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Abstract

In the field of aerodynamics, shape optimization aims to obtain high
performance aerodynamic configurations by the optimization of an objective
function, subject to specific geometrical constraints. Such problems include the
maximization and minimization of the lift and drag forces, which act on an

airfoil, respectively.

Initially, the proper selection of the deformation technique, which later on will
produce the candidate geometries, is of paramount importance in the
optimization process. Specifically, during shape optimization, it is crucial for
the computational grid — on which nodes the flow equations (Euler & Navier-
Stokes) are solved — to continuously adapt to the new geometrical entities. To
this end, in recent decades several grid and shape parameterization techniques
have been developed, with the common goal of minimizing both the
computational cost and time required for the deformation, and at the same

time, handle intricate geometries.

In the present dissertation, two of the most prevalent methods of deformation
are examined; the Free Form Deformation (FFD) and the Harmonic Function-
based deformation techniques. Initially, an extensive literature review of Free
Form Deformation and Harmonic Functions-based deformation
methodologies, used for shape parameterization and grid adaptation, is
conducted. Furthermore, a modified Harmonic functions-based methodology
— developed in the Turbomachinery and Fluid Dynamics Laboratory of the

Technical University of Crete (TUC) — is presented in detail and tested.

Finally, a grid interpolation algorithm is developed and presented in the

context of the present work. The purpose of the aforementioned algorithm is to



enable data interpolation between two computational grids with different
densities, during the aerodynamic shape optimization procedure. The mesh
interpolation algorithm was implemented in FORTRAN 90 programming

language.
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IMegiAnym

LTov TOHER TNG AEQOOVVAMILKIG, O0TOX0G TG PeATioTomoinong oxHaTtog
aToteAel 1 evEeon LYNANG amOdOOTC AEQODVVAULIKWY HOQPWYV, HECW TNG
BeAtilotoTomong NG TNG MG  AVIIKELWMEVIKIG OLVAQTNONG VLTO
OUYKEKQLUEVOUS  YEWMUETQIKOUG — TEQLOQLOMOVGS.  Tétowx  moPAnuata
TEQUAAUPBAVOLY Y TAXQAdELYHA TN UEYLOTOTIOMOT] KAl eAaXLOTOTIOMON
TV OUVVAHEWV AVwOoTNG kKal oTiioéAkovoag, ot omoleg doovv oe pia

QEQOTOUN, AVTIOTOLXA.

Apxkd, oe pia eQaQHUOYT) aeQOdLVANKTG PeATioTomonong kKaBooLoTkNg
onuaoiag amoteAein emAOYT) TG CLUYKEKQLUEVNG TEXVIKIG TAQAUOQPWOTG,
Héow NG omolag Oa tagaotaBovv aQyotepa oL vtoynLeg yYewupetoles. ITo
OUYKEKQUUEVR, KATA TN dxgkela NG dadikaoiag, amagaltntn) Kolvetal 1
OLVEXNG TIEOOAQUOYT] TOL VTIOAOYLOTIKOU TTAEYUATOG - OTOVG KOUPBOUG TOL
oTtotov eTtiAvovTatL oL dxoguiég eElowoels tng eong (Euler 1) Navier-Stokes)
- YOow amo TIg vroPNPLeg Yewpetoles. 't avtd To oKOTO KAt oTOXEVOVTAG
OtV  €AaXI0TOTOIMOT] TOU VLMOAOYLOTIKOU KOOTOUG KAl XQOVOL TIOU
ATOUTETAL KATA TN DLAQKELX TG TTAQAOQPWOTC, AAAX KAL 0TIV IKAVOTN T
dlax QoG MOAVTAOKWY YEWHETOLWY, TOLKIAEC TEXVIKES TIAQAOQPWOT)S

MAEYUATOS KAl OXIIUATOS avamtuXOnkav Tic teAevtaieg dekaeTieg.

Xanv magovoa dMAwUATIKN eoyaoia Oa magovootovy aQgxkd dvo amo
TIC eTkEATEOTEQES HeOOdOLVE Ttapapdepwong, TG Free Form Deformation
(EAev0eon Tapapdopwon) kat eketvng mov Paociletat €& oAokArjpov otn
xoromn agpovikwv ocvvapmoewv (Harmonic Functions). EwWwotepna, ot
ovykekQLUEVN goyaoia Oa yivouv extevels PPALOYOAPIKES ETILOKOTINOELS
TWV TEOAVAPEQOHEVWY HeOOdwV. Lt ovvéxewn, Oa magovowxotel kat Oa
eAeyxOel pia Toomomowmuévn HéEO0dOC AQUOVIK@WV XLVAQTIOEWY, TOL

avantoxOnke oto Egyaotrpo Lroofrlopnxavov kat Pevotodvvapikng,

Vil



e ZxoAnc Mnxavwawv Iapaywyns kat Awiknong tov IMoAvtexveiov
Konme.

TéAdog, Oa magovowxotel kar avaAvOel o aAyodplOuog moaQepPoANg
VTOAOYLOTIKWV TAEYUATWY, TTOL avamtuxOnKe ota mAalowx TG TaEovoAg
IMAWHUATIKNG €0Yaolag. LKOTOG TOL Mapamavw aAyoptOuov etval 1
TAQEUPBOAT) dedOUEVWY HETAED DVO TAEYHUATWV UE DIAXPOQETLKT| TTUKVOTNTA,
Katd T OlaQkewx G PeAtiotonmoinong aegodvvaukov oxnuatos. O
aAyoplOpog TapeUPOANG VTOAOYIOTIKWV TIAEYHATWV LAoTIomMOnKe o€

vYAwooa rpoyoappatiopo FORTRAN 90.
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Figure 1.6.15 (a) The boundary conditions on an elliptic cylinder. Red-colored
area indicates the maximal valued vertices, while blue-colored vertices are
constrained with the minimal value. (b) The distribution of the principal
harmonic field over the elliptic cylindrical volume. Red-colored and blue
colored areas indicate high and low scalar values, respectively. The short blue
lines represent the gradient vector at the corresponding points (Li and Tong,
2002). oo 38
Figure 1.6.16 The distribution of the Radial Harmonic field. Red-colored and
blue-colored areas mark high and low scalar field vectors. The streamlines of

the Radial Vector Field are indicated with light blue color (Li and Tong, 2012).

Figure 1.6.17 Left: Harmonic field construction in Venus model. Right: All —
hexahedral mesh generation (Li and Tong, 2012). ........ccccceeiviriviniinicnnnncnnnee 39
Figure 1.6.18 (a) The surface of the 3D model M mapped on the surface of the
polycube P. (b) The partition of the polycube P. (c) The surface of the 3D
model M. (d) The partition of the 3D model M resulted by the partition of the
polycube P (Xia ef al., 2010).......cceeviriiniiiiiiiiiiiiicineceeeeeee s 40
Figure 1.6.19 Figures from (a) to (d) show the polycube (up) and 3D model
(down) computed harmonic fields. Figure (e) shows the several iso — surfaces
of harmonic fields (Xia et al., 2010)......cccueruereremerinieieeererereeereeee e 41
Figure 1.6.20 The generated hexahedral mesh using the Direct Product
Volumetric Parameterization method (Xia et al., 2010).......cccceverervirvieriereereenenee 42
Figure 1.6.21 Left: Harmonic vector field computation according to the user -
specified constraint vectors (red arrows). Right: Calculation of the Harmonic
field after the insertion of additional constraint vectors (Xu et al.)................... 44
Figure 1.6.22 Deformation transfer between a source (cat) and a target (dog)
surface. Handles applied on cat are indicated with red color and change

throughout the procedure (Xu et al., 2009). ......ccccoovvivivvininnie, 45
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Figure 1.6.23 Left: The harmonic field on a 3D model. Bottom Right: The
intersection points on M obtain through following the integral lines (black
dotted lines) of the harmonic field beginning fromp. Top Right: The
quadrilateral section formed by four sampled intersection points (Casti et al.,
2079). s 46
Figure 1.6.24 (a) The input of the particular technique consists of the volume
and its skeleton around which the cage will be formed. (b) Bending points are
selected by the user. (c) Cross — sections at bending nodes are constructed
through tracing the harmonic field integral lines beginning from individual
bending points. (d) The welding of the quadrilateral sections around the
bending nodes forms the topology of the cage. (e) Presentation of the volume
inside its created cage (Casti et al., 2019)......ccccceveviriiiniiniiiiiiiicccee 47
Figure 1.6.25 Left: Initial model’s geometry enclosed in a cage. Right: Model’s
deformation using variational harmonic maps deformation method (Casti et
AL, 2009). e s 49
Figure 1.6.26 Left: Position and Jacobian constraints imposed in the circular
area by the user. Right: The detail - preserving deformation of the marked area
occurred (Ben-Chen et al., 2009). ......coceevieriirerinenineeteeesee e 50
Figure 1.6.27 Considering the input mappings for t = 0 and t =1 and the
source image (domain £2) of the dragon, the output mappings produced by the
interpolation of the metric tensor and 7 variant for t = 0.5 are presented (Chien,
Chen and Weber, 2016). ......cceviririeieieieieriesieeieeieetet ettt sttt 54
Figure 1.6.28 Polycubes (a) and (e) are mapped onto double torus (b) and kitten
(f), respectively. Color — encoded distance field of (f), (g) are transferred under
the mapping to (d), (h), respectively (Li et al., 2010). .....ccceeurriiviininiiniiiinne. 56
Figure 1.6.29 (a) The surface mesh of David’s head. (b) A generated hexahedral
mesh on the polycube domain. (c) The generated volumetric hexahedral mesh
on David’s head. (d) The generated mesh in the interior of the volume (Li et al.,

DOT0). covvveeeeeeeeeeeeeeeeeeeeseseseeeeeeeseeeseseeeseseeseeeeeseesessseesseseeeeseessseeessseeeeesesssseessssseeeese 56
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Figure 1.6.30 Above: The Mach number distribution on the initial airfoil shape.
Red colored areas indicate the presence of high Mach numbers compared to the
blue colored areas on which low Mach numbers were obtained. Below: The
deformed airfoil along and the Mach distribution around it (Mavronikola,
2007). s 58
Figure 2.1.1 Left: Twisting of a tapered primitive. Right: A bent, twisted and
tapered primitive (Barr, 1984). .......ccccccviiiiiiiniiiniiiicce 61
Figure 2.1.2 Disc transformation into a hand (Coquillart and Jancéne, 1991). 62
Figure 2.1.3 (a) A single Bezier curve, a control polygon and user specified axes,
(b) the object to be deformed, (c) cube mapping on each control polygon
segment and (d) the initial geometry’s wrapping along the Bezier curve (Chang
and ROCKWOOd, T994). ..ottt 63
Figure 2.1.4 Left: A star — shaped lattice located on a disk. Middle: The
deformed star — shaped lattice containing the modified disk area. Right: The
final geometry of the disk (MacCracken and Joy, 1996).........cccccceveirinrninrnnnnnn. 64
Figure 2.1.5 Above: The original 3D shape of a teapot. Below: The deformation
of the two surfaces (denoted with green and yellow colors) induce the
modification of the model’s geometry (Feng et al., 1996). .......ccccccceuvuevnueinnene. 64
Figure 2.1.6 Local and global deformation based on DFFD technique (Faloutsos
€1 AL, 1997 et 65
Figure 2.1.7 Left: The initial shape. Right: The deformed geometry (Feng et al.,
2002). e s 66
Figure 2.1.8 Left: The initial geometry of a water pitcher. Middle and Right:
Deformations resulted by water pitcher’s bottom compression (Hirota et al.,
2000). vt 67
Figure 2.1.9 Left: The input geometry and six control points placed on it.
Middle and Right: A sequence of deformations produced by the alteration of

control points” position (Yoshizawa et al., 2002). .........cccceuvivirininininininininininiine, 67
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Figure 2.1.10 (a) The initial bounding box in which the 3D model is embedded.
(b)-(e) The hierarchical process of the geometry approximation. (f) The
generated parametric lattice (Ono et al., 2002). ........cccooveveriiiiniiiiicce 68
Figure 2.1.11 Control triangulations for head (left), profile (middle) and ear
(right) (Ilic and Fua, 2002)........ccceeiiiiiiiiiiiiniiies 69
Figure 2.1.12 (a) The initial shape to be deformed, (b) specification of the area
to be deformed, (c) construction of the initial control mesh, (d) the deformed
control mesh occurred by the relocation of the blue point, (e) the deformed
geometry (Kobayashi and Ootsubo, 2003). ........c.cccceeivininiiiiiniiiiccce 69
Figure 2.1.13 Left: The initial shape of a teapot. Middle: The teapot is
embedded in the scalar field. Right: The deformed shape of the teapot (Hua
and QIN, 2003)....eeueeueriieieieierert ettt sttt ettt b ettt sae e e 70
Figure 2.1.14 Left: The Stanford bunny model cut with a cylinder tool from
above. Right: The DFFD’s stitching algorithm was applied in order to close the
opening (Schein and Elber, 2004)..........ccccooriiiiiiniiiiicicee 70
Figure 2.1.15 Left: The initial geometry. Middle left: The initial control lattice.
Middle right: The deformed control lattice. Right: The resulted deformed
geometry (Song and Yang, 2005). .......cccceevirireriniinieiniiinineinceeeseeneeneenes 71
Figure 2.1.16 Left: The initial shape of an airfoil constructed by a surface grid is
embedded in the FFD control lattice. Right: The deformation of the FFD lattice
is transferred to the embedded airfoil geometry (Ronzheimer, 2002). ............. 72
Figure 2.1.17 The control lattice (black box) indicates the part of the aircraft
volume to be deformed (Andreoli et al., 2003). ......ceveverereneriririeieieeienne 73
Figure 2.1.18 Left: The airfoil is embedded in FFD control lattice (red colored).
Right: The deformation of the control lattice is not only passed to the embedded
airfoil but to the surrounding computational grid (blue colored), also (Désidéri
et al,, 2004). ..o 74
Figure 2.1.19 Above: A trivariate volume deformation. Below: The deformed

grid causes the deformation of the embedded airfoil (Samareh, 2004). ........... 75
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Sofia Tavla Introduction

Chapter 1

Introduction

1.1 Aerodynamic Shape Optimization
Aerodynamic Shape Optimization (ASO) is one of the key components of the
aerodynamic design process. During the particular stage, the objective is to obtain
aerodynamic configurations of high-performance, subject to several operational
and geometrical constraints, which minimize or maximize the value of the
objective function established by the designer. However, in many real-world
applications, the design process of an aerodynamic shape is characterized by more
than one potential objectives. As a result, a multi-objective optimization is
performed, where the optimal solution represents the one with the least net trade-
offs, for example, the lift-to-drag ratio and aircraft fuel consumption (Ren, 2016).
A schematic representation of a general aerodynamic design process is provided

in Figure 1.1.1.

Optimization
Process

Objective Function

Imitial

I Optimization Criteria )
Geometry —» Optimal Geometry

Geometrical
Constraints
Check

Figure 1.1.1 The aerodynamic shape optimization (ASO) process.
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Furthermore, an aerodynamic design process can be characterized as either a
direct or an inverse one. The aim of a direct design approach is to obtain a solution
that maximizes or minimizes the value of one or many objective functions via the
alteration of the geometrical parameters defining the aerodynamic configuration

at hand.

On the other hand, the inverse design approach deals with the design of an
aerodynamic geometry that results in a pre-defined aerodynamic characteristic,

such as the target pressure distribution (Zhang et al., 2015).

Although shape optimization aims at producing the most suitable solution to a
specific aerodynamic design problem, it may become a laborious and
computationally expensive process. In fact, even the most recent optimization
approaches depend on the user’s experience and capabilities of handling the
appropriate optimization tools and defining the most suitable geometry
parameterization method. Moreover, by considering the required computational
time to perform - in most cases - the aerodynamic analysis on the model of interest,
the proper integration of required software within the general optimization
scheme should be considered. More specifically, according to Wakayama and
Kroo (2012), the employed methodologies must be simple enough in order to be
executed as many times as required and sufficiently capture and analyze, at the

same time, the local geometrical features of the entity.
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1.2 Need for grid adaptation

In general, the aerodynamic shape optimization consists of an iterative procedure,
wherein the fluid motion around each candidate solution has to be accurately
calculated. Additionally, by taking into consideration that in most cases the
particular fluid motion is governed by non-linear partial differential equations
(Euler equations for inviscid flows and Navier-Stokes for viscous ones) that do not
possess analytic solutions, their numerical approximations with appropriate flow

solvers are required.

Thus, aiming to obtain the approximate solutions of the governing equations, it is
necessary to apply the proper domain discretization on which the PDEs will be
locally solved. The aforementioned space discretization can be either consisted of
triangular or/and quadrilateral elements, or hexahedral, tetrahedral and prismatic
elements (cells) on 2D or 3D, respectively. Each cell is connected with its
neighboring ones regarding their topology. The overall connected domain is called

a grid.

An important parameter of the aforementioned procedure consists of the
computational time needed in order to achieve the optimal geometrical solution.
The computational time involved depends on multiple factors, most important of
which is the optimization method chosen. An additional key factor contributing
to the total computational time reduction is the use of a grid adaptation technique
throughout the shape optimization process. More specifically, in the present case,
the computational grid is created once at the beginning of the procedure and is
constantly adapting to the shape deformation produced at each iteration.

Furthermore, the flow equation solution calculated on previous steps can be
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applied as the initial flow field on those following. Thus, the convergence of the

optimization problem can be greatly accelerated.
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1.3 Grid Adaptation Methods

Given the importance of grid adaptation (mesh deformation or mesh morphing)
techniques, over the latest years, several methodologies have been proposed,
aiming to reduce the required computational time, while enhancing the quality of
the resulting meshes. Such methodologies, which are presented in Section 1.4, are
based on the RBF (Radial Basis Functions) interpolation, algebraic methods,
physical analogies and partial differential equation (PDEs) methods (Gagliardi
and Giannakoglou, 2019).

As long as the spring analogy methodologies are concerned, the node coordinates
of the deformed mesh can be computed as a solution to the static equilibrium
equations. Specifically, the deformation propagation is simulated by the motion of
linear or torsional springs, which are placed on or between the cells’ nodes.
Therefore, for the application of the particular method, the mesh topology should
be available. Nevertheless, in cases of high mesh density and large node
displacements, the spring analogy method is characterized by poor performance,

since negative volume production has been observed (Selim and Koomullil, 2016).

Another grid adaptation method relies on the solution of the linear elasticity
equations so as to calculate the displacement of the mesh nodes that occurred. In
particular, linear elasticity equations are solved in order to obtain the displacement
of a given mesh. Despite the increased method applicability, high computational

cost is involved (Mavronikola, 2017).

In addition, through the solution of Laplace’s partial differential equation, the
deformation propagation within the internal grid is succeeded. More specifically,

due to the satisfaction of the minimum/maximum principle of the Laplace
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equations, the displacement of interior mesh nodes are bounded by the values on

the boundary of the domain (Selim and Koomullil, 2016).

In the algebraic dumping method, the updated node location is derived from
algebraic equations, which are dependent on the displacement of the closest to the
moving boundary nodes. Through the aforementioned methodology, a dynamic
grid movement is achieved, following large-scale deformations. In spite of the
robustness of the aforementioned method, the generated deformation may be

rigid close to the boundary areas (Zhao and Forhad, 2003).

Finally, grid deformation propagation can be succeeded by the Radial Basis
Functions (RBF) interpolation. In particular, the RBF interpolation distributes the
displacement of boundary nodes to the interior nodes in relation to their distance
between a set of user-specified nodes (centers). As a result, the aforementioned
method is capable of producing enriched quality deformed meshes by preserving
the - closest to the boundary - cells orthogonality. However, RBF interpolation is
characterized by increased computational cost (Gagliardi and Giannakoglou,

2019).
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1.4 Literature survey on geometrical parameterization

techniques in Aerodynamic Optimization

Shape parameterization represents a key part of the ASO process. A
parameterization technique should be flexible enough in order to describe a wide
range of complicated shapes by making the use of the minimum possible number

of geometrical parameters (Amoiralis and Nikolos, 2008).

According to Samareh (1999), a successful geometry parameterization method

should possess a number of specific characteristics, which are provided below:

e Despite the shape changes, it should maintain the smoothness of the
geometry.

e It should provide local control during the shape deformation.

e It should be able to perform properly the sensitivity analysis.

e It should be connected to the CAD system used.

e It should be intuitive enough and able to be established in a quick way.

According to Samareh (1999), several parameterization approaches have been
proposed, such as: (a) the basis vector approach, (b) the domain element approach,
(c) the Partial Differential Equation (PDE) approach, (d) the discrete one, (e) the
polynomial and spline approach, (f) the CAD-based approach, (g) the analytical
approach and (h) the Free-Form Deformation (FFD) approach. A brief introduction
of the aforementioned parameterization techniques, as presented in the study of

Samareh (1999), is provided in the following paragraphs.



Sofia Tavla Introduction

1.4.1 The Basis Vector approach
Introduced by Pickett et al. (1973), the basis vector approach is a parameterization
technique through which the changes of the shape of interest are expressed by

means of the following equation:
R:T-I—ZuiUi, (1.1)
i

where R represents the deformed shape, r is the baseline shape (initial shape), u;

is the design variable and U; is the design perturbation.

1.4.2 The Domain Element approach

This parameterization technique is based on a linked set of grid nodes (vertices),
which form a “domain element”. Initially, an inverse mapping between the mesh’s
nodes and the domain element is calculated, resulting to a fixed set of
parameterization coordinates (for each mesh node). Then, every movement of
domain element’s vertices provoke the deformation of the entire grid, which is

formed by. An application of the basis vector approach is shown in Figure 1.4.1.

C :
D C
a) Bascline model b) Deformed model

Figure 1.4.1 The initial shape of a domain element (left) and its deformed
geometry (right) (J. Samareh, 1999).
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1.4.3 The Partial Differential Equation (PDE) Approach

Bloor and Wilson (1995) introduced a shape parameterization methodology aimed
at the construction of surfaces by making the use of partial differential equations.
More specifically, posed as a boundary-value problem, parametric surfaces were

generated as the solutions to elliptic partial differential equations.

1.4.4 The Discrete Approach

In the aforementioned parameterization approach the discrete curve boundary
points act as the design variables. According to Samareh (1999), this approach is
easy to be implemented; however the deformations are restricted by the number
of the design variables. Additionally, the discrete approach is prone to producing
non-smooth geometries and may be a non-viable alternative for shape

optimization applications.

1.4.5 The Polynomial and Spline Approaches
Aiming at the reduction of the total number of the design variables, Braibant and
Fleury (1984) proved that Bezier and B-Spline curves consist of two feasible

parameterization schemes for the shape optimization problem.

An n' degree Bezier curve is defined by:
n
Cw) = z B, (WP, O<u<l (1.2)
i=0

where B;, (u) are the basis functions (Bernstein polynomials) and P;, i =0, ...,n
are the position vectors of the control points, which in the particular case are the

design variables.

Basis functions B; ,(u) are the n* degree Bernstein polynomials:
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Bin,(u) = i!(n—'_l_)!uiu —u)* (1.3)
Although Bezier splines can reduce the number of the geometric parameters
needed, they do not possess the local deformation property, due to the single
segment curves they consist of. Furthermore, in order to satisfy a large number of
constraints and construct a complex shape at the same time, a high-degree
polynomial curve is required. A feasible solution to avoid the shortcomings of

Bezier splines is the construction of multiple piecewise polynomial curves, such as

B-Splines.

Constructed by several low-degree Bezier segments, p degree B-splines are

defined as:
n
Cu) = 2 PiN,(W), o SuU<up (1.4)
i=0

where the basis functions N; ,(u) , considering that n = m — p, are given by

(1, U S U< Ujpq
Nio(w) = {O, otherwise (1.5)

Uu—uy; Uitpy1 — U
Nip(w) = ————N;p_1 (W) + Nis1p-1(W). 1.6
vP Uirp — U; Lp-t Uirp+1 — Ui+1 et (1.6)

The non-decreasing sequence U = [uy, ..., un] of u; knots is called the knot vector.

In particular, the knot vector usually takes the following form

U=|up .- Uy, Ups1se o Um—p—1,Umy - o) U | - (1.7)
N~———_— N~————_—_—
p+1 p+1

10
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For equally distributed knots the constructed curve is called uniform (Masters et
al., 2015). An airfoil constructed by a 3¢ degree B-spline curve and seven (7)

control points (in red color) is represented in Figure 1.4.2.

Figure 1.4.2 Airfoil representation by a 3¢ degree B — Spline curve and 7
control points (Leloudas, 2014).

Nevertheless, due to the inability of B-spline curves to represent implicit conic
sections, Non-Uniform Rational B—splines (NURBS) were introduced. Specifically,
a NURBS curve is described as:

?—0 Ni,p (u)wipi

C(w) =<7

i=0 Ni,p (u)wi ,

a<u<b (1.8)

Similarly to B-splines notation, P; represents the i — th control point, N;,(u) are
the p degree B—spline basis functions and w; is the i — th non-negative control
points’ weight (Piegl and Tiller, 1995). An efficient NURBS based parameterization
approach was introduced for the purpose of structural shape optimization. The
example of the initial (red dashed line) and optimized (continuous black line)
geometries of nozzle blade profiles constructed by NURBS curves and their control

points are shown in Figure 1.4.3.

11
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Figure 1.4.3 Original and optimized blade profiles constructed by
NURBS curves and their control points (Li et al., 2016).

1.4.6 The CAD-Based Approach

The majority of most recent CAD systems combine dimension-driven modelling
with feature-based design. As a result, through the assignment of object
dimensions as geometrical parameters, direct manipulation of the geometry of

interest is offered (Hardee et al., 1999).

In particular, solid modelling CAD systems implement either a boundary
representation or apply a constructive solid geometry method to represent a
physical and solid object (LaCourse, 1995). However, due to possible
abnormalities on the surface of the models resulted by the CAD-based approach,
the application of automatic grid generation tools and the parameterization of a
shape may become a demanding and laborious process. In addition, in the case of
a non-recovered incompleteness of a CAD model, several challenges during the

mesh construction procedure may arise (Amoiralis, 2005).

12
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1.4.7 The Analytical Approach

Hicks and Henne (1978) introduced a geometry parameterization approach, based
on the addition of weighted shape functions. More specifically, the airfoil shape
can be represented by two analytical equations. In particular, each equation is
constituted by the coordinates of the upper and lower surface baseline sections

(Vuuspsicr Yispasic) @aNd the corresponded weighted sum of a set of shape functions
(f2)-

5

Yus = Yuspasic T Z a;f; (1.9)
i=1
5
Vis = Vispane + ) bift (1.10)
i=1

Thus, the contribution of each shape function to the airfoil design is determined
through the participation coefficients (a;, b;) assignment. In the aforementioned
parameterization technique the selected weighted shape functions are smooth
functions based on earlier successful airfoil designs. However, despite the
effectiveness of the analytical approach in wing parameterization applications,
complex geometries may not be able to be represented in an accurate way (Hicks

and Henne, 1978).

1.4.8 Free-Form Deformation (FFD) in Aerodynamic Shape Optimization

Originated by the computer graphics field, the FFD technique is based on the
indirect deformation of a shape in space, through the manipulation of the control
points of trivariate Bezier volumes. Later, a modified version of FFD was
presented, by Lamousin and Waggenspack (1994) integrating the Non-Uniform B-
splines as basis functions (NFFD). Additionally, Samareh (1999) applied the NFFD

method in order to perform aerodynamic Computational Structural Mechanics

13
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(CSM) parameterization, while Amoignon et al. (2014) investigated the influence
of NURBS degree on the regularity of the optimized shapes produced by the NFFD

technique.

Furthermore, Liu et al. (2017) presented a parameterization technique based on the
combination of Radial Basis Function (RBF) and FFD to handle the junction area
between the wing and the body of the aircraft. Specifically, following the FFD, the
aim was to ensure the geometrical continuity preservation, through the RBF
deformation interpolation on the junction area. As a result, according to the
authors the introduced hybrid parameterization technique demonstrated

effectiveness and proved to be feasible.

In addition, Bai and Chen (2013a) proposed an aerodynamic optimization scheme
based on the direct manipulation of the aerodynamic shape. Through the
introduction of a user-specified pilot points” location on the object geometry and
their displacements, the FFD lattice associated with was accordingly modified.
Thus, a direct shape manipulation is achieved. Furthermore, concerning the drag
reduction optimization, the DFFD method showed improved capability compared
to the original FFD technique. Figure 1.4.4 shows a deformation according to the

DFFD method.

14
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FFD Control Points
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Figure 1.4.4 Original and Deformed Foil and Corresponding FFD Control Points (Bai and
Chen, 2013).

1.4.9 Multidisciplinary Aerodynamic-Structural Shape Optimization Using
Deformation (MASSOUD)

In spite of the efficient parameterization capabilities FFD method processes, the
established design variables may have no significance for the design engineers. In
order for the particular shortcoming to be addressed and reduce the number of the
problem’s  geometrical parameters, Samareh (1999) introduced the
Multidisciplinary Aerodynamic-Structural Shape Optimization Deformation
(MASSOUD) approach. The key feature of the particular method is the
parameterization of the shape perturbations (changes in thickness, camber, twist,
shear and planform) occurred during the optimization, rather than the geometry
itself. Furthermore, borrowed by the computer graphics field, a modified set of
Soft Objects Algorithms (SOA) is applied for the purpose of subsequent model
deformation through image morphing techniques. Therefore, during the

optimization process, the examined surface grid is updated as follows:

R=r+U), (1.11)
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where R represents the deformed grid, r is the baseline grid, u is the design
variable vector and U the design perturbation. In addition, according to Samareh
(1999), by making the use of NURBS representation, strong local control and
smoothness of the deformed geometry are succeeded. A deformation based on

MASSOUD approach is shown in Figure 1.4.5.

Figure 1.4.5 A deformation based on MASSOUD approach (Samareh, 1999).
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1.5 The proposed approach

The aim of the present dissertation is to perform an extensive literature review of
Free Form Deformation and Harmonic Functions-based deformation
methodologies, used for shape parameterization, shape morphing, and grid
adaptation. Then, a 2D shape deformation and computational grid adaptation
technique based on the Harmonic Functions is presented for the purpose of

Aerodynamic Shape Optimization.
The diploma thesis is organized as follows:

e In Chapter 1, an introduction to the Aerodynamic Shape Optimization and
to the existing geometry and grid parameterization & deformation
techniques is provided.

e In Chapter 2, an in-depth presentation of the Free-Form Deformation
technique is introduced.

e In Chapter 3 the proposed scheme, based on the application of the B-Spline
basis functions as Harmonic Functions for the concurrent and conformal
deformation of the B-Spline boundary and the surrounding computation
grid, is presented.

e In Chapter 4, a mesh interpolation methodology is presented and tested, as
an auxiliary tool for the Harmonic Function-based parameterization.

e In Chapter 5, indicative results of the Harmonic Functions-based
deformation methodology are presented and commented.

e In Chapter 6, the conclusions resulted from the application of the proposed

shape deformation scheme, are outlined and discussed.
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1.6 Literature survey on the Harmonic Functions-based

parameterization techniques

1.6.1 Introduction

It should be emphasized that a key point in the shape optimization process is
the definition of the initial geometry, by making the use of the minimum
possible number of parameters (independent design variables) combined with

a robust and accurate optimization algorithm.

In order to succeed the aforementioned characteristics and construct, at the
same time, a parameterization technique applicable in diverse fields of studies,
researchers have drawn their attention on harmonic functions and their desired
properties. The parameterization techniques, analyzed in the present section
were originated from the computer graphics field for the purpose of character

articulation and mesh generation.

1.6.2 Harmonic coordinates for character articulation

Harmonic coordinates were firstly introduced in 2005 by Pixar Animation
Studios. Based on mean-value coordinates by Floater (2003), the harmonic
functions applied on Closed Triangular Meshes, as presented in the work of Ju
et al. (2005), included seven key parameterization properties for character

articulation.

According to Joshi et al. (2007), let a polyhedron in 2D called cage C, where the

volume to be deformed is embedded as shown in Figure 1.6.1.
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Figure 1.6.1 Image of Mickey Mouse computational mesh and the cage surrounded
by (Mavronikola, 2017).

Then, for every cage vertex C; a function h;(p) subject to the following

conditions is sought:
1. Interpolation: h;(C;)=6;;, where §; ; =1 fori=j and §;; =0 fori #j

2. Smoothness: The functions h;(p) are at least C! smooth in the interior of

the cage.
3. Non-negativity: h;(p) >0 forallp € C

4. Interior locality: Minimum and maximum value of harmonic

coordinates are strictly located at the cage vertices.

5. Linear reproduction: Every object point (p) is described as a linear
representation of its harmonic function and harmonic coordinates of

cage vertex C;. Thus, p = },; h;(p)C;
6. Affine - invariance: ),; h;(p) = 1 for all p in C

7. Strict generalization of barycentric coordinates: When C is a simplex,

hi(p) is the barycentric coordinate of p with respect to C;.
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However, the described method is extended from two to 3D objects with the

addition of the final property:

8. Dimension reduction: d-dimensional coordinates when restricted to a
k < d dimensional facet, reduce to k - dimensional harmonic

coordinates.

Coordinate functions, which satisfy the mentioned properties, are called

harmonic coordinates and are obtained as solutions to the Laplace’s equation:

V2h,(p) = 0. (1.12)

Accordingly, by the displacement of cage (boundary) vertices, a deformation
of the initial geometry is achieved (Joshi et al., 2007). A deformation based on

harmonic coordinates is shown in Figure 1.6.2.

Figure 1.6.2 Deformation based on harmonic
coordinates (Joshi et al., 2007).

Moreover, in an attempt of Joshi et al. (2007) to enhance the interior
controllability and broaden the method’s applicability, the addition of a
supplementary cage encircling the areas of interest was proposed. Thus, the
object parts bounded to the additional cage, maintain their initial geometrical
characteristics followed by any deformation. An example of the particular

method’s extension is shown in Figure 1.6.3.
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Figure 1.6.3 Left: Interior control cage (green). Right: Deformed
facial region except the internal cage area (Joshi et al., 2007).

Nevertheless, the main limitation of the discussed process is the excessive
amount of computer memory required, both for pre-computing processing and
storing the entire solution grid for the purpose of simultaneous geometry and

cage deformation.

1.6.3 Boundary Element Formulation of Harmonic Coordinates

In a major advance in geometry parameterization based in harmonic
coordinates later in 2007, the Boundary Element Formulation of Harmonic
Coordinates was proposed. Specifically, Rustamov (2008) applied the
Boundary Element Method (BEM) in order to calculate the Harmonic
Coordinates of an arbitrary point p at the interior of the control cage.
Furthermore, based on the usage of nested cages for local control enhancement
by Joshi et al. (2007), Rustamov (2008) applied the BEM in order to extrapolate
the Harmonic Functions first at the exterior cage and then, at the entire
Euclidean space. In addition, derived by the comparison between the BEM
formulations of transfinite harmonic coordinates (Belyaev, 2006), transfinite
Shepard’s interpolation (Shepard, 1968) and Mean Value coordinates
(Hormann and Floater, 2006; Ju et al., 2005), a generalization of the harmonic
coordinates was proposed, called the weakly singular interpolates. Figure 1.6.4

presents a deformation based on the aforementioned methodology.
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Figure 1.6.4 Left: Original Model. Middle and Right: Model deformations
using Boundary Element Formulation of Harmonic Coordinates
(Rustamov, 2008).

Although the BEM proved capable of adequately addressing the problems of
the excessive amount of required storage space and the increased
computational time associated with the computation of the harmonic
coordinates, the proposed extrapolation scheme lacked of two major
properties; those of non-negativity and locality. Moreover, Rustamov (2008)
proved that the weakly singular interpolates possess the interpolation,
smoothness, linear precision and affine invariance properties. Figure 1.6.5

shows a deformation resulted by exterior harmonic coordinates.

Figure 1.6.5 Left: Deformation of a sphere into an ellipse in Amardillo’s stomach.
Right: Exterior deformation caused by the deformation of the sphere (Rustamov,
2008).
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1.6.4 Holomorphic coordinates

Li and Liu (2012) presented a cage-free deformation method by taking
advantage of the holomorphic coordinates. The particular technique relies on
the application of a set of vertices over the shape of interest in order to succeed
deformation. By definition, holomorphic coordinates are constructed by
conjugate pairs of harmonic functions ¥; and ¢;. Thus, for a set of handle points

u;:

Therefore, the shape of interest can be deformed by direct point handling

without the construction of an external cage.

The new position of a shape point is obtained as follows:
v = Z hiu'y, (1.14)
i

where u'; is the displaced position of the i — th handle point.

Holomorphic coordinates satisfy interpolation, conformity, smoothness, linear
reproduction and similarity properties. However, in contrast to Harmonic
Coordinates, the aforementioned coordinates do not possess the non-negativity
property (Li and Liu, 2012). A deformation based on Holomorphic coordinates

parameterization is shown in Figure 1.6.6.
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(a) (b) (c) (d)

Figure 1.6.6 A deformation based on Holomorhic coordinates parameterization. In (a)
the original goldfish shape is shown, while in (b) the grid covering its geometry is
presented. In (c) the deformed grid and the handle points used (black spots) are shown.
In (d) the final geometry is displayed (Li and Liu, 2012).
1.6.5 Biharmonic Coordinates
Weber et al. (2012) proposed a natural generalization of the Harmonic
Coordinates, which is enhanced by the additional property of boundary
derivative data interpolation. The key to the proposed methodology is the

solution to the Biharmonic Dirichlet Problem:

A’f(x) =0, x €N
f(x") =g, x' €00 (1.15)
of r 1N _ /
ﬁ(x)—gz, x' €an.
where f is a biharmonic function at any point x in the computational domain
£, A is the Laplace operator and g; and g, known values of the biharmonic
function and its derivative on the boundary 012, respectively. In order to solve
the aforementioned problem, Weber et al. (2012) applied the Boundary Element

Method over polygonal domains. The resulted coordinates were called

Biharmonic.

Therefore, in order to obtain the value of a function f inside the domain 2:
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m

) =) a(f; + B4 (1.16)

j=1

where a;, B are the biharmonic coordinates, f] are the prescribed values at j th
control polygon vertex and d; the known derivative values along the
corresponding control polygon edges. The biharmonic coordinates satisfy the

following properties:

m
z a;(x)v; + B;j(x)n; = x (1.17)
=1
m
Z a;(x) = 1 (1.18)
j=1
a;(v;) = §;
%% (x) = 0,x' € 90
%(x )=0,x"€
(1.19)
B;i(x')=0,x"€0dN
aﬁ ! !
a—n](x ) = 6ij,x (S e,

where v; is the j** control cage vertex, e; the i*" edge of the control cage, n the
unit normal to the boundary, x’ an arbitrary point on the boundary, x an
internal point and §;; the Kronecker delta. By moving the control polygon cage

vertices, the shape of interest is deformed.

According to Weber et al. (2012), the biharmonic coordinates offer complete
control over the boundary of the shape and its derivatives. Additionally,
through the application of the BEM, the computation of the aforementioned
coordinates is efficient and the discretization of the domain is not required.
However, compared to the Harmonic Coordinates, the Biharmonic do not
possess the minimum/maximum principle (the capability of attaining both the
highest and the lowest value inside the bounded domain), while the sensitivity

to user input and incorrect boundary derivative data may lead to unsatisfactory
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results. A visualization of biharmonic coordinates deformation compared to

Variational Harmonic Maps method is presented in Figure 1.6.7.

Source Biharmonic VHM

Figure 1.6.7 Comparison of Biharmonic and Variational Harmonic
Maps deformation (Weber et al., 2012).

1.6.6 Bounded biharmonic coordinates

In order to simplify the design and control of the deformation process, Jacobson
et al. (2011) proposed a methodology based on the development of linear
blending weights that provide smooth and intuitive deformations on objects.
In particular, in order to compute the transformation of a domain 2, a weighted
blend of handles H; (control cage vertices, single points, skeleton bones or a
region) transformations are computed. More specifically, a weighted function
w;: ) > R is associated with every handle point the choice of whom
determines whether intuitive and smooth deformations will be developed or
not. Provided the affine transformation (position, rotation, scaling) T; for each
handle point H;,j = 1,...,m by the user, the new location of a point p € {2 is

defined by Equation (1.20) as follows:
m
b= w@e)Tp. (1.20)
j=1

In order to compute the weights w;, the Laplacian Energy is minimized:
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m
. 1 2
argmin,, j=1""’m25f ||ij|| dav, (1.21)
. 0
j=1
subject to:  Wj|y, = djx (1.22)
Wj|p is linear VF € F (1.23)
m
Z wi(p)=1 Vpe (1.24)
j=1
0<w;<1, j=1,..,m Vpen, (1.25)

where F( is the set of all cage faces, §;; the Kronecker’s delta and A the Laplace

operator (Jacobson et al., 2011).

According to Jacobson et al. (2011), the bounded biharmonic weights produce
smooth and shape-aware deformations even for complex geometries.
Furthermore, non-negativity and partition-of-unity properties are satisfied.
Additionally, it was experimentally observed that bounded biharmonic
weights possess the locality, sparsity and non-local maxima properties as well.
Moreover, due to the generality of the proposed methodology, additional
control over the minimization of the Laplacian energy is possible to be

established.

However, in order to compute the weights w; the discretization of the domain
is required combined with the increased amount of optimization time is
needed. Furthermore, the bounded biharmonic weights do not satisfy the linear
reproduction property, thus they do not, necessarily reproduce linear
functions. A shape deformation based on the aforementioned method is

presented in Figure 1.6.8.

27



Sofia Tavla Introduction

Figure 1.6.8 Crocodile deformation occurred by making the use
of skeleton, cage and points (Jacobson et al., 2011).

1.6.7 Pseudoharmonic coordinates

Due to the absence of their closed form, in order to approximate Harmonic
coordinates, a discrete Laplace equation in the triangulated domain must be
solved numerically. The resulted linear system is large and excessive
computational time is required, in order to obtain the final solution. As a result,
several coordinate schemes have been proposed which have closed-form
solutions, less computational time is needed for their computation and act as
approximations to the Harmonic Coordinates. Chen and Gotsman (2016)
investigated the quality of the aforementioned approximations produced by
popular barycentric coordinate schemes and studied the pseudo-harmonicity
of the Moving Least Squares (MLS) Coordinates as presented by Manson and
Schaefer (2010).

According to Chen and Gotsman (2016), one of the basic tests to specify the
accuracy of the approximation is to check whether the tested coordinates
coincide with the harmonic coordinates in the special case of the contour to be
a unit circle. More specifically, consider the transfinite barycentric coordinates of
a planar curve S, where a function f in a 2D point t in the interior of a closed

planar curve is given by:
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(o) = 35 K(s,0)f (s)ds, (1.26)
S

given a value f(s) of function f on a 2D point s on S and K (s, t) a real-valued
Kernel function. If given a transfinite barycentric coordinate scheme, reduces

to the (harmonic) Poisson kernel:

ds

Kp (W, Z)dS = m, (127)

for the special case that the contour is a unit cycle, the particular coordinates are
called pseudoharmonic. Note that, w represent a point on the contour of the
circle, z is an interior to the unit circle point and ds is the arc-length differential

(Chen and Gotsman, 2016).

The kernel K of Equation (1.26) satisfies the properties:

Non-negativity: K(s,t) =0, Vs € §,t € int(S) (1.28)
Constant precision: ;K (s,t)ds =1, Vt € int(S) (1.29)
s
Linear precision: sz (s,t)ds = t, Vt € int(S). (1.30)
s

Chen and Gotsman (2016) proved that the affine-based MLS and similarity-
based MLS coordinates are pseudoharmonic. In addition, it was concluded that
among coordinate-based transfinite interpolation schemes such as Wachspress
Coordinates (Wachspress, 1975), Laplace Coordinates (Pinkall and Polthier,
1993), Gordon-Wixom Coordinates (Gordon and Wixom, 1974), Mean-Value
Coordinates (Floater, 2003), Maximum Entropy Coordinates (Hormann and
Sukumar, 2008), Poisson Coordinates (Li and Hu, 2013) and MLS Coordinates,
the latter offer higher quality approximations on irregular convex or non-
convex polygons. In Figure 1.6.9 a comparison between Harmonic, Moving

Least Squares and Maximum Entropy coordinate functions is shown.
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Figure 1.6.9 A comparison between barycentric coordinate function of a non — convex
polygon. Left: Harmonic coordinate function. Middle: Moving Least Squares coordinate
function. Right: Maximum Entropy coordinate function (Chen and Gotsman, 2016).

1.6.8 Harmonic Guidance for Surface Deformation

Zayer et al. (2005) introduced two alternative methods for smooth deformation
interpolation aiming at preserving the global shape of the object of interest as
well. According to the first editing scenario, deformation is succeeded through
repositioning a small number of a triangulated domain vertices by the user,
while all the other are placed in an automatic manner by the system. According
to Zayer et al. (2005), three types of vertices are considered; free, fixed and
edited. The first category includes all vertices which are to be displaced, while
the second one consists of points which maintain their initial position during
the whole process. Edited vertices are defined by the user and a change in their
position causes the deformation the object is desired to be subject to. Local
deformation interpolation is achieved through the solution of the Laplace’s
equation (1.12) over the whole region of interest, given the following boundary

conditions:

V2h(fixed vertices) = 0 (1.31)

and

V2h(edited vertices) = 1, (1.32)

where h is the harmonic function.
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Then, the fragmented mesh resulted by the deformation is reconstructed

through the solution of the sparse linear system:

Lx = b, (1.33)

where b denotes the vector containing the divergence values at all vertices, L is
the Laplace-Beltrami operator and x are the new positions of the vertices. A

deformation based on the particular editing scenario is shown in Figure 1.6.10.

Figure 1.6.10 Left: A visualization of the harmonic field. Red and blue
colored areas are formed due to the boundary conditions (1.32) and
(1.31) set at two vertices on the tip of the left arm and bellow the
middle of the trunk, respectively. Middle: The deformed object. Right:
A difference in deformation propagation occurred following the

increase of the vertices at both arms where the boundary condition
(1.32) is set (Zayer et al., 2005).

On the other hand, the second surface editing scenario is based on the
establishment of correspondence between source and target objects of
comparable geometries. Then, harmonic fields are used in order to “transfer”

deformation from source to the target surface.

Specifically, according to Zayer et al. (2005), the user selects few corresponding
pairs of points denoted as markers m;, i =1,..,k, to “establish a semantic
correlation” between the two surfaces. Then, for each marker, a harmonic field

h; is defined with the boundary condition:
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h(mj)=1, i=j (1.34)
and
hi(m;) =0, i#j. (1.35)

Each vertex of both source and target meshes will be assigned a k —
dimensional vector containing the harmonic functions resulted, one for each
marker. The harmonic functions on an arbitrary mesh point p satisfy the

partition-of-unity property, thus:
k
Z h(p) =1. (1.36)
=1

Source and target surfaces with comparable geometries have similar harmonic
tields and the corresponding vectors assigned on every triangular element of
both meshes (source and target) have close field values resulting, subsequently,
to the deformation transfer. Finally, Equation (1.33) is solved in order to
reconstruct the target mesh. In Figure 1.6.11 a source-target surface

correspondence is presented.

Figure 1.6.11 The cat surface triangles are mapped on the lion in
order to succeed deformation transfer. Colored areas visualize
the surface parts origin. White tringles show the abscess of
correspondence in the particular areas (Zayer et al., 2005).
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Additionally, Zayer et al. (2005) proposed an interpolation technique for
deformation propagation depending solely on establishing correspondence on
markers. Thus, local deformations applied on markers of the source mesh are
used as constraints for harmonic interpolation on the target surface. Once
again, the Equation (1.33) is solved in order to obtain the deformed mesh of the

target geometry.

Nonetheless, for the purpose of preserved geometrical details between the
related surfaces, additional markets may be added. Furthermore, according to
Zayer et al. (2005) local deformations, obtained by harmonic interpolation, are
within the convex hull of the given deformation at the markers. As a result,
local deformations cannot be reproduced between the specific areas. Moreover,
the proposed deformation transfer techniques between surfaces with semantic

differences are not capable of producing pleasing results.

1.6.9 Robust One-to-One Sweeping with Harmonic S-T mapping

Cai and Tautges (2014) proposed a robust mesh generation technique based on
Harmonic mapping and the established correspondence between the source (S)
and the target (T) surface for interior nodes location in volumes with
concavities. According to the authors, harmonic mapping M — H is the
mapping between two Riemannian manifolds, where the Dirichlet energy is
minimized. During the harmonic mapping process, source (M1) and target
(M2) surface triangulations are harmonically mapped on two 2-D unit disks,
H1land H2, respectively. Therefore, by making the use of the linear
approximation method, the outmost boundary source and target vertices are
allocated on the 2D unit disks (H1 and H2) boundaries in order to correspond.
Thereupon, barycentric coordinates from each mesh node of M1 are computed
and their 2D position at H1 is obtained. Then, the corresponding 3D position
on the target surface M2 of every mesh node at H2 is calculated. Figure 1.6.12

presents the Harmonic mapping process.
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Figure 1.6.12 (1) M1 mapping on H1 unit disk. (2) M2 mapping on H2
unit disk. (3) H1 mapping on H2 (4) H2 mapping on M2 (Cai and
Tautges, 2014).
To locate internal nodes in volumes with concavities, Cai and Tautges (2014)
proposed the Harmonic Interpolation technique. More specifically, the target
quadrilateral mesh is translated in the inverse sweeping direction and the
source surface is reached. Then, all-quad meshes in both source and target
surface are converted into triangular. Since the location of the interior nodes in
the source object is known, the bounding surface of the target (deformed)
geometry may act as a cage. Thus, the final position of the interior nodes in the
deformed object may be calculated using the harmonic interpolation as
presented in Section 1.5.1, where for all vertices C; on the target bounding

surface, the same boundary conditions hold. A deformation process is shown

Figure 1.6.13 Left: A physical model. Right: Meshed
bounded surfaces (Cai and Tautges, 2014).

in Figure 1.6.13.
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1.6.10 Volumetric T-Spline construction using Boolean operations

Liu et al. (2014) proposed a volumetric T-Spline construction algorithm in order
to overcome the limitations related to the application of NURBS in the isometric
analysis. Such drawbacks include the absence of local refinement and the
resulted gaps between two neighboring surface patches. The main idea behind
constructing a volumetric T-spline model on an object with complex geometry
is the decomposition of the initial shape into hexahedral components and the
development of Boolean operations for volumetric T-Spline control mesh

creation.

In order to divide the geometry into coherent surfaces, the harmonic field is
calculated. According to Liu et al. (2014), such a field consist of that of the
steady-state temperature distribution. Therefore, the key to the entire process
is to assign the maximum and minimum temperature values on two separate
points belonging to the model, which will act as boundary conditions. Then,
Laplace’s equation is solved over the surface mesh and the critical points of the
tield (min, max and saddle) are obtained. On the sections formed by the
aforementioned points, the minimum and maximum temperature values are
assigned and the harmonic field is recalculated. Finally, following the tracing
of the gradient lines, the model is divided into parts. The aforementioned

technique applied to a torus is presented in Figure 1.6.14.

Mg oy

ifive L
Figure 1.6.14 Left: Harmonic field calculation given maximum and minimum
temperature values at the highest and lowest points, respectively. Middle: Harmonic
field calculation given maximum and minimum temperature values at the highest and
lowest cross regions, respectively. Right: Decomposition of the torus (Liu et al., 2014).
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1.6.11 All hexahedral mesh generation via inside-out advancing front based
on harmonic fields

Li and Tong (2012) proposed an inside out Advancing Front method to
generate an unstructured all-hexahedral mesh for a given volume constructed,
initially, by an isotropic tetrahedral mesh. The key of the aforementioned
method consisted of the calculations of two harmonic fields which determined
the orientation of the produced elements and guided the whole hex-mesh
advancement process. Initially, in order to construct the harmonic field over
the whole volume, Li and Tong (2012) proposed the solution of the discrete

Laplace’s equation of the form:
Z wij(u; —w) =0, (1.37)

over the tetrahedral mesh M, where N (i) is the one-ring neighborhood and u;
the harmonic scalar value of the function f: M — R of the vertex v;, respectively.
The term w;; is a real-valued weight assigned to the edgee;; and can be

calculated by the Equation (1.38) as follows:
n
Wy = Z||epq||cos(9k) , (1.38)
k=1

where e, is the opposite edge of e;; and 8y, k = 1, ..., n is the dihedral angle.

Then, the linear system:

Lu=0, (1.39)

is obtained, where u = {ug, uy, ..., u,} and L is the Laplacian operator equal to:

Wy ifi=]
L= VkEN (D) . (1.40)
—Wij if JEN()
0 otherwise
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The solution of the Equation (1.39) consists of the harmonic discrete scalar
values on the corresponding mesh vertices. Subsequently, every point v of the

volume its harmonic function equals to:

4
u®) = ) ugi(), (141)
i=1
where @;(v) is the linear basis function on each vertex of the tetrahedron in

which the point lies.

Therefore, in order to solve the Equation (1.39) the following boundary
condition was set: the selected boundary vertices of the one side of the volume
had the minimal scalar value equal to 0, while the boundary vertices belonged
to the other volume side were constrained with the maximal value equal to 1.
In addition, according to Li and Tong (2012), the discrete gradient vectors of
the harmonic field should be perpendicular to the corresponding normal of the
boundary surface. The constructed harmonic field, under the aforementioned
boundary conditions, was referred to as “Principal” and determined the
orientation of the constructed elements. Figure 1.6.15 shows the boundary
conditions set on an elliptical cylinder and the corresponding principal

harmonic field.
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Figure 1.6.15 (a) The boundary conditions on an elliptic cylinder. Red-colored
area indicates the maximal valued vertices, while blue-colored vertices are
constrained with the minimal value. (b) The distribution of the principal
harmonic field over the elliptic cylindrical volume. Red-colored and blue colored
areas indicate high and low scalar values, respectively. The short blue lines
represent the gradient vector at the corresponding points (Li and Tong, 2012).

On the contrary, the harmonic field obtained under the boundary condition
where the vertices of the initial hexahedral elements are constrained with the
minimal value, while the ones belonged on the tetrahedral mesh boundary
were equal to the maximal value, was referenced to as “Radial Harmonic Field” .
The gradient vector field was calculated in order to trace the streamlines of
Radial Harmonic field and indicates the direction of the advancement process
on each individual vertex. A visualization of the produced Radial Harmonic

field on an arbitrary volume is shown in Figure 1.6.16.

Figure 1.6.16 The distribution of the Radial Harmonic field. Red-
colored and blue-colored areas mark high and low scalar field

vectors. The streamlines of the Radial Vector Field are indicated with
light blue color (Li and Tong, 2012).
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In addition, Li and Tong (2012) proposed a complex volume segmentation
technique. The main idea was to generate hexahedral-meshed subvolumes
with smooth interfaces between the segmented areas. To achieve this, they
proposed the solution of the Linear System (1.39) with the following boundary
condition: the scalar value of each boundary vertex equals to the random walk
distance to the specific seed face. The constructed harmonic fields on the Venus

model and the produced hex mesh are shown in Figure 1.6.17.

Figure 1.6.17 Left: Harmonic field construction in Venus
model. Right: All — hexahedral mesh generation (Li and
Tong, 2012).

1.6.12 Direct Product Volumetric parameterization of handlebodies via
harmonic fields

Xia et al. (2010) proposed a volume parameterization method by exploiting the
harmonic field properties. Given a manually designed polycube P and a 3D
geometry represented by a tetrahedral mesh M, a polycube map between the
boundary dP and 0M is constructed by the Divide and Conquer method
introduced by He et al. (2009). Then, due to the bijectivity of the
aforementioned polycube mapping, the user-specified partition of the

boundary surface dP into floor B, ceiling B; and walls D, automatically, results
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into the identical partition of the surface dM. A partition between the polycube

and a 3D model is shown in Figure 1.6.18.

(c) (d)

Figure 1.6.18 (a) The surface of the 3D model M mapped on the
surface of the polycube P. (b) The partition of the polycube P. (c) The
surface of the 3D model M. (d) The partition of the 3D model M
resulted by the partition of the polycube P (Xia et al., 2010).

Now, consider two harmonic functionson M and P, fy;: M - Rand fp: M = R,

accordingly. Then, through the solution of the Laplace’s equation:

Af(p) =0 Vp€&ByUBy, (1.42)

under the boundary conditions:
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fp) =0 VpeB (1.43)

fp)=1 VpeB, (1.44)

the harmonic functions f), and fp, are obtained. Afterwards, the gradient field
vector of fy, Vfy, is calculated and the integral curve (whose tangent vector
equals to the gradient field) is traced. The points where the integral curve
intersects the floor and ceiling of M are denoted with p and q, respectively.
Following the creation of the polycube map, each point on the ceiling and floor
of M is mapped to the polycube P. The computation of the harmonic fields on

the polycube P and the 3D model M is presented in Figure 1.6.19.

—~

. ’
(2) (®) (© (d) (€

Figure 1.6.19 Figures from (a) to (d) show the polycube (up) and 3D model (down)
computed harmonic fields. Figure (e) shows the several iso — surfaces of harmonic fields
(Xia et al., 2010).
Then, the integral curve of the gradient vector Vfp is computed and the
intersection points on the floor and ceiling of P, p’ and q' are obtained,

respectively. Subsequently, given an interior point of M, denoted ass, the

corresponding unique point in P, s’, is found through the Equation (1.45):
fu(s) = fp(s). (1.45)

Thus, by locating each interior point of P given the corresponding point’s

position on M, the volumetric mapping for the interior is constructed.
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Similarly, to construct a mapping for the walls, the gradient of every triangular
element of the boundary of the floor on M, dB{', is calculated and the integral
curve beginning from the aforementioned boundary is traced. Then, through
the floor map h: B! — B{, each integral curve on M is mapped to a
corresponding curve on P, thus, every point on M is mapped to a unique point

on P.

Furthermore, resulted from the regular structure of the polycube used in the
aforementioned volumetric parameterization scheme, the proposed
methodology was applied for the generation of hexahedral meshes on 3D
domains. A generated hexahedral mesh resulted from the application of the

aforementioned technique, is shown in Figure 1.6.20.

Figure 1.6.20 The generated hexahedral mesh using the Direct
Product Volumetric Parameterization method (Xia et al., 2010).
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1.6.13 Dynamic Harmonic fields for surface processing

Xu et al. (2009) introduced a fast updating harmonic field method for dynamic
conditions handling applied for surface processing applications. The
aforementioned methodology is based on the solution of the linear system

(1.46) on a closed manifold triangular mesh:

(L+ P+ RR" —BB")u=Pb, (1.46)

where u is the vector containing the unknown approximate harmonic function
values on the mesh vertices. Term L denotes the unconstraint Laplacian matrix

and equals to:

L=D-Ww, (1.47)

where W;; = %(cotaij + cotB;;), while a;; and B;; are the opposite angles of

(i,j) edge in the triangular mesh, respectively. In case of edge (i, j) not existing

then WU =0.

Matrix D is diagonal and consists of the row sums of W. Furthermore, the

diagonal penalty matrix P in Equation (1.46) equals to:

_{a ifiESandi:j}
Piy = {0, otherwise ’ (1.48)

where the penalty factor a = 1.0 - 10% and S the set of indices of the vertices on
which the boundary conditions are forced. In addition, matrices R and B are

equal to:

Va, i=j €S; }
R.. :{ ) ins| 1.49
Y 0, otherwise ( )

and
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Va, i=j €S }
B' e { ) del . 1_50
Y (0, otherwise (1.50)

Terms S;,,s and S,;,; denote the sets of indices referred to locations of added and

deleted constraints. Moreover, vector b in Equation (1.46) equals to:

_(0ifiégs
b, _{si if i es}’ (1.51)
where the term s; consist of the given harmonic field value at site i = 1, ...., n.

The harmonic field computed following the addition of new constraint vectors

is shown in Figure 1.6.21.

(i

7"‘

"‘.

635 PR

Figure 1.6.21 Left: Harmonic vector field computation according to the user -

specified constraint vectors (red arrows). Right: Calculation of the Harmonic
field after the insertion of additional constraint vectors (Xu et al.).

Xu et al. (2009) demonstrated the effectiveness of the interactive harmonic field
updating methodology on various surface processing applications, such as the
shape deformation and deformation transfer between a source and a target
surface by making the use of dynamic handles. In all presented applications the
proposed methodology offered real-time performance and interactive user
experience on surface processing. Figure 1.6.22 presents a deformation transfer
between a source (cat) and a target (wolf) shape by making the use of dynamic

handles.
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Figure 1.6.22 Deformation transfer between a source (cat) and a target (dog) surface. Handles
applied on cat are indicated with red color and change throughout the procedure (Xu et al.,
2009).

1.6.14 Skeleton based cage guided by harmonic fields

Casti et al. (2019) introduced a user-assisted skeleton-based cage generation
tool. The input of the method consists of a triangular mesh M representing the
surface of a 3D model of choice and its skeleton S. Provided a number of
bending nodes on the skeleton by the user, a corresponding segmentation of
the volumetric model is resulted and an initial control cage is constructed for
each piece of the object. In order to create the surfaces which will later
contribute to the formation of the final cage, a tetrahedral mesh is generated
and a harmonic field on the latter mesh’s vertices is calculated. More
specifically, given a vertex point p of the tetrahedral mesh, the solution of the

Laplace’s equation:

Af(p) =0, (1.52)

is sought, under the Dirichlet boundary conditions of Equation (1.53) and

(1.54), respectively:

f(p)=0,VpeS (1.53)

fp)=1, VpeM. (1.54)
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Then, the harmonic function is linearly interpolated at the interior of each

element belonging to the tetrahedral mesh.

Induced by the boundary conditions (1.53) and (1.54), the integral lines of the
produced harmonic field begin from a bending point p of S and terminate at
the surface mesh M. The aforementioned intersection points form a ring
centered at p and consist of the closest points of p. The area spanned
transversely by the integral lines of the harmonic field is called a cutting surface.
For each ring centered at a bending point p a quadrilateral is formed with its
vertices consisted of four sampled intersection points. An example of a
calculated harmonic field together with the ring area and the quadrilateral

formed by, are shown in Figure 1.6.23.

Figure 1.6.23 Left: The harmonic field on a 3D model. Bottom Right: The intersection points
on M obtain through following the integral lines (black dotted lines) of the harmonic field
beginning from p. Top Right: The quadrilateral section formed by four sampled intersection
points (Casti et al., 2019).

Therefore, the quadrilateral sections are connected pairwise and their convex
hull is computed. Finally, by welding all the convex hulls for each segment of
the 3D model, an initial control cage is constructed. In case of the control cage

intersects the surface mesh M, the corresponding face is projected onto M

following the integral lines of the previously calculated harmonic field.

Therefore, through the welding of the aforementioned quadrilateral sections,

which better align to the cutting surfaces, the final topology of the cage is
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created. A cage constructed using the presented technique is shown in Figure

1.6.24.
a b )
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Figure 1.6.24 (a) The input of the particular technique consists of the volume and its
skeleton around which the cage will be formed. (b) Bending points are selected by the
user. (c) Cross — sections at bending nodes are constructed through tracing the harmonic
field integral lines beginning from individual bending points. (d) The welding of the
quadrilateral sections around the bending nodes forms the topology of the cage. (e)
Presentation of the volume inside its created cage (Casti et al., 2019).

1.6.15 Variational Harmonic Maps

Ben-Chen et al. (2009) proposed a space deformation technique based on a set
of harmonic functions that have a closed-form expression. The concept
underlying the aforementioned methodology consists of the computation of a
harmonic mapping where the user places a number of position and orientation
constraints, given a cage embedding the volume of interest. Then, an

optimization procedure is followed in order to produce a smooth deformation

coupled with detail preservation.

More specifically, consider the fundamental solution of the Laplace’s equation
(which is the Green'’s function) in a 3D domain 2 bounded by a triangular mesh

S(V,F) with V vertices and F faces:

G(q,p) = =¢(q,p), (1.55)

4m|q — pl

and its gradient:
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VG(q,p)-A(q) =¥(q,p), (1.56)

where p(x,y,z) € 2, q(x,y,z) € 02 and 7(q) is the unit normal direction to the
surface S = 02. Note that Green’s function (1.55) has a closed-form expression
for any dimension and considering that consists of a solution to Laplace’s
equation is also harmonic. Thus, according to Ben-Chen et al. (2009), all its

partial and higher derivatives are also harmonic.

Then, a deformation mapping f: £ - R* can be defined:

fo® =) [a@o@n-Y [6@ian. s

teF get tEF get

where a is a piecewise linear map on S defined by values a,, at vertices of the
triangular mesh and b a constant piecewise map defined by values b; at the

taces of the aforementioned grid.

Given the matrix notation of Equation (1.57):

fap(P)1x3 = (@1an P1am) (IC:::;;) ) (1.58)

the Jacobian of the deformation f at a point p, J;(p), as well as the Hessian
Hf(p) define the orientation of a point and the smoothness of the deformation
around it, accordingly. Terms n, m in Equation (1.58) denote the numbers of

vertices and faces, respectively.

Then, provided by the user a set ofr pointsq; € 2 and their target
position f(q;) = f;, in addition to a set of s points t; together with their
orientation Jr(t;) = g;, k points w; € 002 are sampled in order to approximate
the smoothness of the deformation. Furthermore, the rigidity of the

deformation is estimated through the sampling of d points on [ rigidity lines
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which can be obtained by e.g. a given skeleton of the deformed shape by the

user.

Therefore, the solution of the optimization problem:
d k
mingsr E(fap) = ) Wrm) = Rllt +22 Y IH Wl (159)
i=1 =1
sit. Vi=1,..,1 far(q) =f, Vi=1,..,s Jp(r) =g; (1.60)

Vi=1,..,d RTR; =1, (1.61)

defines a smooth and detail-preserving deformation which satisfies the user
imposed constraints (1.60) and (1.61). Note that the unknowns of the
optimization problem consist of a,b, R; where R; are the rotations a point
should undergo. A deformation resulted from the solution of the

aforementioned optimization problem is shown in Figure 1.6.25.

Figure 1.6.25 Left: Initial model’s geometry enclosed in a cage.
Right: Model’s deformation using variational harmonic maps
deformation method (Casti et al., 2019).

A detail-preserving deformation produced following the prescription of the

target position and Jacobian constraints is presented in Figure 1.6.26.

49



Sofia Tavla Introduction

Figure 1.6.26 Left: Position and Jacobian constraints imposed in the circular area
by the user. Right: The detail — preserving deformation of the marked area
occurred (Ben-Chen et al., 2009).

1.6.16 Bounded distortion Harmonic Shape Interpolation

Chien et al. (2016), presented a shape interpolation method aiming at
producing smooth and one-to-one (injective) mappings that have bounded
conformal and isometric distortion. The input of the aforementioned
methodology consists of two smooth, harmonic mappings with bounded
isometric distortion which are, afterward, linearly blended in order to produce
the output mapping. Moreover, the proposed interpolation technique is
composed of three diverse variants; the second complex dilatation v, the

unscaled 1 and the metric tensor M,,.

More specifically, consider a connected domain {2 and an arbitrary point z € (2.
Then, any harmonic mapping f:2 —» R* can be written as a sum of a

holomorphic @ and an antiholomorphic function ¥:
f@) =22+ P(). (1.62)

Furthermore, let a function f: 2 — R? and its Jacobian matrix J; at any point in

the domain. Then, the matrix J F can be written as a sum of a similarity $; =

a -—b

) _Ccl, where a,b,c,d € R?. Here,

and an anti - similarity matrix 4, = ccl

the similarity is considered in terms of the Frobenius norm.
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Considering the above, the functions @(z) and ¥ (z) of Equation (1.62) can be
obtained through the integration of the parts acquired from the decomposition
of the Jacobian matrix of the harmonic mapping f: 2 - R?. Moreover, it should
be mentioned that the derivatives @' = f, and ¥’ = f; are also holomorphic
and anti-holomorphic, respectively. Additionally, let the two input
holomorphic - harmonic mappings f3,fi:2 — R. Then, the interpolation
mapping can be obtained through the linear interpolation of the logarithms of

the input mappings, as presented in Equation (1.63):
fo=0UD"7 0D (1.63)

where the term t denotes a specific point in the time interval [0, 1].

In order to generate mappings with bounded conformal distortion, Chien et al.
(2016) introduced the second complex dilatation v variant. Considering a planar
mapping g, the variant v equals to:

%

. (1.64)

Then, the second complex dilation v* for a time t € [0,1] can be obtained

through Equation (1.65):

vt =1 -t + tv!, (1.65)

where v°, v! are also holomorphic. In addition, in order to interpolate the

quantity v® in the interior of the domain 2, the Equation (1.66) holds:
fi = viFL. (1.66)

Equation (1.66) appears to be anti-holomorphic and it is able, thus, to produce
harmonic mappings.
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In addition to the first variant of the aforementioned technique, Chien et al.
(2016) proposed the scaled variantmn, aiming at producing local injective

mappings with bounded geometric distortion.

Consider a planar mapping g and the quantityn = g;g,, then the linear

interpolation of 7 is obtained:
nt=>0-0)n°+tn'. (1.67)

Additionally, let the scaled variant ij* = p(t)n with p: [0,1] - (0,1) and p(0) =
p(1) = 1. Then, the interpolation of the scaled variant 7j* in the interior of the

domain (2, equals to:

=t

i
fz
Similar to Equation (1.66), Equation (1.68) is anti-holomorphic and it can, thus,

fi= (1.68)

produce harmonic mappings.

Additionally, in order to produce mappings that preserve the conformal and
isometric distortion, Chien et al. (2016) introduced the metric tensor variant.

Consider a planar mapping h: 2 - R? where its metric is defined:
My = JiJn, (1.69)

where J, is the Jacobian matrix of the mapping h. Then, following the

decomposition of the Jacobian Jj, the quantity A = |h,|* + |hz|? is produced.

Now, let two input mappings f° and f' and their metrics M} and My,
respectively. In order to interpolate the metric tensor M}, the metrics M}

and M} are blended. Thus,
M; = (1—t)M} + tM; . (1.70)
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Similarly, consider the scaled variant interpolation of Equation (1.67) and the

linear interpolation of the quantity A:

At =(1-t)A° +tA*. (1.71)

Therefore, according to Chien et al. (2016) in order to preserve the geometric

distortion, the metric M} is linearly blended on the boundary 82 of the

domain (2. Thus, the positive root of the Equation (1.72):

|ft|2 _ At i \/(At)z - 4|11t|2 (1.72)
zZ 2 ]

is considered the linear interpolation formula for the metric tensor on d£2. In
order to interpolate the quantity |f5| in the interior of 2, the Dirichlet boundary
problem is solved through applying the value In|f%| on the boundary d02. The

resulted quantity consists of a holomorphic function.

On the other hand, in order to obtain the anti-holomorphic function f%, the
scaled variant i is directly interpolated in the interior of the domain 2 (and

not just on the boundary).

Eventually, each variant of the proposed interpolation technique possesses the
ability to produce smooth harmonic mappings with bounded geometric
distortion. A demonstration of the produced harmonic mappings given the

input mapping for t = 0 and ¢ = 1 is shown in Figure 1.6.27.
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. S A
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Ours/Metric
t=0.5 =0.5

Figure 1.6.27 Considering the input mappings for t = 0 and t = 1 and the source image
(domain 2) of the dragon, the output mappings produced by the interpolation of the
metric tensor and 7 variant for t = 0.5 are presented (Chien, Chen and Weber, 2016).

1.6.17 Feature-aligned harmonic volumetric mapping using MFS.

Li et al. (2010) proposed a harmonic volumetric mapping methodology that
establishes a correspondence between two solid models of similar topology.
The input of the method consists of the volumetric geometries of the 3D
models, M; € R3 and M, € R3, respectively. In addition to prior, the boundary
mapping f = (f'%, f'% f'®) between the boundary surfaces dM; and dM, is

given.

Then, considering a real harmonic function fi(i =1,2,3) on the three
axes x,,z, respectively, the main objective of the particular method is to

compute the harmonic volumetric mapping:

i=ng i=ng

fiMyo My == fi= > (F AL, (173)
i=1 i=1
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where for a given collocation pointp € P = {Pl,Pz,...,Pnc}, the boundary

conditions (1.74) or (1.75) hold:

f)=f®), i=1 (1.74)
5f'(p) = f'(p) - Z filp), i>1. (1.75)
i=1

On the other hand, for an internal pointp € M;, Laplace’s equation in 3D is

solved:

aZfi aZfi aZfi
= =0. 1.76
0x? = 0dy?  0z? 0 (1.76)

Af?

Thus, in order to obtain the harmonic functions fij ,j=1,23 i=1,..,n, the

linear system of Equation (1.77) is formulated:
Al -w] =b], (1.77)

where given a set of source points Q = {Ql, Q,, ...,Qns} in the exterior of M;,

the uv,;, element of the coefficient matrix A equals to the Green’s function:

Ay = K(Py, Q) = (1.78)

4‘7T|Pu - Qvl ’

and the term b{ denotes the values of the boundary conditions on the

collocation points as presented in Equations (1.74) and (1.75).

Subsequently, the linear system of Equation (1.77) is solved in order to compute
the unknown weight function w{ on each source point Q = {Ql,QZ, ...,Qns}.
Then, in order to compute a harmonic function on a point p on the boundary

or in the interior of M; the Equation (1.79) is applied:
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WL, Qip) = ) WhK®,Qn). (179)

Moreover, Li et al. (2010) proposed the addition of feature constraints such as
handle points, skeleton, curves and surfaces ideal for matching heterogeneous
volumetric data. The establishments of two smooth correspondences between
a polycube and a torus as well as a polycube and a kitten are depicted in Figure

1.6.28.

a b C d e f g h
Figure 1.6.28 Polycubes (a) and (e) are mapped onto double torus (b) and kitten (f),

respectively. Color — encoded distance field of (f), (g) are transferred under the mapping
to (d), (h), respectively (Li et al., 2010).

Additionally, the application of the proposed technique for hexahedral mesh

generation is presented in Figure 1.6.29.

a

e ——

Figure 1.6.29 (a) The surface mesh of David’s head. (b) A generated hexahedral mesh on the
polycube domain. (c) The generated volumetric hexahedral mesh on David’s head. (d) The
generated mesh in the interior of the volume (Li et al., 2010).
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1.6.18 Shape Parameterization and Grid Adaptation using Harmonic
Coordinates and their application to the Aerodynamic Design Optimization
Mavronikola (2017) presented a shape parameterization and grid adaptation
methodology based on the harmonic coordinates introduced by Joshi et al.
(2007). At first, given a 2D aerodynamic shape, represented by a triangular
mesh (e.g. an airfoil), its control cage was constructed. Then, following the
solution of Laplace’s equation (1.12) under the same Dirichlet boundary
conditions as applied in Joshi et al. (2007), every mesh node was assigned a
number of harmonic coordinates depending on the number of control points
on the cage. Afterwards, the values of the harmonic coordinates obtained on
the triangular mesh nodes were interpolated to a grid for Computational Fluid

Dynamics (CFD) applications.

Therefore, by the displacement of the control points, the shape of the
aerodynamic figure, as well as the computational mesh, were concurrently
modified. Moreover, a system of two nested control cages was proposed in
order to ensure both the periodicity and smoothness of the computational mesh
close to the boundaries of the internal cage. Eventually, the proposed

methodology was integrated into an aerodynamic design optimization scheme.

Based on the work of Mavronikola (2017), Zervas (2018) introduced the
aforementioned shape parameterization and grid adaptation technique for the
case of 3D unstructured grids. The initial shape of an airfoil, as well as its
deformation, occurred following the shape parameterization and grid
adaptation technique introduced by Mavronikola (2017) are presented in

Figure 1.6.30.
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Figure 1.6.30 Above: The Mach number distribution on the initial airfoil
shape. Red colored areas indicate the presence of high Mach numbers
compared to the blue colored areas on which low Mach numbers were
obtained. Below: The deformed airfoil along and the Mach distribution

around it (Mavronikola, 2017).

1.6.19 Summary

The purpose of the present literature review was to provide the latest scientific
works concerning geometry parameterization and handling techniques based
on harmonic functions. Due to the necessity for smooth and plausible shape
deformation results, several methods have been proposed, either by making
the use of harmonic coordinates and their approximations or harmonic fields
and maps. For the purpose of the aforementioned methods to succeed, high
parameterization accuracy and stability come at the price of an increased
demand on computational time and algorithm complexity. In addition, further
research in developing a powerful parameterization method, suitable for

general geometries, is required. Furthermore, in order to construct a less
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complex algorithm, the smallest possible number of parameters may be used,

so as to easily define and effectively handle them throughout the entire process.
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Chapter 2

Free Form Deformation

2.1 Introduction to Free Form Deformation (FFD)

Due to the ability of the indirect shape manipulation and the reduced number of
design parameters handled, the Free Form Deformation represents one of the most
popular and diverse parameterization methods, not only in computer graphics but
also in the aerodynamic optimization field. The fundamental idea underlying the
FFD algorithm is to achieve an indirect deformation of the shape at hand by
embedding it into a parametric control grid (lattice); then by transforming the
geometry of the particular lattice, every object enclosed to it undergoes the same
deformation (Leloudas et al., 2020). Over the latest years, several FFD-based
parameterization methods have been proposed. A brief introduction to the
developed techniques for both computer graphics and aerodynamic shape
optimization purposes is implemented in Section 2.1.1 and Sections 2.1.2,

respectively.

2.1.1 Free Form Deformation Variations

Barr (1984) was the first to introduce a hierarchical solid modeling technique in
order to achieve deformation of complex geometries. In particular, through the
hierarchical combination of transformations (twisting, bending, tapering or
similar) of simpler geometries, a complex shape modification is succeeded. A

deformation based on the aforementioned approach is presented in Figure 2.1.1.
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Figure 2.1.1 Left: Twisting of a tapered primitive. Right: A bent, twisted and tapered
primitive (Barr, 1984).

Later on, Sedeberg and Parry (1986) proposed a general geometry modification
technique for solid objects, based on Bernstein polynomials and the
displacement of a set of handle points (i.e. control points). The aforementioned
study was the origin of several Free Form Deformation-based techniques.
Following Sederberg & Parry’s methodology, Griessmair and Purgathofer (1989)
implemented Free Form Deformation by making the use of trivariate B-Spline
basis functions for the purpose of parametric lattice construction. Later,
Coquillart (1990) introduced an efficient method of modeling and modification
of cloth-like surfaces. The aim of the Extended Free Form Deformation (EFFD)
was the geometry deformation, through the bending and insertion of shaped
bumps on the object’s surface of interest. Thus, the aforementioned deformation
technique is independent of handled body geometry. In addition to EFFD,
Coquillart and Jancéne (1991) introduced the Animated Free Form Deformation
(AFFD) approach. In particular, the abovementioned method is based on the
shape modification and subsequent motion by a sequence of independent shape

transformations. In Figure 2.1.2 an AFFD deformation is presented

61



Sofia Tavla Free Form Deformation

Figure 2.1.2 Disc transformation into a
hand (Coquillart and Jancéne, 1991).

Chang and Rockwood (1994) suggested a 3D FFD method based on a generalized
form of the de Casteljau algorithm. Specifically, for the purpose of succeeding
deformation, by making the use of a single Bézier curve, a control polygon and a
user-specified axis, several affine transformations are repeatedly applied in space.
A demonstration of the Generalized de Casteljau approach of FFD is shown in

Figure 2.1.3.
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{ch ()

Figure 2.1.3 (a) A single Bezier curve, a control polygon and
user specified axes, (b) the object to be deformed, (c) cube
mapping on each control polygon segment and (d) the initial
geometry’s wrapping along the Bezier curve (Chang and
Rockwood, 1994).

Lamousin and Waggenspack (1994), presented a FFD methodology based on the
construction of B-Spline rational basis functions over a non-uniform knot vector
(NURBS). Later, Samareh (1999) applied the NFFD approach in order to perform

aerodynamic Computational Structural Mechanics (CMS) parameterization.

MacCracken and Joy (1996) proposed a variation of the original FFD technique
based on the 3D lattice refinement into a sequence of lattices that converge
uniformly to a region of 3D space, throughout the application of the Catmull-Clark
subdivision methodology. As a result, any modification that occurred in the
repeatedly refined lattices is transferred to the 3D space. A deformation based on

MacCracken’s and Joy’s approach is shown in Figure 2.1.4.
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Figure 2.1.4 Left: A star — shaped lattice located on a disk. Middle: The deformed star —
shaped lattice containing the modified disk area. Right: The final geometry of the disk
(MacCracken and Joy, 1996).

Feng et al. (1996) introduced a modification of the Free Form Deformation based
on the combination of two parametric surfaces in order to define a 3D parametric
domain. More specifically, the object of interest is mapped onto the newly-
constructed 3D space. Then, following the deformation of the parametric domain,
the object’s geometry is, automatically, modified. Figure 2.1.5 shows the original
3D shape of a teapot and its deformation occurred as a consequence of the

individual parametric surfaces’ shape modification.

Figure 2.1.5 Above: The original 3D shape of a teapot. Below: The

deformation of the two surfaces (denoted with green and yellow

colors) induce the modification of the model’s geometry (Feng et
al., 1996).
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An additional approach based on the classical FFD is the Dynamic Free Form
Deformation presented by Faloutsos et al. (1997). The aforementioned technique
was capable of transforming a wide class of objects into dynamic characters. As a
result, a natural deformation of the examined objects was achieved. A deformation

based on the DFFD technique is presented in Figure 2.1.6.

Apple and lattices

Undeformed and deformed
teapot

Figure 2.1.6 Local and global deformation based on
DFFD technique (Faloutsos et al., 1997).

Feng et al. (2012) proposed the Accurate FFD methodology which is based on the
polyhedral model deformation achieved through the sampling of a small number
of control points. In particular, through the Accurate FFD technique, the
polyhedral object is described by triangular Bezier patches which, subsequently,
yield a B-Spline volume. As a result, despite the few representative points
sampled, the deformation result appears to be similar to theoretical. An AFFD

deformation is shown in Figure 2.1.7.
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Figure 2.1.7 Left: The initial shape. Right: The
deformed geometry (Feng et al., 2012).

Based on the work of Griessmair and Purgathofer (1989), Gain and Dodgson (1999)
proposed an adaptive refinement and decimation technique for the interactive
Free Form Deformation. Specifically, the aim of the study was to prevent the
decrease of approximation quality of polygon-mesh objects caused by the

distortion which the FFD typically provokes.

Hirota et al. (2000) presented a variation of the FFD methodology by integrating
the minimization of the elastic energy subject to the volume-preserving criterion.
The aim of the study was compute the position of the deformed control lattice’s
nodes, given the boundary representation of an object and the desired
deformation. Improved performance compared to the traditional FFD techniques
is achieved. A deformation based on Hirota et al. (2000) approach is presented in

Figure 2.1.8.
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Figure 2.1.8 Left: The initial geometry of a water pitcher. Middle and Right: Deformations
resulted by water pitcher’s bottom compression (Hirota et al., 2000).
Yoshizawa et al. (2002) presented a variation of Free Form Deformation based on
the input of a mesh-represented geometry and a number of control points. The
rationale of the methodology consists of the generation of a concatenation of
deformations caused by the alteration of individual control points” location in
order to, eventually, reach the desired shape. It worth noting that the present
technique is not making any use of the input mesh connectivity. Thus, direct
manipulation of the shape represented by multiple point datasets is feasible. A
deformation that occurred through the modification of the control points” location

is depicted in Figure 2.1.9.

Figure 2.1.9 Left: The input geometry and six control points placed on it.
Middle and Right: A sequence of deformations produced by the alteration of
control points’ position (Yoshizawa et al., 2002).
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In order for the Free Form Deformation methodology to be effective and produce
the desired both global and local deformations, the parallelepiped parametric
lattice should adequately conform to the shape of the embedded object. Ono et al.
(2002) presented a variant of the FFD based on the automatic generation of the
parametric lattice which approximates the geometry of the object to be deformed.
At first, a bounding box is automatically generated embedded in the 3D model.
Afterwards, the box is hierarchically refined and a series of “multiresolution
lattices” are generated. Then, the user is able to select the desired parametric lattice
either consisted of few control points for global deformation or the one which
offers the best approximation of the 3D model’s geometry for local deformations.
The process of parametric lattice construction which approximates the geometry

of the 3D model is shown in Figure 2.1.10.

(d) (e) (f)

Figure 2.1.10 (a) The initial bounding box in which the 3D model is
embedded. (b)-(e) The hierarchical process of the geometry
approximation. (f) The generated parametric lattice (Ono et al., 2002).

Ilic and Fua (2002) introduced the Dirichlet Free Form Deformation (DFFD)

technique by making the use of arbitrary placed control points. The main idea
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behind the novel Free Form Deformation (DFFD) method is the geometry
deformation through the modification of a triangular cage encircling the shape of
interest. The triangular control cages of a human head and ear created, through

the application of DFFD, are presented in Figure 2.1.11.

Figure 2.1.11 Control triangulations for head (left), profile (middle) and ear (right) (Ilic and Fua,
2002).

Kobayashi and Ootsubo (2003) presented a novel FFD technique called t-FFD.
According to the authors, a polygonal mesh or a point cloud is deformed through
an arbitrary topology triangular control mesh. Figure 2.1.12 demonstrates the t-

FFD process.

(e) r-‘ r
Figure 2.1.12 (a) The initial shape to be deformed, (b) specification of the area to be deformed,
(c) construction of the initial control mesh, (d) the deformed control mesh occurred by the
relocation of the blue point, (e) the deformed geometry (Kobayashi and Ootsubo, 2003).
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Compared to the lattice-based traditional FFD technique, Hua and Qin (2003)
made the use of the scalar field as the parametric space. Thus, through the motion
of the scalar field vertices, the Free Form Deformation of the object of interest

occurs. A scalar-field Free Form Deformation is presented in Figure 2.1.13.

Figure 2.1.13 Left: The initial shape of a teapot. Middle: The teapot is embedded in
the scalar field. Right: The deformed shape of the teapot (Hua and Qin, 2003).

Schein and Elber (2004) introduced a variant of FFD, called Discontinuous Free
Form Deformation. As stated by the authors, the particular technique offers the
designer the ability to model and incorporate geometric discontinuities such as
gaps and holes to the deformation process. A deformation based on Discontinuous

FFD is presented in Figure 2.1.14.

Figure 2.1.14 Left: The Stanford bunny model cut with a cylinder tool from
above. Right: The DFFD’s stitching algorithm was applied in order to close
the opening (Schein and Elber, 2004).
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Later on, Song and Yang (2005) proposed a novel FFD technique named w-TFFD.
The aforementioned method is based on the application of - a generalization of
NUBRS - the weighted T-Spline volumes and T - Junctions. According to the
authors, T-Spline volumes produce flexible control lattices and yield to the
adaptive deformation of objects with arbitrary topology. In addition, to
approximate the object’s geometry, the OCTREE algorithm is executed and the
control lattice is automatically constructed. A w-TFFD process is presented in

Figure 2.1.15.

Figure 2.1.15 Left: The initial geometry. Middle left: The initial control lattice. Middle right: The
deformed control lattice. Right: The resulted deformed geometry (Song and Yang, 2005).

212 Free Form Deformation applications on Aerodynamic Shape
Optimization

Due to the simplicity of its nature and the effectiveness on deforming either locally
or globally intricate geometries, the Free Form Deformation found a plethora of

applications on aerodynamic shape optimization.

Ronzheimer (2002) introduced a post-parameterization tool tailored for the
existing CAD models which was based upon the FFD technique. More specifically,
the present methodology is implemented on the “MegaCads” software through
which a NURBS-based FFD lattice is generated and controlled. The post-

parameterization tool of Ronzheimer (2002) was tested on an elbow joint, a 2D

71



Sofia Tavla Free Form Deformation

airfoil section and on the design of various wing - tip planform geometries. Figure
2.1.16 shows the initial and deformed shapes of a 3D airfoil constructed by a

surface grid embedded in the control lattice.

Figure 2.1.16 Left: The initial shape of an airfoil constructed by a surface grid is embedded in
the FFD control lattice. Right: The deformation of the FFD lattice is transferred to the
embedded airfoil geometry (Ronzheimer, 2002).

Later on, Ronzheimer (2005) applied the Free Form Deformation technique as a
parameterization tool for the aerodynamic design optimization process. The
introduced methodology was implemented on an airfoil aiming at acquiring its
optimum aerodynamic shape. Moreover, in order to demonstrate the effectiveness
of the aforementioned technique, Ronzheimer (2005) performed the inverse design

of the airfoil.

Andreoli et al. (2003) applied the Free Form Deformation technique as a
parameterization tool on the optimization of complex 3D aerodynamic shapes.
The proposed methodology was based on the employment of 3D Bezier curves in
combination with genetic algorithms and the simplex optimization methodology.
Andreoli et al. (2003) implemented the aforementioned technique on airfoils,
wings and general 3D aircraft models. A Free Form Deformation for an engine

pylon body is shown in Figure 2.1.17.
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¢

Figure 2.1.17 The control lattice (black box) indicates the part of the aircraft volume to
be deformed (Andreoli et al., 2003).

Désidéri et al. (2004) presented a shape optimization technique based on Bezier
polynomials for the aerodynamic design of transonic aircrafts. More specifically,
the aforementioned methodology employs a 3D unstructured grid by making the
use of the Finite Elements Method (FEM) in order to obtain the solution of
compressible flow. Moreover, through the particular variant of Free Form
Deformation technique, the modification of the computational grid was
succeeded. Additionally, during the optimization procedure, a genetic algorithm
was used along with the simplex method. A deformation generated by the

proposed Free Form Deformation technique is shown in Figure 2.1.18.
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Figure 2.1.18 Left: The airfoil is embedded in FFD control lattice (red colored). Right: The
deformation of the control lattice is not only passed to the embedded airfoil but to the
surrounding computational grid (blue colored), also (Désidéri et al., 2004).
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Samareh (2004) introduced a variation of the classical Free Form Deformation
technique based upon the Non-Uniform Rational B-Splines (NURBS) for the
aerodynamic shape optimization. More specifically, the aforementioned
methodology disregards the initial grid topology; therefore, it is capable of
handling both structured and unstructured grids. Additionally, the grid is created
once and its topology remains fixed throughout the optimization, thus any
modification desired is directly applied to it. Moreover, through the proposed
methodology a trivariate volume can be effectively represented by a bivariate
surface resulting in the significant reduction of the design variables. A trivariate

volume and its deformed shape are shown in Figure 2.1.19.
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Figure 2.1.19 Above: A trivariate volume deformation. Below: The deformed grid
causes the deformation of the embedded airfoil (Samareh, 2004).

Liu et al. (2017) proposed a hybrid geometrical parameterization based on the
combination of Radial Basis Function (RBF) and Free Form Deformation. The
present study aimed to preserve the original connectivity of the junction area
between the wing and the body of the aircraft despite the deformations that
occurred throughout the optimization procedure. More specifically, following the
application of the FFD methodology for wing parameterization and deformation,
the RBF interpolation was employed in order to calculate the displacements that
occurred on the wing root junction mesh nodes caused by the deformation. Then,
an aerodynamic shape optimization scheme was established based upon the
Cuckoo search algorithm and the Kriging surrogate model. Liu et al. (2017)
demonstrated the effectiveness of the proposed technique on a DLR F4 wing body
configuration. Figure 2.1.20 shows the updated junction area between the wing

and the body following the RBF interpolation.
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Body Suface Poed

Figure 2.1.20 The deformed wing (red colored) occurred by the
application of FFD, the updated wing root junction area (green
colored) following the RBF interpolation and the aircraft body
surface (blue colored) which remains fixed throughout the
aforementioned procedure (Liu et al., 2017).

Additionally, Bai and Chen (2013b) presented an aerodynamic optimization
scheme based on the direct manipulation of the aerodynamic shape. In particular,
following the establishment of both the locations and the displacements of few
user-specified pilot points on the object of interest, the FFD lattice associated with,
is accordingly modified resulting in direct manipulation of the object’s geometry.
Moreover, aiming at the reduction of the drag force, Bai and Chen (2013b)
established an aerodynamic shape optimization scheme that demonstrated good

feasibility.

Despite the numerous advantages that the Free Form Deformation technique
offers in aerodynamic shape optimization, it should be mentioned that it is
characterized by the inability to preserve the cross-sectional area of a reference
shape throughout the optimization procedure. Based on the aforementioned
observation, Leloudas et al. (2018) proposed the Area Preserving Free Form

Deformation (AP FFD). The aim of the study was to conserve the cross-sectional
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area of a reference airfoil following the consecutive deformations that occurred
throughout the optimization procedure. More specifically, given the area of an
initial airfoil, the minimum displacements of the FFD control points were
calculated in order for the deformed airfoil shapes to recover the reference cross-
sectional area. A comparison between the airfoil geometries and the control

lattices formed before and following the Area-Preserving FFD is demonstrated in

Figure 2.1.21.
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Figure 2.1.21 Above: The initial FFD lattice (red color) and the
deformed one (green color) following the application of the AP FFD.
Below: The airfoil shape produced by the classical FFD (red color)
and the one after the application of the AP FFD (green color)
(Leloudas et al., 2018).
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2.1.3 Free Form Deformation process
Given the numerous variations of the classical Free Form Deformation technique,
the main core of the process followed remains the same. The four major steps

throughout the FFD process, according to Sederberg and Parry (1986) are:

First Step: Construction of the parametric lattice

Initially, the object to be deformed is placed in a 2D or 3D parametric space. The
constructed lattice is defined by a set of control points and parametric basis
functions, establishing at the same time a local coordinate system. A visualization

of the first step of the FFD technique is shown in Figure 2.1.22.

Figure 2.1.22 The construction of the parametric lattice.
The lattice consists of an ordered set of control points
indicated with white color. Red colored bars indicate the
neighboring control points (Sederberg and Parry, 1986).

Second Step: Embedding the object within the lattice

Thus, each point with (x, y) cartesian coordinates or (x,y, z) on the embedded 2D
or 3D geometry, respectively, is described by (u,v) (for 2D) or (u, v, w) (for 3D)
parametric coordinates. Considered that the computation of the set of parametric

coordinates consists of an iterative procedure, Quadtree or Octree algorithms are
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applied. The construction of the local coordinate system is depicted in Figure

2.1.23.

Figure 2.1.23 The construction of the local
(parametric) coordinate system (Sederberg and
Parry, 1986).

Third Step: Deformation of the Parametric Space

The deformation of the parametric space is specified by the adjustment of the FFD
lattice control points. Given the numerous variations of the original FFD
technique, the deformation process followed varies. Considered the paradigm of
NURBS-based FFD (NFFD) technique (Lamousin and Waggenspack, 1994), the
deformation is applied through the alteration of the weight assigned for each
control point. The deformed object embedded in the lattice is presented in Figure

2.1.24.
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Figure 2.1.24 The modified lattice containing the
deformed object (Sederberg and Parry, 1986).

Fourth Step: Evaluating the Results of the Deformation

The evaluation process consists of the calculation of the Cartesian Coordinates of
the deformed object, given its modified geometry and its parametric coordinates.
Note that the parametric coordinates of each point on the embedded shape do not
change throughout the entire process compared with its Cartesian Coordinates
which are affected by the modification of the control lattice. The deformed object

is shown in Figure 2.1.25.

Figure 2.1.25 A deformed object (Sederberg and
Parry, 1986).
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2.2 2D B-Spline FFD

Over the past decades, in most design optimization problems curved involved
shapes were consisted of a single polynomial or rational segment. As a result, the
specific process was susceptible to great inadequacies and showed numerous
drawbacks. According to Piegl and Tiller (1995), the three main shortcomings
included the need for higher degree curves in order to satisty a large number of
constraints and represent in an accurate way a complex geometry. In addition to
the prior drawbacks, curves created by just one segment appeared to be not

suitable for interactive shape design, yielding to insufficient local control.

Hence, the solution to the aforementioned problems was the usage of piecewise

polynomial curves as shown in Figure 2.2.1.
Ci(u)

Cs(u)

Cslu)

\

e — R - t o=
uy =0 U U 1 =1

Figure 2.2.1 A piecewise polynomial curve consisted of three
segments (C;) (Piegl and Tiller, 1995).

As it can be observed from Figure 2.2.1, a piecewise polynomial curve consists of

several n — th degree polynomial segments (C;(u)) where u; maps to the endpoint

of each section.

Considering the necessity of a methodology that provides local controlled

deformations, B-Spline surfaces appear to be a sufficient solution to the
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subsequent modification a shape undergoes throughout the Free Form
Deformation technique. In the particular diploma thesis, a 2D B-Spline based FFD

version is utilized.

2.2.1 Implementation of the Procedure

Through the integration of B-Splines into the FFD methodology, the valuable
properties of complex shape handling and local control are exploited. In the
present section, the main theoretical background of the B-Spline surfaces and Free

Form Deformation are presented.

First Step: Construction of the parametric lattice

Let S(u, v) be a planar B-Spline surface defined by a bidirectional net of control
points P; ; = (xi, i Vi, j), two knot vectors U, V and the products of the univariate B-

Spline functions N;,, N; , (Piegl and Tiller, 1995) as:

S(u,v) = z":

i=0j

D’

m

Nip(WN; (W) Py, (2.1)
=0

where p € [0,n] and q € [0, m] refer to the degree of basis functions.

Furthermore, let N;,(u) be a B-Spline basis function of pn degree in u direction
and N; ,(v) be a B-Spline basis function of g degree in v direction defined over

two non-periodic and non - uniform knot vectors U, V, respectively.

The value of each knot vector can be calculated (provided in the particular

segment for the u direction) as:

0, 0<i<sp+1
u; = i—p, p+l1<is<n+1 : (2.2)
n—p-—1, n+l <i<n+p+1

Knot vector V is likewise computed.
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Therefore, through the application of deBoor, Cox and Mansfield recurrence

formula, the i B-Spline basis functions of pw degree in u direction are obtained:

N = 2.3
ro(w) {0 otherwise (2.3)
u— U Uitp+1 — U
N; = N; + Niyi1,-1(u).
l,p(u) Uiy + U L,p+1(u) Uirpe1 — Uies i+1,p 1(u) (2.4)

Basis functions for v direction are similarly calculated.

Eventually, the Cartesian Coordinates (x;,y;) of an arbitrary point inside the
parametric space are obtained, by making the use of its Parametric Coordinates
(us, v¢) as follows:

YizoXjzo Nip(WN;q(W)P;;
2?:0 Z;n:o Ni,p (u)Nj,q )

R(u,v) = (2.5)

Second Step: Embedding the object within the lattice

Considering that the object to be deformed is initially defined by its Cartesian
Coordinates, an iterative procedure is followed, in order to obtain its parametric
coordinates, necessary for the implementation of FFD. The calculation of (u;, v;)
parametric coordinates for each point of the shape of interest is performed by the

application of the QUADTREE algorithm in 2D.
For each point on the object the following procedure is recurrently applied:

i.  The parametric surface is divided in four equal subareas.
ii.  The Cartesian Coordinates of each subarea vertex are calculated by making

the use of Equation (2.5).
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iii. =~ Obtained Cartesian Coordinates resulted from step (ii), are compared to the
Cartesian Coordinates of each point of the object of interest, for the purpose
of locating the subarea to which it belongs.

iv.  Once the latter subarea is found, is now divided in four equally created
subareas and steps ii-iv are repeated until a certain number of subdivisions
is reached or a desirable accuracy is achieved. Therefore, the Parametric
Coordinates of the object’s point under study are defined as the Parametric

Coordinates of the center of the last calculated subarea in which it lies.

Third Step: Deformation of the Parametric Space

Having calculated the Parametric Coordinates of each point of the object under
consideration, the Free Form Deformation technique is implemented. Thus, in
order to deform the embedded shape in the FFD lattice, the positions of B-Splines
control points are altered. The initial airfoil geometry embedded in the parametric

lattice is shown in Figure 2.2.2.
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Figure 2.2.2 Initial geometry of the embedded airfoil in the lattice (Amoiralis,
2005).
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Fourth Step: Evaluating the Results of the Deformation

Through the relocation of the control points, the new Cartesian Coordinates of an
arbitrary point in the parametric space can be calculated by the application of
equation (2.5). It should be noted that throughout the deformation procedure, the
parametric coordinates (u.,v,) of each point on the object, do not change in
comparison with its Cartesian Coordinates (x;,y,). The deformed shape of the

airfoil is presented in Figure 2.2.3.

0.120
0.100 |- anseng. ?
" -t " "ea, . L
-1 I. " L u
0.080 (% . . °
00601 = ",
. "s
0.040 1 s .
0.020(4F * . ¢ ".
0.000 ' ' ' llII-llillﬁ“L—
0028 018 o 0380 08 0.78 0.8
. —— pmE L] ‘
0.040
*
0.060

Figure 2.2.3 Deformed geometry of the embedded airfoil in the lattice
(Amoiralis, 2005).
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Chapter 3
Mesh morphing and shape deformation through the
application of B-Spline Basis Functions as Harmonic

Functions

3.1 Introduction to Harmonic Functions
Nowadays, a great deal of engineering and physical phenomena, such as heat
conduction, the diffusion process, or even the way the sound, the light and the
waves are propagating through space, can be effectively formulated by Partial
Ditferential Equations (PDEs). Laplace’s equation:

0%h; 0°%h;
=——+
dx? = dy?

Vh;* =0,
constitutes a typical example of PDEs which, for instance, models the steady-state
temperature distribution, the flow of a fluid and electrostatic potentials. As the
name betrays, the Laplacian was named in honor of the French scholar and
polymath Pierre-Simon Laplace (1749 - 1827), who was the first to study its
properties. By its nature, according to Asmar and Grafakos (2018), the Laplacian
of a function measures the difference between the value of the function on a certain
point and the average value of the same in a neighborhood of it. Therefore, those
functions, whose values do not considerably fluctuate, have a lower Laplacian. As
a result, the real-valued functions which are twice differentiable h:2 —» R and
satisfy Laplace’s equation in the open subset 2 of R", are referred as “Harmonic

Functions” and vary in a quite regular way. Thus, every point’s location in the open
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subset, may be written as a linear combination of the resulted harmonic functions

h; corresponding to a control point P;, according to Equation (3.1):

p= z hi(p)P; . 3.1)
i=0
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3.2 Harmonic Functions properties

The three major properties of Harmonic Functions are:

e the Mean-Value principle (cf. Section 3.2.1),
e the Maximum/Minimum principle (cf. Section 3.2.2),

e the Uniqueness property (cf. Section 3.2.3).

3.2.1 The Mean-Value principle
Theorem: Let h be a harmonic function in a region 2. Then h satisfies the Mean-
Value property in the following sense: If z is in 2 and the close disk B, (z) (r > 0)

is contained in f2, then

2T

h(z) = % f h(z + re't)dt. (3.2)
0

Alternatively stated, the abovementioned expression refers to the fact that the
value of a harmonic function h at the center of the close disk B, is equal to the

average of h values on the surface of it (Asmar and Grafakos, 2018).

3.2.2 The Maximum/Minimum modulus principle
Theorem: Suppose that h is a real-valued harmonic function on a region 2. If h
attains a maximum and minimum in {2, then h is constant in  (Asmar and

Grafakos, 2018).

3.2.3 The Uniqueness property

Corollary: Resulted from the Maximum/Minimum principle, the aforementioned
property states that, given the function values on the boundary of a region, there
is a single harmonic function defined on the particular domain with the specific

boundary values (Axler et al., 1992).
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3.3 Dirichlet problem

In order to obtain the function which acts as a solution of a Partial Differential
Equation in a given region, a set of known values of the aforementioned function
must perform as a condition on the boundary of the domain. The aforementioned
condition is called a “boundary condition” and the problem involving the PDE along
with the specified boundary conditions is called the “boundary value problem”
(Asmar and Grafakos, 2018). Therefore, the boundary value problem of acquiring
the solution of Laplace’s equation given a set of boundary function values is called

the “Dirichlet problem”.
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3.4 B-Spline Curves

Considering the main shortcomings of producing and handling a single
polynomial or rational segment curves presented in Section 2.2, polynomial curves
that offer local support had been the main focus of interest over the past decades.

The present study is focused on the B-Spline polynomial curves implementation.

According to Piegl and Tiller (1995), a p — th degree B-Spline curve is defined by

n
Cw) = Z Ni,(WP; a<u<b, i=0,..,n (3.3)
i=0

where P; are the control points and the N;,, are the p — th degree B-Spline basis

functions. In addition, the polygon formed by the control points P; is called control

polygon.

As mentioned in Section 2.2.1 (Equations 2.3 and 2.4), B-Splines basis functions are

defined as follows:

1ifu <u<uyq

Nio(w) = {0 otherwise (54)
u—u Uitp+1 — U
N; =— ' N + Nip1pe
l,p(u) Uiy Ny l,p+1(u) Uirpe1 — Uies i+1,p 1(u) (3.5)
Nip =0 foralli,pandu, (3.6)
over a non-periodic knot vector
U={a .., aups1, ,Um—p-1,b, ., b}, (3.7)

where m + 1 is the total number of knots. It should be mentioned that, in several

cases, the first and the last knots have a k > 1 multiplicity. In the instance of the
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knot vector presented in Expression (3.7), a and b knots have a p + 1 multiplicity.
An  example of cubic B-Spline basis functions on U=
{0,0,0,0, 1/ 4 1/2 ) 3/ 4 1,1,1,1}, as well as the generated cubic curve, are shown in

Figure 3.4.1.

(b)

Figure 3.4.1 (a) Cubic B — Splines U =
{0,0,0,0, 1/4, 1/2 , 3/4, 1,1,1,1}, (b) Cubic curve using the Basis
Functions of (a) (Piegl and Tiller, 1995).
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3.5 Parameterization in 2D

In the following, the deformation method, developed in the Turbomachines &

Fluid Dynamics Laboratory of the Technical University of Crete, will be presented.

In order to perform deformation, the object of interest must be properly
parameterized. In other words, the shape to be deformed may be described and,

subsequently, modified by making the use of a set of geometrical parameters.

To begin with, consider a computational domain 2 and a 2D geometry defined by

a B-Spline curve, as shown in Figure 3.5.1.

Figure 3.5.1 The computational domain and the embedded shape of interest (airfoil)
constructed by a B — Spline curve.

Furthermore, let the B-Spline curve define one of the boundaries 042 of N
computational domain. It worth noting that, the constructed boundaries can be
either internal (in most cases) or external, while the rest can be defined by different
curve types and remain fixed during the parameterization and optimization

procedures.
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Moreover, consider the initial position €°(u) of a discrete point of a B-Spline curve

corresponding to a parameter u. From B-Spline curve definition is:
n
CO'w) = Z Nip(WPY,
i=0

where P is the initial position of the the i — th control point.

In order to properly parameterize the shape of interest, consider the Dirichlet
problem. Given the Laplace’s equation, a unique continuous harmonic function h
twice continuously differentiable in the interior of the domain 2 and continuous

on the boundary 912 is sought, under a specific boundary condition.

Therefore, for the calculation of the i*"® Harmonic Function h; of a point p(x,y)

inside the domain, the solution of the Laplace’s equation:

0“h: i
Ah;(p) = Vh,* = 7+ 5 = 0, (3.8)

is examined, under the boundary condition:

hi(C°(w)) = N p, a<u<h, i=0,..,n (3.9)

where u; is the boundary grid node on which Equation (3.9) is applied.

Alternatively stated, for the purpose of computing the Harmonic Functions on
every domain point p, the Laplace’s equation is n + 1 times solved, one for each
boundary curve N;,, on a specific boundary grid node at a time. It should be
mentioned that, during the calculation of Laplace’s equation solution, if u; lies
outside the interval [u;, u;4p+1], then N;;, = 0 and, subsequently, the Harmonic

Function h;(C°(w;)) = 0.For instance, consider a 3" degree B-Spline curve. The 3+
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harmonic function values calculated across the computational domain, with the

Dirichlet boundary condition h; (C 0 (u)) = N33, are shown in Figure 3.5.2.

-—

Figure 3.5.2 The discrete solution h; resulted for the Basis Function N3 3, applied as a Dirichlet
boundary condition on the B-spline boundary of the computational domain.
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3.6 Deformation in 2D

Given the calculated Harmonic Function values on each point inside the
computational domain and the B-Spline boundary curve, the propagation of
discrete movements applied on the B - Spline control points across the entire space

is desired.

If C*(u) denotes the final position of a boundary grid node and AC(u) = C*(u) —

C°(u) is its displacement, according to the B-Spline curve definition:

n n
AC(w) = € (u) — CO(w) = z N, (WP} — z Ny ()P
i=0 i=0
n . (3.10)
= D Nip@ (P} =P = ) Nip@)aP,
i=0 i=0
where AP; = (P} — P?).

Let r be the position vector of a point p inside the computational domain. If h;(r)
is the value of the i — th harmonic function on point p with r position vector, the
interpolation of any movement of the i — th control point across the computational

domain, can be applied through the Equation (3.11):
n
AC(r) = z hy (1) AP; (3.11)
i=0

However, in the special case of a discrete boundary node, Equation (3.11) can be

formulated as:

ACGr(w)) = ) hi(r(u)AP; = ) Nip(u)dP;. (3.12)
i=0 =0
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That is to say, any deformation of the B-Spline boundary that occurred through
the movement of the curve’s control points can be successfully propagated to the
interior of the computational domain. Thus, the proposed methodology results in
the concurrent and conformable modification of the B-Spline boundary and the

entire computational mesh.

A deformation resulted through the proposed methodology and a comparison
between the B-Spline and the Harmonic Functions procedures are shown in Figure

3.6.1 and Figure 3.6.2, accordingly.

AT LAY
VAT ATATATAS
AR,

N\ .// \ \ / / \\\ Vd 2 \\ ‘.“/ " \ f"’l i N #
Figure 3.6.1 The resulted deformation (blue color) of B-Spline
boundary curve and the subsequent modification of the
surrounding computational grid occurred through the movement of
the three control points.
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LAPLACE deformation

B-spline deformation

Figure 3.6.2 A comparison between the deformations occurred, by the
alteration of three control points, through the B — Spline and Harmonic
Functions procedures.

97



Sofia Tavla Harmonic Functions Parameterization

3.7 Conclusion

In conclusion, it worth noting that the proposed methodology is applicable not
only to mesh morphing and design optimization but appears to have a great
potential in the graphic design field. Compared to the Harmonic Coordinates
deformation technique, the Harmonic Functions calculated in the present study
are combined with the B-Spline control points” displacement vectors. As a result,
the aforementioned methodology provides a direct manipulation of curved
boundaries rather than the necessity of linear boundaries existence in order to be

applied (e.g. control polygons).

Furthermore, a different and denser computational grid (e.g. for the solution of the
flow equations) can be deformed, through the interpolation of the harmonic
function values resulted from the coarse to the fine mesh. Alternatively, Laplace’s
equation may be solved directly to the densest mesh, involving-at the same time-

a higher computational cost, spent once at the beginning of the procedure.
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Chapter 4

Mesh Interpolation

4.1 Introduction to Mesh Interpolation

During the aerodynamic shape optimization, the aim is to obtain accurate and
robust solutions of flow equations around the continuously modified
geometry. The computational mesh is applied for the purpose of space
discretization around the object of interest. Afterwards, numerical flow
simulations are implemented in order to evaluate each individual alternative
and select, eventually, the optimal geometrical solution. In many cases
interpolation of flow quantities between grids of different densities is required.
An example of the final (destination) grid superimposed on the initial (source)

mesh is shown in Figure 4.1.1.

A}Q»d‘

S

\

Figure 4.1.1 In mesh interpolation problems, data from the source
mesh (blue color) must be mapped to the destination mesh (red
color).

I e
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Within the framework of the present dissertation, an interpolation scheme,
based on the Barycentric Coordinates proposed by Mobius (1827) and the
Inverse Distance Weighting function introduced by Shepard (1968), is
implemented. The proposed interpolation methodology consists of three major
steps. Initially, the elements of the source mesh are divided into two equally
sized subsets. In the second part, for each node of the superimposed
destination mesh, the source mesh element, which belongs to, is located and
barycentric interpolation is performed. Then, a list of detected and unperceived
destination points is created. Finally, for each not located destination node, its
distances from every detected node of the destination mesh are computed.
Therefore, according to the calculated distances, further Barycentric or Inverse

Distance Weighting (IDW) interpolations are performed.
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4.2 Algorithm Analysis

4.2.1 Division of the source mesh
Based on the rationale of the Kd-tree theory mentioned in de Berg et al. (2008),
the aim of the first step is the partition of the source mesh elements into two

approximately equally-sized groups.

To begin with, for the purpose of performing the necessary operations
following, a .txt file containing all the source mesh information is read. An

example of the file structure is shown in Figure 4.2.1.

16882 31102 0
ELEMENT ID Xl i X2 Y2 13 Y3 X Yi

1 1.95885487100  ©.19760304230  1.96124740200  0.19518767620  1.96322934900  0.19714043070
0.00301769153  @.44331047660  -0. 0.4 0.06488989372  0.44080000450
1.9967843688  0.193925155%@ 2. 8.19 2, 0.19387096770
1.99697987980  0.30068955358 2. 8.31 1.99590224580  0.31666000008
0.80313481521  0.55612092748 €. b.56000008148 Q. 0.5561293360
1.99479259680  0.19663407018  1.99447172680  0.1959101946@  1.99687843880  0.19392515598

[= SRR R T )
=T~~~ N I~
S o o o o

Figure 4.2.1 Format of input .txt file containing source mesh information.

As shown in Figure 4.2.1, the first line of the input file contains the total number
of source mesh nodes, the number of triangular elements and, finally, the
number of quadrilateral elements contained in the examined grid. In the case
of Figure 4.2.1, the total number of mesh nodes equals to 16082, the number of
triangular elements is equal to 31102 and the examined grid is constructed by
0 quadrilaterals. As it can be seen in Figure 4.2.1, the particular example

consists of a triangular mesh as the input of the algorithm.

Then, considering that the second line indicates the notation for each column
of the .txt file, each further line contains all the information needed about every
element of the source mesh. Therefore, the first column represents the ID of the

particular element, the second and the third column indicate the X and Y

101



Sofia Tavla Mesh Interpolation

Cartesian coordinates of the first element node, the fourth and the fifth column
contain the aforementioned coordinates of the second element node and so on.
It should be noted that, in the case of a triangular mesh, as presented in Figure
4.2.1, the last two columns (eighth and ninth) are equal to zero. However, in
the case of a quadrilateral mesh as the input of the algorithm, the latter two
columns represent the fourth element node’s coordinates, which in that case

are non-zero.

Consequently, given the necessary information about the elements which
construct the source mesh, a series of operations are performed that will, later
on, lead to the division of the space into two equally-sized subareas. At first, X
coordinates of each element which is closest to zero (minimum) and most
distant from it (maximum) are obtained. Afterward, all the minimum X
coordinates, gathered from the previous step, are sorted, by making the use of
the Bubble Sort algorithm (Astrachan, 2003). Hence, borrowed by the Kd-tree
partitioning rule, for the purpose of dividing the examined mesh, the median
of the sorted minimum coordinates is computed. The median of an even
number of observations, when the sample is ordered, is calculated through the

application of Equation (4 .1):
1
mediangye, = 5 (X[n/z] + X[n/2+1]) , (4.1)

where Xy, indicate the ”/2 observation and n the total number of

observations. On the other hand, in the case of an odd length sample list, the

median equals to the midmost observation:

median, g = X[n/,+1/,] - (4.2)
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Eventually, by the median computation, the mesh area is partitioned. Thus,
each element whose minimum coordinate is less than or equal to the calculated
median is relocated to the “left” subarea. On the contrary, the rest of the
elements and those with minimum X coordinate greater than the median, are
assigned to the “right” subarea. Furthermore, the size of each sublist is
returned. Therefore, in the case of an even number (n) of elements, the left and

right sublist lengths are equal to:

lengthiese = lengthyigne ="/ . (4.3)

However, in the event of an odd number of elements, the left and right sublist

length is computed as follows:

lengthyigne = /5 — 1/, (4.4)

lengthre = n — lengthyign - 4.5)

4.2.2 Point-in-Element check and Data Interpolation

In Aerodynamic Shape Optimization applications, the examined geometry is
subject to multiple deformations. Hence, the surrounding mesh may,
successively, adapt to the new geometrical characteristics and carry all the
necessary flow information throughout the iterative process. Therefore, to
successfully interpolate data contained in certain areas of interest from source
(initial) to the destination (final) mesh, each node of the second is necessary to
be accurately located in a certain element of the first. Figure 4.2.2 demonstrates

the process of location check.
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Figure 4.2.2 The source and destination mesh are indicated

with blue and red colors, accordingly. The destination node D
is located into the source element .with A, B and C nodes.

Initially, in order to accurately locate a node in an element or its neighbors and

perform, eventually, the interpolation of the function of interest, the proper

information must be considered. Therefore, two text files containing the

function values on source element nodes and the neighbor elements’ IDs, are

read. For example, in the case of a triangular mesh, as shown in Figure 4.1.1,

the format of the .txt file, containing the function values, is presented in Figure

4.2.3.

31182

[sx I, [ N W S P

(RO R SRR Ry

.93284231383
.96598922391
. 92754862398
. 92825963841
. 96589855988
.93158776212

@ e @

. 931640887755
.96682146369
. 924858095088
. 92869192822
.96587798862
1.

92978512865

= om e @ e

.93382382428
. 96688761869
. 92885156295
.92917581578
. 965908749942
.927548623598

Figure 4.2.3 FunctionValues.txt format.

[ T v T v T v T v e

.BBgoeReeRee
.BeBBBRERReE
.BegooReeRea
.BegBaReeaea
.peeoopeeRea
.BBgoeReeRee

According to Figure 4.2.3, in the first row of the FunctionValues.txt, the total
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number of source elements is noted. Additionally, from the second row and
until the end of the file, the ID of the particular element (first column) and the
function values on its nodes (second to fourth column), are listed. It should be
mentioned that the last column is equal to zero, as it represents the function

value on the fourth node in the case of a quadrilateral element.

Moreover, in the case of a triangular mesh, the format of the .txt file containing

the neighbor elements’ IDs is demonstrated in Figure 4.2.4.

31182

ID Nl N2 E]

1 28785 311e 27946
2 B8 6336 11938
3 B 7 24762
4 B 11927 24342
5 B 24843 11938
6 24761 11891 12271
7 B 11891 3

Figure 4.2.4 Format of the file containing all the
necessary info of each element neighbors.

As shown in Figure 4.2.4, the first line of the file enumerates the elements
which compose the source mesh, while the second contains the notation of each
data column. In addition, from the third line until the end of the present file,
the IDs of the examined element (first column), its first neighbor (second
column), the second neighbor (third column) and the third neighbor (fourth
column) are presented. In the case of a mesh that contains quadrilateral
elements, an additional column will be added, in order to contain the fourth

neighbor’s ID.

It is worth mentioning that concerning a boundary element, the total number
of its neighbors is equal to its internal faces. As a result, the neighbors which

correspond to the external faces appear to be fictitious, are described as “ghost
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elements” and their IDs are greater than the total number of elements or equal

to zero.

Furthermore, for the purpose of applying the proposed interpolation scheme,
it is necessary to integrate all the information regarding the destination mesh

topology. Figure 4.2.5 presents the aforementioned .txt file’s format.

4888

2.BBBeeeeaaee 8.l1%88000000
2.BBgoooooo0e 8.19s88000000
2. 0B0eaa80000 8.2860008680000
2.BBBeeee0008 8.21488888008
2.BBBeeeeaaee 8.22288880000
2.BBgoooooo0e 8.22p80000000
2. 0B0eaa80000 8.23800000000
2.BBBeeee0008 8.24c88888008
2.BBBeeeeaaee 8. 25488888000

Figure 4.2.5 Format of the file which contains
destination mesh information.

As presented in Figure 4.2.5, the first line of the aforementioned file contains
the total number of destination mesh nodes, while from the second line until
the end of the file, their X coordinates (first column) and Y coordinates (second
column) are listed. Finally, given all the essential information regarding the
topology of the source and destination meshes, the interpolation scheme is

implemented.

Initially, in order to minimize the total number of iterations needed to locate a
certain destination node to a source element, the minimum and maximum X
coordinates (calculated as explained in Section 4.2.1) of the latter are
considered. Furthermore, aiming at the reduction of both computational cost
and time, every destination node is directly associated with the left or right

“subarea” according to its Cartesian Coordinates.
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More specifically, in order to specify whether the destination node is located in
the surrounding area of a particular source element or not, the coordinates of
the first are compared with the minimum and maximum Cartesian coordinates

of the second. Therefore, if inequality (4.6) holds

Xqg < Xsminand Xg = Xgmax and Yy < Ys o and Yg 2 Y in (4.6)

then the particular destination node is most likely located in the examined
source element or in its surrounding area, where X, represents the X coordinate
of the examined destination node, while X 1in, Ys min and Xs max, Ys max are the
minimum and maximum Cartesian coordinates of the tested source element,
respectively. A demonstration of the inequality (4.6) is presented in Figure

4.2.6.

Second Neighbor

Third
Neighbor

First
Neighbor

Figure 4.2.6 Graphic representation of inequality (4.6). Point € has the maximum Y
Cartesian coordinate (Y, = Y; ;;,4,), while point A has the minimum one (¥4 = Y; ).
Additionally, point B has the maximum X Cartesian coordinate (Xp = X 4x), and point C
has the minimum one (Y; = Y; 1in).
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As shown in Figure 4.2.6, the blue-colored points illustrate the source element’s
nodes as well as the area between the red, green, orange and purple-colored
lines represents the intersection of the four individual inequalities of inequality
(4.6). Furthermore, the red-colored point demonstrates the destination mesh
node which appears to be located on the examined source element formed by
ABC nodes. Note that the areas between the colored lines and the element’s
nodes demonstrate the possible location of the three neighbors (in the case of
the triangular mesh). In the event of a query point lies outside the element of

interest, the three neighboring areas are examined as already mentioned.

Therefore, through the specification of the approximate area where the
destination mesh node may lies on, a further and accurate test of location is

conducted, by the exploitation of the barycentric coordinates properties.

The Point-In-Element check

In the field of geometry, the barycentric coordinate system consists of a
coordinate system that describes the location of a random point on the plane
according to a reference simplex (triangle for the 2D plane, tetrahedron for the
3D space, etc.). More specifically, let a triangle in which the query point is
located and has masses placed on its vertices. The barycentric coordinates of
the query can be interpreted as the individual mass magnitudes on the three
vertices which altogether define the query as the center of mass of the simplex.
The aforementioned masses can be either zero or negative for points that are
located outside the triangular area or positive for queries located inside the

simplex.

Hence, according to Floater et al. (2006) let 2 ¢ R? be a convex polygon with

vertices vy,V,, ..,V n =3, in a counterclockwise ordering. Any set of
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functions 4;: 2 - R,i = 1, ...,n is called “barycentric coordinates” if they satisfy

for all v € 2 the three following properties:

Ai(v) =0, i=1,..,n (4.7)
Z L) =1 (4.8)
i=1

Z A, = v, (4.9)
i=1

The aforementioned presentation of barycentric coordinates consists of a
generalization of the triangular barycentric coordinates, where n = 3 and 2 is
a triangular simplex with vertices [vy, v,, V3] as presented in Figure 4.2.7. From
now on, for simplicity reasons, the barycentric coordinates of a query point will

be denoted asw, v, u.

Figure 4.2.7 Triangular barycentric coordinates of point D inside the
triangle ABC.

To begin with, consider the case of a triangular element as shown in Figure
4.2.7. In order to obtain the barycentric coordinates w, v, u of a randomly placed
point P at the interior of a triangular simplex with vertices 4, B, C, property (4.9)

is exploited and Equation (4.10) emerges:
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P=wA+vB+uC. (4.10)

From property (4.8) we have:

wtv+tu=1

w=1l—-u-v. (4.11)
Therefore, Equation (4.10) can be formed as follows:

P=wA+vB +uC
P=1-u—-v)A+vB+uC
P=A—-—uA—-vA+vB+uC
P—A=v(B—-A)+u(lC—-A). 4.12)

Ifc=C—-Ab=B—A,p=P—Athen,
p=bv+cu. (4.13)

Then, considering that Equation (4.13) has two unknown variables (u, v), both
sides of it are dotted, initially, with ¢ and, finally, with b. The following system

with two equations and two unknown variables emerges:

(@ c)Bb)—(b-c)(pb)
v (c-c)(b-b)—(b-c)(b-c) (4.14)
_ @b )= @-c)c-b) (4.15)

PTG o-0b-ob o)

As a result, if a point is located inside a triangular area, according to property
(4.7), its barycentric coordinates must be positive as follows:
u,v = 0and (4.16)

w=1l—-u—-v=0. 4.17)
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It should be noticed that in case of a not detected point inside the examined

element, its neighbors are, then, tested in the same way.

On the other hand, in the event of testing a quadrilateral element, the
barycentric coordinates of a randomly located point are obtained by the

division of the simplex into two triangular areas, as presented in Figure 4.2.8.

Figure 4.2.8 Line segment AC divides the tetrahedron ABCD (blue colored)
into two separate triangular areas, ABC and ACD, accordingly. The query
point E (red colored) is located into ACD triang]le.

Thus, through the calculation of BCs of both generated triangles (e.g. ABC and
ACD triangles), the query point can be locate accordingly. The case of an

embedded point inside a quadrilateral element is shown in Figure 4.2.8.

Barycentric Interpolation

Once the query point is successfully located, the interpolation of the function
is performed. Therefore, consider a functionf:2 — R, with values
f(y), f(vy), f(v3) on the triangular element’s nodes vy, v, v3, respectively,
wherein the query point was located. Then, in order to interpolate the function

f on the query point’s p location, Equation (4.18) holds:

f) = wf 1) +vf(v) +uf (vs), (4.18)
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where w,v,u are the barycentric coordinates of the query, calculated at the

previous step (Point-In - Element check).

Although a query point undergoes consecutive checks (on the interior of each
source element and its neighbors) for the verification of its location, there exist
several instances where is not, eventually, detected. The aforementioned case

is presented in Figure 4.2.9.

Figure 4.2.9 Destination node A is located outside the source mesh indicated
with blue color.
The most common reasons for the particular inexpediency consists of either the
difference on the topology of both meshes or the round-off errors resulted from
the numerical operations, applied for the specific application. Hence, to
successfully interpolate a function on the undetected points, an additional
interpolation scheme is applied, called the “Inverse Distance Weighting (IDW)

interpolation”.

Inverse Distance Weighting IDW) Interpolation

Introduced by Shepard (1968), the Inverse Distance Weighting Interpolation
consists of a multivariate interpolation methodology, applied on a given set of
scattered points. In order to determine the value of a function on a particular

query location, its distance from every point of the given set is measured, and
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act as a weight, which is assigned to each one of them. Therefore, the estimation
of the function value is obtained through the application of the weighted

average of individual values on the provided set of points.

Thus, for the purpose of interpolating a function on the not-located destination
nodes, their Euclidean distances from each detected point of the
aforementioned mesh, need to be calculated and saved. The Euclidean Distance

between two different points is:

dEuclidean((xl: y1), (x2, yz)) = \/(xz —x1)%+ (¥, —y1)?, (4.19)

where (x1,y1), (x,,¥,) are their Cartesian coordinates, respectively. Once, the
distances between the query point and the located destination nodes are
computed, the Bubble Sort algorithm is applied and they, therefore, are sorted
in a descending order. A demonstration of the aforementioned process is

presented in Figure 4.2.10.
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Figure 4.2.10 The calculation of the individual distances between the query point and

the surrounding destination nodes. Red circular points indicate the destination mesh

nodes, while points marked with blue squares represent the source mesh nodes. Each

black colored arrow depicts the calculated distance between the query point and the
detected destination nodes.

113



Sofia Tavla Mesh Interpolation

To begin with, a robust way to locate the destination nodes which were not

found initially, is to employ the Point-In-Element check and, provided the
estimation of the location of the element it belongs to, the Barycentric
Coordinates interpolation methodology is implemented. However, in the
present instance, the only source elements which are tested consist of the three
-closest to the query- that were observed. Nevertheless, despite the application

of the present variation, both Point-In-Element check and the BC interpolation

processes, remain the same, as described in the previous section.

Till the present section, the proposed algorithm offers a “three-layered” point-
in-element check i.e. 1t layer according to Inequality (4.6); 2" layer for BCs
check according to Inequalities (4.16) & (4.17), 3*¢ for BCs check according to
the Euclidean distances between the query and the located destination nodes.
However, there is, yet, a possibility of a few queries location to be unspecified.
On the account of the aforementioned issue, the Inverse Distance Weighting

(IDW) interpolation is applied.

Therefore, according to Witteveen and Bijl (2009), during the IDW
interpolation methodology, the interpolation surface w(x), through n data

samples v = {uy,uy, ..., u, } of the examined function u(x) = u(x;) is given by:

_ Zisa wie ()
w(x) = IO (4.20)
with the weighting function:
p(r)=r-°, (4.21)

where r; is the Euclidean distance (Equation 4.19) between the query point x

and the node x;, and c is a positive real number called the ”power parameter”.
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More specifically, in the case of the present study, data points x;, i = 1, ...,100
are the hundred - closest to the query - destination nodes that were, already,
located in a source mesh element, as presented in the previous section. The
specific number of data points was selected in order to decrease the total the
computational time involved during the interpolation. Furthermore, the power

parameter was set equal to five (¢ = 5), following the trial-and-error method.
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4.3 Flow chart of the proposed interpolation algorithm

To summarize, in order to interpolate a destination mesh to a source grid, steps

1 to 7 are followed:

1. Text files containing the topology of the source mesh (elements’
Cartesian coordinates and neighboring elements), the function values
on the source mesh nodes and the destination mesh nodes’ Cartesian
Coordinates, are read.

2. Minimum and maximum X and Y coordinates of each source element
are obtained. The median of the minimum X coordinates is calculated
and two mesh - subareas are created. Every source element is assorted
to the proper subarea according to each maximum X coordinate
compared with the calculated median.

3. Every destination node is assorted to the left or right subarea according
to its X coordinate and the median calculated in step 2. Then, the query
is examined and the source element which belongs to is specified,
according to its calculated Barycentric Coordinate and their properties.

4. The function of interest is interpolated on the query, through the
application of the Barycentric Interpolation formula.

5. In case of a destination node is not located into a source element, its
distances between the detected destination nodes, are calculated. Its
location compared to the three elements, where the - closest destination
nodes - are placed, is checked, according to its Barycentric coordinates
and their properties (as in Step 3.).

6. If the examined destination node is, successfully, located into an
element (as explained in step 3), the function of interest is interpolated,

according to the Barycentric Coordinates formula.
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7. If the examined node is not located (following the process described in
step 5), the Inverse Distance Weighting Interpolation methodology is
applied by making the use of the 100 - closest to the query-destination

nodes’ values.

The aforementioned interpolation process is demonstrated in Figure 4.3.1.
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Read topology of source and destination mesh

i

Minimum and maximum Cariesian Coordinates of
every source element | are obtained and sorted

k4
Every destination node is assorted to one of the
subareas. BCs are obtained and its location
relative to every source element on the subarea it
belongs to, is examined.

Yes BCs interpolation formula is applied and the

function value on the guery location is
calculated.

Does the guery belongs to the

examined element?

Distances between the query and the destination
modes are calculated.

l

BCs are obtained and its location relative to the
elements where the three closest points to lig in,
are examined.

BCs interpolation formula is applied and the
function value on the guery location is
calculated.

Dopes the query belongs to the
examined elements?

Inverse Distance Weighting interpolation scheme
is applied, by making the use of the 100 closest to
the guery node's values.

Figure 4.3.1 Flow chart of the proposed algorithm, which combines the Barycentric Coordinates (BCs)
and Inverse Distance Weighting (IDW) interpolation schemes.
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4.4 Results of the algorithm

In the present study, the cases of triangular, quadrilateral and hybrid mesh
interpolation were tested. In all of the three instances, a fine and a coarse mesh
were utilized. Furthermore, the flow velocity values on each node of the source
mesh were selected to be interpolated to the destination mesh nodes. A

detailed presentation of the estimated function, on each occasion, is presented

in Sections 4.4.1-4.4.3.

4.4.1 Triangular mesh interpolation

In the present instance, a mesh containing 16082 nodes and 31102 triangular
elements was chosen as source. Additionally, the selected destination mesh
consisted of 4055 nodes and 7580 triangular elements. Both source and
destination mesh constituted a fine and coarse discretization of the surface of
an S-shape pipe, respectively. The geometry of an S-shape pipe is presented in
Figure 4.4.1.

Figure 4.4.1 The geometry of an S — Shape pipe.

A section of the source (blue-colored) and destination mesh (red-colored)
acting as a fine and a coarse discretization of the S-shape pipe’s geometry, are

demonstrated in Figure 4.4.2 and Figure 4.4.3, respectively.
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Figure 4.4.2 The source mesh of the S-Shape pipe is
constructed by 16082 nodes and 31102 elements and is
indicated with blue color.
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Figure 4.4.3 The destination mesh of the examined
geometry consists of 4055 nodes and 7580 elements
and is colored with red.

The function, which was chosen in order to be interpolated from the source to
the destination mesh, consisted of the velocity values calculated on the nodes

of the former grid.
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The function values on the source and destination mesh nodes are presented
in Figure 4.4.4 and Figure 4.4.5. In both cases, red colored areas indicate the
maximum flow velocity values. On the other hand, blue colored areas

demonstrate the minimum velocity values.

Figure 4.4.4 The function values on source mesh
nodes.

Figure 4.4.5 The destination values obtained following
the application of the proposed interpolation
algorithm.
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Mesh Interpolation

Through the visual comparison of Figure 4.4.4 and Figure 4.4.5, it can be

observed that the proposed interpolation scheme resulted to almost identical

to the source grid velocity values on the destination mesh. In other words, the

velocity contour on both meshes (source & destination) had no substantial

differences at all. It worth noting that in the case of interpolating values from

coarse to fine triangular meshes, the proposed methodology produced

plausible results.

4.4.2 Quadrilateral mesh interpolation

For the quadrilateral mesh interpolation, the source mesh consisted of 4000

nodes and 3735 quadrilateral elements. On the other hand, the destination

mesh was constructed by 16000 nodes and 15469 elements. Additionally, the

suggested interpolation algorithm was applied for the case of the exact same

shape as mentioned in triangular mesh interpolation (Section 4.4.1). The

examined shape’s geometry is shown in Figure 4.4.1. A part of the source (blue

colored) and destination grid (red colored) is presented in Figure 4.4.6 and

Figure 4.4.7, respectively.
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Figure 4.4.7 The topology of the destination mesh in the middle
of the S — shape pipe.

As presented in Section 4.4.1, the selected function for the quadrilateral mesh
interpolation was the flow velocity at the interior of the S-shape pipe. The
contours of the given velocity values on the source mesh nodes as well as of
the interpolated ones on the destination mesh are shown in Figure 4.4.8 and

Figure 4.4.9, respectively.

Figure 4.4.8 The function values on the nodes of the source
mesh.
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Figure 4.4.9 The function values on the nodes of the
destination mesh.

Following the comparison of Figure 4.4.8 and Figure 4.4.9, it should be noted
that the flow velocity contours of source and destination grid appeared to be
similar to a considerable extent. Moreover, the proposed scheme produced fair

results for the case of interpolating values from the fine to the coarse mesh.

4.4.3 Hybrid mesh Interpolation

In the present section, the interpolation between two hybrid meshes is
presented. At first, it should be noted that a hybrid mesh is consisted of both
quadrilateral and triangular elements. Therefore, a hybrid mesh consisted of
26671 nodes, 35738 triangles and 8448 quadrilateral elements was utilized as
the source one. On the contrary, the chosen destination mesh was composed of
68809 nodes, 101170 triangular elements and 17760 quadrilaterals. Both source
and destination grids acted as a fine and a coarse discretization of the exterior
of an airfoil shape, respectively. The geometry of the examined airfoil is shown

in Figure 4.4.10.
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As presented in Section 4.4.1 and 4.4.2, the chosen function values to be

interpolated, consisted of the fluid velocity given on the source mesh nodes.

Figure 4.4.13 depicts the contour of the flow velocity on the source mesh. On

the other hand, Figure 4.4.14 represents the interpolated on the destination

mesh. It worth noting that no deviation was observed between the given values

on the source and the interpolated velocity on the destination mesh nodes,

respectively. Therefore, the contours of Figure 4.4.13 and Figure 4.4.14 did not

appear to have considerable differences. Additionally, in the case of mesh

interpolation from a fine to a course grid, plausible results were obtained.
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Figure 4.4.13 Each node of the source grid is assigned a
flow velocity value. Color variation indicates the
magnitude of the velocity around the examined
geometry. For example, low flow velocity values are
marked with blue color contrary to high flow velocity
areas indicted with red color.

Figure 4.4.14 The flow velocity contour resulted from the
interpolation of the values on the source grid nodes to the
destination mesh.
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4.5 Conclusion

In each one of the three cases tested, the flow velocity values were smoothly
interpolated from the initial (source) mesh to the final (destination) one.
Consequently, the proposed interpolation scheme appears to be applicable on
Triangular, Quadrilateral and Hybrid meshes, given the topology information
of the source and destination grids and the function values on the source mesh
nodes, as explained in Sections 4.2.1 and 4.2.2. Eventually, it worth noting that
the aforementioned interpolation scheme proved to be feasible for the

interpolation from the fine to the coarse mesh and inversely.
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Chapter 5

Application of Harmonic Functions - based deformation

5.1 Test Case 1: Single internal B-Spline boundary.

The first test case consists of a rectangular domain with a single internal
boundary, formulated as a smooth closed periodic B-Spline curve of 2" degree,
with 4 (different) control points (as being a periodic closed B-Spline curve of
2nd degree, the two first control points are repeated at the end of the curve,
resulting in actually 6 control points). The coordinates of the control points are

listed in Table 5.1.1.

x-coordinate y-coordinate
-3.80327177 9.66863155
-3.41808033 7.30724001
4.16851759 9.73562145
3.76657844 11.71182060

Table 5.1.1 The Cartesian coordinates of four control points of a
2nd degree B — Spline curve.

The initial unstructured grid, consisted of triangular elements, is depicted in
Figure 5.1.1 and Figure 5.1.2. In Table 5.1.2, the coordinates of the discrete
points of the B-Spline boundary are contained, along with the corresponding
u-value and the values of the 4 Basis Functions, used as boundary conditions

for the consecutive solution of the Laplace equation.
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i x y u(i) N1(i) N2(i) N3(i) N4(i)
100 -3.61068 | 8.487941 0 0.5 0.5 0 0
1 -3.61972 | 8.582142 0.01 0.4608 0.5384 0.0008 0
2 -3.61603 | 8.675834 0.02 0.4232 0.5736 0.0032 0
3 -3.59962 | 8.769018 0.03 0.3872 0.6056 0.0072 0
4 -3.57048 | 8.861691 0.04 0.3528 0.6344 0.0128 0
5 -3.52861 | 8.953855 0.05 0.32 0.66 0.02 0
6 -3.47401 | 9.045511 0.06 0.2888 0.6824 0.0288 0
7 -3.40669 | 9.136656 0.07 0.2592 0.7016 0.0392 0
8 -3.32663 | 9.227293 0.08 0.2312 0.7176 0.0512 0
9 -3.23385 | 9.317422 0.09 0.2048 0.7304 0.0648 0
10 -3.12834 | 9.407041 0.1 0.18 0.74 0.08 0
11 -3.01011 | 9.49615 0.11 0.1568 0.7464 0.0968 0
12 -2.87914 | 9.584751 0.12 0.1352 0.7496 0.1152 0
13 -2.73545 | 9.672842 0.13 0.1152 0.7496 0.1352 0
14 -2.57902 | 9.760425 0.14 0.0968 0.7464 0.1568 0
15 -2.40987 | 9.847497 0.15 0.08 0.74 0.18 0
16 -2.228 | 9.934062 0.16 0.0648 0.7304 0.2048 0
17 -2.03339 | 10.02012 0.17 0.0512 0.7176 0.2312 0
18 -1.82606 | 10.10566 0.18 0.0392 0.7016 0.2592 0
19 -1.60599 | 10.1907 0.19 0.0288 0.6824 0.2888 0
20 -1.3732 | 10.27523 0.2 0.02 0.66 0.32 0
21 -1.12769 | 10.35925 0.21 0.0128 0.6344 0.3528 0
22 -0.86944 | 10.44276 0.22 0.0072 0.6056 0.3872 0
23 -0.59847 | 10.52576 0.23 0.0032 0.5736 0.4232 0
24 -0.31476 | 10.60825 0.24 0.0008 0.5384 0.4608 0
25 -0.01833 | 10.69023 0.25 0 0.5 0.5 0
26 0.278724 | 10.76874 0.26 0 0.4608 0.5384 0.0008
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27 0.564315 | 10.84082 0.27 0 0.4232 0.5736 0.0032
28 0.838436 | 10.90647 0.28 0 0.3872 0.6056 0.0072
29 1.101089 | 10.96569 0.29 0 0.3528 0.6344 0.0128
30 1.352274 | 11.01848 0.3 0 0.32 0.66 0.02
31 1.59199 | 11.06483 0.31 0 0.2888 0.6824 0.0288
32 1.820237 | 11.10476 0.32 0 0.2592 0.7016 0.0392
33 2.037015 | 11.13825 0.33 0 0.2312 0.7176 0.0512
34 2.242325 | 11.16532 0.34 0 0.2048 0.7304 0.0648
35 2.436166 | 11.18595 0.35 0 0.18 0.74 0.08
36 2.618539 | 11.20015 0.36 0 0.1568 0.7464 0.0968
37 2.789443 | 11.20792 0.37 0 0.1352 0.7496 0.1152
38 2.948878 | 11.20926 0.38 0 0.1152 0.7496 0.1352
39 3.096845 | 11.20417 0.39 0 0.0968 0.7464 0.1568
40 3.233343 | 11.19265 0.4 0 0.08 0.74 0.18
41 3.358372 | 11.1747 0.41 0 0.0648 0.7304 0.2048
42 3.471933 | 11.15031 0.42 0 0.0512 0.7176 0.2312
43 3.574025 | 11.1195 0.43 0 0.0392 0.7016 0.2592
41 3.664649 | 11.08225 0.44 0 0.0288 0.6824 0.2888
45 3.743803 | 11.03857 0.45 0 0.02 0.66 0.319999
46 3.81149 | 10.98846 0.46 0 0.0128 0.6344 | 0.352799
47 3.867707 | 10.93192 0.47 0 0.0072 | 0.605601 | 0.387199
48 3.912456 | 10.86895 0.48 0 0.0032 | 0.573601 | 0.423199
49 3.945736 | 10.79955 0.49 0 0.0008 | 0.538401 | 0.460799
50 3.967548 | 10.72372 0.5 0 0 0.500001 | 0.499999
51 3.977234 | 10.64431 0.51 0.0008 0.460801 | 0.538399
52 3.974139 | 10.56418 0.52 0.0032 0 0.423201 | 0.573599
53 3.958262 | 10.48332 0.53 0.0072 0 0.387201 | 0.605599
54 3.929604 | 10.40174 0.54 0.0128 0 0.352801 | 0.634399
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55 3.888164 | 10.31944 0.55 0.02 0 0.320001 | 0.659999
56 3.833942 | 10.23641 0.56 0.0288 0 0.288801 | 0.6824
57 3.766939 | 10.15266 0.57 0.0392 0 0.259201 | 0.7016
58 3.687154 | 10.06818 0.58 0.0512 0 0.231201 | 0.7176
59 3.594587 | 9.982986 0.59 0.0648 0 0.204801 | 0.7304
60 3.489239 | 9.897066 0.6 0.08 0 0.180001 0.74
61 3.371109 | 9.81042 0.61 0.0968 0 0.156801 | 0.7464
62 3.240198 | 9.723053 0.62 0.115199 0 0.135201 | 0.7496
63 3.096504 | 9.634962 0.63 0.135199 0 0.115201 | 0.7496
64 294003 | 9.546147 0.64 0.156799 0 0.096801 | 0.7464
65 2.770773 | 9.456607 0.65 0.179999 0 0.080001 0.74
66 2.588735 | 9.366347 0.66 0.204799 0 0.0648 0.7304
67 2.393916 | 9.275361 0.67 0.231199 0 0.0512 0.7176
68 2.186314 | 9.183651 0.68 0.259199 0 0.0392 | 0.701601
69 1.965931 | 9.09122 0.69 0.288799 0 0.0288 | 0.682401
70 1.732767 | 8.998064 0.7 0.319999 0 0.02 0.660001
71 1.48682 | 8.904183 0.71 0.352799 0 0.0128 | 0.634401
72 1.228093 | 8.80958 0.72 0.387199 0 0.0072 | 0.605601
73 0.956583 | 8.714254 0.73 0.423199 0 0.0032 | 0.573601
74 0.672292 | 8.618205 0.74 0.460798 0 0.0008 | 0.538401
75 0.375219 | 8.52143 0.75 0.499998 0 0 0.500002
76 0.077516 | 8.428127 0.76 0.538398 | 0.0008 0 0.460802
77 -0.20866 | 8.342488 0.77 0.573599 | 0.0032 0 0.423202
78 -0.48332 | 8.264511 0.78 0.605599 | 0.0072 0 0.387202
79 -0.74646 | 8.194199 0.79 0.634399 | 0.0128 0 0.352802
80 -0.99807 | 8.131549 0.8 0.659999 0.02 0 0.320001
81 -1.23816 | 8.076564 0.81 0.682399 | 0.0288 0 0.288801
82 -1.46673 | 8.029243 0.82 0.701599 | 0.039199 0 0.259201
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83 -1.68378 | 7.989584 0.83 0.717599 | 0.051199 0 0.231201
84 -1.88931 | 7.957591 0.84 0.730399 | 0.064799 0 0.204801
85 -2.08331 | 7.933259 | 0.849999 0.74 0.079999 0 0.180001
86 -2.26579 | 7.916592 | 0.859999 | 0.7464 | 0.096799 0 0.156801
87 -2.43675 | 7.907589 | 0.869999 | 0.7496 | 0.115199 0 0.135201
88 -2.59618 | 7.90625 | 0.879999 | 0.7496 | 0.135199 0 0.115201
89 -2.7441 | 7912573 | 0.889999 | 0.7464 | 0.156799 0 0.096801
90 -2.88049 | 7.92656 | 0.899999 0.74 0.179999 0 0.080001
91 -3.00536 | 7.948212 | 0.909999 | 0.730401 | 0.204799 0 0.064801
92 -3.1187 | 7.977526 | 0.919999 | 0.717601 | 0.231198 0 0.051201
93 -3.22053 | 8.014505 | 0.929999 | 0.701601 | 0.259198 0 0.039201
94 -3.31083 | 8.059146 | 0.939999 | 0.682401 | 0.288798 0 0.028801
95 -3.38961 | 8.111453 | 0.949999 | 0.660001 | 0.319998 0 0.02
96 -3.45687 | 8.171422 | 0.959999 | 0.634402 | 0.352798 0 0.0128
97 -3.5126 | 8.239054 | 0.969999 | 0.605602 | 0.387198 0 0.0072
98 -3.55682 | 8.314351 | 0.979999 | 0.573602 | 0.423198 0 0.0032
99 -3.58951 | 8.397312 | 0.989999 | 0.538402 | 0.460798 0 0.0008

Table 5.1.2 In the first three columns of the table, the IDs and the Cartesian coordinates of B-
Spline boundary points are listed. Additionally, the fourth column contains the
corresponding u-values on each point. Finally, the fifth, sixth, seventh and eight columns
consist of the values of four 2nd degree B-Spline basis functions applied as boundary
conditions for the solution of the Laplace equation on each point, respectively.

In Figure 5.1.3 to Figure 5.1.6, the solution of the Laplace equation is depicted,
for each one of the basis functions, used as boundary conditions upon the
internal boundary. Each basis function corresponds to a B-Spline control point.
The original unstructured grid was used for the solution of the Laplace
equation (4 consecutive times, equal to the number of the (different) control

points of the B-Spline curve).
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Then, a deformation to the original control points of the internal B-Spline

boundary is applied. The deformation to each one of the control points’

coordinates is depicted in Table 5.1.3.
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Figure 5.1.1 The initial shape of a smooth closed periodic curve of 24 degree embedded in an
unstructured grid consisted of triangular elements.
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Figure 5.1.2 A closer examination of the initial shape of the B-Spline curve (shown in Figure
5.1.1) as well as of the unstructured grid surrounded by.
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Figure 5.1.3 The solution of the Laplace equation calculated by the application of the first
basis function (N1(i)) as a Dirichlet boundary condition.
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Figure 5.1.5 The solution of the Laplace equation using the second basis function (N2(7)) as a
boundary condition.
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Figure 5.1.4 The solution of the Laplace equation using the third basis function (N3(i)) as a
boundary condition.
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Figure 5.1.6 The solution of the Laplace equation for the fourth basis function (N4(i)).
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Table 5.1.3 The displacement of the control points that provokes
the deformation of the B-Spline curve.

The applied movement to each one of the control points, using the
methodology descried in Chapter 3, results in the deformation of the entire
unstructured grid, as presented in Figure 5.1.7, Figure 5.1.8 and Figure 5.1.9.
The original grid is in blue color, while the deformed one is in red color. As it
can be seen, there is a smooth deformation of the unstructured grid, which

fades-out as we approach the external rectangular boundary of the domain.
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Figure 5.1.7 The initial (blue-colored) and the deformed (red-colored) unstructured grids.
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Figure 5.1.8 A more detailed examination of the initial and deformed grids, respectively.
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Figure 5.1.9 A visualization of the initial (blue-color) and deformed (red-color) grids,
respectively.
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5.2 Test Case 2: Two internal B-Spline boundaries.

The second test case consists of a rectangular domain with two internal

boundaries, formulated as smooth closed periodic B-Spline curves of 3+

degree. The first one consists of 11 (different) control points, while the second

one consists of 9 (different) control points. As being closed periodic B-Spline

curves of 3'¢ degree, the 3 first control points of each curve are repeated at the

end of the curve to produce the periodicity, resulting actually in 14 and 12

control points in total, respectively. The coordinates of the control points of the

tirst B-Spline curve are listed in the following Table 5.2.1.

x-coordinate y-coordinate
1.19990253 13.11501503
-0.66915739 13.17731762
-1.90475249 12.69120598
-2.98158932 11.97601223
-2.78379297 11.25177765
-1.73216796 11.19115543
-0.58905482 12.11818314
1.3957088 11.77107239
2.3145895 10.99261284
3.12043738 11.4656105
2.72119808 12.21872234

Table 5.2.1 The control points” Cartesian coordinates belonging

to the first B-Spline curve.

The coordinates of the control points of the second B-Spline curve are listed in

the following Table 5.2.2.
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x-coordinate y-coordinate

10.29767895 7.94940615
7.90498877 7.76820374
6.81564045 7.02900267
7.23188925 6.11807156

9.2277689 6.25089693
11.40646648 6.95119238
14.11855793 8.37674522
13.75686646 9.82143688
11.96165276 9.24493408

Table 5.2.2 The Cartesian coordinates of the control points
belonging to the second B-Spline curve.

The initial unstructured grid, consisted of triangular elements, is depicted in

Figure 5.2.1 and Figure 5.2.2.

20 k-

15 :

10

A S W
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X

Figure 5.2.1 The initial unstructured grid containing both B-Spline curve boundaries.
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15

> 10

PAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN

0 5 10 15

Figure 5.2.2 A closer examination of the unstructured grid depicted in Figure 5.2.1.

In Figure 5.2.3 to Figure 5.2.6, the solution of the Laplace equation is depicted,
for only 4 of the basis Functions (for brevity — 2 for each boundary), used as
boundary conditions upon the internal boundary (control points 1 & 5 for the
1t B-Spline curve and control points 1 & 5 for the second B-Spline curve,
respectively). Each basis Function corresponds to a B-Spline control point. The
original unstructured grid was used for the solution of the Laplace equation
(20=1149 consecutive times, equal to the number of the (different) control

points of the two B-Spline curves).
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Figure 5.2.3 The solution of the Laplace equation following by the application of the first B-
Spline basis function for the first B-Spline curve.

25 s ) 7 [ [

Q: 005 01 015 02 025 0.3 0.35 04 045 05 055 06 0.65

-10 0 10 20 30
X

Figure 5.2.4 The solution of the Laplace equation for the second basis function for the fifth B-
Spline curve.
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Figure 5.2.5 The solution of the Laplace equation for the first B-Spline basis function around
the second B-Spline curve.
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Figure 5.2.6 The solution of the Laplace equation for the fifth B-Spline basis function for the
second B-Spline curve.
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Then, a deformation to the original control points of the internal B-Spline

boundaries is applied. The deformation to each one of the control points’

coordinates is depicted in Table 5.2.3 for the first boundary and in Table 5.2.4

for the second one.

Ax Ay
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1
0.5 -1

Table 5.2.3 The displacement of the control points belonging to

the first B-Spline curve.

Ax Ay
-0.5 1
-0.5 1
-0.5 1
-0.5 1
-0.5 1
-0.5 1
-0.5 1
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-0.5 1

-0.5 1

Table 5.2.4 The displacement of the control points for the second
B-Spline boundary curve.

The applied movement to each one of the control points, using the
methodology described in Chapter 3, results in the deformation of the entire
unstructured grid, as presented in Figure 5.2.7 to Figure 5.2.11. The original
grid is in blue color, while the deformed one is in red color. As in the previous
test case, there is a smooth deformation of the unstructured grid, which fades-

out as we approach the external rectangular boundary of the domain.

20 —
u
15 5
10 ==
5 - Al )
0
-10 0 10 20 30
X
Figure 5.2.7 A visual comparison between the initial (blue-colored) and the deformed (red-
colored) grids.
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Figure 5.2.10 A detailed examination of the initial (blue-colored) and deformed (red-
colored) unstructured grids around the second B-Spline boundary.
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Figure 5.2.11 A closer examination of the initial (blue-colored) and deformed (red-colored)

unstructured grids around the second B-Spline boundary.
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Chapter 6

Conclusions

Three are the main contributions of the current work. The first is an extensive
literature review of the existing geometry deformation techniques, based
mainly on Free Form Deformation (FFD) and Harmonic functions. The second
contribution is the testing of a new methodology (developed in the
Turbomachines and Fluid Dynamics Laboratory, Technical University of
Crete) for geometry/mesh deformation, combining B-spline theory and
Harmonic functions, for the concurrent deformation of the parametrically-
defined geometries and the corresponding computational mesh. This
methodology is well-suited for aerodynamic design optimization. The third
contribution is the development of a mesh-interpolation methodology, for
unstructured-hybrid meshes. In this work, the validity of both methodologies

was investigated and proved in various tests.

Concerning the geometry-deformation methodology, the following

conclusions can be made:

e The proposed novel methodology allows for the concurrent
deformation of the curved boundaries and the corresponding
computational mesh (structured or unstructured).

e The deformation of the geometry boundaries is applied on the control
points of the B-spline curves that describe the corresponding
boundaries. Therefore, no reverse-engineering is required at the end of
the procedure to compute the parametric definition of the final

geometry.
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The computation of the field of the harmonic functions requires
significant computational resources. However, this computation is
performed only once, at the beginning of the deformation procedure.
The resulting quality of the grid deformation is not very good, when
large deformations are applied. In some cases negative volumes may
result.

The proposed methodology is very promising. However, further
research is required to expand its potential for aerodynamic shape
optimization.

Comparing the proposed methodology with FFD, the former provides
more smooth mesh deformations, with better local control, as the lattice
points (which control the deformation) extend inside the mesh region.
On the other hand, at the end of FFD deformation, the deformed
geometry is not in parametric form, and a reverse-engineering
procedure is required to compute its parametric (B-spline or NURBS)
form. In the proposed methodology the control points of the parametric
B-spline curves that define the geometry boundaries control both the
deformation of the geometry (boundaries) and the computational mesh.
The proposed methodology has been developed for periodic B-spline

curves, which provide smooth Basis functions.
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