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Abstract

IASON CHRYSOMALLIS

Deep Reinforcement Learning Exploiting a Mentor’s Guidance

Imitation is a popular technique of behavioral learning widely practiced in nature.
The most famous applications involve animal babies imitating their parents, with
imitation providing the stepping stone to walk their first steps in life survival. Ad-
ditionally, imitation examples can be found in cross species instances, with most
known samples the voice imitation of parrots or crow behavioral imitation.

The imitation learning paradigm has naturally been taken up in machine learning
applications, implemented in supervised learning and in reinforcement learning,
mostly with the use of explicit imitation, where the mentor agent attempts to ex-
plicitly teach learners. Implicit imitation, on the other hand, assumes that learning
agents observe the state transitions of an agent they use as a mentor, and try to recre-
ate them based on their own abilities and knowledge of their environment. Though
it has also been employed with some success in the past, implicit imitation has only
recently been utilized in conjunction with deep reinforcement learning, the current
leading reinforcement learning paradigm.

In this thesis, we enhance the operation of implicit imitation by adding four state-of-
the-art deep reinforcement learning algorithms, treated as “imitation optimization
modules”. These include Double Deep Q-network [Hasselt, Guez, and Silver, 2016],
Prioritized Experience Replay [Schaul et al., 2016], Dueling Network Architecture
[Wang et al., 2016] and Parameter Space Noise for Exploration [Plappert et al., 2018].
We modify these appropriately to better fit the implicit imitation learning paradigm.
By enabling and disabling those methods we create diverse combinations of them;
systematically test and compare the viability of each one of these combinations; and
end up with a clear “winner”: the combination of Double Deep Q-network, Priori-
tized Experience Replay and Dueling Network Architecture.
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Περίληψη

Ιάσων Χρυσομάλλης

Βαθιά ύπο Καθοδήγηση Ενισχυτική Μάθηση

Η μίμηση αποτελεί μία τεχνική συμπεριφορικής εκμάθησης, ευρέως χρησιμοποιούμενη

στην φύση. Στο ζωϊκό βασίλειο, για παράδειγμα, τα μωρά μιμούνται τους γονείς τους,

και η μίμηση τα εφοδιάζει με τις κατάλληλες γνώσεις για να περπατήσουν στα πρώτα

τους βήματα επιβίωσης. Παραδείγματα μίμησης παρατηρούνται και μεταξύ διαφορετικών

ειδών, όπως στην φωνητική μίμηση των παπαγάλων ή στην συμπεριφορική μίμηση των

κορακιών.

Η μίμηση, λοιπόν, δεν θα μπορούσε να μην συμπεριληφθεί σε εφαρμογές της μηχανικής

μάθησης, όπου αλγόριθμοι των πεδίων επιτηρούμενης μάθησης και ενισχυτικής μάθησης

εκμεταλεύονται την χρήση τεχνικών απευθείας, κυρίως, μίμησης, όπου ο πράκτορας που

λειτουργεί ως ‘μέντορας’ προσπαθεί να ‘διδάξει’ απευθείας άλλους. Η μηχανική εκμάθηση

μέσω έμμεσης μίμησης, από την άλλη, θεωρεί ότι οι πράκτορες-μιμητές απλά παρατηρο-

ύν τις αλλαγές καταστάσεων που προκύπτουν από την συμπεριφορά ενός πράκτορα που

επιλέγουν ως μέντορα, και προσπαθούν να τις αναπαράγουν με βάση τις δικές τους δυνα-

τότητες και γνώση του περιβάλλοντός τους. Αν και η έμμεση μίμηση έχει χρησιμοποιηθεί

με ικανοποιητικά αποτελέσματα στο απώτερο παρελθόν, μόλις πρόσφατα έχει αξιοποιηθεί

σε συνδυασμό με βαθιά ενισχυτική μάθηση, η οποία αποτελεί μια τρέχουσα τεχνολογία

αιχμής στη μηχανική μάθηση.

Στην παρούσα διπλωματική εργασία, βελτιώνουμε περαιτέρω την διαδικασία της έμμεσης

μηχανικής εκμάθησης ενσωματώνοντας τέσσερις σύγχρονους αλγόριθμους βαθειάς ενι-

σχυτικής μάθησης, τους οποίους θεωρούμε και χρησιμοποιούμε ως δομικά στοιχεία βελ-

τιστοποίησης της προσπάθειας μίμησης. Οι εν λόγω αλγόριθμοι είναι οι Double Deep
Q-network [Hasselt, Guez, and Silver, 2016], Prioritized Experience Replay [Schaul
et al., 2016], Dueling Network Architecture [Wang et al., 2016] και Parameter Space
Noise for Exploration [Plappert et al., 2018]. Προσαρμόσαμε τη λειτουργία των αλγο-

ρίθμων ώστε να συνάδει με το μοντέλο της έμμεσης μίμησης. Ενεργοποιώντας και απε-

νεργοποιώντας τις παραπάνω μεθόδους, δημιουργούμε ποικίλους συνδυασμούς αυτών, και

δοκιμάζουμε μεθοδικά και συγκρίνουμε την βιωσιμότητα του κάθε ενός από αυτούς τους

συνδυασμούς. Οι πειραματισμοί μας κατέληξαν στην ανάδειξη ενός ξεκάθαρου “νικητή”:
συγκεκριμένα, του συνδυασμού των Double Deep Q-network, Prioritized Experience
Replay και Dueling Network Architecture.
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Chapter 1

Introduction

Deep Reinforcement Learning, a machine learning sub-category that combines rein-
forcement learning with neural networks, is gradually becoming a more reliable way
to solve problems or play games and create intelligent agents that can outperform
human experts in the field. In environments with continuous state space where tab-
ular reinforcement learning fails to provide results, Deep Reinforcement Learning
provides a model with the ability to solve such complex problems that were out of
reach otherwise. Currently, the most used technique, Deep Q-network, has created
a new benchmark to the latest state of the art, drawing the attention of research and
inspiring a new wave of reinforcement learning improvements. However, the more
complex the problem in need of solving the longer it takes for the training procedure
to be completed.

The need for accelerated training arises. This can be achieved through imitation
methods. The most common applications of imitation in machine learning take ad-
vantage of explicit imitation. According to explicit imitation, a highly trained agent
-the mentor- provides all information available to it (includes states, actions taken
and rewards received) to the observer agent -the trainee-, granting the opportunity
to explicitly imitate its behaviour. Since complete transparency is not always avail-
able, another application of imitation learning is used, implicit imitation learning.
With just the state transition observations of the mentor, the trainee can decrease
its training time and reach the skill level of its mentor in less training steps than
the mentor by filling the blanks of the information it needs, using its own heuris-
tic approaches. This method, inspired by behavioral examples in nature, was thor-
oughly examined by [Price and Boutilier, 2003]. By creating a framework for im-
itation reinforcement learning, accelerated training was achieved. No information
other than the state transitions is required, such as underlying code or model ar-
chitecture, meaning it can even be combined with human agents provided that a
perfectly observed environment can be used.

Implicit imitation learning was combined with deep reinforcement learning in [Pa-
pathanasiou, 2020]. Using neural networks for reinforcement learning together with
mentor observations, complex continuous state space can be solved in reduced time
when compared to state of the art deep reinforcement learning implementations.
According to [Papathanasiou, 2020]’s methods, state similarities are firstly detected
between the observer and the mentor, using the mentor state transition demonstra-
tions. Afterwards, the observer can approximate the mentor’s optimal action and
use it to calculate error values based on newly introduced augmented loss functions.
Finally, these values are used to enhance the deep reinforcement learning algorithm
(Figure 1.1).
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FIGURE 1.1: Observer simple Implicit Imitation depiction

Together with modern reinforcement learning algorithms that benefit from artificial
neural networks outstanding results can be noted. We integrate four state of the
art deep reinforcement learning algorithms in the imitation process, in order to opti-
mize the imitation performance: Double Deep Q-network [Hasselt, Guez, and Silver,
2016], Prioritized Experience Replay [Schaul et al., 2016], Dueling Network Architec-
ture [Wang et al., 2016] and Parameter Space Noise for Exploration [Plappert et al.,
2018]. In this sense we consider these algorithms as imitation optimization modules
and we will regularly refer to them as such in our work. Double Deep Q-network
provides a double Deep Q-network estimator that overcomes value overestimation
issues, Prioritized Experience Replay implements an improved buffer which takes
into consideration rare state transitions with high error values, Dueling Architecture
utilizes advantage learning by creating a reformed model architecture with no extra
hidden layers and Parameter Space Noise for Exploration helps to progress the ex-
ploration stage by adding Gaussian noise to the network, ending up with a larger
variety of state transitions explored, whilst staying within the intended chosen ac-
tions boundaries.

Method variance is added in our experiments by enabling and disabling our algo-
rithmic modules, creating different combinations for testing that compete against
each other (Figure 1.2). This way, we progressively build better methods which,
through our systematic experimentation, end up with a clear winner. The combi-
nation of Double Deep Q-network, Prioritized Experience Replay and Dueling Net-
work Architecture outperforms any other optimized model of our work.

1.1 Contributions

The initial work of adapting implicit imitation methods to the Deep Q-Network re-
inforcement learning is inspired by the work of [Price and Boutilier, 2003]. Fol-
lowing their steps, an implicit deep imitation learning application was later de-
veloped by [Papathanasiou, 2020], providing the fundamentals for an accelerated
deep reinforcement learning model, by creating augmented loss functions that up-
date neural network’s weights in accordance with deep imitation procedures. As
expected, the contribution of the four optimization algorithms already mentioned
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FIGURE 1.2: Module combinations. Imitation refers to the deep im-
itation algorithm developed in [Papathanasiou, 2020]. Since Double
Deep Q-network and Prioritized Experience Replay directly affect the
deep imitation method, all possible combinations including them are
investigated (Pack 1Pack 1Pack 1). Dueling Network Architecture is added as a
complementary optimization method, resulting to two more combi-
nations (Pack 2Pack 2Pack 2). Finally, Parameter Space Noise for Exploration un-
derperformed in all combinations, so only its most successful combi-

nation is inspected (Pack 3Pack 3Pack 3).

is to be included. We modify and adapt the first two existing algorithms [Hasselt,
Guez, and Silver, 2016; Schaul et al., 2016] so as to make them better suited to our
existing model. To be more specific, we modify the augmented loss functions for
deep imitation introduced in [Papathanasiou, 2020] to benefit from the Double Deep
Q-network algorithm [Hasselt, Guez, and Silver, 2016]. Also, changes are made to
the prioritized buffer [Schaul et al., 2016] to better update its weights, based on the
error values derived from these augmented loss functions. We, additionally, make
use of non modified Dueling Network Architecture [Wang et al., 2016] and Param-
eter Space Noise for Exploration [Plappert et al., 2018] through adjustments of the
neural network’s architecture. We note that a plethora of different approaches and
algorithms on imitation research that were helpful to conclude to this work’s deci-
sions and changes can be found in [Hussein et al., 2017].

1.2 Thesis Structure

This thesis follows a specific structure. In Chapter 2 we provide the necessary back-
ground on reinforcement learning, imitation learning, various optimizing methods,
neural networks and deep reinforcement learning. Moving on to Chapter 3, we can
continue with the work this thesis was based on, [Papathanasiou, 2020]. On that
note we can proceed to Chapter 4 with our four optimization techniques: Double
Q-learning, Prioritized Experience Replay, Dueling Network Architecture and Pa-
rameter Space Noise for Exploration. Experiments follow afterwards in Chapter 5
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with the test results gathered and, finally, some suggestions in Chapter 6 on future
work are included.
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Chapter 2

Background

In this chapter we provide some essential background on reinforcement learning, neu-
ral networks, deep reinforcement learning, imitation reinforcement learning and related
work required for the explanation of our work.

2.1 Reinforcement Learning

Reinforcement learning is an area of Machine learning regarding maximizing given re-
wards to an agent by carefully choosing actions in an environment. Reinforcement
learning can be explained by analyzing one of the famous mouse maze experiments
[Tas, 2021] (Figure 2.1). Having a mouse-sized maze with only an entrance and no
other exits, we place a massive amount of food at a specific spot far deep into the
maze, whilst having small doses of peanut butter at random spots. We let the mouse
enter the maze, navigate at its own pace and explore the labyrinth. Its goal is to
satisfy its needs by eating the peanut butter on its way, but most importantly to
bring the large quantity of food back to its nest, symbolized as the entrance. While
at first it will be lost, after numerous trial and error attempts it will learn to guide
itself from the entrance to the trophy and back, minimizing the distance required,
thus bringing more food at faster timings. From this example we can extract inter-
esting information that will help us correlate this real life experiment scenario with
the fundamentals of reinforcement learning. At its core we have the

Problem: task in need of solving, bringing food back to the mouse’s home.

Agent: active and intelligent autonomous entity, the mouse.

Environment: world within the agent interacts, the maze.

Actions: different ways of the agent to interact and cause changes to the environ-
ment, the movement of the mouse and the ability to pick food.

State: full set of information that depicts the current situation of the environment,
the position of the mouse relative to the maze.

Reward: positive or negative value received after following a specific action at a
certain state based on the agent’s performance. A small positive reward is awarded
to the mouse when it satisfies its need of eating small doses of peanut butter, while a
greater reward is given when it brings food back to its home. Provided this is timed,
the environment encourages the mouse to bring food back faster by following the
shortest path discovered. Thus, it is considered higher reward for the mouse to use
the optimal path. On the other hand, negative reward is the penalty of time wasted
when reaching a dead end or an extensive path.
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FIGURE 2.1: Mouse maze depiction

Training: procedure of consecutive actions and received rewards that will eventu-
ally change the behavior of the agent in order to maximize its performance, the trial
and error phase of the mouse.

Exploration: trying random actions in hope of discovering new results with better
rewards, the curiosity of the mouse to try new paths.

Exploitation: using the agent’s past experience to take the currently most optimal
action, the mouse’s navigation based on its training.

Goal: ending training by solving the problem, the mouse has minimized the distance
required to bring back food.

Policy: behavior of the agent from a certain state, the mouse’s strategy of getting
more food back.

Such learning environments can be encountered in reinforcement learning algo-
rithms (Figure 2.2), varying from simple two dimensional mazes to complex, real-
time, multi-thousand action games, requiring the observance of thousands of values
at each step [OpenAI et al., 2019].

One of the the biggest challenges in reinforcement learning is the value selection of
exploration and exploitation. While both are needed for the healthy training of an
agent, these two concepts are complementary and careful balance should be used
[Sutton and Barto, 1998]. Under this predicament ε− greedy exploration [François-
Lavet et al., 2018] is the most frequently used method. According to it, we operate a
hyperparameter ε with value that anneals at each time step slowly from almost zero
value to one. The agent uses this term to decide its next action a

a =

{
random action, with probability ε

highest estimated value action, with probability 1− ε
(2.1)
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FIGURE 2.2: Left:Left:Left: Simple maze environment. Right:Right:Right: Dota 2 video
game complex environment

A representation of a reinforcement learning model is complete through the use of a
Markov Decision Process (MDP) [Puterman, 1994]. MDP is a discrete-time stochastic
control process, providing a structure for partly random environments with action
depending changes (Figure 2.3). It is consisted of a tuple 〈S, A, P, R〉, where S is the
state space, A is the action space, P is the stochastic function for state transitions
and R is the reward function. Starting from a state s ∈ S, the agent executes an
action a ∈ A, transitions to the next state s′ ∈ S based on the probabilistic function P
and receives reward r based on the reward function R. Describing the reinforcement
learning process as an MDP, we can already find similarities to the core terms of
reinforcement learning mentioned earlier.

From the agent’s viewpoint, at every possible training step, a policy π : S −→ A
is available. This describes the strategy of the agent on certain states. To be more
specific, π(st) = at denotes that experience of the learner has guided it to choose at
state st as optimal action, the action at. When every action a deriving from the policy
π(s) results to the highest cumulative reward, then we consider that policy optimal
π∗.

Under a policy π we can define the value function Vπ(s), as the expected cumulative
reward, starting from state s and following the actions provided by the policy π
[Sutton and Barto, 1998]. We declare as random variable R

R = ∑ γtrt, (2.2)

where at the time step t, we receive reward rt discounted by γ ∈ [0, 1) factor, based
on how immediate the reward is. Distant rewards are considered less important to
determine the viability of a state. Having defined the R variable, the value function
Vπ(s) is

Vπ(s) = E[R|π, s]. (2.3)

As optimal value function V∗(s) we identify the value function with policy that pro-
vides the higher cumulative reward max Vπ(s).
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FIGURE 2.3: Markov Decision Process example

However, in order to create space for exploration, we need a way to break out from
the actions deriving from the deterministic policy π. We declare as Q-value function
[Watkins and Dayan, 1989]

Q(s, a) = E[R|a, π, s], (2.4)

where a is an action that is not necessarily following the policy π. After executing
the action a at the initial state s, the policy determines the rest actions, enabling
exploration to be effective. Again, optimal Q-value function Q∗ is available when
the optimal policy π∗ is used.

Since each Q value includes the discounted future rewards, we can rewrite the Q-
value function as a Bellman equation

Q(s, a) = Q(s, a) + α

(
r + γ maxa′ Q(s′, a′)−Q(s, a)

)
, (2.5)

where s′ is the next state after the initial execution of action a and α is the learning
factor, deciding the impact of each update in our Q values, α = 0 means that no
learning is taking place, while α = 1 translates to training with only the latest reward
evaluation. In this function we name as target function the term r + γ maxa′ Q(s′, a′).
It contains the maximized future value of our Q-value function, starting from the
next state s′. Since we subtract the old value Q(s, a) from it, it is clear that we try to
minimize the distance between our Q-value function and our target function. This
distance is called temporal difference (TD).
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2.1.1 Double Q learning

Previously, we showed that Q-learning tries to calculate the next state value by max-
imizing over the available actions. This estimation approximates the maximum ex-
pected value of the next state. However, during an experiment, numerous occasions
of value overestimation can take place, resulting to a performance penalty that will
either slow or confuse the training agent. Learning algorithms similar to Q-learning
that use single estimator methods have been proven to present such biased estimates
[Smith and Winkler, 2006]. In response to that, a double estimator method has been
introduced, which, provided with independent and identically distributed samples,
can produce unbiased results [Van Hasselt, 2010].

The corresponding integration of the double estimator method into the Q-learning
algorithm requires the use of two Q functions instead of one. On every time step of
the experiment only one of them is getting updated, selected randomly. Consider
the two functions QA, QB. During the QA update, the next state action is predicted
normally through the maximization over all the available actions, but the final next
state value is calculated by using that action with the QB function. Respectively, the
QB update is being completed the same way. At any given point, if a policy is to be
extracted, both functions can be deemed reliable. Also, it is expected that both QA

and QB will converge to the optimal value function Q∗ at some point.

Algorithm 1: Double Q-learning

1 initialization of QA, QB

2 while training do
3 Choose stochastically a based on either QA or QB

4 Observe r, s′

5 Choose to update either QA or QB

6 if update QA then
7 a′ = argmaxaQA(s′, a)
8 QA(s, a)← QA(s′, a) + α(r + γQB(s′, a′)−QA(s, a))
9 else

10 a′ = argmaxaQB(s′, a)
11 QB(s, a)← QB(s′, a) + α(r + γQA(s′, a′)−QB(s, a))
12 end
13 s← s′

14 end

2.1.2 Advantage Learning

It is frequent when choosing an action based on a Q-value function policy to have
multiple actions that end up to different states with small differences in Q values.
This distinction, responsible for updating the model and converging to the opti-
mal Q-value function, can be easily overlooked or get lost in the noise, resulting
to unnecessary and extensive training iterations to reach optimal policy precision
[Harmon and Harmon, 2000]. The problem is magnified in cases where a function
approximator is used.

Advantage updating [Baird and III, 1993] and its revised version Advantage learning
[Harmon and Iii, 1998], provide a value function which overcomes this issue in ad-
dition to being used for reinforcement learning in continuous time and continuous
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state problems. For each combination of state and action (s, a), the advantage value
is stored. This value expresses the value difference between executing an action
and the current policy suggested action. When investigating the optimal advantage
function A∗(s, a), we will receive negative values for every sub-optimal action a and
zero value if a is the optimal.

The optimal advantage A∗(s, a) for state s and action a is defined [Harmon and Iii,
1998]

A∗(s, a) = V∗(s) +
〈r + γ∆tV∗(s′)〉 −V∗(s)

∆tK
, (2.6)

where γ∆t is the discount factor, K is a time unit scaling factor and 〈〉 is the expected
value of executing action a, receiving the reward r and transitioning to the next state
s′. As previously explained, the second term is zero for the optimal action and neg-
ative for any sub-optimal action.

For the purpose of using the concept of advantage learning in our work, the need
of an equation that involves the Q-value function arises. Since the value function
based on a stochastic policy π can be defined as

Vπ = Ea∼π(s)[Q
π(s, a)], (2.7)

then we can define the advantage function under the same policy as [Wang et al.,
2016]

Aπ(s, a) = Qπ(s, a)−Vπ(s). (2.8)

Both the expected value Ea∼π(s)[Aπ(s, a)] and A(s, a∗), where a∗ is the optimal ac-
tion at state s, are equal to zero, while any other sub-optimal actions would result
to negative values. To make it more clear, while both the value V(s) and Q-value
function Q(s, a) take into consideration future rewards, the value function is strictly
tied to the policy we deemed best, whereas the Q-value function can stochastically
choose actions that may be out of policy. In that case, the advantage function can
evaluate the viability of such policy aberration and can be used with the benefits
previously mentioned.

2.2 Neural Networks and Deep Reinforcement Learning

Artificial Neural Networks are networks consisted of artificial neurons which resemble
in structure - and named after - biological neural networks [Rumelhart and McClel-
land, 1987]. They are sectioned into three parts (Figure 2.4). The input layer, to which
we feed the available observed information, the hidden layer(s), describing all the
layers that try to analyze and process the input information to conclude to a result
and, finally, the output layer, the layer depicting an evaluation of a decision it was
tasked to make. In order to create different products for diverse input information,
weights are added between the connected nodes or neurons, updated during train-
ing procedures and finalized to provide stable results. An agent or user can only
interact with the input and output layers, hence the name of the hidden ones.

Great feats have been achieved through the carefully built and trained use of neural
networks. Some examples are the every day use of e-mail spam filtering [Dada et
al., 2019], image recognition [He et al., 2015], autonomous driving [Fan et al., 2018],
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FIGURE 2.4: Neural Network example

FIGURE 2.5: Convolution Neural Network example

medical advancements [Kononenko, 2001] and complex competitive game environ-
ments ranging from backgammon [Wiering, 2010], to chess and Go [Silver et al.,
2018].

Convolutional Neural Networks are a variant of artificial neural networks [Lecun et al.,
1998], used in deep learning. They are commonly applied in learning cases of image
processing, meaning they receive images at their input layer. They are a special case
of multilayer perceptons, single directional feedforward, fully connected between layers
artificial networks. The visual analysis is completed by the convolution operation
on each layer. Creating different activation maps on each layer, a process of pixel
value multiplication by weights and summing takes place, resulting to extracting
different feature information with each one of them. For example, the first hidden
layer can obtain edges of the image, while the second layer corners, later producing
actual object components that are critical for the identification and the decision of
the agent.
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An essential part of neural networks is the use of function approximation. Func-
tion approximation is a method of estimating a function that best describes a target
function, by utilizing available demonstrations from the environment [Sutton and
Barto, 1998]. There will always be small deviations between the final product of a
approximated function and its target function, but we can control the magnitude of
such deviations with thresholds. In supervised learning, using a dataset with in-
puts and outputs, the neural network model is the function approximator that gets
fed with input data batches and the target function is the output examples. In re-
inforcement learning, function approximation is used to estimate the value function
or, more commonly, the Q-value function.

Reinforcement learning, as a highly contested area of machine learning, for obvious
reasons, exploited neural networks in order to carry out remarkable accomplish-
ments, most notably achieving human level skill or higher on Atari 2600 games
[Mnih et al., 2013].

Deep Q-Networks [Mnih et al., 2013], the most distinguished method of deep re-
inforcement learning, uses an implementation of Q-learning with neural networks
(Figure 2.6). We have a Q-network, a neural network with weights θ used for func-
tion approximation, deciding the next action taken by the agent. The θ parameters
is adjusted by training using as criterion the square divergence of the Q-value from
the target value. As target function we declare

y = r + γ max Q(s′, a′; θ−), (2.9)

where θ− is the network’s parameters from a past time step. Occasionally, we update
the parameters’ values with the most recent ones. This provides a sense of stability,
while following the basics of the Q-learning algorithm.

FIGURE 2.6: Deep Q-Network architecture
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The loss function deriving from the squared distance is [Mnih et al., 2013]

L(θt) = Es,a,r,s′ [(r + γ max
a′

[Q(s′, a′, θ−t )]−Q(s, a, θt))
2], (2.10)

Another important component is replay memory, used in experience replay method
[Lin, 1992]. The replay memory is a data structure of size N that saves past agent
experience tuples 〈s, a, r, s′〉. For every step the current tuple is stored. When the
training procedure begins, the agent does not train itself based on this last tuple, but
over a small minibatch taken from the replay memory data structure. The distribu-
tion function for the selection is uniform, leaving any unintended bias behind. This
has strong effect in certain state chains that can misguide the training and pollute it
with over-fitting data. By breaking the correlation between consecutive samples, the
agent is more confident when it needs to face newly-encountered states.

2.3 Imitation Learning

The concept of transferring knowledge between two or more agents for the bene-
fit of constant improvement is not a newly discovered category [Mataric, 1998]. Its
most popular application, imitation reinforcement learning, is an area that has received
attention during the past twenty-five years [Atkeson and Schaal, 1997]. The core
idea behind imitation reinforcement learning includes two agents, the mentor and
the observer. The observer is the agent under training, completely clueless about
solving a problem, with unknown starting values to all predictions, trying to learn
from scratch. The mentor is the agent that has already undergone training up to a
satisfactory level, leaving it capable of guiding the observer through different ways
[Price and Boutilier, 2003; Stadie, Abbeel, and Sutskever, 2019a]. The goal of im-
itation learning is to accelerate the learning procedure of the observer, by feeding
information provided by the mentor. This insight transmission can be achieved ex-
plicitly, implicitly [Price and Boutilier, 2003] or by other means, such us third person
inversely [Stadie, Abbeel, and Sutskever, 2019a]. Currently, the first two cases were
found promising for further development.

Explicit imitation reinforcement learning [Price and Boutilier, 2003; Bakker and Ku-
niyoshi, 1996] poses that the observer agent is trying to replicate the behavior of the
mentor by following step by step the mentor’s actions. The mentor shares both its
states, followed actions and rewards, providing enough knowledge for the observer
agent to fully imitate its performance. Due to the influence the mentor has over
the observer with the instructions provided, explicit imitation is categorized as super-
vised learning. However, in many cases, complete transparency of information is
not available.

In implicit imitation reinforcement learning [Price and Boutilier, 2003], less insight of
the mentor is accessible to the observer. The observer can note only the changes of
the mentor’s experiment environment, leaving to fill the blanks for actions taken.
Implicit imitation tries to approximate the mentor’s behavior by observing the state
transitions and estimating the action needed for these alterations. While on rare oc-
casions mentor actions are transferred, in implicit imitation the observer does not
blindly follow the mentor’s directions. This results to a more flexible and stable
observer agent that hopefully, after its training, will be able to adapt and even out-
perform the mentor in non visited states.
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While both explicit and implicit imitation are considered viable, we will focus on de-
veloping an agent with the use of the latter. In order to define correctly the men-
tor’s shared knowledge, we, firstly, need to make some core assumptions [Price and
Boutilier, 2003].

Observability: We assume that the observer has access to the mentor’s MDP. In our
case that includes the mentor’s state transitions vector, but not its actions.

Analogy: We assume that both agents, mentor and observer, use the same local state
spaces, otherwise the information received by the learner would be irrelevant and
not of any use, thus failing to be helpful. We conclude that Sm = So = S, removing
any distinctions between the state spaces.

Abilities: As in Analogy, here we also assume homomorphism between the abilities
of the mentor and the observer agent, meaning that they both have the same or
highly similar action spaces. If identical actions from common initial states would
result to different states, this nullifies the imitation procedure. As homomorphism
suggests, the action spaces are assumed equal Am = Ao = A and the state transitions
follow the same MPD for each action a ∈ A. It should be noted that the action spaces
can have a weak equality instead, but in this work no such case is studied.

Objectives: No assumptions are made for the reward functions used individually
for the two agents. Even though one can infer that the closer they are, the easier it
is for the observer to imitate the mentor, no explicit directions are being instructed
by the mentor. However, due to the nature of our experiments, identical reward
functions are being used for both the mentor and the observer agents.

2.4 OpenAI Gym

The environment of our testing stages, which is OpenAI Gym, includes a plethora
of games we can test our algorithm on. OpenAI Gym is a toolkit designed to experi-
ment on different problems with reinforcement learning [Brockman et al., 2016]. It is
widely accepted as a robust and stable environment and for this reason it is greatly
supported by the community, including complete compatibility with famous python
machine learning libraries such as the ones we are using (Tensorflow etc). Combined
with the latter, its easy accessibility, open source approach and dependency update
makes it a perfect candidate for our work. OpenAI Gym provides a collection of
environments that vary in difficulty, ranging from small-scale tasks to classic Atari
games and 3D modeled robots. For our work, based on the requirements for each
problem, plain classic control games are selected. Through its main interface, we
can choose to emulate a game, feeding to it our agent’s decisions on action selec-
tion, receiving an environment observation together with the reward and training
our model in real time. At our agent’s pace, we can automate the game reset and
continue testing and training our agent’s capabilities with a fresh start.

2.5 Related Work

A plethora of other works on imitation are to be noted to encourage improvements
and future extensions.
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[Hester et al., 2018] introduces an approach of implicit imitation by feeding mentor
demonstrations to the observer, making a difference by using a pre-training super-
vised phase. During that phase mentor demonstrations are used is a supervised
manner to imitate its behavior. Its main goal is to start the deep reinforcement learn-
ing procedure from a point that limit negative action choices and errors, making it a
perfect candidate for real life environment problems.

A different imitation method that includes the influence of a guide is [Hester et al.,
2017], taking advantage of human experience combined with a checkpoint system.
At each training step batches are sampled from both the agent’s and human’s expe-
rience buffer, resulting to more guaranteed positive rewards. Also, by abusing set
checkpoints they can choose to improve specific state transitions. When an episode
with poor performance exhibited is terminated, a checkpoint is selected to resume
the training procedure instead of the initial state. This discovers more efficiently
the state transitions with the highest rewards before the exploration stage is fin-
ished.

[Le et al., 2018] introduces a hierarchical technique to the imitation learning applica-
tion. A two-level hierarchy is used; the HI level is in charge of choosing subtasks and
LO level is in charge of executing them. By using behavioural cloning [Ross, Gordon,
and Bagnell, 2011], a hybrid setting is created with imitation learning from demon-
strations on the HI level and reinforcement learning methods on the LO level.

A unique, interesting approach of imitation learning is [Stadie, Abbeel, and Sutskever,
2019b]. Instead of receiving mentor demonstrations from a first-person point of
view, which are not obtainable in many cases, third-person demonstrations are used.
Generative adversarial networks are utilized based on the work of [Ho and Ermon,
2016]. Pixel-level demonstrations are observed by the agent and in an unsupervised
manner, implicit imitation is achieved. However, it was examined that as the camera
angle difference between the agent and the mentor increases, lower performance is
exhibited.

[Price and Boutilier, 2003]’s work on accelerating reinforcement learning through
implicit imitation is an important related work, considering that [Papathanasiou,
2020]’s work was heavily influenced by it. It introduces a set of assumptions that
simplifies and deconstruct the imitation reinforcement learning problem in hand.
By introducing Stochastic games (multiagent environments generalization where
not individual, but combined agent actions are responsible for the state transitions),
observable state transitions can be extracted from each agent. By providing these
demonstrations, they constantly improve and help each other through reinforcement
learning. Their final goal is to find Nash or approximate equilibrium.

Finally, [Papathanasiou, 2020]’s work, as later explained in detail in section 3, in-
cludes methods that we based on to further develop and add optimization improve-
ments. They introduce an implementation of implicit imitation in deep reinforce-
ment learning, by providing mentor demonstrations. At each training step the agent,
after finding a similar mentor state transition, tries to approximate the mentor’s ac-
tion on that step. By comparing its own error value with the predicted mentor’s
action error value and updating the weights according to a confidence testing appli-
cation, accelerated deep reinforcement learning is achieved.
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Chapter 3

Previous Work on Deep
Imitation

In order to develop and test our work a major dependency is included. The work of
[Papathanasiou, 2020] is the foundation of this project and it includes several tech-
niques we built upon to provide our optimized version.

Stochastically 
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Update model 
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on lowest error
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FIGURE 3.1: Observer Implicit Imitation depiction

Since our work is based on [Papathanasiou, 2020]’s work, the thesis explanation
would be incomplete if we did not include their additions to the default deep Q-
learning model. [Papathanasiou, 2020]’s work, heavily influenced by Bob Price’s ap-
proach on the subject of imitation reinforcement learning [Price and Boutilier, 2003],
adds heuristics to correctly adapt to the deep Q-network (Figure 3.1). In this section
a description of each step is analyzed to cover the fundamentals, before we move on
to our improvements over this model.

3.1 State Transition Extraction

Their first mechanism is the experience extraction from the mentor. The mentor is
a normal Deep Q-network model. After training the mentor to its highest potential,
they let it complete the experiment repeatedly whilst keeping a log file including
every consecutive state transition.

N observations of the form

Observation Tuple 1,

Observation Tuple 2,
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Observation Tuple 3,

. . .

Observation Tuple N.

are stored in a csv file, containing tuples of 〈sm, s′m〉, where sm is the mentor state
before it takes the unknown action am and s′m is the state after the action execu-
tion.

Multiple mentors are being trained, saving a file from each. Afterwards, when the
agent under training - the observer - initializes its parameters, it reads all files, gain-
ing access to all recorded observation tuples and, finally, stores them in a list for
future use.

Note that only the state values are being tracked, neither the mentor action am or the
received reward rm is known. The assumption used is that the environment rewards
have equal values among observer and mentor rm = ro states, if they are found to be
similar. However, the specification of the mentor action am creates new challenges
that will be explained in detail in the next subsections.

3.2 State Similarity

In order for the observer agent to make use of the mentor files it needs to correlate its
encountered states with the mentor stored ones. In discrete state space environments
this is not a problem, since the observer encounters identical states contained in
the mentors’ demonstrations. However, in continuous state space environments,
one cannot expect to encounter the exact same state, due to the large number of
dissimilar states (often converging to infinite). This calls for a heuristic that will
associate states by similarity approximation.

Denoting as Φ the set of all possible state vectors, they calculate the state divergence
∆φ between the observer’s state vector φo ∈ Φ and mentor’s state vector φm ∈ Φ
using the percentage formula

∆φ =
φo − φm

φm
· 100. (3.1)

After enumerating the state difference, they judge if the states are similar by using a
similarity threshold ∆φ∗

|∆φ| < ∆φ∗. (3.2)

If the absolute divergence value is lower than the threshold hyperparameter, they
recognize the two states as similar.

For every visited observer state, they parse through the entire saved mentor state list
and individually check for mentor states that are comparable. This way, for every
training step t a completely new similarity list is being filled and a random mentor
state entry is picked for the rest of this step. The random selection ensures that favor-
ing of specific states is avoided, restraining from early overtraining problems.
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The threshold hyperparameter ∆φ∗ value differs for various environments. It can
be selected through experimentation, but one should keep in mind that the higher
its value, the higher the chance of polluting the training procedure with negatively
affecting mentor states.

3.3 Mentor Action Prediction

Under most circumstances the unknown mentor action am is the most rewarding
action for the observer when it is on a similar mentor state. Now that they potentially
have a mentor state sm that is closely similar to the observer state so, a process of
predicting the mentor action am engages.

When the similarity list is non-empty, after taking a step executing the observer ac-
tion ao selected based on the exploration policy, they compare the next states s′o and
s′m for similarities. If the threshold is satisfied they conclude to assigning the ob-
server action ao to the predicted mentor action am. Otherwise, they duplicate the
current environment and by brute-forcing all possible actions from the action space
A, they try to find which action would lead to the next state being s′m. In other words,
they enable an emulation trying to find actions that will provide ending states sim-
ilar to the mentor one. Finally, if the similarity list is empty, a random action is
picked for the mentor action am reinforcing the stochastic part of the exploration
policy.

Algorithm 2: Predicting the mentor action

1 if similar state sm exists then
2 if ∆φi+1,ao < ∆φ∗ then
3 am = ao
4 else
5 Backup environment
6 for a in A do
7 Access backup point
8 Emulate environment step with action a
9 if ∆φi+1,a < ∆φ∗ then

10 am = a
11 end
12 end
13 end
14 else
15 Assign random am from action space A
16 end
17 return am
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3.4 Augmented Loss Functions

After specifying all parts of the mentor’s tuple 〈sm, am, rm, s′m〉 is known, the observer
can identify the Q-value function from its viewpoint as

Qm(sm, am) = (1− a)Qm(sm, am) + a

(
rm + γ max

[
max

a
[Qm(s′m, a)], Qm(s′m, am)

])
,

(3.3)

where sm is the similar state to the observer’s encountered state so, am is the predicted
mentor action, rm is equal to the observer’s reward ro and s′m is the next step’s similar
state of observer’s s′o.

As noticed, since the minimum value is equal to Qm(s′m, am) the corresponding bell-
man equation for the observer itself is described as

Qo(so, ao) = (1− a)Qo(so, ao) + a

(
ro + γ max

[
max

a
[Qo(s′o, a)], Qm(s′m, am)

])
. (3.4)

In order to carry out these changes to the DQN architecture they need to create new
and updated loss functions. Based on the default loss function

L(θt) = Es,a,r,s′ [(r + γ max
a′

[Q(s′, a′, θ−t )]−Q(s, a, θt))
2], (3.5)

they can create augmented loss functions for both the mentor and observer, from the
observer’s perspective. The observer augmented loss function can be constructed
as

L(θt)o = Es,a,r,s′ [(ro + γ max{Q(s′o, argmax
a′

Q(s′o, a′; θ−t ); θ−t ), Q(s′o, am; θ−t )}

−Q(so, ao; θt))
2],

(3.6)

while the mentor augmented loss function as

L(θt)m = Es,a,r,s′ [(ro + γ max{Q(s′m, argmax
a′

Q(s′m, a′; θ−t ); θ−t ), Q(s′m, am; θ−t )}

−Q(sm, am; θt))
2].

(3.7)

One can notice that the two terms within the max function Q(s′m, argmaxa′ Q(s′m, a′; θ−t );
θ−t ) and Q(s′m, am; θ−t ) are correlated, since the second term is strictly equal or lower
than the first term. More specifically, since the mentor action am is a subset of the
argmax function, the final Q-function value of the mentor action will be equal to the
Q-function value of the argmax when a′ = am and lower otherwise. This distinction
helped [Papathanasiou, 2020] create intuitively the bellman equations and loss func-
tions, but it only provides unnecessary complexity onwards. However, even though
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it should be removed from the augmented loss function (eq. 3.6, eq. 3.7), in this the-
sis it is decided to be kept within the augmented loss functions’ formulas, because
on later improvements over the algorithm, these functions will be partially changed,
resulting to ending the property of the strictly equal or lower relationship.

3.5 Confidence Testing

Having two different loss functions creates the need for a decision making condi-
tion selecting the one minimizing the model. For each training step they store the
values Qo and Qm for future use. Now, they can compare past Q-function values
with present ones. This divergence is the deciding factor on what augmented loss
function they use. More specifically, using square distance, two terms are calculated
on each step

Do = (Qo −Qo,past)
2, (3.8)

Dm = (Qm −Qm,past)
2. (3.9)

By comparing these two values, they pick the augmented loss function associated
with the minimum distance. Since having close Q values during different states
translates into a more stable model, it also follows that it converges to the optimal
policy Q-function.

A distance estimator alternative is the absolute difference

Do = |Qo −Qo,past|, (3.10)

Dm = |Qm −Qm,past|. (3.11)

However, they concluded to using the square difference, as it detects more effec-
tively small differences in values.
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Chapter 4

Enhancing Deep Imitation
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FIGURE 4.1: Training step flowchart. Step(s) labeled as: 666 is part of
Double Deep Q-network, 4-5-84-5-84-5-8 are part of Prioritized Experience Re-
play, 777 is part of Dueling Network Architecture, 222 is part of Parameter

Space Noise for Exploration

Even though [Papathanasiou, 2020]’s implementation of deep imitation provides su-
perior results over the default deep network, we can expect to achieve even better
results through further optimization. In this section we will explain the work and the
main subject of this thesis, including four different optimization algorithmic changes
that try to improve the existing deep imitation network. Our benchmark is the DQN
agent with added imitation methods of [Papathanasiou, 2020]. We start with the
addition of Double Deep Q-learning that removes value overestimation problems cre-
ated by single DQN estimators. Afterwards, the use of Prioritized Experience Buffer
is described, which changes the buffer sample selection by deterministically favor-
ing the samples with the highest error values, ensuring no rare occasions of specific
states will be neglected. Following that, the Dueling Architecture is analyzed improv-
ing the architecture of the model without adding extra hidden layers, whilst keeping
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the benefits of advantage learning. Finally, Parameter Space Noise Exploration is intro-
duced, advancing the exploration stage of the training by adding Gaussian noise to
the network, resulting to sporadically acting slightly different, but not far from the
stochastically chosen actions.

As far as implementation is concerned two of those optimization modules need to be
changed in order to get integrated to the deep imitation work [Papathanasiou, 2020].
More specifically, to implement Double Deep Q-network, modifications are expected
to the augmented loss functions (see eq. 3.7, 3.6). Moreover, in Prioritized Experi-
ence Buffer, since weight updating is directly dependent on each training step’s esti-
mated error values, i.e., the augmented loss functions, additional algorithmic steps
are needed. However, as Dueling Network Architecture and Parameter Space Noise
for Exploration make changes to the neural network, which do not explicitly interact
with the deep imitation methods, no algorithmic adjustments are required for their
implementation.

4.1 Deep Reinforcement Learning with Double Q-learning

As previously discussed, Q-learning suffers from overestimation problems, nega-
tively affecting performance. Even though optimism can be used in favor of the ex-
plorer to bring desired results [L. P. Kaelbling, 1996], it is often not the case when the
estimations are not distributed correctly and are not focused on specific states.

This issue is, also, transferred to the Deep Q-learning or DQN implementation [Has-
selt, Guez, and Silver, 2016], making space for our first algorithmic improvement
over the existing model. Following the original Double Q− learning algorithm [Van
Hasselt, 2010], a Deep Q-learning application of it, named Double Deep Q-learning
or DDQN, was proposed and tested on Atari 2600 environments [Hasselt, Guez, and
Silver, 2016]. Following the Double Q-learning algorithm, its application includes
two different Q-networks taking turns on updating

yDDQN f orA
t = rt + γQ(s′t, argmax

a
Q(s′t, a; θA

t ); θB
t ). (4.1)

In this case we have two models, model A and model B, built with the same initial
architecture, but updated with different values. Notice that after deciding which
action is currently the optimal by using model A - with set of weights θA

t - prediction,
we use the predictions of model B’s - with set of weights θB

t - to update our model A.
Interchanging the terms θA

t and θB
t symmetrically updates the second model B.

However, such approach can prove to be excessive, complex and time consuming
considering the fact that we would need to update two different set of weights. Since
our architecture has already two different models available - the constantly updated
Q-network and the occasionally updated target Q-network - we can replace the sec-
ond Q function model with the target Q-network and avoid creating a completely
new Q function model from scratch. We thus change the updating step of 4.1 to
[Hasselt, Guez, and Silver, 2016]

yDDQN
t = rt + γQ(s′t, argmax

a
Q(s′t, a; θt); θ−t ). (4.2)

As noted, after identifying the action with the currently higher Q function value us-
ing a set of weights θt, we choose to use the target network value with set of weights
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θ−t , provided with that action, to update our current Q function model. Since the
target model is a deep copy of our model which gets refreshed every N steps, it
simulates the parallel update that takes place in normal Double Q-learning.

Taking into consideration these adjustments, our loss functions should change their
forms to include them. We substitute the selection of maximum target Q-model
value with the target Q-model value that uses the action providing the maximum Q
function model value

L(θt)o = Es,a,r,s′ [(ro + γ max{Q(s′o, argmax
a′

Q(s′o, a′; θt); θ−t ), Q(s′o, am; θ−t )}

−Q(so, ao; θt))
2],

(4.3)

L(θt)m = Es,a,r,s′ [(ro + γ max{Q(s′m, argmax
a′

Q(s′m, a′; θt); θ−t ), Q(s′m, am; θ−t )}

−Q(sm, am; θt))
2].

(4.4)

Note that in both loss functions the target Q-function value with the predicted men-
tor action am is not strictly lower than the first term included in the max function
anymore. The chosen action a′ is the currently best action for our Q-function, but
not necessarily for our target Q-function as well, meaning that the mentor action am
could be a better alternative.

4.2 Prioritized Experience Replay

The use of an experience replay method is characterized as vital for the smooth con-
duct of a deep reinforcement learning model. By training the model with simultane-
ous old and newly encountered transitions, we can stabilize the training procedure.
However, a case can be made for favoring specific transitions by prioritizing them
correctly. This may be required since certain transitions can be deemed unnecessary
or not valuable enough to spare a training step on them. By prioritizing the samples
we pick, we can accelerate our model’s training and reach convergence earlier than
expected.

Moving on to the implementation of such a method, an initial thought would pro-
pose to choose our minibatch of samples greedily. In that case we would prioritize
our samples based on their TD-error. After parsing through a large amount of tran-
sitions and estimating their initial TD-error, which would also be their criterion for
their spot in the replay memory, we would choose to replay a small amount of high
priority transitions. High priority is associated with high TD-error value. That raises
the question "what will happen to the transitions with low TD-error values?". Since
these cases would not get investigated, it is highly likely that the model would suf-
fer from missing essential training samples, resulting to never ending high TD-error
transitions and possibly never visiting the key transitions of mediocre or low TD-
error values.

A solution to this problem is a stochastic sampling approach. According to it, based
on the magnitude of the error, each sample is assigned a probability. High TD-error
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samples are more likely to be chosen for replay, while at the same time low TD-
error samples have non-zero chances to be picked. This guarantees a smoother and
more balanced selection of samples, favoring the problematic samples of high TD-
error values. This method can be assigned somewhere between the questionable
greedy approach and the default uniform random approach [Lin, 1992] used in deep
reinforcement learning [Mnih et al., 2013].

Firstly, we need to specify the priority term. Since we base our priority of TD-error
value, priority of transition i can be defined as [Schaul et al., 2016]

pi = |δi|+ ε, (4.5)

where ε is a small constant that avoids zero value priority and guarantees positive
probability. Now that we have our mean of prioritization we can move to the defi-
nition of the probability of sampling transition i [Schaul et al., 2016]

P(i) =
pα

i

∑k pα
k

(4.6)

where α denotes the priority highlight we choose to use. Higher value of α translates
to magnification of the priority value, increasing the favoring of high TD-error value
transitions. Note that when α has a zero value, the probability function is identical
to the uniform one. The higher its value, the further away we are from the uniform
distribution.

However, sampling based solely on the probability function we created would result
to a terribly biased estimator leaning towards high priority samples. This means that
our network will initially improve at high speed, but end up overfitting really fast.
In order to reduce this bias the use of importance sampling is needed [Mahmood,
Hasselt, and Sutton, 2014]. Our initial sample distribution is the probability func-
tion based on priority. By smoothing the values used to update our model’s set of
weights, we limit the bias created by this sampling method. Intuitively, we try to
train on high priority samples while removing part of the value’s magnitude, since
there is a high chance we will encounter them again during a future sampling ses-
sion. At the same time, when a low priority sample is encountered, we try to fully
train on it as it is probable that we will never encounter it again. The weight function
for transition i introduced for this purpose is defined as [Schaul et al., 2016]

wi =

(
1
N
· 1

P(i)

)β

. (4.7)

The term 1
P(i) is mainly used to correct this bias, although it can end up with ob-

scene values, increasing our gradient magnitudes. For this reason, we normalize it
by multiplying it with 1

N . Using this term avoids further adjustment for our hyper-
parameters, which is essential for this project, since we introduce numerous new
hyperparameters that would need tweaking just to adjust to importance sampling.
The β parameter is used to control the amount of prioritization we apply. Since, at
earlier stages the process is considered unstable due to how quickly and with what
magnitude the model’s parameters change, the importance sampling bias correction
is mainly needed when proceeding to the end of the training. In order to make full
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use of this observation the β hyperparameter starts at a low value and linearly an-
neals to one. Finally, we downscale the weight value to range (0, 1) by dividing with
maxi wi.

Whenever we store a new sample, we assign it the maximum priority value currently
available, providing high chances to be sampled. To avoid excessive computation
effort we only calculate and update values of samples when they are picked by our
distribution.

When requested for a minibatch sample, the replay memory initially samples the
requested transitions based on the probability function, afterwards it calculates the
importance weights as described above, then it computes the TD-error value using it
to update the priority value of the transition and, lastly, it estimates the final weight
change (algorithm 3).

Algorithm 3: Sampling with Prioritized Experience Replay and Deep Imi-
tation
1 Store transition t with maximum priority pt = maxi pi
2 for j = 1 to minibatch size m do
3 Sample transition j based on distribution P(j) = pa

j / ∑i pa
i

4 Calculate importance sampling weight wj = (N · P(j))−β/ maxi wi

5 Compute mentor error value δm using mentor augmented loss function
L(θt)m

6 Compute observer error value δo using observer augmented loss function
L(θt)o

7 Calculate square distance of confidence testing mentor and values Do,
Dm

8 Assign error value δj to δm or δo based on the confidence testing results
9 Update priority value pj = |δj|+ ε

10 Estimate model’s weight change ∆j = wj · δj

11 end
12 Optimize model’s set of weights using ∆

It should be highlighted that with the implementation of deep imitation, extra steps
are added in the process. To be more precise, the TD-error value δj, included in
the original Prioritized Experience Replay algorithm [Schaul et al., 2016], is now
dependent on our confidence testing procedure (see line 7). After we calculate the
mentor and observer error values based on revised loss functions for deep imitation
(see section 3.4), the confidence testing step takes place (see section 3.5). According
to it we can conclude to a single error value (either mentor δm or observer δo, see
lines 5, 6) that will be responsible to update the network’s weights. It is tested that
with each minibatch created for training, a mixed sample variety is observed. In
earlier stages of the training procedure more mentor samples are included, since on
average they provide more stable Q-value differences between state transitions in
comparison to the random action state transitions taken by the observer. In later
stages a balanced sampling variety is detected, since the observer is converging to
the optimal policy. Considering that the mentor has already converged to a similar
optimal policy, small differences in error values between mentor and observer are to
be expected.
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4.3 Dueling Network Architecture

Advantage learning, introduced in section 2.1.2, can yield good results if imple-
mented correctly. However, the original algorithm application would require a com-
plete make over of our architecture, negating previous work and the state-of-the-art
research. As suggested, we have to involve the advantage learning algorithm with
a Q-value function model.

FIGURE 4.2: Comparison of the single stream Q-network (toptoptop) and
the dueling Q-function network (bottombottombottom)

Following the work of [Wang et al., 2016], we can isolate Qπ from

Aπ(s, a) = Qπ(s, a)−Vπ(s), (4.8)

to get

Qπ(s, a) = Vπ(s) + Aπ(s, a), (4.9)

where for Vπ(s) = Ea∼π(s)[Qπ(s, a)], we can conclude that Ea∼π(s)[Aπ(s, a)] = 0.
Also, when following a policy with optimal action a∗ = argmaxa′ , then Q(s, a∗) =
V(s), resulting to A(s, a∗) = 0.

Based on this equation, we can modify our current network model so that it cal-
culates both the state-value V(s) and the advantage function A(s, a) to provide an
outcome of Q-value Q(s, a). With this method, we isolate the algorithmic changes
inside one layer of our model, whilst including the advantage function and its ben-
efits to our project. Instead of driving the hidden layers to our output layer that is
our Q-values, we redirect the output to two parallel different models, V(s; θ, β) and
A(s, a; θ, α) [Wang et al., 2016]. The θ refers to the set of weights of our model up to
that point, the β refers to the set of weights used for the value-state connected layer
and the α to the set of weights used for the advantage connected layer. To receive



Chapter 4. Enhancing Deep Imitation 31

the desired results of Q-function all we have to do is add the value outputs of both
layers. Note that the value-state function V(s) output consists of single numeric
value, whereas the advantage function A(s, a) output is a |D|-dimensional vector,
where D is the set of available actions. Adding these values together grants the de-
sired |D|-dimensional Q-function value vector. A clear visualisation can be seen in
(Figure 4.2). Our new statement would look like

Q(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α). (4.10)

Even though this is a logical final statement, a major flaw emerges when put to
practice. According to our way of thinking the value-state function V(s) and the
advantage function A(s, a) would provide accurate actual values. However, there
is not a distinction between those two parallel models, meaning we cannot expect
the overall model to guess and identify individually the correct values for each sub-
model. In order to accomplish that we have to guide the models with an additional
step. With the optimal action a∗ = argmaxa′ Q(s, a′; θ, α, β) = argmaxa′ A(s, a′; θ, α)
we can force the output Q(s, a∗; θ, α, β) = V(s; θ, β) by eliminating the advantage
function estimator [Wang et al., 2016]

Q(s, a; θ, α, β) = V(s; θ, β) +

(
A(s, a; θ, α)−max

a′
A(s, a′; θ, α)

)
. (4.11)

Here, for the action a∗ the second term is equal to zero, hence the advantage function
estimator elimination. With this special case as a guide, the model is trained correctly
so it can evaluate correctly both the value-state function V(s) and the advantage
function A(s, a).

Even though this formula is valid and can successfully train a model that benefits
from the advantage function, an alternative, more stable one has been suggested and
proved to be more effective [Wang et al., 2016]. Instead of subtracting the maximum
value, we can subtract the average value. This will result to a small constant offset,
but now the advantage has to catch up to the mean and not the optimal maximum
value, which converges to a faster training

Q(s, a; θ, α, β) = V(s; θ, β) +

(
A(s, a; θ, α)− 1

|D|∑a′
A(s, a′; θ, α)

)
. (4.12)

As previously mentioned, no changes are needed for the Dueling Network Archi-
tecture algorithm to work with the deep imitation methods [Papathanasiou, 2020].
The only existing common ground between deep imitation and Dueling Network
Architecture is the chosen error value from the augmented loss functions. However,
since the error value is just a variable input of the neural network, its structure and
additional modifications, namely, Dueling Network Architecture are integrated with
no adjustments.

At this point it should be highlighted that the addition of the dueling network archi-
tecture is an attempt to simulate and integrate the advantage function into a model.
It does not follow any of the advantage’s actual algorithmic steps, it only trains the
model based on some ground rules that derive from equations involving the ad-
vantage function. The value identification for both value-state function V(s) and
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advantage function A(s) is completed automatically through the network’s back
propagation with no algorithmic additions.

4.4 Parameter Space Noise for Exploration

The final optimization step introduces changes to the exploration stage of the agent.
Multiple studies have tried to improve the exploration through numerous meth-
ods [Rückstieß, Felder, and Schmidhuber, 2008; Salimans et al., 2017] with positive
results. However, the need for an exploration advancement that is not on-policy ex-
clusive and includes temporal information management was recently satisfied with
very good results [Plappert et al., 2018]. Its main premise is to enrich the exploration
phase of the training by adding Gaussian noise directly to the parameters of the neu-
ral network. Through this addition a bigger variety of consecutive transitions will
be encountered, ending up with a more fulfilling exploration development.

Denoting with θ the variables of our network, at the start of every episode we
add Gaussian noise to create the perturbed network with variables [Plappert et al.,
2018]

θ̃ = θ +N (0, σ2), (4.13)

where N is the Gaussian noise distribution, with mean µ = 0 and variance σ2. The
mean is equal to zero for obvious reasons, we do not want to permanently offset
the parameters on average. We symbolize as π̃ = πθ̃ the policy deriving from the
perturbed network and as π = πθ the original policy.

The first challenge comes with the value selection of the variance σ. Using a constant
value η is not a viable option considering that the noise will not be able to keep up
with the changes made over the network. Instead of a constant, the use of a scale for
σ is suggested. That way, after providing an initial value, we can adapt the Gaussian
noise addition to the dynamic network. Initializing the variance σ with a really
small value, we can continue to update that value at every episode by multiplying
or dividing with a constant [Plappert et al., 2018; Ranganathan, 2004]

σt+1 =

{
κ · σt, if d(π, π̃) ≤ ζ
1

2κ · σt, otherwise.
(4.14)

Originally, the division suggested by the author was with κ, but through experi-
mentation we produced superior results with 2κ. The d(·, ·) function represents
the difference between the two networks, the original and the perturbed, while ζ
is a threshold factor that judges whether the noise exceeds the desired boundaries.
When the difference between the models excels ζ we try limiting the noise by divid-
ing the variance by the 2κ factor. On the alternative case we reinforce the noise by
multiplying with the κ value.

The next goal is to define the difference function d(·, ·). Trying to make a numerical
representation of the dissimilarities between the two networks Q and Q̃ by directly
subtracting its values is too unstable to rely on. Small changes could still lead to the
same policies, whereas large value gaps could trick the algorithm and exceed the
threshold ζ when such magnification would not be relevant. The need for a normal-
ized formulation of the networks arises. Consequently, one can design a probabilistic
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representation of the original and perturbed networks by administering the softmax
function over the output of the networks

Pi(s) =
eQi(s)

∑j eQj(s)
, (4.15)

P̃i(s) =
eQ̃i(s)

∑j eQ̃j(s)
. (4.16)

where Qi(s) is the Q value of action i with input state s. The final probabilistic
functions P(s) and P̃(s) are vectors of dimension |A|, where |A| denotes the number
of actions available. Since both functions are probabilistic, they individually both
sum to one. Now that we have a normalized formulation of the networks, we can
use Kullback-Leiber divergence [Kullback, 1959] to measure the differences between
them

DKL(P||P̃) = ∑
s

P(s) · log
(

P(s)
P̃(s)

)
, (4.17)

granting us the final definition of the difference function d(·, ·) [Plappert et al., 2018]

d(π, π̃) = DKL(P||P̃). (4.18)

Now that we can enumerate the distance between the two networks, our final objec-
tive is to specify the noise threshold ζ. In order to avoid the use of another hyper-
parameter, we can associate this term with exploration-greedy action space noise.
According to pure-greedy policy πg(s, a) with

πg(s, a) =

{
1, if a = argmaxa′ Q(s, a′)
0, otherwise,

(4.19)

and exploration-greedy policy πε(s, a) with

πε(s, a) =

{
1− ε + ε

|A| , if a = argmaxa′ Q(s, a′)
ε
|A| , otherwise,

(4.20)

where ε is the exploration value of our current training step, one can use Kullback-
Leiber divergence to create a representation of the action space dissimilarities be-
tween the two policies

D(πg||πε) = − log
(

1− ε +
ε

|A|

)
. (4.21)
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Correlating this diversity to the outcome of the difference function d(π, π̃) 4.18, we
can use the action space noise divergence to define the parameter space noise thresh-
old ζ term [Plappert et al., 2018]

ζ = − log
(

1− ε +
ε

|A|

)
. (4.22)

Note that for this optimization improvement to be performed, when we determin-
istically predict an action, this action is input by the perturbed Q̃-network (see al-
gorithm 4). Also, as seen in Figure 4.1, the predicted mentor action procedure is
unrelated to this step, since we do not receive such actions from our network. This
means that the inclusion of Parameter Space Noise for Exploration in our work does
not directly affect the procedures of deep imitation, but, nevertheless, further opti-
mizes the model.

Algorithm 4: Choosing an action with parameter space noise [Plappert et
al., 2018]
1 while training do

2 Calculate ζ = − log
(

1− ε + ε
|A|

)
3 Receive prediction from the unmodified Q-network qpred = Q(s)
4 Receive prediction from the perturbed Q-network q̃pred = Q̃(s)
5 if start of episode then
6 for each variable in Q̃-network do
7 Add Gaussian noise variable = variable +N (0, σ2)
8 end
9 end

10 Calculate the Kullback-Leiber divergence KL = d(π, π̃)
11 if KL < ζ then
12 Update σ = κσ
13 else
14 Update σ = 1

2κ σ
15 end
16 Predict deterministic action ad based on q̃pred

17 Choose random action ar
18 return action a based on exploration ε, either ad or ar

19 end
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Chapter 5

Experimental Evaluation

In this section we test our optimization improvements over selected environments.
We will start by describing the games’ functionalities and how our agent can inter-
act with them. Afterwards, for each game separately, we will move on to the results
evaluation. We remind that our mentor is a normal Deep Q-network application
and our benchmark learning curve is the Deep Q-network with imitation methods
applied, named as vanilla trainee in our experiments. A variety of different combi-
nations was tested (Figure 5.1) ending up with three sets of outcomes that will be
explained. It should be noted that since Dueling Network Architecture is used as
a complementary method, providing small but stable improvements in our results,
it is not tested on its own. We examine combinations that encourage the enabling
and disabling of our Double Deep Q-network and Prioritized Experience Replay
optimization modules.

With that in mind, in our first setting the mentor and our benchmark agent are in-
cluded together with the Prioritized Experience Replay and Prioritized Experience
Replay with Dueling Network Architecture agent variants. As expected, in this set,
the Prioritized Experience Replay with Dueling Network Architecture combination
stands on top on both environments. In our next setting, we enable Double Deep Q-
network creating three more combinations: Double Deep Q-network, Double Deep
Q-network with Prioritized Experience Replay, Double Deep Q-network with Prior-
itized Experience Replay and Dueling Network Architecture. They are compared to
the highest performance agent from the previous set, the Prioritized Experience Re-
play with Dueling Network Architecture agent, resulting to our overall winner being
the combination of Double Deep Q-network with Prioritized Experience Replay and
Dueling Network Architecture (see highlighted combination in Figure 5.1). Finally,
due to poor performance exhibited by the addition of the Parameter Space Noise for
Exploration module, in our third setting we compare the mentioned winner agent
with the Parameter Space Noise for Exploration, Double Deep Q-network, Priori-
tized Experience Replay, Dueling Network Architecture agent and comment on the
reasons we suspect Parameter Space Noise for Exploration underperformed.

5.1 Description of Experimental Settings

Starting with a basic and simple game environment, our first selected environment
from OpenAI Gym is 2D-maze-v0 (Figure 5.2). The agent, depicted as a blue ball,
tries to find its way from the entry point (blue square) to the goal (red square). Main
objective is to find the shortest path. Actions include the four direction keys go up, go
down, go left, go right and the observation space is just the coordinates of the agent in
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FIGURE 5.1: Module combination depiction with highlighted winner.
Imitation refers to the algorithm developed in [Papathanasiou, 2020].
Module combinations are separated to sets based on our analyzed

experiment evaluation.

FIGURE 5.2: 2D-maze-v0 environment depiction

the maze. For each time step a reward of − 0.1
total number of cells is awarded, with a bounty

of 1 if the agent reaches the goal. There is no time restriction, but considering that



Chapter 5. Experimental Evaluation 38

the agent gets punished the longer it takes to fulfill its trip, certain limits must be
placed to consider an agent perfect. Since our agent performed on 3x3 mazes, it was
calculated that an accumulated reward of at least 0.9111 is needed to solve the maze
problem on a training step.

FIGURE 5.3: Cartpole-v1 environment depiction

Our second selected game environment for OpenAI Gym is Cartpole-v1 (Figure 5.3).
It is a famous problem [Barto, Sutton, and Anderson, 1983] and it includes a cart
with a pole attached to it, moving horizontally on a platform. Due to the nature of
the pole and the emulation of gravity, the goal of this game is to balance the pole
on the cart for a specific amount of time steps. Actions include only go left and go
right and observations forwarded to the agent’s network include cart position, cart
velocity, pole angle and pole velocity. For each time step with pole balanced on
top of the cart, the agent is rewarded with 1. Each training step is stopped at 200
time steps, creating strict boundaries for a perfect agent at 200 accumulated reward.
Upon failure, the environment is reset and a new training step begins, starting from
a central position.

At each depiction we present accumulated rewards per training step for over 550
training steps, averaged from 15 untrained agents. It was decided to use training
steps over time steps as x axis, since most training steps vary on the skill of the agent
and upon failure it resets, ending up with different amount of time steps for each
progression level. This provides a faulty sense of improvement over time.

5.2 2D Maze

5.2.1 Prioritized Experience Replay and Dueling Architecture

The first plot (Figure 5.4) includes the learning curves of the mentor, the vanilla
trainee, the trainee with Prioritized Experience Replay and the final trainee with
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added Dueling Architecture. It is obvious that the original trainee outperforms the
mentor with outstanding improvement. Due to the nature of the problem, it is high-
lighted a great improvement from the mentor to the trainee. Since the states are
low in number and discrete, the mentor demonstrations cover all possible combi-
nations of state transitions. That way the trainee can easily adapt to the mentor’s
guidance, hence the notably earlier convergence to the optimal policy. Moving on,
the first stages of exploration are also getting higher total rewards with the help of
Prioritized Experience Replay, yielding a more desirable outcome. At the end, using
Dueling architecture generates stable and slightly better developments.

FIGURE 5.4: 2D Maze Prioritized Experience Replay and Dueling Ar-
chitecture evaluation

5.2.2 Addition of Double Deep Q-Network

We try to further upgrade our plots by enabling Double Deep Q-Network (Fig-
ure 5.5). This figure compares the trainee of Prioritized Experience Replay and Du-
eling Architecture with Double Deep Q-Network and its variants. Even though the
plain Double Deep Q-Network trainee is close to our previous best one, it is clear
how advanced it gets when combined with the use of Prioritized Experience Replay
and Dueling Architecture. As highlighted (Figure 5.1), the most skilled agent in this
problem turns out to be the agent with active modules: Double Deep Q-network,
Prioritized Experience Replay and Dueling Network Architecture.

Unfortunately, since the exploration stage window of this problem is really small
there is no benefit in enabling Parameter Noise Exploration. That is why comments
on Parameter Noise Exploration are entered only in the second experiment, cart-
pole.
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FIGURE 5.5: 2D Maze Addition of Double Deep Q-Network

5.3 Cartpole

5.3.1 Prioritized Experience Replay and Dueling Architecture

Our results are depicted in Figure 5.6. We include the mentor’s average reward,
the vanilla trainee agent, the trainee agent with improved modeling of Prioritized
Experience Replay and another trainee with a Dueling Architecture on top of that.
As expected, the trainee is a faster solver than its mentor and that is improved fur-
ther with the addition of Prioritized Experience Replay. Even though all the agents
start off slowly, after the first exploration stage is finished the similarity comparison
starts to favor the trainee. The Prioritized Experience Replay’s advancement of sam-
ple selection provides a clear overall improvement over the vanilla trainee. Finally,
with the help of advantage learning provided by Dueling Architecture we reach ear-
lier optimal position. The mentor is converging at around 750 training steps, but
due to how exponentially slower the training would be to reach that training step
with all the algorithmic combinations, we decided to cut it on plot at 550 training
steps.

5.3.2 Addition of Double Deep Q-Network

Next on, we extend our list of observable outcomes by adding Double Deep Q-
Network (Figure 5.7). We compare the previously best combination with Double
Deep Q-Network and its variants of Prioritized Experience Replay and Dueling Ar-
chitecture. It is then compared with the Prioritized Experience Replay plus Dueling
Architecture agent we mentioned in the previous section to highlight the gain that
Double Deep Q-Network provides. This section makes obvious how much Deep Q-
Network (both mentor and trainee) suffer from overestimation, a problem resolved
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FIGURE 5.6: Cartpole Prioritized Experience Replay and Dueling Ar-
chitecture evaluation

by Double Deep Q-Networks. Even though the progress changes are limited, it is
definite that with each layer of improvement, superior results are returned. Once
again, the most skilled agent of this game environment is the combination of Dou-
ble Deep Q-network, Prioritized Experience Replay and Dueling Network Architec-
ture.

5.3.3 Parameter Space Noise for Exploration

Our final method not included so far in the observations is Parameter Space Noise
for Exploration. As one can notice (Figure 5.8), the final variation of the Parameter
Noise agent under-performs, ending up with slower problem solving skills than
our most successful agent so far, i.e., the one employing Double Deep Q-network,
Prioritized Experience Replay and Dueling Network Architecture (Figure 5.1).

However, a remarkably steeper learning curve is noted. More specifically the Pa-
rameter Noise agent improves from 30 total reward to 180 total reward in only 110
training steps, while our skilled agent reaches this performance improvement in
over 160 training steps. This happens due to the fact that the Parameter Noise pro-
vided an enriched exploration phase to the agent, covering more variety of transi-
tion samples and supplying the agent with more useful information for its training,
hence the steeper curve. Although, possibly due to the nature and simplicity of our
experiment, this exploration stage takes longer than expected. In more complex set-
tings and environments we can reasonably expect to outperform our highest score
agent.
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FIGURE 5.7: Cartpole Addition of Double Deep Q-Network

FIGURE 5.8: Cartpole Addition of Parameter Noise
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Chapter 6

Conclusion and Future Work

Imitation is a behavioural model firstly observed in nature with numerous varying
applications in machine learning. Explicit and implicit imitation in reinforcement
learning was in depth analyzed in [Price and Boutilier, 2003]’s work. Implicit imita-
tion deep reinforcement learning used as an acceleration of the training operation is
an implementation that was developed by [Papathanasiou, 2020], providing ground
for further optimization. In our work we improve their algorithm by applying sev-
eral optimization techniques: Double Deep Q-network [Hasselt, Guez, and Silver,
2016], Prioritized Experience Replay [Schaul et al., 2016], Dueling Network Architec-
ture [Wang et al., 2016] and Parameter Space Noise for Exploration [Plappert et al.,
2018]. We created multiple combinations by enabling and disabling modules in our
experiments, with our highest skilled agent being the combination of Double Deep
Q-network, Prioritized Experience Replay and Dueling Network Architecture.

However, there is always room for improvement, giving space for future work. One
major issue with this experiment is computation power. The neural networks’ needs
require high quality hardware to reduce the running time of each execution down
to minutes. Unfortunately, no such parts were available in this thesis, resulting to
multi-hour experiments. Ideally, a high end computer would improve the experi-
ence and the research total time, while providing the opportunity to test hyperpa-
rameter values and even suboptimal parameterizations for more network behavior
information.

Also, another important step that needs to be noted is package and library depen-
dencies. Due to the incredibly fast development of deep learning, these dependen-
cies are being updated constantly, removing specific functions that are deemed obso-
lete and changing the content and algorithms to match those used in state-of-the-art.
These small changes can easily break projects like this thesis, meaning that extra time
is required to rewrite specific parts of our algorithm.

Finally, more optimization can be added by playing around with the neural net-
work’s layers. This suggestion, mainly due to the hardware restrictions mentioned
earlier, was not implemented so far in our project, but surely can provide greater
results. It is crucial to highlight that we do not suggest the model itself should
be changed as in dueling architecture optimization, but the hidden layers’ options
specifically.





46

Appendix A

Hyperparameters

Throughout this thesis the use of hyperparameters has been mentioned multiple
times. Their final values were decided after experimentation.

Hyperparameter Description Value
ε exploration (maze) 1→ 0.1 over 1000 steps
ε exploration (cartpole) 1→ 0.1 over 10000 steps
a learning factor 0.00005
γ discount factor 0.99
N replay memory size 50000
b batch sample size 32
M mentor observation files 4
∆φ similarity threshold (maze) 1%
∆φ similarity threshold (cartpole) 20%
α priority highlight 0.6
β priority control 0.4→ 1 over 10000 steps
κ noise variance constant 1.01
g training step reward goal (maze) 0.9111
g training step reward goal (cartpole) 200
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