
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Efficient Optimization Algorithms for Large Tensor
Processing and Applications

by

Ioannis Marios Papagiannakos

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE MASTER OF SCIENCE OF

ELECTRICAL AND COMPUTER ENGINEERING

February 2022

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor
Professor George N. Karystinos

Associate Professor Vasilis Samoladas

2

3

Abstract

We consider the problem of nonnegative tensor completion. We adopt the alternating

optimization framework and solve each nonnegative matrix least-squares with missing

elements problem via a stochastic variation of the accelerated gradient algorithm, where we

propose and experimentally test the efficiency of various step-sizes. We develop a parallel

shared-memory implementation of our algorithm using the multi-threaded API OpenMP,

which attains significant speedup. We test the effectiveness and the performance of our

algorithm using both real-world and synthetic data. We focus on real-world applications

that can be interpreted as nonnegative tensor completion problems. We believe that our

approach is a very competitive candidate for the solution of very large nonnegative tensor

completion problems.

4 Abstract

5

Acknowledgements

This thesis would not have been possible without the support of many people.

First of all, I would like to thank my thesis supervisor, Professor Athanasios Liavas,

for his encouragement and continuous guidance throughout this work. Also thanks to

my committee members, Professor George N. Karystinos and Associate Professor Vasilis

Samoladas for accepting to evaluate the work presented in this thesis as members of my

thesis committee.

Also, my friends and colleagues Chris Kolomvakis, Nina Siaminou, Paris Karakasis and

Margarita Psychountaki, for all the assistance and support they provided during my thesis.

I would like to thank my family, Anna Maria, Elpida, and Nikos for their support

and encouragement throughout my study years. Also, I want to thank my friends and

especially George K., George X., Vagelis K., and Evi S. for their moral support and all

the fun we had throughout these years.

Finally, part of this work was partially supported by the European Regional Devel-

opment Fund of the European Union and Greek national funds through the Operational

Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH

- CREATE - INNOVATE (project code : T1E∆K− 03360).

6 Acknowledgements

7

Table of Contents

Acknowledgements . 5

Table of Contents . 7

List of Figures . 11

List of Abbreviations . 13

1 Introduction . 15

1.1 Problem Description (Tensor factorization) 15

1.1.1 Notation . 15

1.1.2 Basic definitions . 16

1.1.3 Structure . 16

2 Matrix Least Squares Problem . 19

2.1 Matrix Least Squares (MLS) . 19

2.2 Nonnegative Matrix Least Squares (NMLS) 19

2.2.1 Preliminaries . 19

2.2.2 Nesterov–type algorithm for NMLS with proximal term 21

2.2.3 Complexities . 21

2.3 Nonnegative Matrix Least Squares with Missing Elements (NMLSME) . . 22

2.3.1 Complexities . 23

3 Stochastic Gradient Descent Methods . 25

3.1 Stochastic Gradient Descent algorithm (SGD) 25

3.2 First–Order Methods . 26

3.3 Second–Order Method . 26

3.4 Accelerated stochastic gradient for NMLSME 27

3.5 Complexities . 28

4 Tensor Factorization and Completion . 31

4.1 Introduction on Tensor Factorization and Completion 31

4.2 The PARAFAC Model . 32

4.3 Nonnegative Tensor Factorization (NTF) 33

4.4 Nonnegative Tensor Completion (NTC) . 34

4.5 NTC via stochastic NMLSME . 34

4.6 Pseudosymmetric NTC via stochastic NMLSME 34

8 Table of Contents

5 Parallel Implementations . 37

5.1 Multi–threaded Implementation using OpenMP 37

5.2 Parallel implementation of NMLSME and S NMLSME 37

6 Applications using Tensor Completion . 39

6.1 Corrupted Image (Missing Values) . 39

6.1.1 Image Representations . 39

6.1.2 Missing values . 40

6.2 Natural Language Processing . 40

6.2.1 Distributional Representation . 41

6.2.2 Word Embedding . 41

6.2.3 n-gram . 41

6.2.3.1 Skip-gram . 41

6.2.3.2 Word2Vec . 42

6.2.4 Pointwise Mutual Information . 42

7 Numerical Experiments . 45

7.1 Rank estimation problem with NTC via stochastic NMLSME 45

7.1.1 Formulation of the problem . 45

7.1.2 Synthetic Noiseless Data (Rank 10, 20, 50) 46

7.1.2.1 Synthetic Noiseless (Rank 10) 46

7.1.2.2 Synthetic Noiseless (Rank 20) 47

7.1.2.3 Synthetic Noiseless (Rank 50) 47

7.1.3 Synthetic Noisy Data (Rank 10, 20, 50) 48

7.1.3.1 Synthetic Noisy 10dB (Rank 10) 48

7.1.3.2 Synthetic Noisy 10dB (Rank 20) 49

7.1.3.3 Synthetic Noisy 10dB (Rank 50) 49

7.1.3.4 Synthetic Noisy 20dB (Rank 10) 50

7.1.3.5 Synthetic Noisy 20dB (Rank 20) 50

7.1.3.6 Synthetic Noisy 20dB (Rank 50) 51

7.1.4 Real-World Data . 51

7.1.4.1 Movielens - 10M . 51

7.1.4.2 Chicago Crime (Communities) 52

7.1.4.3 Uber Pickups . 53

7.1.4.4 NIPS Publications . 54

7.1.4.5 Corrupted Image (Missing Values) 57

7.2 Convergence speed of NTC via Stochastic NMLSME 57

7.3 Execution time for parallel NTC via Stochastic NMLSME 58

7.4 Speedups for parallel NTC via Stochastic NMLSME 62

7.5 Stochastic NTC on corrupted image . 63

7.6 Word Embeddings . 64

7.6.0.1 Data Description . 64

7.6.0.2 Settings . 64

9

7.6.0.3 Vector similarity . 65

7.6.0.4 Additive Compositionality 65

7.6.0.5 Multiplicative Compositionality 65

8 Conclusion and Future Work . 67

8.1 Conclusions . 67

8.2 Future work . 67

Bibliography . 69

10 Table of Contents

11

List of Figures

4.1 A third–order tensor X ∈ RI1×I2×I3 . 31

4.2 Mode–n Matricization of X ∈ RI1×I2×I3 . 32

6.1 Separate Red, Green, and Blue image layers 40

6.2 Tensor Completion on images . 40

7.1 5-Fold Cross Validation Process . 46

7.2 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R10) noiseless dataset. 47

7.3 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R20) noiseless dataset. 48

7.4 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R50) noiseless dataset. 49

7.5 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R10) noisy (10 dB) dataset. 50

7.6 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R20) noisy (10 dB) dataset. 51

7.7 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R50) noisy (10 dB) dataset. 52

7.8 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R10) noisy (20 dB) dataset. 53

7.9 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R20) noisy (20 dB) dataset. 54

7.10 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the syn-

thetic (R50) noisy (20 dB) dataset. 55

7.11 RMSE (a) and RIFE (b) vs Different values of rank for the Movielens10M

dataset. 55

7.12 RMSE (a) and RIFE (b) vs Different values of rank for the Chicago Crime

dataset. 56

7.13 RMSE (a) and RIFE (b) vs Different values of rank for the Uber Pickups

dataset. 56

7.14 RMSE (a) and RIFE (b) vs Different values of rank for the NIPS dataset. . 56

7.15 RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the cor-

rupted image dataset. 57

7.16 Relative factorization error vs the number of epochs for the nonnegative

synthetic noisy tensor (20dB). 58

12 List of Figures

7.17 Relative factorization error vs the number of epochs for the nonnegative

real-world tensor (Chicago Crime) . 58

7.18 Relative factorization error vs the number of epochs for the nonnegative

real-world tensor (MovieLens10M) . 59

7.19 Relative factorization error vs the number of epochs for the nonnegative

real-world tensor (NIPS) . 59

7.20 Relative factorization error vs the number of epochs for the nonnegative

real-world tensor (Uber Pickups) . 59

7.21 Relative factorization error vs execution time for the nonnegative synthetic

noisy tensor (20dB) . 60

7.22 Relative factorization error vs execution time for the nonnegative real-world

tensor (Chicago Crime) . 60

7.23 Relative factorization error vs execution time for the nonnegative real-world

tensor (MovieLens10M) . 61

7.24 Relative factorization error vs execution time for the nonnegative real-world

tensor (NIPS) . 61

7.25 Relative factorization error vs execution time for the nonnegative real-world

tensor (Uber Pickups) . 61

7.26 Speedup achieved vs the number of threads for the parallel implementation

of stochastic NMLSME using the nonnegative synthetic tensor. 62

7.27 Speedup achieved vs the number of threads for the parallel implementation

of stochastic NMLSME using the real-world tensor from the “Uber Pickups”

dataset. 63

7.28 Relative cost function vs. number of epochs, using 1 inner iteration and

Rank R = 50. 63

7.29 Tensor Completion on a corrupted image. 64

7.30 Block diagram of image corruption and restoration 64

13

List of Abbreviations

ALS Alternating Least Squares

API Application Programming Interface

AO Alternating Optimization

CANDECOMP Canonical Decomposition

CPD Canonical Polyadic Decomposition

i.i.d. independent and identically distributed

MLS Matrix Least-Squares

NMLS Nonnegative Matrix Least-Squares

NMNLSME Nonnegative Matrix Least-Squares with Missing Elements

NLP Natural Language Processing

NTC Nonnegative Tensor Completion

NTF Nonnegative Tensor Factorization

OpenMP Open Multi-Processing

PARAFAC Parallel Factor Analysis

RFE Relative Factorization Error

RIFE Relative Incomplete Factorization Error

RMSE Root Mean Square Error

SGD Stochastic Gradient Descend

14 List of Abbreviations

15

Chapter 1

Introduction

1.1 Problem Description (Tensor factorization)

Tensors are mathematical structures that can be described as multidimensional arrays of

numerical values and, therefore, generalize matrices to multiple dimensions. Tensors and

tensor decompositions are important tools that can model multi–way data dependencies.

[1], [2], [3], [4]. Tensor factorization (or decomposition) into latent factors is very impor-

tant for numerous tasks, such as feature selection, dimensionality reduction, compression,

data visualization, and interpretation. Tensor factorizations are usually computed as so-

lutions of optimization problems [1], [2]. The Canonical Decomposition or Canonical

Polyadic Decomposition (CANDECOMP or CPD), also known as Parallel Factor Anal-

ysis (PARAFAC), and the Tucker Decomposition are the two most widely used tensor

factorization models. Tensor Completion (TC) arises in many modern applications such

as machine learning, signal processing, and scientific computing. We focus on the CPD

model and consider the nonnegative tensor completion (NTC) problem, using as quality

metric the Frobenius norm of the difference between the true and the estimated tensor.

We adopt the Alternating Optimization (AO) framework, that is, we work in a circular

manner and update each factor by keeping all other factors fixed. We update each factor

by solving a nonnegative matrix completion (NMC) problem via a stochastic variant of

the accelerated (Nesterov–type) gradient [5].

1.1.1 Notation

Vectors, matrices, and tensors are denoted by small, capital, and calligraphic capital let-

ters, respectively; for example, x, X, and X . RI1×···×IN and RI1×···×IN+ denote, respectively,

the set of (I1 × · · · × IN) real and nonnegative tensors. The elements of tensor X are de-

noted as X (i1, . . . , iN). In many cases, we use Matlab–like notation, for example, A(j, :)

denotes the j-th row of matrix A. The transpose of a matrix A is denoted by AT . IP

denotes the (P × P) identity matrix 1, and OM,N denotes the zero matrix (matrix in

which all of the entries are 0) of dimensions M × N . ‖ · ‖F denotes the Frobenius norm

of the tensor or matrix argument, (A)+ denotes the projection of matrix A onto the set

of elementwise nonnegative matrices, and A ≥ 0 denotes a matrix A with nonnegative

elements. Finally, NN denotes the set {1, . . . , N}.
The outer product of vectors a and b is denoted as a◦b. The Kronecker, Khatri–Rao,

and Hadamard products of matrices A and B (with appropriate dimensions) are denoted,

respectively, as A⊗B, A�B, and A~B. The extension of the notation of these operations

1If the dimension becomes clear from the context, we omit the subscript.

16 Chapter 1. Introduction

to more than two arguments is obvious.

1.1.2 Basic definitions

Definition 1.1 The Kronecker product of matrices A ∈ RI×R and B ∈ RJ×P is

denoted as A⊗B ∈ RIJ×RP [3], and is computed as follows

A⊗B =

A(1, 1)B . . . A(1, J)B

...
. . .

...

A(I, 1)B . . . A(I, J)B

 ∈ RIJ×RP . (1.1)

Definition 1.2 The Khatri–Rao (or column–wise Kronecker) product of matrices

A ∈ RI×R and B ∈ RJ×R is denoted as A � B ∈ RIJ×R. The Khatri–Rao product is

computed as

A�B =
[
A(:, 1)⊗B(:, 1) . . .A(:, R)⊗B(:, R)

]
∈ RIJ×R. (1.2)

Definition 1.3 The Hadamard (or element–wise) product of matrices A,B ∈ RI×R

is denoted as A ~ B ∈ RI×R. The Hadamard product of an element in ith row and jth

column is computed as

[A ~ B](i, j) = A(i, j) ·B(i, j) (1.3)

1.1.3 Structure

This thesis is organized as follows. At first, in Chapter 2 we introduce some background on

Matrix Least Squares problems. We briefly present the unconstrained problem, the Non-

negative Matrix Least Squares problem and focus on Nonnegative Matrix Least Squares

with Missing Elements (NMLSME), which is the building block for the solution of the

Nonnegative Tensor Completion (NTC) problem. We analyze a first–order accelerated

gradient method to get an approximate solution.

In Chapter 3 we discuss the Stochastic Gradient Descend method and we propose a

stochastic variant for the NMLSME, using various step–sizes.

In Chapter 4 we discuss the CP Decomposition. We start by giving some mathemat-

ical background on tensors, and proceed to present the unconstrained and nonnegative

PARAFAC models. Then, we focus on the NTC problem, where we solve it through

our stochastic NMLSME. We also propose a method for factorizing supersymmetric and

nonnegative incomplete tensors.

In Chapter 5 we propose a parallel, multi–threaded, scheme for the stochastic NMLSME

method via the OpenMP API.

Chapter 6 is dedicated to real–world applications which can be interpreted as NTC

problems. We focus on two applications, the restoration of images with missing pixels and

the extraction of word embeddings in the Natural Language Process.

Next, in Chapter 7 we test the effectiveness of our proposed methods on synthetic and

real–world datasets. In cases where it is possible, we compare them with other competitive

1.1. Problem Description (Tensor factorization) 17

methods and present the respective results.

Finally, in Chapter 8, we conclude the thesis and propose future work.

18 Chapter 1. Introduction

19

Chapter 2

Matrix Least Squares Problem

We begin with the matrix least–squares problem, which will be the main building block

for the tensor factorization.

2.1 Matrix Least Squares (MLS)

Let matrices X ∈ RI×J and B ∈ RJ×R, and consider the MLS problem

min
A∈R

f(A) =
1

2
‖X−ABT ‖2F , (2.1)

where matrix A ∈ RI×R. The cost function f is convex, and therefore, the existence of a

global minimizer of f , Aopt, is guaranteed. The gradient and the Hessian of function f ,

at point A, are given by

∇f(A) = −
(
X−ABT

)
B (2.2)

and

∇2f(A) :=
∂2f(A)

∂vec(A)∂vec(A)T
= BTB⊗ IP . (2.3)

If we do not impose any constraints on matrix Aopt, then from (2.2), it must satisfy the

following equation

∇f(Aopt) = 0→ −(X + AoptB
T)B = 0. (2.4)

Equations (2.4) are equivalent to

XB = AoptB
TB (2.5)

which are known as normal equations. If BTB is invertible, the solution Aopt is given by

Aopt = XB
(
BTB

)−1
. (2.6)

2.2 Nonnegative Matrix Least Squares (NMLS)

2.2.1 Preliminaries

In the case where we impose nonnegative constraints on matrix Aopt = RI×R+ , the solution

cannot be expressed in closed form, and thus, we must resort to an iterative algorithm. We

use an accelerated gradient method because it is very efficient in practice and is suitable

20 Chapter 2. Matrix Least Squares Problem

Algorithm 1: Accelerated gradient algorithm for L-smooth µ-strongly convex
problems (using Nesterov’s constant scheme II).

Input: x0 ∈ RN , µ, L. Set y0 = x0, q = µ
L and choose a0 ∈ (0, 1)

1 k-th iteration
2 xk+1 =

(
yk − 1

L∇f(yk)
)
X

3 Compute ak+1 ∈ (0, 1) from a2
k+1 = (1− ak+1)a2

k + qak+1 and set βk = ak(1−ak)
(a2
k+ak+1)

4 yk+1 = xk+1 + βk(xk+1 − xk)

Algorithm 2: Accelerated gradient algorithm for L-smooth µ-strongly convex
problems (using Nesterov’s constant scheme III).

Input: x0 ∈ RN , µ, L. Set y0 = x0, β =

√
L
µ
−1√

L
µ

+1
.

1 k-th iteration
2 xk+1 =

(
yk − 1

L∇f(yk)
)
X

3 yk+1 = xk+1 + β(xk+1 − xk)

for parallel implementation [6].

We begin by introducing the class of L-smooth µ-strongly convex optimization prob-

lems. Let f : Rn → R be a smooth (differentiable up to some desired order) convex

function and X a closed convex subset of Rn. We aim to solve the problem

min
x∈X

f(x), (2.7)

within accuracy ε > 0, that is, to find a point xopt ∈ X such that f(xopt)− f∗ ≤ ε, where

f∗ := min
x∈X

f(x).

Let 0 < µ ≤ L <∞. A smooth convex function f is called L-smooth µ-strongly convex

if [5, p. 65]

µI � ∇2f(x) � LI, ∀x ∈ Rn. (2.8)

The information complexity of black–box first–order methods for this class of problems

is O
(√

L
µ log 1

ε

)
, where L

µ is the condition number of the problem [5, Theorem 2.2.2]. A

first–order optimal algorithm appears in Algorithms 1 and 2. Algorithm 1 becomes 2 if

we choose a0 =
√

µ
L . Then ak =

√
µ
L and βk =

√
L−√µ√
L+
√
µ

. Algorithm 1 works for µ = 0 [5,

p.80].

We note that (x)X denotes the projection of vector x onto set X (see also [5, p. 80]).

The projection onto set R+ is easy to compute using the max operator

(A)+ = max(A,OI,R).

If the projection onto set X is easy to compute, then this algorithm is both theoretically

optimal and very efficient in practice.

2.2. Nonnegative Matrix Least Squares (NMLS) 21

2.2.2 Nesterov–type algorithm for NMLS with proximal term

We present an optimal first–order algorithm for the solution of L-smooth µ-strongly convex

NMLS problems. For the nonnegative case, problem (2.1) is expressed as follows. Let

matrices X ∈ RI×J , B ∈ RJ×R, A ∈ RI×R, appropriately chosen λ > 0 [6]. and the

following NMLS problem

min
A≥0

f(A) =
1

2
‖X−ABT ‖2F +

λ

2
‖A−A∗‖2F , (2.9)

The gradient of fP at point A is

∇fP(A) = −
(
X−ABT

)
B + λ(A−A∗). (2.10)

We choose λ based on the eigenvalue decomposition of matrix BTB. Thus we have L :=

max(eig(BTB)) and µ := min(eig(BTB)), and denote this functional dependence as λ =

g(L, µ). If µ
L � 1, then we set λ ≈ 10µ, significantly improving the conditioning of the

problem by putting large weight on the proximal term. However, in this case, we expect

that the optimal point will be biased towards A∗. Otherwise, we set λ / µ, putting small

weight on the proximal term and permitting significant progress towards the computation

of A that satisfies approximate equality X ≈ ABT as accurately as possible.

An accelerated gradient algorithm for the solution of the NMLS problem with proximal

term (2.9) is given in (3), based on Algorithm 2.

Algorithm 3: Accelerated gradient algorithm for NMLS problems with proximal
term.

Input: X ∈ RI×J , B ∈ RJ×R, A∗ ∈ RI×R
1 L = max(eig(BTB)), µ = min(eig(BTB))

2 λ = g(L, µ), β =

√
L+λ
µ+λ
−1√

L+λ
µ+λ

+1

3 W = −XB− λA∗, Z = BTB + λI
4 A0 = Y0 = A∗
5 k = 0
6 while (terminating condition is FALSE) do
7 ∇fP(Yk) = W + YkZ

8 Ak+1 =
(
Yk − 1

L+λ ∇fP(Yk)
)

+

9 Yk+1 = Ak+1 + β (Ak+1 −Ak)
10 k = k + 1

11 return Ak.

2.2.3 Complexities

The computational complexity of Algorithm 3 is as follows. Matrices W and Z are com-

puted once per algorithm call and cost, respectively, O(IJR) and O(JR2) arithmetic op-

erations. Quantities L and µ are also computed once per algorithm call and in the worst

case demand O(R3) operations. In every iteration with cost O(IR2), O(IR), and O(IR)

22 Chapter 2. Matrix Least Squares Problem

arithmetic operations, ∇fP(Yk), Ak, and Yk are updated, respectively. If min(I, J)� R,

then the computation of the matrix product XB is the most demanding operation.

2.3 Nonnegative Matrix Least Squares with Missing

Elements (NMLSME)

We now proceed to the next topic, which is the Nonnegative Matrix Least Squares with

Missing Elements (NMLSME). The solution of the NMLSME problem will be our building

block for the solution of the Tensor Completion problem. Let X ∈ RI×J , A ∈ RI×R, and

B ∈ RJ×R. Let Ω ⊆ NI ×NJ be the set of indices of the known elements of X and let M

be a matrix with the same size as X, with elements M(i, j) equal to one or zero, based on

the availability of the corresponding element of X.

fΩ(A) =
1

2

∥∥M ~
(
X−ABT

)∥∥2

F
+
λ

2
‖A‖2F . (2.11)

We consider the problem

min
A≥0

fΩ(A) (2.12)

The gradient and the Hessian of fΩ, at point A, are given by

∇fΩ(A) = −
(
M ~ X−M ~

(
ABT

))
B + λA (2.13)

and

∇2fΩ(A) =
(
BT ⊗ IP

)
diag (vec (M)) (B⊗ IP) + λIPR. (2.14)

Algorithm 4: Nesterov–type algorithm for the nonnegative MLSME problem.

Input: X,M ∈ RP×Q, B ∈ RQ×R, A∗ ∈ RP×R, λ, µ, L

1 W = −(M ~ X)B

2 C = L+λ
µ+λ , β =

√
C−1√
C+1

3 A0 = Y0 = A∗

4 l = 0

5 while (terminating condition is FALSE) do

6 Zl =
(
M ~

(
YlB

T
))

B

7 ∇fΩ(Yl) = W + Zl + λYl

8 Al+1 =
(
Yl − 1

L+λ ∇fΩ(Yl)
)

+

9 Yl+1 = Al+1 + β (Al+1 −Al)

10 l = l + 1

11 return Al.

We are interested only in the nonnegative case, where we solve the MLSME problem

using the Nesterov–type algorithm of 4. We observe that this algorithm is much more

complicated than 3, mainly because of the computations in line 6, which must be repeated

in every iteration.

A key point of the algorithm is the assignment of values to parameters µ and L. If

2.3. Nonnegative Matrix Least Squares with Missing Elements (NMLSME) 23

we denote the optimal values as µ∗ and L∗, then it turns out that µ∗ + λ and L∗ + λ are,

respectively, equal to the smallest and the largest eigenvalue of ∇2fΩ. As the size of the

problem grows, the computation of µ∗ and L∗ becomes very demanding.

A simple approximation is to set µ = 0 and L = max(eig(BTB)), which in the cases

of small R can be easily computed. We have observed that, in practice, our choice for µ is

very accurate for very sparse problems, while our choice for L is an easily computed upper

bound for L∗. More recently in [7], we proposed a more computationally demanding but

more effective approach, as presented in Algorithm 4. We compute the rows Al+1(j, :) and

Yl+1(j, :), for j ∈ NP , using µ = 0, Lj = max(eig(Gj)), where Gj is the second derivative

of fΩ(A) with respect to A(j, :), and is defined as

Gj := BTdiag(M(j, :)) B. (2.15)

We also use the respective βj for each row. It is important to mention that this adds an

overhead to the algorithm since the computation of Gj , for j ∈ NP , is not directly required

in Algorithm 4, but leads to very useful step sizes, which will be discussed in the next

chapter. Also, in the next chapter, we will present a stochastic variant of this algorithm.

2.3.1 Complexities

The computational complexity of Algorithm 4 is as follows. Matrix W demands O(|Ω|R)

arithmetic operations once per algorithm call. Matrix Z also requires O(|Ω|R) arithmetic

operations per inner iteration l. In every iteration, matrices ∇fP(Yk), Ak, and Yk are

updated with cost of O(IR) arithmetic operations. Finally, computation of matrix Gj

requires O(|Ω|R2) arithmetic operations.

24 Chapter 2. Matrix Least Squares Problem

25

Chapter 3

Stochastic Gradient Descent

Methods

3.1 Stochastic Gradient Descent algorithm (SGD)

Stochastic approximation methods are a family of iterative methods, typically used for

root–finding problems or for optimization problems, and were introduced in the early ’50s

by [8]. Even though it is known for a long time, this method has recently gained great

popularity, since it is the preferred optimization method in modern machine learning. In

practice, they only require the gradient for one training example (a small “mini–batch” of

examples) in each iteration and thus can be used with large datasets, due to their lower

computational complexity.

We aim to minimize a differentiable function f assuming access to noisy stochastic

gradients (noisy estimates of the full gradient) of the function. We focus on functions f

with a finite–sum structure, expressed as

f(x) =
1

m

m∑
i=1

fi(x), (3.1)

where n is the size of the training set and the function fi is the loss function for a training

point i. We assume that f is lower–bounded by some value f∗ and that f is L-smooth

implying that the gradient ∇f is L-Lipschitz continuous [9].

The problem of minimizing a function f : Rn → R. The commonly used procedure to

optimize f is to iteratively adjust xt ∈ Rn using the average gradient information ∇fi,t(xt)
obtained on a relatively small t-th batch of b ≤ n datapoints. The Stochastic Gradient

Descent (SGD) procedure then becomes an extension of the Gradient Descent (GD) to

stochastic optimization of the loss function fi as follows:

xt+1 = xt − ηt∇fi,t(xt), (3.2)

where ηt is the learning rate. If we consider the second–order information we have

xt+1 = xt − ηtHi,t
−1∇fi,t(xt). (3.3)

We note that theoretical analysis for the SGD algorithm is beyond the scope of this

thesis.

26 Chapter 3. Stochastic Gradient Descent Methods

Algorithm 5: RACDM

Input: η0, g ∈ RR, a0 ∈ RR+.
1 t = 1, ηt = η0, at = (a0 − η0g)+

2 do
3 Compute ∇fi(at)
4 ηt+1 = 1

2
ηt

5 at+1 = (at − ηt+1∇fi(at))+

6 t = t+ 1

7 while gT∇fi(at) < 0
8 return ηt, at.

3.2 First–Order Methods

First–order methods are popular due to their simplicity and optimal complexity.

We start with a method proposed in [10, p. 223]. The authors propose the step–size

η = 1
‖∇fi‖

√
k
, where k ∈ NN 1. We will refer to this method as “SimpleGrad”.

We continue with a modified version of RACDM [11], where we ignore step 3 of the

algorithm. We start from an initial value η = η0, we compute the initial gradient g =

∇fi(a0), and then we perform a gradient step

at+1 = (at − ηt+1∇fi(at))+ . (3.4)

We compute the gradient at the new point, ∇fi(at+1). If

∇fi(a0)T∇fi(at+1) < 0, (3.5)

then we set ηt+1 = ηt
2 and repeat the procedure until relation (3.5) does not hold true. In

Algorithm 5 we present our modified version.

The last first–order method is called Armijo line–search technique [12], denoted as

“ARMIJO–LS”. It was suggested in [13]. More specifically, starting from an initial value

η0, we are looking for a step–size ηt such that

fi(at) > fi(a0)− γηt‖g‖2 (3.6)

where γ > 0 is a hyper–parameter. If relation (3.6) does not hold true, then we backtrack

by a constant factor δ ∈ (0, 1), that is, we set ηt+1 = δ ηt, until the line–search succeeds.

In Algorithm 6 we present our version.

3.3 Second–Order Method

Incorporating the second–order curvature information has been shown to improve conver-

gence [14]. However, one of the major drawbacks of second–order methods is their need

for high computational and memory resources.

We can use the second–order information by computing the Hessian matrix H. In [15],

1To be exact, k =ao iter, where ao iter denotes the iterations of AO and will be discussed in more detail
later.

3.4. Accelerated stochastic gradient for NMLSME 27

Algorithm 6: ArmijoLS

Input: η0, g ∈ RR, a0 ∈ RR+.
1 t = 1,at = a0, ηt = η0, γ > 0, δ ∈ (0, 1)
2 Compute fi(a0)
3 do
4 ηt+1 = δηt
5 at+1 = (at − ηt+1g)+

6 Compute fi(at+1)
7 t = t+ 1

8 while fi(at) > fi(a0)− γηt‖g‖2
9 return ηt, at.

we proposed a new method, called “1 over L”, where we use the step–size η = 1
L . L is

the maximum eigenvalue of the local estimation of the Hessian matrix and is computed

similarly as we described in section 2.3. We note that H is used only for the determination

of L. A very interesting topic is the development of algorithms that fully exploit the

Hessian matrix.

We may now proceed to the next section, where we present the accelerated stochastic

gradient for NMLSME of section 2.3. We use the above methods to select the most efficient

step–size.

3.4 Accelerated stochastic gradient for NMLSME

We solve problem (2.12) via the stochastic variant of the accelerated (Nesterov–type)

gradient algorithm which appears in Algorithm 10.

During each iteration of the while–loop, we use a subset of the available entries of

matrix X. More specifically, at iteration l, we define a set of indices Ω̂l ⊂ Ω and a matrix

M̂l, of the same size as M, as

M̂l(i, j) =

{
1, if (i, j) ∈ Ω̂l,

0, otherwise.
(3.7)

We create set Ω̂l randomly. We define the block–size Bl := |Ω̂l| and select c := Bl
|Ω| < 1.

For row p of matrix X, for p = 1, . . . , P , we sample, uniformly at random, a blocksize

Bl,p := bc‖M(p, :)‖0c that contains the nonzero elements of X(p, :). We note that if

Bl,p = 0, then we skip the p-th row.

We perform an accelerated gradient step using only the elements of X whose indices

appear in Ω̂l. Thus, our cost function becomes f
Ω̂l

with gradient and Hessian similar to

those in (2.13) and (2.14), with the only difference being that M is replaced by M̂l.

We find it convenient to compute the gradient and update the matrix variable in a

row–wise fashion, using one of the above step–sizes.

More specifically, in the case where we use the “1 over L” method, we make use of the

local estimation of the Hessian matrix of f
Ω̂l

. We denote it as Hl,p, and is computed with

respect to the p-th row of A. Quantity Lp is the largest eigenvalue of Hl,p and in that case,

step–size ηl(p) is equal to 1
Lp

. If we use the “SimpleGrad” method, the step–size is defined

28 Chapter 3. Stochastic Gradient Descent Methods

Algorithm 7: RACDM for NMLSME

Input: η0, g ∈ RR, a0 ∈ RR+, x,m ∈ RQ+, B ∈ RQ×R+ , λ.
1 t = 1, ηt = η0, at = (a0 − η0g)+

2 do
3 w = − (m~ x)B

4 z =
(
m~

(
atB

T
))

B
5 ∇fΩ̂l

(at) = w + z + λat

6 ηt+1 = 1
2
ηt

7 at+1 = (at − ηt+1∇fΩ̂l
(at))+

8 t = t+ 1

9 while gT∇fΩ̂l
(at) < 0

10 return at, ηt.

Algorithm 8: ArmijoLS for NMLSME

Input: η0, g ∈ RR, a0 ∈ RR+, x,m ∈ RQ+, B ∈ RQ×R+ , λ.
1 t = 1,at = a0, ηt = η0, γ = 0.1, δ = 0.5
2 Compute fΩ̂l

(a0) using m, x and B according to (2.11)

3 do
4 ηt+1 = δηt
5 at+1 = (at − ηt+1g)+

6 Compute fΩ̂l
(at+1) using m, x and B according to (2.11)

7 t = t+ 1

8 while fΩ̂l
(at) > fΩ̂l

(a0)− γηt‖g‖2

9 return at, ηt.

as ηl(p) = 1
‖∇f

Ω̂l
(Yl(p,:))‖

√
k
. Finally, in both “RACDM” and “ARMIJO–LS”, Algorithms

7 and 8, we initialize step–size η0(p) using the quantity 1
Lp

, instead of a constant variable

as the original authors propose. This adds an extra computational cost but we observed

that it performs sufficiently good.

For the proposed line–search method “ARMIJO-LS”, we used γ = 0.1 and δ = 0.5, as

we show in line 1 of Algorithm 8.

In order to choose the appropriate method, we use the variable

opt = {1:“1 over L”, 2:“SimpleGrad”, 3:“RACDM”, 4:“ARMIJO-LS”}.

After finding the desirable step–size, we update the row of the matrix A as shown in

Algorithm 9. We can choose to perform an accelerated gradient step as shown in line 18,

using either the constant step scheme II of[5, p. 80] (lines 12-13) or the constant step

scheme III of [5, p. 81] (line 15) or we may not perform an accelerated gradient step.

3.5 Complexities

The most demanding computations required for the gradient f
Ω̂l

are the computation of

Wl(p, :) (requires O(Bl,pR) arithmetic operations per row or O(BlR) in total) and the

computation of Zl(p, :) (requires O(Bl,pR) arithmetic operations per row or O(BlR) in

total). After the computation of these matrices, ∇f
Ω̂l

requires O(PR) arithmetic opera-

tions.

Each of the presented step–sizes has a different complexity. “SimpleGrad” requires

3.5. Complexities 29

Algorithm 9: Step size selection algorithm (choose stepsize)

Input: opt, g ∈ RR, a0,y ∈ RR+, x,m ∈ RQ+, B ∈ RQ×R+ , k, λ, η0.
1 if (opt == 1) then
2 H = BTdiag (m)B + λIR
3 L = max(eig (H))
4 ηnew = 1

L

5 anew = (y − ηg)+

6 else if (opt == 2) then
7 ηnew = 1

‖g‖
√
k

8 anew = (y − ηg)+

9 else if opt == 3 then
10 (anew, ηnew) = RACDM(η0,g,a0,x,m,B, λ)

11 else if opt == 4 then
12 (anew, ηnew) = ArmijoLS(η0,g,a0,x,m,B, λ)

13 return anew, ηnew.

only the computation of the above gradient f
Ω̂l

. “1 over L” has an additional cost for the

computation of Lp, via the power method, which requires O(R2) arithmetic operations

(in total, O(PR2)) per iteration. In both “RACDM” and “ARMIJO–LS” we use Lp only

for the step–size initialization during the first iteration. “RACDM” has an additional

complexity, since it requires the computation of the gradient iteratively, with a cost of

O(Bl,pR) arithmetic operations per row. On the other side, “ARMIJO–LS” requires the

computation of the cost function f
Ω̂l

iteratively, demanding in total O(Bl) operations.

The computation of each of the matrices ∇f
Ω̂l

, Al+1 and Yl+1 requires O(PR) arith-

metic operations.

Finally, for notational convenience, we denote Algorithm 10 as

(Aopt, ηnew) = S NMLSME(X,M,B,A∗, λ, η0, opt, ao iter).

30 Chapter 3. Stochastic Gradient Descent Methods

Algorithm 10: Accelerated stochastic gradient for NMLSME (S NMLSME)

Input: X,M∈ RP×Q+ , B∈ RQ×R+ , A∗∈ RP×R+ , λ, η0 ∈ RP, opt, ao iter.
1 A0 = Y0 = A∗
2 l = 0, α0,: = 1
3 while (l <MAX INNER) do
4 for p = 1 . . . P , in parallel do

5 M̂l(p, :) = sample(M(p, :))

6 Wl(p, :) = −
(
M̂l(p, :) ~X(p, :)

)
B

7 Zl(p, :) =
(
M̂l(p, :) ~

(
Yl(p, :)B

T
))

B

8 ∇fΩ̂l
(Yl(p, :)) = Wl(p, :) + Zl(p, :) + λYl(p, :)

9 (Al+1(p, :), ηl+1(p)) = choose stepsize(opt , ∇fΩ̂l
(Yl(p, :)), Al(p, :), Yl(p, :),

X(p, :), M̂l(p, :), B, ao iter, λ, ηl(p))
10 qp = λ ηl,p
11 if scheme II is used then
12 choose αl+1,p ∈ (0, 1) fromα2

l+1,p = (1− αl+1,p)α
2
l,p + qpαl+1,p

13 βl,p =
αl,p(1−αl,p)

α2
l,p

+αl+1,p

14 else if scheme III is used then

15 βl,p =
1−√qp
1+
√
qp

16 else
17 βl,p = 0

18 Yl+1(p, :) = Al+1(p, :) + βl,p (Al+1(p, :)−Al(p, :))

19 l = l + 1

20 return (Yl, ηl).

31

Chapter 4

Tensor Factorization and

Completion

4.1 Introduction on Tensor Factorization and Completion

Definition 4.1 The outer product of two vectors a ∈ RI and b ∈ RJ is denoted as

a ◦ b ∈ RI×J and gives a rank–one matrix. Likewise, a 3–way outer product of any

three vectors, a ∈ RI , b ∈ RJ , c ∈ RK is denoted as a ◦ b ◦ c ∈ RI×J×K and gives a

rank–one tensor with elements (a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k).

Definition 4.2 The order of a tensor is the number of dimensions that it has. More pre-

cisely, scalars can be described as zeroth–order tensors, vectors as first–order tensors, ma-

trices as second–order tensors, and any tensor having order n>2 (e.g. X ∈ RI1×I2×...×IN)

will be referred to as nth–order tensor. In Fig. 4.1) we illustrate a third–order tensor.

I2
I3

I1

Figure 4.1: A third–order tensor X ∈ RI1×I2×I3

Definition 4.3 The rank of a tensor X is denoted as rank(X) and defines the minimum

number of rank–one tensors which are needed to produce X as their sum. For example, let

X be a third–order tensor with rank(X) = R, then

X =

R∑
r=1

ar ◦ br ◦ cr. (4.1)

Definition 4.4 In general, we can extract lower–order tensors from a nth–order tensor. In

our case, from a third–order tensor, we can extract a first and second–order one (vectors

and matrices correspondingly). More precisely, if we fix all but one indices, a fiber is

created, otherwise, if we fix all but two indices, we create a slice. From a third–order

tensor X ∈ RI×J×K , fibers are given as x:jk, xi:k and xij:, and slices are given as X::k,

X:j: and Xi::.

32 Chapter 4. Tensor Factorization and Completion

Definition 4.5 The Mode–n Matricization of X ∈ RI1×I2×I3 is denoted as

X(1) ∈ RI1×I2I3 ,X(2) ∈ RI2×I1I3 ,X(3) ∈ RI3×I1I2 , (4.2)

and defines the operation that reorders a tensor into a matrix, by turning the mode–n fibers

(if we fix all but one indices) of tensor X into the columns of matrix X(n).

Mode 1 fibers Mode 1 matricization

Mode 2 fibers Mode 2 matricization

Mode 3 fibers Mode 3 matricization

I3

I1 x I2

I2

I1 x I3

I1

I2 x I3

I3I2

I1

X

X(1)

X(2)

X(3)

Figure 4.2: Mode–n Matricization of X ∈ RI1×I2×I3

Definition 4.6 Finally, the Frobenius Norm of a tensor X ∈ RI1×I1×I3 is defined as

||X ||F =

√√√√ I1∑
i=1

I2∑
j=1

I3∑
k=1

X (i, j, k)2 . (4.3)

4.2 The PARAFAC Model

Let an N -mode tensor X o ∈ RI1×I2×···×IN admit a PARAFAC (or CP Decomposition) of

the form

X o =

R∑
r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r = JUo(1), Uo(2), . . . , Uo(N)K, (4.4)

where Uo(i) = [uo1
(i) . . .uoR

(i)] ∈ RIi×R, for i = 1, . . . , N .

We observe the noisy tensor X = X o + E, where E is the additive noise. Estimates

of Uo(i) can be obtained by computing matrices U(i) ∈ RIi×R, for i ∈ NN , that solve the

optimization problem

min
{U(i)∈U(i)}Ni=1

fX

(
U(1), . . . ,U(N)

)
,

where fX is a function measuring the quality of the decomposition. A common choice for

fX is

fX

(
U(1), . . . ,U(N)

)
=

1

2

∥∥∥X − 〚U(1), . . . ,U(N)〛
∥∥∥2

F
. (4.5)

This problem is nonconvex and, thus, difficult to solve, in general.

4.3. Nonnegative Tensor Factorization (NTF) 33

If Y = 〚U(1), . . . ,U(N)〛, then its i-th mode matrix unfolding is given by [3]

Y(i) = U(i)
(
U(N) � · · · �U(i+1) �U(i−1) � · · · �U(1)

)T
. (4.6)

If we define the matrix

K(i) :=
(
U(N) � · · · �U(i+1) �U(i−1) � · · · �U(1)

)
, (4.7)

then relation (4.8) can be written as

Y(i) = U(i)K(i)T . (4.8)

Thus, fX can be expressed as

fX

(
U(1), . . . ,U(N)

)
=

1

2

∥∥∥X(i) −U(i)K(i)T
∥∥∥2

F
, i ∈ NN . (4.9)

These expressions form the basis of the AO approach for tensor decomposition, i.e., for

fixed matrix factors U(j), with j 6= i, we update U(i) by solving an MLS problem, and

this process is repeated circularly until convergence.

4.3 Nonnegative Tensor Factorization (NTF)

In many applications, we are interested in tensor decompositions whose factors should

comply with constraints emerging from underlying models or for interpretability reasons.

Let an N -mode tensor X o ∈ RI1×I2×···×IN admit a PARAFAC (or CP Decomposition)

of the form

X o =
R∑
r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r = JUo(1), Uo(2), . . . , Uo(N)K, (4.10)

where Uo(i) ∈ U(i) a certain set constraint and i = 1, . . . , N . In the unconstrained case,

U(i) ∈ RIi×R, while in the nonnegative case, U(i) ∈ R+
Ii×R. We focus on the Nonnegative

Tensor Factorization (NTF), where all factors are nonnegative. In the AO framework,

we update each factor separately and in a circular manner, i.e., for i ∈ NN , we update

factor U(i) ∈ R+
Ii×R with all the other factors being fixed. Let us assume that during the

(k+ 1)-st outer iteration, we have computed U
(1)
k+1, . . . ,U

(i−1)
k+1 ,U

(i)
k , . . . ,U

(N)
k . In order to

update nonnegative factor U
(i)
k , we solve the problem

U
(i)
k+1 = argmin

U(i)∈R(i)
+

∥∥∥X(i) −U(i)K
(i)T
k

∥∥∥2

F
. (4.11)

The update is given by

U
(i)
k+1 = NMLS(X(i),K

(i)
k ,U

(i)
k), (4.12)

34 Chapter 4. Tensor Factorization and Completion

4.4 Nonnegative Tensor Completion (NTC)

In many real–world problems, we observe a small subset of the elements of tensor X ,

indexed by Ω ⊆ NI1 ×· · ·×NIN . LetM be a binary tensor with the same size as X whose

elements are defined as

M(i1, i2, . . . , iN) =

{
1, if (i1, i2, . . . , iN) ∈ Ω,

0, otherwise.
(4.13)

The number of nonzero elements of X is equal to nnz := |Ω|. The NTC problem can be

expressed as

min fΩ

(
U(1),U(2), . . . ,U(N)

)
+
λ

2

N∑
i=1

‖U(i)‖2F , (4.14)

where

fΩ

(
U(1),U(2), . . . ,U(N)

)
=

1

2

∥∥∥M~
(
X − 〚U(1),U(2), . . . ,U(N)〛

)∥∥∥2

F
. (4.15)

If Y = 〚U(1),U(2), . . . ,U(N)〛, then

fΩ

(
U(1),U(2), . . . ,U(N)

)
=

1

2

∥∥M(i) ~
(
X(i) −Y(i)

)∥∥2

F
, i ∈ NN , (4.16)

where M(i), X(i), and Y(i) are, respectively, the matrix unfoldings of M, X , and Y with

respect to the i-th mode. Similarly to the NTF case, these expressions form the basis of

the AO method for NTC. If we consider factor U(i) as a variable, with all the other factors

being fixed, then we can update U(i) by solving the problem

min
U(i)∈U(i)

∥∥∥M(i) ~
(
X(i) −U(i)K(i)T

)∥∥∥2

F
+
λ

2
‖U(i)‖2F . (4.17)

As in the NTF problem, we start from initial points U
(i)
0 , for i = 1, . . . , N , and solve,

in a circular manner, NMLSME problems, based on the previous estimates.

4.5 NTC via stochastic NMLSME

Instead of using the NMLSME, which was presented in section 2.3, we will use the

S NMLSME method of section 3.4 to solve the NTC problem, as we present in Algo-

rithm 11.

4.6 Pseudosymmetric NTC via stochastic NMLSME

In some applications, we are interested in the factorization of nonnegative and supersym-

metric 1 incomplete tensors. For example, let tensor S be the triple product of one single

1A tensor is supersymmetric if it is invariant under any permutation of indices i1, i2, . . . , iN .
For example, for any element of a supersymmetric third–order tensor it holds that
X (i, j, k)=X (i, k, j)=X (j, i, k)=X (j, k, i)=X (k, i, j)=X (k, j, i) (N ! permutations in total).

4.6. Pseudosymmetric NTC via stochastic NMLSME 35

Algorithm 11: AO algorithm for NTC via S NMLSME

Input: X , Ω, U
(i)
0 ∈ Ui, i = 1, . . . , N, λ, rank R, opt.

1 k = 0

2 Initialize η
(i)
0 according to variable opt

3 while (1) do
4 for i = 1, 2, . . . N do

5 (U
(i)
k+1, η

(i)
k+1) = S NMLSME

(
X(i),M(i),K

(i)
k ,U

(i)
k , λ, η

(i)
k , opt, k

)
6 if (terminating condition is TRUE) then break; endif
7 k = k + 1

8 return U
(i)
k , i = 1, . . . , N .

factor U ∈ RI×R such that

S = 〚U,U,U〛. (4.18)

Using a supersymmetric binary tensor M of the same dimensions, we have

Ŝ = S ~M (4.19)

One can ignore the symmetry of Ŝ and use Algorithm 11. The resulting factors will be

close but not equal. To get the same resulting factors, we followed a naive approach. In-

stead of updating all factors in a circular manner, we update only the first one, U(1), and we

force the remaining factors to be equal. We refer to this method as “Pseudosymmetric” AO

NTC, and works as in Algorithm 12. We start from an initial point
{

U
(i)
0 ∈ R+

Ii×R
}N
i=1

and solve, in a circular manner, MLSME problems via S NMLSME method, based on the

previous estimates.

Algorithm 12: Pseudosymmetric AO NTC via S NMLSME

Input: X , Ω,
{

U
(i)
0 ∈ R+

Ii×R
}N
i=1

, λ, rank R, opt.

1 k = 0

2 Initialize η
(i)
0 according to variable opt

3 while (1) do

4 (U
(1)
k+1, η

(1)
k+1) = S NMLSME

(
X(1),M(1),K

(1)
k ,U

(1)
k , λ, η

(1)
k , opt, k

)
5 for i = 2, . . . N do

6 U
(i)
k+1 = U

(1)
k+1

7 if (term cond is TRUE) then break; endif
8 k = k + 1

9 return
{

U
(i)
k

}N
i=1

.

36 Chapter 4. Tensor Factorization and Completion

37

Chapter 5

Parallel Implementations

In this chapter we present a parallel scheme for the Tensor Completion. There exist

other parallel implementations, like [7], but in this thesis, a multi–threaded approach

is presented. This parallel scheme is implemented using the OpenMP API in a shared

memory environment.

5.1 Multi–threaded Implementation using OpenMP

Multi–threading is a model of program execution that allows for multiple threads to be

created within a process, executing independently (each one is distributed to its own CPU

core) but concurrently sharing process resources.

OpenMP (MP stands for multiprocessing) is an API developed for shared–memory

parallel programming. OpenMP is directive–based programming model designed as an

extension of C and C++ [16]. We selected OpenMP rather than other interfaces, like

POSIX threads (Pthreads), since OpenMP is of higher level, allowing us to parallelize

tasks and assign them to threads easier.

5.2 Parallel implementation of NMLSME and S NMLSME

As we have shown in Sections 2.3, 3.4, we update each row of factor U(i) separately. Both

NMLSME and S NMLSME can be parallelized in the same manner, but in this thesis

we will focus only on the parallel implementation of method S NMLSME. Since each row

can be updated separately and independently, it is assigned as a task to a corresponding

available thread. Therefore, we can solve lines 6-18 of Algorithm 10 in parallel.

We note that that the complexity, and thus the execution time, varies from task to

task, and depends on the way that the nonzeros are distributed. Therefore, we must

consider the scheduling of the threads.

We have experimented with various scheduling types and we found out that the most

suitable is the dynamic type. In a nutshell, this type of scheduling ensures that each

thread executes a chunk of iterations and then requests another chunk until there are no

more chunks available.

In Algorithm 13, we provide a high level algorithmic sketch of the proposed parallel

and accelerated stochastic gradient for NMLSME.

38 Chapter 5. Parallel Implementations

Algorithm 13: Parallel accelerated stochastic gradient for NMC

Input: X,M∈ RP×Q
+ , B∈ RQ×R

+ , A∗∈ RP×R
+ , λ,η0 ∈ RP, opt, ao iter

1 A0 = Y0 = A∗
2 l = 0
3 while (1) do
4 if (l ≥MAX INNER) then
5 break
6 else
7 in parallel for p = 1 . . . P do
8 lines 6-18 of Algorithm 10

9 l = l + 1

10 return Al.

39

Chapter 6

Applications using Tensor

Completion

6.1 Corrupted Image (Missing Values)

An interesting application is the estimation of missing data in images, following the RGB

model, inspired by the works of [17] and [18].

6.1.1 Image Representations

In a nutshell, digital images can be represented using multiple color formats. We begin

with black and white images, which have monochrome palettes, that only have some shades

of gray, from black to white, both considered the most possible darker and lighter “grays”,

respectively. For example, a 1-bit grayscale image requires only one bit per pixel. Each

bit is either equal to 0 or 1, where 1 represents white pixels (light) and a value of 0 the

black ones (dark). As the number of bits increases according to the exponential 2n, more

different shades of gray are displayed (more quantization levels). Usually, the maximum

number of grays in ordinary monochrome systems is 28 = 256, resulting in a 256-value

palette. Grayscale images use only one single color plane and can be represented as a

matrix I ∈ Rh×w, where h,w are the image’s height and width respectively.

On the other hand, color images use three color planes, each with n number of possible

levels by component, raised to a power of 3 (n × n × n = n3). One of the most popular

image representation models is the RGB (Red – Green – Blue) model. An RGB image is a

three-dimensional byte array that explicitly stores a color value for each pixel. RGB image

arrays are made up of width, height, and three channels of color information. The color

information is stored in three sections of a third dimension of the image. These sections are

known as color channels, color bands, or color layers. One channel represents the amount

of red in the image (the red channel), one channel represents the amount of green in the

image (the green channel), and one channel represents the amount of blue in the image

(the blue channel). Therefore, colored images can be represented as a tensor I ∈ Rh×w×3,

where the first two dimensions h,w are the image’s height and width respectively, and

the third one holds the number of channels. In Fig. 6.1 we illustrate a simplified tensor

representation of an image following the RGB model.

As an example, we use an image of dimensions 1063 × 1599 1, as shown in Fig. 6.2a.

This 8-bit image (each pixel is represented by 8-bits or 1 byte) can be seen as a tensor

1Image can be found at https://images.freeimages.com/images/large-previews/7bb/building-
1222550.jpg

40 Chapter 6. Applications using Tensor Completion

Figure 6.1: Separate Red, Green, and Blue image layers

I ∈ Z1063×1599×3
+ , with values in [0,1,. . . ,254, 255].

6.1.2 Missing values

To create an image with missing elements, we first need to generate a matrix M of the

same first two dimensions of the image (height and width), with values 0 (“missing” value)

or 1 (“known” value), which we will refer to as the mask. We begin by assigning all values

of M ∈ Nh×w to 1. More specifically, we select in a random manner blocks of size 20× 20

from M, with all values assigned to 0, and we repeat this process until we obtain the

desired sparsity level (e.g. 90% “0” / 10% “1” = 90% sparsity). Then we apply the mask

M for each channel as follows

X (:, :, i) = I(:, :, i) ~ M, where i = 1, 2, 3.

The resulted 90% sparse tensor X is illustrated in Fig. 6.2b. We note that from now

on we make the assumption that our incomplete image is represented by the tensor X in

R1063×1599×3
+ and not in Z1063×1599×3

+ as is the original tensor.

(a) Original (b) Corrupted (90% sparse)

Figure 6.2: Tensor Completion on images

In order to restore our incomplete image, we use the Stochastic NTC method. In

the next chapter, we present our methodology in image restoration and we illustrate the

resulting restored image.

6.2 Natural Language Processing

Another interesting application is Natural Language Processing (NLP). Most tasks in

natural language processing involve looking at words and finding similarities and dissim-

6.2. Natural Language Processing 41

ilarities between them. There are many word representations in NLP, but we will focus

only on the “Distributional Representation”.

6.2.1 Distributional Representation

This type of representation is based on the distributional hypothesis [19], which states that

words in similar contexts have similar meanings. This has given rise to many word repre-

sentation methods in the NLP literature, the vast majority of whom can be described in

terms of a word-context matrix M in which each row i corresponds to a word, each column

j to a context in which the word appeared, and each matrix entry M(i, j) corresponds to

some association measure between the word and the context. Rows of M represent words

in the vocabulary and columns represent contexts. The context could be sliding windows

over the training sentences or even documents.

Many state-of-the-art word embedding techniques involve the factorization of a co-

occurrence-based matrix [20]. More recently, authors [21] have extended this approach by

studying word embedding techniques that involve the factorization of co-occurrence-based

tensors. Inspired by this work, we aimed to examine if our proposed Stochastic tensor

decomposition method performs well in NLP tasks.

Before we proceed into details, some preliminaries must be presented.

6.2.2 Word Embedding

In general, word embedding is a term used for the representation of words for text analysis,

typically in the form of a real-valued dense vector. This vector encodes the meaning of

the word such that the words that are closer in the vector space are expected to be

similar in meaning. These representations referred to as “neural embeddings” or “word

embedding”, have been shown to perform well in a wide range of NLP tasks. In many

works, authors propose to represent words as dense vectors, derived using various training

methods inspired from neural-network language modeling [22].

6.2.3 n-gram

An n-gram is a contiguous sequence of n items from a given sample of text or speech

corpus. The items can be either phonemes, syllables, letters, words, numbers, or base

pairs according to the application. They are collected from a text or speech corpus. When

n = 1, the 1-gram is referred to as a “unigram”, for n = 2 is a “bigram”, for size 3 is a

”trigram”. For n > 3 we have a “four-gram”, a “five-gram”, and so on [23].

6.2.3.1 Skip-gram

One of the most popular methods for learning representations of words is the skip-gram

model. Skip-grams are a technique largely used in the field of speech processing, whereby

n-grams are formed but in addition to allowing adjacent sequences of words, tokens are

allowed to be “skipped” [24]. It predicts words within a certain range, called window,

42 Chapter 6. Applications using Tensor Completion

before and after the current word in the same sentence. A simple example of this is given

below for a window of size 2.

The sentence

“Concorde makes emergency landing in Canada”

produces the following skip-grams:

• Concorde : (Concorde, makes), (Concorde, emergency),

• makes : (makes, Concorde), (makes, emergency), (makes, landing),

• emergency: (emergency, Concorde), (emergency, makes), (emergency, landing), (emer-

gency, in),

• landing : (landing, makes), (landing, emergency), (landing, in), (landing, Canada),

• in : (in, emergency), (in, landing), (in, Canada),

• Canada : (Canada, landing), (Canada, in).

6.2.3.2 Word2Vec

In [22], Mikolov et. al. used the Skip-Gram model with Negative-Sampling (SGNS) train-

ing method which is both efficient to train and provides state-of-the-art results on various

linguistic tasks. The proposed training method, called “Word2Vec” is very popular and

embeddings learned through this method have proven to be successful on a variety of

downstream natural language processing tasks. The training objective follows the distri-

butional hypothesis, trying to maximize the dot-product between the vectors of frequently

occurring word-context pairs, and minimize it for random word-context pairs. We will not

focus on this method but we will use it to compare the resulting word embeddings.

In [20], the authors prove that, despite seeming like a local neural network, the SGNS

method can be seen as an implicit weighted matrix factorization problem. Later on, we

will discuss the relationship between word embeddings and matrix factorization.

6.2.4 Pointwise Mutual Information

Pointwise mutual information (PMI) is a useful property in NLP. It quantifies the likeli-

hood of co-occurrence of two words [20]. It is defined as:

PMI(w1, w2) = log
p(w1, w2)

p(w1)p(w2)
, (6.1)

where p(w1, w2) is the probability that both words w1 and w2 occur inside a fixed window

of L word in the corpus, and p(w1), p(w2) are their marginal probabilities. How do we

compute the probabilities p(w1, w2), p(w1), p(w2)?

Let N the number of pairs of words observed in a corpus, f(w) ≤ N the number

of times word w occurs, f(w1, w2) the number of times words w1, w2 occur in the same

6.2. Natural Language Processing 43

window of size L. Then, the probabilities p(w1), p(w2), p(w1, w2) are computed as follows

p(w1) =
f(w1)

N
=

∑
j∈|V | f(w1, wj)

N
, (6.2)

p(w2) =
f(w2)

N
=

∑
i∈|V | f(wi, w2)

N
, (6.3)

p(w1, w2) =
f(w1, w2)

N
. (6.4)

As authors in [20] suggest, PMI is replaced with positive PMI (PPMI) metric, which is

defined as:

PPMI(w1, w2) := max(0,PMI(w1, w2)). (6.5)

since negative PMI values can not be easily interpreted.

For an indexed vocabulary V = {w1, w2, . . . , w|V |}, of size |V |, we can construct a

PPMI matrix M with elements M(i, j) = PPMI(wi, wj).

PMI can be easily generalized in more than two variables. We consider PMIs with N

variables defined as

PMI(w1, w2, . . . , wN) = log
p(w1, w2, . . . , wN)

p(w1)p(w2) . . . p(wN)
, (6.6)

where p(w1, w2, . . . , wN) is the probability that w1, w2, . . . , wN occur together in a given

fixed-length context window in the corpus, regardless of their order. For N = 3, the

probabilities p(w1), p(w2), p(w3), p(w1, w2, w3) are computed as in relations (6.2 - 6.4).

Briefly we have

p(w1) =

∑
j,k∈|V | f(w1, wj , wk)

N
, (6.7)

p(w2) =

∑
i,k∈|V | f(wi, w2, wk)

N
, (6.8)

p(w3) =

∑
i,j∈|V | f(wi, wj , w3)

N
, (6.9)

p(w1, w2, w3) =
f(w1, w2, w3)

N
. (6.10)

Therefore, for N = 3, we construct a PPMI tensor M with elements M(i, j, k) =

PPMI(wi, wj , wk).

In [20], they show that SGNS from [22] can be viewed as an implicit matrix factorization

of the matrix M. More specifically, it embeds both words and their contexts into a low-

dimensional space Rd , resulting in the word and context matrices W ∈ R|V |×R and

C ∈ R|V |×R (M = WCT). We highlight that the factorization rank d is the dimension

of the resulting vector representation. The rows of matrix W are typically used in NLP

tasks, such as computing word similarities, while C is ignored. This can be generalized

for N > 2. Just as the rank-R matrix decomposition is defined to be the product of two-

factor matrices M = WCT , the PARAFAC rank-R tensor decomposition for a third-order

tensor is defined to be the product of three-factor matrices. Since our PPMI tensor M is

44 Chapter 6. Applications using Tensor Completion

nonnegative and invariant under permutation, M is nonnegative and supersymmetric. As

in [25] and [21], we will also consider symmetric CP decomposition of nonnegative tensors.

We factorize the PPMI tensor M as the triple product of one single factor U ∈ R|V |×R

such that

M = 〚U,U,U〛,

where factor U is the resulted word embedding. Tensor M is usually very sparse (> 99%),

nonnegative and supersymmetric. Therefore, we use the proposed pseudosymmetric NTC

via stochastic NMLSME, of section 4.6, in order to obtain the desired word embedding.

In the next chapter (section 7.6), we will present our results using a real-world dataset

and we will compare our method with Word2Vec.

45

Chapter 7

Numerical Experiments

7.1 Rank estimation problem with NTC via stochastic

NMLSME

7.1.1 Formulation of the problem

In real world problems where the datasets can be represented as tensors, the only available

information is usually a list of nonzero entries and their respective indices. The factor-

ization rank is not given and thus, we have to examine different values of ranks to fit

our data. In order to select an appropriate factorization rank, we use the 5-Fold Cross-

Validation process, as shown in Fig. 7.1. In more detail, for each one of the five different

split train/test sets, we solve the Nonnegative Tensor Completion (NTC) problem using

an arbitrary range of ranks. Finally, we select the factorization model with the rank that

gives the lower values on the associate performance metrics. More specifically, we use the

Root Mean Square Error (RMSE), namely

RMSE =

√∑nnztest
i=1 (test valuei − estimated valuei)2

nnztest
, (7.1)

where

estimated valuei =

R∑
r=1

(
U

(1)
train(i1, :) ~ U

(2)
train(i2, :) ~ · · ·~ U

(N)
train(iN , :)

)
,

and the Relative Incomplete Factorization Error (RIFE)

RIFE =
‖Mtest ~ (Xtest −Xest) ‖F

‖Mtest ~Xtest‖F
, (7.2)

where

Xest = 〚U(1)
train,U

(2)
train, . . . ,U

(N)
train〛.

We also use the Relative Factorization Error (RFE)

RFE =
‖Xtrue −Xest‖F
‖Xtrue‖F

, (7.3)

in the case where the whole dataset is known (original tensor has no missing elements).

In order to estimate the tensor’s rank on both synthetic and real data, we use the

Accelerated Stochastic Gradient for NTC, using the “1 over L” step–size method and

46 Chapter 7. Numerical Experiments

Figure 7.1: 5-Fold Cross Validation Process

with a fixed number of inner iterations and a varying blocksize Bl = c|Ω|. In most of

our experiments we use 1 inner iteration, starting from initial factors Uo(i) ∈ RIi×R+ for

i = 1, 2, 3, with i.i.d. U [0, 1] elements.

7.1.2 Synthetic Noiseless Data (Rank 10, 20, 50)

We start with synthetic data. We construct three nonnegative tensors, one rank–10, one

rank–20, and one rank–50 tensor, of the same size and all denoted as X o ∈ R3000×1700×65
+ .

Both follow the CPD model and are constructed using true nonnegative factors. Then we

apply a mask M of the same size with values 0 or 1. The observed incomplete tensor is

expressed as

X = M~X o

and has 5M nonzeros.

7.1.2.1 Synthetic Noiseless (Rank 10)

We set the number of epochs equal to 50. As epoch we denote the number of iterations

required to access once all available tensor elements 1. We set c = 0.5 and λ = 10−3. We

test for R = 1, 9, 10, 11, 12, 20, 30, 40. As performance metrics, we use RIFE, RMSE and

RFE. In Fig. 7.2 we illustrate the results of the aforementioned model selection process.

We observe that R = 10 gives the lowest for all the metrics used on the test set, which

is the true rank of the noiseless tensor.

1For example, if the number of outer iterations is 10 and c = 0.2, then the number of epochs is equal
to 10 ∗ 1

0.2
= 50.

7.1. Rank estimation problem with NTC via stochastic NMLSME 47

0 5 10 15 20 25 30 35 40

Different values of Rank

0

0.2

0.4

0.6

0.8

1

1.2
R

o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 5 10 15 20 25 30 35 40

Different values of Rank

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Estimate rank

(b) RIFE

0 5 10 15 20 25 30 35 40

Different values of Rank

10
-8

10
-7

10
-6

10
-5

10
-4

Estimate rank

(c) RFE

Figure 7.2: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R10) noiseless dataset.

7.1.2.2 Synthetic Noiseless (Rank 20)

We set c = 0.5, λ = 10−4 and the number of epochs equal to 200. We test for R =

1, 10, 15, 19, 20, 21, 22, 30, 40. As performance metrics, we use RIFE, RMSE and RFE. In

Fig. 7.3 we illustrate the results of the aforementioned model selection process.

We observe that R = 20 gives the lowest for all the metrics used on the test set, which

is the true rank of the noiseless tensor.

7.1.2.3 Synthetic Noiseless (Rank 50)

We set c = 0.2, number of epochs = 100 and λ = 10−3. We test for various ranks

R = 1, 10, 40, 49, 50, 51, 52, 60. As performance metrics, we use RIFE, RMSE and RFE.

In Fig. 7.4 we illustrate the results of the aforementioned model selection process.

48 Chapter 7. Numerical Experiments

0 5 10 15 20 25 30 35 40

Different values of Rank

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 5 10 15 20 25 30 35 40

Different values of Rank

10
-8

10
-6

10
-4

10
-2

10
0

Estimate rank

(b) RIFE

0 5 10 15 20 25 30 35 40

Different values of Rank

10
-8

10
-7

10
-6

10
-5

10
-4

Estimate rank

(c) RFE

Figure 7.3: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R20) noiseless dataset.

7.1.3 Synthetic Noisy Data (Rank 10, 20, 50)

In the noisy case, we add noise E on the complete known tensor X o. The additive noise

has i.i.d. elements N (0, σ2
N). The observed incomplete tensor X is expressed as

X = M~ (X o + E) .

We define the Signal-to-Noise ratio as

SNR :=
‖M~X o‖2F
‖M~ E‖2F

. (7.4)

We present our results for various noise levels 10 and 20 dB.

7.1.3.1 Synthetic Noisy 10dB (Rank 10)

We set c = 0.2, λ = 10−3 and number of epochs equal to 100. We test for R =

1, 9, 10, 11, 12, 20, 30, 40. In Fig. 7.5 we illustrate the results of the aforementioned model

selection process.

7.1. Rank estimation problem with NTC via stochastic NMLSME 49

0 10 20 30 40 50 60

Different values of Rank

0

0.5

1

1.5

2

2.5

3
R

o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50 60

Different values of Rank

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Estimate rank

(b) RIFE

0 10 20 30 40 50 60

Different values of Rank

10
-8

10
-7

10
-6

10
-5

Estimate rank

(c) RFE

Figure 7.4: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R50) noiseless dataset.

We observe that rank R = 10 gives the lowest values for all the metrics used on the

test set, which is the true rank.

7.1.3.2 Synthetic Noisy 10dB (Rank 20)

For the rank–20 tensor, we set the number of epochs equal to 200, c = 0.5 and λ = 10−3.

We test for various ranks R = 1, 10, 15, 19, 20, 21, 22, 30, 40. As performance metrics, we

use RIFE, RMSE and RFE. In Fig. 7.6 we illustrate the results of the aforementioned

model selection process.

We observe that R = 20 gives the lowest for all the metrics used on the test set, which

is the true rank of the noisy tensor.

7.1.3.3 Synthetic Noisy 10dB (Rank 50)

For the rank–50 tensor, we set the number of epochs equal to 100. We set c = 0.5 and λ =

10−1. We test for various ranks R = 1, 10, 40, 49, 50, 51, 52, 60. As performance metrics,

we use RIFE, RMSE and RFE. In Fig. 7.7 we illustrate the results of the aforementioned

model selection process.

50 Chapter 7. Numerical Experiments

0 5 10 15 20 25 30 35 40

Different values of Rank

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 5 10 15 20 25 30 35 40

Different values of Rank

0.077

0.078

0.079

0.08

0.081

0.082

0.083

0.084

0.085

0.086

Estimate rank

(b) RIFE

0 5 10 15 20 25 30 35 40

Different values of Rank

4.5

5

5.5

6

6.5

7

7.5

10
-5 Estimate rank

(c) RFE

Figure 7.5: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R10) noisy (10 dB) dataset.

We observe that ranks R = 1, 10, 50 are suitable for this dataset.

7.1.3.4 Synthetic Noisy 20dB (Rank 10)

We continue with a 20dB noise level. For the rank–10 tensor we set the number of epochs

to 100, c = 0.5 and λ = 10−3. We test for R = 1, 9, 10, 11, 12, 20, 30, 40. In Fig. 7.8 we

illustrate the results of the aforementioned model selection process.

We observe that in higher SNR the estimated rank R = 10 is the actual factorization

rank.

7.1.3.5 Synthetic Noisy 20dB (Rank 20)

For the rank–20 tensor, we set the number of epochs to 200, c = 0.5 and λ = 10−4.

We test for R = 1, 10, 15, 19, 20, 21, 22, 30, 40. In Fig. 7.9 we illustrate the results of the

aforementioned model selection process.

Again, we observe that in higher SNR the estimated rank R = 20 is the actual factor-

ization rank.

7.1. Rank estimation problem with NTC via stochastic NMLSME 51

0 5 10 15 20 25 30 35 40

Different values of Rank

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 5 10 15 20 25 30 35 40

Different values of Rank

0.077

0.0775

0.078

0.0785

0.079

0.0795

0.08

0.0805

0.081

0.0815

Estimate rank

(b) RIFE

0 5 10 15 20 25 30 35 40

Different values of Rank

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
10

-5 Estimate rank

(c) RFE

Figure 7.6: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R20) noisy (10 dB) dataset.

7.1.3.6 Synthetic Noisy 20dB (Rank 50)

For the rank–50 tensor, we set the number of epochs to 100, c = 0.2 and λ = 10−3.

We test for R = 1, 10, 40, 49, 50, 51, 52, 60. In Fig. 7.10 we illustrate the results of the

aforementioned model selection process.

Again, we observe that in higher SNR the estimated rank R = 50 is the actual factor-

ization rank.

7.1.4 Real-World Data

7.1.4.1 Movielens - 10M

First we consider the “Movielens-10M” dataset [26]. This dataset contains 10000054 rat-

ings (in the range 0 − 5) applied to 65133 movie ids by 71567 users of the online movie

recommender service MovieLens. Each rating contains also its (almost unique) timestamp

and, therefore, we can group each rating for 730 weeks. Thus, this dataset can be rep-

resented as a third-order tensor X ∈ R71567×65133×730. We highlight that the true rank

is not known, thus we need to follow the 5-Fold Cross Validation process to select the

appropriate model for our data. We test our method using different values for the rank R.

52 Chapter 7. Numerical Experiments

0 10 20 30 40 50 60

Different values of Rank

10.16

10.18

10.2

10.22

10.24

10.26

10.28

10.3

10.32

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50 60

Different values of Rank

0.0782

0.0783

0.0784

0.0785

0.0786

0.0787

0.0788

0.0789

0.079

0.0791

0.0792

Estimate rank

(b) RIFE

0 10 20 30 40 50 60

Different values of Rank

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

10
-5 Estimate rank

(c) RFE

Figure 7.7: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R50) noisy (10 dB) dataset.

Namely, inspired by the work in [27], we set R = 1, 10, 20, 30, 40, 50. We keep the conven-

tion of 80% - 20% for the train and test sets. The number of epochs is set to 50, whereas

inner iterations are set to 1. Also, we set c = 0.5 and λ = 0.001. As for performance

metrics, we use both the RFE and the RMSE. In Fig. 7.11 we illustrate the results of the

aforementioned model selection process.

We observe that R = 10, gives both the lowest RMSE and RFE on the test set, thus

we can claim that R = 10 is a good choice for our model.

7.1.4.2 Chicago Crime (Communities)

The second real-world dataset that we use is the “Chicago Crime” Dataset, publicly avail-

able in [28], that contains the crime reports in the city of Chicago, ranging from January

1st, 2001 to December 11th, 2017 (a duration of 6186 days). Non-zeros are counts and

modes provide information such as time (days and hours), location (77 communities), and

type of crime (32 types). Thus, we obtain a fourth order tensor X ∈ R6186×24×77×32 with

5.3 million nonzeros. We test our method using different values for the rank R. Namely,

we set R = 1, 10, 20, 30, 40, 50. The epochs are set to 50, c = 0.5 and λ = 0.001. In Fig.

7.1. Rank estimation problem with NTC via stochastic NMLSME 53

0 5 10 15 20 25 30 35 40

Different values of Rank

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
R

o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 5 10 15 20 25 30 35 40

Different values of Rank

0.03

0.035

0.04

0.045

0.05

Estimate rank

(b) RIFE

0 5 10 15 20 25 30 35 40

Different values of Rank

3

4

5

6

7

8
10

-5 Estimate rank

(c) RFE

Figure 7.8: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R10) noisy (20 dB) dataset.

7.12 we illustrate the results of the aforementioned model selection process.

We observe that R = 10, gives both the lowest RMSE and RFE on the test set, thus

R = 10 is suitable for our model. We note that in [29] they also use R = 10 without any

further explanation.

7.1.4.3 Uber Pickups

The next real-world dataset that we use is the “Uber Pickups” Dataset [28], that contains

six months of Uber pickup data in New York City. Data covers April 2014 through

September 2014 (01 − 04 − 2014 until 30 − 09 − 2014). Non-zeros are integer counts

and modes provide information such as date (183 days), hour (0 − 23), latitude and

longitude. Latitude and Longitude values are rounded to three decimal places (i.e., 110

meters of resolution). Thus, we obtain a fourth order tensor X ∈ R183×24×1140×1717 with

3.3 million nonzeros. We test our method using different values for the rank R. Namely,

we set R = 1, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 90. The epochs are set to 200, c = 0.5 and

λ = 10−4. In Fig. 7.13 we illustrate the results of the aforementioned model selection

process.

54 Chapter 7. Numerical Experiments

0 5 10 15 20 25 30 35 40

Different values of Rank

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 5 10 15 20 25 30 35 40

Different values of Rank

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

Estimate rank

(b) RIFE

0 5 10 15 20 25 30 35 40

Different values of Rank

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

10
-5 Estimate rank

(c) RFE

Figure 7.9: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R20) noisy (20 dB) dataset.

We observe that R = 30 is a good approximation of the tensor’s rank.

7.1.4.4 NIPS Publications

The next real-world dataset that we use is the “NIPS Publications” Dataset [28], that

contains papers published in NIPS from 1987 to 2003, collected by [30]. Non-zeros are

integer counts of words and each mode represent paper IDs (2482), paper authors (2862),

vocabulary (14036 words) and years(17). Thus, we obtain a fourth order tensor X ∈
R2482×2862×14036×17 with 3.1 million nonzeros. We test our method using different values

for the rank R. Namely, we set R = 1, 10, 20, 30, 40, 50, 60, 70, 90. The epochs are set to

200, c = 0.5 and λ = 10−4. In Fig. 7.14 we illustrate the results of the aforementioned

model selection process.

We observe that R = 40, 70 are good approximations of the tensor’s rank. Since we

prefer the lower possible rank, we conclude that rank R = 40 might be suitable for our

model.

7.1. Rank estimation problem with NTC via stochastic NMLSME 55

0 10 20 30 40 50 60

Different values of Rank

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2
R

o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50 60

Different values of Rank

0.026

0.027

0.028

0.029

0.03

0.031

0.032

Estimate rank

(b) RIFE

0 10 20 30 40 50 60

Different values of Rank

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

10
-6 Estimate rank

(c) RFE

Figure 7.10: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the synthetic
(R50) noisy (20 dB) dataset.

0 10 20 30 40 50

Different values of Rank

4.26

4.28

4.3

4.32

4.34

4.36

4.38

4.4

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50

Different values of Rank

0.0582

0.0584

0.0586

0.0588

0.059

0.0592

0.0594

0.0596

Estimate rank

(b) RFE

Figure 7.11: RMSE (a) and RIFE (b) vs Different values of rank for the Movielens10M
dataset.

56 Chapter 7. Numerical Experiments

0 10 20 30 40 50

Different values of Rank

2

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.1

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50

Different values of Rank

0.086

0.087

0.088

0.089

0.09

0.091

Estimate rank

(b) RFE

Figure 7.12: RMSE (a) and RIFE (b) vs Different values of rank for the Chicago Crime
dataset.

0 10 20 30 40 50 60 70 80 90

Different values of Rank

4

6

8

10

12

14

16

18

20

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50 60 70 80 90

Different values of Rank

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Estimate rank

(b) RFE

Figure 7.13: RMSE (a) and RIFE (b) vs Different values of rank for the Uber Pickups
dataset.

0 10 20 30 40 50 60 70 80 90

Different values of Rank

18.2

18.4

18.6

18.8

19

19.2

19.4

19.6

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 10 20 30 40 50 60 70 80 90

Different values of Rank

0.194

0.196

0.198

0.2

0.202

0.204

Estimate rank

(b) RFE

Figure 7.14: RMSE (a) and RIFE (b) vs Different values of rank for the NIPS dataset.

7.2. Convergence speed of NTC via Stochastic NMLSME 57

7.1.4.5 Corrupted Image (Missing Values)

In order to approximate the best decomposition rank for our damaged image, presented

in Chapter 6.1, we test our method using different values for the rank R. Namely, we

set R = 1, 10, 20, 30, 40, 50, 60, 70, 90, 150, 200. The epochs are set to 100 and the inner

iterations are set to 5. Also, we set c = 0.2 and λ = 10−4. In Fig. 7.15 we illustrate the

results of the aforementioned model selection process.

0 50 100 150 200

Different values of Rank

0

20

40

60

80

100

120

140

160

180

200

R
o
o
t
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

Estimate rank

(a) RMSE

0 50 100 150 200

Different values of Rank

10
-2

10
-1

Estimate rank

(b) RIFE

0 50 100 150 200

Different values of Rank

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1
10

-6 Estimate rank

(c) RFE

Figure 7.15: RMSE (a), RIFE (b) and RFE (c) vs Different values of rank for the corrupted
image dataset.

We observe that ranks R = 50, 70, 150, 200, give the lowest RMSE, RIFE, and RFE on

the test set. Since we prefer the lower possible rank, we conclude that values R = 50, 70

might be suitable for our model.

7.2 Convergence speed of NTC via Stochastic NMLSME

In this section, we test the effectiveness of our algorithm in terms of convergence, for

various test cases, using both synthetic and real-world data. In all of the experiments we

compute averages over 5 Monte Carlo trials. We set c = 0.2 and 100 epochs. We compare

the proposed step-sizes for 1 (1 nes. iters.) and 5 (5 nes. iters.) inner iterations, with

58 Chapter 7. Numerical Experiments

20 40 60 80 100

Epochs

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

SYN20DB(R=50)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

90 92 94 96 98 100

Epochs (zoomed in)

0.1

0.102

0.104

0.106

0.108

Figure 7.16: Relative factorization error vs the number of epochs for the nonnegative
synthetic noisy tensor (20dB).

20 40 60 80 100

Epochs

0.4

0.6

0.8

1

1.2

1.4

1.6

CC(R=50)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

90 92 94 96 98 100

Epochs (zoomed in)

0.28

0.29

0.3

0.31

0.32

Figure 7.17: Relative factorization error vs the number of epochs for the nonnegative
real-world tensor (Chicago Crime)

(acc) and without (no acc) acceleration. The results are illustrated in Fig. 7.16 - 7.20.

In Fig. 7.16, both methods “1 over L” and “ARMIJO-LS”, with 5 inner iterations and

scheme III, are the most effective. In Fig. 7.17, methods “1 over L” and “RACDM”,

both with 5 inner iterations and scheme III, are the most competitive. Finally, in Fig.

7.18 - 7.20, we observe that methods “RACDM” and “ARMIJO-LS”, with scheme II and

without acceleration, and with 5 inner iterations, achieve the lowest relative factorization

error.

7.3 Execution time for parallel NTC via Stochastic

NMLSME

In this section, we test the effectiveness of our parallelized algorithm in terms of execution

time. This experiment is executed on a DELL PowerEdge R820 system with processor

type Sandy Bridge - Intel(R) Xeon(R) CPU E5-4650v2 (4 sockets per node - 10 cores per

7.3. Execution time for parallel NTC via Stochastic NMLSME 59

20 40 60 80 100

Epochs

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

ML(R=10)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

90 92 94 96 98 100

Epochs (zoomed in)

0.2

0.205

0.21

0.215

0.22

0.225

Figure 7.18: Relative factorization error vs the number of epochs for the nonnegative
real-world tensor (MovieLens10M)

20 40 60 80 100

Epochs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

NIPS(R=40)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

90 92 94 96 98 100

Epochs (zoomed in)

0.54

0.56

0.58

0.6

0.62

0.64

Figure 7.19: Relative factorization error vs the number of epochs for the nonnegative
real-world tensor (NIPS)

20 40 60 80 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
UB(R=50)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

90 92 94 96 98 100

Epochs (zoomed in)

0.46

0.47

0.48

0.49

Figure 7.20: Relative factorization error vs the number of epochs for the nonnegative
real-world tensor (Uber Pickups)

60 Chapter 7. Numerical Experiments

10
1

10
2

10
3

Elapsed time for S_NTC (sec)

0.099

0.1

0.101

0.102

0.103

0.104

0.105

0.106

0.107

SYN20DB(R=50)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

Figure 7.21: Relative factorization error vs execution time for the nonnegative synthetic
noisy tensor (20dB)

10
1

10
2

10
3

Time (sec)

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

CC(R=50)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

Figure 7.22: Relative factorization error vs execution time for the nonnegative real-world
tensor (Chicago Crime)

socket) and 512 GB RAM per node at ARIS supercomputer 2. We use 40 physical threads

where each thread runs on a separate core with hyperthreading disabled. We set c = 0.2

and the number of epochs equal to 100. Again, we compare the proposed step-sizes for 1

and 5 inner iterations, with and without acceleration.

In Fig. 7.21, the most competitive method is “SimpleGrad” with 5 inner iterations and

scheme III. In Fig. 7.22, method “SimpleGrad” with and without acceleration (scheme

II), and 5 inner iterations is the most competitive. In Fig. 7.23, methods “SimpleGrad”

(with 1 inner iteration and without acceleration) and “ARMIJO-LS” (with and without

scheme II and 5 inner iterations) are the most efficient. Finally, in Fig. 7.24, we observe

that methods “RACDM” and “ARMIJO-LS”, with 1 inner iteration and no acceleration,

converge fast. Finally, in Fig. 7.25, methods “RACDM” (scheme II) and “ARMIJO-LS”

(scheme III) are the most competitive for 5 inner iterations.

We observe that the methods “1 over L”, “RACDM” and “ARMIJO-LS” are very

2Greek Research and Technology Network - High Performance Computing Services https://hpc.grnet.gr

7.3. Execution time for parallel NTC via Stochastic NMLSME 61

10
1

10
2

10
3

Time (sec)

0.2

0.205

0.21

0.215

0.22

0.225

ML(R=10)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

Figure 7.23: Relative factorization error vs execution time for the nonnegative real-world
tensor (MovieLens10M)

10
1

10
2

10
3

Time (sec)

0.54

0.56

0.58

0.6

0.62

0.64

NIPS(R=40)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

Figure 7.24: Relative factorization error vs execution time for the nonnegative real-world
tensor (NIPS)

10
1

10
2

10
3

Time (sec)

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

UB(R=50)

1overL (no acc, 1 iters.)
1overL (no acc, 5 iters.)
1overL (acc sc II, 5 iters.)
1overL (acc sc III, 5 iters.)
SimpleGrad (no acc, 1 iters.)
SimpleGrad (no acc, 5 iters.)
SimpleGrad (acc sc II, 5 iters.)
SimpleGrad (acc sc III, 5 iters.)
RACDM (no acc, 1 iters.)
RACDM (no acc, 5 iters.)
RACDM (acc sc II, 5 iters.)
RACDM (acc sc III, 5 iters.)
ARMIJO-LS (no acc, 1 iters.)
ARMIJO-LS (no acc, 5 iters.)
ARMIJO-LS (acc sc II, 5 iters.)
ARMIJO-LS (acc sc III, 5 iters.)

Figure 7.25: Relative factorization error vs execution time for the nonnegative real-world
tensor (Uber Pickups)

62 Chapter 7. Numerical Experiments

0 5 10 15 20 25 30 35 40

Number of threads

0

5

10

15

20

25

30

35

40

S
p
e
e
d
u
p

SYN20DB(R=50)

1overL
SimpleGrad
RACDM
ARMIJO-LS
Linear Speedup

Figure 7.26: Speedup achieved vs the number of threads for the parallel implementation
of stochastic NMLSME using the nonnegative synthetic tensor.

competitive concerning the convergence rate. On the other side, the method “SimpleGrad”

is less accurate but is very fast in terms of execution time.

7.4 Speedups for parallel NTC via Stochastic NMLSME

In this section, we test the performance of our parallel implementation, for all the proposed

step-sizes. We set the number of epochs to 10 and we test for 1 inner iteration (no

acceleration). We test for t = 1, 8, 20, 40 physical threads.

Usually, the best our parallel program can do is to divide the work equally among the

cores, while at the same time introducing no additional work for the cores. If we succeed

in doing this, and we run our program with t cores, one thread on each core, then our

parallel program will run t times faster than the serial runs on a single core of the same

design.

To measure the effectiveness of our parallelism, we use the speedup metric, defined as

speedup =
T1

Tt
, (7.5)

where T1 is the execution time for 1 thread (serial) and Tt is the execution time for t > 1

number of threads (parallel).

The optimal speedup, also known as “linear speedup” is the best possible run-time of

our parallel program. If the speedup is equal to the number of threads, then we say that

our parallel program has achieved linear speedup.

In Figures 7.26 and 7.27, we illustrate the achieved speedup, for the nonnegative noisy

tensor and the real-world tensor from the “Uber Pickups” dataset. We observe that for

the synthetic dataset, our parallel implementation is very close to the linear speedup. In

the case of the “Uber pickups” dataset, we observe that our algorithm performs slightly

worse due to the load imbalance among threads. More specifically, we believe that the

distribution of the nonzero entries in the 3rd and 4th dimension (latitude-longitude) affects

our parallel implementation.

7.5. Stochastic NTC on corrupted image 63

0 5 10 15 20 25 30 35 40

Number of threads

0

5

10

15

20

25

30

35

40

S
p
e
e
d
u
p

UB(R=50)

1overL
SimpleGrad
RACDM
ARMIJO-LS
Linear Speedup

Figure 7.27: Speedup achieved vs the number of threads for the parallel implementation
of stochastic NMLSME using the real-world tensor from the “Uber Pickups” dataset.

50 100 150 200 250 300 350 400 450 500

Epochs

10
-2

10
-1

10
0

IMG(R=50)

1overL
SimpleGrad
RACDM
ARMIJO-LS

Figure 7.28: Relative cost function vs. number of epochs, using 1 inner iteration and Rank
R = 50.

7.5 Stochastic NTC on corrupted image

We use the same corrupted image (Fig. 6.2b), which we illustrate again in Fig. 7.29a.

Since the given incomplete tensor X is in R1063×1599×3
+ , the resulted nonnegative factors

{U(i)
k ∈ RIi×R+ }3i=1 give us a full tensor X̂ also in R1063×1599×3

+ .

We use the CPD factorization model, and more specifically, we use the proposed NTC

via the S NMLSME method. We start from initial factors Uo(i) ∈ RIi×R+ for i = 1, 2, 3,

with i.i.d. elements in U [0, 1], and we set c = 0.02, λ = 10−6, number of epochs 500, 1

inner iteration, and rank R = 50. From all the proposed step–sizes, the one that performs

better in terms of convergence is “1 over L”, as we show in Fig. 7.28.

We generate the tensor X̂ from the resulted factors A = U(1) ∈ R1063×50
+ , B =

U(2) ∈ R1599×50
+ , and C = U(3) ∈ R3×50

+ , using the cpdgen() function. In order to

illustrate the resulted tensor as a true image, we need to convert it back to the tensor

Î = uint8(X̂) ∈ Z1063×1599×3
+ , using function uint8() of MATLAB. In Fig. 7.30 we

illustrate the above methodology using a high–level block–diagram. Finally, in Fig. 7.29

we illustrate side by side the corrupted image (a) versus the restored one (b). We observe

that the algorithm can reconstruct the corrupted image even for small values of c.

64 Chapter 7. Numerical Experiments

(a) Corrupted (90% sparse) (b) Restored

Figure 7.29: Tensor Completion on a corrupted image.

Figure 7.30: Block diagram of image corruption and restoration

7.6 Word Embeddings

In this section, we present a quantitative evaluation comparing our embeddings versus the

Word2Vec method, described in section 6.2.3.2.

7.6.0.1 Data Description

To compare those two methods we used the “abcnews” dataset 3. Sourced from the rep-

utable Australian news source ABC (Australian Broadcasting Corporation), this dataset

contains data of news headlines published for eighteen years (Start Date: 2003-02-19 -

End Date: 2020-12-31). It contains historical moments of the last decade, for example

Afghanistan war, financial crisis, multiple elections, ecological disasters, terrorism, etc.

7.6.0.2 Settings

We first extract the unigrams, bigrams, and trigrams from our corpus using the skip-

gram model with a window of size 5. We remove all the infrequent words, by setting a

3it can be found in https://www.kaggle.com/therohk/million-headlines

https://www.kaggle.com/therohk/million-headlines

7.6. Word Embeddings 65

minimum threshold word count equal to 20. After this process, we reduce the vocabulary

size from 115876 to 19751 words. Then, we compute the supersymmetric PPMI tensor

X ∈ R19751×19751×19751
+ as we showed in section 6.2.4.

To extract the embeddings we use the Pseudosymmetric AO NTC via the S NMLSME

method. We choose the step–size of the “SimpleGrad” method since it has the lowest

execution time. We set the factorization rank R = 300 (d = R), which is a common value

[25],[21], since is both rich enough, and does not require an excessive amount of memory.

We set parameter c = 0.001 and we start from Uo(1) = Uo(2) = Uo(3) ∈ R19751×300
+ , with

i.i.d. elements in U [0, 1]. We tested our method using 100 epochs and one inner iteration.

Both the computation of the PPMI and its factorization was able to run on a laptop

with 6 cores and 16 GB RAM in less than 3 hours. As for the Word2Vec method, it is

implemented using the Tensorflow library 4. The training of the model required 40 epochs

and was very computational and memory demanding. It required a minimum of 32 GB

RAM and took about 12 hours in total.

7.6.0.3 Vector similarity

In order to measure the similarity between two vectors x,y ∈ RN , we use the Euclidean

distance (L2-norm)

distL2(x,y) =

√√√√ N∑
i=1

(xi − yi)2. (7.6)

7.6.0.4 Additive Compositionality

Authors in [22] demonstrate the additive compositionality of their Word2Vec vectors.

To be more precise, one can sum vectors produced by their embedding to compute vec-

tors for certain phrases rather than just vectors for words. For example, assume words

w1=“Germany” and w2=“capital”. Sum uw1 +uw2 is close to vector representation uw3 of

word w3=“Berlin”. This compositionality suggests that a non-obvious degree of language

understanding can be obtained by using basic mathematical operations on the word vector

representations.

7.6.0.5 Multiplicative Compositionality

We examine if our tensor-based embeddings capture 3rd order relationships between words,

through multiplicative compositionality, which was firstly introduced by [21]. More specif-

ically, one can create a vector that represents a word w1 in the context of another word w2

by taking the elementwise product uw1 ~ uw2 . This product is called “meaning vector”

[21] for the word w1. Using the third-order PPMI tensor representation, for any triplet

wi, wj , wk,

M(i, j, k) ≈
R∑
r=1

uirujrukr = (ui ~ uj)
Tuk, (7.7)

4A useful tutorial of Word2Vec implementation using the Tensorflow library can be found in https:

//github.com/tensorflow/docs/blob/master/site/en/tutorials/text/word2vec.ipynb

https://github.com/tensorflow/docs/blob/master/site/en/tutorials/text/word2vec.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/text/word2vec.ipynb

66 Chapter 7. Numerical Experiments

where ul is the word vector for wl (l = i, j, k). If words wi, wj , wk have a high PPMI, then

the result of product (ui~uj)
Tuk will also be high. This means that product ui~uj will

be close to vector uk in the vector space by euclidean distance.

In Table 7.1 we present the nearest neighbors of multiplicative and additive composed

vectors for a variety of words. As we can see, the words corresponding to the nearest

neighbors of the composed vectors for our tensor method are semantically related to the

intended sense both for multiplicative and additive composition. On the other side, for

Word2Vec, only additive composition gives vectors whose nearest neighbors are semanti-

cally related to the desired sense. We observe that our method is very effective and can

be considered as a competitive candidate for NLP tasks.

Table 7.1: Nearest neighbors (in normalized euclidean distance) to elementwise prod-
ucts/additions of word vectors

Composition Nearest neighbors (Symmetric NTC) Nearest neighbors (Word2Vec)

boko + haram mali bloody

boko * haram hezbollah sayyaf

hikers + hiker climbers swims

hikers * hiker climbers racq

deluge + downpour drenching drenching

deluge * downpour drenching belgium

covid19 + vaccine pfizer coronavirus

covid19 * vaccine pfizer pedestrians

israel + palestine evacuate settler

israel * palestine assess apologise

global + warming g7 climate

global * warming seniors bloke

gun + weapon loaded knives

gun * weapon stun user

67

Chapter 8

Conclusion and Future Work

8.1 Conclusions

We considered the NTC problem. First, we developed an accelerated stochastic algorithm

for the NMLSME problem. A unique feature of our approach is that each row of the

matrix variable is updated using a different step–size, specifically tailored to this row.

We experimented with various step–sizes. Then, we used this algorithm and built an

AO algorithm for the NTC problem. We tested the data reconstruction effectiveness

as well as the convergence speed of our approach using both synthetic and real-world

data. We implemented our algorithm using the OpenMP API, and observed significant

speedup. Finally, we presented some real–world applications that can be interpreted as

NTC problems and can be solved efficiently through our method.

8.2 Future work

Finally, we conclude this thesis by presenting possible future extensions of this work.

First of all, developing algorithms that fully exploit the hessian matrix is of high

interest. Also, convergence analysis of the proposed algorithm is an interesting future

topic.

An extension to higher-order PPMI tensors could be a possible topic of interest con-

cerning word embeddings.

Another topic of interest could be the studying and comparison of other image restora-

tion algorithms, in terms of effectiveness and elapsed time.

68 Chapter 8. Conclusion and Future Work

69

Bibliography

[1] P. M. Kroonenberg, Applied Multiway Data Analysis. Wiley-Interscience, 2008.

[2] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor

Factorizations. Wiley, 2009.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

Review, vol. 51, no. 3, pp. 455–500, September 2009.

[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos, “Tensor decomposition for signal processing and machine learning,”

IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[5] Y. Nesterov, Introductory lectures on convex optimization. Kluwer Academic Pub-

lishers, 2004.

[6] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos, “Nesterov-

based alternating optimization for nonnegative tensor factorization: Algorithm and

parallel implementations,” IEEE Transactions on Signal Processing, vol. 66, no. 4,

pp. 944–953, Feb. 2018.

[7] P. A. Karakasis, C. Kolomvakis, G. Lourakis, G. Lykoudis, I. M. Papagiannakos,

I. Siaminou, C. Tsalidis, and A. P. Liavas, “Partensor,” Tensors for Data Processing:

Theory, Methods, and Applications, pp. 66–90, 2021.

[8] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of

Mathematical Statistics, vol. 22, no. 3, pp. 400 – 407, 1951. [Online]. Available:

https://doi.org/10.1214/aoms/1177729586

[9] A. B. Juditsky, A. S. Nemirovski, G. Lan, and A. Shapiro, “Stochastic

Approximation Approach to Stochastic Programming,” in ISMP 2009 - 20th

International Symposium of Mathematical Programming, Chicago, United States,

Aug. 2009. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00981931

[10] A. Beck, First-Order Methods in Optimization. Philadelphia, PA: Society

for Industrial and Applied Mathematics, 2017. [Online]. Available: https:

//epubs.siam.org/doi/abs/10.1137/1.9781611974997

[11] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization

problems,” Université catholique de Louvain, Center for Operations Research and

Econometrics (CORE), CORE Discussion Papers, vol. 22, 01 2010.

https://doi.org/10.1214/aoms/1177729586
https://hal.archives-ouvertes.fr/hal-00981931
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997

70 Bibliography

[12] L. Armijo, “Minimization of functions having Lipschitz continuous first partial

derivatives.” Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1 – 3, 1966. [Online].

Available: https://doi.org/

[13] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien,

“Painless stochastic gradient: Interpolation, line-search, and convergence rates,”

2021.

[14] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, and H. Asai, “A stochastic quasi-

newton method with nesterov’s accelerated gradient,” in Machine Learning and

Knowledge Discovery in Databases, U. Brefeld, E. Fromont, A. Hotho, A. Knobbe,

M. Maathuis, and C. Robardet, Eds. Cham: Springer International Publishing,

2020, pp. 743–760.

[15] I. Siaminou, I. M. Papagiannakos, C. Kolomvakis, and A. P. Liavas, “Accelerated

stochastic gradient for nonnegative tensor completion and parallel implementation,”

2021.

[16] OpenMP Architecture Review Board, “Openmp application program interface,”

Specification, 2015. [Online]. Available: https://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf

[17] T. Papastergiou and V. Megalooikonomou, “A distributed proximal gradient descent

method for tensor completion,” in 2017 IEEE International Conference on Big Data

(Big Data), 2017, pp. 2056–2065.

[18] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing

values in visual data,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 35, no. 1, pp. 208–220, 2013.

[19] Z. S. Harris, “Distributional structure,” ¡i¿WORD¡/i¿, vol. 10, no. 2-3, pp. 146–162,

1954. [Online]. Available: https://doi.org/10.1080/00437956.1954.11659520

[20] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix factorization,”

in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., vol. 27. Curran Associates,

Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/file/

feab05aa91085b7a8012516bc3533958-Paper.pdf

[21] E. Bailey and S. Aeron, “Word embeddings via tensor factorization,” 2017.

[22] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed represen-

tations of words and phrases and their compositionality,” 2013.

[23] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language

Processing. Cambridge, Massachusetts: The MIT Press, 1999. [Online]. Available:

http://nlp.stanford.edu/fsnlp/

https://doi.org/
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1080/00437956.1954.11659520
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
http://nlp.stanford.edu/fsnlp/

71

[24] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks, “A closer

look at skip-gram modelling,” in Proceedings of the Fifth International

Conference on Language Resources and Evaluation (LREC’06). Genoa, Italy:

European Language Resources Association (ELRA), May 2006. [Online]. Available:

http://www.lrec-conf.org/proceedings/lrec2006/pdf/357 pdf.pdf

[25] T. Van de Cruys, T. Poibeau, and A. Korhonen, “A tensor-based factorization model

of semantic compositionality,” in Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies. Atlanta, Georgia: Association for Computational Linguistics, Jun.

2013, pp. 1142–1151. [Online]. Available: https://aclanthology.org/N13-1134

[26] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”

ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015. [Online]. Available:

https://doi.org/10.1145/2827872

[27] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for tensor comple-

tion in the CP format,” Parallel Computing, 2015.

[28] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. (2017)

FROSTT: The formidable repository of open sparse tensors and tools. [Online].

Available: http://frostt.io/

[29] K. D. Devine and G. Ballard, “Gentenmpi: Distributed memory sparse tensor

decomposition.” [Online]. Available: https://www.osti.gov/biblio/1656940

[30] A. Globerson, G. Chechik, F. Pereira, and N. Tishby, “Euclidean Embedding of Co-

occurrence Data,” The Journal of Machine Learning Research, vol. 8, pp. 2265–2295,

2007.

http://www.lrec-conf.org/proceedings/lrec2006/pdf/357_pdf.pdf
https://aclanthology.org/N13-1134
https://doi.org/10.1145/2827872
http://frostt.io/
https://www.osti.gov/biblio/1656940

	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Problem Description (Tensor factorization)
	Notation
	Basic definitions
	Structure

	Matrix Least Squares Problem
	Matrix Least Squares (MLS)
	Nonnegative Matrix Least Squares (NMLS)
	Preliminaries
	Nesterov–type algorithm for NMLS with proximal term
	Complexities

	Nonnegative Matrix Least Squares with Missing Elements (NMLSME)
	Complexities

	Stochastic Gradient Descent Methods
	Stochastic Gradient Descent algorithm (SGD)
	First–Order Methods
	Second–Order Method
	Accelerated stochastic gradient for NMLSME
	Complexities

	Tensor Factorization and Completion
	Introduction on Tensor Factorization and Completion
	The PARAFAC Model
	Nonnegative Tensor Factorization (NTF)
	Nonnegative Tensor Completion (NTC)
	NTC via stochastic NMLSME
	Pseudosymmetric NTC via stochastic NMLSME

	Parallel Implementations
	Multi–threaded Implementation using OpenMP
	Parallel implementation of NMLSME and S_NMLSME

	Applications using Tensor Completion
	Corrupted Image (Missing Values)
	Image Representations
	Missing values

	Natural Language Processing
	Distributional Representation
	Word Embedding
	n-gram
	Skip-gram
	Word2Vec

	Pointwise Mutual Information

	Numerical Experiments
	Rank estimation problem with NTC via stochastic NMLSME
	Formulation of the problem
	Synthetic Noiseless Data (Rank 10, 20, 50)
	Synthetic Noiseless (Rank 10)
	Synthetic Noiseless (Rank 20)
	Synthetic Noiseless (Rank 50)

	Synthetic Noisy Data (Rank 10, 20, 50)
	Synthetic Noisy 10dB (Rank 10)
	Synthetic Noisy 10dB (Rank 20)
	Synthetic Noisy 10dB (Rank 50)
	Synthetic Noisy 20dB (Rank 10)
	Synthetic Noisy 20dB (Rank 20)
	Synthetic Noisy 20dB (Rank 50)

	Real-World Data
	Movielens - 10M
	Chicago Crime (Communities)
	Uber Pickups
	NIPS Publications
	Corrupted Image (Missing Values)

	Convergence speed of NTC via Stochastic NMLSME
	Execution time for parallel NTC via Stochastic NMLSME
	Speedups for parallel NTC via Stochastic NMLSME
	Stochastic NTC on corrupted image
	Word Embeddings
	Data Description
	Settings
	Vector similarity
	Additive Compositionality
	Multiplicative Compositionality

	Conclusion and Future Work
	Conclusions
	Future work

	Bibliography

