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Abstract: We present and assess a method to estimate missing values in daily precipitation time
series for the Mediterranean island of Crete. The method involves a quantile mapping methodology
originally developed for the bias correction of climate models’ output. The overall methodology
is based on a two-step procedure: (a) assessment of missing values from nearby stations and (b)
adjustment of the biases in the probability density function of the filled values towards the existing
data of the target. The methodology is assessed for its performance in filling-in the time series of
a dense precipitation station network with large gaps on the island of Crete, Greece. The results
indicate that quantile mapping can benefit the filled-in missing data statistics, as well as the wet day
fraction. Conceptual limitations of the method are discussed, and correct methodology application
guidance is provided.
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1. Introduction

The cornerstone of meteorological and climatological science is the quality of measurement of
precipitation. Large instrumentation gaps occur due to network destruction (fires, wars) or technical
limitations that dictate network reorganizations [1]. This is a difficult issue to tackle as there are
legacy networks which provide decades of valuable data which, for various reasons, have been
discontinued. An obvious workaround of treating missing values is to include only part of the data
in the analyses, which however, may lead to the exclusion of valuable information from them or
even induce unwanted biases [1]. Other methodological approaches to deal with the gaps is to fill
in missing values using data from the same station (temporal fill-in of the missing data) or to make
use of interpolation-based techniques that utilize nearby stations’ recordings to estimate the missing
values (spatial fill-in) [2]. Temporal fill-in, however, has been found to be more suitable for variables
with high autocorrelation and for calculating long-term averages and hence it is not suitable for daily
precipitation [2]. Regarding the spatial interpolation methodologies found in the literature, they mainly
belong to two major categories: geographical interpolation methods, which consider the location of
the station, and non-geographical methods. Methods belonging in the first category among others
are the kriging family of methods [3], while nearest neighbors, Thiessen polygons [4], and inverse
distance weighting (IDW) [5] are classified as non-geographical methods [6]. Their main difference lies
in the fact that geographical methods use the spatial correlation between neighboring observations to
provide estimates of precipitation in the desired locations.
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Many studies have tested the efficiency of interpolation methodologies in their ability to estimate
the spatial fields of precipitation on different temporal scales, which can also be considered as a metric
to assess the ability to fill in discontinuities. Despite the number of methods and the shakedown studies,
the literature is not conclusive about the performance ranking of the different interpolation methods
for the various timescales, showing that there are some usually well performing methods but with
case-specific results. Regarding daily precipitation data fill-in, [7] tested ordinary kriging and co-kriging
based methods of IDW were applied to interpolate daily precipitation in China. Co-kriging was found
to provide better results compared to the other two methodologies, also indicating the drawbacks of
IDW compared to geographical methods. In the same manner, one study [8] tested two interpolation
methods, IDW and the multiquadric–biharmonic method, in a dense precipitation measuring network
in the United States, indicating that the latter provided better results. In contrast to those findings,
another author [9] studied a network of 13 rain gauges on Norfolk Island, finding that IDW and
Thiessen methodology provided similar results compared to kriging. In a much broader study in terms
of data for Northeast China [10], 40 years of data from 72 stations were studied, indicating similar
results, i.e., that more complex methods did not provide added value compared to the simple IDW.
In another study focused on a mountainous region of Israel [11], IDW methodology was shown to
perform better compared to a local weighted regression (LWR) that also considered elevation and
other explanatory variables. In coarser temporal precipitation resolution focused studies (monthly,
annual), the comparison between different interpolation methodologies is not also conclusive. One
study [12] compared ordinary kriging, IDW and splines to estimate annual precipitation, concluding
that ordinary kriging performed better compared to the other two methods. It must be mentioned
that the explicit characteristics of each case study region and its precipitation regime vary the attained
comparison results. As an example, densely gauged case studies or regions with uniform precipitation
characteristics (in space and/or time) are expected to aid simpler interpolation methods to perform
well. However, in regions with sparse precipitation observations, the missing information can be
complemented by secondary attributes that are more densely sampled [3]. Furthermore, in higher
temporal resolution cases, i.e., daily data, the spatial variability of the precipitation may be so large that
the theoretical advantage of more sophisticated methods may be diminished. In general, it can be said
that the spatial variability of the precipitation increases as the timescale decreases; hence, regardless of
the interpolation methodology, the skill is expected to increase as the timescale becomes larger. This
highly stochastic nature of precipitation compared to other climatic variables such as temperature has
also been mentioned [13]. Adding to the above-mentioned methodologies, also data-driven approaches
have been used in the literature to fill in precipitation data. Indicative examples are the use of artificial
neural networks to fill missing data form nearby stations [14,15].

Noteworthy drawbacks of the weighting and regression methods for daily precipitation fill-in
are the overestimation of the number of rainy days, as they combine the rainy days of many nearby
stations, as well as the distortion of the rainfall probability distribution, with heavy precipitation
events likely to be systematically underestimated [1]. As a result, a side effect of the spatial fill-in
procedures is that the estimated precipitation values most likely do not follow the statistical properties
of the site. Beyond the under or over-estimation of the precipitation values, the probability distribution
would be hampered. In this direction, quantile mapping-based methods have been used to adjust
the statistical properties of the filled-in values. One study [16] used quantile mapping (QM) with
empirical cumulative distribution function to fill in daily precipitation data voids over the Northwest
Himalayas. The authors directly used the mapping of missing precipitation measurements from one
station to another station and compared to the other simpler fill-in methodologies, finding that QM
provided the best results. Similarly, another study [1] presented a methodology to estimate missing
daily precipitation data that uses quantile mapping based on the gamma distribution function, in
combination with multiple linear regression.

In this work, we present a method to fill in missing values in daily precipitation series that is
tested and applied on the Mediterranean island of Crete. On the island, there have been two major
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legacy networks gauging daily precipitation. The development of the methodology presented in this
work was motivated by the need to fill in each network’s gaps. The methodology is based on a two-step
procedure: (a) assessment of the values from nearby stations and (b) adjustment of the biases in
the probability density function of the filled values towards the target point of existing data. A set of
different approaches for step (a) are considered and exhaustively tested. The results are meticulously
tested using subsampling cross-validation.

2. Materials and Methods

2.1. Case Study Region

The island of Crete covers more than 6% of the area of Greece and is the 5th largest Mediterranean
island. Crete’s climate is characterized as dry sub-humid Mediterranean, exhibiting warm and dry
summers while winters are cold and rainy. More than 40% of the annual precipitation occurs in
the months of December to February. The average precipitation of the island ranges from 440 mm/year
in the eastern part of the island to more than 2000 mm/year in the western mountainous regions.
The island of Crete exhibits a steep terrain, with elevations as high as 2456 m a.s.l. The steep orography
has a strong effect on the precipitation regimen, with large orographic precipitation effects to be
observed [17–20] that, in combination with its location within the Mediterranean, have resulted in
numerous heavy precipitation events that were followed by serious flooding events, such as those
which occurred in the Giofiros region in 1994 [17,21], in the Almirida region in 2007 [22,23], as well as
February 2019′s extensive flooding in the Chania prefecture [24] and floods in the southern parts of
the island [25]. Recent findings have indicated that the region’s precipitation regime facilitates rainfall
induced soil erosivity to a larger extend than was previously thought [26,27]. From a hydrogeological
perspective, the island is mainly composed of pre-alpine and alpine carbonate formations and neogene
and quaternary (alluvial) sediments which expedite water penetration; hence, the region exhibits
limited surface water resources [28]. Crete is a well-studied region in the context of climate change
impacts, mainly for its location and size, its environmental heterogeneity, but also due to its hydrological
isolation from continental Greece, which makes it ideal for studying climate change impacts [21,29–31].

2.2. Precipitation Data Availability

On the island of Crete, there have been two major precipitation gauging station networks. The first
one has been in service since the early 1970s and was operated by the Decentralized Administration
of Crete (DAC) (formerly Prefecture of Crete), from which data are mostly available from the period
between 1973 and 2015, collected by a total of 62 stations. The second network of 15 stations is being
operated by the Hellenic National Meteorological Service (HNMS), which has largely ceased operation,
but some of the stations are still in operation. In recent years, another fully automatic network of
meteorological stations has been developed from the National Observatory of Athens (NOA), but it
is not assessed in this study due to the very few stations that provide data for periods longer than
10 years. The spatial distribution of the two networks, as well as the overall gaps of each station, are
shown in Figure 1. In Figure 2, the temporal availability is shown, with 100% corresponding to all 77
stations that were considered. As can be observed, prior to 2008, the availability of the data ranged
between 70% and 90%, while there was a gradual decrease in recent years, with the year 2015 having
an availability of ~10% (8 stations).
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Figure 1. Case study region and the two precipitation networks considered, indicated by different 
shapes, i.e., circles for the Decentralized Administration of Crete and squares for the Hellenic National 
Meteorological Service. Colors blue to red indicate the percentage of the gaps in daily scale between 
1 September 1973 and 31 August 2015 and brown to light blue indicate the elevation in meters a.s.l. 
The stations’ enumeration corresponds to Table A1. 

 
Figure 2. Data availability timeline between 1 September 1973 and 31 August 2015. 

2.3. Methodology 

The methodology is divided into two discrete processing steps. First, the gaps are filled in in a 
spatial manner. Five different methods were assessed, including non-geographical interpolation 
techniques. After the fill-in, as a second step, the cumulative density function (CDF) of the filled-in 
values is adjusted towards the already existing data on the station. The two steps are analyzed in 
detail. To effectively assess the performance of the two-step procedure and the different methods, we 
considered all the stations that provide data for at least 10 years and with at least 95% completeness 
of daily data in each year. To assess the methods, we obtained data from one station at a time, 
randomly split the available data into a calibration and validation set and applied the two-step fill-in 
methodology. The validation portion of the data was considered to be the gaps that needed to be 
filled in. The results of the fill-in procedure were then assessed against the validation set. The 
procedure was repeated 10 times per station to ensure that the random split of the data into 
calibration and validation sets did not affect the results. This number was considered to be sufficient 
for the experimental design needs, as in the literature, similar calibration validation schemes are 
found to use six [32] to twenty [33] permutations. A flowchart with the procedure followed is shown 
in Figure 3. 

Figure 1. Case study region and the two precipitation networks considered, indicated by different
shapes, i.e., circles for the Decentralized Administration of Crete and squares for the Hellenic National
Meteorological Service. Colors blue to red indicate the percentage of the gaps in daily scale between
1 September 1973 and 31 August 2015 and brown to light blue indicate the elevation in meters a.s.l.
The stations’ enumeration corresponds to Table A1.
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Figure 2. Data availability timeline between 1 September 1973 and 31 August 2015.

2.3. Methodology

The methodology is divided into two discrete processing steps. First, the gaps are filled in in
a spatial manner. Five different methods were assessed, including non-geographical interpolation
techniques. After the fill-in, as a second step, the cumulative density function (CDF) of the filled-in
values is adjusted towards the already existing data on the station. The two steps are analyzed in
detail. To effectively assess the performance of the two-step procedure and the different methods, we
considered all the stations that provide data for at least 10 years and with at least 95% completeness of
daily data in each year. To assess the methods, we obtained data from one station at a time, randomly
split the available data into a calibration and validation set and applied the two-step fill-in methodology.
The validation portion of the data was considered to be the gaps that needed to be filled in. The results
of the fill-in procedure were then assessed against the validation set. The procedure was repeated
10 times per station to ensure that the random split of the data into calibration and validation sets
did not affect the results. This number was considered to be sufficient for the experimental design
needs, as in the literature, similar calibration validation schemes are found to use six [32] to twenty [33]
permutations. A flowchart with the procedure followed is shown in Figure 3.
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2.3.1. Gap Filling

Five different methods of spatially filling the (artificially made) missing values were assessed.
These are as follows: (a) the inverse distance weighting (IDW) method [5] (with a distance power of 2),
(b) the spatially nearest station, (c) the least histogram distance, (d) the station with the best coefficient
of determination (R2) [34] between the concurrent daily values and (e) the station with the best R2 as
determined in (d), estimated from the logarithm of precipitation values. Method (a), IDW, is the only
one that exploits multiple values of the nearby stations to estimate a missing value on the target
station. The remaining four are different methods of selecting a substituting value from a single station.
The nearest station uses the Euclidean distance as a criterion to select the station from which to assess
a missing value. As for the number of the utilized neighbor stations, all the stations that provide
a precipitation value at each timestep were considered. The least histogram distance method (HST)
compares the histograms between the existing data of the target station and other stations explicitly.
The histogram assessment was performed using a bin size of 1 mm. The distance of the histograms
was quantified by estimating the root mean squared difference. Method (d) estimates the R2 between
the existing data of the target station and other stations explicitly, and each missing value on the target
station is substituted with the available precipitation value from the station with the best R2. Method
(e) is the same as (d), with the difference being that the R2 is estimated from the logarithm (base of
10) of the precipitation. This methodology is routinely used in hydrological model assessment along
with the Nash–Sutcliffe criterion [35]. The logarithmic transformation of the precipitation helps to
flatten the rarer high values, while lower precipitation values are comparatively retained. Hence,
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the sensitivity of R2 to the high precipitation values is mitigated. It has to be mentioned that, in order
to estimate the logarithmic value of the precipitation, all the zero precipitation values were omitted.

2.3.2. Quantile Mapping Correction

The filled-in data of a station using the abovementioned methods are then adjusted in their CDF
using the existing observed data. The methodology used here is multi-segment statistical bias correction
(MSBC) [36]. This method belongs to the wider family of quantile mapping techniques. The method
considers discrete segments of the cumulative density function space and applies quantile mapping
correction in each segment individually. A step by step example of applying the multi-segment
correction methodology is provided elsewhere [32,36]. The methodology has proven to be efficient
to adjust daily climate model data in a number of local [20,37–39] and global scale studies [39,40].
The methodology considers a wet day fraction adjustment before the quantile mapping, by adjusting
the usually excessive wet days of the climate model simulations to the observed one. A threshold of
0.1 mm per day was considered for the wet day definition. Technical details about the application of
the method are provided in the Appendix A in [36].

2.3.3. The Effect of the Ratio between the Filled in Data and the Existing Data

The previously described methodology quantifies the effect of quantile mapping on the fill-in
data post-processing, under the assumption that the gaps to be filled are equal to the available
data on the specific location. This has an important methodological implication for the quantile
mapping application: when the filled gaps are much less (or much more) than the available data,
the quantile mapping tends to stretch the filled values to cover the entire CDF space of the existing
observations. Hence, it tends to inflate (or deflate) some of the frequent and low (or, more rarely, high)
precipitation values to represent high return period events (milder events). On the above described
experimental design, the gaps were considered equal to the existing data length, while also the length
of the gaps/existing data were at least 10 years (5 years each), which allowed for a reasonable climate
sampling. To quantify the effect of the total number of gaps to be filled in, an experiment was conducted
in which the artificially created gaps varied between 20% and 90%.

3. Results and Discussion

3.1. Gap Filling Methods Assessment

The results of the different methods to fill in the gaps are assessed in this section. Figure 4 shows
the results of the comparison between the different gap filling methods against the validation data. Each
dot in the boxplots corresponds to the results of each station omitted from validation. As the procedure
was repeated 10 times, each point is the average among the 10 experiment permutations. Quantitatively,
the % differences are remarkably high and mainly range between −40% and 20%. The RMSE of all
methods ranges between 5 and 12 mm. The comparison between the ranked (CDF) values show better
agreement than expected, with RMSE mainly between 1 mm and 5 mm. The Pearson’s correlation
coefficient varies highly among the different methods, between −0.8 and 0.8. In terms of % difference,
NN and logR2 methods are better at filling in data. The R2 and logR2 exhibit low root mean squared
error (RMSE), while HST shows poor results. When the CDF of the filled-in data is compared to
the validation data’s CDF, the NN, R2 and logR2 show better performance. Finally, in terms of Pearson’s
correlation coefficient, the R2 and logR2 show the best results.
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3.2. Benefits of Quantile Mapping

In Figure 5, we compare the different fill-in methods’ results to the validation data after
the application of the quantile mapping. The benefits of the different metrics are profound. After
the quantile mapping, all filling-in methods show a percent difference mainly between −15% and
0%, largely improving the difference, even with remaining negative bias (constructed precipitation
values are lower than the actual validation values). The RMSE shows limited improvement, but in
terms of CDF RMSE, the improvement signal is clearer, with RMSE values ranging between 1 mm and
3 mm. In terms of Pearson’s correlation coefficient, the results are roughly similar or even degraded
compared to the non-quantile mapping application. An important point to be mentioned is that,
while quantile mapping improved some aspects of the fill-in process, it did not significantly change
the relative performance among the different fill-in methods. Hence, from a fill-in point of view,
the best performing method is the R2, which provides a reasonable % difference, with the lowest RMSE,
the second best RMSE in the CDF comparison and one of the best performing correlation coefficients.
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3.3. Wet Day Fraction Adjustment

Beyond the benefits of the quantile mapping for the statistics of the filled-in data, the effect of
the wet day fraction adjustment was assessed. In Figure 6, the difference in the wet day fraction in
the filled-in values was assessed before and after the adjustment. The results indicate that the IDW
driven fill-in methods result in a major wet day overestimation (Figure 6a). This result does not come
as a surprise, as the IDW is the only technique tested that considers the combination of data from
various nearby stations. The rest of the methods seem to exhibit a more limited difference in the wet
day fraction, yet this is still high enough. This confirms the large discrepancy that may be exhibited
between nearby stations as a result of the complex terrain and the uniformity of the microclimatic
conditions of the island. The wet day correction applied provides a considerable improvement in
the results, as shown in Figure 6b. The mostly positive remaining difference that all the fill-in methods
exhibit is explained by the methodology of the wet day correction, i.e., the wet days of the filled-in
values are trimmed to fit the observed data of the station. However, in the opposite case, i.e., filled-in
data exhibit smaller fraction of wet days, the methodology (originally designed to work on climate
model data) does not perform any adjustments.
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3.4. The Effect of the Gap Size Relative to the Already Available Data on the Station

In this section, the results of the experiment described in Section 2.3.3 are presented. In order to
quantify the effect of the total number of gaps to be filled-in compared to the already existing amount
of data, we repeated the previous analysis (only for the R2 gap filling method), this time modifying
the % of the artificially created gaps. Again, ten repetitions of the experiment were used. The results
of the quantile mapping are shown in Figure 7a–d against the same experiment’s results with only
the fill-in procedure (Figure 7e–h). It is shown that, in all the estimated metrics, the best attained
results were found for gap sizes equal to the available observation of the station. The performance of
all the metrics, i.e., the % difference, the RMSE, the RMSE of the CDF and the correlation coefficient,
deteriorates beyond and below the ratio one to one between the gaps and the available data. In contrast,
the results of the experiments without quantile mapping show an invariability with the fraction of
the gaps that were filled in. All the above suggest that, when the gap size is different to the already
existing data, then (a) when the gaps are less than the already existing data on the station, the quantile
mapping of the same data length should be considered, even if the data are already known, and (b)
in the opposite case when the gaps are more than the available data, then the gaps should be bias
adjusted in batches similar to the available data length.
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4. Discussion and Conclusions

A method to adjust the filled-in missing data of daily precipitation measurements is presented.
The methodology is applied and tested for the Mediterranean island of Crete. The methodology
makes use of a quantile mapping bias correction technique originally designed for daily precipitation
adjustment in climate models. The methodology was tested on a large number of stations by creating
artificial data gaps that were filled-in and processed with the presented methodology. The results
were assessed using a subsampling cross-validation technique. The analysis performed suggests that
the methodology works best when the gaps are filled in using the data of most similar station in terms
of R2. Furthermore, experimental evidence provided here shows that the ratio of the missing data to
the available data on the specific station of interest is a very important parameter that should be taken
into consideration when this methodology is applied. The presented results indicate that quantile
mapping offers profound benefits to the fill-in procedure, even if it does not benefit all aspects of
the statistics. The large improvement in the difference and the CDF statistics shows that the quantile
mapping adds value to the data, mainly when the filled-in data are used for long-term analyses
rather than the reconstruction of a single precipitation event, even though, in the latter case, quantile
mapping does not seem to statistically deteriorate the precipitation statistics. Further improvements
could be achieved if the methodology was able to adjust the wet day fraction, even when the filled-in
wet day fraction was lower than the respective fraction of the existing data on the specific station.



Water 2020, 12, 2304 10 of 13

The methodology could benefit the fill-in of other climatic variables under the condition that an
appropriate quantile mapping methodology is used. As an example, the temperature variable cannot
be processed with quantile mapping with the gamma distribution function as it cannot facilitate
negative values. A drawback of this study is that this methodological sequence has not yet been tested
for other regions; hence, its applicability elsewhere, outside the island of Crete, cannot be guaranteed.
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Appendix A

Table A1. Location and information about the precipitation stations used in this study.

Map ID Name Code Elev (m) Lon (deg) Lat (deg) Operated by Gaps (%)

1 Fourni MT54 316 25.7 35.3 HNMS 40.9
2 Kasteli MT50 349 25.3 35.2 HNMS 8.3
3 Tzermiades RG9 820 25.5 35.2 HNMS 53.3
4 Herakleio MT18 39 25.2 35.3 HNMS 0.0
5 Souda MT52 148 24.2 35.5 HNMS 0.0
6 Chania MT55 151 24 35.5 HNMS 25.6
7 Vamos MT51 240 24.2 35.4 HNMS 47.6
8 Ierapetra MT17 18 25.7 35 HNMS 11.4
9 Gortys MT16 182 24.9 35.1 HNMS 28.4
10 Rethymno 5.1 24.5 35.4 HNMS 25.3
11 Tympaki 6 24.8 35.1 HNMS 0.0
12 Palaiochora 20 23.7 35.2 HNMS 35.4
13 Zaros 350 24.9 35.1 HNMS 35.0
14 Anwgeia MT49 740 24.9 35.3 HNMS 25.9
15 Sitia MT38 114.1 26.1 35.2 HNMS 0.0
16 Prasses RG29 520 23.9 35.4 DAC 57.1
17 Kalyves MT19 19.9 24.2 35.4 DAC 20.4
18 Mouri RG18 50 24.3 35.3 DAC 8.1
19 Askyfou RG4 740 24.2 35.3 DAC 14.9

20 Palaia
Roumata RG20 316 23.8 35.4 DAC 15.5

21 Agrokipio MT3 8 24 35.5 DAC 85.7
22 Zymbragou MT46 235 23.8 35.4 DAC 90.5
23 Tavronitis MT41 15.4 23.8 35.5 DAC 86.7
24 Alikianos MT4 66.3 23.9 35.4 DAC 90.5
25 Kantanos MT21 465.8 23.7 35.3 DAC 75.5
26 Garazo MT47 260 24.8 35.3 DAC 67.2
27 Gerakari RG8 660 24.6 35.2 DAC 10.0
28 Kavousi RG14 580 24.6 35.3 DAC 15.1
29 Vizari RG25 310 24.7 35.2 DAC 16.7
30 Ag. Galini RG1 20 24.7 35.1 DAC 15.3
31 Melampes RG16 560 24.6 35.1 DAC 18.0
32 Spili MT39 390 24.5 35.2 DAC 19.3
33 Voleones RG26 260 24.6 35.3 DAC 18.8
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Table A1. Cont.

Map ID Name Code Elev (m) Lon (deg) Lat (deg) Operated by Gaps (%)

34 Leukogeia MT28 90 24.4 35.2 DAC 12.5
35 Sternes RG23 300 25.1 35 DAC 90.5
36 Zaros MT45 500 24.9 35.1 DAC 10.1
37 Morwni RG17 400 24.9 35.1 DAC 0.0
38 Lagolia RG15 140 24.8 35.1 DAC 2.6
39 Vagionia RG24 190 25 35 DAC 12.7
40 Kapetaniana RG13 800 25 35 DAC 13.5
41 Axentrias RG5 680 25.2 35 DAC 14.1
42 Kalyvia RG12 200 25.2 35.1 DAC 12.5
43 Partira RG21 400 25.2 35.1 DAC 9.5
44 Gortys 180 24.9 35.1 DAC 81.0
45 Tympaki-YEB MT43 20 24.8 35.1 DAC 88.1
46 Metaksoxwri MT31 430 25.1 35.1 DAC 9.1
47 Foinikia MT13 40 25.1 35.3 DAC 7.1
48 Ag. Varvara MT1 570 25 35.1 DAC 6.3
49 Profitis Hlias MT36 380 25.1 35.2 DAC 3.8
50 Voni MT44 330 25.2 35.2 DAC 10.9
51 Avdou MT9 230 25.4 35.2 DAC 15.5
52 Krousswnas MT27 500 25 35.2 DAC 11.3
53 Pompia MT35 150 24.9 35 DAC 12.9
54 Ag. Kyrillos MT2 450 24.9 35 DAC 11.9
55 Asimi MT8 200 25.1 35 DAC 13.1
56 Kapsaloi MT22 10 25.4 35 DAC 40.7
57 Kasanos MT24 320 25.3 35.1 DAC 11.5
58 Demati MT10 210 25.3 35 DAC 13.8
59 Tefeli MT42 360 25.2 35.1 DAC 4.8
60 Armaxa MT6 450 25.3 35.2 DAC 12.3
61 Gergeri MT15 450 24.9 35.1 DAC 7.1
62 Vorizia RG27 520 24.8 35.1 DAC 4.0
63 Protoria MT37 225 25.1 35 DAC 12.7
64 Marwnia MT30 150 26.1 35.1 DAC 17.9
65 Katsidwni MT25 480 26.1 35.1 DAC 10.5
66 Palaikastro RG19 25 26.3 35.2 DAC 16.1

67 Paxeia
Ammos MT34 50 25.8 35.1 DAC 16.7

68 Malles MT29 590 25.6 35.1 DAC 9.5
69 Mythoi MT32 200 25.6 35 DAC 18.9
70 Kalo Xwrio MT20 20 25.7 35.1 DAC 6.2
71 Neapoli MT33 240 25.6 35.3 DAC 8.3

72 Eksw
Potamoi RG6 840 25.5 35.2 DAC 15.6

73 Kountoura MT26 8.9 23.6 35.2 DAC 82.9
74 Heraklio-YEB RG11 15 25.1 35.3 DAC 54.8

75 Ag.
Gewrgios RG2 850 25.5 35.2 DAC 90.5

76 Stavroxwri MT40 325 25.9 35.1 DAC 10.9
77 Kasteli-YEB MT23 350 25.3 35.2 DAC 12.7
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