
Technical University of Crete
School of Electrical and Computer Engineering

Deep Reinforcement Learning in the
Flatland Multi-Agent Environment

Diploma Thesis

Stavros Ntaountakis

Committee
Supervisor : Georgios Chalkiadakis, Associate Professor

Committee Member : Michail G. Lagoudakis, Associate Professor

Committee Member : Georgios N. Yannakakis, Professor (University of Malta)

Chania, October 2021

Πολυτεχνείο Κρήτης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Βαθιά Ενισχυτική Μάθηση στο Πολυπρακτορικό

Περιβάλλον Flatland

Διπλωματική Εργασία

Σταύρος Νταουντάκης

Επιτροπή

Επιβλέπων : Γεώργιος Χαλκιαδάκης, Αναπληρωτής Καθηγητής

Μέλος Επιτροπής : Μιχαήλ Γ. Λαγουδάκης, Αναπληρωτής Καθηγητής

Μέλος Επιτροπής : Γεώργιος Ν. Γιαννακάκης, Καθηγητής (Πανεπιστήμιο Μάλτας)

Χανιά, Οκτώβριος 2021

Abstract

Over the last few years, railway traffic networks have been increasing in size and
complexity due to the ever-growing transportation demands. As a result, railway
companies, such as the Swiss Federal Railway company, need to constantly adapt to
the increasing transportation demands. FlatLand is a simplified 2D grid simulation
that mimics the dynamics of a railway network and was developed as an open sandbox
to accelerate academic research on the Vehicle Rescheduling Problem (or VRSP) in
the fields of Machine Learning and Operations Research.

FlatLand is characterized by many of the common problems that need to be
tackled in multi-agent systems. The coexistence of multiple autonomous agents results
in a non-stationary environment and a partially-observable state space. At the same
time the rewards received by the agents are sparse and delayed, since coordinated
sequence of actions are usually required for yielding such positive rewards.

Under these considerations, in this thesis, we implement and adapt various Deep
Reinforcement Learning methods in the environment of FlatLand. We systematically
compare and evaluate both value-based and policy-based methods on various metrics
of performance and reliability. We ensure consistent and fair training conditions by
employing each agent on a strictly defined training and evaluation setup. We implement
standard DQN methods, as well the Double and Dueling Double DQN variants, and
adapt them to multiple agents. Additionally, we implement a modified PPO agent as
well as a superior PPO agent attached to a Replay Buffer. Lastly, we propose SIL, an
agent that combines PPO with Self-Imitation and converges to a successfull policy in
most environment settings. SIL is shown to excibit superior performance with respect
to all other agents we implemented and tested.

Abstract in Greek

Τα τελευταία χρόνια, τα δίκτυα σιδηροδρομικών σταθμών αυξάνονται συνεχώς σε μέγεθος και

πολυπλοκότητα λόγω των συνεχώς αυξανόμενων αναγκών μετακίνησης. Ως αποτέλεσμα, οι σι-

δηροδρομικές εταιρίες, όπως η Swiss Federal Railway, χρειάζεται να προσαρμόζονται συνεχώς
στις αυξανόμενες αυτές ανάγκες. Το FlatLand είναι ένα απλοποιημένο δισδιάστατο περιβάλ-
λον, το οποίο προσομοιώνει τις δυναμικές ενός σιδηροδρομικού δικτύου και δημιουργήθηκε

ως μια ανοιχτή πλατφόρμα με στόχο την επιτάχυνση της ακαδημαϊκής έρευνας στο πρόβλη-

μα αναπρογραμματισμού οχημάτων, αξιοποιώντας τα πεδία της Μηχανικής Μάθησης και της

Επιχειρησιακής ΄Ερευνας.

Το FlatLand χαρακτηρίζεται από τα περισσότερα απο τα κοινά προβλήματα που πρέπει
να αντιμετωπιστούν σε ένα πολυπρακτορικό σύστημα. Η συνύπαρξη πολλαπλών αυτόνομων

πρακτόρων έχει ως αποτέλεσμα την μη στασιμότητα του περιβάλλοντος και την μερική πα-

ρατηρησιμότητα του χώρου καταστάσεων. Ταυτόχρονα, οι επιβραβεύσεις που λαμβάνουν οι

πράκτορες στο FlatLand είναι αραιές και καθυστερημένες, διότι συνήθως πρέπει να προηγηθεί
μια συγχρονισμένη ακολουθία σωστών κινήσεων, ώστε αυτές να ληφθούν.

Υπό αυτές τις θεωρήσεις, σε αυτήν την διπλωματική εργασία, εφαρμόζουμε και προσαρ-

μόζουμε διάφορες τεχνικές Βαθιάς Ενισχυτικής Μάθησης στο περιβάλλον FlatLand. Συ-
γκρίνουμε και αξιολογούμε αυτές τις μεθόδους συστηματικά, μέσω διαφόρων μετρικών α-

πόδοσης και αξιοπιστίας. Εξασφαλίζουμε σταθερές και ισότιμες συνθήκες εκπαίδευσης, και

εκπαιδεύουμε τον κάθε πράκτορα σε ένα αυστηρά καθορισμένο περιβάλλον εκπαίδευσης και

αξιολόγησης. Υλοποιούμε μεθόδους, όπως την γνωστή και επιτυχημένη DQN, καθώς και τις
παραλλαγές της, Double και Dueling Double DQN, και τις προσαρμόζουμε σε συνθήκες πολ-
λαπλών πρακτόρων. Επιπλέον, υλοποιούμε μία τροποποιημένη εκδοχή του αλγόριθμου PPO,
καθώς και μια βελτιωμένη εκδοχή ενός PPO αλγόριθμου προσδεδεμένου σε έναν Replay
Buffer. Τέλος, προτείνουμε τον SIL, έναν πράκτορα που συνδυάζει την μέθοδο PPO με την
τεχνική της αυτομίμησης. Μέσω μεθοδικών πειραματισμών, επιδεικνύουμε την ανωτερότητα

του SIL σε απόδοση, σε σχέση με όλους τους πράκτορες που υλοποιήσαμε.

Contents

Abstract iii

Abstract in Greek iv

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Outline . 3

2 Theoretical Background and Related Work 4
2.1 Reinforcement Learning . 4

2.1.1 Markov Decision Process . 5
2.1.2 Value and Policy . 7

2.2 Deep Reinforcement Learning . 9
2.2.1 Feedforward Neural Networks . 10
2.2.2 Recurrent Neural Networks . 12
2.2.3 Deep RL methods used in this thesis 13

2.2.3.1 Deep Q-Networks . 14
2.2.3.2 Double Deep Q-networks 16
2.2.3.3 Recurrent Deep Q-Networks 17
2.2.3.4 Dueling Double Deep Q-networks 18
2.2.3.5 Prioritized Experience Replay 18
2.2.3.6 Policy Gradient Optimization 19
2.2.3.7 Proximal Policy Optimization 20
2.2.3.8 Self-Imitation Learning . 22

2.3 Related Work . 24

3 The FlatLand Environment 27
3.1 FlatLand environment overview . 27
3.2 Actions . 28
3.3 Observations . 29
3.4 Rewards . 31

4 Our Approach 32
4.1 Overview . 32
4.2 Value-based methods . 33

Contents vi

4.3 Policy-based Methods . 38

5 Experimental Evaluation 43
5.1 Environment Settings . 43
5.2 Training and Evaluation Setup . 44
5.3 Performance and Reliability Metrics . 45
5.4 Results . 47
5.5 Discussion . 52

6 Conclusions and Future Work 56

Bibliography 62

Chapter 1

Introduction

Artificial Intelligence (or AI) is a deeply studied and dense field that tries to understand
intelligent beings and simulate their intelligent behaviors onto machines [27]. There are many
applications to benefit from AI such as speech recognition, computer vision, self-driving
vehicles, robotics, natural language processing and more. Machine Learning (or ML) is a
branch of AI that tries to imitate certain human behaviors by constantly processing data
and gradually improving its accuracy. ML can be divided into three categories: Supervised
learning, Unsupervised learning and Reinforcement learning. Reinforcement learning is
a technique where a learner (or agent) learns from experience by interacting with the
environment and accumulating rewards. When multiple autonomous agents that learn from
experience coexist in the same environment, they constitute a Multi-Agent System (or MAS).
Developing RL algorithms that can handle multiple agents can have a great impact in many
real life applications such as autonomous vehicles, drone swarms or resource management
systems. These tasks, however, can be really complicated, and experimenting on these
algorithms in the real world can be a very expensive, dangerous and mostly impossible task.
Hence, there is a need for simpler, well understood simulation environments (such as the
OpenAI Gym1, Power TAC2, DeepMind Control Suit3) that the academic community can
experiment with different methods and slowly develop algorithms that can later handle real
world applications.

Now, over the last few years, Deep Reinforcement Learning has sparked academical
interest, especially after the great success of DQN [18]. Subsequently, multi-agent Deep
Reinforcement Learning has also grown in popularity. When dealing with multiple agents,
new and exciting issues arise and need to be tackled. While a lot of work is being done in
developing methods explicitly for multiple cooperative or adversary agents [7, 26], in some
cases, extending single agent RL methods to multiple agents is sufficient for sub-optimal
results. Especially when the coordination requirements are straightforward and clearly
specified, or when the agents share common goals and behaviors, single agent RL methods
are easy to adapt and operate in such settings.

1https://gym.openai.com/
2https://powertac.org/
3https://deepmind.com/research/publications/2019/deepmind-control-suite

https://gym.openai.com/
https://powertac.org/
https://deepmind.com/research/publications/2019/deepmind-control-suite

Chapter 1 Introduction 2

FlatLand is a simplified 2d grid simulation environment that mimics the dynamics of
a railway network. In FlatLand, multiple autonomous trains (or agents) try to reach their
destination as fast as possible without colliding with each other or getting stuck in dead
ends. FlatLand was developed as a tool to accelerate academical research on the Vehicle
Rescheduling Problem (or VRSP) and is suitable for both Machine Learning research and
Operation Research [19].

As a multi-agent platform, FlatLand is characterized by the common problems of
multi-agent systems. To name a few, the existence of multiple autonomous and unpredictable
agents results in a non-stationary environment. Under this non-stationarity, the agents need
to constantly adapt to unforeseeable outcomes while at the same time only being able to
partially observe the true underlying state space. Additionally, in FlatLand, agents only
yield positive rewards when they reach their destination. When multiple trains coexist in
the same environment, a sequence of correct and synchronized actions is usually required to
obtain these rewards. Under these circumstances, the rewards obtained by the agents are
sparse and delayed.

In this thesis, we aim to tackle the Vehicle Rescheduling problem by implementing
several Deep Reinforcement Learning algorithms in the multi-agent environment of FlatLand.
We select both value-based and policy-based methods with the intentions to discuss their
different strengths and weaknesses. We do so by systematically comparing and evaluating
them in a strictly specified training and evaluation setup. We give great emphasis in ensuring
equal and fair training and evaluation conditions for all the algorithms as a way to warrant
objective experimental results.

1.1 Contributions

Despite its few years of existance, Flatland has started to gain some academical interest in the
fields of Operations Reseach and Reinforcement Learning. However, most of the published
Reinforcement Learning research in Flatland revolve around the Flatland competitions
(NeurIPS 2020, AMLD 2021) and usually only focus on the results of the competitions
and their approach towards winning these competitions. To our knowledge, not much work
has been done in systematically evaluating and comparing different RL methods under a
consistent and systematic training and evaluation setup. In this thesis, we:

• Implement, adapt and scale value-based and policy-based RL algorithms to the multi-
agent environment of FlatLand.

• We integrate useful extensions proposed by [6] to the well-known PPO method [30].
• We demonstrate the importance and superiority of attaching a Replay Buffer to PPO.
• We establish well-defined, consistent and dense training and evaluation conditions and

compare the different algorithms in various metrics of raw performance and reliability.

Chapter 1 Introduction 3

• We employ reliability metrics that provide us with information about the consistency
and stability of each algorithm and emphasize on the importance of also considering
these metrics when examining the performance of RL methods.

• We identify SIL as our best performing agent, which is adapted to the needs of the
FlatLand environment and combines PPO with Self-Imitation.

1.2 Thesis Outline

The thesis is structured as follows. In Chapter 2, we begin by providing the necessary
Theoretical Background in Reinforcement Learning, Deep Learning, Deep Reinforcement
learning, the model-free Deep Reinforcement algorithms we implemented and briefly review
related work. In Chapter 3, we provide a short introduction in the environment of Flatland.
We then continue in Chapter 4, by shortly discussing some of the attributes of the Flatland
environment and dive into our implementation of the different algorithms. Then, in chapter
5, we define our evaluation setup and evaluate the experimental results. Finally, we conclude
by taking a step back and discussing our work as well as potential future work.

Chapter 2

Theoretical Background and Related Work

In this chapter we will bring the necessary theoretical foundation for the contents of this
thesis. First, we will provide a gentle introduction to the field of Reinforcement Learning and
general terminology. Then, we will deliver a short introduction in the field of Deep Learning.
Lastly, we will combine the two by introducing Deep Reinforcement Learning and talk about
related work.

2.1 Reinforcement Learning

Reinforcement Learning (or RL) is a technique which belongs in the field of Machine
Learning. The term was first brought in literature by Waltz et. al in 1961 but the ideas
behind reinforcement learning date as back as the late 50’s in the fields of psychology and
engineering [32]. Reinforcement learning focuses on learning from experience by interacting
with the environment. Similar to how a newborn learns to walk, a learner - also referred to as
an agent- has no initial belief of what actions are right or wrong and has no preconception of
the environment it belongs to. It learns the given task by trial and error. By taking actions
and then tracking the reward it got for those actions, the agent develops its policy: its belief
of what actions to take at any given moment in the environment [32].

In a Reinforcement Learning setting, it is common that the environment runs in discrete
time steps called states and a whole run of the environment is called an episode. At each
state the agent decides what action to take based on its current policy. To understand the
policy, we can think of it as a table that keeps what action to take at every environment
state. After taking an action the environment returns a reward. The reward is usually only a
signal that indicates whether the agent reached a goal or a checkpoint. In order to estimate
the real value of a state however, one needs to compute a value function which incorporates
the long-term utility associated with the corresponding state. While learning, an agent tries
to approximate the real value of all states by constantly calculating its current belief of the
values of those states.

To understand the difference between rewards and value functions, we can think of an
agent that tries to find an exit on a labyrinth. After every action, the agent gets rewarded

Chapter 2 Theoretical Background and Related Work 5

(a) Rewards. (b) Values.

Figure 2.1: Difference between Rewards (a) and actual state values (b) in a simple grid world where the
agent has to reach to its goal as fast as possible.

with 0 if it has reached the exit and -1 if it has not. The value function of the state can be
thought of as the sum of rewards from this state onwards. A state three steps away from the
exit will have a value of -3. If the agent knew the actual value of all the states, it would
select actions that would lead it to the state with the least negative value. Even from this
simple example, we can see that policies and value functions are mutually dependent. In the
following chapters, we will expand further on their relationship.

2.1.1 Markov Decision Process

Following the above introduction, we will now focus on the basic concept that most RL
problems rely on, that of a Markov Decision Process or MDP. An MDP is a term that
was first introduced by Richard Bellman in 1957 and is a specific type of a sequential
decision model [25]. An environment is described as a sequential decision model where at
each timestep, an agent selects an action by observing a state of the environment for that
timestep. By selecting that action, the agent then receives a reward and the environment
transitions to a next state [25].

In a Markov Decision Model, the agent selects an action at a given timestep by only
observing the state at that timestep and not considering previous states. In such settings, a
state is said to have the Markovian Property [32]. For example, we can think of an agent
that learns to drive. Any given state in the environment would be Markovian if the agent in
that state had all the necessary information such as velocity, direction, steering, fuel etc.
at hand because that information contains everything the agent needs to know for moving
forward. This information is connected with the past: fuel remaining indicates that fuel
was spent, a steered wheel shows that we are on a turn. If, however, the state observation
only contained positional information then the agent would not be able to understand much
about the situation it is in.

Chapter 2 Theoretical Background and Related Work 6

Figure 2.2: A Sequential Decision Model [25].

Figure 2.3: A Markov Decision Process [32].

MDPs are expressed as a tuple: ⟨s, a, p(s′), r(s, s′)⟩. This tuple perfectly describes the
one-step dynamics of the environment where:

• s is the current state of the environment

• a is the action that was selected from state s

• p(s′) expresses the distribution describing the probability of transitioning to all possible
next states s′ by selecting action a on state s

• r(s, s′) are the expected immediate rewards if we transition to s′ by selecting action a
on state s

The above description of the MDP tuple makes use of the environment’s model in order
to estimate the probability of transitioning to next possible states. In most RL settings,
however, we are not aware of the model of the environment. Hence, we cannot assume
knowledge of the transition probabilities. Instead, we sample the immediate reward and next
state by interacting with the environment and the MDP tuple is described as: ⟨s, a, r, s′⟩.

Chapter 2 Theoretical Background and Related Work 7

2.1.2 Value and Policy

We have already expressed the relationship of value functions and policies in RL. We will
now further expand in how this relationship can lead to a successfully learning agent. Moving
forward, we will now only focus on methods that assume no model of the environment.

As previously mentioned, the value function estimates the actual value of a state and
can be simply thought of as the sum of rewards from that state and onwards. Those rewards,
however, depend on the actions the agent will take by following its policy. Therefore, at
timestep t, for any given state s, the value of that state is tied under a policy π and is
defined as:

uπ(st) = Eπ[rt+1 + γrt+2 + γ2rt+3 + ...] = Eπ[
n∑

k=0
γrt+1+k] (2.1)

where γϵ[0, 1) is a discount factor and indicates the importance of future rewards. A
low discount factor (i.e. close to 0) gives focus to the rewards in the near future and vice
versa.

Another value function estimator used in RL settings is called an action-value function,
q(s, a). While the value function, u(s), estimates the expected value of a state under all
possible actions, q(s, a) estimates the expected value of a state s after selecting an action a
[32].

qπ(st, at) = Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|at] = Eπ[
n∑

k=0
γrt+1+k|at] (2.2)

We define the optimal value and action-value functions as the true values of those
states and state-action pairs. These optimal values are described by the Bellman Optimality
Equations:

u⋆(st) = max
αϵAt

E[rt+1 + γu⋆(st+1)] (2.3)

q⋆(st, at) = max
αϵAt

E[rt+1 + γ max
at+1ϵAt+1

q⋆(st+1, at+1)] (2.4)

It is clear that better policies lead to better value functions and vice versa. We update
policies in order to better estimate value functions and we update value functions in order
to find better policies. A term that generalizes this connection of policy updates and value
function evaluations is Generalized Policy Iteration (or GPI) [32].

GPI can be applied over various RL methods. In fact, there are three prominent RL
methods:

Chapter 2 Theoretical Background and Related Work 8

• Dynamic Programming methods: These methods assume knowledge of the environment’s
model and all the states and state transitions are known. As a result, policy evaluations
can occur synchronously or asynchronously at each policy iteration over all possible
states.

• Monte Carlo methods: These methods belong in the model-free approaches. They
evaluate and update policies by visiting states and averaging the subsequent gathered
rewards of those visited states under those policies.

• Temporal Difference methods: Like Monte Carlo methods, they do not require a model
of the environment. Unlike Monte Carlo methods, however, they do not require playing
a whole episode for evaluating policies. Instead, they take advantage of the one-step
dynamics of the MDP environment and only require the next state transitions to
evaluate policies.

Figure 2.4: Generalized Policy Iteration [32].

In order to understand the relationship between value functions and policies and how
these can be employed by a learning agent, we will focus in Q-learning: an off-policy, Temporal
Difference algorithm that has heavily influenced many modern Deep RL implementations
[18, 36, 37].

The term off-policy describes the relationship between the policy that estimates the
Q-targets i.e., target policy, and the policy that acts on the environment i.e., behavior
policy. Q-learning is off-policy, because the target, R + γ maxa Q(S′, a), is greedily selecting
the action a that maximizes Q(S′, a) and does not follow the ϵ-greedy behavioral policy.

Chapter 2 Theoretical Background and Related Work 9

Figure 2.5: Q-learning pseudocode [32].

Alternatively, an on-policy approach would instead use a target of: R + γQ(S′, a′), by
ϵ-greedily selecting a′ while following its policy (Sarsa algorithm).

As mentioned above, Q-learning’s behavioral policy is the ϵ-greedy selection of actions
derived from Q. This means that when selecting an action a upon a state S, the action
that gives the maximum Q(S, a) is selected with probability 1− ϵ and a random action is
selected with probability ϵ. This is done as a measure to provide sufficient exploration in the
environment and not to lock on the seemingly best actions. This is Q-learning’s answer to
tackling the Exploration vs Exploitation dilemma, one of the greatest challenges in RL [32].
On one hand we want to exploit our knowledge of the environment to maximize our rewards
but on the other hand we want to explore the environment to find states that could yield us
greater rewards in the long term.

Q-learning follows an update rule on Q-values, where:

Qπ′
k+1(S, a) = Qπ

k (S, a) + α[R + max
a′

Q(S′, a′)−Qπ
k (S, a)] (2.5)

This update rule satisfies the GPI approach by simultaneously performing an evaluation
step and an improvement step. When following the above update rule, we evaluate state-
action values that were visited while following policy π and we improve on those state-action
values by updating them towards a greedy target:

R + γ max
a′

Q(S′, a′) (2.6)

2.2 Deep Reinforcement Learning

As the name implies, Deep Reinforcement Learning (or Deep RL) merges the fields of
Reinforcement Learning and Deep Learning. Combining RL methods with Deep Neural

Chapter 2 Theoretical Background and Related Work 10

Networks has led to great success in dealing with sequential decision-making challenges that
were not possible with standard RL methods [9]. While standard RL methods perform well
in simple environments and small state spaces (i.e., simple labyrinths, grid worlds), they
struggle when the different states increase and get more complex. The agent would have to
store and approximate state values and policies for every visited state. This not only leads
to bigger computational and memory requirements but also cripples learning since the exact
same state will probably never be revisited and better approximated.

Neural networks are great at tackling this problem because of their ability to generalize
over high-dimensional state spaces. In Deep RL the observed states are being fed forward to
neural networks and the focus is on training those networks by adjusting their parameters to
better approximate the desired output which can be the state’s value function, action-value
function or policy. In the following sections, we provide a short theoretical background on
Neural Networks and dive into the Deep RL methods that were implemented in this thesis.

2.2.1 Feedforward Neural Networks

Deep Neural Networks are essentially parameterized function approximators, meaning that
given an input x, they approximate a function f(x) that produces the desired output y
by adjusting some parameters θ. They are called Neural because they’re inspired by the
neurons of the human brain and are called Networks because f(x) is in fact a network of
chained functions [10].

Feedforward Neural Networks can be thought of as a function with parameters θ defined
as:

y = f(x; θ) (2.7)

The name “Feedforward” implies that the input x gets forwarded through the network
and produces an output y. The input is processed by a chain of nonlinear functions, known
as hidden layers, until the output is reached. Those chained functions are called hidden
layers because their output is not directly accessible [10]. A simple case of a Neural Network
is represented below.

The output of the first hidden layer is a non-linear transformation:

h1 = A(xT W1 + b1) (2.8)

where the one-dimensional input vector x of size m, x = [x1, x2, ..., xm] is multiplied
with a parameterized weighted vector W1 of size (m×n) added by a bias term and processed
by an activation function A. The activation function results in a nonlinear transformation

Chapter 2 Theoretical Background and Related Work 11

Figure 2.6: Feedforward Neural Network with two hidden layers.

of the hidden layer’s linear output. Next, the h1 vector of size n goes through another
non-linear transformation:

h2 = A(hT
1 W2 + b2) (2.9)

where now, W2 is of size (n× k). Finally, the predicted output y′, is the result of a
final non-linear transformation where:

y′ = A(hT
2 W3 + b3) (2.10)

Training the Neural Network (or ANN) is the result of adjusting the values of the
weighted vectors and biases. While initialization of those values can affect the performance
of the neural network [38], they are usually random and the initial output predictions are
random. In order to learn, the network first needs to know how far off its predictions were
compared to the desired output values. This is done by a Loss Function which in its most
common form can be a Mean Square Error function (or MSE):

Loss(θ) =
1
N

∑
i

(yi − y′
i)

2 (2.11)

Chapter 2 Theoretical Background and Related Work 12

where N is the training set size. The goal is to minimize the loss function. This is done
by back-propagation: adjusting the network parameters θ by gradient descent on the loss
function w.r.t the parameters [13].

θk+1 = θk − α ∗∇θLoss(θ) (2.12)

where α is the learning rate and indicates how big of a step to take towards updating
the weights. While the complications of using the wrong learning rate are beyond the scope
of this introductory segment, it is important to understand that using too large (or too
small) learning rate can heavily affect the performance of the neural network and can lead
to suboptimal learning or no learning at all.

Neural Networks can be modified to fit in many different applications. Those modifi-
cations can be the size of the hidden layers, the number of the hidden layers but also the
Loss or Activation Function. Additionally, different kinds of layers can be applied such as
Convolutional Layers (used commonly in CNNs). This adaptability has led Neural Networks
to perform great in various settings including Reinforcement Learning.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks are a special type of Neural Networks that specialize in handling
sequences of input data. They are able to correlate information seen in the sequence of
inputs by forming an interconnected loop that passes the hidden state from one step of the
sequence to the next step [10]. As a result, the hidden state at any step, carries information
from the previous steps in the sequence and acts as a short memory of the past. Recurrent
Neural Networks have been of great use in many fields, such as speech or text processing,
music composition etc. [13].

Figure 2.7: A simple Recurrent network that processes a sequence of inputs and passes forward its hidden
state [10].

Chapter 2 Theoretical Background and Related Work 13

One of the most common Recurrent architecture is Long Short-Term Memory or LSTM.
They have the ability to process longer input sequences than other recurrent Neural Network
architectures while maintaining a good understanding of the long-term dependencies of the
sequences. While LSTM does maintain the structure of Recurrent Neural Nets (they do pass
forward a hidden state), they differ in the internal architecture of each module that handles
one step of the sequence.

Figure 2.8: A visualisation of an LSTM network architecture [21].

2.2.3 Deep RL methods used in this thesis

Having provided the basic introductory information, we will now focus on the actual Deep
Reinforcement Learning methods that we applied on our problem. Below we represent all
the RL methods that are being presented in the later sections.

Value - based methods Policy - based methods

Deep Q-Networks Policy Gradient Optimization

Double Deep Q-Networks Proximal Policy Optimization

Dueling Double Deep Q-Networks Self-Imitation Learning

Recurrent Deep Q-Networks

Prioritized Experience Replay

Table 2.1: A table representing all of the RL methods discussed below.

Chapter 2 Theoretical Background and Related Work 14

2.2.3.1 Deep Q-Networks

We begin with the value-based methods and more specifically with DQN : an algorithm that
was published by DeepMind in 2015 and has been one of the most influential algorithms in
recent RL research [9].

DQN combines Deep Neural Networks with a modified Q-learning algorithm. In the
original implementation, it tackles the challenge of training an agent who can only visually
observe an environment state in the form of a video input. The video is being split in frames
and each frame is being pre-processed to a fixed size vector [18]. These image vectors, which
are the agent’s observation of the environment’s state, are then being fed into a Neural
Network architecture and the outputs are Q-values corresponding to the number of possible
actions. The network’s architecture is a convolutional neural network which consists of three
hidden Convolutional Layers followed by a fully-connected layer.

The agent acts on the environment and stores every transition ⟨ϕt, at, rt, ϕt+1⟩ in a
Replay Buffer. The Replay Buffer’s size is adapted to the implementation’s requirements. In
the original paper, it holds one million most recent frames. Training the Q-network involves
sampling random mini-batches of N transitions from a Replay Buffer.

Figure 2.9: Deep Q-network architecture [23].

A Loss is calculated for back-propagating on the network and updating its parameters.
The Loss Function is:

Loss(θ) =
1
N

∑
i

(Q(st, at; θ)i − targeti)
2 (2.13)

Chapter 2 Theoretical Background and Related Work 15

where the target in DQN is the TD(1) error:

target = rt + γ max
at+1

Q(st+1, at+1; θ) (2.14)

and is translated as the immediate reward added by an estimate of the following
rewards.

Figure 2.10: Deep Q-network pseudocode [18].

A step-by-step representation of the algorithm is presented below:

1. Initialize a replay memory. A replay memory stores all the experiences in the form of
transition tuples: ⟨ϕt, at, rt, ϕt+1⟩

2. Start an episode and get the first state from the environment. Pre-process the state to
a fixed length input vector.

3. Feed the input to the network and select the action a that maximizes Q(s, a) or with
a probability ϵ select a random action in order to establish necessary exploration in
the environment.

4. Perform the selected action and obtain the immediate reward and next state from the
environment.

5. Store the transition tuple in the Replay Buffer

6. Every once in a while, randomly sample a mini-batch from the replay buffer

7. For all the transitions in the mini-batch compute the target values and perform a
gradient descent on the Loss Function with respect to the weights of the network.

8. Repeat 3,4,5,7 for every time-step in the episode and 6 for every few timesteps.

9. Repeat over many episodes.

Chapter 2 Theoretical Background and Related Work 16

2.2.3.2 Double Deep Q-networks

Double Deep Q-networks expand on DQN by implementing a secondary Q-network which
acts as the target network i.e., a network that calculates the Q-values for the target values.
This is done in order to address the DQN’s problem of overestimating values [34, 36]. In
short, DQN minimizes a loss function towards a target which is:

targett = rt + γ max
at+1

Q(st+1, at+1; θ) (2.15)

The main problem with this approach is that the maximum target Q-value is always
selected but that Q-value is an estimate produced by the same network that we try to
optimize. If the network estimates Q-values with a hypothetical error e, then the maximum
Q-value of the network will most likely be greater than the true maximum Q-value:

max
at+1

Q(st+1, at+1; θ) + e > max
at+1

Q∗(st+1, at+1) (2.16)

As a result, the network is updated towards overestimated targets and learning is
destabilized [34]. Double DQN aims to minimize the overestimation error by introducing a
secondary network called a target network which is a copy of the behavioral network. The
target network copies the behavioral network’s parameters at a slower pace - usually every
few training episodes. As a result, the target network produces more restrained Q-values
and does not enforce every training error of the behavioral network.

Figure 2.11: Double DQN pseudocode [36].

Chapter 2 Theoretical Background and Related Work 17

2.2.3.3 Recurrent Deep Q-Networks

As we have seen in 2.2.2, Recurrent Neural Networks are great for processing sequential
data. In [11], recurrency was implemented as a way to integrate experiences from the past to
partially observed states (as in a partially observed MPD (POMDP)). Specifically, instead
of manually combining four sequential frames in order to unlock features such as direction
or velocity, [11] uses a modified Q-network with an LSTM layer that, given a sequence of
frames, can unlock these features by itself.

Figure 2.12: Recurrent Deep Q-Network architecture.[11]

The Q-network is modified by introducing an LSTM layer that replaces the first fully
connected layer. The frame sequence gets processed by three convolutional layers and the
output is being fed to the LSTM layer (see fig. 2.12). Then, the LSTM output gets through
a final Linear layer that outputs Q-values. LSTM also requires an initial hidden state at
each forward pass. When updating the Recurrent Network, [11] proposes two alternatives:

1. Sample whole episodes and carry the hidden state from one transition to the next

2. Randomly sample transitions from the Replay Buffer and set the initial hidden-state
to zeros at each update.

Both alternatives are said to converge similarly, therefore [11] prefers the second approach
as it is closely tied with the DQN’s update strategy.

Chapter 2 Theoretical Background and Related Work 18

2.2.3.4 Dueling Double Deep Q-networks

The Dueling Network architecture is an alternative way of estimating Q-values. Dueling
methods primarily affect the architecture of the network and do not require modifications
to the learning procedure. Hence, they can be combined with existing Deep Q-Network
implementations [37]. In Dueling Network architectures, the Q-estimates are calculated by
combining two separate networks: one that estimates the state value V (s; θ1) and one that
estimates an advantage function A(s, a; θ2).

By definition, the advantage function is defined as to how preferable it is to select an
action a on a state s compared to the state’s value and is described as:

A(s, a) = Q(s, a)− V (s) (2.17)

Expanding from the above equation for the dueling network architecture, one could
estimate the state-action value estimates by:

Q(s, a; θ1, θ2) = V (s; θ1) + A(s, a; θ2) (2.18)

However, this equation would require a lot of trust in both the state value and Advantage
estimate. During training, however, these estimates are expected to be noisy and therefore
an alternative, more stable method is used where:

Q(s, a; θ1, θ2) = V (s; θ1) + A(s, a; θ2)−Mean(A(s, a; θ2)) (2.19)

This architecture formulated on the idea that Q-values can be estimated without having
to directly estimate the value of each state-action pair [37]. Additionally, at each back-
propagation, instead of updating the selected state-action values, the whole state value
function is being updated.

2.2.3.5 Prioritized Experience Replay

Prioritized Experience Replay involves sampling batches of experiences with a priority rather
than sampling them randomly [28]. While the priority of a transition can be any attribute
one wants to prioritize, [28] sets the priority of selecting actions as:

PT = δ(Q(s, a; θ), target) = abs(Q(s, a; θ)− [r +
′max
a

Q(s′, a′; θtarget)]) (2.20)

Chapter 2 Theoretical Background and Related Work 19

where in the case of DQN is the absolute TD Error of the experience. Each time a
transition is added to the Replay Buffer it gets assigned to the maximum existing priority.
This way it is ensured that new experiences will get sampled at least once when training
and not get lost in the buffer. The probability of sampling a transition is defined as:

pT =
P a

T∑
n P a

Tn

(2.21)

where PT is the priority of the transition T and is divided by the cumulative sum of
all the transition priorities in the buffer. The parameter a is an indication of how much
prioritization plays a role in the probability of selecting transitions. As we proceed in training,
we want to minimize the parameter alpha since we want to more uniformly sample transitions
to avoid overfitting our network to certain preferable trajectories [28].

Early in training, when sampling experiences with seemingly high priority, a bias is
introduced in the loss function that can negatively affect the update of the network parameters.
As a solution, [28] proposes that the loss will be multiplied by a weight parameter where:

WT = (
1
N
∗ 1

pT
)β (2.22)

The parameter β is slightly smaller than 1 and meant to be slowly increased to β = 1
as the loss function gets less biased when proceeding in training.

2.2.3.6 Policy Gradient Optimization

Policy based methods focus on optimizing the policy directly instead of approximating
action-value functions. Policy gradient methods with function approximators have been
introduced as a mathematically proved alternative to the value based approximators that
lack a theoretical proof [33]. Additionally, these methods optimize a stochastic policy which
means that each action has a probability to be selected and can help enforce exploration
while training.

Policy gradient optimization relies on two networks called the actor and the critic.
The actor tries to approximate a policy i.e., the action probability distribution given a
state observation as input. The critic, given the same input, approximates the state’s value
function. The actor is updated in correlation with the critic’s estimates by performing
gradient descent on the Loss:

L(θ) = −E[log(πθ(at|st))At] (2.23)

Chapter 2 Theoretical Background and Related Work 20

where the loss is minimized by updating the actor’s parameters in order to encourage
actions that are associated with a positive advantage At and discourage actions with negative
At. The advantage function indicates how “advantageous” is to select a certain action in a
given state and can ideally be described as:

A(s, a) = Q(s, a)− V (s) (2.24)

In a reinforcement learning setting, however, the true Q and V values are not known.
As a result, Q can be estimated, for example by accumulating the subsequent rewards after
selecting the action a from the state s and onwards. Additionally, the value V is an estimate
produced by the critic, resulting in the advantage function to be in the form of:

At = A(st, at; θ) = Rt(π)− V (st; ϕ) (2.25)

Optimizing the critic is done by calculating the Mean Square Error between the value
estimates and the targets which were gathered by collecting subsequent rewards.

2.2.3.7 Proximal Policy Optimization

Proximal Policy Optimization (or PPO) is a Policy Gradient algorithm variant that has been
demonstrating great performance in various robotic tasks as well as the Atari benchmark
[30] and other more demanding environments like the game of Dota 2 [1]. PPO is considered
as an on-line policy optimization algorithm. The agent learns directly from the observed
experiences by following its own policy instead of relying on a replay buffer where experiences
are gathered from different policies and sampled randomly. Additionally, it is more sample
efficient than other policy gradient methods by training on the same batch of experiences
multiple times (where each iteration is called an epoch) and finally it provides a simple
method for controlling each policy update within reasonable limits [30]. Similar to other
Policy Gradient methods, given a state as input, an actor network is being used for estimating
action probabilities while a critic network estimates the state’s value function. A combined
Loss Function is used for updating the parameters of the networks and is defined as:

L(θ) = LCLIP (θ)− c1LV F (θ) + c2S(πθ) (2.26)

LCLIP is referred to as surrogate loss objective and is defined as:

LCLIP (θ) = E[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (2.27)

This loss objective is an expansion of the loss objective commonly used in policy gradient
methods:

Chapter 2 Theoretical Background and Related Work 21

LP G(θ) = E[log(πθ(at|st))At] (2.28)

The main problem with policy gradient methods is that if multiple update steps are
taken in the same set of experiences, we risk taking big policy updates and derailing from
the desired target policy [30]. While there have been approaches in addressing this problem
by introducing a Trust Region where policy updates are being performed within limits [29],
they are costly and difficult to implement [30]. PPO uses the surrogate objective in 2.28
where the log(πθ) is replaced by a ratio:

r(θ) =
πθ(at|st)

πθold
(at|st)

(2.29)

The ratio is then clipped within the limits of a hyperparameter ϵ (commonly ϵ = 0.2
or ϵ = 0.1). This limits the update of the policy to smaller steps and allows for stability in
learning.

LV F (θ) is the loss of the critic and is defined as the Mean Square Error of the predicted
state values and the target values. The effect of the critic loss to the total loss is controlled
by the hyperparameter c1.

S(πθ) is the entropy bonus of the policy and expresses the level of exploration. It is controlled
by a separate hyperparameter c2 where c2 is usually within 0.1 and 0.01.

Similar to the Policy Gradient methods, the Advantage is calculated by:

At = A(st, at; θ) = Rt(π)− V (st; θ) (2.30)

The returns Rt are calculated by gathering the subsequent rewards for T timesteps. Then
an advantage estimator is being used to calculate the advantage. There are two proposed
advantage estimators used in PPO:

1. Finite Horizon Estimator (or FHE):

At = [rt + γrt+1 + ... + γT −t+1rT −1 + γT −tV (ST)]− V (st) (2.31)

2. Generalized Advantage Estimate (or GAE):

At = δt + (γλ)δt+1 + ... + (γλ)T −t+1δT −1 (2.32)

where
δt = rt + γV (st+1)− V (st) (2.33)

Chapter 2 Theoretical Background and Related Work 22

When training, a trajectory is sampled for T timesteps. Then the advantages are being
calculated for each transition in the trajectory batch. For K epochs, a combined loss function
is calculated and the actor-critic weights are updated through the Adam optimizer. After
the learning step, the trajectory batch is discarded and the process is repeated for the next
T timesteps.

Figure 2.13: PPO pseudocode [30].

2.2.3.8 Self-Imitation Learning

Self-Imitation learning (or SIL) focuses in accelerating learning by revisiting past positive
experiences [20]. SIL does not act as an independent algorithm when training on an environ-
ment. Instead, it is attached to existing on-policy, actor-critic methods and acts as an added
off-policy learning step to these methods. In the paper’s implementation, Self-Imitation is
attached to an Advantage Actor-Critic (or A2C) algorithm. The authors, however, also
mention positive performance when combined with PPO methods.

Similar to existing actor-critic approaches, training begins by sampling the on-policy
trajectories of a whole episode. Then, the Monte Carlo Returns are estimated for each
transition of the trajectory:

Rt =
∑

knγk−trk (2.34)

Learning begins at the end of each episode from the gathered experience. First, the
A2C module is used for learning the on-policy samples. Then, instead of discarding the
episode trajectories after the learning step, they are being stored in a separate Prioritized
Replay Buffer. The Self-Imitation learning step begins by sampling mini-batches on multiple
epochs from the Replay Buffer and off-policy updating the same actor-critic network from
the loss:

Lsil = Es,a,RϵD[Lpolicy
sil + βLvalue

sil] (2.35)

Chapter 2 Theoretical Background and Related Work 23

where:

Lpolicy
sil = − log πθ(a|s)(R− Vθ(s))+ (2.36)

Lvalue
sil =

1
2 ∥(R− Vθ(s))+∥2 (2.37)

The (+) symbol indicates that only the positive difference between R, Vθ(s) is considered.
If the difference is negative, then it is set to zero. This is the fundamental measure that SIL
takes in order to update only on positive experiences. An experience is described as positive,
when the agent’s Returns on that state are greater than the critic’s estimate. In other words,
the Self-Imitation module guarantees that the agent re-adjusts its belief on states that it
undervalued.

Since only positive experiences contribute to the Self-Imitation learning, a prioritized
Replay Buffer is used to prioritize experiences with R > Vθ. This measure assists in sampling
more positive experiences for each batch.

Figure 2.14: Self-Imitation Learning pseudocode [20].

Chapter 2 Theoretical Background and Related Work 24

2.3 Related Work

Multi-Agent Systems (or MAS) and Reinforcement Learning have been a long-researched
subject over the last few decades [5, 3, 2]. In [35], MAS and Machine Learning is defined as
multiple autonomous agents that directly learn from experience. The agents can be either
cooperative or adversary, they might or might not communicate with each other, they might
be oblivious to the existence of other agents in the environment and can have different levels
of coordination requirements. There are many problems to be dealt with when dealing with
multiple agents:

• It is difficult to define a clear objective while at the same time trying to distinguish
the roles of each agent in order to reach that goal.

• Multi-Agent environments are non-stationary, as multiple agents constantly interact
and alter the dynamics of these environments.

• Under the non-stationarity of such environments, the state observations are only
partially observable.

• Credit assignment from a global reward function can be a difficult or sometimes
impossible task. At the same time, rewards can be sparse or delayed as complex
coordination is required for obtaining positive rewards.

When dealing with cooperative agents, [3] distinguishes three learning approaches. The
first would be to extend the single-agent Reinforcement Learning methods to the multi-agent
problem. In this setting, an agent learns to coexist instead of coordinating with other
agents. This means that for the learning agent all the other agents represent a part of a
non-stationary environment and the agent is not actively aware of the existence of other
learning agents. This approach has proven to be sufficient to solve a range of multi-agent
environment settings [31]. However, it struggles to deal with tasks that require an increased
level of coordination. A second approach is to include a level of communication among the
agents. This would allow the agents to share information about their observations or about
their actions. Some of these methods pre-define the level of communication among the agents
while others have attempted to let the agents develop their own communication protocols
[8]. The third approach is to apply laws and conventions to the learners. This translates
into applying constraints in the possible actions when in certain states etc. It is difficult,
however, to clearly define laws for a given task [3].

Other approaches involve using Centralized Learning and Decentralized Execution. Using
this technique, agents usually share a central state and take a joint action in the environment
to obtain a global reward. When taking actions, however, they follow their own discrete
policy. Counterfactual Multi-Agent Policy Gradients (or COMA) [7] optimizes a Q-function
using a centralized critic and decentralized actor. The agent’s policies are optimized by
isolating each agent’s action contribution to the global returns. Another approach, QMIX

Chapter 2 Theoretical Background and Related Work 25

[26], estimates a central Q-function by combining the separate Q-functions of each agent
generated by their local observations.

Imitation in Reinforcement Learning has proven to be a great way for accelerating
performance in various tasks. Deep Q-learning from Demonstrations (or DQfD) [12] aims to
accelerate performance in the initial stages of training by using a small training data set
obtained from a mentor. The agent initially trains on the mentor’s experiences by combining
TD and supervised losses and then continues by training on its own experiences. In a
similar fashion, Human Checkpoint Replay [14], accelerates performance in sparse reward
environments by keeping a set of checkpoints collected from humans as starting points when
training. This way, instead of restarting at the beginning state of each training episode,
the agent is dropped at a random checkpoint and has a chance of visiting positive states
that would otherwise not be able to reach due to the sparse rewards of the environment.
In the same paper, Human Experience Replay is used as an alternative way of enforcing
exploration in the environments by training on both agent transition tuples and human
extracted transition tuples.

Imitation has also received interest in Multi-Agent Reinforcement Learning environments.
In the paper Implicit Imitation in Multiagent Reinforcement Learning [24], agents learn by
observing other mentor agents in model-based environments. Specifically, an agent improves
its value function by observing the state transitions of another mentor agent while at the same
time learns about promising states that it might not have explored. This approach comes
with its limitations, though, as only a single observer agent can exist in the environment and
all the other agents can only act as mentors. In Coordinated Multi-Agent Imitation Learning
[15], multiple agents learn to coordinate by observing demonstrations. This method works
by attaching a model for approximating an encoded coordination mechanism by observing
data from demonstrations. When learning, both the coordination model estimator and
the separate agent policies are being optimized. The algorithm was tested in two separate
environments, one was the famous predator-prey game and the other was a task of learning
defense in a football game.

Flatland has also shown some academical interest. In [16], the authors won the 2020
Flatland challenge by combining various multi-agent Path Finding techniques such as
prioritized planning, large neighborhood search, safe interval path planning, etc. The solution
did not incorporate, however, any Reinforcement Learning methods. By only focusing in path
finding techniques, the authors managed to achieve outstanding performance and could find
collision-free paths for a large number of trains. The authors, also, acknowledge that Flatland
was developed with the intent to enforce Reinforcement Learning techniques. They note,
however, that optimization approaches can still outperform any preexisting Reinforcement
Learning approaches.

In the original paper of Flatland, Flatland-RL: Multi-agent reinforcement learning on
trains [19],various Reinforcement Learning methods have been applied in an environment
setting similar to ours. Specifically, the authors have implemented standard RL algorithms

Chapter 2 Theoretical Background and Related Work 26

such as PPO and Ape-X as well as Central Critic and Implicit Imitation approaches.
Additionally, they incorporated some techniques for improving performance such as no-action
cell skipping and action masking. The cell skipping approach, which was also incorporated in
our approach, allows for excluding the state transitions that the agent cannot perform any
actions (i.e., straight line) from the episode history. Action masking was included as a way
to assist the agents to only take valid actions in intersections. They ran the experiments on
5 agents in a 25x25 environment and trained the agents on 3 different training seeds. The
evaluation was done on 50 episodes. Their experiments have resulted in various interesting
conclusions. First, they disregard the previous preconceived benefits of the Central Critic
approaches in Flatland as they could not prove any significant advantage over non-Central
Critic approaches in PPO. Additionally, combining Imitation approaches with standard
RL methods also lead to better overall performance. These methods, however, require an
optimal mentor for the demonstrations.

Chapter 3

The FlatLand Environment

Over the last few years, railway infrastructures such as the Swiss Federal Railway Company
(or SBB) have been continuously expanding due to the increasing transportation demands.
As a result, the railway networks need to constantly adapt to changes in infrastructures,
traffic and scheduling which on itself is a very labor-intensive task. This task belongs in the
category of the Vehicle Rescheduling Problem (or VRSP) where different vehicles (or trains)
need to have the capability to dynamically adjust their routes in a constantly changing
environment.

FlatLand is a 2D grid simulation that mimics the dynamics of a railway network. It was
developed as an open sandbox for testing and applying different Machine Learning methods
in order to tackle the VRSP. The purpose of FlatLand is to train multiple agents (trains)
in a randomly generated environment to reach their destination as fast as possible without
blocking each other at intersections. The FlatLand library is a framework that allows us to
run different Machine Learning methods to tackle the VRSP problem.

3.1 FlatLand environment overview

FlatLand is an adaptable 2D grid environment which is split into cells. The dimensions
of the environment are defined as the number of cells in each dimension and each cell can
hold a rail block, a destination block, an agent, an intersection or a surrounding part of the
environment that is not part of the rail network.

Each cell which is part of a railway consists of a transition map. A transition map is a
4-bit representation of the four possible directions an agent can go to. A cell where more
than one direction is available is called a switch.

There are eight possible transitions maps. Each of these transitions is represented
as a one-hot 4-bit representation of the possible directions from the given cell. A visual
representation of the possible transitions is given above. Case 0 is simply a non-valid cell
that is not part of the rail. Case 1 is a straight line where no changes in direction are
possible. Case 2 represents a transition to the left of forward. Case 3 is a crossing of two

https://flatland.aicrowd.com/intro.html

Chapter 3 The FlatLand Environment 28

Figure 3.1: A visualisation of the FlatLand environment[19].

Figure 3.2: A representation of all the possible transition maps[19].

rails where no left or right transitions are possible. Case 4 and 5 and 6 are combinations
of the above. Case 7 is a dead-end where the agent has to stop or move to the opposing
direction.

This modularity of the environment allows for randomly generated worlds with predefined
properties. For example, we can generate an environment with specific dimensions and number
of agents but random rail structure. As for training, FlatLand is an episodic environment
with finite time-steps where each episode is a randomly generated grid environment. At every
time-step, all agents select an action simultaneously and the end of the episode is reached
when all agents reach their destination or the max number of allowed time-steps is reached.
Since multiple moving agents coexist in the environment, it is defined as a multi-agent
dynamic (or non-stationary) environment. Additionally, FlatLand is partially observable,
with sparse rewards and discrete actions.

3.2 Actions

There are five discrete actions:

Chapter 3 The FlatLand Environment 29

• DO −NOTHING: Depending on the case, this action has three meanings. If the
agent is already moving, it keeps moving. If the agent is stopped, it stays stopped. If
it is at a dead-end (but not blocked with another agent) it turns around.

• MOV E −LEFT : Upon an intersection, the agent will move left if the intersection
allows for a left turn. In the special case where the agent is stopped, this action will
make it moving forward or left if left is allowed.

• MOV E − FORWARD: Upon an intersection, the agent will move forward. If the
agent is stopped, this action will make it move forward.

• MOV E−RIGHT : Similar to the action MOV E−LEFT , but for the right direction.

• STOP −MOV ING: This action will make the agent stop moving.

At any given moment an agent can select at most two actions. Additionally, we can see
that an agent cannot move backwards with the exception of reaching a dead-end.

3.3 Observations

The observation of the agent is a partial representation of the environment state at each
time-step. Three different observation styles are provided:

Figure 3.3: The three provided observations of FlatLand.

• Global Observation: The agent is provided with the full view of the grid-world. This
observation style is very similar to the observation style in the Atari games [18].
The dimensions of the global observation are: [h× w × c], where h and w are the
height and width of the environment and c are the number of channels. Each channel
contains different information about the environment state such as agent positions and
directions, agent targets etc. This observation method is not recommended as a good
approach to solving the multi-Agent problem and is not preferred for this thesis.

Chapter 3 The FlatLand Environment 30

• Local Observation: A local observation is similar to the global observation with the
exception that the height and width of the observation is limited to a certain section
of interest in the environment.

• Tree Observation: The tree observation works by observing the adjacent cells from
the agent position. It works by expanding from the graph-like structure of the railway
to all the possible transitions an agent can follow moving forward and storing the
gathered information in nodes. The first node collects information from the agent’s
cell until a switch is reached. Then, from each switch direction begins a child node.
Similar to the parent node, each child node gathers information from adjacent cells
until another switch, dead-end or target is reached. The tree stops expanding when the
tree depth limit is reached. Each node consists of 12 different features which include:

1. Distance between the agent and its target, if the target is seen in the explored
branch.

2. Distance between the agent and another agent’s target, if the agent’s target is
seen in the explored branch.

3. Distance between the agent and another agent, if another agent is seen.
4. Distance where a possible conflict might happen. This works by the use of a

predictor that assumes each agent follows the shortest path to its target. This
metric might be unreliable since it assumes the agents are ontological in the sense
that they follow the best possible route at all times. Especially during training
the usability of this feature is questionable.

5. If an unusable switch is detected - the agent will have nowhere to go but agents
from other directions will - we store the distance from that switch.

6. Distance to the next node
7. The remaining distance to the agent’s target for every possible child node. This

feature can help in deciding which direction is preferred based on the minimum
distance to reach the target for each direction.

8. Number of agents going in the same direction as the agent
9. Number of agents going in the opposite direction

10. If an agent with a malfunction is seen, count the timesteps until the malfunction
ends.

11. If an agent with a slower speed is observed in the same direction keep the speed.
12. Number of agents that have not started playing.

The FlatLand library also allows for developing custom observations. This could allow for
anyone interested to introduce new features to the observed nodes that could extract more
information about the environment state. For example, different predictors could be used to
predict possible conflicts or deadlocks. Developing a new observation that performs better
than the provided Tree Observation however can be a difficult task on its own and is beyond
the scope of this thesis.

Chapter 3 The FlatLand Environment 31

3.4 Rewards

The reward signal that each agent i obtains at every timestep is defined as:

ri(t) = rl(t) + rg(t) (3.1)

where rl is the agent’s local reward and is −1 for every timestep until it reaches its
target location, where it gets 0. rg is a global reward and ate every timestep is equal to 0
unless all agents reach their goal where rg = 1.

Under this reward function setting, the FlatLand environment is considered as a sparse
reward environment meaning that the agents only get significant reward when reaching their
target but not on the path until the target. This attribute of the environment needs to be
considered when applying different RL methods in the later chapters.

Chapter 4

Our Approach

For this thesis, we systematically evaluate the performance of different value-based and
policy-based Deep Reinforcement learning algorithms presented on chapter 2 on the multi-
agent environment of FlatLand. We focus in scaling single agent Deep RL methods to this
multi-agent environment with the end goal to monitor how well can these algorithms behave
in a dynamic multi-agent environment with increasing coordination requirements.

In this chapter we begin by providing an overview of our observations about the
environments dynamics and limitations that directly affected the algorithm decision process.
Then, we discuss over various implementation details that are shared among the different
methods. We continue, by bringing a top-level explanation of the algorithm implementations
and modifications for our environment.

4.1 Overview

We begin by presenting some key features and our personal observations of the FlatLand
environment that influenced our algorithm implementations.

• We do not acquire a model of the environment. This means that we are not aware of
the state space nor the state transitions. Hence, any Dynamic Programming approach
or algorithms that require the model of the environment (e.g., AlphaZero) are not
suitable for training.

• The actions are discrete. Algorithms suitable for continuous control tasks are not
considered (e.g., DDPG [17]). This does not eliminate, however, algorithms that are
suitable for continuous and discrete control tasks.

• FlatLand offers sparse and delayed rewards. If we think of the reward model of
FlatLand, agents only really receive a non-negative reward when reaching their target.
The agents must take a sequence of good decisions before even seeing positive returns.
Especially early in training, this is extremely rare.

• Agents receive local rewards.

Chapter 4 Our Approach 33

• The agents (trains) are cooperative, homogenous and share a common goal.

• The state observation that is being used is the Tree Observation described in section
3.3 and is in the form of an expanding tree where features are detected from all
the next possible paths up until a specified depth limit and then get flattened in a
one-dimensional array.

Having these considered, we now provide a common ground for all of the following
implementations. These are the main attributes that are shared among all the different
implementations as a measure to have a fair and even evaluation and comparison.

• Among all implementations, we maintain the same number of fully connected hidden
layers with identical length.

• At each implementation, all agents share the same network. We use the combined
experiences of all the agents for training and the network is oblivious of whose input is
processing.

• We limit the Tree Observation’s depth and branches at the same lengths. All the
algorithms process the same observation signal. Additionally, the observation’s features
are normalized and translated into a fixed size one-dimensional vector.

Additionally, when playing in the environment, there are many timesteps where an
agent (train) cannot perform any action, i.e., in a straight line. The environment of FlatLand
provides a built-in Boolean value at every timestep stating if an action is required. When
an action is not required the agent does not act in the environment but instead performs
a predefined action of MOV E − FORWARD. Additionally, the specific experience is not
stored in the Replay Buffer and the experience is not considered when training the network.
This method allows for better performance in value-based methods since we only train on
experiences where the agent must learn to take good decisions.

In policy-based methods, however, this approach can lead to various complications.
While in the one hand we do not need to act and improve in these states directly, the
whole one-step transition cannot be ignored from the Episode Buffer. The reason is that we
calculate the targets for training the network by accumulating the sequential rewards in the
episode. Therefore, we need to be aware of the true episode history. We talk in more detail
about our approach on dealing with these issues in the following segments.

4.2 Value-based methods

DQN: We begin with our implementation of the well-established DQN algorithm. This will
be the foundation upon which we expand to with Double architectures, Dueling Double
architectures etc. First, we initialize the NN architecture and Replay Buffer. As mentioned
above, we use two fully connected linear layers with hidden size of 125. The output layer is

Chapter 4 Our Approach 34

of size 5 - similar to the number of possible actions. Each fully connected layer’s output is
being processed through a ReLu activation function (see Figure 4.1).

Each agent shares the same network and Replay Buffer when training and when selecting
actions. This implementation is cost and sample efficient since a single network is being
trained from experiences sampled from multiple agents. We assign a max size for the Replay
Buffer and store experiences until the buffer is filled. After the Replay Buffer is full, we add
new experiences by replacing older ones.

Figure 4.1: ReLu Activation.

Figure 4.2: DQN Network architecture.

We begin each episode by resetting the environment and acquiring the first observation
for each agent. Every time an observation is obtained, each of its features gets normalized
in the range of [−1, 0]. The normalization step is necessary for the network to better

Chapter 4 Our Approach 35

Algorithm 1 DQN (IMPLEMENTED IN FLATLAND)
1: Initialize Q-Network θ, Replay Buffer R
2: for every episode do
3: for each environment step do
4: for each agent i do
5: Observe state si

t

6: if action is required then
7: With probability ϵ select random action a
8: Else a = maxai Q(si

t, ai; θt)

9: Get ri
t, si

t

10: Store ⟨si
t, ai

t, ri
t, si

t+1⟩ in R
11: for every few timesteps do
12: Sample ⟨s, a, r, s’⟩ batch from R
13: target = r + γ maxa’ Q(s’,a’; θ)
14: Minimize M .S.E[Q(s,a; θ), target]

15: Slightly Decrease ϵ

approximate and process the inputs. At each timestep, agents select an ϵ-greedy action
by forward passing the observation to the network and selecting the action that gives the
maximum Q-value. With ϵ probability, the agent chooses a random action instead. We
start our training with a high ϵ probability (∼ 0.9) and we slowly decay the ϵ as the agent
gets trained. This is done because we want to enforce high state exploration when we start
training but slowly start exploiting our trained network as we progress. After selecting an
action, we step on the environment and acquire the rewards, next states and completions of
each agent. For each agent, we store in the Replay Buffer its transition tuple: ⟨s, r, a, s′, d⟩
where d is a Boolean indicating if the agent has reached his goal.

Every few timesteps we train the network by randomly sampling a batch of transitions
from the Replay Buffer. We optimize the Q-network by back propagating through the loss
function which is the Mean Square Error of the TD(1) error of Q values of the selected state
action pairs and a target. The target is the immediate rewards from the states added by
the max Q-value output of the next states multiplied by γ (see Eq. 2.14). For updating the
parameters, we chose the Adam optimizer.

DDQN: Expanding from DQN, we implement the Double DQN variant as mentioned in
2.2.3.2. Instead of updating the target network every few episodes, we perform a soft-update
on the target network by slowly updating its parameters ϕ towards the policy network’s
parameters θ by a parameter τ as:

ϕ← (1− τ)ϕ + τθ (4.1)

Chapter 4 Our Approach 36

Algorithm 2 DDQN (IMPLEMENTED IN FLATLAND)
1: Initialize Q-Network θ, target Q-Network ϕ
2: Replay Buffer R
3: for every episode do
4: for each environment step do
5: for each agent i do
6: Observe state si

t

7: if action is required then
8: With probability ϵ select random action a
9: Else a = maxai Q(si

t, ai; θt)

10: Get ri
t, si

t

11: Store ⟨si
t, ai

t, ri
t, si

t+1⟩ in R
12: for every few timesteps do
13: Sample ⟨s, a, r, s’⟩ batch from R
14: target = r + γ maxa’ Q(s’,a’; ϕ)
15: Minimize M .S.E[Q(s,a; θ), target]

16: Slightly Decrease ϵ
17: Soft-update target network ϕ← (1− τ)ϕ + τθ

DDDQN: We continue by implementing a Dueling Network architecture as an alternative
way of estimating Q-values. Instead of relying on a single network to estimate the state-action
values, dueling architectures split the input state in two different networks: one that estimates
the state value V (s; θ1) and one that estimates an advantage function A(s, a; θ2).

Both networks take the same input; the one which represents the state value estimate,
outputs a single state value, while the other which represents the advantage function, outputs
5 different advantages (one for each action). The Q-values are estimated internally in the
network’s forward function with:

Q(s, a; θ1, θ2) = V (s; θ1) + A(s, a; θ2)−Mean(A(s, a; θ2)) (4.2)

During back-propagation from the loss of the selected state-action pairs we inevitably
back-propagate through Eq. 4.2 and both network parameters are being updated. Since
these modifications only affect the Network architecture, the training approach is similar to
the above implementations.

DRQN: We expand once again from the Dueling DDQN implementation by adding a
recurrent layer in the network. In particular, our recurrent DDQN implementation involves
modifying the above dueling architecture by replacing the first linear layer with an LSTM
layer.

Chapter 4 Our Approach 37

Figure 4.3: Dueling Networks architecture.

Instead of passing a single state to the network, we now concatenate a sequence of past
states to our current state. If it is the beginning of the episode, we fill the sequence with
zeros. After the LSTM layer, we isolate only the last output of the sequence (which is our
current state) which then gets forwarded through the Linear Transformation layers. When
forwarding a sequence to an LSTM layer, we also need to provide a hidden state. While there
are two main approaches in the hidden state initialization [11], we initialize a zero-filled
hidden state when collecting transitions (i.e., acting on the environment) but maintain the
hidden state between acting steps. When training the sampled batches, we reset the hidden
state to zeros and forward the batch through the network.

Prioritized Experience Replay: Instead of randomly selecting samples to fill our batches,
we prefer samples that are prioritized. Our implementation involves attaching to the existing
transition tuple ⟨s, r, a, s′, d⟩ a secondary tuple containing three attributes: priority, weight
and probability. These attributes were discussed in 2.2.3.5.

Each time a transition is added to the Replay Buffer it gets assigned to the maximum
existing priority. That is because we want to ensure that new experiences will get sampled
at least once when training and not get lost in the buffer.

When sampling mini-batches for training, instead of randomly sampling transitions,
we sample them based on their probability. Each time we update our network from these
mini-batches, we also update the priority of those transitions.

Chapter 4 Our Approach 38

Figure 4.4: Dueling Network architecture with LSTM layer.

Every few episodes, we need to update the β described in 2.2.3.5. This acts as a measure
to control bias in the sampled experiences. The β parameter is slowly being increased up
until it reaches a value of 1.

Since we are dealing with big replay buffers, performance can be heavily affected every
time we update the priorities, the parameters or we add experiences. When adding a new
transition to the buffer for example, we need to assign it the maximum pre-existing priority
and weight. If we recalculate the max priority and weight for every new experience, then we
are dealing with running time of O(n). As a counter measure, we store the maximum priorities
and weights and only update them when new higher priorities are detected. Similarly, the
cumulative sum of priorities is stored and updated whenever we remove, add or modify an
experience and its priority.

4.3 Policy-based Methods

PPO: We have already provided the necessary theoretical background on PG methods
and PPO. For our implementation, we adjusted the methods to our needs, for instance by
modifying the way clipping operates, as we detail below.

We first define our Actor-Critic model. Similar to value-based methods, our actor
consists of two fully connected hidden layers of size 125 each. Each layer’s output is processed

Chapter 4 Our Approach 39

by a Tanh activation function. Our output, which is equal to the number of possible actions,
gets processed by a SoftMax activation function to transform the output to probabilities of
selecting each action. Our critic, has identical hidden layers and Tanh activations but has a
single output which estimates the state value function.

Figure 4.5: Tanh activation function.

Figure 4.6: An example of a SoftMax activation on a set of numbers.

When training, we parallelly sample trajectories for every agent from the start till the
end of an episode. Then, from the gathered rewards, we recursively accumulate them and
calculate the Returns for each timestep in the episode. This is similar to the proposed Finite
Horizon Estimate approach in [30]. The difference is that instead of sampling trajectories
up until a horizon T, we set the horizon as the end of the episode. If the agent has not
succeeded until the end of the episode, we estimate the remaining returns by forward passing
his last observed state.

At the end of an episode, we train on the episode’s experiences by performing multiple
training steps (or epochs) on the episode’s trajectories. Training multiple times on the same
batch of experiences can be problematic because each episode can have great impact on
the network’s weights. PPO was developed as a way to avoid overfitting to each batch
of experiences when training on the same batch for multiple epochs. As described in
2.2.3.7, clipping the actor network is primarily held responsible for this capability. In our
implementation, however, we noticed that clipping the updates of the action log probabilities
was not sufficient for stabilizing learning. By following the guidelines proposed by [6], we
made these additions to PPO:

• Clipping the critic: Instead of updating the critic by back-propagating on the MSError
of the critic’s estimate and target values, the critic is clipped on each update similarly

Chapter 4 Our Approach 40

to the actor:

LV F (θnew) = max[(Vθnew −R)2, (clip(Vθnew , Vθold
− ϵ, Vθold

+ ϵ)−R)2] (4.3)

Clipping both the actor and the critic allows for more controlled and restrained updates
on their weights when training on the same batch of experiences.

• Normalizing the Returns: Since our Returns are the Monte Carlo sum of subsequent
rewards at each episode’s timestep, we expect the Returns to have a wide range of
values (from 0 up to ∼90). Normalizing the Returns allows for more controlled weight
updates when back-propagating on the Loss.

• Gradient Clipping: When calculating the gradients for the actor and critic network,
the gradients are then clipped within a specified limit (0.5).

At each epoch, we start by first obtaining the actor and critic’s estimates of the action
distribution and state values respectively. We then continue, by estimating the advantage
where A = Returns− Vcritic. Then, we calculate the actor and critic loss and entropy as
described in 2.2.3.7 and above. We then update the network weights and repeat the process
for a specified number of epochs. Then the episode Trajectory is discarded and the process
is repeated in the next episode.

At the beginning of this chapter, we mentioned on how some states are preferably
ignored because the agent cannot act on them anyway. We also mentioned that while we do
not to train our networks directly on these states, they cannot be excluded from the episode
history. As a solution, we use all of the transitions for estimating the real Monte Carlo
Returns for each state but mask out (set to zero) all of the ’no-action-required’ transitions
when training on the episode.

PPOR (PPO with a Replay Buffer): While training on PPO, we noticed that it was
difficult for the agent to exceed mediocracy. While these experimental observations will be
further described in the next Chapter, it was clear that the agent is closely tied to each
episodic experience. In general, this is not a bad thing since an agent can theoretically
extract most of the useful information an episode has to offer. In FlatLand’s case, however,
rewards are sparse and great experiences - or great episodes - are rare, especially when the
agent is not trained to reach these great experiences. As a result, the agent learns mostly on
mediocre episodes and optimizes his policy towards these mediocre episodes. This inevitably
can lead to the agent being stuck in a local minimum of performance where he cannot
escape.

As a direct solution to the problem, we added a Replay Buffer. At the end of each
episode, instead of directly learning on the Episode’s trajectories, we estimate the Returns
and then add the Trajectory into a Replay Buffer. Each transition in the Replay Buffer holds
a tuple: ⟨s, a, R, logp(a), V (s)⟩ where R is the Return, log(p(a)) is the log probability of the
selected action and V (s) is the critic’s value estimate when the state s was visited. At each
epoch, we randomly sample a batch from the Replay Buffer and train similarly to PPO.

Chapter 4 Our Approach 41

Algorithm 3 PPO (IMPLEMENTED IN FLATLAND)
1: Orthogonal Initialize Actor, Critic
2: for every episode do
3: Initialize Episode Buffer E
4: for each environment step do
5: for each agent i do
6: Observe state si

t

7: if action is required then
8: Select action ai

t from πt(ai
t|si

t; θ)

9: Get ri
t, si

t

10: Parallel Store ⟨st, at, rt, st+1⟩ of all agents in E
11: Calculate returns R
12: for each epoch do
13: Get S, A from E
14: Get πθ(A|S; θ), Vθ(S)
15: Calculate advantage A = R(S)− Vθ(S)
16: Maximize L(θ) = LCLIP (θ)− c1LV F CLIP (θ) + c2S(πθ)

SIL: Similar to PPOR, at the end of an episode we store the trajectories and their Returns
at a Replay Buffer. Then, for a specified number of self-imitation epochs we sample a batch
of experiences from the Replay Buffer. We then isolate and update our actor-critic network
only on the positive experiences by masking out all the negative experiences. By positive
experiences, we mean the experiences where the returns R(s) were greater than the critic’s
estimates Vϕ(s). Similar to 2.2.3.8, we use a combined loss objective for updating both
the actor and the critic’s networks. Since we are only interested in the positive transition
tuples, we use a Prioritized Replay Buffer and we set as the prioritization factor the positive
experiences. This way, we become more efficient and ensure that each sampled batch contains
more than average positive experiences from which we can train to.

Chapter 4 Our Approach 42

Algorithm 4 SIL (IMPLEMENTED IN FLATLAND)
1: Orthogonal Initialize Actor, Critic
2: Initialize Prioritized Replay Buffer R
3: for every episode do
4: Initialize Episode Buffer E
5: for each environment step do
6: for each agent i do
7: Observe state si

t

8: if action is required then
9: Select action ai

t from πt(ai
t|si

t; θ)

10: Get ri
t, si

t

11: Parallel Store ⟨st, at, rt, st+1⟩ of all agents in E
12: Calculate returns R
13: for each epoch do
14: Update actor-critic PPO style
15: Store E in R
16: for each SIL epoch do
17: Get batch from Replay Buffer R
18: Get πθ(A|S; θ), Vθ(S)
19: Isolate S where R(S) > Vθ(S)
20: Minimize L(θ) = Lactor

sil + βLcritic
sil

Chapter 5

Experimental Evaluation

In this chapter, we systematically evaluate and compare the performance of our Deep RL
methods with respect to different metrics of performance. We ensure consistent conditions
for training and evaluation among the different algorithms and train them on three levels of
difficulty. We observe and discuss the experimental results, and analyze the best performing
method for tackling the multi-agent task of FlatLand.

5.1 Environment Settings

We define three levels of difficulty in which the algorithms were trained and evaluated. As an

Easy Medium Hard
Number of agents 3 5 7
Number of cities 2 2 3

Dimensions 25x25 25x25 25x25
Max Rails in City 3 3 3

Max Rails between Cities 2 2 2

Table 5.1: Parameters of the three levels of difficulty. Dimensions describe the dimensions of the grid-world,
Max Rails in City describe the possible paths surrounding a city, Max Rails Between Cities

describe the possible paths between cities.

attempt to only focus on the multi-agent problem we keep most of the level characteristics
similar, but alter the number of agents. The criterion for selecting these three levels of
difficulty was to distinguish the capabilities and limitations of each algorithm when the
coordination complexities increase. Additionally, hardware limitations had to be considered,
since adding more and more agents can heavily increase the time of training for each
algorithm.

Chapter 5 Experimental Evaluation 44

(a) Easy (b) Medium (c) Hard

Figure 5.1: Representation of the three levels of difficulty. We can clearly see how the attributes
Max-rails-in-city and Max-rails-between-cities apply to each level.

5.2 Training and Evaluation Setup

When training, we expect algorithms to perform similarly on different training sessions.
However, different Reinforcement Learning algorithms are known to be sensitive to different
sequences of training episodes [4]. Hence, each algorithm is going to be trained on ten
different seeds. Each seed produces a specific sequence of randomly generated episodes,
therefore training these algorithms on the same ten seeds brings an even ground when
training. Additionally, by training on ten seeds we can measure how sensitive or stable each
algorithm is on different training runs. Each training run lasts 1500 episodes. At each episode
we keep the Normalized Returns which is calculated by:

EpisodicReturn =
sumofrewards

numberofagents ∗maxepisodesteps
(5.1)

where maxepisodesteps is the max allowed episode steps and is calculated by:

maxepisodesteps = 4 ∗ 2 ∗ (height + width +
Numofagents

Numofcities
) (5.2)

The sumofrewards is the sum of the rewards of all the agents for all the timesteps of the
episode until termination. In the worst case scenario, none of the agents terminates and the
sumofrewards is equal to the numberofagents ∗maxepisodesteps. Therefore, the Episodic
Returns is a normalized metric that indicates how fast the agents have completed the episode
and spans within the range of [−1, 0). The worst possible result means that the agents failed
to complete the episode after surpassing the max possible episode steps. When training the
agents, an increase in the average Returns indicates that the agents complete the episode
faster and collide less frequently.

Additionally, at each episode we keep the average Returns of the last 100 episodes. By
keeping the average of the Returns, we can clearly observe the smoothed training curves

Chapter 5 Experimental Evaluation 45

instead of the noisy normalized Returns. This can be greatly beneficial when trying to
monitor the learning behaviors of different algorithms while at the same time visualizing
accurately their learning curves.

For each algorithm, we select the hyperparameters that lead to the smoothest training
curves i.e., smoothest learning, as a measure of guarantying stability and trust on the
different training runs. The hyperparameter selection began by first isolating three of the
most promising hyperparameter sets for each algorithm. Then, we compared the overall
performance of the three different sets and kept the best performing hyperparameter set
for each algorithm. We then run that hyperparameter set on the training procedure we
mentioned above. The applied hyperparameters of each algorithm can be seen in Table 5.3

At the end of each training run we store the trained model’s parameters (weights and
biases) to be used later in evaluation. Since we trained on ten seeds, we end up with ten
different trained models for each algorithm. Each training run, which has the length of 1500
episodes, is split into 15 evaluation points. Each point consists of the returns of 100 episodes.
We compare the performance and reliability of the algorithms at each evaluation point with
the methods mentioned below.

5.3 Performance and Reliability Metrics

The comparison of multi-agent Reinforcement Learning algorithms lacks a common and
fair evaluation ground [22]. Therefore, [22] proposes a systematic comparison on different
metrics of reliability and performance influenced by [4] but expanded on multi-agent RL. By
following the guidelines of [22, 4], we compare the raw performance of the algorithms when
training and when evaluating by calculating the below metrics:

Average Returns during Training: For each algorithm, we keep the average returns
at each evaluation point during training. We then calculate and plot the median and 95%
interval of those returns among the ten different seeds. All of the algorithms are plotted
together for a direct comparison on the three levels of difficulty.

Maximum Returns during Evaluation: We evaluate the ten different trained models of
each algorithm on a new evaluation seed. This seed has to be different than the training
seeds as to ensure that the algorithms are evaluated in unknown sequence of environments.
Each evaluation lasts 1000 episodes and we calculate the median and standard deviation of
the average returns across the ten different trained models.

Apart from raw performance metrics, we also include reliability metrics proposed by
[4] that give us information such as the stability or consistency of each algorithm during
training or along multiple training runs. These metrics are usually ignored when comparing
different Reinforcement Learning methods. However, aiming for reliable and steady learning
during training can be a high-priority task for many real-world applications [4].

Chapter 5 Experimental Evaluation 46

Dispersion across Time (DT): For this metric, we monitor the dispersion of the normalized
average episodic Returns within each evaluation point when training. The dispersion is the
Inter-Quartile Range (or IQR) of the returns within each evaluation point. We remind, that
each evaluation point consists of 100 training episodes and that there are 15 evaluation
points in total in each training run. Instead of displaying the actual dispersion at each
evaluation point, [4] instructs displaying the metric in three zones of training: Beginning,
Middle and End. Each zone consists, in our case, of 500 episodes (or 5 evaluation points).
Hence, this metric is displaying the normalized average dispersion of each algorithm in the
three training zones. The dispersion is normalized and is displayed as a ranking for each
algorithm which means that higher ranking is better and translates into lower dispersion of
returns. The ranking of each algorithm is averaged on all training runs (10 runs) and in all
levels of difficulty. For separate rankings on each level of difficulty, see Appendix, Figure
.1.

Additionally, we note that the vertical black lines (see Figure 5.3) display the 95%
bootstrap confidence intervals and the horizontal black lines display the significant pairwise
differences in ranking between a pair of algorithms. The line that refers to each pair spans
from the one algorithm to the other.

Dispersion across Runs (DR): Here, we monitor the dispersion of the average Return
at each evaluation point across the ten training runs. Similarly to DT, the metric is
displaying the normalized average dispersion of each algorithm in three zones of training
- Beginning, Middle, End - instead of displaying the dispersion at every single evaluation
point. Additionally, this metric is also normalized and is displayed as a ranking where higher
ranking is better and translates into lower dispersion of returns. This ranking is an average
on all three levels of difficulty. For separate rankings on each level of difficulty, see Appendix,
Figure .2. Additionally, the vertical black lines display the 95% bootstrap confidence intervals
and the horizontal black lines across any two algorithms display the significant pairwise
differences in the ranking of that pair of algorithms.

Short-Term Risk across Time (SRT): This metric represents the risk of the worst-case
drops in episodic Returns from one evaluation point to the next. This metric is also displayed
as a ranking between the algorithms and the resulting ranking is the average short-term risk
of each algorithm across all seeds and all levels of difficulty. For separate rankings on each
level of difficulty, see Appendix, Figure .3. Additionally, the vertical black lines display the
95% bootstrap confidence intervals and the horizontal black lines across any two algorithms
display the significant pairwise differences in the ranking of that pair of algorithms.

Long-Term Risk across Time (LRT): This metric measures the long-term risk of sudden
drops in the episodic Returns. While the SRT metric monitors sudden drops in performance
in the short-term, LRT aims to capture whether an algorithm is bound to lose performance
in the long-term. This metric can be really useful in cases where an algorithm might forget
what it learned if it keeps playing long enough. Like SRT, this metric is also displayed as
a ranking between the algorithms and the resulting ranking is the average long-term Risk

Chapter 5 Experimental Evaluation 47

of each algorithm across all seeds and all levels of difficulty. For separate rankings on each
level of difficulty, see Appendix, Figure .4. Additionally, the vertical black lines display the
95% bootstrap confidence intervals and the horizontal black lines across any two algorithms
display the significant pairwise differences in the ranking of that pair of algorithms.

All of the performance and reliability metrics were captured by using the open-source
tool provided by [4]. All of the reliability metrics (Dispersions, Risks) are represented by
ranking the different algorithms side to side. A higher ranking of an algorithm is better
and means lower risk or dispersion. The vertical black lines represent the 95% bootstrap
confidence intervals (# of bootstraps = 1000). The horizontal black lines between any pair
of algorithms shows that there is a statistically significant difference in their ranking.

5.4 Results

We will now provide the experimental results of the direct comparison in the three levels of
difficulty of the following algorithms and variants:

• DQN

• Double DQN (DDQN)

• Dueling Double DQN (DDDQN)

• Proximal Policy Optimization (PPO)

• Proximal Policy Optimization with a Replay Buffer (PPOR)

• Self-Imitating agent with a Prioritized Replay Buffer (SIL)

As mentioned, the hyperparameters selected for each algorithm are presented in Table
5.3. These hyperparameters were chosen empirically. We excluded the recurrent DQN (or
DRQN) variant from the final training comparison since it failed to provide any significant
or noteworthy performance improvement compared to the other DQN variants. In fact it
performed worce than most of the other value based variants while at the same time the
LSTM layer heavily affected the time of execution.

DQN: As seen in Figure 5.2, DQN struggled to perform adequately in all three levels of
difficulty during training. Due to a lack of a target network, DQN failed to keep consistency
when training across multiple seeds and also could not converge to a sub-optimal or stable
policy. Additionally, DQN performed poorly in most metrics of reliability. In the DR metric
(see Figure 5.4), DQN performed only slightly better than the policy based methods in
the Beginning stage of training. This slight performance advantage is explained by the fact
that DQN fails to improve its episodic returns in the beginning stages of training, hence
there is not a big dispersion to be seen. Similar behavior can be seen in the DT metric in
Figure 5.3. The big instabilities of DQN can be clearly seen in the Middle and End stages of
training, where DQN performed worse or equally as bad as PPO in both DT and DR metrics.

Chapter 5 Experimental Evaluation 48

Figure 5.2: Median Average Normalized Returns across ten runs of all algorithms in all environments. Also
showing the 95% interval across ten runs during training. The Returns indicate how fast the

agents have completed each episode. Optimal agents would score on average −0.1.

Additionally, in figures 5.5 and 5.6 we can see that DQN is more prone to short-term and
long-term sudden drops in performance than most of the other algorithms.

DDQN: Double DQN has shown smoother and greater levels of performance than DQN in
all levels of difficulty. First, as seen in the training curves in Figure 5.2, DDQN maintained
similar training curves along all training runs in all levels of difficulty. In the first level, it
converged to a sub-optimal policy quite early in training (around episode 800) and maintained
similar level of performance until the end of all training runs. In the medium level, it followed
a similar training curve and maintained adequate performance throughout training. In the
third level, DDQN slowly improved its performance until the end of the training session,
but only achieved moderate results.

Additionally, DDQN maintained a high ranking in all metrics of reliability. When
comparing the DR metric (see Figure 5.4), it ranks a lot higher than DQN, showing that
adding a target network can not only improve learning, but also maintain consistency across
training runs. DDQN also performs reasonably in the DT metric (see Figure 5.3). Also, it
maintains a high rank in both short-term and long-term risk across Time metrics (Figures
5.5, 5.6), indicating that the agent is not prone to sudden drops in performance or suddenly
forgetting what it learned.

DDDQN: Swapping the Q-network to a Dueling architecture has also led to a greater
performing agent than DQN and also slightly better performing agent than DDQN, especially
in the harder tasks. Since we are indirectly estimating Q-values by directly estimating state
values at each batch update, we end up with a more frequent state value estimate update
and as a result, we can better understand the environment dynamics. This can be especially
useful in the more difficult tasks, where the state space is substantially increased and the

Chapter 5 Experimental Evaluation 49

Figure 5.3: Ranking of all the algorithms in Dispersion across Time. Higher is better. The rank is averaged
on all training runs and all levels of difficulty and is split into three zones (Beginning, Middle,
End). These zones represent the ranking of Dispersion in the Beginning, Middle and Ending
zones of training. When examining the Dispersion, we primarily focus on the results at the

Middle or End, since the Beginning of training is always noisy in most algorithms. Error bars are
95% bootstrap confidence intervals. Horizontal bars display significant pairwise differences. See

Appendix, Figure .1 for seperate rankings on each level of difficulty.

good state transitions can become sparse. As shown in Figure 5.2, Dueling DDQN followed a
similar training curve to DDQN in all tasks, but achieved greater end results in the medium
and hard level of difficulty. Additionally, DDDQN scored similar rankings of reliability to
DDQN, with the exception of a greater ranking in the Dispersion of Returns across runs
(Figure 5.4) and a slightly greater ranking in the Long-term risk across Time (Figure 5.6).

PPO: Proximal Policy Optimization has performed poorly in all levels of difficulty. While it
did learn faster than the value-based methods in the first episodes during training (first 300
episodes), it failed to maintain a positive learning trend throughout training (see Figure 5.2).
In all of the tasks, PPO appears to be stuck in a local minimum, and is even outperformed
by DQN in the third level. Also, the noisy 95 percentile hints that there is a lot of variability
in its performance across multiple runs and this can be confirmed in the DR metric (Figure
5.4), where PPO seemed to perform significantly lower than most of the other methods
in the Ending stages of training. Surprisingly enough, PPO seemed to rank the highest in
the Middle stage of training in the medium environment setting (see Appendix, Figure .2).
We believe that this might be linked to the fact that PPO is the only algorithm that does
not improve between the episodes 500 and 1000 in the medium setting (see Figure 5.2).
As for the DT metric, PPO’s lower performance was statistically significant between most
of the other algorithms (Figure 5.3). Lastly, PPO seems to be more prone to short-term
and long-term risks compared to the other policy variants as well as DDQN and DDDQN
(Figures 5.5, 5.6).

During experimentation, the poor performance of PPO was really troubling at first. Due
to its nature, many modifications can be applied in how the episode batches are collected,
or how the Advantages are estimated etc. Initially, the poor performance was thought to be

Chapter 5 Experimental Evaluation 50

Figure 5.4: Ranking of all the algorithms in the Dispersion of Returns across all Runs and averaged on all
levels of difficulty. Higher is better. Again, we primarily focus on the Middle and End zones of
training. Error bars are 95% bootstrap confidence intervals. Horizontal bars display significant
pairwise differences. See Appendix, Figure .2 for seperate rankings on each level of difficulty.

linked to not having found the optimal modifications or hyperparameter sets. However, after
much experimentation, PPO always seemed to follow similar training curves regardless of
the sampling or training strategy. The true reason behind its poor performance is thought
to be that after learning on the episode Trajectories, the Trajectories are being discarded.
In an environment like Flatland, where the rewards are sparse and good state transitions
are rare, good episodes are not common. As a result, the agent updates its policy towards
mostly mediocre play and the rare positive experiences are significantly outnumbered. At
the same time a mediocre policy does not allow the agent to further improve and this leads
to the agent being stuck in a local minimum of performance. Additionally, the agent is very
sensitive to the sequence of the randomly generated episodes (seed). In Figure 5.4 we can
see that PPO mostly scores the lowest when considering the Dispersion of Returns across
multiple runs.

PPOR: Proximal Policy Optimization with a Replay Buffer has proven to be a key upgrade
for unlocking the potential of PPO. In all three settings, PPOR, initially improves slower
than most of its competitors. However, it maintains a steady and smooth learning curve up
until the end of all training sessions. On the first level, PPOR eventually surpasses all of the
other algorithms achieving an impressive sub-optimal policy. In the medium and hard levels,
PPOR eventually surpasses all of the value-based methods and is only surpassed by SIL.

Additionally, PPOR scores greater than PPO in all metrics of reliability. Specifically, it
achieves lower dispersion of rewards along multiple runs (see Figure 5.4) and also ranks higher
in the short-term (Figure 5.5) and long-term risks (Figure 5.6). Also, it scored significantly
higher than PPO as well as all the other value based methods in the Middle and End stages
of the DT metric (see Figure 5.3). Considering these metrics, as well as its performance
during training, we can confirm our assumptions of the poor performance of PPO. Storing
the trajectories in a Replay Buffer allows for the rare positive experiences to be revisited

Chapter 5 Experimental Evaluation 51

later in training and can help the agent to escape from mediocre policies. Additionally, the
agent is not directly affected by each episode in the episode sequence, since it learns on
randomly selected batches from recent experiences.

Figure 5.5: Ranking of all the algorithms in the short-term Risk acros time and averaged over all evaluation
points and all levels of difficulty. Higher is better. Error bars are 95% bootstrap confidence

intervals. Horizontal bars display significant pairwise differences. See Appendix, Figure .3 for
seperate rankings on each level of difficulty.

SIL: Self-Imitation learning achieved outstanding performance in all levels of difficulty. First,
SIL converged faster than all of its competitors and maintained similar convergence rates
across all runs (see Figure 5.2). In the easy level of difficulty, it was able to converge faster
to a sub-optimal policy and was only outperformed by a small margin by PPOR in the later
stages of training. In the medium level of difficulty, SIL surpassed all of its competitors right
from the beginning and successfully maintained a high level of performance until the end of
training. In the last level of difficulty, SIL keeps the same outstanding level of performance
and maintains an upwards training curve throughout training. Moreover, SIL ranked the
highest in both the DT and DR (Figures 5.3, 5.4) metrics in the Middle and End stages of
training. Its lower ranking in the Early stages is believed to be linked to the fact that SIL
has the sharpest upwards training curve in the first 500 episodes (see Figure 5.2). As for the
SRT and LRT metrics (Figures 5.5, 5.6), SIL seems to be on the same rankings as PPOR,
DDQN and DDDQN and only ranks significantly higher than DQN and PPO.

Chapter 5 Experimental Evaluation 52

Figure 5.6: Ranking of all the algorithms in the long-term Risk acros time and averaged over all evaluation
points and all levels of difficulty. Higher is better. Error bars are 95% bootstrap confidence

intervals. Horizontal bars display significant pairwise differences. See Appendix, Figure .4 for
seperate rankings on each level of difficulty.

DQN DDQN DDDQN PPO PPOR SIL

Easy -0.44±0.083 -0.26±0.016 -0.27±0.022 -0.42±0.88 -0.18±0.14 -0.20±0.024

Medium -0.49±0.026 -0.37±0.027 -0.35±0.015 -0.50±0.027 -0.30±0.018 -0.26±0.006

Hard -0.55±0.076 -0.49±0.029 -0.48±0.034 -0.61±0.035 -0.43±0.015 -0.38±0.017

Table 5.2: Evaluation of all algorithms on three levels of difficulty. Results are the average and standard
deviation of Average Returns over 1000 episodes on ten agents trained on ten different seeds

during training and evaluated under the same evaluation seed.

5.5 Discussion

In this section, we will provide intuitions and discuss over the lessons that we learned from
the performance of our algorithms.

Value-based methods: With the exception of DQN, the value-based methods have generally
resulted in steady and low risk training in all the environments. However, as the difficulty
of the environment increases, none of these approaches achieved greater than adequate

Chapter 5 Experimental Evaluation 53

performance. Taken from our experimental observations, we think this is traceable to the
sparse reward nature of Flatland. As the coordination requirements increase, all of the
agents need to take a sequence of good actions in order to explore better (or terminal) states.
Value-based methods, however, rely only on the ϵ-greedy approach as a measure of exploring
such states. It is clear that it can be extremely difficult and rare for the agents to randomly
take actions that can lead to such states and yield positive rewards. As a result, such agents
usually train and lock towards mediocre policies.

When considering the reliability metrics, value-based methods have indicated in general
higher levels of consistency when running on different environment seeds. We think this is
due to the fact that they learn from randomly sampled batches from random episodes. Each
batch can contain Transitions from older episodes or from any agent and therefore each
network update is not directly affected from the latest sequence of episodes.

The implementation of such methods is also considered to be more straightforward.
Since the network is indifferent to when or how the transitions are collected, the learning
and acting steps are decoupled. This allows for a great level of freedom when considering the
frequency of learning and also on how the Replay Buffer is filled. In Flatland specifically, if
we did not consider a Transition important, we could just exclude it from the Replay Buffer.
We also did not have to specify whom agent transitions we are storing.

Policy-based methods: Policy-based methods have provided mixed levels of performance
and reliability across all tasks. Standard PPO, as mentioned and above, has really struggled
to learn above-average policies. Our observations have shown that the poor performance is
linked to the rarity of good episodes due to the sparse rewards of the environment. To better
understand the problem, we can think of what happens when we train a PPO agent. The
episodes start playing out by each agent following a joint untrained policy. The policy is
mostly a random selection of actions; therefore, the episode outcome is mostly not great. The
actor – critic then is trained on a mediocre episode. Over time, some episodes lead to slightly
better results and the policy starts to slowly build higher confidence towards the actions that
led to these results. At that point, some agents have probably mostly understood some basic
behaviors, like reaching to their destination for example. If they want, however, to avoid
blocking or to allow other agents to move to their goal they need to take highly coordinated
sequence of actions. These behaviors can be really rare when using a mostly untrained policy
but also can be rarer when the policy is trained towards avoiding these actions in favor of
simpler and more common actions. Since these episodes are significantly outnumbered by
average-performing episodes, the policy is mostly optimized towards not excellent behaviors.
When good episodes do happen, the actor-critic usually does not have enough time to adjust
itself towards enforcing the good decisions taken in that episode.

Additionally, PPO introduced more complexity in the implementation when compared
to value-based methods. This is mostly due to the fact that PPO allows for a lot of variability
in how the experiences are collected or sampled, or how the Returns and Advantages are

Chapter 5 Experimental Evaluation 54

estimated, etc. When scaled to multiple agents more things need to be considered such as
whether to parallelly update the experiences of all agents, or one by one etc.

Adding a Replay Buffer to PPO: As observed from the experimental results, a Replay
Buffer seems to be able to alleviate PPO from the problems mentioned above. Our reasoning
behind this substantial performance increase is that the Replay Buffer allows for the rare
positive experiences to be revisited in the future. It needs to be noted that PPOR updates
the actor-critic network in an almost identical fashion to PPO with the exception that
instead of updating the episode trajectories at the end of an episode for multiple epochs,
we instead randomly select for each epoch a batch of experiences from a Replay Buffer.
The size of the Replay Buffer can also play a substantial role in the performance of PPOR.
Value-based methods work great with Replay Buffers because we only need to store the
one-step transitions to the Replay Buffer. The target for the network updates can be directly
estimated from the one-step transitions (TD(1)) therefore the Q-network estimates at the
moment of experiencing these transitions does not affect the network updates when these
experiences are sampled. Here, however, we require the Monte Carlo Returns for updating
the actor-critic network. These Returns are gathered by following the policy at that episode.
Therefore, when sampling random batches of transitions, we do not want to sample really
old experiences because these experiences are accompanied by Returns gathered from an
older policy.

Self-Imitation learning: Self-Imitation has provided the most promising results when
compared to all the other methods. Based on these results and our own observations, it
seems that giving extra focus on the positive experiences can have a great impact on sparse
reward environments. Especially when those experiences become rarer and rarer (medium,
hard level of difficulty) self-imitation really prevails over all the other methods. Additionally,
by imitating their own experiences and not these of a mentor, SIL agents are a lot easier to
implement, since there is no need to construct a heuristic or optimal mentor-agent. Lastly,
SIL also maintains the sample efficiency of PPO, since it uses the same experiences that
PPO collected but just isolates the positive ones.

Chapter 5 Experimental Evaluation 55

Learning rate First Hidden Second Hidden Batch size Learning freq. Buffer size epochs

Easy

DQN 0.00009 128 128 128 30 50000 -

DDQN 0.0003 128 128 150 30 50000 -

DDDQN 0.0003 128 128 150 30 50000 -

PPO 0.0005 128 128 - end - 10

PPOR 0.0005 128 128 300 end 10000 10

SIL 0.0005 128 128 300 end 20000 10/10

Medium

DQN 0.00009 128 128 128 30 50000 -

DDQN 0.0003 128 128 150 40 50000 -

DDDQN 0.0003 128 128 150 40 50000 -

PPO 0.0005 128 128 - end - 10

PPOR 0.0004 128 128 300 end 10000 10

SIL 0.0005 128 128 300 end 30000 10/10

Hard

DQN 0.00009 128 128 128 30 50000 -

DDQN 0.0003 128 128 150 40 50000 -

DDDQN 0.0003 128 128 150 30 50000 -

PPO 0.0005 128 128 - end - 15

PPOR 0.0004 128 128 300 end 10000 15

SIL 0.0005 128 128 300 end 40000 10/13

Table 5.3: Hyperparameters of the trained algorithms.

Chapter 6

Conclusions and Future Work

In this thesis we tackled the multi-agent Flatland environment by implementing and mod-
ifying various Deep Reinforcement Learning methods. We then systematically evaluated
and compared the applied methods in consisted training conditions. We monitored the
algorithm performances on different metrics of performance and reliability and we discussed
the strengths and weaknesses of each algorithm. Then, we concluded by openly discussing
our observations on the experimental results.

Our work began with the algorithm selection process which was driven by the dynamics
and characteristics of the Flatland environment. After selecting suitable and promising
candidates, we split them in value-based and policy-based methods. We then adapted these
methods for the multi-agent Flatland environment. The implementation of the algorithms
came with some difficulties. While value-based methods were for the most part flexible
and easy to implement, policy-based methods required plenty of modifications and we also
took some liberties in the episode sampling and training process. Specifically when working
with PPO, we added some key extensions in order to better control the update steps of
the actor-critic network and we trained on whole episode sequences instead of batches
limited to a horizon T. Additionally, we integrated a Replay Buffer to a PPO module
and demonstrated its superiority over PPO in a sparse reward environment like FlatLand.
Finally, we implemented a Self-Imitating agent who remembers and revisits its past positive
experiences and we showed that such method can result in impressive performance even
without the need of a mentor agent.

We compared and evaluated the different algorithms in three levels of difficulty. For each
level of difficulty, we guaranteed consistent training and evaluation conditions. We monitored
the experimental results on various metrics of performance and reliability. We gave a lot of
emphasis on the importance of consistency and fairness when comparing different algorithms
on any environment as well as the importance of also considering the reliability metrics
when examining the performance of such algorithms.

Our experiments have shown that value-based methods perform great in settings with
small to medium coordination requirements, under the condition that a target network is being
used. Standard DQN failed to perform great and consistently, while the Double and Dueling

Chapter 6 Conclusions and Future Work 57

Double DQN variants provided very stable and reliable results. As the complexity of the
environments increased, however, none of the value-based methods exceeded mediocracy.

Policy-based methods led to mixed but overall, very positive results. Standard PPO
struggled in all three levels. Our observations have linked its poor performance to the fact
that PPO trains on-policy on each episodic trajectory, leading to mediocre policies. We
alleviated the problem by instead sampling batches from a relatively small replay buffer
and called the variant PPOR. PPOR surpassed all of the value-based methods as well
as PPO in raw performance, while also maintained great levels of reliability. Our best
performing policy-based method and also best overall method was the Self-Imitation method.
By revisiting the positive experiences of previous episodes, SIL led to a successfull policy in
all levels of difficulty while also scoring high in all levels of reliability.

FlatLand is an exciting platform that has the potential to accelerate research in multi-
agent Reinforcement Learning. It combines many of the challenges multi-agent systems face
and at the same time its scalable difficulty makes it accessible to all levels of academical
research. As such, a lot can be done to extend our work. By utilizing the same comparison and
evaluation ground, more algorithms and variants can be applied and evaluated. Specifically,
one can examine various centralized critic methods or other imitation methods. One could
also experiment with different network architectures, such as the use of recurrent layers or
Transformers, or with different methods to enforce deeper state exploration. Additionally, a
lot of work can be done by experimenting with different reward signals as well as different
state observations.

Appendix

59

Figure .1: Dispersion across time displayed seperately in the three levels of difficulty. Each training zone
displays a normalized ranking of each algorithm in that range, averaged over ten training sessions.

Black error bars display 95% bootstrap confidence interval error (# bootstraps = 1000).
Horizontal bars display significant pairwise differences.

60

Figure .2: Dispersion across runs displayed seperately in the three levels of difficulty. Each training zone
displays a normalized ranking of each algorithm in that range. Black error bars display 95%

bootstrap confidence interval error (# bootstraps = 1000). Horizontal bars display significant
pairwise differences.

61

Figure .3: Short-term risk displayed seperately in the three levels of difficulty. Black error bars display 95%
bootstrap confidence interval error (# bootstraps = 1000). Horizontal bars display significant

pairwise differences.

Figure .4: Long-term risk displayed seperately in the three levels of difficulty. Black error bars display 95%
bootstrap confidence interval error (# bootstraps = 1000). Horizontal bars display significant

pairwise differences.

Bibliography

[1] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
“Dota 2 with large scale deep reinforcement learning”. In: arXiv preprint arXiv:1912.06680
(2019) (cit. on p. 20).

[2] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “A comprehensive survey
of multiagent reinforcement learning”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38.2 (2008), pp. 156–172 (cit. on
p. 24).

[3] Georgios Chalkiadakis. “Multiagent reinforcement learning: Stochastic games with
multiple learning players”. In: Dept. of Computer Science, University of Toronto,
Canada, Tech. Rep 25 (2003) (cit. on p. 24).

[4] Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio
Guadarrama. “Measuring the reliability of reinforcement learning algorithms”. In:
arXiv preprint arXiv:1912.05663 (2019) (cit. on pp. 44–47).

[5] Caroline Claus and Craig Boutilier. “The dynamics of reinforcement learning in
cooperative multiagent systems”. In: AAAI/IAAI 1998.746-752 (1998), p. 2 (cit. on
p. 24).

[6] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry. “Implementation matters in deep policy
gradients: A case study on ppo and trpo”. In: arXiv preprint arXiv:2005.12729 (2020)
(cit. on pp. 2, 39).

[7] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. “Counterfactual multi-agent policy gradients”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 1. 2018 (cit. on pp. 1, 24).

[8] Jakob N Foerster, Yannis M Assael, Nando De Freitas, and Shimon Whiteson. “Learning
to communicate with deep multi-agent reinforcement learning”. In: arXiv preprint
arXiv:1605.06676 (2016) (cit. on p. 24).

[9] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and
Joelle Pineau. “An introduction to deep reinforcement learning”. In: arXiv preprint
arXiv:1811.12560 (2018) (cit. on pp. 10, 14).

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016
(cit. on pp. 10, 12).

Bibliography 63

[11] Matthew Hausknecht and Peter Stone. “Deep recurrent q-learning for partially observ-
able mdps”. In: 2015 aaai fall symposium series. 2015 (cit. on pp. 17, 37).

[12] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. “Deep q-learning
from demonstrations”. In: Thirty-second AAAI conference on artificial intelligence.
2018 (cit. on p. 25).

[13] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780 (cit. on p. 12).

[14] Ionel-Alexandru Hosu and Traian Rebedea. “Playing atari games with deep reinforce-
ment learning and human checkpoint replay”. In: arXiv preprint arXiv:1607.05077
(2016) (cit. on p. 25).

[15] Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. “Coordinated multi-agent
imitation learning”. In: International Conference on Machine Learning. PMLR. 2017,
pp. 1995–2003 (cit. on p. 25).

[16] Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan, Daniel Harabor, Peter J Stuckey,
Hang Ma, and Sven Koenig. “Scalable Rail Planning and Replanning: Winning the 2020
Flatland Challenge”. In: Proceedings of the International Conference on Automated
Planning and Scheduling. Vol. 31. 2021, pp. 477–485 (cit. on p. 25).

[17] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep rein-
forcement learning”. In: arXiv preprint arXiv:1509.02971 (2015) (cit. on p. 32).

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. “Playing atari with deep reinforcement learn-
ing”. In: arXiv preprint arXiv:1312.5602 (2013) (cit. on pp. 1, 8, 14, 15, 29).

[19] Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian Scheller,
Nilabha Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichenberger, Christian
Baumberger, et al. “Flatland-RL: Multi-agent reinforcement learning on trains”. In:
arXiv preprint arXiv:2012.05893 (2020) (cit. on pp. 2, 25, 28).

[20] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. “Self-imitation learning”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 3878–3887 (cit. on
pp. 22, 23).

[21] Christopher Olah. “Understanding lstm networks”. In: (2015) (cit. on p. 13).
[22] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht.

“Comparative evaluation of cooperative multi-agent deep reinforcement learning algo-
rithms”. In: arXiv: 2006.07869 (2020) (cit. on p. 45).

[23] Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan, Andrew
Manning, Robert Sutton, and Angelo Cangelosi. “Autonomous quadrotor landing
using deep reinforcement learning”. In: arXiv preprint arXiv:1709.03339 (2017) (cit.
on p. 14).

Bibliography 64

[24] Bob Price and Craig Boutilier. “Implicit imitation in multiagent reinforcement learning”.
In: ICML. Citeseer. 1999, pp. 325–334 (cit. on p. 25).

[25] Martin L Puterman. “Markov decision processes”. In: Handbooks in operations research
and management science 2 (1990), pp. 331–434 (cit. on pp. 5, 6).

[26] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. “Qmix: Monotonic value function factorisation for
deep multi-agent reinforcement learning”. In: International Conference on Machine
Learning. PMLR. 2018, pp. 4295–4304 (cit. on pp. 1, 25).

[27] Stuart Russell and Peter Norvig. “Artificial intelligence: a modern approach”. In:
(2002) (cit. on p. 1).

[28] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prioritized experience
replay”. In: arXiv preprint arXiv:1511.05952 (2015) (cit. on pp. 18, 19).

[29] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
“Trust region policy optimization”. In: International conference on machine learning.
PMLR. 2015, pp. 1889–1897 (cit. on p. 21).

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017)
(cit. on pp. 2, 20–22, 39).

[31] Sandip Sen, Mahendra Sekaran, John Hale, et al. “Learning to coordinate without
sharing information”. In: AAAI. Vol. 94. 1994, pp. 426–431 (cit. on p. 24).

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018 (cit. on pp. 4–9).

[33] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
“Policy gradient methods for reinforcement learning with function approximation”.
In: Advances in neural information processing systems. 2000, pp. 1057–1063 (cit. on
p. 19).

[34] Sebastian Thrun and Anton Schwartz. “Issues in using function approximation for
reinforcement learning”. In: Proceedings of the Fourth Connectionist Models Summer
School. Hillsdale, NJ. 1993, pp. 255–263 (cit. on p. 16).

[35] Karl Tuyls and Peter Stone. “Multiagent learning paradigms”. In: Multi-Agent Systems
and Agreement Technologies. Springer, 2017, pp. 3–21 (cit. on p. 24).

[36] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 30. 1. 2016 (cit. on pp. 8, 16).

[37] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Fre-
itas. “Dueling network architectures for deep reinforcement learning”. In: International
conference on machine learning. PMLR. 2016, pp. 1995–2003 (cit. on pp. 8, 18).

Bibliography 65

[38] Jim YF Yam and Tommy WS Chow. “A weight initialization method for improving
training speed in feedforward neural network”. In: Neurocomputing 30.1-4 (2000),
pp. 219–232 (cit. on p. 11).

	Abstract
	Abstract in Greek
	Introduction
	Contributions
	Thesis Outline

	Theoretical Background and Related Work
	Reinforcement Learning
	Markov Decision Process
	Value and Policy

	Deep Reinforcement Learning
	Feedforward Neural Networks
	Recurrent Neural Networks
	Deep RL methods used in this thesis
	Deep Q-Networks
	Double Deep Q-networks
	Recurrent Deep Q-Networks
	Dueling Double Deep Q-networks
	Prioritized Experience Replay
	Policy Gradient Optimization
	Proximal Policy Optimization
	Self-Imitation Learning

	Related Work

	The FlatLand Environment
	FlatLand environment overview
	Actions
	Observations
	Rewards

	Our Approach
	Overview
	Value-based methods
	Policy-based Methods

	Experimental Evaluation
	Environment Settings
	Training and Evaluation Setup
	Performance and Reliability Metrics
	Results
	Discussion

	Conclusions and Future Work
	Bibliography

