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Abstract 

Unmanned Aerial Vehicles (UAVs) have experienced great growth and as of 2020 at 

least 100 countries use UAVs in tactical missions, while at the same time even more 

commercial applications deploy drones, for example photography and filmmaking, 

smart crops, smart cities, emergency handling, drug delivery, traffic management, etc. 

The big success of UAVs came due to the huge growth of electronics and the revolution 

of data. One of the most popular application of drones is object detection  before 

designing the planned operation, e.g. differentiate pedestrians from cars or bikes in 

cross-road management systems. Deep Learning algorithms have been proven to be the 

best solution in such kind of problems. This diploma thesis collects and studies some 

of the most well-known detection systems, it analyzes in theory and in practice an object 

detector, the famous single-stage detector RetinaNet. Furthermore, a modified model is 

proposed that utilizes more Convolutional Blocks and combines features from different 

levels of the Neural Network. The extra convolution block is a mirror of the Feature 

Pyramid Network; therefore, the new model is called “Two-Phase Feature Pyramid 

Network Retina”. Since the goal is to compare those models, the classic RetinaNet and 

the modified model, were trained and tested using the Stanford Drone Dataset, a dataset 

designed to train object detectors for UAVs. The modified model achieves an accuracy 

score 6% higher than the baseline model, and it seems to outperform the original model 

in every metric, such as Precision, Sensitivity and F1 score. Finally, both the original 

and the modified Retina, were compared with other well-known object detectors such 

as YOLO, Faster RCNN, SSD, etc. The proposed architecture seems to outperform 

almost every object detector from the literature in terms of mean Average Precision. In 

conclusion, the modified model can be used to detect small objects in applications 

where accuracy is a critical factor. 
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Σύγκριση Συστημάτων Τεχνητής Νοημοσύνης για τον 

Εντοπισμό Αντικειμένων σε Εικόνες από μη-

Επανδρωμένα. 

 

ΤΡΙΜΑΣ ΧΡΗΣΤΟΣ 

 

Περίληψη 

 Τα μη επανδρωμένα ιπτάμενα οχήματα έχουν παρουσιάσει τεράστια εξέλιξη 

και από το 2020 τουλάχιστον 100 χώρες χρησιμοποιούν μη επανδρωμένα σε 

τακτικές αποστολές. Ταυτόχρονα χρησιμοποιούνται ολοένα και περισσότερο σε 

εμπορικές εφαρμογές, όπως η φωτογραφία, οι έξυπνες καλλιέργειες, έξυπνες 

πόλεις, επιχειρήσεις διάσωσης και διαχείρισης κρίσεων, αποσυμφόρηση οδικών 

αρτηριών κλπ.. Η μεγάλη επιτυχία των μη επανδρωμένων οχημάτων ήρθε με την 

εξέλιξη των ηλεκτρονικών και την επανάσταση των δεδομένων  που 

χρησιμοποιούνται σε έξυπνα συστήματα αποφάσεων. Μια από τις πιο διαδεδομένες 

εφαρμογές των drones είναι η αναγνώριση αντικειμένων για τον ακριβή σχεδιασμό 

της ολικής λειτουργίας του συστήματος, π.χ. διαχωρισμός των πεζών από τα 

αυτοκίνητα και τις μηχανές σε συστήματα διαχείρισης της κυκλοφορίας . Οι 

αλγόριθμοι βαθιάς μηχανικής μάθησης έχουν αποδειχθεί ως η καλύτερη λύση σε 

προβλήματα τέτοιου τύπου. Η παρούσα διπλωματική εργασία συλλέγει και μελετά 

μερικά από τα πιο γνωστά μοντέλα αναγνώρισης αντικειμένων, γίνεται μια πλήρης 

ανάλυση τόσο σε θεωρητικό, όσο και σε πρακτικό επίπεδο , ενός ανιχνευτή 

αντικειμένων, του γνωστού RetinaNet. Επιπλέον, προτείνεται μια τροποποίηση του 

RetinaNet με προσθήκη επιπλέον συνελικτικών μπλοκ και συνδυασμό features από 

διαφορετικά επίπεδα του Νευρωνικού Δικτύου. Καθώς ο στόχος είναι η σύγκριση 

αυτών των μοντέλων, τόσο το κλασσικό RetinaNet, όσο και το τροποποιημένο 

μοντέλο, εκπαιδεύονται και ελέγχονται πάνω στο Stanford Drone Dataset, ένα 

dataset για την εκπαίδευση μοντέλων αναγνώρισης αντικειμένων από μη 

επανδρωμένα. Το τροποποιημένο μοντέλο πετυχαίνει αύξηση ακρίβειας από το 

κλασσικό μοντέλο της τάξης του 6%, ενώ αποδίδει καλύτερα σε όλα τα επίπεδα 

σύγκρισης ως προς την ακρίβεια, την ευαισθησία και το F1 score. Τέλος, γίνεται 

μια σύγκριση τόσο του RetinaNet, όσο και του modified RetinaNet με άλλους  

γνωστούς ανιχνευτές αντικειμένων, όπως τα YOLO, Faster RCNN, SSD, κλπ και 

γενικά η προτεινόμενη αρχιτεκτονική φαίνεται να ξεπερνά σχεδόν όλα τα άλλα 

μοντέλα ως προς τον μέσο όρο ακρίβειας. Συμπερασματικά, το προτεινόμενο 

μοντέλο φαίνεται να είναι κατάλληλο για ανίχνευση μικρών αντικειμένων, όπου η 

ακρίβεια αποτελεί το κυριότερο κριτήριο επιλογής ανιχνευτή. 
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1. Introduction  

1.1) Unmanned Aerial Vehicles 

Unmanned systems are typically known as powered vehicles that do not carry a 

human operator, can be operated autonomously or remotely and can carry a variety of 

payloads depending on their type, functionality and mission objectives. 

Unmanned Aerial Systems, also referred to as drones, have experienced the 

greatest growth. As of 2020, at least seventeen countries have armed UAVs, and more 

than 100 countries will be using UAVs in a military capacity by 2021. The global 

military UAV market is dominated by companies based in the United States and China. 

With extensive cost reduction in electronics, the defense forces around the globe are 

utilizing UAVs for applications such as logistics, communications, attack and combat, 

while commercial applications include aerial photography and filmmaking, cargo 

transport and detection of disasters [1]. 

 

Figure 1: RQ-4 Global Hawk. 

 Whether it comes to the detection of objects of interest (refugee waves, tracking 

target), prison surveillance or information gathering of a battlefield, UAVs have proven 

their usefulness. For example, the US Air Force uses large UAVs for strategic 

reconnaissance, such as the RQ-4 Global Hawk (Figure 1), a 13-meter-long jet that 

carries a variety of sensors, radars and photographic sensors.  

A significant contribution to the development of UAVs, played the evolution of 

cameras. The cameras on-board UAVs are a rich source of information that can be 

processed in order to extract meaningful information. Besides the cameras, the 

development of other advanced hardware and software technologies allow drones to 

carry out their missions without human intervention, such as computer vision, object 

detection, machine learning, thermal sensors and deep neural networks. 
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1.2) Object Detection and Algorithmic Solutions 

Object detection is a computer technology related to computer vision and image 

processing that deals with localization and identification of semantic objects of a certain 

class, in digital images and videos. In other words, given an image or a video stream, 

an object detector can identify-classify objects of interest and provide information about 

their positions within the image. 

 

Figure 2 Object Detection Example 

 With the evolution of cameras and the oversimplification of data gathering and 

processing, object detection can be used in the following commercial areas: 

• Surveillance. 

• Search and Rescue missions. 

• Anomaly detection. 

• Autonomous driving 

The basic idea of object detection, is that every object class has its own special 

features that helps in classifying the class- for example all circles are round. Object 

detection models learn those special features and create patterns on the object’s 

properties. Features may be specific structures in the image such as points or edges. 

More broadly a feature is any piece of information which is relevant for solving the 

computational task related in computer vision applications. The feature extraction 

process can be a computational expensive and many times due to time constraints, a 

higher-level algorithm may be used to guide the feature detection stage, so that only 

certain parts of image are searched for features. 

There are two kinds of object detection methods: 

1) Neural Network approaches. 

2) Non-Neural approaches. 

Non-Neural approaches use one of the following techniques for feature extraction 

and an algorithm such as Support Vector Machines for classification of those features. 
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• Viola-Jones object detector using Haar features. 

• Scale-Invariant feature transformation. 

• Histogram of oriented gradients. 

In the last few years, due to the revolution of Data, most reliable object detectors 

fall in the category of Deep Learning systems. Neural Network approaches can be 

distinguished in to two-stage detectors and single-stage detectors. The first ones use a 

box proposal algorithm as the first stage, and the second stage classifies those proposals, 

while the second ones detect objects and classify them in the image in one pass through 

the network. 

The most known detectors are: 

1)  Regional Proposal Networks like R-CNN or Faster R-CNN: Regional proposal 

algorithms are a family of deep learning algorithms. They are two-stage detectors, 

meaning in the first stage of detection, an algorithm like Selective Search or a neural 

network locates the proposing areas of a detection. The second stage is responsible for 

feature learning and classification/regression. R-CNN was the first two-stage 

architecture that was introduced for object detection. Fast R-CNN and Faster R-CNN 

are modern architectures that rely on the R-CNN model, but they perform faster and 

with significant more accuracy. Region-based networks have been used for tracking 

objects from a UAV-mounted camera, locating text within an image and enabling object 

detection in Google Lens.  

2) Single Shot MultiBox Detector: While Faster R-CNN is considered the state of the 

art in terms of accuracy in object detection, the whole process of detection is very slow 

when it comes to real-time applications. Therefore, SSD was introduced to speed up 

the process by eliminating the need for region proposal networks. The SSD is a single-

stage architecture, which means the tasks of object localization and classification are 

done in a single pass of the network. The SSD has two components: a backbone model 

and SSD head. Backbone model usually is a pre-trained network like VGG that works 

as a feature extractor. The SSD head are convolutional layers added to the backbone to 

interpret bounding boxes and classes of objects. SSD is used in a variety of applications 

such as smart crops, crowd counting and many more. 

3) You Only Look Once (YOLO): Prior work on object detection repurposes 

classifiers and localizers to perform detection, instead the YOLO architecture frames 

object detection as a regression problem to spatially separated bounding boxes and 

corresponded class probabilities. YOLO network is the most famous architecture so far 

and large companies, such as Tesla, are utilizing the model for a variety of applications. 

YOLO can outperform R-CNN by 1000x. 

4) Retina-Net: RetinaNet is one of the best single-stage object detectors that has proven 

to work well with dense and small-scale objects. Its aim is to improve the Feature 

Pyramid Network by simply applying a sophisticated loss function called Focal Loss. 

Like SSD it utilized pre-trained backbone networks for feature learning and has two 
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smaller fully Convolutional networks for classification and box regression.  RetinaNet 

is widely used for detection of objects in aerial or satellite imagery. 

1.3) Motivation and Contribution 

 Unlike fixed position cameras, UAV surveillance has higher mobility and can 

cover larger areas for surveillance. Contrary to traditional object detection systems, 

drones have to deal with a huge amount of data, imbalanced datasets and many tiny 

object instances. Apart from the data and their sizes that may vary, depending the 

application of the UAV the spatial resolution might vary, making the detection an even 

more challenging problem. As previously mentioned, considerable work has been done 

in object detection by large companies and big academic institutions. RetinaNet is a 

Deep Learning architecture designed by Facebook A.I. Research team, and introduces 

a new Loss Function to train a system purely designed by simpler Convolutional 

Models. The Focal loss as they named it, had a huge success especially in imbalanced 

datasets, as it down-weighted the importance of easy examples and gave more attention 

in hard examples. The simplicity of the architecture and the introduction of Focal Loss, 

made RetinaNet the perfect “real-time” object detection system to deploy in a UAV, 

due to the small resources it required compared to other models. In this diploma thesis 

the Retina model is being tested in real world data from the Stanford Drone Dataset. 

After analyzing and testing the architecture, this work aims to further explore the 

potential of the model by introducing more complexity and depth to a rather simple 

architecture. Therefore, an expansion of the base model is introduced by using a two-

phase mirror Feature Pyramid Network. The new model is also trained and tested in the 

Stanford Drone Dataset with the same parameters as the base-model in order to compare 

the two in equal terms. To further evaluate the modified model, a 5-fold cross validation 

is performed in both the original and the modified RetinaNet. The introduction of the 

two-phase FPN seems to provide significant higher accuracy than the base-model, a 

crucial factor for applications like surveillance or traffic management. 
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2. Theoretical Background 

Nowadays, the word Artificial Intelligence or A.I. sounds everywhere and it is 

used increasingly. A.I. refers to the simulation of human intelligence in computer 

systems, that were designed to think and act like humans. The term may additionally 

be applied to any machine that exhibits traits related with the human mind such as 

learning and problem-solving. 

 The most common applications of A.I. are: autonomous cars, voice and face 

recognition, data analysis, virtual assistance and other applications in various 

industries. Subfields of Artificial Intelligence are machine learning and deep learning.  

 

                                   

Figure 3: A.I., M.L. and D.L. 

 

2.1) Machine Learning 

The concept of machine learning dramatically changes the way of how classical 

programming works. In the classical method, someone provides the data and defines 

the rules of the program to obtain an answer. In machine learning or ML, someone gives 

the data with the answers and demands from the machine to create the rules. The rules 

can then be applied to new data to confirm the results and to generate new answers. In 

other words, ML consists of algorithms that improve automatically through experience 

and by the use of data. 

A subset of Machine Learning is Deep Learning. 
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2.2) Deep Learning 

From Machine Learning Deep Learning was born. D.L. is an element of a 

broader family of machine learning algorithms supported by artificial neural networks 

with feature learning. Deep-learning architecture such as deep neural networks and 

convolutional neural networks have been applied to fields including computer vision 

and image analysis. 

A Deep Neural Network (DNN) is an artificial neural network with multiple 

layers between the input and the output layers. In computer vision the most used class 

of deep neural networks are Convolutional Neural Networks or CNNs. 

 

2.3) Convolutional Neural Networks 

A Convolutional Neural Network is a Deep Learning algorithm which can take 

in an input image, assign importance to various objects in the image and be able to 

differentiate one from the other. ConvNets require less pre-processing compared to 

other classification algorithms. 

 The architecture of a CNN is proportional to that of the connectivity pattern of 

Neurons in the Human Brain and the inspiration came from the organization of the 

visual cortex. Individual neurons respond to stimulations only in a restricted region of 

the visual field known as the Receptive Field. A collection of such overlap cover the 

entire visual area. 

 An image is a matrix of pixel values. A lot of times images contain objects that 

have pixel dependencies throughout the image. A CNN is able to successfully capture 

spatial dependencies in an image through the application of relevant filters and the 

network can be trained to understand the sophistication of the image better. 

 In image [4], an RGB image, which has been separated by its three color planes, 

is represented. Although this example has small dimensions, real images can reach 

higher dimensions, for example an 8K image has 7680x4320x3 dimensions, making 

object detection in such dimensions a computational intensive procedure. The role of 

CNN is to reduce the image into a form which is easier to process the image, but at the 

same time without losing features which are critical for getting good predictions. 
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Figure 4: An RGB Image 

ConvNets, usually, are divided into two parts, the convolutional and the densely 

connected. The first one applies various layers such as Convolution and Pooling to 

reduce the dimensions and retain the important features of the image, while the second 

one is responsible for classification. In the following image [5], an example of a CNN 

architecture is shown. 

 

Figure 5: A 4 layer CNN 

 

2.3.a) Convolution Layer 

In a ConvNet, the input is an image (tensor) with a shape: (H) x (W) x (C), 

representing height, width and number of channels respectively. After passing the input 

through the convolutional layer, the image becomes abstracted to a feature map, with 

new shape: (Feature Map Height) x (Feature Map Width) x (Feature Map Channels). 
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Generally, a convolutional layer has the following attributes/hyperparameters: 

• Convolutional filters, also known as kernels. 

• The number of input and output channels. 

• Padding (augmentation of the kernel) and Stride (size of the step the kernel 

parses an image). 

A convolutional kernel is basically a matrix that is applied throughout the image.  

Each filter is convolved across the width and height of the input image, computing the 

dot product between the filter entries and the input, resulting to a feature map of that 

filter. The network learns filters that activate when it detects particular types of features 

at some spatial position of the input. 

Given a two-dimensional Image I as input and a two-dimensional kernel K the 

convolution operation can be described [2]: 

𝑺(𝒊,𝒋) = (𝑰 ∗ 𝑲)(𝒊, 𝒋) = ∑ ∑ 𝑰(𝒎, 𝒏)𝑲(𝒊 − 𝒎, 𝒋 − 𝒏)
𝒏𝒎

 

                

Figure 6: Original and Convolved Image 

In image [6], the kernel shifts 9 times in the orginal image, performing every 

time a matrix multiplication operation between the kernel and the portion of the image 

over which the kernel is hovering at the time. In this example, the filter parses the image 

with a stride of 1. 

 In cases of images with multiple channels such as RGB (Image [7]), the kernel 

has the same depth as that of the input image, and matrix multiplication is performed 

between the Kernels and each Channel. The results then are summed to give a squashed 

one-depth channel Convolved Feature Map. 

 The goal of Convolution operations is to extract high-level semantically rich 

features from the input image. One layer is not enough to achieve this, therefore CNNs 
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need not to be limited to only one convolutional layer. The first layers are responsible 

for Low-Level features such as edges. With more depth in the network, the architecture 

adapts to the High-Level features as well, providing a network which understands the 

whole image. 

 

Figure 7: RGB example of convolution 

 To add more layers (depth) to the network, there are two types of operation. One 

in which the convolved feature is reduced in dimensionality (Valid padding) compared 

to the input, and the other in which the dimensionality remains the same or it is 

increased (Same padding). 

 

 

Figure 8: Same padding with zeros 

 The same padding operation that is shown in Image [8] has been achieved by 

augmenting the input image from 5x5x1 to 6x6x1 and then applying the 3x3x1 kernel 

over the augmented image. If the valid padding operations were performed, the 

convolved matrix will have the same dimensions with the kernel. 
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2.3.b) Pooling Layer 

 Similar to the convolutional layer, the Pooling layer is responsible for reducing 

the spatial size of the convolved feature. The goal of pooling layer is to decrease the 

computational power required to process the data and to extract dominant features 

through dimensionality reduction. 

 

Figure 9: An example of pooling 

Most common types of Pooling operations: Max Pooling and Average Pooling. 

 Max pooling returns the maximum value from a portion of the image I covered 

by a kernel K. It can be used as a Noise Suppressant, discarding the boisterous 

activations altogether and hence performing de-noising and dimensionality reduction 

at the same time. 

 Average pooling returns the average of all the values from the portion of the 

image I covered by a kernel K and as result performs dimensionality reduction. 

 

Figure 10: Avg and Max pooling 

After repeating convolution and pooling layers for several times, the model will 

successfully understand low and high level features. The final step is to feed those 

features to either an Artificial Neural Network or use another technique to perform 

classification. 
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2.3.c) Fully Connected Layer 

Adding a Fully-Connected (FC) layer is a cheap way of learning non-linear 

combinations of the high-level features as represented by the output of the convolution 

and pooling layers. In more details, the input to the FC layer is the output from the final 

convolutional or pooling layer, which is flattened and then fed into the fully connected 

layer. 

 

 

Figure 11: A Fully Connected Network 

The output after performing convolutions and pooling layers is a 3-d matrix. To 

flatten the output, each value of the matrix is stacked and the result is huge vector. The 

flattened vector is then connected to fully connected layers which are Artificial Neural 

Nets. Each layer of the ANN applies the following function: 

𝒈(𝑾𝒙 + 𝒃) 

Where,  

x is the input vector with dimension:  d1 = (number of neurons, 1). 

W is the weight matrix with dimensions: 

     d2 = (number of neurons in previous layer, number of neurons in the current layer). 

b is the bias vector with dimensions: d3 = (number of neurons in current layer, 1). 

g is the activation function. 

 After passing through the FC layers, the final layer uses an activation function 

(see next subsection) to get the probabilities of the input and classify them into a 

particular class. 
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2.3.d) Activation Functions 

Also known as Transfer Function, is a way to extract the output of a node in an 

Artificial Neural Network. It maps the resulting values in a well-defined space, 

depending the function. 

Activation functions can be basically divided into 2 types: 

1. Linear Activation Functions. 

2. Non-Linear Activation Functions. 

Linear of Identity Activation Function: 

The function is a line ranging between (-∞, ∞). 

Equation: 𝒇(𝒙) = 𝒙. 

 

Figure 12: Linear Activation Function 

Sigmoid or Logistic Activation Function: 

A sigmoid function ranges between (0, 1), therefore making it useful in models that 

predict probabilities as an output. The function is differentiable and monotonic.  

 

Figure 13: Sigmoid Function 
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A huge disadvantage is that the logistic function can cause a neural network to get stuck 

during the training phase. This is because, if a strongly-negative input is provided, it 

outputs the value very near to zero. This behavior is slowing down the update of the 

learnable parameters, such as weights and bias. 

Equation: 𝝋(𝒛) = 𝟏 (𝒆−𝒛 + 𝟏)⁄  

 

Rectified Linear Unit (ReLU) Activation Function: 

This function maps every negative value immediately to zero. It ranges from zero to 

infinity, and the function and its derivative are monotonic. 

Equation: 𝑹(𝒛) = 𝒎𝒂𝒙(𝟎, 𝒛) 

 

Figure 14: ReLU Activation Function 

Softmax Activation Function: 

Softmax maps the output in range between [0, 1]. Furthermore, the total sum of the 

mapped output is 1. Therefore, the output of Softmax is a probability distribution. 

Equation: 

𝝈(𝒛)𝒋 =
𝒆𝒛𝒋

∑ 𝒆𝒛𝒌
𝑲
𝒌=𝟏

 

For j = 1,…,K. 
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2.3.e) Loss Functions 

 In Neural Networks, the term Loss refers to the prediction error of the Neural 

Network. The calculation of the loss with the use of a function is called Loss Function. 

Loss function is responsible for the update of weights of the Neural Network. 

There are various Loss functions and the selection of the one that fits the best to a model 

depends on various factors, such as the type of problem (Regression or Classification), 

the model architecture and many more. 

Few of the most known Loss Functions are: 

Cross Entropy: One of the most known loss functions, it measures the performance of 

a classification model whose output is a probability value. 

 

Figure 15: Cross-entropy loss 

Cross-entropy can be described by the following equation 

𝑳(𝜣) = − ∑ 𝒚𝒊𝐥𝐨𝐠 (�̂�𝒊)

𝑴

𝒊=𝟏

 

where, M is the number of the classes, log the natural logarithm, y the binary indicator 

(0 or 1) if class label i is the correct classification and y_hat is the predicted label. 

Kullback-Leibler divergence: Also called relative entropy, it is the gain or loss of 

entropy when switching from distribution one to distribution two – and it allows to 

compare the two distributions. 

KL divergence is primarily used in Variational Autoencoders or in multiclass 

classification scenarios. Mathematically can be described by the following equation: 
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𝑲𝑳(𝑷||𝑸) = ∑ 𝒑(𝑿)𝒍𝒐𝒈 (
𝒑(𝑿)

𝒒(𝑿)
) 

Smooth L1: Mostly used in object detectors for bounding box regression. 

After defining L1 or Manhattan distance: 

𝑳𝟏 ∶= (𝒂, 𝒃, 𝑵) →  ∑|𝒂[𝒊] − 𝒃[𝒊]|

𝑵

𝒊=𝟏

⟹ (𝒂, 𝒃, 𝑵) → ∑ |𝒂𝒊 − 𝒃𝒊|

𝑵

𝒊=𝟏

 

The smooth L1 can be defined: 

𝒔𝒎𝒐𝒐𝒕𝒉𝑳𝟏 ∶= (𝒙) → 𝒑𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆(|𝒙| < 𝟏, 𝟎. 𝟓𝒙𝟐 ,|𝒙| − 𝟎. 𝟓) ⟹ 

𝒙 → 𝒑𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆(|𝒙| < 𝟏, 𝟎. 𝟓𝒙𝟐 ,|𝒙| − 𝟎. 𝟓) 

where x is the Manhattan distance between 2 vectors. 

From the above equation the smooth L1 can be re-written: 

𝒔𝑳𝟏 = {
|𝐱| − 𝟎. 𝟓,     𝒊𝒇  |𝐱| > 𝟏

𝟎. 𝟓𝒙𝟐 ,      𝒆𝒍𝒔𝒆 𝒊𝒇    |𝐱| ≤ 𝟏
 

 

Figure 16: Smooth L1 Loss 

In a more general way, the smooth L1 loss can be re-written: 

𝒔𝑳𝟏 = {

|𝐱 − 𝐲|,                       𝒊𝒇  |𝐱 − 𝐲| > 𝒂

𝟏

|𝒂|
(𝒙 − 𝒚) 𝟐,      𝒆𝒍𝒔𝒆 𝒊𝒇    |𝐱 − 𝐲| ≤ 𝒂

 

In other words, the goal of smooth L1 is to minimize the absolute difference between 

the target and the estimated value. 

Focal Loss [3]: Focal loss is a modification of the cross-entropy function, that reduces 

the contribution from easy examples and increases the importance of correcting 

misclassified examples. 
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From the Cross-Entropy function: 

𝑪𝑬(𝒑, 𝒚) =  {
− 𝐥𝐨𝐠(𝒑) ,                   𝒚 = 𝟏

− 𝐥𝐨𝐠(𝟏 − 𝒑) , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                               (1) 

Modifying the above loss function in more simplistic terms: 

𝒑𝒕 = {
𝒑,                 𝒚 = 𝟏

𝟏 − 𝒑, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                                                            (2) 

By applying (2), in equation (1): 

𝑪𝑬(𝒑, 𝒚) = 𝑪𝑬(𝒑𝒕) = −𝐥𝐨𝐠 (𝒑𝒕)                                             (𝟑) 

At this point, Cross-Entropy handles only the weight of positive and negative 

examples. Positive examples are the target class and negative examples are non-target 

class or background information. However, in object detection there are samples that 

were correctly classified as positive or negative example, and there are samples 

misclassified as negative or positive examples. Those are easy and hard 

positives/negatives respectively and Cross-Entropy does not handle them at all. Apart 

from that, usually dataset suffer from class imbalance, making the network biased 

towards the dominant class. 

 To solve those problems, Focal Loss adds a modulating factor to the cross-

entropy loss, with a tunable hyper-parameter. 

𝑭𝑳(𝒑𝒕) = (𝟏 − 𝒑𝒕)𝜸𝒍𝒐𝒈 (𝒑𝒕) 

 

Figure 17: Focal Loss 

If the gamma parameter gets the value zero, then the focal loss becomes cross-entropy. 

There are other loss functions, such as categorical cross-entropy, hinge loss, Huber loss, 

Mean Square Error and many more. 
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 With the combination of the layers described previously, various ConvNets 

architectures can be built and deployed, depending on the task. Traditionally, CNNs are 

a good option for classification problems, but modern object detection pipelines utilize 

CNNs as feature extractors as well. This chapter, describes some of the most well 

established ConvNets and two Fully Convolutional Networks that have make a 

significant contribution in Computer Vision. 

 

2.4) Visual Geometry Group (VGGNet) 

Designed by the Department of Science and Engineering of Oxford University, 

VGGNets [4] are a series of convolutional neural network models. The original purpose 

of VGG’s research on the depth of ConvNets, was to understand how the depth of NN 

affects the accuracy of image classification and recognition. Beginning with VGG, two 

more upgraded models were designed VGG16 and VGG19, with the number 

representing the depth of the model. 

 

Figure 18: VGG16 architecture 

 Oxford University proposed the idea of seeing the design of a neural network 

architecture more abstract and first introduced the idea of blocks and repeating patterns. 

Visual Geometry Group Networks can be split into six blocks. As can be seen in Image 

[16], the input image is passed through five blocks. Each block is a sequence of 

Convolution, Rectified Linear Unit and max pooling layers. The final block, flats the 

output and uses SoftMax for classification. 

 One important feature of VGG Net is that it uses convolutional blocks based on 

3x3 modules. For example, in the first block each of the output characteristics depends 

on a 3x3 region of the original image, in the second conv block it depends on 5x5 of 
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the original image and so on. Therefore, each block has a dependency from the original 

image, that follows this rule: 

𝒄𝒖𝒓𝒓𝒆𝒏𝒕𝒎𝒐𝒅𝒖𝒍𝒆 = (𝟑 + 𝟐𝒏)𝒙(𝟑 + 𝟐𝒏) 

Where n = 0, 1, ,.., number of blocks. 

 

Figure 19: VGGNets 

VGG shows a simple structure where lower blocks can extract global, 

semantically rich features and the higher blocks can process the higher resolution pixels 

of the image. 

 

2.5) Residual Networks (ResNet) 

 Designing deep neural networks can be a very challenging task to complete. As 

more layers were stacked in a CNN, more problems were emerging (exploding or 

vanishing gradient problem). It is important that the addition of layers makes the 

network strictly more accurate, more expressive rather than just different.  

 Considering Ꞙ is the class of functions that a specific network architecture can 

reach, then ∀𝒇 ∈ Ꞙ exists some set of parameters (biases, weights) that can be obtained 
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through training on a suitable dataset. If f* is the target function and it belongs in Ꞙ, 

then the network is in a good “shape”. Unfortunately, this is rather unlucky, so instead 

the network tries to find some 𝒇𝑭
∗  which best fits within Ꞙ. Given a dataset with features 

X and labels y, the network tries to solve the following optimization problem: 

𝒇𝑭
∗  ≝ 𝐚𝒓𝒈𝒎𝒂𝒙

𝒇
𝑳(𝑿, 𝒚, 𝒇) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒇 ∈ 𝑭 

 It is only reasonable to assume that designing a different and more powerful 

architecture Ꞙ’ it should arrive at a better outcome. However, if Ꞙ is not a subsample of 

Ꞙ’ then it is not guaranteed that the architecture will perform better. In other words, 

non-nested function classes do not always move closer to the target function, as 

illustrated in Image [20]. However, if each architecture is as good as the previous one 

with the addition of extra complexity (nested functions), then each new model will 

move towards the target function. 

 

Figure 20: Non-nested and Nested function classes 

For deep neural networks, the newly-added layer can be trained into an identity 

function f(x) = x, the new model will be as effective as the original model. As the new 

model may get a finer solution to fit the training dataset, the extra layer might make it 

easier to minimize training errors. 

Assuming a classical convolutional neural network exists then it maps the input 

x to the output y = f(x). A residual network will use a replica of the input x to the output 

of the network and the learning algorithm will only learn the differences between the 

input and the output. Therefore, the output of the network is f(x)+x. The advantage of 

this method (residual block), is that it creates layers that they are at least efficient as the 

previous ones. Furthermore, the architecture of the model is relatively simple, since the 

same topology is repeated through the entire network. 
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Figure 21: Residual Block 

ResNet or Residual Networks were invented by Microsoft to solve the problems 

that were stated in the beginning. There are many architectures such as ResNet 18, 

ResNet 34, ResNet50, Resnet101 and ResNet152, with the number representing the 

number of layers in each architecture. 

 

Figure 22: Residual Networks architecture 

ResNet34[5] for example has five convolutional blocks and one block for 

classification. In each convolutional block the spatial dimensions are reduced by a 

factor of 0.5, while the number of filters doubles in each block. In the last block, average 

pooling is applied and a fully connected layer, to flatten the network in the appropriate 

number of classes. To classify the objects, a softmax layer is applied at the end.  

 

Figure 23: ResNet34 architecture 
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2.6) U-Net 

 Convolutional Networks are powerful visual models that yield hierarches of 

features. All models described in previous sections utilized fully connected layers for 

classification. Unlike classic CNNs, a Fully Convolutional Network (FCN) does not 

have fully connected layers. The neural network can only perform convolution and 

pooling operations (for FCN pooling is either up-sampling or down-sampling). The 

CNNs layers typically reduce or down-sample the spatial dimensions of the input 

(height and width), or keep it unchanged. For a Fully Convolutional Network 

architecture, since they perform pixel-wise classification most of the times, it will be 

convenient if the spatial dimensions of the input and output are the same. To achieve 

this, especially after the spatial dimensions are reduced after each convolution step, 

another type of layer called transposed convolution can be used to increase (up -sample) 

the spatial dimensions of the intermediate feature maps. 

 Given a 𝑛ℎ × 𝑛𝑤input tensor and 𝑘ℎ × 𝑘𝑤kernel. Sliding the kernel window 

with stride of one for 𝑛𝑤times in each row and 𝑛ℎtimes in each column yields a total of 

𝑛ℎ𝑛𝑤intermediate results. Each intermediate result is a (𝑛ℎ + 𝑘ℎ − 1) × (𝑛𝑤 + 𝑘𝑤 −

1)tensor that are initialized as zeros. To compute each intermediate tensor, each 

element in the input tensor is multiplied by the kernel so that resulting 𝑘ℎ × 𝑘𝑤tensor 

replaces a portion in each intermediate tensor. In the end, all intermediate results are 

summed together to produce the output of the transposed convolution. An example can 

be seen in the following Image. 

 

Figure 24: Transpose Convolution example 

  

An example of fully convolutional network is the U-net [6]. It inherited its name 

because of its distinct U shape, which can be seen in Image [24]. The network consists 

of a contracting path (top-down pathway) and an expansive path (bottom-up pathway). 
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Figure 25: U-net architecture 

The top-down path follows the architecture of a simple ConvNet, consisting of 

convolutions and max pooling operations. At first, two 3x3 zero-padded convolutions 

are applied, each followed by a ReLU and a 2x2 max polling operation with stride of 2 

channels. At each down-sampling step the spatial dimensions are reduced by a factor 

of 0.5 and the number of feature channels are doubled. 

Every step in the bottom-up pathway consists of an up-sampling operation of 

the feature map, followed by a 2x2 “up-convolution” that halves the number of feature 

channels, followed by a concatenation with the corresponding cropped feature map 

from the dilated path and two 3x3 convolutions, followed by a ReLU. The cropping 

operation is necessary to match the size of the new feature map that is produced after 

each convolution step. As a final layer a 1x1 convolution is used to map each 

component feature vector to the desire number of classes. 

U-net was initially developed for biomedical-segmentation, but it is widely used 

in semantic segmentation problems (pixel-wise classification). 

 

2.7) Feature Pyramid Network (FPN) 

Detecting objects in different scales is a rather challenging task, especially when 

it comes to small objects. Feature pyramids on top of image pyramids form the root of 

a standard solution to this challenge. Those pyramids are scale-invariant meaning that 

an object’s scale changes the offset by shifting its level in the pyramid. This property, 

allows a model to identify and detect objects across a large range of scales by scanning 

the model over both positions and pyramid levels. 

Featurized image pyramids [7] were heavily used in the era of hand-engineered 

features. In the modern days, tasks like recognition and object detection use features 
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that have been computed by an algorithm or by another deep learning model and not by 

hand. 

 

Figure 26: Featurized Image Pyramids 

Furthermore, featurizing each level of an image pyramid has various limitations. 

Inference time increases considerably, making this approach impractical for real 

applications. Also, training a deep neural network end-to-end on an image pyramid is 

memory consuming. 

 Another way to compute a multi-scale feature representation is by using a 

ConvNet. A CNN computes a feature “hierarchy” layer by layer and with sub -sampling 

layers the hierarchy gets a multiscale pyramidal shape. 

 

 

Figure 27: Single Feature Map 

This hierarchy produces feature maps of different spatial resolutions, but introduces 

large semantic gaps caused by different depths. As the network goes deeper, the 

resolution of the image reduces, but semantically strong features are being extracted. 

The single feature map model misses the opportunity to reuse higher-resolution maps, 

consequently misses the detection of object of different sizes. 

 Feature Pyramid Network or FPN combines low-resolution but semantically 

strong features with high resolution but semantically weak features. To achieve this, it 

utilizes a bottom-up and a top-down pathway with lateral or skip connections. 
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 The bottom-up pathway uses a ConvNet like ResNet or VGG. From one 

convolution module to the next, the spatial dimensions are reduced by ½. The output of 

each convolution module is later used in the top-down pathway. 

 

Figure 28: FPN architecture 

 Each output of the bottom-up pathway is used as input in the top-down pathway. 

To fit the dimensions, the FPN uses lateral connections, which is simple a 1x1 

convolution filter to reduce the output channel depth. Going down the path, each 

previous layer is up-sampled by 2, using nearest neighbors up-sampling (Figure 29). 

 

 

Figure 29: Up-sampling 

The result is an image with double the size of the spatial dimensions. Again, a 1x1 

convolution is applied to the corresponding feature maps in the bottom-up pathway. 

Then the results are added element-wise. Finally, a 3x3 convolution filter is applied to 

all merged layers. This final filter is applied to reduce the aliasing effect of the up/down-

sampling that takes place.  
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Figure 30: U-net vs FPN 

 Both U-net and Feature Pyramid network are Fully Convolutional Networks. 

While they seem to have big similarities, the main difference is that FPN utilizes lateral 

connections, while U-net only copies and concatenates the cropped areas. 

 

Object detection systems, based on the architecture, can be classified in two 

detector categories: 

• Single-stage detectors. 

• Two-stage detectors. 

The difference between the two pipelines is that two-stage detectors use in the first 

stage an algorithm or even an entire Neural Network to create possible locations of 

objects in an image and the second stage is responsible for classification and box 

location correction, while single-stage detectors localize an object and classify it in a 

single pass. 

Two-stage detectors were designed for accuracy, while single-stage detectors for speed. 

As deep neural networks advanced over the years, so did object detector systems, to the 

point were two-stage and single-stage detectors perform at the same accuracy and speed 

level. 
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Figure 31: Object Detection Pipelines 

 

2.8) Two-stage architectures 

 The problem of object detection can be separated into two sub-problems. Box 

localization and classification of the proposed location. Due to unknown number of 

instances of an object in an image, a simple ConvNet architecture is not enough. As an 

alternative, the image can be divided in a fixed number of regions, and the ConvNet 

can classify if the image contains a certain class of objects. The problem with this 

approach is that different objects have different spatial locations within an image and 

different aspect ratios. Hence, a huge number of regions must be selected, making it a 

huge computational problem. 

To bypass this problem various methods were proposed aiming the reduction of 

the proposed locations. The Networks that utilize that kind of techniques were known 

as Region-based Convolutional Neural Networks (RCNNs) or two-stage detectors. 

 

2.8.a) Regional CNN (R-CNN) 

 The first Region Proposal Network [8] (R-CNN) took an image as input and 

produce a set of bounding boxes as output, where each bounding box contains an object 

and also the category of the object. In order to keep the number of proposed locations 

small, R-CNN utilizes in the first stage of the pipeline a mechanism called Selective 

Search to extract regions of interest (ROI). Each ROI is a rectangle that may represent 

the boundary of an object in an image. 
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SELECTIVE SEARCH USING HIERARCHICAL GROUPING  

 Input: Image. 

 Output: Set of object location hypotheses L. 

1 Obtain initial regions R = {r1, …, rn} using F&H method. 

2 Initialize similarity set S = Ø. 

3 foreach neighboring region pair (ri ,rj) do 

4  Calculate similarity s(ri, rj). 

5  S = 𝑆 ∪ 𝑠(𝑟𝑖 , 𝑟𝑗 ) 

6 while S ≠ Ø do 

7   Get highest similarity s(ri,rj) = max(S) 

8  Merge corresponding regions 𝑟𝑖 = 𝑟𝑖 ∪ 𝑟𝑗 

9  Remove similarities regarding 𝑟𝑖: 𝑆 = 𝑆 𝑠(𝑟𝑖 , 𝑟∗) 

10  Remove similarities regarding 𝑟𝑗: 𝑆 = 𝑆 𝑠(𝑟∗, 𝑟𝑗) 

11  Calculate similarity set St between rt and its neighbors. 

12  S = 𝑆 ∪ 𝑆𝑡 

13  R = R∪ 𝑟𝑡  

14 Extract object location boxes L from regions in R. 

 

 

Usually, selective search [9] calculates approximately 2.000 possible object locations. 

After that, each ROI is warped into a square and fed through a convolutional neural 

network that produces an output feature vector. Each ROI’s feature output is fed into a 

Support Vector Machine to classify the presence of the object within that candidate 

region proposal. In addition to predicting the presence of an object within the region 

proposals, the algorithm also predicts four values, which are offset values to increase 

the precision of the bounding box. In other words, the algorithm uses these 4 values to 

adjust the coordinates of the region proposal, as close as possible to the ground truth. 
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Figure 32: RCNN architecture 

 

 In Figure 32, the architecture of RCNN can be seen. In this particular image 

example, there are three region proposals that are warped into a fix size rectangle and 

they are fed into a ConvNet. Each feature vector is then used to adjust the bounding 

box and classify the object within the region. Although the example looks simple, in a 

real dataset they would be around 2.000 proposals for each image, making the whole 

process a difficult computational problem. Furthermore, the selective search algorithm 

is a fixed algorithm and no learning is happening at that stage. This could lead to the 

generation of bad candidate region proposals. 

 

2.8.b) Fast R-CNN 

The main performance bottleneck of an R-CNN lies in the independent CNN 

forward propagation for each region proposal. Fast R-CNN [10] proposed a different 

mechanism to the region proposal extraction. The algorithm, but instead of feeding the 

region proposal to the CNN, the input image is fed to the ConvNet to generate a 

convolutional feature map. Then, from the convolutional feature map, the region 

proposals are identified through selective search and warped into squares of fixed size. 

To achieve that, Fast R-CNN introduces Region of Interest pooling layer, which is a 

similar operation to max-pooling.approach is similar to the R-CNN.  
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Figure 33: A 2x2 ROI pooling layer example 

 

The feature output from the ConvNet and the region proposals from the selective search 

algorithm are input into the ROI pooling layer, outputting concatenated features that 

are further extracted for all the region proposals. The output of the ROI pooling layer 

is called ROI feature vector. Each of these feature vectors are of fixed size, and they 

can be fed into a fully connected layer to flatten down the dimensions, and later used 

as input into a softmax layer to predict the class of the proposed region and also the 

offset values for the bounding box. 

 Unlike R-CNN, Fast R-CNN does not have to feed 2.000 region proposals to 

the ConvNet every time, instead the convolution operation is done only once per image 

and a feature map is generated from it. 

 

 

Figure 34: Fast R-CNN architecture 

2.8.c) Faster R-CNN 

 Both R-CNN and Fast R-CNN use the selective search algorithm to extract the 

region proposals. Selective search is a rather slow and time-consuming algorithmic 

process that affects critically the performance of the network. Instead of using Selective 
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Search algorithm on the feature map to identify the region proposals, a separate network 

is used to predict the region proposals, called Region Proposal Network (RPN).  

Region Proposal Networks follow these three steps: 

• Generate Anchor boxes. 

• Classify each anchor box whether it is foreground of background. 

• Learn the shape offsets for anchor boxes to them for objects. 

Anchor boxes[11] “are a set of predefined bounding boxes of a certain height and 

width”. They are defined to capture the scale and aspect ratio of specific object classes 

that need to be detected and they are typically chosen based on object sizes in the 

training dataset. 

 

 

Figure 35: Anchor boxes example 

 

After producing the anchor boxes, the RPN predicts the binary class (background or 

object) and bounding box for each anchor box. Sometimes, due to the large number of 

boxes produced, more than one bounding box predicts the same object. To remove 

overlapped results, non-maximum suppression [11] is applied. The remaining predicted 

bounding boxes for objects are the region proposals required by the ROI pooling layer. 
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Non-Max suppression 

1 Procedure NMS(B,c) 

2 Bnms  Ø 

3 𝒇𝒐𝒓 𝑏𝑖 ∈ 𝐵 𝒅𝒐   

4  Discard  False 

5  𝒇𝒐𝒓 𝑏𝑗 ∈ 𝐵 𝒅𝒐   

6   If same (bi,bj) > λnms then  

7    If score (c,bj) > score(c,bi) then  

8     Discard  True 

9  If not discard then  

10   Bnms  𝐵𝑛𝑚𝑠 ∪ 𝑏𝑖  

11 Return Bnms 

 

Faster R-CNN [12] is an upgrade of the Fast R-CNN. They follow the same 

architecture, but Faster R-CNN utilizes RPN instead of Selective Search. 

 

 

Figure 36: Faster R-CNN architecture 

As part of the whole model, the region proposal network is jointly trained with the rest 

of the model. In other words, the loss or objective function of the Faster R-CNN 

includes not only the class and bounding box prediction in object detection, but also the 

binary class and bounding box prediction of anchor boxes in the RPN. The result is an 

end-to-end training method, where the RPN learns how to generate high-quality region 

proposals, so as to stay accurate in object detection with a reduced number of region 

proposals that are learned from data. 
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2.9) Single-stage architectures 

 Single stage model architectures, unlike Regional Neural Networks, directly 

predict object bounding boxes and classification score for an image. There is no 

intermediate task like detecting region proposals through a neural network or with an 

algorithm like Selective Search. The result is a much simpler and faster architecture. 

 Usually, Single Stage architectures utilize a ConvNet such as VGG or ResNet 

as a backbone network. The backbone network is responsible for feature extraction. 

Then, usually, two more Fully Convolutional Networks are deployed for box regression 

and object classification. 

 

2.9.a) You Only Look Once (YOLO) 

YOLO [13] is a family of deep learning models, designed for fast object 

Detection. At the moment, there are three YOLO versions. YOLOv1 (Figure 37) 

proposed the general architecture, where the second version introduced anchor boxes 

to improve the bounding box proposal. Version number three proposed changes in the 

training process of the model. 

 

Figure 37: YOLO architecture 

As seen in Figure 37, the basic architecture of YOLO relied on a series of Convolutions 

and Max Pooling layers. Finally, for YOLOv1, two fully connected layers are 

responsible for predicting the bounding boxes. In v2, the fully connected layers were 

removed and instead, the anchor boxes are responsible for box regression. 

 In general, YOLO is a very successful object detector. The simplicity of the 

architecture, allows YOLO to be trained quite fast and version three is as accurate as 

the best two-stage object detector. 

2.9.b) Retina Network 

Focal loss was introduced with RetinaNet. The goal was that a simple Fully 

Convolutional architecture with the appropriate loss function could fix the extreme 
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foreground-background class imbalance problem that came with single-stage 

architectures. 

RetinaNet [12] consists of a backbone network (ConvNet +FPN) and two task 

specific fully convolutional networks, one for box regression and one for object 

classification. 

 

Figure 38: RetinaNet architecture 

The backbone network is responsible for computing a convolutional feature map over 

an entire image and is off-the-self convolutional network.  

 As previously stated, networks that utilize anchor boxes suffer from extreme 

foreground-background class imbalance due to dense sampling of anchor boxes. In 

RetinaNet, each Feature Pyramid level can contain thousands of anchor boxes. Only a 

few will be assigned to a ground-truth object, while the rest will be background class. 

These easy examples or detections with high probability, although resulting in small 

loss values can collectively overwhelm the model. For that reason, Focal Loss was 

chosen as loss function in the model training phase. FL reduces the loss contribution 

from easy examples and increases the importance of correcting misclassified examples 

(see also section 2). 

 

 There are many more single-stage detectors such as Single Shot Detector or 

SSD, SqueezeDet, DetectNet. Also, there are variations of the well-known detectors 

such as Tiny or Fast YOLO that have been developed for more speed or less computing 

power. 

 

 

 

 

 

 



 
50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
51 

3. Base model (RetinaNet) 

The RetinaNet can be separated in three major components: 

1) The backbone Network, which consists of a bottom-up and a top-down 

pathway. 

2) Two subnetworks for classification and regression. 

3) The loss function to train the model. 

3.1) Backbone Network 

 As mentioned in 2.9.b the backbone net is a fully convolutional network with 

lateral connection. It consists of an encoder and a decoder. In the original paper the 

encoder was a residual network such as ResNet50 and the decoder was a Feature 

Pyramid Network. The original image gets fed into the encoder, which processes the 

image through convolutional kernels and generates deep features. The bottom-up 

pathway as it is also called can be any convolutional network, as long as it does not 

contain any fully connected layers. 

 

Figure 39: Backbone Network 

As seen in Figure 39, moving from the bottom all the way to the top, the spatial 

dimensions are reduced at each convolutional block by a factor of 0.5.  
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For each feature map produced by the ResNet, the FPN does the exactly opposite 

operation. It up-samples the spatial resolution of each feature map input by a factor of 

two. The result is then merged with the corresponding bottom-up map, which undergoes 

a 1x1 convolution to reduce channel dimension for element-wise addition. 

 

3.2) Classification/Regression Networks 

The classification and regression networks are two Fully Convolutional 

Networks with simple architecture. The classification network predicts the probability 

of an object to present at each spatial position for each of the A anchors and K object 

classes, while the regression net predicts the relative offset between anchor and the 

ground truth box. 

The classification network design is simple. As input takes a feature map with 

C (256) channels from a pyramid level. Then it applies four 3x3 convolutional layers, 

each with C filters, followed by ReLU activation functions, followed by a 3x3 

convolutional layers with KA filters. As last layer, sigmoid function is attached to 

output the KA predictions per spatial location. 

 

Figure 40: Classification/Regression Networks 

 

The bounding box regression network has an identical design, with the difference of 

having 4A linear outputs per spatial location.  

 These two small FCNs are attached to each FPN level. Meaning if the FPN has 

four levels, 8 subnetworks are needed to perform object detection. Furthermore, 

although the two networks share identical architecture, they use separate parameters 

(weights, biases). 
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3.3) Loss Functions 

 For classification, RetinaNet uses a modification of the Cross-Entropy loss 

function, called Focal Loss (see 2.3.e) or FL. Focal Loss reduces the contribution from 

easy examples and increases the importance of correcting misclassified examples.  

 For box regression uses smooth L1 (see 2.3.e) or Least absolute deviation or 

Least Absolute Error, as a loss function. The goal is to minimize the absolute difference 

between the target value and the estimated value. 

 

3.4) Why Retina? 

 Choosing a deep learning model to complete a certain task is quite challenging. 

The evaluation process depends on many factors such as the challenge, the data, the 

application of the model and many more. In order to have a general idea how a network 

performs organizations and companies release from time-to-time huge datasets with 

many classes and evaluate their models with them. One of those datasets is Microsoft’s 

Common Objects in Context or the COCO dataset. 

The COCO image dataset was created with the goal of advancing image 

recognition. The dataset contains demanding, image or video datasets for computer 

vision or object detection, mostly state-of-the-art neural networks. It is often used to 

compare the performance of object detection algorithms. It contains 80 classes of 

objects and most of the well-known object detectors come with a pre-trained model on 

the COCO dataset. 

Having all the above in mind, the following chart, showcases the Mean Average 

Precision of different Object Detectors using the COCO dataset. 

 

Figure 41: COCO MAP results 
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At the particular time, comparing to the other famous object detectors, RetinaNet really 

stands out. Taking in to consideration the fact that it is a Single Stage Detector, therefore 

it is fast, it was only logical to select this deep learning architecture as our base model 

for comparison. 
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4. Dataset 

4.1) Stanford Drone Dataset (SDD) description 

The SDD[14] is a massive data set of aerial images collected by drones over the 

Stanford campus. The particular dataset is ideal for computer vision task such as object 

detection or target tracking. It contains more than 60 aerial videos or 69GB of data. The 

dataset consists of eight unique scenes. For each video, a model can detect 6 different 

agents – “Pedestrians”, “Bikers”, “Skaters”, “Carts”, “Cars” and “Bus”. Unfortunately, 

the dataset is biased, since the classes of Pedestrians and Bikers are covering more than 

80% of the annotations. 

 

 

Figure 42: SDD image example 
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4.2) Changes in the Dataset 

For the experiments that were conducted, some of the agents were merged into 

new classes. To be more precise, the “Pedestrian” and “Skater” classes merged into a 

new class called “Person”. The “Biker” class remained as it is. The “Car” and “Cart” 

agents were combined and the class kept the name “Car”.  The “Bus” class remained 

also as it is. 

After all the editing, the Training and Testing annotations for the experiments were: 

 

Classes (Training Annotations) 

 

 

Number 

Person 22.673 

Biker 11.479 

Car 1.512 

Bus 101 

Total 35.765 

 

 

Classes (Testing Annotations) 

 

 

Number 

Person 5.558 

Biker 1.204 

Car 23 

Bus 31 

Total 6.816 

 

The dataset is stored in a csv file in the Pascal VOC format: 

(image, x1, y1, x2, y2, class_name) 

Where x1, x2, y1, y2 are the four coordinates needed to locate an object.  
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5. Evaluation Metrics 

5.1) Intersection Over Union (IoU) 

Intersection Over Union[15] is a metric that evaluates the overlap between two 

bounding boxes. It requires the true coordinates of the object that needs to be detected 

(the ground truth box Bgt) and a bounding box Bp that was predicted. By applying the 

IoU we can evaluate whether a detection is valid (True Positive) or not (False Positive). 

IoU is given by the overlapping area between the prognosticated bounding box Bp and 

the Bgt, divided by the area of union between them: 

𝑰𝒐𝑼 =  
𝒂𝒓𝒆𝒂 (𝑩𝒑 ∩ 𝑩𝒈𝒕)

𝒂𝒓𝒆𝒂(𝑩𝒑 ∪ 𝑩𝒈𝒕)
 

 

To represent the above equation in terms of detection, the image below illustrates the 

IoU between a ground truth bounding box in green and a detected bounding box in red. 

 

Figure 43: IoU representation 

 

 Using IoU the following concepts can be defined: 

• True Positive (TP): A correct detection. IoU ≥ threshold. 

• False Positive (FP): A wrong detection. IoU < threshold. 

• False Negative (FN): A ground truth object not detected. 

• True Negative (TN): In object detection this metric has no use, since it 

represents a corrected misdetection and in object detection there are many 

possible bounding boxes that should not be detected within an image. Therefore, 

True Negative would be all possible bounding boxes that were correctly not 

detected. 
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The threshold is a constant that is metric dependent. It is usually set to values above 

0.5 or 50%. 

5.2) Metrics 

 Using the concepts that were defined in section 5.1, the following metrics can 

also be extracted: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Classification Accuracy is the simplest metric to use and it is defined as the 

number of correct predictions, divided by the total number of predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision is the ratio of true positives divided by the total positives that were 

predicted. 

Many times, accuracy is not enough to determine whether a model behaves ideally. 

Therefore, precision needs to be considered. A precision score towards 1 will signify 

that the model did not miss any true positives and is able to classify well between correct 

and incorrect labeling. A low precision score on the other hand, means that the classifier 

has a high number of false positives which can be an outcome of imbalanced class or 

untuned model hyperparameters. 

 

∗ 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Sensitivity, is essentially the ratio of true positives to all the positives in ground 

truth. Recall towards 1 will signify that the model did not miss any true positives and it 

is able to classify well between correctly and incorrectly labeling. A low recall score, 

means that the classifier has a high number of false negatives which can be an outcome 

of imbalanced class or again untuned model hyperparameters. 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The F1-score metric, is a combination of precision and recall. To be more 

accurate, F1 is the harmonic mean of the two metrics. 
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A high F1-score, translates as a high precision and high recall scores. It presents a good 

balance between precision and recall and gives good results on imbalanced 

classification datasets.  

A low F1 score is difficult to explain. Both of the metrics can be responsible for a low 

F1-score. Low sensitivity means that the model did not do well on very much of the 

entire test set. Low precision means that among the cases that were identified as 

positive, the model did not get many of them right. 

Precision measures how the accurate the predictions of the model are, while 

Recall measures how well the model finds all the positives. The combination of those 

two metrics for various thresholds allow to produce another metric called Precision-

Recall Curve or PR-curve. For each class, the area below the PR-curve represents the 

Average Precision of that class. Weight summing each AP over each class, we get the 

mean Average Precision of the model. 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 

Where APk the Average Precision of class k and n the number of classes [16]. 

 

*For this diploma thesis the Sensitivity or Recall score is defined, but in the equation 

the None class (see confusion matrix in the experiments section) is not taken into 

account, therefore the results tend to be significantly higher, but that is the result of the 

proposed Recall metric. If the None class is taken into consideration the Sensitivity 

score is closer to 0.75 for confidence threshold of 0.6 in the first experiment. 
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6. Base model Experiments 

 To create a base case, the original RetinaNet model was trained using a simple 

split of the dataset. Eighty percent of the data were used in the training process and 

twenty percent for testing. 

 For convenience, the training process took place in Google Colab. For the 

training process, NVIDIA Tesla P100/V100 GPU accelerators were deployed. 

 Tesla P100 is powered by NVIDIA Pascal architecture [17]. There are 3.584 

CUDA cores and the accelerator can perform at 4.7 TeraFLOPS. The memory of the 

GPU is 16GB CoWoS HBM2 at 732 GB/s, with maximum power consumption at 

250W. 

 Tesla V100 is powered by the Volta architecture [18]. It combines Tensor and 

Cuda Cores within a unified architecture. To be more specific, it is equipped with 640 

Tensor cores and 5.120 CUDA cores. It performs at 7 TeraFlops and the GPU memory 

is 32GB HBM2. With a combination of improved raw bandwidth of 900GB/s and 

higher DRAM utilization efficiency, the V100 delivers 1.5X higher memory bandwidth 

over the P100. The maximum Power consumption is at 250W like the P100. 

Both the P100 and V100 support every major deep learning framework such as 

Tensorflow, PyTorch, Caffe2, etc. 

6.1) Simple Split 

For the first experiment, the process was relatively simple. First the data were 

split into training and testing data, 80/20 split. Then the training annotations were fed 

into the network as input images. The model was trained for 100 epochs using the 

NVIDIA Tesla P100 GPU accelerator. To make the training process faster, a pre-trained 

ResNet in the COCO dataset was utilized. Therefore, only the classification and 

regression networks needed to be trained and readjust their weights to detect the objects 

of the SDD. 

 

Figure 43: Training/Testing process 

 

 

Data Split (Training/Test).
Feed Training annotations 

to Network.

Training for 100 epochs on 

NVIDIA Tesla P100.
Test network.
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In the following matrix the metrics of the experiment are represented. For a 

prediction to be classified as True, a 0.6 threshold of confidence was chosen. That 

means that if a detection has an IoU score confidence over the IoU threshold, then to 

be classified as a TP, the confidence score of the detected object needs to exceed the 

prediction threshold. 

To evaluate how well the model performs over each class, a confusion matrix 

was constructed. Furthermore, a None class was added to the CM, representing class 

objects the model found, but they were not in the set of the testing annotations. 

 

Table[1]: Simple split results 

From the results in table No.2 the precision for each class can be calculated: 

 

𝑃𝑟𝑝𝑒𝑟𝑠𝑜𝑛 =
4829

4829 + 415
= 0.920 

 

𝑃𝑟𝑏𝑖𝑘𝑒𝑟 =
738

738 + 582
= 0.559 

𝑃𝑟𝑏𝑢𝑠 =
22

22 + 8
= 0.733 

 

𝑃𝑟𝑐𝑎𝑟 =
14

14
= 1 

 

Metric Simple split (0.6 threshold) 

Accuracy 0.800 

Precision 0.847 

Recall 0.934 

F_1 score 0.889 

mAP/wmAP 0.611/0.870 
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Person 4829 582 0 0 

Biker 415 738 0 0 

Bus 0 0 22 0 

Car 0 0 8 17 

None 410 173 1 6 

 
Person Biker Bus Car 

 

Table[2]: Confusion Matrix 

 

The experiment was repeated for confidence score threshold 0.7 and the 

Intersection over Union threshold remained the same at 0.5.  

 

 

 

 

Table[3]: Simple split results confidence threshold 0.7 

 

 

Metric Simple split (0.7 threshold) 

Accuracy 0.746 

Precision 0.776 

Recall 0.950 

F_1 score 0.854 

mAP/wmAP 0.596/0.847 
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Person 4661 898 0 0 

Biker 630 661 0 0 

Bus 0 0 25 0 

Car 0 0 6 17 

None 207 67 1 6 

 
Person Biker Bus Car 

 

Table[4]: Confusion Matrix for confidence threshold 0.7 

 

 

Figure 44: Example of Detection 
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6.2) K-fold Cross-Validation 

 Cross-validation is a technique for evaluating further a deep learning model and 

testing its performance. There are various CV algorithms, but for this evaluation the K-

fold CV was chosen. 

 

K-fold Cross-Validation 

1 Split Data into Training/Testing sets. 

2 Split the Training dataset into k equal (if possible) parts called folds. 

3 𝑭𝒐𝒓 𝑒𝑎𝑐ℎ 𝑓𝑜𝑙𝑑:  

4  Train the model using the remaining training data. 

5  Evaluate the model using the current fold. 

6  Evaluate the model in the Testing set. 

7 Extract a mean value from every Validation and Testing results.  

 

 

 

Figure 45: 5-fold CV pipeline 

 

 

For convenience, the training set was split in 5 folds. For each validation and 

testing the Accuracy, Precision, Recall and F_1 score metrics were calculated. Finally, 

the mean values of those metrics were calculated as can be seen in Matrix No.5. 

 

 

Split Data 

(Training/

Test).

Split 

Training 

Data 

(Training/ 

Validation)

Feed 

Training 

Data in 

the 

Network.

Training 

90 

epochs.

Test in 

the 

Validation 

Data.

Repeat 5 

times 

total.

Test each 

model in 

the Test 

set.

Obtain a 

mean 

average 

from the 

5-fold 

cross 

validation.
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 1st fold 2nd fold 3rd fold 4th fold 5th fold Mean 

Accuracy 0.795 0.789 0.792 0.748 0.584 0.657 0.689 0.742 0.821 0.796 0.736 0.746 

Precision 0.865 0.857 0.866 0.853 0.818 0.849 0.841 0.859 0.853 0.852 0.848 0.854 

Recall 0.908 0.899 0.902 0.900 0.670 0.655 0.792 0.788 0.955 0.943 0.845 0.837 

F_1 score 0.886 0.888 0.883 0.886 0.737 0.711 0.816 0.817 0.897 0.901 0.843 0.840 

 Val Test Val Test Val Test Val Test Val Test Val Test 

 

Table[5]: 5-fold Metrics 
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7. Two-phase FPN Retina model 

 In order to improve the RetinaNet model further, another layer of convolutions 

added. The improved RetinaNet utilizes an extra bottom-up pathway to deepen the 

network and further improve the quality of features extracted in each convolution block. 

  As seen in the image above the architecture has not changed drastically. The 

loss function remains the same as the original paper proposed, since the dataset is full 

of imbalances and Focal Loss is the best choice when it comes to class imbalances. The 

box regression loss also remains the same. 

 

 

Figure 46: Modified RetinaNet 

The extra bottom-up pathway is a combination of the Convolution blocks C3-C5, in 

order to produce even better high resolution / semantically low and low resolution / 

semantically high features. Since the output of C4 and P3 after the appropriate 

convolutions are the same, the kernel function is altered so that the merged outcome 

(P4) is a combination of features produced by different convolution kernels. As seen in 

Figure 46, an extra level has been added in the pyramid P6, which is simple another 

convolution block. 

The rest of the architecture is the same as the original RetinaNet, with the difference 

that P6 passes through a 1x1 Convolution and produces N6. This new block, N6, 

contributes in the creation of N5 block after it gets up-sampled and merged with P5. 

Also since the N6 block has been created through a series of convolution, holds high 



 
69 

quality features, therefore through a 3x3 convolution the output of N6 is fed as input 

into the classification and regression networks. 

 

Figure 47: The new architecture 

 Just like the original Retina, the modified Retina was evaluated through Simple 

Split and k-fold Cross Validation. The training and testing process was the same as it 

was described in section 6.1 and 6.2. The following table displays the results for Simple 

Split evaluation of the model. 

 

Table[6]: Simple split results 

Metric Simple split (0.6 threshold) 

Accuracy 0.849 

Precision 0.887 

Recall 0.943 

F_1 score 0.914 

mAP/wmAP 0.632/0.897 
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From the results in matrix No.7 the precision for each class can be calculated: 

 

 

𝑃𝑟𝑝𝑒𝑟𝑠𝑜𝑛 =
4972

4972 + 355
= 0.933 

 

𝑃𝑟𝑏𝑖𝑘𝑒𝑟 =
842

842 + 504
= 0.625 

𝑃𝑟𝑏𝑢𝑠 =
22

22 + 8
= 0.733 

 

𝑃𝑟𝑐𝑎𝑟 =
14

14
= 1 

 

 

 

 

Person 4972 504 0 0 

Biker 355 842 0 0 

Bus 0 0 23 0 

Car 0 0 8 17 

None 397 192 1 6 

 
Person Biker Bus Car 

 

Table[7]: Confusion Matrix 
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 1st fold 2nd fold 3rd fold 4th fold 5th fold Mean 

Accuracy 0.811 0.808 0.776 0.756 0.603 0.688 0.749 0.777 0.860 0.819 0.759 0.770 

Precision 0.887 0.846 0.844 0.877 0.834 0.854 0.866 0.898 0.901 0.875 0.866 0.870 

Recall 0.912 0.901 0.909 0.920 0.705 0.703 0.819 0.800 0.963 0.966 0.861 0.858 

F_1 score 0.899 0.873 0.875 0.897 0.764 0.771 0.841 0.846 0.930 0.918 0.861 0.861 

 Val Test Val Test Val Test Val Test Val Test Val Test 

 

Table[8]: 5-fold Metrics 
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8. Comparison 

8.1) Comparison with RetinaNet 

 Due to the extra Convolution blocks in the modified RetinaNet, the training time 

is significant bigger, compared to the original Retina architecture. But since the goal of 

this diploma thesis is to compare the models only in terms of the metrics specified in 

previous section, the time complexity for the training and testing has not been taken in 

consideration. 

 When it comes to metrics such as Accuracy, Precision, Recall and F1 score, the 

modified model seems to perform better than the original: 

• 6% increase in terms of Accuracy 

• 4% increase in terms of Precision 

• 1% increase in terms of Sensitivity 

• 2% increase in terms of F1-score 

 All the above lead to the conclusion, that the extra layer of Convolution blocks, 

as well as the extra depth of the model improved the performance of the model in terms 

of “accuracy” metrics. It is worth noted that both models were trained with the same 

data for the same number of epochs. Furthermore, they both share the same loss 

functions for classification and regression loss.  

 

8.2) Comparison with other models 

 The purpose of this work is to compare various Deep Learning models on the 

Stanford Drone Dataset and extract results about their performance. To make the 

comparison possible the following results have been taken by Mahdi Maktab Dar 

Oghaz, Manzoor Razaak, and Paolo Remagnino and their paper with title “Enhanced 

Single Shot Small Object Detector for Aerial Imagery Using Super-Resolution, Feature 

Fusion and Deconvolution” [20]. 

 In their work they compared various single-stage and two-stage detectors, based 

on their mean Average Precision. In Matrix No.9 the comparison of YOLOv3, 

FasterRCNN, SSD, RetinaNet and modified Retina are displayed. 
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Model mAP(%) 

FasterRCNN 59.60 

SSD 64.31 

YOLOv3 57.42 

RetinaNet 61.10 

Modified Retina 63.27 

 

Table[9]: Comparison of the based and proposed models with the literature 
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9. Conclusions 

The two-phase FPN modified RetinaNet: 

+ Outperformed the base model by 6% in terms of Accuracy 

+ Outperformed most of the detectors in the literature 

+ Suitable for small object detections such as people, cars, etc 

+ Can be deployed in applications where accuracy is a critical factor 

On the other side, the proposed model also has its drawbacks: 

− Requires extremely high computational power systems for training 

− Requires significant more time for training and prediction than the base model 

9.1) Limitations 

 Deep Learning is a science that requires strong computational power in order to 

perform experiments in real data, with models that have millions of trainable 

parameters. Unfortunately, the Google Colab platform and their limited access to GPU 

made this study a rather challenging task. Moreover, the complexity of the models and 

the large size of the dataset demanded huge time amount to complete the training. As 

result, the margin for error was really small, because a failed training phase could mean 

hours of lost work.  

9.2) Future Work 

The whole comparative study was a good exercise to learn an object detector 

from start to finish, from the design and training process, to testing the model in real 

data and extract critical results. Furthermore, the modifications on the model helped 

understand how a simple change in the architecture can have significant impact in the 

accuracy of the model. A good way to continue this study will be to fine tune even more 

the training parameters of the model while also test various other loss functions such as 

the Kullback-Leibler divergence.  

It is also worth mentioned that both of the models that were trained, had as input 

data from the Stanford dataset. That means that if we test the model with images or 

videos that have different angle or the camera is at different height, the models might 

not be able to detect correctly the subjects. One way to overcome those problems will 

be to use fusion. Aerial images from various angles and different heights so that the 

model can be used in to a real-life application. 

Last but not least, it will be very interesting to deploy the modified Retina model 

into a real UAV or another surveillance system and try to make some real-life 

predictions. 
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