experiment 300 neurons and one hidden layer.
As of the activation function, both NNs use the same one, in this instance ReLU for
the hidden layers, with the difference that, since the Q network has as output real
numbers, future rewards, it needs no output activation function, whereas the output
activation function for the µ NN is tanh.
The µ NN takes as input the states and outputs a number between [-1,+1] because
the activation function (tanh) outputs a value between -1 and +1 which is matched
to an action by multiplying with the max action value of the environment. For the Q
NN the inputs are the action and state concatenated with the action being the output
of the µ NN.
The replay buffer is implemented with numpy arrays, one for each of the following :
state, action, reward, next state, and done (s, a, r, s’, d). To use the buffer samples in
the learning process the desired number of samples are randomly picked from the
buffer, which essentially is the arrays mentioned here. For the DDPG algorithm, we
have a learning rate of 0.001, the gamma is 0.99 and the decay factor is 0.995. The
replay buffer has a size of 1000 samples and the random batch of samples used is
100.
At the beginning of the training procedure, for a certain amount of steps, the agent
does not use its policy. This means that a random number of steps are taken to
encourage better exploration and for the replay buffer to be filled, this number of
steps is set to 100000. In the experiments presented in this thesis, the episode size
was set to 1000 and 500 steps, for a multitude of total training episodes. The test
episodes are recorded in video using the Monitor function of the gym wrappers.
The implementation does not test the agent as soon as the training is finished, as
would be usual. Instead the agent is tested periodically, in this implementation every
25 training episodes, 5 testing episodes are done. This proved to be really helpful
in evaluating the progress the agent is making with the training and especially with
the recorded videos, so that it is easier to translate the values of the episode rewards
into the actual movement of the humanoid and observing the patterns that are being
developed.
Finally, both training and testing results are saved using the numpy library’s savez
function and the learning curves are generated using plot from matplotlib.

3.3.2 Advantage Actor-Critic

The Baselines library is a python library that provides a multitude of ready imple-
mented Reinforcement Learning algorithms (A2C, ACER, ACKTR, DDPG, DQN,
GAIL, HER, PPO1, PPO2, SAC, TD3, TRPO).
The Stable Baselines library provides an improved set of the implementations of the
Baselines algorithms. To use this library it had to be installed in the python3 direc-
tory. To train the agent a python file has to be created in which the desired algorithm
is imported and the environment the agent will be trained on is defined. The model
is defined as the algorithm in this instance being A2C, which takes as arguments the

22 Chapter 3. Experimental Setup

environment and the policy, which in most cases is a MultiLayer Perceptron (MLP).
The learn function is called for the desired total timeteps over all the parallel en-
vironments. The trained model can be saved and loaded with the save and load
functions. After all the training steps are done, the agent can be tested either in a
timestep limited episode setup or for a sequence of timesteps without reseting the
environment, in this experiment, for testing, 2000 episodes of 500 timesteps were
ran. The results are collected and plotted in the same manner as in DDPG (with
numpy and matplotlib), so that they can be comparable.

23

Chapter 4

Experiments and Results

4.1 Humanoid Bar Balance without random initial position

For the first experiments that were performed on the environment, the humanoid
model was created and the training begun without any other modifications. And
the initial position of each episode is the same, the one in Figure 3.3.

4.1.1 DDPG

For the first experiments the DDPG algorithm was used for training the model for
an episode length of 1000 steps and a total of 40000 episodes.
The reward function for the results presented below is :

R = MassCenter− HEIGHT (4.1)

with the MassCenter being the center of mass of the humanoid with regard to the y
axis and HEIGHT the height in the plane that the bar is placed on. This gives us as
the reward the distance between the humanoid and the bar, with it having positive
values, when the humanoid is above the bar, and negative values, when it sits below
it.

24 Chapter 4. Experiments and Results

FIGURE 4.1: Training results

4.1. Humanoid Bar Balance without random initial position 25

FIGURE 4.2: Testing results

From the above training (Figure 4.1) and testing (Figure 4.2) results we can ob-
serve that the minimum episode reward is close to -3000 making an average step
reward of -3. Considering that at the first episodes the humanoid seats hanging be-
low the bar this is the lowest reward achievable. From this, we can realize that the
optimal reward would be 3000. If that reward is achieved it would mean that the
humanoid balances on the bar for the whole episode.
In the training results we see that the agent reaches a maximum reward of -500 near
the 1000 episode mark and the algorithm converges to that reward for the episodes
to come. We can easily conclude that the maximum reward is far from optimal and
there is a big difference between the theoretical max reward (3000) and the experi-
mental one (-500). The best pose recorded for the humanoid in this training experi-
ment is shown in Figure 4.3.

26 Chapter 4. Experiments and Results

FIGURE 4.3: Humanoid pose

4.1. Humanoid Bar Balance without random initial position 27

4.1.2 A2C

For the A2C algorithm, the parallel environments are set to eight, the same episode
length of 1000 is selected and a total of 85000 episodes for each environment, making
a total of 680000 episodes. The reward function is the same as the DDPG algorithm
Equation 4.1.
The A2C algorithm seemed to work better (Figure 4.4) than the DDPG used above,
reaching its maximum reward value earlier in the training procedure. The max
reward (17) is the average over the eight environments and it is reached early in
the simulation. Also it is observed that average rewards of -500 are systematically
reached in the proceeding episodes, but the algorithm converges to lower rewards
averaging around -1000.
The A2C algorithm also seems to be faster the DDPG implementation used in these
experiments, considering that 8 virtual environments are being simulated in paral-
lel, this seems to be due to the fact the A2C algorithm is loaded from the Baselines
library, and being a high level python code, while DDPG is created from scratch.

FIGURE 4.4: Training results

28 Chapter 4. Experiments and Results

Although the first experiments show a stable training procedure and the hu-
manoid seems to be making moves towards reaching higher positions in the plane,
it is also obvious that the current experimental set up is sub-optimal and further
changes and optimizations have to be made to aid the algorithms in training the
agent to perform the correct task.
The main issue seems to be that the agent does not have enough information on the
upper part of the plane as it is almost impossible for it to get consistently positive
rewards for the humanoid being above the bar.
The solution to the problem is the randomization of the initial episode position of
the humanoid around different angles on the bar, introduced and described in Sec-
tion 3.2.2. The initial poses also produce more momentum aiding in the increased
velocity required for the humanoid to swing up. Also the mass of the humanoid is
reduced in order to make it easier for it to pull its weight upwards.

4.2. Humanoid Bar Balance with random initial position 29

4.2 Humanoid Bar Balance with random initial position

In this section the results of the second version of the environment set up are pre-
sented for the two algorithms that were examined in the previous section.

4.2.1 DDPG

The episode length was reduced to 500 episodes and the total episodes for training
are 10000 for the results presented below.
For the first part of the experiments with the randomness introduced in the initial
positions, the reward function remained unchanged (Equation 4.1).
R = MassCenter− HEIGHT

FIGURE 4.5: First Training results with random initial position

FIGURE 4.6: First Testing results with random initial position

30 Chapter 4. Experiments and Results

From Figure 4.5 and Figure 4.6 on first sight it is easy to conclude that the training
yielded much better results than the previous attempts. The minimum reward is
near -400 for an episode with a total of 500 step and the maximum achieved is near
+400.
To compare these results with the ones in the previous section we have to take into
consideration that the episode size is reduced to half and that the mass of the hu-
manoid is also reduced, making the gravitation pull less thus making the humanoid
hang higher above the ground than previously without any training and conse-
quently the minimum reward much less than before.
It is obvious that the random initial position provides much more knowledge of
the environment to the agent as it achieves positive rewards that remain consistent
throughout the training process. We also see that that when testing the agent the
minimum rewards are lower than the training, which is normal considering that at
the first testing episode the agent has already been trained for 25 episodes, with ran-
dom initial position, which means that some of those episodes will begin at the best
possible position for maximum reward (subfigure 3 in Figure 3.4).

For this version of the environment as the mass was changed, we opted not to
use the mass center function for the reward equation, so the rewards used are the
ones described in Section 3.2.2:

R =
15

∑
n=1

(xpos[n, 2]− HEIGHT) (4.2)

FIGURE 4.7: First Training results with random initial position and
xpos rewards

From the results presented in Figure 4.7 and Figure 4.8 for the new environment
version, the rewards in training vary between -4500 and 4500. The max reward of
4500 in 500 steps of the episode results in an average step reward of 9. Considering
that the maximum step reward that was calculated during the simulation is near
13,4 and is acquired when the humanoid is holding its weight upright on the bar
and the body is at full extension making the xpos[i,2] of each body part reaching
its maximum value, the average of 9 is quite satisfactory for the problem examined
here. As observed when rendering the agent, the humanoid’s policy is correct in

4.2. Humanoid Bar Balance with random initial position 31

FIGURE 4.8: First Testing results with random initial position and
xpos rewards

the meaning that the humanoid is constantly trying to achieve higher positions and
swings up on the bar, whilst when achieving the swing up trying to balance on that
position without falling below the bar for the most time possible. Due to the design
of the parts of the humanoid that make contact with the bar, they are sphere type
objects, and the bar itself being a cylinder there is very little contact area, for the
humanoid to balance there indefinitely, thus making the humanoid to fall below the
bar some steps during the simulation. As the reward become negative when below
the bar, it is observed that the time that the humanoid spends below the bar is also
tried to be minimized by the agent, and it is attempted to swing back up as soon as
possible. Since these results proved to be near the optimal of what we were looking
for, we went ahead and trained the agent for more episodes to see if there would be
any improvement or if no further learning could be applied.

32 Chapter 4. Experiments and Results

FIGURE 4.9: Training results for 50000 episodes

4.2. Humanoid Bar Balance with random initial position 33

FIGURE 4.10: Testing results for 50000 episodes

34 Chapter 4. Experiments and Results

From the above training Figure 4.9 and testing Figure 4.10 curves we can see that
the maximum episode returns are achieved considerably early on the simulations,
near the 5000 episode mark and the algorithm converges to that value, while not
achieving a larger one for the rest of the episodes. The max return achieved is 4500,
the same as before consequently with the same average step reward of 9. The be-
haviour is also similar to the one described above (in the 10000 episode simulation).
One more interesting result deduced from the above curves is that the fluctuation in
the episode rewards is normal for most parts averaging around 4000, but there are
some spikes with negative or near 0 rewards, that produces an unwanted increase in
variance. What is considered to be normal fluctuation is that of the rewards around
4000. To see if this is normal in MuJoCo environments, and especially "Humanoid-
v2" which would be the closest environment to compare this thesis to, from online
research the curve in Figure 4.11 for an agent training on the humanoid environment
using the PPO algorithm was found in [13].

Comparing the two curves we see that the spikes described previously are not

FIGURE 4.11: PPO trained Humanoid-v2 rewards

present in the "Humanoid-v2" training curve. By reviewing the testing footage it
was deduced that the spikes are caused, because at some episodes the humanoid
ends up tangled around the bar, rendering it unmovable, thus making the step re-
wards static at negative values, also making the total episode reward negative.
In Figure 3.3 we can see that there is space between the humanoid’s torso parts. This
gap is there also in the original humanoid.xml and it is believed that it serves the
purpose of providing certain elasticity to the body’s movement.
These gaps are the ones that cause the humanoid to be tangled with the bar, as they
are large enough for the bar to fit between them and restrict the humanoid’s move-
ment freedom (Figure 4.12).
To improve the situation and produce learning curves without this many negative
spikes, the spaces between torso parts were reduced, as it can easily be observed by
comparing the two humanoid instances of Figure 4.13, which made the body more
rigid and reduced the episode cases described above.
The new curves produced are shown in Figure 4.14 and Figure 4.15.

4.2. Humanoid Bar Balance with random initial position 35

FIGURE 4.12: Humanoid not able to move

FIGURE 4.13: Initial and improved humanoid

36 Chapter 4. Experiments and Results

FIGURE 4.14: Improved Training results for 50000 episodes

4.2. Humanoid Bar Balance with random initial position 37

FIGURE 4.15: Improved Testing results for 50000 episodes

38 Chapter 4. Experiments and Results

(A) (B)

(C) (D)

FIGURE 4.16: Balanced positions

Comparing Figure 4.9 to the improved one Figure 4.14 we see that the average
of negative spikes was 35 in 10000 episodes and in the improved version it reduced
to an average 15 in the same number of episodes. Also in the agent testing curve
Figure 4.14 we can see that negative spikes are much less and 3 or 4 in 2000 testing
episodes, with the exception of the first 2000 testing episodes in which the agent still
has not converged to the max reward value.
In Figure 4.16 some images of positions that the humanoid managed to balance at
for several seconds throughout the simulations are presented.

4.2. Humanoid Bar Balance with random initial position 39

FIGURE 4.17: Episode frames from a right side initial position.

In Figure 4.17 25 frames of an episode of a trained agent starting the testing
episode at a position on the right side of the bar are presented.

40 Chapter 4. Experiments and Results

FIGURE 4.18: Episode frames from a left side initial position.

In Figure 4.18 25 frames of an episode of a trained agent starting the testing
episode at a position on the left side of the bar are presented.

4.2. Humanoid Bar Balance with random initial position 41

FIGURE 4.19: Episode frames from an upright initial position.

In Figure 4.19 25 frames of an episode of a trained agent starting the testing
episode at an upright position on the bar are presented.

42 Chapter 4. Experiments and Results

4.2.2 A2C

For the A2C implementation the same set-up rewards and episodes were used. The
A2C algorithm seemed really promising at the first experiments in Section 4.1.2 as
it reached a local optimum really early on in the training and it was faster than the
DDPG implementation. But as it can be deduced by the learning curve produced, it
yielded below par results in these experiments (with the random initialization). We
believe that the randomness introduced in this step of the experiments complexes
the situation more for the algorithm to work, although it produces better knowledge
of the environment for the agent. Considering that to implement A2C two or more
environments have to be simulated in parallel, the randomness that we introduce to
the agent leads to eight environments each with a random of eight initial positions,
this situation produces too much information for the agent to correlate and to find
a policy that serves the goal. To evaluate the A2C, the average reward across the
parallel environments is presented Figure 4.20, which also due to the randomness
does not reach the optimal rewards that the DDPG algorithm produced. So, as the
DDPG implementation was sufficient enough to train the agent correctly the idea of
using or improving the A2C implementation was abandoned.

FIGURE 4.20: A2C average for 8 environments

43

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The goal of this thesis was to train an agent using Reinforcement Learning on the
gym environment created, that is based on ’Humanoid-v2’, to swing up on a bar
and balance a humanoid 3D robot model. To do so, the xml model that was based
on the humanoid.xml had to be created and the environment altered in order to fit
the new task, of swinging up and balancing. To do so, DDPG and A2C algorithms
approaches were explored, which are considered to be state-of-the-art algorithms
alongside others, such as TRPO or PPO2. The algorithms were tested and evaluated,
and the problem was solved with DDPG, although at first sight A2C seemed to work
better time-wise. The process of reaching the end result included many experiments
with different environment set-ups eventually getting the best results described in
Section 4.2.1.

5.2 Future Work

Based on this project an interesting and possible improvement would be to expe-
riment on the same concept, but with the states being visual representations of the
environment and train the agent using Convolutional Neural Networks that are
proven to work great with image recognition and are used to train agents on Atari
games.
In our experiments, the humanoid would always eventually fall below the bar due
to the shape of the hands and the bar, both being sphere or capsule like bodies with
too little contact area. As designing more detailed hand elements in MuJoCo would
be quite challenging, a potential redesign of the model using other physics engines
such as Gazebo or the Unity engine, would be interesting. But, for this experiment
a new environment from scratch should be designed outside the OpenAi Gym as
there are not ready-made environments of other 3D physics engines in the Gym li-
brary.
As for further improvements on this project, other algorithms in the Baselines library
could be tested including the aforementioned TRPO and PPO2.
Last, a very interesting expansion of this project would be to apply the trained agent
on a real life robotic setup and not just the 3D simulation, although this would be
really challenging and extreme resources would be required.

45

Bibliography

[1] Greg Brockman et al. “OpenAI Gym”. In: CoRR abs/1606.01540 (2016). arXiv:
1606.01540. URL: http://arxiv.org/abs/1606.01540.

[2] Timothy Lillicrap et al. “Continuous control with deep reinforcement learn-
ing”. In: CoRR (Sept. 2015).

[3] Ms. Sonali. B. Maind and Ms. Priyanka Wankar. “Research Paper on Basic of
Artificial Neural Network”. In: International Journal on Recent and Innovation
Trends in Computing and Communication 2 (1) (2014), pp. 96–100. URL: https:
//doi.org/10.17762/ijritcc.v2i1.2920.

[4] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:
CoRR abs/1312.5602 (2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/
1312.5602.

[5] OpenAI. A toolkit for developing and comparing reinforcement learning algorithms.
URL: https://gym.openai.com/envs/.

[6] OpenAI. Acrobot-v1 Gym environment. URL: https://gym.openai.com/envs/
Acrobot-v1/.

[7] OpenAI. baselines-acktr-a2c. URL: https : / / openai . com / blog / baselines -
acktr-a2c/.

[8] OpenAI. CartPole-v1 Gym environment. URL: https://gym.openai.com/envs/
CartPole-v1/.

[9] OpenAI. Humanoid-v2 Gym environment. URL: https : / / gym . openai . com /
envs/Humanoid-v2/.

[10] OpenAI. InvertedDoublePendulum-v2 Gym environment. URL: https : / / gym .
openai.com/envs/InvertedDoublePendulum-v2/.

[11] OpenAI. Pendulum-v0 Gym environment. URL: https : / / gym . openai . com /
envs/Pendulum-v0/.

[12] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: 31st Inter-
national Conference on Machine Learning, ICML 2014 1 (June 2014).

[13] Mario Srouji, Jian Zhang, and Ruslan Salakhutdinov. “Structured Control Nets
for Deep Reinforcement Learning”. In: (Feb. 2018).

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. Second. The MIT Press, 2018. URL: http://incompleteideas.net/book/
the-book-2nd.html.

[15] Richard S. Sutton et al. “Policy Gradient Methods for Reinforcement Learning
with Function Approximation”. In: Advances in Neural Information Processing
Systems 12 (2000), pp. 1057–1063.

[16] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learn-
ing 8 (1992), pp. 279–292.

https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.17762/ijritcc.v2i1.2920
https://doi.org/10.17762/ijritcc.v2i1.2920
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://gym.openai.com/envs/
https://gym.openai.com/envs/Acrobot-v1/
https://gym.openai.com/envs/Acrobot-v1/
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/
https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/Humanoid-v2/
https://gym.openai.com/envs/Humanoid-v2/
https://gym.openai.com/envs/InvertedDoublePendulum-v2/
https://gym.openai.com/envs/InvertedDoublePendulum-v2/
https://gym.openai.com/envs/Pendulum-v0/
https://gym.openai.com/envs/Pendulum-v0/
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Related Work

	Background
	MuJoCo
	MuJoCo Models

	Reinforcement Learning
	Q-Learning
	Artificial Neural Networks
	Deep Q-Learning
	Policy Gradients
	Deep Determenistic Policy Gradient
	Advantage Actor-Critic (A2C)

	OpenAI Gym

	Experimental Setup
	Overview
	Environment Setup
	MuJoCo Model
	OpenAi Gym

	Algorithms
	Deep Deterministic Policy Gradient
	Advantage Actor-Critic

	Experiments and Results
	Humanoid Bar Balance without random initial position
	DDPG
	A2C

	Humanoid Bar Balance with random initial position
	DDPG
	A2C

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

