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The upcoming high population density rise inmetropolitan areas is anticipated to further deteriorate the traffic condi-
tions. To tackle this problem, advanced ICT applications have been employed, able to monitor and manage traffic in
real time. In practice, to efficiently correspond to dynamic traffic conditions those applications require to be frequently
reconfigured – an operation that usually involves expert-teamsmanually adjusting the traffic-regulating strategies reg-
ularly. However, these manual procedures are not adequately aligned with the traffic situation since complicated sto-
chastic dynamics, model unavailability and data inner-transmission constraints usually emerge. In order to overcome
such cumbersome and expensive adjustment procedures modern decentralized adaptive optimization is widely ac-
cepted and recognized as an efficient automated solution for tuning the control strategy on-the-fly. Motivated by the
above, L4GCAO, a decentralized, model independent, flexible optimization technique has been designed for optimiz-
ing cycle management at a local level to improve network performance at the global level, by automatically adjusting
the cycle-regulating parameters in an intersection-centric manner, through cooperating self-learning agents.
This paper studies L4GCAO'sfirst application on a realistic traffic-network simulation scheme that examines the online
fine-tuning process of the cycle-regulating parameters. Moreover, in order to evaluate the decentralized L4GCAO
performance, two levels of performance benchmarking have been considered: a comparison with CAO - its well-
established centralized counterpart; an already well-designed fixed-time management plan. In all cases, L4GCAO ex-
hibits an almost equivalent performance improvement compared to CAO, both with respect to a properly fixed-time
traffic management plan, while utilizes less parameters in a non-centralized manner.
1. Introduction

Since human population shift continuously to urban areas, traffic con-
gestion levels are anticipated to growth accordingly, resulting low quality
levels of life and reducing regional economic health. To this end traffic
management has become a key issue in urban living areas generating a
lot of studies that examine the efficiency of such tactics and approaches
(Cameron et al., 2004; Newman and Kenworthy, 2011; Huo et al., 2012;
Gargett and John, 2004). Traffic congestion may seem only a technical/
tem; ADTPV, AverageDelay Time
aptive Optimization; CR, cycle
ation System; L4GCAO, Local for
ameters; MPC, model predictive
NMS, network mean speed; SC,

ier Ltd. This is an open access artic
engineering problem, it affects, however, in a negative way many aspects
of everyday life. To reduce the negative effects of congestion, Advanced
Traffic Management Systems (ATMS) are developed and utilized. ATMS
are able to collect data from several different types of sensors (cameras,
speed meters, connected vehicles, detector loops, etc.) and exploit them
through specialized ICT tools which are capable of aggregating and evalu-
ating these data to create informative insights for the operator. The opera-
tor is then called to make decisions aiming at reducing congestion levels,
smoothening traffic flow, and enhancing drivers' safety.

Traffic congestion may seem only a technical/engineering problem, it
affects, however, in a negative way many aspects of everyday life. To re-
duce the negative effects of congestion, Advanced Traffic Management Sys-
tems (ATMS) are developed and utilized. ATMS are able to collect data
from several different types of sensors (cameras, speed meters, connected
vehicles, detector loops, etc.) and exploit them through specialized ICT
tools which are capable of aggregating and evaluating these data to create
informative insights for the operator. The operator is then called to make
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Nomenclature

k positive integer counter of current optimization iteration
L positive integer number of total random perturbations
N positive integer number of total constituent/local optimizers
w positive integer index of specific constituent optimizer
Th defined control parameters update period (optimization iteration time interval)
ct constant number/value
a(k), aw(k)positive perturbation amplitude for centralized CAO and decentralized L4GCAO approach, at the k-th iteration, respectively
Hgk, Hwk set of control parameters (tunable parameters) for centralized CAO and decentralized L4GCAO approach, at the k-th iteration, respectively
Jgk, Jwk objective function value for the overall (global) and local w-th constituent systems, performance, at the k-th iteration, respectively
ĵgk estimated objective function value for the overall (global) performance, at the k-th iteration
θk, θwk estimator parameters for centralized CAO and decentralized L4GCAO approach, at the k-th iteration, respectively
Hgk
j , Hwk

j perturbed candidate control parameters set for centralized CAO and decentralized L4GCAO approach, at the k-th iteration, respectively
ΔHgk

j ,ΔHwk
j random perturbation of the control parameters set for centralized CAO and decentralized L4GCAO approach, at the k-th iteration, respec-

tively

Ĵ
j
gk estimated overall (global) objective function for each perturbed candidate control parameters set, at the k-th iteration, respectively

q current control cycle
C(q) the current calculated cycle time [sec]
σ(q) the average maximum load [veh] of some pre-specified links
Cmin is the minimum permissible cycle time [sec]
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decisions aiming at reducing congestion levels, smoothening traffic flow,
and enhancing drivers' safety.

Decision-support techniques suggest that skilled personnel and expert
traffic control engineers based on field observations, previous data and em-
pirical design accumulations are usually adopted to manually apply actions
with an acceptable and satisfactory behavior. Unfortunately, heuristic-
based decision-making (Hunt et al., 1982; Lowrie, 1982; Liu et al., 2015;
Smith, 2015) is particularly difficult or not feasible at certain times, due
to system complexity, size and uncertain dynamics imposed by weather
conditions and driving behavior. As a result, satisfying performance in an
emerging environment such as urban traffic networks at a permanent
basis cannot be guaranteed. Emerging traffic-affecting conditions lead to
highly uncertain behavior which hinders static and non-adaptive ap-
proaches' applicability in practice. Moreover, other literature studies are
simplifying the optimization problem dynamics to linearized ones
(Mehrabipour and Hajbabaie, 2017); considering the overall performance
index as a linear and analytically known function of the observable states
(Wang, 2005), which imposes lower accuracy and reduced applicability
in practice where highly stochastic, unknown and complex/nonlinear dy-
namics may affect the behavior of the system.

To this end a large number of innovative adaptive optimization ap-
proaches, utilizing standard Stochastic Approximation parameters have
been suggested in literature (Kiefer and Wolfowitz, 1952; Ermoliev, 1969;
Robbins and Monro, 1951; Spall, 1992) and also multiple Stochastic Ap-
proximation algorithms have been identified for their capability to ade-
quately fine-tune traffic simulation modelled schemes (Lu et al., 2015;
Koch et al., 1997; Chin and Smith, 1994). Although, despite their improved
performance in comparison with traditional approaches they are depended
on simplified methods for analytically calculating the general gradient of
the objective function that concerns the overall performance of the system.
That inevitably reveals their inefficiency as concerns complicated ITS
(Kosmatopoulos et al., 2007; Kosmatopoulos and Kouvelas, 2009), such
as the sophisticated traffic control approaches of metropolitan areas. Extre-
mum Seeking (ES) decentralized optimization schemes considering dynam-
ically changing challenges - where only a small portion of systems'
information is available - have also been indicated in literature
(Kutadinata et al., 2016; Guay et al., 2004; Adetola and Guay, 2007; Tan
et al., 2006; Liu and Krstic, 2012; Krstic and Wang, 2000; Pan et al.,
2002; Stankovic et al., 2011; Guay et al., 2015). In those cases, the overall
objective function is considered analytically known despite the cooperative
2

optimization topology as the weighed summation of the locally available
ones. Additionally, ES schemes assume direct interaction among neighbor-
ing agents similar toMulti-Agent Reinforcement Learning (Chu et al., 2019;
Chu et al., 2016; Aziz et al., 2017) where the Q-function values are ob-
served from the field (Chu and Wang, 2017) while large-scale deep-
learning tedious techniques are considered (Van der Pol and Oliehoek,
2016) which is not usually the case in real-life applications; fact which ren-
ders the volume of data transmitted along with the corresponding commu-
nication rates among neighboring agents (agent-clusters) to be high.
Normally, the scale of the identified intercommunicating neighboring
agents is oppositely proportional to the adaptation degree and the recur-
rence of the periodic signal that is utilized to determine extremum seeking
in order to guarantee reduced communicationweights/costs.Moreover due
to their design scheme, those approaches also suffer from the hypothesis of
a linear explicit dependence of the overall objective function with the local
ones (weighted summation) – an assumption that is regularly adopted in
decentralized ES but cannot be applicable considering the present real-life
applications.

Contrary to the aforementioned approaches, the Local for Global Cogni-
tive Adaptive Optimization (L4GCAO) approach is able to efficiently ad-
dress quite complicated and large in scale traffic cycle regulation
calibration challenges, that uncertain dynamics emerge (Kosmatopoulos
et al., 2015) presenting low computational and operational costs. Consider-
ing L4GCAO optimizationmethodology, only a single data point is required
– a single data point that is able to exhibit the overall performance of the
system and can be systematically distributed within all constituent agents,
while the analytic form of the overall objective function is totally analyti-
cally unknown but observable. The circulation of the same single data
point among all constituent local systems minimizes to almost zero the re-
quired communication resources related to the respective infrastructure,
energy, time, and maintenance. However, one differentiating feature, if
not the most important, of L4GCAO is its ability to operate in a plug-n-
play manner i.e. without any previous pre-application efforts. L4GCAO
has been designed to serve as a calibrating engine for virtually any kind
of large scale traffic control system, being agnostic to the actual internal dy-
namics of the plant. The results demonstrated L4GCAO's ability to effec-
tively hash down the large-scale optimization problem to several
cooperative locally-driven ones. An optimizing agent is dedicated for man-
aging each sub-problem to improve the overall performance of the system.
The decentralized algorithm L4GCAO that is based on CAO - Cognitive
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Adaptive Optimization (Kosmatopoulos and Kouvelas, 2009;
Kosmatopoulos, 2009; Baldi et al., 2014) – is able to function effectively
in cases where the model that describes the traffic network is totally un-
known. The use of its parallel centralized algorithm approach that utilized
CAO, has previously been assessed in equivalent cases of traffic optimiza-
tion control (simulation scenarios and real-life cases) exhibiting remarkable
operational success (Baldi et al., 2015a; Sangi et al., 2016; Baldi et al.,
2015b). To this end CAO algorithmic solution is utilized in order to define
an efficient and reliable system for L4GCAO comparison. The goal of the
current study is to extensively test and evaluate L4GCAO in cycle-
regulation applications where real-time centralized control – due to com-
munication and data-transmission limitations – can become impractical as
the number of interconnected entities and network scale is constantly grow-
ing. As a result, the decentralized algorithm is utilized to locally adjust the
variables of the control approach for improving its efficiency at the global
network: the approach employs a local signal control strategy towards the
optimization control of the Chania City urban traffic network that is located
in the island of Crete - Greece. It should be mentioned that this study re-
search portrays an expanded and continued report of a respective research
introduced in 5th International Conference on Control, Decision and Infor-
mation Technologies (CoDIT), 2018 (Michailidis et al., 2018). It should also
be noted that the current study considers a simulation model of the Chania
city network that has already been created under a previous research and
the demand scenario was configured based on real-life measurements in
order to exhibit efficiently the actual conditions in the urban road network:
the aforementioned scenario that concerns a congested traffic environment
is able to be directly transferred to the actual traffic network plant effort
(Kouvelas et al., 2011). Is noteworthy that the actual application of the cur-
rent approach wouldn't require the employment of any extra infrastructure
additions where each junction controller could may behave as a
decentralized calculation hosting platform for the respective local agent.
Moreover, operational costs concerning real-time data transmission from
every part of the traffic network, would also be significantly reduced
since the system requires a smaller amount for central information.

This study is integrated in 5 sections:

• Section 2 (Problem Formulation In Urban Traffic Networks) describes
briefly the optimization problem formulation;
• Section 3 (Simulative Traffic Network Testbed) describes the traffic net-
work that concerns the current research effort;

• Section 4 (Distributed Automated Fine-Tuning Method) exhibits the pri-
mary features of the proposed L4GCAO approach;

• Section 5 (The Signal Control Method& The Respective Optimization Pa-
rameters) presents the application case study of L4GCAO, emphasizing on
the optimization goals, adopted simulation schemes and performance
measurements;

• Section 6 (Simulation Results&Discussion) presents and discusses the re-
sults of the simulation study;

• Section 7 (Conclusions) presents the final conclusions of the current
research.

2. Problem formulation in urban traffic networks

In this section the main ideas behind the dynamic control-strategy opti-
mization problem formulation is presented. The mathematical details be-
hind this approach have already been published in Kosmatopoulos et al.
(2015) where the interested reader is referred to, for more details. We
will assume in the general case; that the traffic network can be described
by the dynamics

_χ tð Þ ¼ F χ tð Þ; u tð Þð Þ þ d tð Þ

u tð Þ ¼ S Hg tð Þ; σq tð Þ� �

where χ = [χ1
T, χ2

T, …, χN
T]T denotes the system augmented state vector

(e.g. the vehicle-numbers and flows of all links), while χi denotes the re-
spective constituent/local states and Hg = [[σw01, σcr1, K11, K21]T, [σw02,
3

σcr2, K12, K22]T, …, [σw0N, σcrN, K1N, K2N]T]T is the augmented control
vector comprised by the respective local ones (intersection centric) Hi

= [σw0i, σcri, K1i, K2i]T, d(t) is a stochastic noise affecting the network
(e.g. the effect of stochastic traffic demand) and σq(t) is the augmented
vector of the network links occupancy (see Section 5 for more details).
Finally, function F is – in the general practice case – highly nonlinear
and complex (rendering it almost unknown) and function S is a known
control formula designed to implement the cycle-regulating strategy
(see Section 5 for more details).

As a result, from the above analysis, the dynamics of the traffic net-
work plant involve unknown, complex, nonlinear and stochastic behav-
ior in the general case. In the current study the function F is
implemented by a modelled instance of the Chania City traffic network
model, implemented in AIMSUN environment (see Section 3 for more
details). Moreover, the cost-to-go criterion – indicating the system per-
formance - to be optimized (in particular to be maximized) is formulated
as follows:

J ¼
Z∞

0

Π χ sð Þ; u Hg sð Þ; σq sð Þ� �� �
ds

where, for the specific traffic control problem at hand, the function Π
represents the network productivity function, calculated from the net-
work mean speed (NMS) and demand (ND).

However, in order to solve the aforementioned problem using CAO, the
manipulation of the augmented scale Hg problem (overall network scale)
would be intractable as the plant's scale and complexity increases (more in-
tersections involved, more complex CR algorithms considered, etc.). For
this reason, in Section 4 we propose the decentralized L4GCAO dynamic
optimization approach to effectively distribute the computational workload
and reduce the communicational workload without jeopardizing the
achieved network efficiency, at the same time.
3. Simulative traffic network testbed

As it has been already noted, the decentralized L4GCAO algorithm aims
at tuning the parameters of several parallel (local intersection-driven) cycle
regulating strategies to improve the overall traffic performance of the net-
work. In order to evaluate this procedure properly an AIMSUN-based real-
istic simulation model (Barcelo et al., 1999) emulating the traffic network
of Chania city (Fig. 1. Simulation test case site, Chania, Crete.) is employed.
The modelled instance was already developed and evaluated for the pur-
poses of previous studies (Baldi et al., 2015b; Manolis et al., 2015) and as
a result AIMSUN was considered as the most convenient simulation envi-
ronment for testing. Chania is considered an attractive touristic destination
for many people especially during summertime, when the number of actual
residents is being doubled. The traffic grid overall concerns almost 8 km in
length and includes 13 controlled junctions (each consisted by 3 to 5 links)
having its detector loops primarily placed around the center of the respec-
tive links or almost 40 m upward the stop line (Fig. 2. Chania Traffic Net-
work AIMSUN model. portrays in detail the network model) (Baldi et al.,
2015b).

Previous historical data available from the 2008 traffic flow mea-
surements, have been utilized in order to construct a challenging test-
scenario that comprises congested traffic conditions as described in
Section 6 (Baldi et al., 2015b). Consequently, the proposed traffic sys-
tem is defined as a high complicated network that concerns uncertain
dynamics since altering weather conditions and uncertain driver behav-
iors are significantly affecting the system. The L4GCAO strategy repre-
sent a great opportunity for providing efficient real-time optimization
control that, besides achieving improved travel times, average speed,
productivity and reduced delays it is able to reduce the environmental
impact and fuel consumption and promote the economic activities of a
community overall (e.g. transportation).



Fig. 2. Chania Traffic Network AIMSUN model.

Fig. 1. Simulation test case site, Chania, Crete.
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4. Distributed automated fine-tuning method

L4GCAO was designed based on the same principles as its centralized
counterpart, therefore L4GCAO inherits the same properties from its basic
ingredient, the Cognitive Adaptive Optimization tool (CAO). CAO is a
(i

(i

(i

(i

4

centralized optimization tool with self-learning capabilities. The algorith-
mic workflow of this tool; utilized for adjusting the control parameters of
a given cycle regulation strategy; is briefly described in the following
table (see Fig. 3).
CAO algorithm description
 Analytic presentation of CAO algorithm
) Initialize the centrala control parameters (usually to well-tuned or the ones used in practice) Hg

= Hg0 (see Eq. (1)), define a reasonable iteration period interval Th (depending on the applica-
tion characteristics and particularities) (see Eq. (2)), define a continuous smooth time-decaying
function representing the random perturbation area size α(k) and define the respective initial
value α0 > 0 (see Eq. (3)), also let k A1]∈ ℕ denote the number of the current iteration (see Eq.
(4)).
Initialize:
Hg = Hg0 (Eq. 1)
Th = ct (Eq. 2)
aðkÞ ¼ a0

kþ1 (Eq. 3)
k = 0 (Eq. 4)
i) Apply the set of the central control parameters Hgk of the current iteration to the system and
commute the overall performance Jgk at the end of the current iteration.
STEP 1. Apply Hgk to the system and calculate the respective value of the overall
objective function Jgk.
ii) Feed CAO with the set of central control parameters used and the respective total perfor-
mance calculated.
STEP 2. Create sets of respective: Hgk − Jgk.
v) Calculate a central linear in the parameters estimator of the total performance: ĵgk ¼ f ðHgkÞ
(see Eqs. (5) and (6)).
STEP 3. Based on these sets, calculate, using common least squares techniques, a
linear in the parameters – LIP - estimator of the objective function as follows:
ĵgk ¼ θkHgk (Eq. 5)

θk ¼ argminfPi¼k
i¼0 ½Jgi−θHgi �2g (Eq. 6)
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continued)
CAO algorithm description
(v

(v

(v

Fig. 3. Cognitive Adaptive Optimization (CAO) centralized setup.

Fig. 4. Local 4 Global CAO di

5

Analytic presentation of CAO algorithm
) Generate L ∈ ℕ random perturbations of central Hgk (see Eq. (7)) and evaluate them
utilizing the resulted central estimator from the previous step (see Eq. (8)).
STEP 4. Generate L ∈ ℕ random perturbations of Hgk as follows:
Hgk
j = Hgk + a(k)ΔHgk

j , j = 0, 1, …, L (Eq. 7)
and evaluate them through the estimator resulted from the previous step as follows:

Ĵ
j
gk ¼ θkH

j
gk (Eq. 8)
i) The set of central control parameters presenting the best estimated performance i.e. the
smallest value of the cost criterion considered or, equivalently, the largest value of the
performance criterion considered, is selected and applied to the system for the next
interval/iteration (see Eq. (9)).
STEP 5. Select the one presenting the most efficient estimated performance, to be
applied to the system for the next optimization iteration k + 1:

Hgðkþ1Þ ¼ H j
gk ¼ argminf½ Ĵ j

gk �
2g (Eq. 9)
ii) Repeat the process described within (ii)–(vii) until convergence is reached.
 STEP 6. Check if convergence has been achieved.
IF true
THEN: STOP
ELSE: Set k = k + 1 and GO TO STEP 1.
a “Central” term is repeated several times in an emphatic manner in order to stress out the main differences between CAO and L4GCAO methodologies.
CAO can be practically deployed in an easy and straightforward
manner without any tedious pre-application effort. Several application
cases have accounted for CAO's ability to converge early and effectively
both in simulation and realistic conditions (Kosmatopoulos, 2009)
(Baldi et al., 2014). However, being a centralized approach, CAO re-
quires all information to be processed centrally; fact which severely in-
tensifies the data-communication rate and processing power at the
central node.

To tackle the aforementioned problems while preserve all principal ad-
vantages of CAO, a decentralized counterpart – namely L4GCAO
(Kosmatopoulos et al., 2015) - was developed, by unburdening the central
node from solving the global optimization problem in very large-scale net-
works. L4GCAO was designed to solve several smaller yet equivalent opti-
mization subproblems in parallel. Therefore, instead of solving a high
dimensional optimization problem centrally, N ∈ ℕ smaller (in scale, pro-
cessing power and data-rates) subproblems are defined to equivalently
optimize the exact same overall performance index (see Fig. 4).

The main architectural principle comprises of two basic elements: the
local optimizers (CAO instances) and the single cloud/central node which
simply calculates the overall performance index. L4GCAO's algorithmic
workflow is briefly described in the following table.
stributed setup.
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L4GCAO algorithm description
(i

(i

(i

(i

(v

(v

(v
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Analytic presentation of L4GCAO algorithm
) Initialize the control parameters in each constituenta/localb system (usually to the ones
used in practice) Hwk = Hw0 (see Eq. (10)), define a reasonable iteration period interval Th
(depending on the application characteristics and particularities) (see Eq. (11)), define a
continuous smooth time-decaying function representing the random perturbation area
size α(k) and define the respective initial value αw0 > 0 (see Eq. (12)), also let k ∈ ℕ
denote the number of the current iteration and N ∈ ℕ the number of constituent
systems (see Eq. (13)).
Initialize (for each constituent system):
Hwk = Hw0 (Eq. 10)
Th = ct (Eq. 11)
awðkÞ ¼ aw0

kþ1 (Eq. 12)
k = 0 (Eq. 13)
i) Apply each local set of the control parameters [H1k, H2k, …, HNk] of the current iteration
to each respective constituent system and commute the overall performance Jgk = F
(J1k,J2k,…,JNk) at the end of the current iteration (at the “cloud” central level).
STEP 1. Apply Hwk to each respective constituent system and calculate the overall system
performance Jgk.
ii) Feed each local optimizer/agent (constituent CAO) with the respective set of local
control parameters Hwk used and the achieved overall performance Jgk.
STEP 2. Commute the achieved overall performance back to all constituent optimizers
and create locally sets of respective: Hwk − Jgk
v) Calculate at the local level a linear in the parameters estimator of the overall
performance: ĵgk ¼ f ðHwkÞ (see Eqs. (14) and (15)).
STEP 3. Based on these sets, calculate, using common least squares techniques, a linear in
the parameters – LIP - estimator of the overall objective function at a local level, as
follows:
ĵgk ¼ θwkHwk (Eq. 14)

θwk ¼ argminfPi¼k
i¼0 ½Jgi−θwHwi �2g (Eq. 15)
) Generate L ∈ ℕ random perturbations of local Hwk (see Eq. (16)) and evaluate them
utilizing the resulted respective local estimator from the previous step (see Eq. (17)).
STEP 4. Generate L ∈ ℕ random perturbations of Hwk as follows:
Hwk
j = Hwk + aw(k)ΔHwk

j , j = 0, 1, …, L (Eq. 16)
For all constituent optimizers and evaluate them through each respective local estimator
resulted from the previous step as follows:

Ĵ
j
gk ¼ θwkH

j
wk (Eq. 17)
i) The set of local control parameters presenting the best estimated overall performance
i.e. the smallest value of the cost criterion considered or, equivalently, the largest value of
the performance criterion considered, is selected and applied to the respective local
system for the next interval/iteration (see Eq. (18)).
STEP 5. Select the ones presenting the most efficient locally estimated performance, to be
applied to each respective local system for the next optimization iteration k + 1:

Hwðkþ1Þ ¼ H j
wk ¼ argminf½ Ĵ j

gk �
2g (Eq. 18)
ii) Repeat the process described within (ii)-(vii) until convergence is reached.
 STEP 6. Check if convergence has been achieved.
IF true
THEN: STOP
ELSE: Set k = k + 1 and GO TO STEP 1.
a The terms “constituent” and “local” are considered having equivalent/similar meanings herein.
b “Local” term is repeated several times in an emphatic manner in order to stress out the main differences between CAO and L4GCAO methodologies
From the simulation results and the comparison between the central-
ized (CAO) and distributed (L4GCAO) versions, it can be derived that
L4GCAO achieves successfully to deal with such a high-dimensional, com-
plex optimization problem (for more details see Section 6).
5. The signal control method& the respective optimization parameters

Current real-life practice for the management of metropolitan traffic
networks suggests centralized signal control and monitoring approaches
that demand common cycle times at every junction for coordination rea-
sons. Opposing to that, the current study involves an intersection-driven,
cycle-regulating strategy that is able to perform without such limitation
while the only restraints imposed refer to a predetermined sequence of
the signal cycle stages, their minimum permitted green times as well as
the min and max cycle times for every junction. The selected signal regula-
tion approach includes two low-cost algorithms that are utilized for
updating two different levels of the signal control settings: (a) the cycle
time and; (b) the green splits (e.g. the respective green period of every
stage) - as part of the cycle time - at each local junction level. The aforemen-
tioned algorithmic strategies operate once in every adjusted cycle period in
order to react in-time when unexpected stochastic traffic network alter-
ations occur. In order to refresh the signal parameters at the beginning of
cycle, the well-established, feedback-based cycle regulation (CR) algorithm
of TUC (Traffic-responsive Urban Control) (Kouvelas et al., 2011; Diakaki
et al., 2003) is being utilized. Moreover, for the green split control (SC)
the back-pressure algorithm - adopting a variant of the max pressure
(MP) partitioning the respective cycle times in the related cycle stages for
maximizing throughput – is considered (Xiao et al., 2015; Varaiya, 2013).
MP originates from the communication network control domain
(Tassiulas and Ephremides, 1992) but has already been thoroughly tested
formanaging the cycle regulation problem (Kouvelas et al., 2014). It should
be noted that in all individual junctions, the SC and CR approaches are op-
erating locally, absolutely independent from any other.

The local CR considers a control rule that comprises parameters for
every junction point, fact which influences the intensity of its control
response and consequently its operation and effectiveness. The cycle con-
trol module is a piecewise linear bimodal function of σw (occupancy
norm). In the first mode the cycle time is increased linearly with the
norm of the normalized occupancy: in the secondmode the cycle time is de-
creased linearly with the norm of the normalized occupancy. It has been ob-
served empirically; there exists a critical occupancy σcr such that that below
this threshold increased cycle time (and increased portion of green time)
will make traffic smoother. Above the critical occupancy the increased por-
tion of red time will create longer queues, so it is more beneficial to de-
crease the cycle time. The CR formula utilizes the following control rule
(Kouvelas et al., 2011; Diakaki et al., 2003):

Cw qð Þ ¼ Cw; min þ Kw1 σw qð Þ−σw0ð Þ; σw qð Þ≤σw;cr
Cw; min þ Kw1 σw;cr−σw0

� �
−Kw2 σw qð Þ−σw;cr

� �
; σw qð Þ > σw;cr

�

ð19Þ

where q is the current control period, Cw(q) the calculated cycle time [s], σw
(q) the mean value of the space occupancies of the most loaded junction
links, and Cw,min represents the minimum permissible cycle time [s]. Addi-
tionally, σw0, σw,cr∈[0,1] and Kw1, Kw2 > 0 consider factors that influence
the intensity of the control rule responses towards the observed satura-
tion levels via σw(q) - and so they need to be adequately calculated in
order to guarantee control efficiency. After applying the regulation law,
the calculated cycle timeCw(q), is confined between [Cw,min,Cw,max] limits.
Cmax portrays themaximum acceptable cycle time [s], to become feasible,
if necessary.

In order to adjust the CR parameters (Hw = [σw0, σw,cr, Kw1, Kw2]) at
every junction CAO and L4GCAO optimization strategies are being utilized
and compared to each other as shown in Fig. 3. Cognitive Adaptive Optimi-
zation (CAO) centralized setup. and Fig. 4. Local 4 Global CAO distributed
setup. The main goal of the optimization procedure is to increase a repre-
sentative performance index using a frequent re-configuration of these pa-
rameters in every junction. In similar application cases the usual
performance indicator considered is the Network Mean Speed (NMS)
[km/h]. However, optimizing NMS alone is not efficient since the Network
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Demand (ND) affects significantly the NMS in an approximately dispropor-
tional manner - altering over time. To this end, the Network Productivity
(NP) [km∙veh/h2] index, has been considered (Eurostat et al., 1997; B.
Australian Transport Safety, 2005; Australian Bureau of Statistics, 2004),
formulated as the multiplication product of Network Mean Speed (NMS)
[km/h] and Average Network Demand (ND) [veh/h], in order to evaluate
the NMS optimizations in situations where ND is altering. To determine
this index, the required ND and NMS values are estimated based on flow
and occupancy measurements from the network. The goal was to calculate
these indexes in a practically feasiblemanner – considering the replicability
of the approach in real-life networks; and avoid utilizing values estimated
directly from AIMSUNwhich would not be available in practice. More spe-
cifically, the daily total demand (i.e. ND) is calculated as the sum of the
time-averaged flows measured by the detectors located at the network ori-
gins. On the other hand, NMS is estimated as the ratio TTD/TTS,where TTD
is the total travelled distance and TTS is the total time spent by all vehicles
in the network. TTD is on its turn estimated by multiplying the flow mea-
surement with the respective length of each junction's link, while TTS is es-
timated through the occupancy measurements, using a function that
considers the length of the links and the position of the detectors. This pro-
cedure was proven quite robust, providing accurate enough estimations for
the actual network mean speed and demand based only on loop detector
measurements.
6. Simulation results & discussion

6.1. Simulation scenarios and reference case

For performance comparison purposes the efficiency achieved both by
CAO and L4GCAO tools is evaluated. Both solutions were utilized in order
to fine-tune the parameters deciding the CR strategy – as presented in
Section 5 – under diversified simulation test-scenarios conducted using
the AIMSUN-based plant of the Chania city traffic network, as mentioned
earlier in Section 2. The complete experimental setup adopted is schemati-
cally depicted in Fig. 5, where locally driven L4GCAO agents – one per
Fig. 5. Experimental setup adopted (CR
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junction – fine tune the respective local CR parameters towardsmaximizing
the shared overall performance index level which reflects the global pro-
ductivity of the network. At a second stage, the resulted cycle duration is
then split among the respective incoming links of each specific junction
through the SC module (see Section 4).

The simulation horizon considered a period of 17 consecutive working
days (no weekends or other type of special days were considered) presenting
similar demand levels and peaks, while each simulation day considered only
the peakmidday period of 1.5 h duration. As explained in Section 2, the daily
demand considered in the experimental scenarios is derived by historical
congested traffic conditions from 2008 (see Fig. 8a) during a 30-min peak pe-
riod within the total 1.5 h horizon during each simulation day. The central-
ized CR parameters (Hg) and all decentralized CR parameters (Hw) are
updated at the end of each simulation day, while the parameter a0 (for the
centralized case) and all aw0 (for the decentralized case) were set equal to 1
(see initialization steps both for CAO and L4GCAO in Section 3). The choice
of such scenario has been adopted since potential improvements will impose
a higher impact in practice during congested conditions.

For comparison and benchmarking purposes, three different CR-
deciding strategies were adopted:

• Reference case: A set of CR-deciding parameters – designed especially for

congested conditions in a previous study (Dinopoulou et al., 2005) and
projects: Traman21 (http://www.traman21.tuc.gr/), Nearctis (http://
www.nearctis.org/) - was considered for all junctions constant during
the whole simulation scenario without daily optimized re-calibration
(see Table 1).

• Case 1 – CAO: The global Hg set of cycle-regulating parameters is fine-
tuned at the end of each simulation day utilizing the centralized CAO al-
gorithm. The initial values for the Hg0 are set equal to the reference case
ones (see Table 1).

• Case 2 – L4GCAO: One local optimizing agent linked to each local CR
strategy is responsible for optimizing its cycle-regulating set Hw of param-
eters at the end of each simulation day by utilizing the L4GCAO algo-
rithm. The initial values for every Hw0 are set equal to the reference
case ones (see Table 1).
: cycle regulation, SC: split control).

http://www.traman21.tuc.gr/
http://www.nearctis.org/
http://www.nearctis.org/


Table 1
Reference cycle regulation parameter values.

Symbols Minimum bounds Reference values Maximum bounds

σw0 0.05 0.15 0.4
σw,cr 0.1 0.65 0.7
Kw1 60 80 120
Kw2 10 20 30

Table 2
Fixed-time TCC and reference case performance indicators.

Metric/index Fixed-time TCC case -
average absolute values

Reference case - average
absolute values

Days: 1–7 Days: 8–17 Days: 1–7 Days: 8–17

ND [veh/h] 5782.6 5800.3 5823.1 5751
NMS [km/h] 17.75 17.11 17.69 17.66
ADTPV [s/km] 144 153 135 133
NP [km*veh/h2] 102,517 99,134 102,938 101,546
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As a remark, the simulation of consecutive days –with diversified daily
network demand - was considered in the tests in order to impose the real-
life application limitation of replicating the exact same application day sev-
eral times (Fig.6). This fact enhances the real-life applicability of both solu-
tions. Moreover, the base case performance which both CAO's and
L4GCAO's performance is compared to is calculated using the reference
case strategy. To ensure that the considered reference case CR-strategy is
an acceptable comparison basis for CAO and L4GCAO, a tuned fixed-time
strategy was considered for comparison purposes with the reference case
parameter selection. The fixed-time strategy considers 90 s fixed cycle-
time plans, with balanced offset among all network junctions. The fixed-
time plans were defined by the Traffic Control Center (TCC) operators of
Chania city in a past study (Kouvelas et al., 2011). As Fig. 7 exhibits, the
fixed cycle-time strategy presents comparable but slightly worse perfor-
mance levels when compared to the reference case in terms of NP, NMS
and Average Delay Time Per Vehicle (ADTPV) (see Table 2).

The reference case traffic conditions are shown in Table 2 while the op-
timization results both from the centralized (CAO) and decentralized
(L4GCAO) optimization cases are shown in Fig. 8. The numerical values ob-
served for the respective indicative metrics during case 1 (CAO) and 2
(L4GCAO) are listed in Table 3. Finally, Tables 4 and 5 summarize the per-
centage improvements with respect to the reference case achieved values,
presenting small variance and narrow performance deviations.

To discretize between the transient and the converging periods, the per-
formance observed after each iteration (i.e. simulation day) was split to 2
phases according to the estimators' discrepancies and trend approximation
Fig. 7. Average network performance (over 17 iterations) between reference case and
(b) Network Mean Speed (NMS) [km/h] (right).

Fig. 6. Comparison of actual and estimated normalized MNS

8

accuracy. The estimators' approximation accuracy was calculated by com-
paring the estimated/approximated performance to the actual AIMSUN
performance values. The 2 phases are defined as follows:

(i) 1st phase: comprised by the first 7 application days (i.e. day 1 to
7) when larger estimator discrepancies occur (see the grey shaded

area in Fig. 8);

(ii) 2nd phase: comprised by the remaining application days (i.e. day 8 to
17) when smaller estimator discrepancies are observed (see the white
shaded area in Fig. 8).

As shown in Fig. 8, both CAO and L4GCAO present significantly better
overall traffic network performance than the reference case during the ma-
jority of the 17 application days. However, amore elaborate presentation of
the performance values observed, for each phase, is discussed in the follow-
ing sub-sections.

6.2. 1st phase period analysis

The summarizing numerical values observed, during the first phase (i.e.
simulation days 1 to 7) both for the centralized CAO and decentralized
L4GCAO application cases, for the traffic performance metrics follow an in-
creasing/improving trend but with quite large discrepancies (see Table 5
and Fig. 8e) since the built-in self-learning regression modules (centralized
one and decentralized ones) were not able to achieve an accurate enough
real-life practice in terms of: (a) Network productivity (NP) [km*veh/h2] (left);

(left) and ND (right) throughout the 17 simulation days.



Fig. 8. Centralized and Decentralized optimization application results (1st phase period: grey shaded area – 2nd phase period: white shaded area) throughout the 17
simulation days: (a) Network Demand [veh/h]; (b) Network Mean Speed [km/h]; (c) Average Delay Time [sec/km]; (d) Network Productivity [km·veh/h2];
(e) Normalized Centralized Estimator performance (left) and Normalized Average Decentralized Estimators performance (right).
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Table 3
CAO and L4GCAO cases performance indicators.

Metric/index Centralized CAO - average
absolute values

Decentralized L4GCAO -
average
absolute values

Days: 1–7 (1st
phase period)

Days: 8–17
(2nd phase
period)

Days: 1–7 (1st
phase period)

Days: 8–17
(2nd phase
period)

ND [veh/h] 5772.8 5786.3 5812 5793
NMS [km/h] 17.63 18.72 18.51 19.19
ADTPV [s/km] 134.6 124.3 127.8 120.9
NP [km*veh/h2] 101,727 108,246 107,518 111,127
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(small discrepancies) performance yet. As a result, nomentionable solid im-
provements could be observed during this transient period (see Table 4). As
imposed by the analysis of this phase's absolute numerical performance-
metrics' values (see Tables 2 and 3), the average performance improve-
ments are comparably the same in respect to the reference case (see also
the grey shaded area in Fig. 8b, c, d). However, in both application cases
(CAO and L4GCAO) a quite short transient period of only 7 days was
achieved without severe/catastrophic performance fluctuations, denoting
the quite efficient feature selection and definition of the regressor vector
in the design of the estimators. In specific, such restrained and short tran-
sient period can be considered practically acceptable even in real-life traffic
applications, fact which supports both CAO's and L4GCAO's real-life
applicability.
6.3. 2nd phase period analysis

The second phase comprises the nominal operation of both CAO's cen-
tral estimator and L4GCAO's local estimators. According to the numerical
analysis for the specified period (i.e. simulation days 8 to 17) the achieved
traffic conditions improvement during both case 1 (centralized CAO) and
case 2 (L4GCAO decentralized) is significant (see Table 5). Moreover, the
traffic network performance achieved to converge rapidly within only the
10 days of this phase utilizing the substantially accurate built-in estimation
modules (see Table 5). The respective percentage improvements (normal-
ized in respect to the reference case) are exhibited in all evaluation metrics
values (see Fig. 8b for the NMS, C. ADTPV, D. NP) while network demand
(ND) levels are similar and comparable during thewhole 17-day simulation
horizon (see Fig. 8a and Table 4).

As already explained, L4GCAO's local estimators utilize the reduced set
of only locally-measured data and the global performance in contrast to the
centralized estimator of CAOwhere data from across thewhole network are
collected and utilized. As a result L4GCAO's total estimation error is
Table 4
CAO and L4GCAO improvements (with respect to fixed-time TCC and reference case).

Metric/index CAO [% w.r.t. fixed-time TCC case/% w.r.t. reference case]

Days: 1–7 (1st phase period) Days: 8–17 (2nd phase p

ND [veh/h] −0.17/−0.8 −0.24/+0.6
NMS [km/h] −0.7/−0.3 +9.4/+6
ADTPV [s/km] −6.5/−0.7 −18.9/−6.77
NP [km*veh/h2] −0.77/−1.2 +9.2/+6.6

Table 5
Indicative optimization application metrics.

Metric/index Centralized CAO - average absolute values

Days: 1–7 (1st phase period) Days: 8–17

Maximum NP [km*veh/h2] 115,418.3097 114,766.78
Minimum NP [km*veh/h2] 99,883.17498 105,791.85
Normalized NP variance [%] 0.29% 0.08%
Total performance estimation squared error 0.03752 0.00138
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expected to be larger than CAO's (see Table 5 and Fig. 8e). However,
L4GCAO achieves to sufficiently identify locally the influence of each re-
spective local CR parameter set to the overall estimated/aggregated system
performance and is proven capable of achieving a quite efficient
performance-improving trend throughout the duration of the simulation
tests, reaching eventually a performance comparable to the centralized
case's (see linear trend-lines in Fig. 8e). To summarize the results, compara-
ble improvement levels - with respect to the reference case - were achieved
in both cases (the centralized CAO and decentralized L4GCAO). CAO con-
verged to a CR set of parameters reaching, in average, almost +6% NMS
improved level, a −6.8% ADTPV reduction level and a +6.6% overall
NP improvement level, while the average ND levels were increased slightly
by +0.6% (see Table 4). L4GCAO achieved to improve NMS levels by
+8.6%, reduce ADTPV by −9.3% and improve NP by almost +9.4%,
while ND was slightly increased by around +0.75% (see Table 4).

6.4. Why L4GCAO over CAO?

As already presented, both CAO and L4GCAO achieved comparable re-
sults in terms of traffic network performance with just a few iterations/
days. This fact translates to a practically feasible and directly applicable so-
lution without requiring tedious preparatory efforts: the two solutions can
be interfaced digitally to the Chania Traffic Network infrastructure and au-
tomatically fine-tune the existing cycle-regulation strategies (in every inter-
section) for congested periods of the day within just a few weeks of
operation. Despite the fact that both CAO and L4GCAO are able to effec-
tively perform such a task; themain difference between the two approaches
relies on their design architecture: (a) CAO follows a centralized topology
where all measured data from across the network should be transmitted
at a central node;while the optimized cycle-regulation decisions are distrib-
uted from the central node back to each intersection controller in a real-
time manner; (b) L4GCAO follows a decentralized topology where one
fine-tuning agent is dedicated to each intersection; the necessary measured
data are locally utilized to regulate the respective intersection's cycle in a
real-time manner while at a periodic basis (e.g. daily) only the global net-
work performance (scalar value) is calculated/measured at a central node
and distributed back to each constituent agent (see also Figs. 3 and 4).

Let us consider, for fair comparison purposes that in all cases: the cycle-
regulation control modules (as described in Section 4) are hosted at a local
intersection station while the global network performance is calculated
centrally; where the overall network mean speed and demand (at the ori-
gins) are available. The decentralized topology of L4GCAO allows to host
the optimizers at a local intersection level as well. Therefore, instead of
transmitting all parameters Hw = [σw0, σw,cr, Kw1, Kw2] as well as the lo-
cally calculated performance index from every intersection to a central sta-
tion (i.e. the CAO case) to centrally fine-tune them and return back their
L4GCAO [% w.r.t. fixed-time TCC case/% w.r.t. reference case]

eriod) Days: 1–7 (1st phase period) Days: 8–17 (2nd phase period)

+0.5/−0.2 −0.12/+0.7
+4.25/+4.6 +12.1/+8.6
−11.25/−5.7 −21.1/−9.3
+4.9/+4.4 +12.1/+9.4

Decentralized L4GCAO - average absolute values

(2nd phase period) Days: 1–7 (1st phase period) Days: 8–17 (2nd phase period)

2 112,083.3365 112,240.5802
41 93,647.43769 99,094.81501

0.33% 0.13%
0.22706 (all 13 local agents) 0.00340 (all 13 local agents)



Table 6
CAO and L4GCAO central communication requirements comparison.

Annotation CAO [1 centralized optimizer
for the entire network]

Centralized communication load L4GCAO [13 local agents;
one per network intersection]

Centralized communication load

σw0(k) Being locally available the
4 cycle-regulating parameters
need to be transmitted from
every local intersection to the
central station

13 All cycle-regulating
parameters are available
locally at every local
intersection level

0
σw,cr(k) 13 0
Kw1(k) 13 0
Kw2(k) 13 0

σw0(k + 1) After fine-tuning centrally these
parameters they need to be
transmitted back from the central
station/node to every local
intersection cycle controller

13 All cycle-regulating
parameters are fine-tuned
locally at every local
intersection level

0
σw,cr(k + 1) 13 0
Kw1(k + 1) 13 0
Kw2(k + 1) 13 0

NP(k) No need to distribute locally
the overall performance

0 Only the global/overall
network performance is
required to be distributed
across all 13 agents

13

Total [every day] 9 parameters * 13 intersections = 117 Total [every day] 1 parameter * 13 intersections = 13

Bold data indicate the core differences between the centralized and the decentralized/distributed approaches.
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updated values from the central station to every intersection; L4GCAO al-
lows to significantly reduce the communication load and distribute the
computation load to each cooperative local station; without jeopardizing
the traffic network conditions and performance as indicated by the compar-
ative evaluation analysis discussed in the previous subsections.

As a result, the communication workload as well as the necessary
communication infrastructure to support this workload is significantly
different. In particular, as shown in Table 6, to achieve comparable traf-
fic network performance improvements L4GCAO requires only the lo-
cally calculated performance index to be distributed locally. L4GCAO
required 9× less data transactions, compared to its centralized
counterpart CAO, to fine-tune the exact same number of CR param-
eters in a decentralized manner. L4GCAO achieves to unburden the
central traffic control center from severe communication workloads, en-
abling smoother operation, allowing for smaller infrastructure invest-
ments, reducing maintenance costs, increasing the reliability and
resilience of the network. L4GCAO's workload decentralization benefits
becomemore significant as the scale of the network (number of intersec-
tions) increases as well as more IoT devices (mobile phones, vehicles,
wearables, cameras) are interconnected to form the next generation
urban transportation systems.

7. Conclusions

The aim of the current work is to demonstrate the efficiency of a novel
model-free decentralized adaptive optimization approach (L4GCAO) com-
pared to its thoroughly verified centralized counterpart (CAO). As shown
in Section 6.3, both CAO and L4GCAO were able to perform more effi-
ciently – by 10% and 12% respectively - as compared to the reference
case CR scenario even within a very simulation number of daily iterations
(only 17 days).

As shown in Table 5, by compromising on the efficiency of the constit-
uent built-in estimator which uses only locally available data and the over-
all objective function at a periodic basis, L4GCAO achieved substantial
overall learning performance (around7 iterations) at a local level compared
to the centralized CAO within phase 1 (day 1 to 7). The required transient
period was quite short for both cases (CAO and L4GCAO) leading to short
payback period and practical traffic improvement within a few days of
application.

It must be underlined that due to limitations of computational power
and data transmission rates, centralized optimization topologies are ex-
pected to lead to data-traffic bottleneck when scaling up to larger network
cases. Therefore, to ensure their applicability and allow CAO's and
L4GCAO's comparison, the utilization of the Chania traffic network (me-
dium size) made the application of both CAO and L4GCAO feasible. The
analysis in Section 6.4 demonstrated the significant savings in this domain,
during the operation of L4GCAO: the number of the communication
11
transactions required centrally were 9× less resulting a significant reduc-
tion in the communication workload of around 88.8%.

The authors have already identified future research tasks such as contin-
uation of the optimization process and extending the application period to
more than 17 days to achieve even greater improvement levels, as ex-
pected. In addition, other application domains where complex emerging
dynamics are involved in very large-scale systemswhere the centralized ap-
proach deals with severe applicability issues are already under consider-
ation for L4GCAO performance evaluation.
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