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a b s t r a c t 

Agriculture is by its nature a complicated scientific field, related to a wide range of expertise, skills, methods and 
processes which can be effectively supported by computerized systems. There have been many efforts towards 
the establishment of an automated agriculture framework, capable to control both the incoming data and the 
corresponding processes. The recent advances in the Information and Communication Technologies (ICT) domain 
have the capability to collect, process and analyze data from different sources while materializing the concept 
of agriculture intelligence. The thriving environment for the implementation of different agriculture systems is 
justified by a series of technologies that offer the prospect of improving agricultural productivity through the 
intensive use of data. The concept of big data in agriculture is not exclusively related to big volume, but also on 
the variety and velocity of the collected data. Big data is a key concept for the future development of agriculture 
as it offers unprecedented capabilities and it enables various tools and services capable to change its current 
status. 

This survey paper covers the state-of-the-art agriculture systems and big data architectures both in research and 
commercial status in an effort to bridge the knowledge gap between agriculture systems and exploitation of big 
data. The first part of the paper is devoted to the exploration of the existing agriculture systems, providing the 
necessary background information for their evolution until they have reached the current status, able to support 
different platforms and handle multiple sources of information. The second part of the survey is focused on the 
exploitation of multiple sources of information, providing information for both the nature of the data and the 
combination of different sources of data in order to explore the full potential of ICT systems in agriculture. 
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. Introduction 

The concept of agriculture includes a series of different scientific
elds, where some of them are directly connected to land cultivation
water control, crop growing, harvesting, etc.) [1,2] , while some other
re the natural expansion of the agriculture model (engineering, eco-
omics, management, etc.) [3,4] . Advances in different areas of the In-
ormation and Communication Technologies (ICT) domain in combina-
ion with the need for improvement of agriculture productivity [5] , both
or food security issues and environmental impact, have created the field
f smart agriculture. 
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Precision agriculture (or smart farming) can significantly boost the
griculture production both in terms of productivity and sustainability
6,7] . Although productivity seems to be the driven force of every tech-
ological advance in agriculture, the importance of sustainability should
ot be neglected. Sustainability emerges as a major issue throughout the
pectrum of human activity [8,9] , thus one of the goals of smart agricul-
ure is the minimization of the environmental impact of the agriculture
ctivities. 

The field that is considered as predecessor of smart farming is pre-
ision agriculture [10,11] . Although the two terms seem identical, they
ave differences, as the concept of smart farming goes beyond in-field
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anagement tasks and expands to a wider ecosystem considering the
onstant integration of new technologies (cloud computing, Internet of
hings (IoT), Geographic Information System (GIS), etc.) to the existing

nfrastructure and the exploitation of data from multiple sources (de-
criptive, vector and remote sensing). 

To address the challenges of constant integration of new technologies
n the area of smart farming, complex systems have to be built where
oncepts of scalability [12] and interoperability [13] are their founda-
ions. Novel approaches have to be followed in the upcoming agricul-
ure systems in order to fully exploit the emerging digital technologies,
ble to collect, store and model huge amounts of data coming from vari-
us heterogeneous sources. This heterogeneity in data poses the greatest
hallenge towards the improvement of agriculture productivity through
he extensive exploitation of the generated data. The challenge is the
onstant extraction of knowledge from raw data, thus the agriculture
ystems should incorporate new methods and techniques such as data
ining [14] , applied statistics [15] and machine learning [16–19] that
ould enable the potential of the collected data. 

Prerequisite for better understating the concept of big data in agri-
ulture is the exploration of small data, as described in Coble et al. [20] .
he remarkable growth in producers ability to collect data from multiple
n-site sources and their combination with data collected from Global
avigation Satellite Systems (GNSS) [21,22] or from national author-

ties have formed complex data warehouses with heterogeneous data
nd eventually the combination of those fragments of information (small
ata) have created the area of big data in agriculture. Considering the
pectrum of applications of big data in various areas and domains it is
ifficult to provide a definition to cover every possible scenario, but in
he agriculture sector big data is mostly related with the variety of data,
ather with volume or velocity. 

The remainder of this article is organized as follows. Section 2 pro-
ides an overview for the field of smart agriculture and defines the ob-
ectives of this literature review paper. Section 3 describes the existing
griculture systems and frameworks, including both early theoretical
rameworks and state-of-the-art agriculture system, capable of exploit-
ng different technologies which have been employed and tested in dif-
erent sites. Section 4 provides an in-depth analysis of big data in agri-
ulture focusing on the variety of sources. The research work presented
n this section is classified based on the sources of data that are used,
tarting from the simplest form of data (textual descriptive data) and
nding up to complicated data warehoused capable to combine descrip-
ive, vector and imagery data, exploiting IoT devices, satellite images
nd archives from national authorities. Section 5 presents challenges
nd technological trends towards the exploitation of multiple sources in
he era of big data in agriculture. Finally, Section 6 concludes this paper
nd presents future directions. 

. Motivation 

Although smart agriculture as a term is recently introduced, there
re already numerous commercial solutions and platforms [27,31,23–
6,28–30] indicating the market demand. The majority of the commer-
ial solutions are focusing on the collection, integration, and visualiza-
ion of data collected with the use of IoT sensors, whereas only few offer
redictive analytics [24,26] . 

The technological advances of the recent years have created the need
or constant development of the existing commercial systems and solu-
ions in every industry sector, including agriculture. The successful com-
ercial solutions constantly invest in new technologies and consider the
rogress in research level. This paper offers a complete survey on exist-
ng research agriculture systems and an overview of the state-of-the-art
echniques for collecting data and it can be used as point of reference
or future commercial systems. 

Focusing on the capabilities of the existing agriculture systems and in
he combination of different kind of data from multiple sources, this lit-
rature review provides a useful insight for both the state-of-the-art agri-
ulture systems and the status of big data in the agriculture sector, with
 focus on the aspect of data variety. The recent related review papers
ave different orientations, as the paper of Kamilaris et al. [32] focuses
n big data and is equally devoted in the three V’s (volume, velocity,
ariety), offering an in-depth review of tools, algorithms and sources of
ata. We provide the necessary background knowledge for the topic of
ig data in agriculture, but through a more tangible approach using ex-
sting agriculture systems and focusing on the process of data collection.
oth Wolfert et al. [33] , and Coble et al. [20] present the wider concept
f big data in agriculture including management, legislation, research
ethods and applications, but they overlook the important connection

f agricultural systems with the exploitation of the collected data. The
n-depth review of Morota et al. [34] is focused on big data in livestock
ather than farm agriculture. On contrary, we focus on farm agriculture
nd how it can be benefited with the use of big data and other related
echnological advances. 

Apart from the use of big data in agriculture, other approaches in re-
ent reviews in smart agriculture include a climate-oriented approach,
tressing the importance of the climate change in the agriculture sector.
n Long et al. [35] a conceptual framework is proposed, aiming to tackle
he existing barriers in socio-economic level and the successful adoption
f the recent technological advances, emphasizing on their analysis and
otential to smart farming. We adopt a more data-driven approach com-
ared to [35] , reviewing the existing agriculture systems and the current
echniques for collecting land data. The review paper of Zougmoré et al.
36] connects climate change with adjustments that should take place
n different agriculture sub-sectors, and it is focused on strategies and
olicies, rather on the existing technologies and approaches that form
he current status of smart agriculture. 

The contribution of this work lies on four main axes. The first one
s the presentation of the agriculture systems’ development. The second
oint of contribution for this review paper is the research of the sources
hat are used for the step of data collection in different agriculture archi-
ectures, schemes and applications. The third objective of the paper is
o reveal the connection between big data and agriculture systems. The
ast contribution of the paper is the identification of the future trends
nd developments in the field providing a critical view on the potential
f the ICT sector in agriculture systems. 

The first part of this extensive survey paper illustrates the evolu-
ion of agriculture systems that is achieved through the integration of
he available technological advances, starting from simple evaluation
chemes to integration of state-of-the-art technological concepts such
s cloud development and big data. The second part of the paper is
edicated to big data in agriculture, adopting a practical approach and
ocusing on the methods and techniques that are used for collecting and
ombining different sources of data. 

Overall, the aim of this paper is to present the evolution of agri-
ulture systems and how they adopt the incoming data from various
ources and this is attempted through elaborate and critical projection
n the following steps: 

• Present the advancement of agriculture systems, indicating the dif-
ferences through time and the trends. 

• Stress the importance of new technologies in agriculture systems. 
• Present the different sources of data and their usability in the agri-

culture domain. 
• Explain how big data and the evolution of IoT enablers are exploited

within a computational intelligence platform in the agriculture sec-
tor. 

. Agriculture systems and frameworks 

The recent advances in ICT have significantly progressed the agri-
ulture sector through services offered from computer-based agriculture
ystems in problems that were previously faced only through empirical
nowledge of few people. The ongoing land degradation [37,38] in com-
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ination with a potential food security crisis [39,40] and the need for
doption of a more sustainable agriculture approach (productive, prof-
table, environmentally-friendly) [41,42] , require the exploitation of the
ecent technological advantages. 

In order to fully utilize the latest technological advances, novel
chemes, products and applications should be developed that will be
ble to handle heterogeneous data, perform data analysis and offer per-
onalized interfaces [43,44] . In this section we present the evolution of
griculture systems through time, starting from simple rules and ending
p to data-driven approaches. 

.1. The early steps 

Probably the most influential framework that has been proposed is
rom the Food and Agriculture Organization (FAO) [45–47] receiving
any updates, as many research works have been relied on it in order

o expand its capabilities. The fundamental concept of the methodology
s based on two objectives: (i) provide suitable land classifications and
ii) evaluate the land procedures. The FAO framework has been built
ased on those two objectives and has developed the concept of match-
ng tables (known as transfer functions) that are designed to calculate
he suitability of the land for specific purposes. 

In 1983 one of the first modifications of the initial FAO framework
eveloped and published, the Land Evaluation Computer System (LECS)
ethodology [48] . The LECS methodology is a pragmatic approach that
as adopted for a regional study in Sumatra (Indonesia) with the data

hen available. It is considered as a simple model in relation to more
omplex land systems that have been proposed later, but it illustrates
n a great extent the capabilities that a computerized evaluation offers.
ECS uses both physical and economic data in order to provide individ-
al crop recommendations for each land unit on an economic basis. Two
tages of analysis take place before the final output, the evaluation of
ach land unit (considering a soil degradation model) and the potential
roductivity at three management levels. 

In accordance with the FAO’s framework, the Automated Land Eval-
ation System (ALES) [49–51] was proposed in 1990, a computer pro-
ram that allows land evaluators to build their own knowledge-based
ystem. The proposed model predicts the economic suitability of a land
rea taking into account different parameters, without having a fixed
ist for land characteristics or land use requirements. ALES is not con-
idered a user-friendly system, but rather a system designed for experts
hich does not offer either GIS functions or display the map of the ge-
graphical area that is researched. 

The development of Geographic Information Systems (GIS) has rev-
lutionized the way people gather, manage, depict, and therefore, in-
erpret data. A GIS has the capability to combine spatial location with
ifferent kind of information, as it organizes them into layers and visu-
lizes them using maps and 3D scenes. Maps are used as geographic con-
ainers for incorporation of data layers and analytics, such as imagery
ata, features, and basemaps linked to spreadsheets and tables. As a re-
ult, GIS reveals deeper insights into data, patterns, relationships, and
ventually provides a more intuitive depiction of data. 

GIS technology is applied in different scientific fields, including the
griculture sector, and materializes complicated systems that can com-
unicate, perform analysis, share information, and solve complex prob-

ems. Adoption of GIS technologies in the agriculture sector took place in
52] where a MultiCriteria Evaluation (MCE) framework was proposed
iming at the ease of the decision-making process through a finite num-
er of alternatives for the problem of land suitability for agriculture.
ventually a spatial decision support system is created through the in-
egration of MultiCriteria Decision Analysis Approaches (MCDAs) in a
IS environment, which produces land suitability maps using the ELim-

tation Et Choix Traduisant la REalitÃ©(ELECTRE Tri) [53,54] method.
Based on the concept of automatic methods’ inefficiency for any kind

f problem if they are not combined with analytical methods, Sys et al.
55] [56] modified the FAO methodology through the assignment of the
orrect severity level for the suitability of the land providing given data
alues for each land characteristic. The FAO-SYS methodology presents
 variance of the method of matching tables which assigns the cor-
ect severity level of the land suitability, given data values for each
and characteristic. Five different descriptive classes are defined, indi-
ating different levels of the land competency. There are three different
ub-categories indicating the suitability of the land, suitable, moder-
tely suitable and marginally suitable, whereas two sub-categories in-
icate the unsuitability: unsuitable for economic reasons but otherwise
arginally suitable, and unsuitable for physical reasons. 

Based on the FAO-SYS methodology, Tsoumakas and Vlahavas
57] presented the Intelligent System for Land Evaluation (ISLE), a
nowledge-based model with GIS functionality and map interaction ca-
abilities. The system receives the digital map of an area alongside with
ts geographical database, displays the generated map, evaluates the
and units selected by the user according to FAO-SYS methodology and
nally visualizes the results of the land units in color. A similar ap-
roach based on FAO SYS frameworks exploiting GIS capabilities was
lso followed in ALSE [58] , where a realistic, practicable and functional
ystem was introduced. The necessary modifications realized in order
he system to determine the quality of land for different types of crops
n tropical and subtropical regions (Malaysia). 

A similar approach for the land evaluation is followed by Kalo-
irou [59] , who presented the Intelligent Geographical Information Sys-
em (LEIGIS), where a land suitability evaluation model is introduced
hrough the combination of expert systems and GIS technologies. The
odel is based on the FAO land classification for crops and both phys-

cal and economic parameters are considered. The novelty of this work
ies on the model’s ability to alter its rules based on different perfor-
ance observed in local areas while the map interaction capabilities

ffer a user-friendly environment that allows the evaluation of spatial
atasets without requiring special computer skill. 

Focusing on the specific features of the Mediterranean land, De la
osa et al. [60] introduced the software Mediterranean Land Evalua-

ion Information System (MicroLEIS). MicroLEIS was developed through
ime receiving significant updates, as it has been originally developed
n 1992 for Disk Operating System (DOS) and it has been integrated
ith many software tools such as databases, statistics, expert systems,
eural networks, Web and GIS applications [61] , and it has been used
or different case studies [62–64] . The software has evolved towards
n agro-ecological decision support system following a toolkit approach
ontaining two major components, land evaluation using spatial char-
cteristics and units; data and knowledge engineering through the use
f software tools. 

One more research work focusing on the Mediterranean area was
eld by Yialouris et al. [65] , where an expert system developed for the
iagnosis and treatment of pests, diseases and nutrient disorders of cer-
ain vegetable species. The software is offered in more than one lan-
uage, similar to MicroLEIS, but instead of offering the options of En-
lish/Spanish, VEGES is available on Greek/English/French. Concern-
ng the implementation of the system, it is developed through the defi-
ition of a series of rules in both natural language and forms of Object-
ttribute-Value (OAV). A similar approach to VEGES was followed in
IMEX [66] , but with a focus on the assist of the lime cultivation was
eld by Mahmoud et al. LIMEX is an expert system adopting the KADS
ethodology [67] for knowledge representation. 

.2. From theoretical frameworks to web and mobile technologies 

The growth of the Internet in early ’00s has affected the agricul-
ure sector, as web technologies provide significant capabilities to both
armers and agriculture systems. The advances in the agriculture domain
hrough the exploitation of the Internet accomplished in two stages, the
rst one included general-purpose web technologies aiming at the bet-
er collaboration of the involved stakeholders for effective farm man-
gement and the second stage concerns the exploitation that IoT offers.
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Table 1 

Existing agriculture systems. FAO: if the system adopts the FAO framework and directions, GIS: if GIS 
capabilities are supported, Web: if the system offers a web-interface, Mobile: if the system offers a 
dedicated mobile interface, Big Data: if big-data architecture was designed, Cloud: if a cloud-based 
approach was adopted, Area - the area where the test case was applied. ∗ In [71] is explicitly mentioned 
mobile application as future work. 

System Year FAO GIS Web Mobile Big Data Cloud Area 

LIMEX [66] 1995 No No No No No No Egypt 

VEGES [65] 1997 No No No No No No Southern Greece 

ISLE [57] 1999 Yes Yes No No No No Greece 

LEIGIS [59] 2002 No Yes No No No No Greece 

WASS [68] 2004 No No Yes No No No Not Applied 

Micro-LEIS [61] 2004 No Yes Yes No No No Andalusia, Spain 

Web-GIS [69] 2008 Yes Yes Yes No No No Sri Lanka 

Nikilla [70] 2010 No Yes Yes Yes No No Not Applied 

MCDA [52] 2012 Yes Yes No No No No Mleta, Algeria 

MCC [52] 2012 No No Yes Yes No Yes Not Applied 

ALSE [58] 2013 No Yes No No No No Malaysia 

RemoteAgri [71] 2014 No Yes Yes No ∗ No No Greece 

Reznik [72] 2017 No Yes Yes Yes Yes Yes Czech Republic 

AaaS [73] 2017 No No Yes Yes Yes Yes India 
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a  
he integration of IoT capabilities to the agriculture domain has estab-
ished Agriculture 2.0, where sensor networks have a prominent role in
ata collection and in the automation of the agriculture procedures. 

In 2004, Hu et al. [68] proposed a Web-based agricultural support
ystem with the acronym WASS, focusing on the organizational struc-
ure of a complete agriculture system. The proposed system exploits the
apabilities that Web offers for collaboration (chat rooms, video confer-
ncing, etc.) creating a meta-laboratory that spans in multiple geograph-
cal areas. Following the same principles of collaboration that Web can
ffer a Web-based GIS consulting system was introduced in Jayasinghe
nd Machida [69] , providing information for tomato and cabbage culti-
ation in areas of Sri Lanka. Both research works apply already known
nd widely-used Web technologies applied in the agriculture sector, ad-
ressing mostly problems of communication between farmers and ex-
erts. The importance of the different roles that stakeholders may have
n the Web-based farm management systems is stressed in [70] . An ar-
hitecture is detailed illustrated and partially realized as a proof of con-
ept implementation presenting the technologies and protocols that are
sed in each layer of it, from the format of the input files to the user
ntities engaged in the provided services. 

Other concepts such as IoT, big data, image processing and cloud
omputing are applied in the field offering new unexplored capabili-
ies in the field of agriculture. Cloud computing implements the con-
ept of on-demand delivery of compute power, database storage and
pplication, instead of using a local server or a personal computer with
redefined capabilities. The cloud providers typically use the “pay-as-
ou-go ” model, providing the opportunity for business to grow with-
ut demanding a big initial capital. Cloud computing is classified based
n the level of abstraction that offers to the users, and there are three
ain approaches Infrastructure as a Service (IaaS), Platform as a Service

PaaS) and Software as a Service (SaaS). IaaS offers only basic resources
uch as virtual-machines and different categories of block storage, PaaS
rovides the capability to the consumers to deploy and configure their
pplication onto the provided cloud infrastructure, without having to
ontrol the underlying infrastructure components (servers, OS, network,
tc.), and SaaS is the ultimate level of abstraction, where the consumer
as access only to limited user-specific application configuration and
ettings the application is accessible from different client devices. 

Prasad et al. [74] introduced the term of Mobile Cloud Computing
n the field of agriculture, which is a combination of the technologies
f the mobile and cloud computing. A simple conceptual architecture
or agriculture is consisting of three basic components i) farmers edu-
ation and awareness, i) weather forecasting, and iii) crop advice and
nalysis. The proposed model is characterized by its authors as ‘a very
imple model’ as it targets to the wider acceptance from the farmer’s
ommunity, who receive the technology either as SaaS either as IaaS,
ut without knowing details concerning its implementation. 

Influenced from the trend of cloud technologies Gill et al. [73] in-
roduced the concept of Agriculture as a Service (AaaS), where a com-
lete architecture is provided integrating other cloud-related technolo-
ies such as SaaS, PaaS and IaaS. The concept for the creation of the
rchitecture is the continuous interaction between different stakehold-
rs in a holistic approach including i) selection, ii) preprocessing, iii)
ransformation, iv) classification and v) interpretation of the gathered
ata. 

In Table 1 a summarization of the aforementioned agriculture sys-
ems with the features of each system take place. The first column de-
icts the name of the proposed system, the second one indicates the
lignment of the system with the FAO methodology, the third col-
mn demonstrates if the system includes GIS capabilities, the next two
olumns exhibit the available interfaces of the application (web-based
nd mobile), the sixth column indicates the exploitation or not of big
ata from the proposed agriculture system, the seventh column declares
xistence or not of a cloud infrastructure, and the last column indicates
he area where the system was tested. 

From the agriculture systems that are presented in the table, only
hree systems follow the FAO methodology, and the most recent sys-
em adopting the proposed methodology implemented in 2012. The use
f GIS is wide-spread in agriculture systems, however it seems that the
unctionalities provided from GIS are overlooked in some cases where
eb technologies are enabled. As the use of mobile phones is prominent

egardless the geographic location or even the technological background
f the users, mobile interfaces are offered to the most recent agricul-
ure systems offering an instant interaction with the users of the system.
he latest technological advances (big data and cloud-enabled technolo-
ies) that are presented in the paper are applied in three agriculture
ystems, and the combination of both technologies applied only in two
ystems. 

The constant development of the agriculture system can be easily
oticed from the addition of features through time, starting from the
nclusion of GIS capabilities and ending up to development of applica-
ion in cloud infrastructure. Although the FAO framework was a point
f reference for both researches and farmers, the recent approaches do
ot take it into consideration, revealing needs that are beyond a sim-
le land evaluation. The focus of the researches has moved towards
he tailoring of the system to specific needs and to the ease of ac-
ess, thus web-based and mobile applications have gained the inter-
st of both industry and research society. Another point that should
e stressed is the lack of GIS capabilities in some of the state-of-the-
rt systems revealing the need for easily readable information from
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he users, instead of a process-demanding map interaction. From the
volution of agriculture systems, it becomes evident that the use of di-
erse information from multiple sources becomes more than a necessity.
hese aspects are considered in the next section, with the aim of reveal-

ng the potential of information extracted from multiple data in smart
griculture. 

. Big data and sources of data in smart agriculture systems 

With the emerge of Internet of Things (IoT) the generated data are
ncreasing rapidly and a significant part of them are generated from
ensors, actuators and software, providing a useful insight for a number
f different topics and problems. The concept of big data is becoming
 prominent trend in many and different fields including agriculture,
lthough not every aspect (or dimension) of the concept is covered. A
ecent review on big data and agriculture [32] considered that only two
esearch work used all of the three basic dimensions of the big data
oncept. In the aforementioned literature review a number of different
reas are included under the term of agriculture, from weather and cli-
ate change to supply chain and biodiversity. The term of big data is
sed often and some times abusively, as only few researchers have the
now-how to exploit the capabilities that are offered from the massive
mount of data. 

This section presents the existing agriculture systems exploiting dif-
erent sources of information, focusing on the attribute of variety in big
ata. The initial step towards the exploitation of big data is the com-
ination of data from different sources that would eventually lead to
ophisticated data and software architectures in agriculture capable to
tilize big data. 

.1. Descriptive data 

In this paper we use the term descriptive data in order to classify the
ata describing the features and the characteristics of the situation or
roblem that is being studied. Descriptive data are numerical data that
ave been collected and stored without using any kind of automation,
uch as analysis of the chemical attributes of the soil in an independent
ab. They are the most popular type of data in the agriculture sector and
hey are widely used for different research questions. The majority of re-
earch projects exploit them, since they are easily accessible, often pub-
icly available and relatively reliable as they offered either from publicly
ervices or research organizations. Table 2 illustrates a typical format of
escriptive data, where in the first column the years of observation are
epicted and the features of the object are represented in the rest of
he columns. The table portrays the weather index insurance of specific
ounties in Mexico, the data are derived from the Secretary of Agricul-
ure, Livestock, Rural Development, Fisheries and Food (SAGARPA) and
hey have been elaborated from [75] . 

The impact of precipitation is the main topic both in Tripathi et al.
83] and Fuchs et al. [75] , however the two research works have differ-
nt objectives as the former focuses on downscaling the precipitation in-
ex at monthly time scale using a SVM approach and the latter adopts a
able 2 

xample of descriptive data as presented in Fuchs et al. [75] describing the 
eather index insurance’s coverage for maize. In the first column the years are 
epicted, and on the rest of the columns the code of the county, the production 
alue, the premium and the indemnity payments are described. 

Counties Extension Value Premium Indemnity 

2003 5 69,010 24,912,610 2,389,119 0 

2004 39 189,742 142,306,500 17,803,054 0 

2005 162 756,806 431,086,720 59,951,795 75,726,560 

2006 552 1,069,670 625,505,760 68,524,501 11,596,080 

2007 507 1,117,200 658,377,600 77,109,615 38,441,200 

2008 633 1,532,239 1,197,676,908 192,455,049 73,061,820 
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olistic approach concerning farmer’s rainfall insurance problems. Both
orks use three different databases, applied in specific sites (Mexico,
amataka-India), use similar features ( Table 3 ) and their methodology
an easily be adopted for different case studies. 

The work of Frelat et al. [76] belongs in the wider area of agriculture,
s it is focused on food availability, but for sake of completeness we
nclude in our taxonomy. Their methodology uses different databases
nd their test case covers 93 sites in 17 countries, but it is not clear
hich features are used from which database. 

Table 3 summarizes research work exploiting descriptive data from
atabases and their included features. Because descriptive data are of-
en freely available from national authorities and research centres, we
resent the owners of the data that are used in each research work.
his approach is also followed in the upcoming tables, in order to guide
he reader in the demanding task of data detection and retrieval, where
illion of data sources exist providing any kind of data. Two of the re-

earch works presented in the table [75,76] are related only in national
r regional authorities for the collection of datasets, and on research
ork [83] exploits data from an agency abroad. As agriculture is a sec-

or which is closely connected to the geographical locations where the
xperiments take place, the databases often contain data that cannot be
sed in other experiments in different areas. 

Considering the features that are used in the reviewed research work
f this subsection, there is a wide range of different types of data from
ir temperature and specific humidity, to country poverty index and
amily size. The combination of data retrieved from meteorological sta-
ions (air temperature, humidity, wind, etc.) and demographic statistics
household information, family size, poverty index) show a great diver-
ity in the used data types, revealing the wide spectrum of application
f the agriculture domain and the different goals each research work
as. It is notable that none of the three research papers presented in the
able 3 exploits data related to the soil’s condition. 

.2. Exploration of vector data 

Apart from descriptive data, another source that is widely used is
ector data. Vector data represent real world features (parcels, pastures,
orest, etc.) within the GIS environment and each vector feature have
ttributes, which consist of text or numerical information that describe
hem. In this literature review article we distinguish vector data from
emote sensing data, mostly because we emphasize in the collection of
ata, where vector data is mostly used as a common database integrated
n maps, whereas data collected with remote sensing techniques are
ften collected for specific purpose and they cannot be shared easily
mongst research organizations. 

In this subsection we explore datasets and features used in modern
esearch work that exploit descriptive and vector data, whereas research
tudies that also use other forms of data are presented in the next subsec-
ions. The majority of the systems that are presented in this subsection
re agriculture systems that were analyzed in the first section of the
aper where the emphasis was given in the technologies that they sup-
ort, whereas in this subsection the focus is given in the datasets and
he features that are used. 

Every research work grouped in this category uses soil maps as vec-
or data and the descriptive data provide additional information for
he soil’s composition. The descriptive data are composed from differ-
nt databases characterizing the physical (slope, soil texture, etc.) and
hemical attributes (soil pH, organic C(%), etc.) of the soil in the area
here the case-study took place. An example of combining vector and
escriptive data is the Fig. 1 , where the available farmland of Malaysia
s evaluated based on the suitability for Mango cultivation. The image
ffers both geographical points of reference, but also illustrates the re-
ults of the analysis that took place in Elsheikh et al. [58] . 

Meteorological data (rainfall and temperature) have been used to en-
ich the databases both in Jayasinghe and Machida [69] , and Elsheikh
t al. [58] . Concerning the source of the data, Elsheikh et al. [58] use
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Table 3 

Indicative existing research work in the (wider) area of agriculture. Owner: the organization that the used dataset is in its possession, Database: the name of the 
used database, Features: the characteristics of the databases that have been used in each research work. The research work presented in this table have been limited 
in the use of only descriptive data. 

Authors: Owner Database: Features: 

Frelat et al. [76] Lund University [77] AFRINT livestock products, Off farm income, cash crops 

products, food crop products, cash available, 

food available, food need, household size crop 

land used by the farm household (in ha), the 

livestock herd size (expressed in TLU), the 

family size (in MAE) 

CCAFS-CGIAR [78] CGIAR Research Program on Climate Change, 

Agriculture and FoodSecurity (CCAFS) 

Cialca [79] Consortium for Improving Agriculture- based 

Livelihoods in Central Africa (CIALCA) 

DFAT - CORAF [80] Conference des Responsables de Recherche 

Agronomique Africains Australian Aid 

(CORAF-AUSAID) 

n2africa [81] N2Africa 

SIMLESA [82] Sustainable Intensification of Maize and 

Legume Systems for Food Security in Eastern 

and Southern Africa (SIMLESA) 

Tripathi et al. [83] National Oceanic and Atmospheric 

Administration and Cooperative 

Institute for Research in 

Environmental Sciences Climate 

Diagnostics Center [84] 

NCEP/NCAR [85] air temperature, relative humidity, specific 

humidity, geo-potential height, zonal, vertical 

and meridional wind velocities at various 

pressure levels and sea level pressure. 

Indian Institute of Meteorological 

Department [86] 

Parthasarathy et al. [87] monthly area weighted rainfall data 

Canadian Center for Climate 

Modelling and Analysis (CCCma) [88] 

Coupled General Circulation Model (CGCM2) air temperature, specific humidity, geopotential 

height, zonal and meridional wind velocities at 

various pressure levels and sea level pressure. 

Fuchs et al. [75] Mexican Ministry of Agriculture [89] rain-fed dataset number of hectares sowed and harvested per 

year, tons of production at the county level 

Mexican Ministry of Agriculture. Weather index insurance coverage weather stations used, insured crops (maize, 

beans, sorghum and barley), number of hectares 

insured, value of insured production, value of 

the premiums paid, and indemnity payments 

(in case a drought occurred). 

Not provided Program for Direct Assistance in Agriculture 

(PROCAMPO) [90] 

producer level information of the total number 

of hectares used for production, total assistance 

amount, received, whether the beneficiary 

produces in private or communal land and total 

land size (in hectares) 

National Water Commission daily rainfall daily rainfall 

National Population Council (CONAPO) 

[91] 

Poverty Index County Level Poverty Index 

National Institute of Statistics and 

Geography (INEGI) [92] 

National Household Expenditure and Income 

Survey (ENIGH) [93] 

household level information 
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he data from the responsible national authority (Department of Irriga-
ion and Drainage / Department of Irrigation and Drainage, Kuala Lam-
ur) whereas Jayasinghe and Machida [69] combines multiple sources
f data, such as previously held research work, national authorities and
nternational databases. 

The work of Tsoumakas and Vlahavas [57] can be characterized as
oftware-oriented research, as their contribution lies on development of
n expert system (ISLE), which is based on previously established expert
ystems (LEVAL [99] , LEVAL 2 [98] ). Apart from the established rules,
 digital map of the area (owned by the university) is also provided as
n input for the system. 

The combination of five different sources took place in the work
f Mendas and Delali [52] , including national authority (ANRH) [94] ,
tudies from private-held company (SCET-Tunisia) [95] and open GIS
atabases (diva, ASTER-GDEM) [96,97] . Although the GIS databases
re created through the use of remote sensing techniques, we do not
ategorize the specific research as remote-sensing-based, as the authors
o not provide information for the use and exploitation of the available
ources. 

Table 4 presents the aforementioned research work, displaying the
uthors of the research paper in the first column, the owners of the
atabases that are used in the second column, the names of the databases
n columns three and four categorized based on the type of data (descrip-
ive, vector), and the features offered from the entire database in the last
olumn. Research projects that desire to perform combination of differ-
nt sources of data, must exploit more than one dataset as agriculture
atasets rarely mx different types of data. From the 4 research papers
n the table, half of them combine databases with vector data in order
o get unique features (soil/flood map, terrain, land-use map, etc.) from
ach database. More than half of the papers combine databases with
escriptive data gaining information for the weather (rainfall and tem-
erature) and the soil condition (chemical and physical values). It has to
e mentioned that in Jayasinghe and Machida [69] the collected infor-
ation are named regional experience, as they have been created from
easurements and assessments of local experts. 

The great advantage that vector data provide is the explicitly defini-
ion of boundaries in the tested area, leading to a more precise installa-
ion of the available meteorological stations for a future research. On the
ther hand, as vector data are not used for general-purpose tasks, they
re combined with technical descriptive data which include numerical
eatures such as temperature, average rainfall and soil characteristics,
reating a database which cannot be re-used easily in other research,
ecause it is case-study oriented. 

.3. Satellite exploitation and remote sensing 

The term of remote sensing is mostly used to contrast with the on-
ite observation and on this paper refers to the use of satellite-based
ensors capable to detect and monitor the physical characteristics of an
rea by measuring the reflected and emitted radiation from the targeted
rea. Remote sensing techniques are mostly used in earth science disci-
lines (geology, ecology, meteorology, etc.), but they can also provide
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Fig. 1. Suitability map of Malaysia for mango cultivation, according to FAO-SYS 
classification, as it has been presented in Elsheikh et al. [58] . 
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Fig. 2. A pseudo-color infrared MODIS image, illustrating different degrees of 
VI of the test area, as it has been presented in Galford et al. [114] . 
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seful information for the field of agriculture, such as Vegetation Indices
VIs). A VI is a spectral transformation of two or more spectral bands
f the electromagnetic spectrum that are measured as reflectance from
he Earth’s surface designed to enhance the contribution of vegetation
roperties. 

The construction of smoothed VI [112] time series of land-use and
and-management through the exploitation of MODIS data [113] takes
lace in Galford et al. [114] , aiming at the detection of changes in land-
over and land-use. Concerning the technical details, the authors have
ocused on the transformation of the wavelet and the optimal use of its
ower, rather on the aggregation with different sources of data. The use
f a second database took place only as reference data (known cropping
atterns) in order to calculate omission and commission errors of the
roposed wavelet transformation. 

An example of image taken from satellite is depicted in Fig. 2 orig-
nated from [114] , where a pseudo-color infrared MODIS image is il-
ustrated. The different colors of the image express different types of
egetation, with the bright red areas representing cerradÃ£o savanna
ative vegetation, the dark greens areas suggest cerrado native vege-
ation, the bright turquoise blues show row-crop agriculture, and the
hite areas of the map indicate bare agricultural fields. 

A similar approach was also followed in Sakamoto et al. [115] ,
roposing a new method for monitoring remotely the phenological
tages of paddy rice. Apart from MODIS/Terra database, statistical data
nd digital land information was provided from the national authorities
n charge and used as descriptive and vectorized data accordingly. 

The research project entitled CRC/TR 32, as presented in Waldhoff
t al. [116] is one of the few research projects where the adoption of a
ulti-data approach is the main objective. Remote sensing databases are

ncorporated with additional official spatial land-use information. Five
ifferent remote sensing databases were registered to the official unified
patial database of ATKIS [118] , offered from the official national au-
hority of the test-area. Apart from the ATKIS database, the field blocks
atabase [119] was used to enrich the unified spatial database. 
Multi-temporal, multi-sensor radar and ancillary spatial data were
ombined in Barrett et al. [123] in an effort for grassland monitoring.
hree different satellites were used to create the synthetic aperture radar
ENVISAT [130] , ERS-2 [131] , ALOS PALSAR [132] ) and four different
ources generated both descriptive and vector data. 

Research work combining remote sensing, descriptive and vector
ata are summarized in Table 5 . The prominent position of NASA in RS
atabases is evident, as three out of the four research papers presented
n the table exploit a database that is its property. There are alternatives
o NASA, as databases from three more space agencies (ISRO, DLR, ESA)
re exploited in the research papers presented in this section. Descriptive
ata are not included either in the work of [114] or in [116] , whereas
n [115] and [123] , they are utilized. Considering the work of Barrett
t al. [123] , it exploits technical reports which include both maps and
escriptive data, therefore these sources belong in both descriptive and
IS data. 

As it has been previously stated, in this review paper we classify
s remote sensing databases the data that have been created exploit-
ng remote sensing methods and the methods are adequately described,
nd as vector data we defined databases, which their creating methods
re not provided and there are probably manually digitized. With the
roper use of remote sensing data useful information can be extracted
uch as the VI and its products that are used to describe soil’s char-
cteristics. Although remote sensing and vector data seem partially to
verlap, this rarely happens, because usually vector data are preferred
hen both types are available and intend to provide the same infor-
ation. Therefore, remote sensing data are mostly used for extracting

dvanced information for the VI and other derived products for the test
rea. 

.4. Data acquired from IoT and drone sources 

On this review paper we distinguish airborne images from remote
ensing due to the different way those two sources are collected. The
atellites databases are well-known, reliable with fixed frequency, which
ay does not fit the requirements of research study. On the other hand,
 UAV can be employed when asked and stay focused on a specific area.
onsidering their use, UAVs have been used either for extraction of
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Table 4 

Existing research work in the area of agriculture, combining descriptive and vector data. Owner: the organization that the used dataset is in its possession, 
Database: the name of the used database, which are classified in descriptive and vector database depending on their content, Features/Details: the 
characteristics of the databases that have been used in each research work. 

Authors: Owner: 
Database: 

Features / Details: 
Descriptive: Vector: 

Mendas and Delali 

[52] 

ANRH-Algeria + SCET Tunisa [94,95] ANRH-Algeria + 
SCET Tunisa 

Water reserve, drainage, permeability, 

pH, Electrical conductivity, Active 

limestone, cation exchange capacity, 

soil texture, soil useful depth 

METI + NASA ASTER GDEM [96] Slope 

DIVA-GIS [97] World population map Availability of labour 

Not provided Proximity (roads) Topographical map in 1/25,000 

Not provided Nord Sahara 1959 Geographical data 

Tsoumakas and 

Vlahavas [57] 

Tsioumberi [98] LEVAL Expert system with rules 

Sakellariou and Vlachavas [99] LEVAL 2 

Lab of Remote Sensing and GIS, 

Department of Agriculture, Aristotle 

University of Thessaloniki [100] 

Research map of the 

area 

Digital map 

Elsheikh et al. [58] Department of Agriculture (DOA) 

[101] 

Soil chemical and 

physical values 

Profile data for each type of soil 

DOA Soil map Soil semi detail map, scale 1:25,000 

DOA Terrain Terrain value extracted from 

topographic map 

DOA Land-use map Scale 1:50,000 

Department of Irrigation and Drainage 

(DID) [102] 

Rainfall 

precipitation 

Monthly rainfall from 34 stations 

during 10 years 

DOA Length of dry season 

map 

Scale 1:50:000 

DOA Drainage network Scale 1:25:000 

DID Flood map Scale 1:30:000 

Jayasinghe and 

Machida [69] 

Not provided Average annual 

rainfall 

Not provided Average annual 

temperature 

International Research Institute for 

Climate and Society (IRI) [103] 

Topography 

Panabokke [104] Soil properties 

Urbuan Development Authority [105] Land use 

Not provided District maps 

DOA Regional 

experience 

Soil pH Texture drainage organic C (%) 

CEC (cmolckg-1) Available P (ppm) 

Elevation (m) Temperature (C) Rainfall 

(mm) 

Senarath and Dassanayake [106] , 

Senarath and Dassanayake [107] , 

Dassanayake and Hettiarachchi [108] , 

Dassanayake et al. [109] , De Silva and 

Dassanayake [110] , Dassanayake and 

De Silva [111] , Panabokke [104] 

Soil maps 
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arious VIs either for identification of cropping patterns, whereas satel-
ite images can only identify the photosynthetic activity of an area. 

The evaluation of applicability of MODIS time-series for the task of
and-use land-cover, rather the aggregation of multiple sources of data
rove the research of Wardlow et al. [133] . The followed approach for
ODIS exploitation is quite similar to Galford et al. [114] , but the work

f Wardlow et al. [133] combines four databases and three different
ources of data, whereas Galford et al. [114] used only already known
ropping patterns of the area. Apart from the remote sensing sources
MODIS, Landsat ETM), aerial images and a geo-referenced public land
urvey system were also used. 

The remote sensing-based grass growth analysis that took place in
he context of TO2 project [134] combines four different sources of data:
he vectorized parcels of the test area, satellite data from DMC [135] and
POT satellites [136] , eBee images [137] and descriptive field measure-
ents. TO2 project is a good example of a research which integrates IoT-

enerated data in a previously available descriptive dataset, a technique
hat can improve and keep up-to-date existing descriptive datasets. 

The reduction of the environmental impact of the agriculture sector
hrough the exploitation of the big data from different sources is the re-
earch topic in Ř ezník et al. [72] . A complete architecture is proposed
ombining three different kind of data sources (farm machinery teleme-
ry, agrometeorological observation, remote spatial sensors), while big
ata related technologies are applied, such as array-based databases and
arallelizing storages. It is important to be stressed that the authors ex-
ress their skepticism concerning the term big, both in the title of their
ork and on the main body of their research. 

The definition of management zones through clustering techniques
k-means) is the objective of Schuster et al. [138] . The originality in their
ork lies on the use of airborne sensors using multi-spectral images for

he collection of geo-referenced field, instead of satellite databases. Fur-
hermore, physical characteristics of the soil were collected from both
 descriptive dataset and a sensor-based system, combined with a sub-
eter accurate Global Positioning System (GPS) receiver. The “Helena

ertility trial ” database that was used is one exceptional example of a
ulti-source database, as it incorporates descriptive, vector, image and

ensor-based data. 
The data collection process is not the main research question of the

apers presented in Table 6 , therefore in some cases the type of data
s not clearly defined. For instance, in Kempenaar et al. [134] one of
he datasets has been created with the use of field measurements, that
ere not collected systematically and different means were used in each

ime, so that the specific dataset was classified as both IoT-collected
nd descriptive. The features that are described in Table 6 are more
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Table 5 

Existing research work in the area of agriculture, combining data derived from remote sensing techniques, descriptive and vector data. Owner: the organi- 
zation that the used dataset is in its possession, Database: the name of the used database, which are classified in descriptive and vector database depending 
on their content, Features: the characteristics of the databases that have been used in each research work. 

Author: Owner: 
Database: 

Features: 
RS: Historic: Vector: 

Galford 

et al. 

[114] 

NASA MODIS EVI data 

MOD09 (V004) 

8-day, 500 m wavelet-smoothed time 

series, EVI, band 3 

Not provided Cropping 

patterns 

Referenced data for Fazenda Santa 

Lorders 

Waldhoff

et al. 

[116] 

Chamber of Agriculture of 

North Rhine-Westphalia [117] 

ATKIS [118] road network, prominent landscape 

features, residential, industrial and 

impervious surface areas, forest areas 

arable land grassland 

Field blocks 

[119] 

coherent parcels (arable land or pasture) 

NASA ASTER (VNIR only) 

Indian Space Research 

Organization (ISRO) [117] 

IRS-P6 (LISS III) 

NASA Landsat ETM + (L7) 

NASA Landsat TM (L5) 

German Aerospace Center (DLR) 

[120] 

Rapid Eye 

Sakamoto 

et al. 

[115] 

NASA MODIS/Terra data Smoothed EVI time profile land 3 8d 

frequency 

Ministry of Agriculture, Forestry 

and Fisheries (MAFF) of Japan 

[121] 

Statistical data 150 cropping zones 

Ministry of Land, Infrastructure 

and Transportation of Japan 

[122] 

Digital national 

land 

information 

paddy fields, upland fields, forest, 

wasteland, buildings, roads and rail 

roads, rivers and lakes, seaside, sea, golf 

courses, and other types 

Barrett 

et al. 

[123] 

European Space Agency 

(ESA) [124] 

ERS C-band single mode, both asc and desc 

orbit 

ENVISAT-ASAR C-band, asc orbit 

ALOS PALSAR L-band, asc orbits 

Irish Department of Agriculture, 

Food & the Marine [125] 

Irish LPIS area, crop type, stocking densities 

O’Neill et al. [126] , O’Neill et al. 

[127] 

NPWS semi-natural grasslands field 

survey 

515 2m 

∗ 2m releves 

Forest Service (Ireland) [128] Forest Inventory & Planning System 

(FIPS) 

Fealy et al. [129] Teagasc-EPA Soils and Subsoils 

dataset 

10m spatial resolution DEM and OSI 

orthophotagraphy 
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imited compared to those that have been presented in Table 3 , as there
s greater focus and some features provided from descriptive databases
re not included. 

From the four research papers presented in Table 6 , only in Schuster
t al. [138] RS data are not included in the expanded data collection, re-
ealing the need for combination of different data sources. Considering
he features that have been collected from the IoT devices and the UAV,
hey are limited to meteorological and topographic data (humidity, tem-
erature, wind speed, geodetic information, etc.). Although IoT devices
nd UAV have been used for the data collection process, they currently
annot offer drastically advanced features, as the existing agriculture
ystems are not designed to handle and combine efficiently different
ources. 

. Discussion & trends 

The recent technological advances have created an environment
here agriculture systems are thriving and have the potential to have
n even greater impact to the society. The presence of commercial sys-
ems presented as complete technological solutions and the integration
f new technologies in the recent research works indicate the high mar-
et and a prosperous research field. New technologies are integrated
nto existing agriculture systems, creating products capable to cover
he requirements of the modern agriculture, and as the demands of
he market are growing, improved services are offered. State-of-the-
rt technologies such as IoT and UAVs have the capability to reform
he field of smart farming, if successfully exploited, offering an au-
omatic collection of the data and information generated from aerial
hotos. 

Agriculture systems have been evolved from simple guidelines for
and evaluation to complicated systems able to collect and exploit data
rom different sources, optimize the chain production and ensure its
uality. The high standards that have been posed from the development
n the field of human-machine interaction, have also posed standards
o agriculture systems, where the usability of the system should be the
ighest possible aiming at the highest possible user experience. 

Technological concepts such as cloud computing and big data are
o longer vague ideas, but they can enhance the already existing ap-
roaches. Cloud computing can boost the growth of agriculture busi-
ess, without the need for investment in devoted infrastructure, whereas
rocessing and storing techniques under the wider term of big data en-
ble the exploitation of data with great volume and heterogeneity. The
eterogeneity of data is the most important aspect of big data in agri-
ulture, as neither the velocity or the volume are of major importance,
ince none of them can really offer useful information to farmers or agri-
ulture experts. The introduction of UAV’s and other image collecting
evices will eventually create the big volume of data, and therefore ef-
cient exploitation of data with great volume will become a challenge.
uture proposed agriculture system should prioritize on designing sys-
ems capable to combine data from different sources and should exploit
urther IoT and UAV technologies, which are not utilized enough in the
xisting agriculture systems. 
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Table 6 

Existing research work in the area of agriculture, combining data derived from remote sensing techniques and IoT devices, descriptive and vector 
data, and aerial images. The databases that are used are classified in remote sensing (RS), Descriptive, IoT, Vector and Image depending on their 
content. Features: the characteristics of the databases that have been used in each research work. 

Authors RS Descriptive IoT Vector Image Features 

Kempenaar 

et al. [134] 

Dairy 

Campus 

parcels 

Area mowed in ha, 

Total weight (kg), 

Percentage dry matter, 

Weight dry matter (kgds), 

Weight dry matter per ha (kgds/ha) 

DMC NIR and red spectral bands 

SPOT 

eBee emages amount of light 

field measurements grass height, 

dry matter measurementes 

Wardlow 

et al. [133] 

MODIS Time-series, 

250 m, 

Vegetation Index, 

16d frequency 

aerial images 

Landsat Landsat ETM 

PLSS 

coverage 

Ř ezník 

et al. [72] 

MapLogAgri System humidity, 

air temperature, 

vapor pressure Soil moisture, 

dielectric permittivity, 

volumetric water content moisture relative 

humidity, 

barometric pressure, 

wind speed, 

wind direction, 

rainfall precipitation, 

and rain and hail intensity temperature 

Landsat 8 All multispectral bands, EVI, NDVI 

Sentinel 2 

MODIS 

Schuster 

et al. [138] 

Helena fertility trial geodetic information bales of cotton per acre, 

biomass flow, 

geo-referenced field topographical 

characteristic, 

NDVI 

Sensor cart dataset soil electrical conductivity, shallow and deep 

soil resistivities 

RTK GPS elevation data 

physical 

characteristics 

dataset 

slope, 

soil series type, 

type of irrigation, 

seed variety, 

chemical treatments 
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On research level, smart farming is often connected with image pro-
essing for problems such as weed detection and fruit grading, which are
asks that are completed independently without engaging other prob-
ems either in pro-harvest or post-harvest cycle. An approach that does
ot fit the modern needs of an agriculture system, as it is focused on
 stand-alone task. Modern agriculture systems should adopt a more
olistic approach and be capable to combine different technologies for
 series of problems throughout the entire farming cycle, where data
rom different sources should be appropriately combined in order to
aximize the production. The successful and efficient combination of
ata and technologies is the main research question that should be an-
wered from future research and commercial systems, capitalizing the
atest technological advances. 

. Conclusion 

.1. A wide concept 

The agriculture sector covers a variety of different areas from soil
ultivation and water management to food availability and business
odeling, thus instead of trying to cover every possible aspect of big
ata in agriculture, this literature review is focused on the evolution
f agriculture systems and the variety of sources of data in the era of
ig data. Combining and aggregating data from multiple sources is not
n easy task, as it requires technical skills for each stage of the data
ifecycle (extract, transform, load) and deeper knowledge for both data
ining techniques and agriculture processes. Technical details for the

mplementation of the agriculture systems that are presented in previous
ections are not in the scope of this paper, as well as the used techniques
nd algorithms for exploiting the different sources of data. 

Another choice regarding the focus of the paper is the exception of
nimal agriculture, as the subject has covered sufficiently from Morota
t al. [34] . Other related fields to agriculture such as earth observation
139,140] , farm management [141–143] and weather/climate observa-
ion [144,145] have used only as tools which serve the final objective;
he efficient exploitation of different sources of data. 

It becomes clear that directions for future work is not that easy to
e provided, as the recent technological achievements have started be-
ng integrated in the agriculture sector and establish the era of smart
arming. Smart farming combines concepts (precision agriculture, land
anagement), scientific fields (earth observation, climate science) and

utting-edge technologies (image processing, GIS, UAV, multispectral/
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yperspectral imaging) that could improve the agricultural production.
ach one of the aforementioned subfields involves different techniques
nd methods that offer the capability of being explored in depth. The
undamental feature of every system materializing the concept of big
ata in agriculture is the collection and integration of data from multi-
le sources in an asynchronous way. 

The different areas that smart farming covers have as consequence
esearch projects with different objectives and ambitions. Some of these
esearch projects are not focused on the stage of data collection, but
ather on technical details for the implementation of the system or the
escription of a conceptual framework capable to capitalize the existing
echnologies, thus leading either to exclusion of the data collection stage
ither a simple reference of the used datasets. Therefore, it is often the
xact latitude and longitude that a digital map covers to be unknown,
r the specific features of a descriptive dateset not to be given. 

Apart from the lack of description of the used datasets, there has
een also noticed a lack of available data from national authorities. If
e exclude the remote sensing datasets that are accessible but not easy

o use, many descriptive datasets are either university property either
elong to a national authority and have been provided explicitly for the
mplementation of a project. Although descriptive data for a specific site
annot significantly contribute to a research to another area, it would
e beneficial to have a knowledge of the structure of databases and data
arehouses. 

The plethora and heterogeneity of agricultural data poses also the
roblem of an efficient taxonomy of the existing sources. Although FAO
reely offers numerous datasets [146,147] , the existing data taxonomy
ims at researchers that are fully aware of their goals, objects and the
esearch area, instead of focusing on data scientists that want to exper-
ment and wrangle the existing datasets. Apart from FAO and various
ational authorities, Kaggle also offers agricultural datasets [148] , ac-
ompanied with description and a user-voted score. 

.2. Future work 

Through the years agriculture was boosted with the use of different
echnological advances, starting from the integration of GIS to complete
loud deployment of commercial solutions. The next technological ad-
ancement that should be incorporated in agriculture is the UAV, as they
an be deployed in different tasks of smart farming, since they can ac-
uire, process, analyze and manage data. The body of the UAV can host
 wide range of hardware such as sensors and actuators providing the
apability to collect valuable data which can be used for further analysis
ither real time either on demand. Although the integration of UAVs in
veryday agriculture activities might seems a futuristic idea, the recent
dvances on low-power wide-area network (LPWAN) technologies such
s LoRaWAN [149,150] provide the potential for their integration to
xisting agriculture architectures. 

The combination of UAVs into existing smart farming processes can
rovide data that can be used to build precision models for individ-
al crops and plants, indicating the needs (water, fertilizer, pesticide,
tc.) each crop requires. The incoming data from UAVs can be used in-
ependently from other sources, but they can also be combined with
ata derived from IoT devices or satellite images enriching the current
ata warehouses. Armed with this information, agriculture systems can
nhance their prediction models and estimate the yield optimizing the
roduction chain downstream. 

Agriculture is a prosperous field not only for deploying UAVs, but
lso for evolving the existing techniques and approaches, realizing the
ransition from a single UAV system to a multi-UAV system. Collabora-
ion and coordination of multiple UAVs has the potential to build agri-
ulture systems that overcome the capabilities of the existing methods
nd procedures. An agriculture system designed to handle multi-UAV
ub-systems would have significant advantages compared to existing
ommercial or research solutions as reduction of cost [151] , scalabil-
ty, survivability [152] and heterogeneity [153] . 
Taking into consideration the existing agriculture systems (commer-
ial and research-oriented), the recent technological advances and the
igh demand for efficient exploitation of data, we stress the importance
f building agriculture systems focusing on the expandability and the
ntegration of new technologies. The primary goal of the agriculture
ystems should not be the instant knowledge, as it cannot be expressed
nto action, but the construction of personalized prediction models, built
rom the combination of data. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper. 

cknowledgement 

This research was co-funded by the European Union and Greek na-
ional funds through the Operational Program Competitiveness, En-
repreneurship, and Innovation, grant number T1EDK-04759 . 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.comnet.2020.107147 . 

eferences 

[1] B.D. Stocker, F. Feissli, K.M. Strassmann, R. Spahni, F. Joos, Past and future carbon
fluxes from land use change, shifting cultivation and wood harvest, Tellus B 66 (1)
(2014) 23188, doi: 10.3402/tellusb.v66.23188 . 

[2] A.A. Ahmed, G.E. Fogg, M.A. Gameh, Water use at Luxor, Egypt: consumption anal-
ysis and future demand forecasting, Environ. Earth Sci. 72 (4) (2014) 1041–1053,
doi: 10.1007/s12665-013-3021-8 . 

[3] M. von Lampe, D. Willenbockel, H. Ahammad, E. Blanc, Y. Cai, K. Calvin, S. Fu-
jimori, T. Hasegawa, P. Havlik, E. Heyhoe, P. Kyle, H. Lotze-Campen, D. Mason
d’Croz, G.C. Nelson, R.D. Sands, C. Schmitz, A. Tabeau, H. Valin, D. van der Mens-
brugghe, H. van Meijl, Why do global long-term scenarios for agriculture differ?
An overview of the AgMIP global economic model intercomparison, Agricult. Econ.
45 (1) (2014) 3–20, doi: 10.1111/agec.12086 . 

[4] O. Therond, M. Duru, J. Roger-Estrade, G. Richard, A new analytical framework of
farming system and agriculture model diversities. A review, Agron. Sustain. Dev.
37 (3) (2017) 21, doi: 10.1007/s13593-017-0429-7 . 

[5] E. Boserup, The conditions of agricultural growth: the economics of agrarian
change under population pressure, New York, 2005. doi: 10.1086/259271 . 

[6] B.M. Campbell, P. Thornton, R. Zougmoré, P. van Asten, L. Lipper, Sustainable
intensification: what is its role in climate smart agriculture? Curr. Opin. Environ.
Sustain. 8 (2014) 39–43, doi: 10.1016/J.COSUST.2014.07.002 . 

[7] L. Lipper, P. Thornton, B.M. Campbell, T. Baedeker, A. Braimoh, M. Bwalya,
P. Caron, A. Cattaneo, D. Garrity, K. Henry, R. Hottle, L. Jackson, A. Jarvis, F. Kos-
sam, W. Mann, N. McCarthy, A. Meybeck, H. Neufeldt, T. Remington, P.T. Sen,
R. Sessa, R. Shula, A. Tibu, E.F. Torquebiau, Climate-smart agriculture for food
security, Nat. Clim. Chang. 4 (12) (2014) 1068–1072, doi: 10.1038/nclimate2437 .

[8] D. Tilman, K.G. Cassman, P.A. Matson, R. Naylor, S. Polasky, Agricultural sustain-
ability and intensive production practices, Nature 418 (6898) (2002) 671–677,
doi: 10.1038/nature01014 . 

[9] E. Ostrom, A general framework for analyzing sustainability of social-ecological
systems., Science (New York, N.Y.) 325 (5939) (2009) 419–422, doi: 10.1126/sci-
ence.1172133 . 

[10] H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, H.M. Jawad,
R. Nordin, S.K. Gharghan, A.M. Jawad, M. Ismail, Energy-Efficient wireless sen-
sor networks for precision agriculture: a review, Sensors 17 (8) (2017) 1781,
doi: 10.3390/s17081781 . 

[11] C. Zhang, J.M. Kovacs, The application of small unmanned aerial systems
for precision agriculture: a review, Precis. Agric. 13 (6) (2012) 693–712,
doi: 10.1007/s11119-012-9274-5 . 

[12] G. Das , G. Cielniak , P. From , M. Hanheide , Discrete event simulations for scalability
analysis of robotic in-field logistics in agriculture?? A case study, in: IEEE Interna-
tional Conference on Robotics and Automation, Workshop on Robotic Vision and
Action in Agriculture (2018), Brisbane, 2018 . 

[13] R. Bonacin, O.F. Nabuco, I. Pierozzi Junior, Ontology models of the impacts of
agriculture and climate changes on water resources: scenarios on interoperabil-
ity and information recovery, Future Gen. Comput. Syst. 54 (2016) 423–434,
doi: 10.1016/J.FUTURE.2015.04.010 . 

[14] D. Ramesh, B. Vishnu Vardhan, Analysis of crop yield prediction using data
mining techniques, IJRET: Int. J. Res.Eng. Technol. 4 (1) (2015) 470–473,
doi: 10.15623/ijret.2015.0401071 . 

https://doi.org/10.13039/501100000780
https://doi.org/10.1016/j.comnet.2020.107147
https://doi.org/10.3402/tellusb.v66.23188
https://doi.org/10.1007/s12665-013-3021-8
https://doi.org/10.1111/agec.12086
https://doi.org/10.1007/s13593-017-0429-7
http://dx.doi.org/10.1086/259271
https://doi.org/10.1016/J.COSUST.2014.07.002
https://doi.org/10.1038/nclimate2437
https://doi.org/10.1038/nature01014
https://doi.org/10.1126/science.1172133
https://doi.org/10.3390/s17081781
https://doi.org/10.1007/s11119-012-9274-5
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0011
https://doi.org/10.1016/J.FUTURE.2015.04.010
https://doi.org/10.15623/ijret.2015.0401071


A. Lytos, T. Lagkas and P. Sarigiannidis et al. Computer Networks 172 (2020) 107147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] R.R. Mead , R.N. Curnow , A.M. Hasted , Statistical Methods in Agriculture and Ex-
perimental Biology, third, Chapman & Hall/CRC, 2002 . 

[16] J. Behmann, A.-K. Mahlein, T. Rumpf, C. Römer, L. Plümer, A review of advanced
machine learning methods for the detection of biotic stress in precision crop pro-
tection, Precis. Agric. 16 (3) (2015) 239–260, doi: 10.1007/s11119-014-9372-7 . 

[17] A. Singh, B. Ganapathysubramanian, A.K. Singh, S. Sarkar, Machine learning for
high-Throughput stress phenotyping in plants, Trends Plant Sci. 21 (2) (2016) 110–
124, doi: 10.1016/J.TPLANTS.2015.10.015 . 

[18] E.J. Coopersmith, B.S. Minsker, C.E. Wenzel, B.J. Gilmore, Machine learning as-
sessments of soil drying for agricultural planning, Comput. Electron. Agric. 104
(2014) 93–104, doi: 10.1016/J.COMPAG.2014.04.004 . 

[19] F. Balducci, D. Impedovo, G. Pirlo, F. Balducci, D. Impedovo, G. Pirlo, Machine
learning applications on agricultural datasets for smart farm enhancement, Ma-
chines 6 (3) (2018) 38, doi: 10.3390/machines6030038 . 

[20] K.H. Coble, A.K. Mishra, S. Ferrell, T. Griffin, Big data in agriculture: A
Challenge for the future, Appl. Econ. Perspect. Policy 40 (1) (2018) 79–96,
doi: 10.1093/aepp/ppx056 . 

[21] X. Li, X. Zhang, X. Ren, M. Fritsche, J. Wickert, H. Schuh, Precise positioning with
current multi-constellation global navigation satellite systems: GPS, GLONASS,
galileo and beidou, Sci. Rep. 5 (1) (2015) 8328, doi: 10.1038/srep08328 . 

[22] H. Liu, Z. Meng, P. Wang, X. Wei, Y. Han, Buffer algorithms for operation
area measurement based on global navigation satellite system trajectories of
agricultural machinery, Trans. Chin. Soc. Agricult.Eng. 31 (7) (2015) 180–184,
doi: 10.1080/23312041.2016.1223899 . 

[23] Smart farming and smart agriculture solutions – ThingsBoard. URL
https://thingsboard.io/smart-farming/ . 

[24] Solutions for Smart Farming - Agriculture IoT Solutions and Internet of Things
Technologies. URL https://www.kaaproject.org/agriculture/ . 

[25] Agricolus The platform for precision farming. URL https://www.agricolus.com/
en/ . 

[26] AGENSO Agricultural & Environmental Solutions. URL http://www.agenso.gr/ . 
[27] D. Vasisht , Z. Kapetanovic , J. Won , X. Jin , R. Chandra , S. Sinha , A. Kapoor , M. Su-

darshan , S. Stratman , FarmBeats: An IoT Platform for Data-Driven Agriculture, in:
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), USENIX Association, Boston, MA, 2017, pp. 515–529 . 

[28] Proagrica - Empowering global agriculture & animal health, URL https://proagrica
.com/solutions/data-and-analytics/ . 

[29] FarmCommand - All-in-one farm management platform by Farmers Edge, URL
https://www.farmersedge.ca/farmcommand/ . 

[30] AgFiniti R ○ – Ag Leader Technology, URL http://www.agleader.com/products/
agfiniti/ . 

[31] P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, A. Zaslavsky, Internet of
things platform for smart farming: experiences and lessons learnt, Sensors 16 (11)
(2016) 1884, doi: 10.3390/s16111884 . 

[32] A. Kamilaris, A. Kartakoullis, F.X. Prenafeta-Boldú, A review on the practice of
big data analysis in agriculture, Comput. Electron. Agric. 143 (2017) 23–37,
doi: 10.1016/J.COMPAG.2017.09.037 . 

[33] S. Wolfert, L. Ge, C. Verdouw, M.-J. Bogaardt, Big data in smart farming ?? a review,
Agric. Syst. 153 (2017) 69–80, doi: 10.1016/J.AGSY.2017.01.023 . 

[34] G. Morota, R.V. Ventura, F.F. Silva, M. Koyama, S.C. Fernando, Big data analytics
and precision animal agriculture symposium: machine learning and data mining
advance predictive big data analysis in precision animal agriculture1, J. Anim. Sci.
96 (4) (2018) 1540–1550, doi: 10.1093/jas/sky014 . 

[35] T.B. Long, V. Blok, I. Coninx, Barriers to the adoption and diffusion of techno-
logical innovations for climate-smart agriculture in Europe: evidence from the
Netherlands, france, switzerland and italy, J. Clean. Prod. 112 (1) (2016) 9–21,
doi: 10.1016/J.JCLEPRO.2015.06.044 . 

[36] R. Zougmoré, S. Partey, M. Ouédraogo, B. Omitoyin, T. Thomas, A. Ayantunde,
P. Ericksen, M. Said, A. Jalloh, Toward climate-smart agriculture in West Africa: a
review of climate change impacts, adaptation strategies and policy developments
for the livestock, fishery and crop production sectors, Agricult. Food Secur. 5 (1)
(2016) 5–26, doi: 10.1186/s40066-016-0075-3 . 

[37] M. Reed, L. Stringer, A. Dougill, J. Perkins, J. Atlhopheng, K. Mulale, N. Favretto,
Reorienting land degradation towards sustainable land management: linking sus-
tainable livelihoods with ecosystem services in rangeland systems, J. Environ. Man-
age. 151 (2015) 472–485, doi: 10.1016/J.JENVMAN.2014.11.010 . 

[38] P. Sklenicka, Classification of farmland ownership fragmentation as a cause of land
degradation: a review on typology, consequences, and remedies, Land Use Policy
57 (2016) 694–701, doi: 10.1016/J.LANDUSEPOL.2016.06.032 . 

[39] G. Hochman, D. Rajagopal, G. Timilsina, D. Zilberman, Quantifying the causes of
the global food commodity price crisis, Biomass Bioenergy 68 (2014) 106–114,
doi: 10.1016/J.BIOMBIOE.2014.06.012 . 

[40] M.C. Nelson, S.E. Ingram, A.J. Dugmore, R. Streeter, M.A. Peeples, T.H. McGovern,
M. Hegmon, J. Arneborg, K.W. Kintigh, S. Brewington, K.A. Spielmann, I.A. Simp-
son, C. Strawhacker, L.E.L. Comeau, A. Torvinen, C.K. Madsen, G. Hambrecht,
K. Smiarowski, Climate challenges, vulnerabilities, and food security., Proc. Natl.
Acad. Sci. U.S.A. 113 (2) (2016) 298–303, doi: 10.1073/pnas.1506494113 . 

[41] J. Vandermeer, A. Aga, J. Allgeier, C. Badgley, R. Baucom, J. Blesh, L.F. Shapiro,
A.D. Jones, L. Hoey, M. Jain, I. Perfecto, M.L. Wilson, Feeding prometheus: an
interdisciplinary approach for solving the global food crisis, Front. Sustain. Food
Syst. 2 (2018) 39, doi: 10.3389/fsufs.2018.00039 . 

[42] E. Fraser, A. Legwegoh, K. KC, M. CoDyre, G. Dias, S. Hazen, R. Johnson, R. Martin,
L. Ohberg, S. Sethuratnam, L. Sneyd, J. Smithers, R. Van Acker, J. Vansteenkiste,
H. Wittman, R. Yada, Biotechnology or organic? Extensive or intensive? Global
or local? A critical review of potential pathways to resolve the global food crisis,
Trends Food Sci. Technol. 48 (2016) 78–87, doi: 10.1016/J.TIFS.2015.11.006 . 
[43] S.J. Janssen, C.H. Porter, A.D. Moore, I.N. Athanasiadis, I. Foster, J.W. Jones,
J.M. Antle, Towards a new generation of agricultural system data, models and
knowledge products: information and communication technology, Agric. Syst. 155
(2017) 200–212, doi: 10.1016/J.AGSY.2016.09.017 . 

[44] D. Pivoto, P.D. Waquil, E. Talamini, C.P.S. Finocchio, V.F. Dalla Corte,
G. de Vargas Mores, Scientific development of smart farming technologies
and their application in brazil, Inf. Process. Agricult. 5 (1) (2018) 21–32,
doi: 10.1016/J.INPA.2017.12.002 . 

[45] Food , D. Agriculture Organization of the United Nations. Soil Resources , C. Service. ,
A framework for land evaluation, Food and Agriculture Organization of the United
Nations, Rome, 1976 . 

[46] Food and Agriculture Organization of the United Nations. Land and Water Devel-
opment Division. , Guidelines : land evaluation for rainfed agriculture, 1983 . Food
and Agriculture Organization of the United Nations, Rome, Italy. 

[47] Food and Agriculture Organization of the United Nations, Land evaluation: towards
a revised framework, Rome, Italy, 2007. 

[48] S. Wood , F. Dent , LECS: A land evaluation computer system methodology, Bo-
gor: Ministry of Agriculture/PNUD/FAO, Centre for Soil Research, Indonesia.,
1983 . 

[49] D.G. Rossiter, ALES: A framework for land evaluation using a microcomputer, Soil
Use Manage. 6 (1) (1990) 7–20, doi: 10.1111/j.1475-2743.1990.tb00790.x . 

[50] D.G. Rossiter, A theoretical framework for land evaluation, Geoderma 72 (3–4)
(1996) 165–190, doi: 10.1016/0016-7061(96)00031-6 . 

[51] Automated Land Evaluation System : ALES version 4.65 user’s manual, 1997. URL
https://research.utwente.nl/en/publications/automated-land-evaluation-system- 
ales-version-465-users-manual . 

[52] A. Mendas, A. Delali, Integration of multicriteria decision analysis in GIS to de-
velop land suitability for agriculture: application to durum wheat cultivation in
the region of mleta in algeria, Comput. Electron. Agric. 83 (2012) 117–126,
doi: 10.1016/J.COMPAG.2012.02.003 . 

[53] S. Corrente, S. Greco, R. S ł owi ń ski, Multiple criteria hierarchy process
for ELECTRE tri methods, Eur. J. Oper. Res. 252 (1) (2016) 191–203,
doi: 10.1016/J.EJOR.2015.12.053 . 

[54] K. Govindan, M.B. Jepsen, ELECTRE: a comprehensive literature review on
methodologies and applications, Eur. J. Oper. Res. 250 (1) (2016) 1–29,
doi: 10.1016/J.EJOR.2015.07.019 . 

[55] C. Sys , E. Ranst , J. Debaveye , F. Beernaert , Land evaluation. part III: Crop require-
ments. agricultural publications n ∘ 7, g.a.d.c., brussels, belgium, 1993, 191 p., Agri-
cultural Publications General Administration for Development Cooperation, Brus-
sels, Belgium, 1993 . 

[56] C. Sys , J. Riquier , Ratings of FAO/UNESCO soil units for specific crop production,
Food and Agriculture Organization of the United Nations, Rome, Italy, 1980 . 

[57] G. Tsoumakas , I. Vlahavas , ISLE: an intelligent system for land evaluation, in: Proc.
ACAI ’99 Workshop on Intelligent Techniques for Spatio-Temporal Data Analysis
in Environmental Applications (1999), 1999, pp. 26–32 . 

[58] R. Elsheikh, A.R.B. Mohamed Shariff, F. Amiri, N.B. Ahmad, S.K. Balasundram,
M.A.M. Soom, Agriculture land suitability evaluator (ALSE): adecision and plan-
ning support tool for tropical and subtropical crops, Comput. Electron. Agric. 93
(2013) 98–110, doi: 10.1016/J.COMPAG.2013.02.003 . 

[59] S. Kalogirou, Expert systems and GIS: an application of land suitabil-
ity evaluation, Comput. Environ. Urban Syst. 26 (2–3) (2002) 89–112,
doi: 10.1016/S0198-9715(01)00031-X . 

[60] D. Rosa, J.A. Moreno, L.V. Garcia, J. Almorza, Microleis: a microcomputer-based
mediterranean land evaluation information system, Soil Use Manage. 8 (2) (1992)
89–96, doi: 10.1111/j.1475-2743.1992.tb00900.x . 

[61] D. De la Rosa, F. Mayol, E. Diaz-Pereira, M. Fernandez, D. de la Rosa, A land eval-
uation decision support system (MicroLEIS DSS) for agricultural soil protection:
with special reference to the mediterranean region, Environ. Modell. Software 19
(10) (2004) 929–942, doi: 10.1016/J.ENVSOFT.2003.10.006 . 

[62] D. de la Rosa, M. Anaya-Romero, E. Diaz-Pereira, N. Heredia, F. Shahbazi, Soil-
specific agro-ecological strategies for sustainable land use ? A case study by using
microleis DSS in sevilla province (spain), Land Use Policy 26 (4) (2009) 1055–1065,
doi: 10.1016/J.LANDUSEPOL.2009.01.004 . 

[63] M. Anaya-Romero , M. Munoz-Rojas , D. de la Rosa , MicroLEIS DSS, a sustainable
land use and management decision support system for maximizing carbon seques-
tration, European Geosciences Union General Assembly (2011), Vienna, Austria,
2011 . 

[64] S. K Abd-Elmabod , M. Anaya-Romero , A. Jordan , D. de la Rosa , Using Mi-
croLEIS DSS to evaluate climate change impacts on land suitability in Andalusia,
Spain, European Geosciences Union General Assembly (2013), Austria, Vienna, 
2013 . 

[65] C. Yialouris, H. Passam, A. Sideridis, C. Métin, VEGES - a Multilingual ex-
pert system for the diagnosis of pests, diseases and nutritional disorders of
six greenhouse vegetables, Comput. Electron. Agric. 19 (1) (1997) 55–67,
doi: 10.1016/S0168-1699(97)00032-X . 

[66] M. Mahmoud, K. El-Araby, A. Rafea, LIMEX: an integrated expert system for
lime crop management, in: IFAC Proceedings (1995), 28, 1995, pp. 337–342,
doi: 10.1016/S1474-6670(17)45588-1 . 

[67] B. Wielinga, A. Schreiber, J. Breuker, KADS: A modelling approach
to knowledge engineering, Knowl. Acquisition 4 (1) (1992) 5–53,
doi: 10.1016/1042-8143(92)90013-Q . 

[68] Y. Hu , Z. Quan , Y. Yao , Web-based agricultural support systems., Workshop on
Web-based Support Systems, 2004 . 

[69] P.K.S.C. Jayasinghe, T. Machida, Web-based GIS online consulting system with
crop-Land suitability identification, Agricult. Inf. Res. 17 (1) (2008) 13–19,
doi: 10.3173/air.17.13 . 

http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0014
https://doi.org/10.1007/s11119-014-9372-7
https://doi.org/10.1016/J.TPLANTS.2015.10.015
https://doi.org/10.1016/J.COMPAG.2014.04.004
https://doi.org/10.3390/machines6030038
https://doi.org/10.1093/aepp/ppx056
https://doi.org/10.1038/srep08328
https://doi.org/10.1080/23312041.2016.1223899
https://thingsboard.io/smart-farming/
https://www.kaaproject.org/agriculture/
https://www.agricolus.com/en/
http://www.agenso.gr/
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0022
https://proagrica.com/solutions/data-and-analytics/
https://www.farmersedge.ca/farmcommand/
http://www.agleader.com/products/agfiniti/
https://doi.org/10.3390/s16111884
https://doi.org/10.1016/J.COMPAG.2017.09.037
https://doi.org/10.1016/J.AGSY.2017.01.023
https://doi.org/10.1093/jas/sky014
https://doi.org/10.1016/J.JCLEPRO.2015.06.044
https://doi.org/10.1186/s40066-016-0075-3
https://doi.org/10.1016/J.JENVMAN.2014.11.010
https://doi.org/10.1016/J.LANDUSEPOL.2016.06.032
https://doi.org/10.1016/J.BIOMBIOE.2014.06.012
https://doi.org/10.1073/pnas.1506494113
https://doi.org/10.3389/fsufs.2018.00039
https://doi.org/10.1016/J.TIFS.2015.11.006
https://doi.org/10.1016/J.AGSY.2016.09.017
https://doi.org/10.1016/J.INPA.2017.12.002
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0037
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0037
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0037
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0037
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0038
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0038
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0038
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0039
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0039
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0039
https://doi.org/10.1111/j.1475-2743.1990.tb00790.x
https://doi.org/10.1016/0016-7061(96)00031-6
https://research.utwente.nl/en/publications/automated-land-evaluation-system-ales-version-465-users-manual
https://doi.org/10.1016/J.COMPAG.2012.02.003
https://doi.org/10.1016/J.EJOR.2015.12.053
https://doi.org/10.1016/J.EJOR.2015.07.019
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0045
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0045
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0045
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0045
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0045
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0046
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0046
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0046
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0047
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0047
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0047
https://doi.org/10.1016/J.COMPAG.2013.02.003
https://doi.org/10.1016/S0198-9715(01)00031-X
https://doi.org/10.1111/j.1475-2743.1992.tb00900.x
https://doi.org/10.1016/J.ENVSOFT.2003.10.006
https://doi.org/10.1016/J.LANDUSEPOL.2009.01.004
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0053
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0053
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0053
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0053
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0054
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0054
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0054
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0054
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0054
https://doi.org/10.1016/S0168-1699(97)00032-X
https://doi.org/10.1016/S1474-6670(17)45588-1
https://doi.org/10.1016/1042-8143(92)90013-Q
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0058
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0058
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0058
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0058
https://doi.org/10.3173/air.17.13


A. Lytos, T. Lagkas and P. Sarigiannidis et al. Computer Networks 172 (2020) 107147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[
[
[  

[  

 

[  

[
[  

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

 

[  

[  

 

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

[  

[
[
[  

[  

 

 

[
[  

[  

 

 

[  

 

 

[  

[  

 

[  

[  

[  

[  

 

[  

 

 

 

[
[  
[70] R. Nikkilä, I. Seilonen, K. Koskinen, Software architecture for farm management in-
formation systems in precision agriculture, Comput. Electron. Agric. 70 (2) (2010)
328–336, doi: 10.1016/J.COMPAG.2009.08.013 . 

[71] A. Karmas , K. Karantzalos , S. Athanasiou , Online analysis of remote sensing data
for agricultural applications, FOSS4G (2014), Bremen, Germany, 2014 . 

[72] T. Ř ezník, V. Lukas, K. Charvát, K. Charvát, Z. K ř ivánek, M. Kepka, L. Her-
man, H. Ř ezníková, T. Ř ezník, V. Lukas, K. Charvát, K. Charvát, Z. K ř ivánek,
M. Kepka, L. Herman, H. Ř ezníková, Disaster risk reduction in agriculture
through geospatial (big) data processing, ISPRS Int. J. Geoinf. 6 (8) (2017) 238,
doi: 10.3390/ijgi6080238 . 

[73] S.S. Gill, I. Chana, R. Buyya, IoT Based agriculture as a cloud and big data service,
J. Org. End User Comput. 29 (4) (2017) 1–23, doi: 10.4018/JOEUC.2017100101 . 

[74] S. Prasad, S.K. Peddoju, D. Ghosh, Agromobile : a cloud-Based framework
for agriculturists on mobile platform, Int. J. Adv. Sci.Technol. 59 (2013),
doi: 10.14257/ijast.2013.59.04 . 

[75] A. Fuchs , H. Wolff, A. De Janvry , E. Sadoulet , D. Osgood , C. Barrett , J. Perloff,
S. Raphael , P. Berck , Drought and retribution : evidence from a large scale rainfall
index insurance in Mexico, 2011 . 

[76] R. Frelat, S. Lopez-Ridaura, K.E. Giller, M. Herrero, S. Douxchamps, A. Andersson
Djurfeldt, O. Erenstein, B. Henderson, M. Kassie, B.K. Paul, C. Rigolot, R.S. Ritzema,
D. Rodriguez, P.J.A. van Asten, M.T. van Wijk, Drivers of household food availabil-
ity in sub-Saharan Africa based on big data from small farms., Proceedings of the
National Academy of Sciences of the United States of America 113 (2) (2016),
doi: 10.1073/pnas.1518384112 . 458–63. 

[77] AFRINT Project – Lund University, URL https://www.keg.lu.se/en/research/
research-projects/current-research-projects/afrint . 

[78] CCAFS: CGIAR research program on Climate Change, Agriculture and Food Secu-
rity, URL https://ccafs.cgiar.org/ . 

[79] Cialca - improving livelihoods, URL https://www.cialca.org/ . 
[80] CORAF - AUSAID – Conference des Responsables de Recherche Agronomique

Africains Australian Aid, URL http://www.coraf.org/csiroV2013/?lang = en . 
[81] N2Africa – Putting nitrogen fixation to work for smallholder farmers in Africa, URL

https://n2africa.org/ . 
[82] SIMLESA Sustainable Intensication of Maize-Legume Cropping Systems for

Food Security in Eastern and Southern Africa (SIMLESA), URL https://simlesa.
cimmyt.org/ . 

[83] S. Tripathi, V. Srinivas, R.S. Nanjundiah, Downscaling of precipitation for climate
change scenarios: a support vector machine approach, J. Hydrol. 330 (3–4) (2006)
621–640, doi: 10.1016/J.JHYDROL.2006.04.030 . 

[84] ESRL : Physical Sciences Division, URL https://www.esrl.noaa.gov/psd/ . 
[85] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,

M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds,
M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski,
J. Wang, R. Jenne, D. Joseph, E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins,
D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu,
M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski,
J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph, The NCEP/NCAR
40-year reanalysis project, Bull. Am. Meteorol. Soc. 77 (3) (1996) 437–471,
doi: 10.1175/1520-0477(1996)077 < 0437:TNYRP > 2.0.CO;2 . 

[86] Indian Institute of Tropical Meteorology, URL https://www.tropmet.res.in/ . 
[87] B. Parthasarathy, A.A. Munot, D.R. Kothawale, All-India monthly and sea-

sonal rainfall series: 1871?1993, Theor. Appl. Climatol. 49 (4) (1994) 217–224,
doi: 10.1007/BF00867461 . 

[88] Canadian Centre for Climate Modelling and Analysis, URL https://www.canada.ca/
en/environment-climate-change/services/climate-change/science-research-data/ 
modeling-projections-analysis/centre-modelling-analysis.html . 

[89] Servicio de Información Agroalimentaria y Pesquera – Gobierno – gob.mx. URL
https://www.gob.mx/siap . 

[90] P. Winters, B. Davis, Designing a programme to support smallholder agriculture in
mexico: lessons from PROCAMPO and oportunidades, Development Policy Review
27 (5) (2009) 617–642, doi: 10.1111/j.1467-7679.2009.00462.x . 

[91] Consejo Nacional de Población – Gobierno – gob.mx, URL https://www.gob.mx/
conapo . 

[92] National institute of statistics and geography. INEGI. 
[93] National Survey of Household Income and Expenditure 2008, URL http://www.

inegi.org.mx/proyectos/enchogares/regulares/enigh/tradicional/2008/default. 
html . 

[94] National Agency for Hydraulic Resources (ANRH), URL http://www.anrh.dz/ . 
[95] SCET Tunisie, URL https://www.scet-tunisie.com/ . 
[96] ASTER Global Digital Elevation Map, URL https://asterweb.jpl.nasa.gov/gdem.

asp . 
[97] Download data by country – DIVA-GIS, URL http://www.diva-gis.org/gdata . 
[98] G. Tsioumberi , LEVAL2: The Development of an Expert System for the

Evaluation and Management of land, Aristotle University of Thessaloniki, 1996
Ph.D. thesis . 

[99] I. Sakellariou , I. Vlachavas , An Expert System for Land Evaluation, in: 6th Hellenic
Physics Conference, 1993 . 

100] Lab of Remote Sensing and GIS – AUTH, URL http://labrsgis.web.auth.gr/en/ . 
101] Department of Agriculture Malaysia (DoA), URL http://www.doa.gov.my/ . 
102] Department of Irrigation and Drainage | Ministry of Water, Land and Natural Re-

sources, URL https://www.water.gov.my/ . 
103] International Research Institute for Climate and Society (IRI, New York) Climate

predictions and applications for Sri Lanka. doi: 10.1175/WCAS-D-17-0111.1URL
https://iri.columbia.edu/ . 

104] C.R. Panabokke , Soils and agro-ecological environments of sri lanka, NARESA, Sri
Lanka, 1996 . 
105] The Urban Development Authority – land use map, URL http://www.uda.gov.lk/ . 
106] A. Senarath , A.R. Dassanayake , Soils of the low country wet zone, in: R.B. Mapa,

R.B. Somasiri, S. Nagarajah (Eds.), Soils of the Wet Zone of Sri Lanka, Soil Science
Society of Sri Lanka, Peradeniya, Sri Lanka, 1999, pp. 37–91 . 

107] A. Senarath , A. Dassanayake , Soils of the mid country wet zone, in: R. Mapa, S. So-
masiri, S. Nagarajah (Eds.), Soils of the wet zone of Sri Lanka, Soil Science Society
of Sri Lanka, Peradeniya, Sri Lanka, 1999, pp. 92–121 . 

108] A.R. Dassanayake , S. Hettiarachchi , Soils of the up country wet zone, in: R.B. Mapa,
R.B. Somasiri, S. Nagarajah (Eds.), Soils of the Wet Zone of Sri Lanka, Soil Science
Society of Sri Lanka, Peradeniya, Sri Lanka, 1999, pp. 122–138 . 

109] A. Dassanayake , L. Somasiri , G. De Silva , Soils of the low country intermediate
zone, in: R.B. Mapa, A.R. Dassanayake, H.B. Nayakekorale (Eds.), Soils of the In-
termediate Zone of Sril Lanka, Soil Science Society of Sri Lanka, Peradeniya, Sri
Lanka, 2005, pp. 53–117 . 

110] G. De Silva , A. Dassanayake , Soils of the mid country intermediate zone, in:
R.B. Mapa, A.R. Dassanayake, H.B. Nayakekorale (Eds.), Soils of the Intermedi-
ate Zone of Sri Lanka, Soil Science of Sri Lanka, Peradeniya, Sri Lanka, 2005,
pp. 118–148 . 

111] A. Dassanayake , G. De Silva , Soils of the up country intermediate zone, in:
R.B. Mapa, A.R. Dassanayake, H.B. Nayakekorale (Eds.), Soils of the Intermedi-
ate Zone of Sri Lanka, Soil Science Society of Sri Lanka, Peradeniya, Sri Lanka,
2005, pp. 149–164 . 

112] A. Bannari, D. Morin, F. Bonn, A.R. Huete, A review of vegetation indices, Remote
Sens. Rev. 13 (1–2) (1995) 95–120, doi: 10.1080/02757259509532298 . 

113] C. Justice, J. Townshend, E. Vermote, E. Masuoka, R. Wolfe, N. Saleous, D. Roy,
J. Morisette, An overview of MODIS land data processing and product status, Re-
mote Sens. Environ. 83 (1–2) (2002) 3–15, doi: 10.1016/S0034-4257(02)00084-6 .

114] G.L. Galford, J.F. Mustard, J. Melillo, A. Gendrin, C.C. Cerri, C.E. Cerri, Wavelet
analysis of MODIS time series to detect expansion and intensification of row-
crop agriculture in brazil, Remote Sens. Environ. 112 (2) (2008) 576–587,
doi: 10.1016/J.RSE.2007.05.017 . 

115] T. Sakamoto, M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, H. Ohno,
A crop phenology detection method using time-series MODIS data, Remote Sens.
Environ. 96 (3–4) (2005) 366–374, doi: 10.1016/J.RSE.2005.03.008 . 

116] G. Waldhoff, C. Curdt, D. Hoffmeister, G. Bareth, Analysis of multitemporal and
multisensor remote sensing data for crop rotation mapping, ISPRS Ann. Photogram-
metr. Remote SensingSpatial Inf. Sci. I-7 (2012) 177–182, doi: 10.5194/isprsannal-
s-I-7-177-2012 . 

117] Chamber of Agriculture of North Rhine-Westphalia, URL https://fisaonline.de/en/
find-institutions/research-institutions-of-the-bundeslaender/research-institutions- 
of-north-rhine-westphalia/?tx_fisaresearch_researchinstitutionsofthebundeslaender
%5Bi_id%5D = 422&tx_fisaresearch_researchinstitutionsofthebundeslaen . 

118] Authorative Topographic-Cartographic Information System (ATKIS R ○), URL http://
www.adv-online.de/Products/Geotopography/ATKIS/ . 

119] Feldblöcke - Landwirtschaftskammer Nordrhein-Westfalen, URL http://www.
landwirtschaftskammer-nrw.de/foerderung/feldblock/index.htm . 

120] DLR, DLR Portal, URL https://www.dlr.de/dlr/en/ . 
121] Ministry of Agriculture, Forestry and Fisheries, URL http://www.maff.go.jp/e/ . 
122] Ministry of Land, Infrastructure and Transportation of Japan (MLIT) – download

site for distributing digital national information, URL http://nlftp.mlit.go.jp/ksj/ . 
123] B. Barrett, I. Nitze, S. Green, F. Cawkwell, Assessment of multi-temporal, multi-

sensor radar and ancillary spatial data for grasslands monitoring in Ireland us-
ing machine learning approaches, Remote Sens. Environ. 152 (2014) 109–124,
doi: 10.1016/J.RSE.2014.05.018 . 

124] European Space Agency (ESA), URL https://www.esa.int/ESA . 
125] Department of Agriculture, Food and the Marine, URL https://www.agriculture

.gov.ie/ . 
126] F.H. O’Neill , J.R. Martin , P. Perrin , A. Delaney , K.E. McNutt , F.M. Devaney , Irish

Semi-natural Grasslands Survey Annual Report No. 2: Counties Cavan, Leitrim,
Longford and Monaghan, Technical Report, Dublin: National Parks & Wildlife Ser-
vice., Dublin, Ireland, 2009 . 

127] F.H. O’Neill , J.R. Martin , F.M. Devaney , K.E. McNutt , P. Perrin , A. Delaney , Irish
Semi-natural Grasslands Survey Annual Report No. 3: Counties Donegal, Dublin,
Kildare & Sligo, Technical Report, Dublin: National Parks & Wildlife Service,
Dublin, Ireland, 2010 . 

128] Forestry - Department of Agriculture, Food and the Marine, URL https://www.
agriculture.gov.ie/forestservice/ . 

129] R.M. Fealy , S. Green , M. Loftus , R. Meehan , T. Radford , C. Cronin , Teagasc EPA
Soil and Subsoils Mapping Project-Final Report, Vol. 1, Technical Report, Teagasc,
Ireland, Dublin, 1999 . 

130] Envisat - Earth Online - ESA, URL https://earth.esa.int/web/guest/missions/esa-
operational-eo-missions/envisat . 

131] ERS-2 / Operations / Our Activities / ESA, URL http://www.esa.int/Our_Activities/
Operations/ERS-2 . 

132] About ALOS - PALSAR, URL https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm .
133] B.D. Wardlow , S.L. Egbert , J.H. Kastens , Analysis of time-series MODIS 250 m veg-

etation index data for crop classification in the u. s. central great plains, Remote
Sens. Environ. 108 (3) (2006) 290–310 . 

134] C. Kempenaar , C. Lokhorst , E. Bleumer , R. Veerkamp , T. Been , F.v. Evert ,
M. Boogaardt , L. Ge , J. Wolfert , C. Verdouw , M.v. Bekkum , L. Feldbrugge , J.P. Ver-
hoosel , B. Waaij , M.v. Persie , H. Noorbergen , Big data analysis for smart farming :
Results of TO2 project in theme food security, Technical Report, 2016 . Wagenin-
gen, Netherlands. 

135] DMC Constellation – DMCii, URL http://www.dmcii.com/?page_id = 9275 . 
136] Spot – Satellite Pour l Observation de la Terre, URL https://spot.cnes.fr/en/

SPOT/index.htm . 

https://doi.org/10.1016/J.COMPAG.2009.08.013
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0061
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0061
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0061
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0061
https://doi.org/10.3390/ijgi6080238
https://doi.org/10.4018/JOEUC.2017100101
https://doi.org/10.14257/ijast.2013.59.04
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0065
https://doi.org/10.1073/pnas.1518384112
https://www.keg.lu.se/en/research/research-projects/current-research-projects/afrint
https://ccafs.cgiar.org/
https://www.cialca.org/
http://www.coraf.org/csiroV2013/?lang=en
https://n2africa.org/
https://simlesa.cimmyt.org/
https://doi.org/10.1016/J.JHYDROL.2006.04.030
https://www.esrl.noaa.gov/psd/
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://www.tropmet.res.in/
https://doi.org/10.1007/BF00867461
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/modeling-projections-analysis/centre-modelling-analysis.html
https://www.gob.mx/siap
https://doi.org/10.1111/j.1467-7679.2009.00462.x
https://www.gob.mx/conapo
http://www.inegi.org.mx/proyectos/enchogares/regulares/enigh/tradicional/2008/default.html
http://www.anrh.dz/
https://www.scet-tunisie.com/
https://asterweb.jpl.nasa.gov/gdem.asp
http://www.diva-gis.org/gdata
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0071
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0071
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0072
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0072
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0072
http://labrsgis.web.auth.gr/en/
http://www.doa.gov.my/
https://www.water.gov.my/
https://iri.columbia.edu/
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0073
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0073
http://www.uda.gov.lk/
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0074
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0074
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0074
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0075
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0075
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0075
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0076
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0076
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0076
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0077
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0077
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0077
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0077
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0078
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0078
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0078
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0079
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0079
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0079
https://doi.org/10.1080/02757259509532298
https://doi.org/10.1016/S0034-4257(02)00084-6
https://doi.org/10.1016/J.RSE.2007.05.017
https://doi.org/10.1016/J.RSE.2005.03.008
https://doi.org/10.5194/isprsannals-I-7-177-2012
https://fisaonline.de/en/find-institutions/research-institutions-of-the-bundeslaender/research-institutions-of-north-rhine-westphalia/?tx_fisaresearch_researchinstitutionsofthebundeslaender\0455Bi_id\0455D=422\04526tx_fisaresearch_researchinstitutionsofthebundeslaen
http://www.adv-online.de/Products/Geotopography/ATKIS/
http://www.landwirtschaftskammer-nrw.de/foerderung/feldblock/index.htm
https://www.dlr.de/dlr/en/
http://www.maff.go.jp/e/
http://nlftp.mlit.go.jp/ksj/
https://doi.org/10.1016/J.RSE.2014.05.018
https://www.esa.int/ESA
https://www.agriculture.gov.ie/
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0086
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0087
https://www.agriculture.gov.ie/forestservice/
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0088
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat
http://www.esa.int/Our_Activities/Operations/ERS-2
https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0089
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0089
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0089
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0089
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://refhub.elsevier.com/S1389-1286(20)30120-1/sbref0090
http://www.dmcii.com/?page_id=9275
https://spot.cnes.fr/en/SPOT/index.htm


A. Lytos, T. Lagkas and P. Sarigiannidis et al. Computer Networks 172 (2020) 107147 

[  

[  

 

 

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

 

[  

 

 

 

[
[  

[  

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

137] eBee Classic by senseFly - The Professional Mapping Drone, URL https://www.
sensefly.com/drone/ebee-mapping-drone/ . 

138] E. Schuster, S. Kumar, S. Sarma, J. Willers, G. Milliken, Infrastructure for data-
driven agriculture: identifying management zones for cotton using statistical mod-
eling and machine learning techniques, in: 2011 8th International Conference &
Expo on Emerging Technologies for a Smarter World, IEEE, New York, NY, USA,
2011, pp. 1–6, doi: 10.1109/CEWIT.2011.6163052 . 

139] C.J. Ferster, N.C. Coops, A review of earth observation using mobile
personal communication devices, Comput. Geosci. 51 (2013) 339–349,
doi: 10.1016/J.CAGEO.2012.09.009 . 

140] M. Pfeifer, M. Disney, T. Quaife, R. Marchant, Terrestrial ecosystems from space: a
review of earth observation products for macroecology applications, Global Ecol.
Biogeogr. 21 (6) (2012) 603–624, doi: 10.1111/j.1466-8238.2011.00712.x . 

141] S. Fountas, G. Carli, C. Sørensen, Z. Tsiropoulos, C. Cavalaris, A. Vatsanidou, B. Li-
akos, M. Canavari, J. Wiebensohn, B. Tisserye, Farm management information
systems: current situation and future perspectives, Comput. Electron. Agric. 115
(2015) 40–50, doi: 10.1016/J.COMPAG.2015.05.011 . 

142] S. Fountas, C. Sorensen, Z. Tsiropoulos, C. Cavalaris, V. Liakos, T. Gemtos, Farm
machinery management information system, Comput. Electron. Agric. 110 (2015)
131–138, doi: 10.1016/J.COMPAG.2014.11.011 . 

143] A. Kaloxylos, A. Groumas, V. Sarris, L. Katsikas, P. Magdalinos, E. Antoniou, Z. Poli-
topoulou, S. Wolfert, C. Brewster, R. Eigenmann, C. Maestre Terol, A cloud-based
farm management system: architecture and implementation, Comput. Electron.
Agric. 100 (2014) 168–179, doi: 10.1016/J.COMPAG.2013.11.014 . 

144] K. Imaoka, M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Naka-
gawa, T. Oki, Y. Honda, H. Shimoda, Global change observation mission (GCOM)
for monitoring carbon, water cycles, and climate change, Proc. IEEE 98 (5) (2010)
717–734, doi: 10.1109/JPROC.2009.2036869 . 

145] S. Bojinski, M. Verstraete, T.C. Peterson, C. Richter, A. Simmons, M. Zemp, S. Bo-
jinski, M. Verstraete, T.C. Peterson, C. Richter, A. Simmons, M. Zemp, The con-
cept of essential climate variables in support of climate research, applications,
and policy, Bull. Am. Meteorol. Soc. 95 (9) (2014) 1431–1443, doi: 10.1175/BAM-
S-D-13-00047.1 . 

146] FAOSTAT, URL http://www.fao.org/faostat/en/#data . 
147] HORTIVAR - Cultivars Performance Database, URL http://www.fao.org/hortivar/ .
148] Datasets -Agriculture – Kaggle, URL https://www.kaggle.com/datasets?sortBy =

hotness&group = public&page = 1&pageSize = 20&size = sizeAll&filetype = fileTypeAll 
&license = licenseAll&tagids = 12001 . 

149] N. Neji, T. Mostfa, Communication technology for unmanned aerial vehicles: a
qualitative assessment and application to precision agriculture, in: 2019 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2019, pp. 848–
855, doi: 10.1109/ICUAS.2019.8797879 . 

150] S. Park, S. Yun, H. Kim, R. Kwon, J. Ganser, S. Anthony, Forestry monitoring system
using LoRa and Drone, in: Proceedings of the 8th International Conference on Web
Intelligence, Mining and Semantics - WIMS ’18, ACM Press, New York, New York,
USA, 2018, pp. 1–8, doi: 10.1145/3227609.3227677 . 

151] H. Chao, Y. Cao, Y. Chen, Autopilots for small fixed-wing unmanned air vehicles: a
survey, in: 2007 International Conference on Mechatronics and Automation, IEEE,
2007, pp. 3144–3149, doi: 10.1109/ICMA.2007.4304064 . 

152] B.S. Morse, C.H. Engh, M.A. Goodrich, UAV video coverage quality maps and pri-
oritized indexing for wilderness search and rescue, in: 2010 5th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI), IEEE, 2010, pp. 227–234,
doi: 10.1109/HRI.2010.5453190 . 

153] F.G. Costa, J. Ueyama, T. Braun, G. Pessin, F.S. Osorio, P.A. Vargas, The use of un-
manned aerial vehicles and wireless sensor network in agricultural applications, in:
2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2012,
pp. 5045–5048, doi: 10.1109/IGARSS.2012.6352477 . 

Anastasios Lytos holds a diploma in Informatics and
Telecommunications Engineering from the University of West-
ern Macedonia. During his studies he gained twice scholar-
ship from the Engineers’ and Public Contractors’ Pension Fund
(TSMEDE). He is currently a full time Ph.D. candidate under
the Doctoral Program offered by the University of Sheffield
and South East European Research Centre (SEERC). His re-
search interest involves the exploitation of the current Ma-
chine Learning techniques in Text Mining problems, the suc-
cessful modelling of Natural Language and the optimization
of algorithms. He participates in the ARRANGE-ICT Erasmus +
Strategic Partnership project as a Software Engineer. 

Thomas Lagkas received his Ph.D. in computer science from
the Aristotle University of Thessaloniki, Greece, in 2006. He
is Senior Lecturer (Assistant Professor) of The University of
Sheffield International Faculty - CITY College, where he has
been with since 2012. He is the Research Director of the Com-
puter Science Department, and Leader of the ICT Research
Track, South-East European Research Centre, since 2017. His
research interests are in the areas of IoT communications and
distributed architectures, wireless communication networks,
QoS in medium access control, mobile multimedia communi-
cations, power saving/fairness ensure for resource allocation
in wireless sensor-cooperative-broadband networks as well as
in hybrid Fiber-Wireless networks, e-health data monitoring,
5G systems, flying ad hoc networks, communication security,
and computer-based educational technologies with more than
60 publications at a number of widely recognized interna-
tional scientific journals and conferences. He is an IEEE and
ACM Member, and Fellow of the Higher Education Academy
in UK. He also participates in the Editorial Boards of the
following journals: Computer Networks, Telecommunication
Systems, and the EURASIP Journal on Wireless Communica-
tions and Networking. 

Panagiotis Sarigiannidis is an Assistant Professor in the De-
partment of Informatics and Telecommunications Department
of University of Western Macedonia, Kozani, Greece since
2016. He received the B.Sc. and Ph.D. degrees in computer
science from the Aristotle University of Thessaloniki, Thessa-
loniki, Greece, in 2001 and 2007, respectively. He has pub-
lished over 130 papers in international journals, conferences
and book chapters. He has been involved in several national,
EU and international projects. He is currently the project co-
ordinator of the H2020 project SPEAR: Secure and PrivatE
smArt gRid (H2020-DS-SC7-2017) and the Operational Pro-
gram MARS: sMart fArming with dRoneS (Competitiveness,
Entrepreneurship, and Innovation), while he serves as princi-
pal investigator in the H2020 project SDN-microSENSE: SDN-
microgrid reSilient Electrical eNergy SystEm (H2020-SU-DS-
2018) and in the Erasmus + KA2 ARRANGE-ICT: pArtneRship
foR AddressiNG mEgatrends in ICT (Cooperation for Innova-
tion and the Exchange of Good Practices). His research inter-
ests include telecommunication networks, internet of things
and network security. He is an IEEE member and participates
in the Editorial Boards of various journals. 

Michalis E. Zervakis holds a Ph.D degree from the Univer-
sity of Toronto, Department of Electrical Engineering, since
1990. He joined the Technical University of Crete on Jan-
uary 1995, where he is serving as Professor at the department
of Electronic and Computer Engineering. He was an assistant
professor with the University of Minnesota-Duluth, USA, from
September 1990 to December 1994. Prof. Zervakis is the di-
rector of the Digital Image and Signal Processing Laboratory
(DISPLAY) at the Technical University of Crete. His research
interests include modern aspects of signal and image process-
ing, data mining and pattern recognition, imaging systems
and integrated automation systems. Under his direction, the
DISPLAY lab www.display.tuc.gr covers a wide range of de-
sign, analysis, implementation and validation areas. Applica-
tions include bioinformatics, biosignal analysis and medical
Imaging, biomarker selection from mass genomic data, time-
frequency biosignal and EEG characterization, modeling of
disease state and progression, as well as cancer research on di-
agnosis & prognosis. He is coauthor in more than 280 scientific
papers in international journals and conference proceedings.
He has participated in several national and European research
projects and has participated in the scientific committees of
several IEEE conferences. He served as Associate Editor in the
“IEEE Transactions on Signal Processing ” from 1994 to 1996.
He currently serves as associate editor in IEEE Transactions on
Biomedical and Health Informatics as well as in the journal of
Biomedical Signal Processing and Control. 

George Livanos holds a Master (thesis on evaluating the
HER2/neu membrane overexpression in immunohistochem-
ical images) and a Bachelor (thesis on wavelet analysis for
CT and MRI imaging) degree from the Technical University
of Crete, Department of Electronics and Computer Engineer-
ing. He is currently a Ph.D. candidate at the same department
and research associate of the Digital Image and Signal Pro-
cessing Laboratory in related areas of biomedical engineer-
ing, spectrum deconvolution approaches, polarimetric imag-
ing and statistical analysis for measuring material properties,
machine vision for environmental surveillance, inspection of
industrial infrastructure and navigation of Remotely Operated
Vehicles. He has been involved in 3 book chapters and 35 pa-
per publications/announcements in international journals and
conferences and has participated in several projects funded by
the Greek Ministry of Development and the European Union
in the above mentioned scientific areas. 

https://www.sensefly.com/drone/ebee-mapping-drone/
https://doi.org/10.1109/CEWIT.2011.6163052
https://doi.org/10.1016/J.CAGEO.2012.09.009
https://doi.org/10.1111/j.1466-8238.2011.00712.x
https://doi.org/10.1016/J.COMPAG.2015.05.011
https://doi.org/10.1016/J.COMPAG.2014.11.011
https://doi.org/10.1016/J.COMPAG.2013.11.014
https://doi.org/10.1109/JPROC.2009.2036869
https://doi.org/10.1175/BAMS-D-13-00047.1
http://www.fao.org/faostat/en/\043data
http://www.fao.org/hortivar/
https://www.kaggle.com/datasets?sortBy=hotness\04526group=public\04526page=1\04526pageSize=20\04526size=sizeAll\04526filetype=fileTypeAll\04526license=licenseAll\04526tagids=12001
https://doi.org/10.1109/ICUAS.2019.8797879
https://doi.org/10.1145/3227609.3227677
https://doi.org/10.1109/ICMA.2007.4304064
https://doi.org/10.1109/HRI.2010.5453190
https://doi.org/10.1109/IGARSS.2012.6352477

	Towards smart farming: Systems, frameworks and exploitation of multiple sources
	1 Introduction
	2 Motivation
	3 Agriculture systems and frameworks
	3.1 The early steps
	3.2 From theoretical frameworks to web and mobile technologies

	4 Big data and sources of data in smart agriculture systems
	4.1 Descriptive data
	4.2 Exploration of vector data
	4.3 Satellite exploitation and remote sensing
	4.4 Data acquired from IoT and drone sources

	5 Discussion & trends
	6 Conclusion
	6.1 A wide concept
	6.2 Future work

	Declaration of Competing Interest
	Acknowledgement
	Supplementary material
	References


