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Abstract 

K-means is one of the most commonly used clustering algorithms that clusters the 
multi-dimensional data points into a predefined number of clusters. When data 
arrives in a stream, there is a need to estimate clusters dynamically, updating them 
on arrival. In this thesis, we will apply a sampling technique using a data structure 
called coreset trees, before any approximation algorithm is applied. Coresets are 
used to obtain a small weighted sample from the data stream. Using coresets in a 
tree-like form we successfully speed up the process of computing a summary of the 
original data. The advantage of such a coreset is that we can apply any clustering 
algorithm on a much smaller sample to compute a solution for the original dataset 
faster. In the second step, we are using a StreamKM++ to estimate the cluster 
centers of the summary. We evaluate the algorithm on how the parallelism level 
impacts the time needed to extract the clusters, finally we compare the consistency 
within clusters of data conclusions about the usage of coreset trees as a distributed 
sampling method. In our experiments we set up a real life scenario of data coming 
from a ride-hailing app. We received geospatial data from drivers around Colombia 
and applied StreamKM++ to get clusters of driver’s location real-time. 
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Chapter 1 

1.1 Introduction 

Clustering aims to partition input objects into groups or “clusters” such that objects within a 
cluster are similar to each other, and objects in different clusters are not. Often the size of the 
datasets to be clustered, are very big and so clustering algorithms to handle these datasets are 
basic tools in many different areas like machine learning, data mining, data compression, and 
database systems. A popular formulation of clustering is Lloyd's algorithm [1] (usually 
referred to simply as k-means). 

Given a set of points S in an Euclidean space and a parameter k, the goal is to partition S into 
k “clusters” in a way that minimizes a cost metric based on the   distance between points. 
The k-means formulation is widely used in practice. Starting k “centers” are typically chosen 
at random as per Lloyd’s algorithm from the original data points. Then, each point is assigned 
to the nearest center, and the centers are again recomputed as the center of the mass of all 
points assigned to it. When the process is stabilised we stop repeating the last two steps. By 
checking that φ is monotonically decreasing, which ensures that no configuration is repeated 
during the course of the algorithm. There are only k*n possible clusterings, thus the process 
will always terminate. The algorithm is very fast and simple to perform, and this is what is 
making it appealing not the accuracy of the result. 

However, in real-world problems the data that needs clustering might have a great amount of 
volume. The size of the data can lead to serious problems for applications that need fast 
(near) real-time answers. Thus, we use a data structure that helps us create representative 
synopses of the data we’ve seen so far. This synopsis is extracted using coresets. A coreset is 
a subset of input, such that we can get a good approximation to the original input. The goal of 
this thesis is to design a distributed streaming clustering algorithm that significantly improves 
the clustering runtime query, compared to the current state of the art, while keeping other 
desirable properties that are enjoyed by other current algorithms, such as provable accuracy 
and limitations in the memory requirements. 

l2
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1.2 Thesis Contribution 

As per this thesis, we chose to study Coreset Trees, a data structure that Ackermann, 
Lammersen, Märtens, Raupach, Sohler, Swierkot proposed for the implementation of a 
distributed streaming k-means algorithm. Since distributed processing is one the most active 
research areas nowadays, we try to expand their model to work in a distributed and parallel 
manner. 

1.3 Thesis Outline 

In Chapter 2 we describe the general idea of the coresets, the coresets tree and how they can 
be implemented to work in a distributed manner. We also define the outline of the algorithm. 
In Chapter 3 we go through the stack, technologies and useful tools that we use as part of our 
experiments. 
In Chapter 4 we present the evaluation methods we used and the experiments we did, both 
batch and streaming ones. We visualise different metrics to compare how our proposed 
algorithm performed. 
In Chapter 5 and 6 we discuss related work already done in the same topic and how we can 
improve our solution in the future. 
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Chapter 2 

2.1 Preliminaries 

We work with points from the d-dimensional Euclidean space Rd for integer d > 0. A point 
can have a positive integral weight associated with it. If unspecified, the weight of a point is 
assumed to be 1. Let  || · || the  -norm for  points  , by D(x,y) = ||x − y|| denote 
the Euclidean distance between x and y. For point x and a point set , the 
distance of x to C is defined to be D(x,C) =  ||x − c|| and cost(P, C)  =
  for C, P ⊂  . Analogously, for a weighted subset S ⊂ Rd with 

weight function   , we use   =  . 

The Euclidean k-means problem is defined as follows. 

Problem 1. (2) Given an input set P ⊆  with n points and weight function defined by 
 , find a set C ⊆   with  |C| = k that minimizes cost(P, C): 
Furthermore, by 

  

we denote the cost of an optimal Euclidean k-means clustering of P . 

The most important concept we’ll use is the coresets. In general, a coreset for a set P is a 
relatively small weighted-set, in such a way that for any set of k cluster centers the clustering 
cost of the coreset is an approximation for the cost of the original set P with a small relative 
error. The advantages of such data structure is that we can apply any fast approximation 
algorithm (for the weighted problem) on a much smaller coreset to compute the approximate 
solution for the original data set P more efficiently. We use the following formal definition. 

Theorem 1. (2)  Let k ∈ N and ε ≤ 1. A weighted set   with positive weight 

function   and   = |P| defines a (k, ε) - coreset of P iff for every   

of size |C| = k we have 

  

l2 x, y  ∈  Rd

C  ⊆ Rd

minc∈C

∑
xϵP

w(x)*D 2(x,  C ) Rd

w :  S  →  Z+ costw(S,  C ) ∑
yϵS

w(y)*D 2(y,  C )

Rd

w :  P  →  Z+ Rd

optk(P)  =  minC′ ⊂Rd: |C′ |=k ∑
xϵP

w(x)*D 2(x,  C′ ) 

S  ⊂ Rd

w :  P  →  Z+ ∑
yϵS

w(y) C ⊂ Rd

(1 − ε) cost (P,  C ) ≤  costw(S,  C )  ≤ (1 + ε) cost (P,  C ) 
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The most important advantage of the coresets is their ability to be constructed in a parallel 
manner. This can be done easily, since the union of two coresets creates again a coreset. More 
specifically, if a dataset is split into l chunks that are subsets of it, and we compute a (1 + ε′)- 
coreset of size s for each subset, then the union of the l coresets is a (1 + ε′)-coreset of the 
original set and has size l · s. This is especially helpful if the data are distributed into l 
different machines. Then, each machine will simply compute a coreset. Afterwards, the 
coresets that are usually smaller can then be sent to a master device which approximately 
solves the optimization problem. Our coreset results for subspace approximation for one j-
dimensional subspace, we can use it for k-means algorithm and for general projective 
clustering and we can provide a distributed algorithm for solving these problems 
approximately. The algorithm we implemented follows the same approach and creates a small 
weighted coreset for every micro batch of the streaming data to extract clusters using k-
means algorithm. 

Hereafter, we will refer to k-means coresets as simply coresets. For integer k > 0, a parameter 
0 < ε < 1, and a weighted dataset   , the notation coreset(k, ε, P) means a (k, ε)-coreset 
of P. From [4] we use the following properties: 

Property 1. ([4]) If C1 and C2 are each (k, ε)-coresets for disjoint multi-sets P1 and P2 
respectively, then C1 ∪ C2 is a (k, ε)-coreset for P1 ∪ P2. 

Property 2. ([4]) Let k be fixed. If C1 is  -coreset for C2, and C2 is a  -coreset for P, then 
C1 is a ((1 +  )(1+ ) − 1) - coreset for P. 

P ⊆ Rd

ε1 ε2

ε1 ε2
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2.2 Coreset Tree 

A new data structure called coreset tree is developed in order to significantly speed up the 
time necessary for sampling non- uniformly during the coreset construction. After the coreset 
is extracted from the data stream, a weighted k-means algorithm is applied on the coreset to 
get the final clusters for the original stream data. To build a coreset tree we use the Merge-
and-Reduce technique [5] as described below. 

2.3 Merge-and-Reduce Τechnique 

We will discuss a popular method to build an efficient streaming algorithm based on 
coresets as a data structure. As discussed in the previous section, coresets have a 
very useful property; the union of coresets are also a coreset. Specifically, if S1 and 
S2 are (1 + ε)-coresets for input P1 and P2 point sets, respectively, then S1 ∪ S2 is a 
coreset for P1 ∪ P2 (Property 1). In addition, coresets can have nested computations: If S1 
is a (1 + ε1)-coreset for S2, and S2 is a (1 + ε2)-coreset for P, then S1 is a (1 + ε1)(1 + ε2)-
coreset for P. 

So, we can move the coreset construction idea into an Insert Only data stream by splitting the 
input in chunks, compute a coreset for each partition so as to union the result into the final 
coreset. When the union gets large, we can reduce it by applying the same algorithm again 
(i.e. coreset construction). Nevertheless, each union introduces an additional error, so the 
number of unions that we perform has to be kept small. More specifically, the number of the 
unions and computations that a point in the set participates must be kept small. 

def buildCoreset(m: Int, input: List[Point]): List[Point]

For points that are more than m, the process is the following: 

● Choose the first centroid with KMeans++ seeding 
● Calculate the distance of the other points with the first centroid 
● Recursively calculate the final centroids 
● Assign points to these centroids while updating the weights and the 

counts 

If points are less than m then each one is a center

Algorithm 1 - buildCoreset: Constructs a coreset with size m for a list of points 
with n dimensions
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This Merge-and-Reduce technique does exactly what we described. For each partition of the 
data and the coreset(s) computed from it, this technique keeps the unions of each chunk low. 
We can achieve that by maintaining a tree-like structure while merging and reducing chunks. 
We can see how it works in Figure 1. Basically, the first chunk/block B1 is read and reduced 
to coreset S1, the second chunk B2 to coreset S2. Then, S1 and S2 are merged and reduced to 
coreset S3. Blocks B3 and B4 induce the coreset computation of S4 and S5 first and S6 then. 
When S6 is computed, it is merged with S3 and reduced to S7. In this way the computation 
continues: Each block is then summarized into a coreset which forms a leaf node in the tree, 
and whenever both children of a node have computed their coresets, then the node computes 
its coreset, too. 

The advantages of this method is that each point in the tree takes part at most in log|P| 
reduction steps, where P is the number of points that we have seen until the reduction. This 
means that for each reduction step we compute a (1 + ε)-coreset of the input, so the result 
coreset is a  -coreset. In order to compensate for this accuracy loss, the 

reduction steps have to be a bit more accurate. They have to compute (1+ε′)-coresets for 

 . 

Lastly, we have to notice that we may need to store multiple coresets at the same time. But, 
we will not need to store more than a coreset at each level and one whenever a new chunk of 
data is added in the tree.  

  

(1 + ε) ⋅ log  P

ε′  : =  
ε

log |P |

Figure 1 - The coreset tree data structure using merge-reduce technique
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2.4 A Streaming Coreset 

In order to maintain a small coreset for all points in the data stream we use the merge-and-
reduce method that we described above. For a data stream containing n points, the algorithm 

maintains L buckets, where L is  . Bucket B0 can store any number 

between 0 and m points in contrast, for i >= 1, bucket B1 is either empty or contains exactly 
m points. The idea of this approach is that at any point of time, if bucket Bi is full it contains 
a coreset of size m representing 2^(i-1) m points from the data stream. 

New data from the data stream are always inserted into the first bucket B0. If bucket B0 is 
full (i.e., contains m points), all points from B0 need to be moved to bucket B1. If bucket B1 
is empty, we are finished. However, if bucket B1 already contains m points, we compute a 
new coreset Q of size m from the union of the 2m points stored in B0 and B1 by using the 
coreset construction described above. Now, both buckets B0 and B1 are emptied and the m 
points from coreset Q are moved into bucket B2 (unless, of course, bucket B2 is also full in 
which case the process is repeated). Algorithm InsertPoint for inserting a point from the data 
stream into the buckets is given in Figure 2. 

At any point of time, it is possible to compute a coreset of size m for all the points in the data 
stream that we have seen so far. For this purpose we compute a coreset from the union of the 

at most  , points that are stored in all buckets B0 to BL-1 

by using the coreset tree construction and obtaining the desired coreset of size m. 

 ceil(log2(
n
m

)  +  2)

L  =  m * ceil(log2(
n
m

)  +  2)

def buildCoresetTree(m: Int, input: List[Point]): CoresetTree

To add a bucket to the tree: 

● Finds the next empty bucket 
● Merges all the previous buckets (if any) 
● The merged bucket (aka coreset) is added to the next empty bucket 
● All previous buckets are cleaned up 
● Add the new bucket b to the first bucket 
● If all buckets are full merge them and store them to last position

Algorithm 2 - buildCoresetTree: Constructs a coreset tree with size m for a list of 
points with n dimensions
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To build the streaming coreset algorithm we used Apache Spark as our data processing 
framework of choice. More details in the following section. 

2.5 Clustering with K-Means++ 

Clustering is one of the classic problems in machine learning and computational geometry. In 
the popular k-means formulation, one is given an integer k and a set d of n data points in Rd. 
The goal is to choose k centers so as to minimize φ, the sum of the squared distances between 
each point and its closest center. 

Usually referred to simply as k-means, Lloyd’s algorithm begins with k arbitrary centers, 
typically chosen uniformly at random from the data points. Each point is then assigned to the 
nearest center, and each center is recomputed as the center of mass of all points assigned to it. 
These two steps (assignment and center calculation) are repeated until the process stabilizes. 
For the purposes of this thesis we are going to use the k-means++ clustering proposed in [6] 

Figure 2 - Visualization of the buildCoresetTree algorithm.

Technical University of Crete, 2021           15



2.6 The k-means++ Algorithm 

The k-means algorithm begins with an arbitrary set of cluster centers. We used the proposed 
way of [6] to choose the centers thus, we chose a first random center and then we use the next 
centers with the   weighting step as shown in Algorithm 3. More specifically, at any given 
time, let D(x) denote the shortest distance from a data point x to the closest center we have 
already chosen. We call the following algorithm we call k-means++. 

D2

def kmeans++(input: List[Point], k: Int)

Algorithm 3. k-means++

Input: a sequential of N population Output: a random sample of size n (n N) 

1. a.  Choose an initial center c1 uniformly at random from X. 

b.  Choose the next center ci, selecting ci = x′ ∈ X with probability 

  

c. Repeat Step 1b until we have chosen a total of k centers. 

2.  For each i ∈ {1,...,k}, set the cluster Ci to be the set of points in X that are 
closer to ci than they are t o cj for all j   

3.  For each i ∈ {1,...,k}, set ci to be the center of mass of all points in 

  

4. Repeat Steps 3 and 4 until C no longer changes.

D(x ′ )2 
∑xϵX D(x)2

≠ i

Ci :  ci  =  
1

|Ci | ∑
x∈Ci

x
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Chapter 3 

3.1 Stack Overview 

3.1.1 Apache Spark 

Apache Spark is an open-source distributed general-purpose cluster-computing framework. 
Spark provides an interface for programming entire clusters with implicit data parallelism 
and fault tolerance. 
Apache Spark has a well-defined layer architecture which is designed on two main 
abstractions: 

● Resilient Distributed Dataset (RDD): RDDs are immutable (read-only) 

collections of objects that can be processed on many devices at the same time. 

It’s Spark the fundamental collection of Spark. We can divide each dataset of an 

RDD into logical portions that can exist in different nodes in a cluster. 

● Directed Acyclic Graph (DAG): DAG is the scheduling layer of the Apache 

Spark architecture that implements stage-oriented scheduling. Compared to 

MapReduce that creates a graph in two stages, Map and Reduce, Apache Spark 

can create DAGs that contain many stages. 

RDDs are the main logical data units in Spark. They are a distributed collection of objects, 
which are stored in memory or on disks of different machines of a cluster. A single RDD can 
be divided into multiple logical partitions so that these partitions can be stored and processed 
on different machines of a cluster. 

RDDs are immutable, this means that they are read only in nature. You cannot change an 
RDD, instead a new RDD can be created as a result of coarse-grain operations that are 
performed in the original RDD. Such operations can be transformations on an already 
existing RDD, actions etc. Another useful property of RDDs in Spark is that they can be 
cashed in memory and used again for future transformations, having the huge benefit of 
reducing the time for reading and transforming again the RDD. They are lazily evaluated, this 
means that we perform all the logic that can affect an RDD when it’s needed. This saves time 
and can significantly improve efficiency. 
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Spark Streaming is an extension of the core Spark API that enables stream processing of live 
data streams. Spark Streaming provides a high-level abstraction called discretized stream or 
DStream, which represents a continuous stream of data. 
Internally, it works as follows. Spark Streaming receives live input data streams and divides 
the data into batches, which are then processed by the Spark engine to generate the final 
stream of results in batches. 
Spark Streaming provides a high-level abstraction called discretized stream or DStream, 
which represents a continuous stream of data. DStream, the basic abstraction in Spark 
Streaming, consists of sequential RDDs that represents a continuous stream of data and they 
can be created either from input data streams from sources such as Kafka, and Kinesis, or by 
applying high-level operations on other DStreams. Internally, a DStream is represented as a 
sequence of RDDs. 

Window Functions 

Every time the window slides over a source DStream, the source RDDs that fall within the 
window are combined and operated upon to produce the RDDs of the windowed DStream.  

 
In the example shown above a function is applied over the last three RDDs, and slides by two 
RDDs. 

The implementation and the experiments are built with Spark 2.2 since this thesis started 
when the above version was introduced. We also used Kafka as our messaging system of 
choice. 
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3.1.2 Apache Kafka 

Kafka is a distributed streaming platform that is used to publish and subscribe to streams of 
records. Kafka is used for fault tolerant storage. Kafka replicates topic log partitions to 
multiple servers. Kafka is designed to allow your apps to process records as they occur. 

3.1.3 Hadoop Distributed File System - HDFS 

A distributed file system that handles large data sets running on commodity hardware. Holds 
a very large amount of data and provides easier access. To store such huge data, the files are 
stored across multiple machines.  HDFS is fault-tolerant and provides high throughput access 
to application data and is suitable for applications that have large data sets; like spark 
applications etc. 

3.1.4 Prometheus + Grafana 

Prometheus is an open-source systems monitoring and alerting toolkit. The metrics are 
scraped from the job that we instrument directly or by using a push gateway (intermediary) 
this means that the job sends the metrics in the gateway and then prometheus scraps it. This 
can be applied to short lived jobs. After Prometheus scraps the metrics it stores them locally 
and runs queries to them. Aggregating data, or applying rules and it can generate alerts. Then, 
Grafana, a tool that can consume Prometheus data and visualise them. Grafana allows us to 
query, visualise and alert on metrics and logs even from other sources like prometheus. Both 
tools can help instrument jobs and check performance along with other useful metrics. 

3.1.5 Tableau 
Tableau is another visualisation tool used for Data Analytics. It can be used to visualise - 
among other data storages - distributed file systems such as HDFS, this can help us 
understand huge amounts of data. It also provides features that can help to project coordinates 
in a map. Thus, we used it to visualise the results of our clustering method.  
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3.2 Algorithm Implementation 

Architectural Overview 

The algorithm is implemented and evaluated using the architecture shown in Figure 2. First, 
we consumed from a Kafka topic and using Spark Streaming we processed the incoming 
data. Each received micro-batch was reduced using the coreset tree algorithm that we 
proposed and then we performed k-means clustering. For the evaluation part we stored the k-
clusters in HDFS and visualized them using Tableau. For the streaming experiments we also 
kept some metrics in Prometheus that we later used to create graphs in grafana. 

  

Using Spark’s Scala Api we treat each incoming RDD as follows: 

As shown in Figure 4 we converted each incoming rdd to chunks and extracted a coreset 
using the property 2 and the coreset construction algorithm (algorithm 1).  

Figure 3 - Architecture overview
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More specifically, to minimise the time needed to build a coreset for each partition of the 
RDD we calculated a sub coreset for each one with size m. Parameter m was set dynamically 
depending on the partition size. As described in figure 5 the union of each coreset provides 
the final coreset of size. 

  

Then, (Figure 6) we end up having a DStream in which each RDD is a coreset. Using a 
sliding window stream, we added each coreset of the rdd to the Tree using the Coreset Tree 
algorithm (algorithm 2).  

Figure 4 - RDD transformation with buildCoreset algorithm

Figure 5 - Coreset construction over an RDD.
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Finally, we have a stream that contains the coreset tree of the input so far. When we query to 
get the k - clusters, a weighted k-means clustering algorithm is applied on the coreset, thus, 
on a smaller set of points that represents the input.  

After that, we can run k-means clustering to obtain k clusters at any given point of time on 
the m-size coreset. Note that since the size of it is much smaller and independent of the size 
of the original data stream we can now perform algorithms that can require random access of 
their input data. We will use k-means++ algorithm in our implementation from [6] on our 
coreset. Our algorithm follows the same principles as [9] but with some notable differences 
as described in Chapter 5. 

Figure 6 - Window Stream using 
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Chapter 4 

4.1 Evaluation and Experiments 

4.1.1 Silhouette Coefficient 

In general silhouette coefficient or silhouette score is a metric used to calculate the goodness 
of a clustering technique. Its value lies between -1 to 1 inclusive. Where 1 means the clusters 
are strongly distinguished and apart from one another. 0 represents indifferent clusters 
without significant distance between them. While -1 means clusters are assigned in a wrong 
way and there isn’t any similarity between points of the same cluster. 

Usually, the right number of clusters is not known in advance. Since the k-means objective 
function drops monotonically as k increases, one needs a different measure for the quality of 
a clustering that is independent of k. Such a measure is provided by the average silhouette 
coefficient [8] of the clustering. The silhouette coefficient of a point pi is computed as 
follows.  

● First compute the average distance of pi to the points in the same cluster as pi. 
● Then for each cluster C that does not contain pi compute the average distance from pi 

to all points in C. 
● Let bi denote the minimum average distance to these clusters. 
● Then the silhouette coefficient of pi is defined as: 

SC =   

As stated above the value of the silhouette coefficient of a point varies between −1 
and 1. 

bi  −  ai

max(ai,  bi)
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More specifically, there is a rather subjective interpretation of the silhouette coefficient which 
is described in the above table. 

Table 1 - Subjective Interpretation of Silhouette Coefficient (SC), Defined as the Maximal 
Average Width for the Entire Data Set 

In all of our experiments we evaluate the clusters using the Silhouette Coefficient. 

4.2 Experiments 

In our experiments we focus on the time needed to extract the coreset from the original 
dataset while at the same time we observe the quality of the clusters. We leave out the part of 
the final k-means clustering for these experiments in order to observe the runtime of the 
coreset construction algorithm and the accuracy of its results. 

Our set up consists of a cluster running Spark 2.2 

● 10 slaves x 30GB RAM 
● 1 master x 15GB RAM 
● OS: Ubuntu 16 64 bit 
● 1TB Disk / slave 
● 4 CPU Cores / slave 

4.2.1 Parallelization Experiments 

First, we evaluate the pipeline over the same data so we can experiment with the 
parallelization level of the algorithm. The data are stored in HDFS as orc files, using these 
files we create a stream and we run our application over this input. The algorithm basically 
splits the data in buckets using hashing and computes the coresets as we described in the 

SC Proposed Interpretation

0.71 - 1.00 Data have a strong similarity

0.51 - 0.70 A reasonable similarity has been found

0.26 - 0.50 Weak structure that can be artificial

<= 0.25 Data in the same cluster do not have a 
strong relationship
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previous section. All the transformations are done in the executors of each worker, the only 
time we use the driver is to store the output in HDFS and use the data to evaluate the results. 
For the evaluation process we computed the silhouette coefficient of the centers and we 
visualised the centers over the original dataset.  

Our input is a dataset with 100.000.000 rows of raw data approximately 2.4 GB  that contain 
latitude and longitude stored in HDFS. 
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Figure 7 - Comparison between the execution time and the level of parallelization for different coreset sizes. As shown in the graphs with 
only 1 executor the running time to compute a coreset in different size for an input of 2GB was about 10 minutes. When we increased the 
executors the time needed was reduced by almost 50%. By adding even more executors we managed to reduce the execution time by more 
than 90%.



We compare the reduction percentage across different coreset sizes and number of executors. 
In the table above and using the decrease in percentage formula that is: 

decrease% = (starting value - final value) / starting value * 100 

Coreset 
size

1.000.000 100.000 10.000 1.000

Executors Time 
(min)

Decrease in 
percentage 
from a 
single 
executor 
(%)

Tim
e 
(min
)

Decrease 
in 
percentag
e from a 
single 
executor 
(%) 

Time 
(min)

Decrease 
in 
percentage 
from a 
single 
executor 
(%) 

Tim
e 
(min
)

Decrease 
in 
percentag
e from a 
single 
executor 
(%) 

1
9,3

-
9,5

-
9,7

-
8,9 - 

2
4 56,98 4,2 55,78 4,7 51,54 4,2 52,80

5
1,7 81,72 1,6 83,15 1,7 82,47 2,1 76,40

10
1,4 84,94 1,2 87,36 1 89,69 1,1 87,64

20
1 89,24 1,3 86,31 1,1 88,65 1,1 88,76

30
0,8 91,39 0,9 90,52 0,9 90,72 1 88,75
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Using Spark’s User Interface and the available metrics there, we were able to see how 
different stages are spread in the different executors.  
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Figure 8 - In all the 15 executors the task time was approximately 1 minute. The tasks along with the input size were equally splitted in 
the different executors. This shows that all of the transformations we performed to extract the coreset on the input were performed with a 
distributed manner.



We visualised the raw data in the map to check the quality of the clusters after the coreset-
tree reduction. 

  

  

Figure 9 - The raw dataset with coordinates spread across Colombian cities. Most of the 
occurrences are located in the capital, Bogota.

Figure 10 - The representative points of the raw dataset. The size of the resulting dataset 
after the coreset extraction is 10.000 points. With darker red we can spot the centroids with 
bigger weight.
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Using the aforementioned silhouette coefficient we measured the quality of the centroids. 

For the above example we obtained 0.98. This means that all points of the original dataset 
were correctly assigned to the closest centroid.  

We also visualised a small dataset of raw data along with the cluster representatives after the 
coreset construction. The Birch 1 dataset is a synthetic 2-d data with N=100,000 vectors and 
we extracted k=1000 clusters. Score measured with  Silhouette Coefficient: 0.978 

  

Figure 11 - With the blue dots we represent the 100.000 input points of the birth 1 dataset 
[7]. Using this input we applied the coreset tree algorithm to extract the 1000 clusters 
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4.2.2 Streaming Experiments 

We also set up a real life scenario where data arrives on a Kafka topic, as our data source we 
used anonymised data that contained coordinates of different vehicles spread around a city. 
Each vehicle creates an event every 3 seconds and sends it over a kafka topic. Using Spark 
we consumed this topic and applied the coreset tree algorithm to reduce the data. The amount 
of data we got on a rush hour for that city was 200.000 events per 5 minutes. We decided to 
use a large interval of 5 minutes to increase the amount of data that needed to be processed 
and observe the time needed for the algorithm to compute the final coreset. The weights of 
the centroids get updated for every interval. We are able to remember the previous centroids 
by using the window function we described earlier. This way in every window we use the 
previous RDD to compute the new centroids and keep track of the changes over time. Finally, 
we measure the silhouette coefficient of each coreset which is again above 0.9. We were able 
to calculate the clusters in under 1 second. 

The settings we used for this example in our Spark Streaming Application was: 

● batch interval - 5 minutes 
● coreset size - 500 points 
● number of executors - 2 
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Through Prometheus and Grafana we also kept the time needed to create the coreset between 
the windows. For the aforementioned configuration and a load on Kafka with average 200k 
messages which included latitude and longitude fields we got the following graph. 
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Figure 12 - Extracted coresets over 5 minute intervals in Tableau. Darker red refers to 
centroids with bigger weight Score measured with Silhouette Coefficient was 
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Figure 13 - Coreset construction time over 5 minute batches visualised in Grafana. The required time to extract the 

Figure 14 - The time needed to construct a coreset tree of all upcoming batches keeping track of the previous 
extracted ones. We see that time varies on 3-7 seconds with minimal resources and a parallelisation level equal to 2. 
In the range of 3-6 seconds we had a volume of 200-300k messages in the Kafka. Note that by the time of the 
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Figure 15 - The number of records along with the processing time of a sample of batches visualised in Figure 14.
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Figure 16 - We compare the number of records with the time needed to process them.



Chapter 5 

5.1 Related Work 

5.1.1 The StreamKM++ Clustering 

StreamKM++ [9] computes a small weighted sample of the data stream, called the coreset of 

the data stream. Coreset of a set P with respect to some problem- Small subset that 

approximates the original set P. Solving the problem for the coreset provides an approximate 

solution for the problem on P. 

The open source library called StreamDM [10] is created and maintained by Huawei Noah’s 

Arc. It is written in Scala using Apache Spark 2.3. 

In this thesis we follow a similar approach to implement our Streaming Coreset algorithm. 

Due to some bugs that existed in the original repository the algorithm didn’t work as 

expected. In our implementation we applied some fixes to overcome those issues. Some of 

them were also applied in the original repository. There were many differences between the 

two solutions, the most important one was the Tree implementation. To address the issue of 

keeping the clusters of each RDD and passing them to the incoming input we used a sliding 

window DStream. 

5.1.2 MOA (Massive Online Analysis) 

Massive On-line Analysis, here in after called MOA  [11, 13] is an open-source framework 
for mining data streams. It contains a collection of machine learning algorithms and tools to 
evaluate them. Its source code is written in Java and is related with the WEKA project and it 
also addresses more demanding problems. MOA aims to create a benchmark framework for 
streaming data mining algorithms by providing storable settings for real and synthetic data 
streams for repeatable experiments, implementations for existing algorithms and measures 
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from the literature for comparison and an easily extendable framework for new streams, 
algorithms and evaluation methods. The coreset construction algorithm was included in 
MOA’s framework. StreamDM mentioned above was created on top of it. 

5.1.3 Streaming k-Means Clustering with Fast Queries 

[4] presents the k-means clustering on a stream focusing on providing quick responses to 
clustering queries. The method provides significant improvements in the query run time for 
getting cluster centers while in the meantime maintaining all the desirable properties with low 
space usage and a provably small approximation error in comparison to the current state-of-
the-art. The algorithms rely on reusing systematically summaries of the original data 
(coresets) that are computed for recent queries in answering the current clustering query. 
Zhang et al. present in depth theoretical analysis and experiments that demonstrate their 
correctness and efficiency. We used the same approach as in [4] to implement the coreset 
construction algorithm, using a bucketizer logic as described in the aforementioned paper that 
is also presented in their repository [12]. 

5.1.4 Apache Spark MLlib Clustering Algorithms - k-Means++ 

[26] Spark’s mllib is a subproject providing machine learning primitives. Their 
implementation includes a parallelized variant of the k- means++ method called k-means 
parallel. A parallel version of the k-means++ initialization algorithm is obtained and 
empirically demonstrates its practical effectiveness. The main idea is that instead of sampling 
a single point in each pass of the k-means++ algorithm, O(k) points in each round are 
sampled and repeat the process for approximately O(log n) rounds.. At the end of the 
algorithm, O(k log n) points are left from a solution that is within a constant factor away from 
the optimum. These O(k log n) points into k initial centers for the Lloyd’s iteration are 
clustered again. This initialization algorithm, which is called k-means||, is quite simple and 
lends itself to easy parallel implementations. However, the analysis of the algorithm turns out 
to be highly non-trivial, requiring new insights, and is quite different from the analysis of k-
means++. 
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Chapter 6 

6.1 Future Work 

Our proposed distributed implementation of Streaming Coresets algorithm for clustering data 
streams was developed in an outdated Apache Spark version. Using Spark Streaming and 
DStreams we manage to create a streaming pipeline that transforms raw data to coresets. 
Spark Streaming is a separate library in Spark to process continuously flowing streaming 
data. The DStream API, which works on top of Spark RDDs. In DStreams data are divided in 
chunks as RDDs, they are received from a streaming source in order to be processed and 
afterwards sent to the destination. 

Spark Streaming works with the notion of micro batches. We register the streaming pipeline 
and some lazily evaluated operations, Spark polls that source every predefined interval called 
batch interval/duration, then a batch with the data is created that contains the incoming 
records up until the interval is done. Each one of the batches represent an RDD. 

There is room for improvement by using Spark’s component called Structure Streaming. The 
same procedure of polling data every interval is applied to Structured Streaming. A 
distinction makes Structured Streaming a bit more inclined towards real time streaming. 
There, we do not have the batch concept. The data received, every trigger interval, are 
appended in a continuously flowing data stream. The result looks like an unbounded table 
and each row can be processed with the same group of transformations that DStream has. It 
also provides the functionality to complete, update and append data in the result. 

There is also improved performance in the Structured Streaming API, since they are not 
based on the old RDDs. To sum it up, Structure Streaming would provide lower latency and 
better performance to our algorithm. Spark Structured Streaming has still microbatches used 
in the background. 
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However, it supports event-time processing, quite low latency (but not as low as Apache 
Flink), there is related work that was proposed by Theodoros Bitsakis on Clustering Big Data 
Streams in Apache Flink. 
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