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Abstract 

Automobiles have changed people's everyday life and have become essential for the personal 

transportation of millions of people. Advancements in technology are growing and enhancing 

the driver's experience, from automatic headlights to automatic emergency braking and 

autonomous driving, nowadays. Autonomous driving on lane-free roads is a complex system 

where the vehicles have to be “connected” with each other and “cooperate” to perform their 

movement with safety. Usually, this kind of problems consists of non-linear or stiff 

differential equations which cannot be solved analytically, thus in this thesis we utilize 

numerical approximation methods to investigate a proposed system of cooperative 

autonomous vehicles in lane-free roads [ ] to observe the simulation's results along with the 

system's control functions. However, such complex systems describing autonomous vehicles 

driving on lane-free roads tend to be a challenge for numerical approximation methods, 

where high order Runge-Kutta methods may not be applicable while low order Runge-Kutta 

methods may present numerical instability if the initial step size is not sufficiently small. To 

achieve our goals, we analyze the system's characteristics and utilize a variety of numerical 

approximation methods to observe the vehicle's behavior on lane-free roads, as also their 

results, and make comparisons between them and their errors. Furthermore, we utilize an 

adaptive step size control in order to maintain the numerical solutions inside a defined open 

set, as also have the advantage of increasing and decreasing the step size, depending on the 

behavior of the system at any given moment. Following, we will use a Lyapunov function of 

the system, which represents the energy developed between the vehicles as the step size 

evaluator at an adaptive numerical method, in contrast to the regular adaptive methods which 

utilize the vehicle's characteristics, their lateral and longitudinal positions, their velocities and 

their wheel orientations. Lastly, we will try to investigate certain repulsive potential functions 

of the system, bound to keep the integrity of the vehicles hoping for smoother and more 

desired trajectories developed. 

 
 

Περίληψη 

Τα απηνθίλεηα έρνπλ δεκηνπξγήζεη πνιιέο αιιαγέο ζηελ θαζεκεξηλή δσή ησλ αλζξώπσλ 

θαη έρνπλ γίλεη απαξαίηεηα γηα ηελ πξνζσπηθή κεηαθνξά εθαηνκκπξίσλ. Οη εμειίμεηο ζηελ 

ηερλνινγία απμάλνληαη θαη βειηηώλνπλ ηελ νδεγηθή εκπεηξία, από ηνπο απηόκαηνπο 

πξνβνιείο, ζην απηόκαην θξελάξηζκα έθηαθηεο αλάγθεο, πιένλ κέρξη θαη ηελ απηόλνκε 

νδήγεζε. Η απηόλνκε νδήγεζε ζε δξόκνπο ρσξίο ισξίδεο είλαη έλα ζύλζεην ζύζηεκα όπνπ 

ηα νρήκαηα πξέπεη λα είλαη «ζπλδεδεκέλα» κεηαμύ ηνπο θαη λα «ζπλεξγάδνληαη» έηζη ώζηε 

λα εθηεινύλ ηελ θίλεζή ηνπο κε αζθάιεηα. Σπλήζσο, ηέηνηνπ είδνπο πξνβιήκαηα 

απνηεινύληαη από κε γξακκηθέο ή δύζθακπηεο δηαθνξηθέο εμηζώζεηο νη νπνίεο δελ κπνξνύλ 

λα ιπζνύλ αλαιπηηθά, επνκέλσο ζε απηή ηε δηπισκαηηθή ρξεζηκνπνηνύκε κεζόδνπο 

αξηζκεηηθήο αλάιπζεο γηα ηε δηεξεύλεζε ελόο πξνηεηλόκελνπ ζπζηήκαηνο ζπλεξγαδόκελσλ 

απηόλνκσλ νρεκάησλ ζε δξόκνπο ρσξίο ισξίδεο [ ], κε ζηόρν λα παξαηεξήζνπκε ηα 



 
 

απνηειέζκαηα ησλ πξνζνκνηώζεσλ καδί κε ηηο ιεηηνπξγίεο ειέγρνπ ηνπ ζπζηήκαηνο. 

Ωζηόζν, ηέηνηα ζπζηήκαηα πνπ πεξηγξάθνπλ απηόλνκα νρήκαηα πνπ θηλνύληαη ζε δξόκνπο 

ρσξίο ισξίδεο ηείλνπλ λα απνηεινύλ πξόθιεζε γηα κεζόδνπο αξηζκεηηθήο αλάιπζεο, όπνπ 

γηα παξάδεηγκα Runge-Kutta κέζνδνη πςειήο ηάμεο ελδέρεηαη λα κελ είλαη εθαξκόζηκνη, ελώ 

Runge-Kutta κέζνδνη ρακειήο ηάμεο ελδέρεηαη λα παξνπζηάδνπλ αξηζκεηηθή αζηάζεηα εάλ ην 

αξρηθό κέγεζνο ηνπ βήκαηνο δελ είλαη αξθεηά κηθξό. Γηα λα επηηύρνπκε ηνπο ζηόρνπο καο, 

αλαιύνπκε ηα ραξαθηεξηζηηθά ηνπ ζπζηήκαηνο θαη ρξεζηκνπνηνύκε έλα εύξνο κεζόδσλ 

αξηζκεηηθήο αλάιπζεο γηα λα παξαηεξήζνπκε ηε ζπκπεξηθνξά ησλ νρεκάησλ ζε δξόκνπο 

ρσξίο ισξίδεο, θαζώο θαη ηα απνηειέζκαηά ηνπο θαη λα θάλνπκε ζπγθξίζεηο κεηαμύ ησλ 

απνηειεζκάησλ θαη ησλ ζθαικάησλ ησλ κεζόδσλ. Επηπιένλ, ρξεζηκνπνηνύκε κεζόδνπο 

κεηαβαιιόκελνπ κεγέζνπο ηνπ βήκαηνο γηα λα δηαηεξήζνπκε ηηο αξηζκεηηθέο ιύζεηο κέζα ζε 

έλα θαζνξηζκέλν αλνηρηό ζύλνιν ηηκώλ, θαζώο κε απηή ηελ πξαθηηθή έρνπκε επίζεο ην 

πιενλέθηεκα ηεο αύμεζεο θαη ηεο κείσζεο ηνπ κεγέζνπο βήκαηνο, αλάινγα κε ηε 

ζπκπεξηθνξά ηνπ ζπζηήκαηνο ζε θάζε δεδνκέλε ζηηγκή. Σηε ζπλέρεηα, ζα 

ρξεζηκνπνηήζνπκε κηα Lyapunov ζπλάξηεζε ηνπ ζπζηήκαηνο, ε νπνία αληηπξνζσπεύεη ηελ 

ελέξγεηα πνπ αλαπηύζζεηαη κεηαμύ ησλ νρεκάησλ σο ηνλ θαζνξηζηηθό παξάγνληα ηνπ 

κεγέζνπο ηνπ βήκαηνο ζε κηα αξηζκεηηθή κέζνδν κεηαβαιιόκελνπ βήκαηνο, ζε αληίζεζε κε 

ηηο θαλνληθέο «πξνζαξκνζηηθέο» κεζόδνπο πνπ ρξεζηκνπνηνύλ ηα ραξαθηεξηζηηθά ηνπ 

νρήκαηνο, ηηο ζέζεηο ησλ νρεκαησλ ζην δξόκν, ηηο ηαρύηεηεο θαη ηνλ πξνζαλαηνιηζκό ησλ 

ηξνρώλ ηνπο. Τέινο, ζα πξνζπαζήζνπκε λα δηεξεπλήζνπκε νξηζκέλεο απσζηηθέο 

ζπλαξηήζεηο ηνπ ζπζηήκαηνο, ε ιεηηνπξγία ησλ νπνίσλ είλαη λα δηαηεξήζνπλ ηελ 

αθεξαηόηεηα ησλ νρεκάησλ, κε ζηόρν νκαιόηεξεο θαη πην επηζπκεηέο ηξνρηέο.  
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1. Introduction 

 

Transportation has been a problem for humans since ancient times when humans lived as 

nomads and had to move around searching for better places to live. As the years passed, 

humanity tried to domesticate animals for labor and transportation. A milestone for human 

transportation is the invention of the wheel, dating back to around      BC, creating the first 

wheeled vehicles. Since then many ways for transportation have been created, but nowadays 

the most popular one is the automobile since it provides the ability to move flexibly from 

place to place and far-reaching destinations [ , p.   ]. However, traffic collisions are the 

largest cause of injury-related deaths worldwide [ , p.   ]. Human factor plays a great part in 

vehicular movement and eliminating it could improve the performance of transportation 

systems, their safety, reduce congestion and traffic accidents, and improve traffic flow on 

highways.  

Autonomous vehicles date back to the beginning of the      century [ ] when scientists 

started to dream of vehicles driving autonomously along highways, in order to increase the 

safety, efficiency, and convenience of the transportation system. However, communicative 

and cooperative systems have not been introduced to vehicles yet. Autonomous vehicles right 

now rely on radar and vision systems, while lidar, sonar, and camera systems have also been 

used. Another great advancement in technology is non-line of sight propagation [  ]. Typical 

vision systems image objects that are in line of sight, however advanced measurement 

systems, such as femtosecond time-resolved detectors, acoustic systems, etc., are able to 

detect and reconstruct objects hidden behind obstacles [ ]. This technology could immensely 

help autonomous vehicles prevent accidents, along with making safer decisions for their 

movement. 

As automobiles came into widespread use, head-on collisions became more common and 

parallel lanes were introduced on roads, to separate traffic going in different directions and 

increase safety. By the increasing use of vehicles multiple lanes were introduced. That made 

driving a simpler task, considering drivers have only to acknowledge the width and speed of 

their vehicle, as also monitor the distance and speed of the front vehicle. However, lanes 

added an extra risky operation which is that of lane changing. When a driver wishes to 

properly change lane, he has not only to monitor the front vehicle but also seek an available 

gap, by observing the vehicle movement at the next lane and estimating its speed and 

acceleration. This task is risky, considering you have to check your mirrors and also check 

your blind spot by looking over your shoulder, a small amount of time at which your sight is 

not onto the front vehicle. In fact, for     of all accidents, lane changes were responsible 

[ ]. Taking into consideration that autonomous vehicles will not be commanded by a driver, 

hence shorter inter-vehicle distances could be utilized. Thus a lane-free concept would highly 

impact road-traffic and congestion, through the increase of road capacity. In addition, 
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cooperation and communication between vehicles will provide them with the necessary 

knowledge about their distance from the boundaries of the road and the relative distance from 

adjacent vehicles. This is an innovative concept at which as vehicles will utilize the whole 

width of the road, they will not collide with other each other and neither with the boundary of 

the road. Taking into account, cooperation and communication between vehicles, a “nudging” 

effect can take place [  . By the term “nudging”, we refer to a virtual force that vehicles 

apply to the vehicles in front of them without jeopardizing speed limits or traffic safety. With 

the proposed nudge effect, an increased flow and road capacity can be achieved see [  ]. 

The movement of autonomous vehicles in lane-free roads forms a demanding and complex 

problem. All vehicles have to be connected and communicate with each other through their 

sensors, in order to complete their movements with safety. Such a system is usually described 

by a great number of non-linear differential equations, which are impossible to be solved 

analytically. Thus, numerical methods are essential for investigating such systems and 

gaining an approximation of the real solution. Still, numerical methods find challenging to 

solve such ordinary differential equations systems, because systems describing the movement 

of vehicles in lane-free roads tend to be: 

i. Non-linear 

ii. Stiff 

iii. The state space is defined by an open set 

Hence, numerical methods for ordinary differential equations, such as the  th
 order Runge-

Kutta may not be immediately applicable, while lower-order methods, such as Euler and 

Heun may present numerical instability if the initial step size is not sufficiently small. 

Moreover, the numerical solution may attain values outside the open set defining the system 

due to numerical errors. For such cases, an adaptive step size technique is preferred. The 

main advantage of this methodology is that of adjusting the step size, depending on the 

behavior of the numerical solution gained from each iteration. This way, the numerical 

solution approximation speed can be enhanced, along with its precision. The methods 

mentioned above will be used to approximate the numerical solution of the problem of the 

movement of autonomous vehicles. Subsequently, simulations will be made and the 

following will be reviewed: 

i. The movement behavior of vehicles in lane-free roads, and 

ii. The trends of the numerical solutions and their errors, obtained from the various 

numerical approximation methods used. 

In this thesis, we are numerically approximating the solution of a vehicular integrated 

infrastructure, in which vehicles communicate and cooperate with each other, increasing the 

capacity of the road through maintaining shorter inter-vehicle distances and adapting a lane-

free concept [ ]. We are going to utilize both stable and adaptive numerical approximation 

methods, in order to evaluate and compare their solutions with each other. Furthermore, a 
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new direction of adaptive technique is introduced. In contrast of the regular adaptive 

methods, we intend to utilize a Lyapunov function that represents the energy of the system, 

thus we do not depend on the vehicles parameters for the evaluation of the step taken, rather 

than from the whole energy produced by the vehicles, their inter – vehicle distances, the 

distances from the boundary of the road, their velocities and their wheels orientation. The 

thesis is outlined as follows, in chapter   is stated the necessary introduction to Ordinary 

Differential Equations and Numerical Analysis, as in chapter   , a detailed review of the 

Numerical Approximation Methods utilized for the solution of a set of ODEs is given. 

Without these two chapters, it would be impossible to analyze the Cooperative Adaptive 

Cruise Control (CACC) given and numerically investigate the solution of its set of ODEs. 

Thus, chapters   and   are created regarding the  D CACC and its numerical approximation. 

Finally, chapters   and   focus on comparing the results gained by various numerical 

methods and investigating certain functions of the system. 
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2. Preliminaries for Ordinary Differential Equations and Numerical 

Analysis 

 

Differential equations are equations that involve one or more derivatives of a function. This 

kind of equation could involve an independent variable, a dependent variable, and one or 

more derivatives of the dependent variable 

( )

0 1 2
( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) 0

n

n
a t y t a t y t a t y t a t y t b t        

Ordinary differential equations involve only one independent variable, whilst, equations with 

two or more independent variables are called partial differential equations [ ]. Linear 

differential equations play an important role since they regularly appear in physical 

phenomena and can be solved analytically. However, the behavior of complex systems is 

usually described by nonlinear differential equations which are hard or even impossible to 

solve explicitly [ ]. Linear equations have a constant slope, hence forming a line. In contrast, 

nonlinear equations have the opposite characteristics of the linear ones; their slope may vary 

between points, resulting to a shape different than a line.  

For this reason, we utilize numerical methods gaining a quick, but also acceptable 

approximation as the solution for the system. The numerical solutions gained, involve two 

types of errors, round-off errors and truncation (or discretization) errors. Round-off errors are 

the result of the inability of computers to present all real     numbers and their precision. 

Considering that most numerical methods when solving a system of ODEs calculate 

approximate solutions step by step, hence with the approximation comes an error for each 

step taken. This error, which also depends on the different equations utilized from each 

numerical approximation method, is called truncation (or discretization) error [ ]. 

The error added with every step is called local error, though the propagated error is the added 

error due to the previous approximation. Hence the overall difference of the exact and the 

approximated solution is the sum of both errors and is called global truncation error [  , p. 

  ],[ , p.   ][  ]. The main difference between numerical approximation methods is the 

procedure from which the slope is estimated. All of the methods belong to the Runge-Kutta 

family. You can calculate the error exactly, by comparing the approximation with the 

analytical solution [  ],[  ]. However, in many cases, as with our system, this cannot be 

achieved due to the absence of the analytical solution. Hence, we can only obtain an 

estimation of the errors.  

Another difficulty regarding numerical methods is that of stiff equations. Although there is no 

precise definition of stiffness, a stiff equation is considered to be numerically unstable for 

relatively high step sizes and prone to even small changes at its initial conditions. Stiff 

problems pose difficulties to solving by standard explicit methods, whereas some implicit 

methods seem to perform better. However, implicit methods take more time to approximate 
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the solution, since they require the solution of a non-linear algebraic equation system. Such 

problems may consist of both rapidly and slowly changing parts, its step size decreases by 

stability requirements due to having some eigenvalues    negative and large in magnitude or 

for complex eigenvalues with negative real parts [ ],[  , p.        ]. 

Stability is another important characteristic that should be taken into account, concerning 

numerical approximation methods. A numerical solution is considered to be unstable if the 

error grows exponentially for a problem with a bounded solution [  , p.    ]. Stability 

depends on three factors: the given differential equations, the step size and the numerical 

method utilized. Furthermore, a numerical method converges if its error tend to zero when the 

step size tend to zero. By decreasing the step size the iterations on the other hand increase, 

hence the computational costs increase. For a method to be considered convergent, it is 

required to converge on all problems for all reasonable initial conditions [  , p.    ]. 
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3. Numerical methods for solving ordinary differential equations 

 

Two main types of numerical methods exist, the explicit and the implicit methods. The 

explicit methods calculate the numerical solution of the ODEs, subject to the exactly previous 

approximation of the numerical solution and the values of the equation. It could have the 

form of [  ]. 

 
11 ,,  iiii yttFy

 

The implicit methods demand either the solution of a non-linear system of algebraic 

equations or the solution of the algebraic equation with a root-finding method such as 

Newton Raphson. It could have the form of: 

  0,,, 11  iiii yyttG
 

The simplest of all numerical methods is the forward or explicit Euler method (1768), which 

is produced from the first two terms of the Taylors sequence [9, p. 708],  

                           

The term           will be called time step and be denoted by 

          

It is a first-order Runge-Kutta method used to solve initial value problems. This method uses 

a constant step size to compute step by step, approximations for           from an initial 

value        , basically constructing the tangent of the slope. The local error (error per 

step) of Euler’s method is proportional to the square of the step size    and the global error 

(error given at any time) is proportional to the step size   [9, p. 710-712]. We could use a 

table to display the factors of every Runge-Kutta method. This table is called the Butcher 

tableau and for the explicit Euler method is as shown below [  , p.    ],[  ]: 

0  

 1 

Another simple method, often known as improved Euler method, is Heun method [ , p.    ], 

            

                  

            ⁄         

It is a second order Runge-Kutta method which derives from transforming the trapezoidal 

method, 
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          ⁄ (                     ) 

Although this method also uses a constant step size, it can perform better than Euler since it 

uses one more approximation to calculate the numerical solution. Heun method has the 

following Butcher tableau [  , p.    ],[  ]: 

0   

1 1  

  
 ⁄   

 ⁄  

 

Example 1:  Consider the following ordinary differential equation, 

 ̇                     

whose analytical solution with initial condition           is given analytically from the 

equation,        
 

 
        

 

 
       

 

 
       . The table below shows the 

approximation of     , for both Euler and Heun method, with step size      .    

Time step Real Value Euler Method Heun Method 

  2.0 2.0 2 
0.1 1.9044 1.9 1.9043 
0.2 1.8149 1.8085 1.8147 
        
1 1.0059 1.0202 1.0043 

1.1 0.8707 0.8881 0.8690 
        
2 -0.6001 -0.5881 -0.6001 

2.1 -0.7599 -0.7528 -0.7595 
        

2.9 -1.5251 -1.5748 -1.5214 
3 -1.5265 -1.5838 -1.5224 

 

Notice first that Heun provides a better approximation than the Euler method. Moreover, we 

can observe all the values gained at Figure 1, 
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Figure 1: Comparisons between the Real Value and the 

Approximations 

 
Figure 2: Error produced by each approximation 

 

The example above shows that for simple problems, a small step size can produce rather good 

approximations. But when the problem is more complex and/or the time step needs to be 

greater, these kind of methods could fail producing a fine approximation.  

Even though Euler and Heun methods seem to produce a fine approximation of the analytical 

solution both underperform when a stiff problem is introduced. To gain a good 

approximation, the step size has to be decreased, increasing significantly execution time of 

the algorithm. Considering the nature of our problem, execution time plays an essential role 

in driving us to methods using less iteration but also maintaining a good approximation of the 

solution [  , p.    ]. Such methods are called automatic or adaptive step size methods. The 

idea of adaptive techniques is such to evaluate an approximation made comparing it with a 

tolerance to decide the following step size [  ],[  ], aiming to enhance the precision of the 

method. There exist many methods to approximate as also to evaluate the approximation 

gained. 

Example 2: Consider the following ordinary differential equation, 

 ̇                   

Here, both Euler and Heun fail to produce a fine approximation of the real solution for a step 

size of       and even for        over the period of         .  
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Figure 3: Approximation of Euler Method with step size 

of       

 
Figure 4: Approximation of Heun Method with step size 

of       

 

 
Figure 5: Approximation of Euler Method with step size 

of         

 
Figure 6: Approximation of Heun Method with step size 

of        

 

On the other hand, an Adaptive technique with an initial step size      , is able to adapt its 

step size during each iteration and produce a far more accurate approximation. 
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Figure 7: Approximation of Adaptive Method 

 
Figure 8: Step Size of Adaptive Method 

 

As already mentioned, when using an approximation method instead of the analytical 

procedure, an error in the results is introduced, called truncation error [  , p.   ]. Also, by 

using a computer for the approximations round-off errors have to be taken into account. 

These errors arise due to the inability of the computers to represent some real numbers. 

Generally, in approximation methods we distinguish the error in the local error and the global 

error [  ]. Local truncation error is difference between the approximation and the real value 

at every single step. The propagated truncation error is the result of performing iterations 

with values that have been approximated. Lastly, global truncation error is the sum of the 

local and the propagated truncation error and it can be found at the last iteration performed 

[  , p.    ]. 

 

 

 

 

 

 

 

 

Local Error:           

Global Error:           

In most applications though, the exact solution is not available, which is also the reason we 

use numerical approximation methods, hence we have to depend on estimations of the error. 

The error estimation also derives from the Taylor series and consists from the remainder parts 

that are left out of the method used. Euler method which uses the first two parts for the 

approximation has an error of the remainder parts as follows [  , p.        ]: 

                  
         

  
     

             

  
             

𝑦̇  𝑓 𝑦  

𝜙𝑡 𝑦   

𝑦𝑛    Φ  𝑦𝑛  
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where         specifies that the local truncation error is proportional to the step size raise to 

the power      , where   represents the order of the method used. By leaving parts of the 

Taylor series off of our numerical approximation, it simulates as ignoring parts of the exact 

solution, hence the approximation error. Thus for Euler method we have the following error 

follows: 

   
         

  
     

             

  
             

,and for a relatively small step size h, all terms except the first can be ignored: 

   
         

  
         

Therefore, Euler method has an approximate local truncation error of      . This confirms 

the general local truncation error equation        , since Euler method is a first order 

Runge-Kutta method [  , p.        ].  

Since Heun method is a second order Runge-Kutta method, we have to predict that the 

approximate local truncation error will be      . Considering that Heun method is made 

from transforming the Trapezoidal rule, they have the same approximate local truncation 

error. The Trapezoidal rule has a local truncation error of [  , p.        ]: 

    
      

  
         

where   is between    and     .  



17 
 

Richardson Extrapolation 

This is a simple error based adaptive technique, which utilizes a Runge-Kutta method to 

compute two numerical approximations    and   . The first approximation is found with a 

step size  , while for the second one the step size is halved,   ⁄ . That way an estimate of the 

error is computed as the difference between those two approximations. Considering for the 

second approximation where the step size is half, a slightly better approximation is expected. 

Since the exact solution most of the times is not available, the error is estimated by the 

difference between the two approximations provided by the Richardson extrapolation. The 

error is computed by the following equation [  , p.     –     ]: 

     √∑(         )
 

 

   

 

Following, if the error is below a designated tolerance we set the new step size as: 

           

or if it is over the designated tolerance: 

     
    

 
 

Embedded Runge-Kutta Methods 

In the embedded Runge-Kutta scheme, rather than using one method, two Runge-Kutta 

methods are utilized, one of which with order   and the other with order    . The simplest 

of all is Heun-Euler method, which utilizes the second order Heun method, defined as    and 

the first order Euler method, defined as  ̂ . By using two consecutive order methods, with the 

same step size, less computational costs derive, since Euler method is included in Heun’s 

method. Another advantage of this technique is that through the difference between the two 

approximations obtained, an estimate of the local error is produced. Hence, as a measure of 

error we take: 

     √
 

 
∑(

      ̂   

   
)
  

   

 

where                |   | |   |        and satisfy |     ̂  |     . Relative errors 

are considered for      , absolute errors for       and both are prescribed as the desired 

tolerances by the user. Here   is the number of ordinary differential equations that the system 

approached contains [  , p.     –     ]. 
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All techniques adapt the step size in an effort to keep the local error within an appointed 

tolerance. This error computational method is used in order to scale the error in such way that 

if it is less than 1, the step made is considered accepted, and if greater than 1, the step made is 

considered rejected. If the step is accepted the new step size will increase, otherwise it will 

decrease.  

In the problem described in the following chapter, the new step size is considered accepted 

if       and the code advances to the next step using the new step size      . On the other 

hand, the new step size is considered rejected not only if      , but also if the parameters 

gain values outside of the open   set (the set is described at the following chapter). If       

and the values gained respect the   set, we get the new step size as stated below, else we set 

the step size as half of the previous and we perform the iteration again. 

Computing the new Step-Size 

Method 1: Through the estimated error the new step size can be determined. Generally a safe 

way to calculate the new step size is stated below [  , p.     –     ]: 

         (          (   √
 

   
       )) 

This function has a minimum factor facmin, which prevents from fast decreases of the step 

size as also a maximum factor facmax, which prevents from fast increases. These factors are 

much needed, considering that the bigger step size is prone to errors and our step size is also 

adaptive, hence our propagated error may grow rapidly.  

Method 2: Another way of gaining the new step size is the following, 

         (     √
 

   
) 

which does not allow fast increase or decrease of the step size. Big step increases are 

prevented by  , the maximum step size multiplier, while     is a safety factor, ensuring that 

the following error will be acceptable.  

Method 3: A rather simple technique is that of doubling and halving the step size in order to 

obtain the new one. By using this technique the change of the step size is drastic, fast 

increases and decreases at each step, hence fluctuations will be observed. This way, the 

computational costs for gaining the approximation are increased. The new step size is 

doubled when it is considered accepted, 

        

and halved when it is considered rejected, 
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In Chapter 5 we will study and compare the above methods and we will provide a new 

adaptive method designed suitable for the problem at hand. 
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4. 2D Cooperative Cruise Control 

 

New technologies are being introduced in our lives every single day. Vehicle automation and 

communication between vehicles are one with great impact since it will improve the 

performance of transportation systems, their safety, reduce congestion and traffic accidents, 

and improve traffic flow on highways. 

Adaptive Cruise Control (ACC) [ ], [  ] systems are an evolution of Cruise Control systems, 

which maintained the speed of the vehicle at a certain desired value. ACC is able to 

automatically adjust the vehicle’s speed to maintain a certain distance from a front vehicle or 

to maintain a desired speed. These certain technologies require a lot of sensors and 

information to be evaluated for a decision to be taken. Cooperative Adaptive Cruise Control 

(CACC) [ ], [  ] systems are wirelessly connecting vehicles, enabling them to exchange 

valuable information, therefore the decisions will be taken faster with less complicated 

calculations with fewer time needed. Thus shorter inter-vehicle distances will be maintained, 

the capacity of the roads and the safety will increase.  

In this chapter we consider the two-dimensional movement of autonomous vehicles in lane 

free roads [ ], [ ], [  ], [  ]. We consider   identical vehicles in a lane free road, whose 

movement is described by the following ODEs: 

 

 ̇          

 ̇          

 ̇             

 ̇     

(4.1) 

 

for        . Here,         are the longitudinal and lateral position of the  -th vehicle 

respectively, with        and            , while we place its reference point at the midpoint 

of the rear axle of the vehicle;    is the speed of the  -th vehicle at the point        ;      

 ( 
 

 
 
 

 
)  is the heading angle of the  -th vehicle and    is the steering angle of the front 

wheels. Last but not least,    is the acceleration of the  -th vehicle. This model is known as 

the bicycle kinematic model [ ], [  ]. 
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Figure 9: Lane-free road of width      

 
Figure 10: Each vehicle is modeled by the 

bicycle kinematic model 
 

In order to make the analysis less complex, we define  

                         (4.2) 

 

Hence, the model can be written like the following simpler form 

 

 ̇            

 ̇            

 ̇     

 ̇     

(4.3) 

 

for              , where   and   are the control inputs. Considering that communication 

between vehicles may change over time, the control laws adapted from this methodology are 

decentralized and only depend on local sensing capabilities. The controllers are decentralized 

in such way that relies on the full state of the vehicle   and also the state of the vehicles that 

are within its sensing radius. The distance between vehicles is defined by: 

    √                     (4.4) 

 

For    , we obtain the Euclidean distance while for     we have an "elliptical" metric 

which will allow to approximate more accurately the dimensions of a vehicle. This elliptical 

metric allows more vehicles to be placed along the width of the road while maintaining a 

certain safety distance between them.  
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Furthermore we define the set 

    {                           
 } (4.5) 

 

, and also follow the notation 

                                          (4.6) 

 

The set S represents all the possible values the parameters of all   vehicles of the system can 

obtain. First of all, each vehicle has to stay within the road boundaries                  

for          All vehicles operate on a lane-free road with speed limit       , as also 

they are not allowed to move backwards at any given moment. For the given constant 

  (    ⁄ ), the vehicles should not be able to turn perpendicular to the road, hence it 

should hold that          . This constant performs as an orientation safety constraint, 

considering vehicles can achieve high speed,   should restrict the steering angle values close 

to zero. Probably the most important property which is not constrained by the set  , is the 

collision avoidance between vehicles. Hence, a safety distance factor     is defined, where 

all distances between references points concerning any pair of vehicles should respect.  

Thus the state-space of the   vehicles that operate on a lane-free road are described by an 

open set      : 

   {                         } (4.7) 

 

To sum up, below are stated the objectives the decentralized feedback laws should follow: 

i. all vehicles operating should not collide with each other nor with the boundary of the 

road,  

ii. their velocities always be positive and remain below the given speed limit, as also 

converge to a certain speed set-point,  

iii. the orientation of all vehicles always remain bounded by the given value   (  
 

 
) 

and converge to 0,  

iv. their accelerations, angular and lateral speeds tend to zero. 

Considering all of the above, for every initial condition       , we obtain a unique 

solution        for all     under the effect of all feedback law    and    for        , 

from the closed loop system. Furthermore, all of the objectives stated above should be 

satisfied, for every initial condition        ,  as well for their solutions       . 

Following, the decentralized control system has to be determined, as well as the constant 

parameters utilized by the model [ ]. As already stated, the decentralized system shall 
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prevent collision between vehicles and the boundary of the road. Thus, repulsive potential 

functions are utilized, in such a manner that the repulsion force between vehicles grows when 

the individual distance is decreasing, and the repulsion tends to zero when the vehicles are 

distant. Considering that, functions             and             are    

functions: 

       { 
      

   
         

     

 (4.8) 

 

 
      

{
 
 

 
 (

 

     
 

 

  
)

 

       
 √   

√ 
     

 √   

√ 
    

   
 √   

√ 
   

 √   

√ 

 

 

(4.9) 

 

and satisfy, 

       (    )     and       , for all    .           (    )    , 

       (    )    , and         The potential functions   and   are designed in a 

way to prevents inter vehicle collisions and collisions with the boundary of the road 

respectively. 

Here     are constants which correspond to a large and a small ellipse around each vehicle, 

respectively. This ellipse is defined as following: 

 
          

          
(4.10) 

 

By appropriately selecting    , the above functions        create ellipses around every 

vehicle as desired, and we can also determine their eccentricity   √  
 

 
. The two 

concentric ellipses are considered to have semi-major axes of   and   and semi-minor axes of 
 

√ 
 and 

 

√ 
, respectively. The ellipses are determined in such way to maximize the road 

capacity as also prevent the vehicles to come close together and with the boundary of the 

road. The number of vehicles that can sit side-by-side depends on the size of the road     , 

the safety distance  , as well as the weight  . The formula which calculates this number   is 

the following: 
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  √ 

 
 

If there are no vehicles inside the larger ellipse and nor is the vehicle referenced near the 

boundary of the road, there is no repulsive force. By contrast, when the vehicle gets closer to 

another vehicle, the repulsive force grows, tending to infinity while the inner vehicle distance 

tends to  . The selection of both constants is equally important, since L is the safety distance 

and no vehicles are allowed to come within this “safety” ellipsoid, and   creates the ellipsoid 

from which the vehicles gain their needed information. Thus, if the   is selected large, the 

measurement area around the vehicles is increased, as also the inter vehicle distances may be 

affected. 

Considering the repulsive potential functions, we have to appropriately select the rest of their 

constants. The constant   is responsible for the magnitude of the acceleration   , as also the 

repulsive force taking action between the vehicles  . For instance, by choosing small values 

of  , the values of   and    will be smaller away from the safety distance  , but will increase 

rapidly when d comes close to  . The constant    , is responsible for the final 

configuration of the vehicles alongside the road. If we choose     and    , then 

      , hence the vehicles will converge to the middle of the road forming a platoon. On 

the other hand, if     we have that        for an area around    , and thus the 

vehicles converge between  
 √   

√ 
   

 √   

√ 
. 

In order to satisfy the objectives followed by the decentralized feedback laws, a control 

Lyapunov function [ ], [  ], which also possesses characteristics of barrier functions is 

applied. Thus, a function  , the total energy of a set of   vehicles derives: 
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(4.11) 

 

This Lyapunov function consists of three parts, the kinetic energy, the potential energy and a 

penalty term. The kinetic energy is represented by the first two terms, the potential energy of 

the system is based on the third and fourth term and last is a penalty term which blows up 

when       . Also,     is a parameter of the controller and the Lyapunov function and 

             is the desired longitudinal velocity, and   (  
 

 
) is a constant that should 

always satisfy the following inequality: 
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By using the last term, the feedback laws for each vehicle can be designed as shown below: 
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where   ,    are constants controlling the rotation and acceleration rate respectively, and 

 1
f C  is any function that satisfies max( ,0) ( )x f x for all x .  We utilize the 

following   function [ ]:  

  
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(4.15) 

 

for every 0  , which allows the longitudinal acceleration to be regulated as desired.  

The term       seen in the acceleration function       is a controller responsible for 

maintaining the vehicles speeds positive and lower than the speed limit. Concerning the 

second term of the acceleration function (    ), is the summation of the repelling forces 

acting between all vehicles. As already mentioned in the introduction, there is a nudging 

effect, a “pushing” force taking action between vehicles. If   is decreasing then 

,

,

( )
'( ) 0

i j

i j

i j

x x
V d

d


  , and if vehicle   is behind vehicle  , then nudging [ ], [ ], [  ] is 

introduced between those two vehicles, meaning   is “pushing”   in order to increase its 

velocity. We should also take into account that nudging will not jeopardize traffic safety, 

such as vehicles collisions, but also will not force vehicles gain parameters outside the   set. 

Lastly, we have to make clear than only information from vehicles with distance less than 

    are needed by the feedback laws. Furthermore, the only information needed is the 

distance from the adjacent vehicles, whilst no other information is required such as their 

velocities or their wheel orientations. 



26 
 

5. Numerical investigation of solutions 

 

First of all, the computer we used for all of the simulation is a personal computer with    

gigabytes of RAM and an AMD Ryzen 7 1700 Eight-Core Processor with      GHz. As for 

the software we use Matlab R2018a and C language run in CodeBlocks with MinGW 64 bit 

8.1.0 compiler. From now on we will always pronounce the software used for gaining the 

results presented. 

In order to analyze better the simulations, a set of initial parameters is randomly picked and 

the solutions gained from each method are compared with each other. For this numerical 

investigation we assume that all vehicles have the same length      and operate in a lane 

free road with an ideal velocity of      
 ⁄  and width       . The vehicles must not 

exceed the maximum velocity of         
 ⁄  and set       , thus we obtain the 

optimal eccentricity and safety distance        and        , respectively. Furthermore, 

we select      ,       and the design parameters       ,         . The 

simulations were performed for a time period of 500 seconds with an initial step size of 

      . 

The results shown below are all gained from random set of initial parameters, where all of 

them were gained with respect to the   set. We gained initial parameters for 

                 and     vehicles, but for most of the presented results we tend to utilize 

a random set of     vehicles. The randomly chosen set of initial parameters is set number   

and is presented at Appendix B. 

Euler Method 

First of all, we investigate the numerical solution of the Euler Method. In order to 

successfully approximate the real solution, the execution time is undermined by using a 

considerably small step size of       , thus needing       iterations for a     

seconds simulation. Obviously, by using a smaller step size we would gain a slightly 

better approximation in the expense of memory and execution time. Through Figures    

to   , the trajectories, velocities and accelerations of the vehicles are presented, all 

gained from an algorithm in C language. In Figure    are presented all the trajectories of 

all the vehicles in order to show that all vehicles remain within the boundaries of the 

road. Following, in Figure    we present 5 random vehicles trajectories to observe how 

vehicles change direction to avoid collisions with others vehicles or the boundaries of 

the road. 
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Figure 11: Vehicles Trajectories for Euler Method 

 
Figure 12: 5 Random Vehicles Trajectories for Euler 

Method  

 
Figure 13: Vehicles Velocities Convergence for Euler 

Method 

 
Figure 14: Vehicles Accelerations Convergence for Euler 

Method 

 

By using a bigger step size      , in order to gain a faster approximation, Euler Method is 

unable to approximate the numerical solution and in such way the vehicles crash. This can be 

observed below at Figure   . Note however that the step size       , that produced the 

“correct” previous approximation, does not imply that an approximation of the solution can 

always be obtained, and for a different set of initial conditions, the Euler method may fail 

again. For such cases an even smaller step size should be selected. 
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Figure 15: Failure to approximate for Euler Method 

  

Heun Method 

Following, the Heun Method can also approximate the numerical solution for a rather small 

step size of       . This method needs even more execution time due to the increased 

calculations needed. However, Heun is able to produce a better approximation due to the 

increased calculations which also affect the ability to approximate a solution with a slightly 

higher step size. The same number of iterations is performed as with Euler Method and the 

algorithm is written also in C language. The results are presented at Figures    to   . 
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Figure 16: Vehicles Trajectories for Heun Method 

 
Figure 17: 5 Random Vehicles Trajectories for Heun 

Method  

 
Figure 18: Vehicles Velocities Convergence for Heun 

Method 

 
Figure 19: Vehicles Accelerations Convergence for Heun 

Method 
  

Even though Heun Method is providing better approximations than Euler Method, it still 

cannot approximate the numerical solution for a bigger step size such as      , and it can 

be observed at the following Figure.  
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Figure 20: Failure to approximate for Heun Method 

Adaptive Method 

In contrast, the adaptive technique manages to overcome the large initial step size,      , 

producing a good solution in less iterations, hence is less time. Note however, that the step 

size may become smaller than        at certain times, to retain the numerical stability of 

the system. Figures    to   , present the trajectories, velocities and accelerations of the 

vehicles. This algorithm was also written in C language. 
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Figure 21: Vehicles Trajectories for Adaptive Method 

 
Figure 22: 5 Random Vehicles Trajectories for Adaptive 

Method  

 
Figure 23: Vehicles Velocities Convergence for Adaptive 

Method 

 
Figure 24: Vehicles Accelerations Convergence for 

Adaptive Method 
   

Considering that the step size adapts in such way to keep the local error within an appointed 

tolerance, we can design our code in such way where for any initial parameters given with 

respect to the open Ω set, our system will not fail approximating a solution. This has to do 

with the fact that if the local error is over the appointed tolerance, our new step size is smaller 

than our old step size, thus we can decrease our step size till avoiding our systems failure. 
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Flowchart 
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Above is presented a flowchart of the algorithm we used for the Adaptive Method. For a 

more detailed algorithm you may look at the pseudo code, at Appendix A. 

Adaptive step size through Systems Energy 

This technique is similar to the Adaptive Method, but differs in the way it adapts the step 

size. For this process the error depends on the systems energy, instead of the parameters of 

each vehicle. Hence, the systems energy has to be computed at every step and compared with 

another approximation of the systems energy. The second approximation can either be gained 

by the Euler Method or the previous systems energy can be used. If the energy of the system 

is greater than zero, less than the energy of the previous step and of course all the parameters 

are within the open   set, the new step size is increased. Otherwise, the step size is decreased 

and the iteration is performed again. If the second approximation is gained by the Euler 

Method the error is computed as: 

    √(
            

   
)
 

 

On the other hand, if the previous approximation of the systems energy is used, the error may 

be computed as: 

        (          (          |
       

  
|)) 

After trials with both errors, we decided to use the one arising between the two different 

Runge – Kutta methods. This method allows us to easily normalize the error between 0 and 1, 

in order to be able to compare it with the given tolerance of the local error, regarding the 

adaptive step size control. Following the embedded Runge – Kutta adaptive method, this 

technique as mentioned adapts the step size via the energy of the system. With this method 

we can also achieve bigger step sizes, hence produce solutions in less iterations. Using the 

systems energy as a decision making attribute, we confirm that the energy decreases step by 

step, rather than evaluating whether the difference between the approximations from two 

methods is small. This method is more focused on a quick development of stability over our 

system. Below, from Figure    to   , are presented the results for the Adaptive Method 

through the Systems Energy performed by a code written in Matlab. 
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Figure 25: Vehicles Trajectories for Adaptive Method 

through Systems Energy 

 
Figure 26: 5 Random Vehicles Trajectories for Adaptive 

Method through Systems Energy  

 
Figure 27: Vehicles Velocities Convergence for Adaptive 

Method through Systems Energy 

 
Figure 28: Vehicles Accelerations Convergence for 

Adaptive Method through Systems Energy 
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6. Comparisons between Numerical Approximation Methods 

 

In order to observe the differences and make comparisons between the trajectories obtained 

from two different numerical approximation methods, we may plot the trajectories from both 

methods. That way, we can visually understand whether there are noticeable differences 

created due to bigger step sizes or different methods. On the other hand, if we want to better 

understand and evaluate a methods accuracy, we have to research the global error of each 

method. The difficulty we face is that there is no way to find the real solution of our system 

or it is too slow and demands a lot of computational costs. However, we may depend on an 

approximation of the global error. For the approximated global error we may use a really 

good approximation with a stable step size, thus we will utilize Heun method with a constant 

step size of      and the results will be named as the best approximation we can gain.  

 

 
Figure 29: Best Approximated Vehicles Trajectories 

using Heun Method 

 
Figure 30: Best Approximated Vehicles Velocities using 

Heun Method 

 

 

Figure 31: Best Approximated Vehicles Accelerations using Heun Method 
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Above are presented the Vehicles Trajectories, Velocities and Accelerations concerning Heun 

method with a constant step size of        for     seconds simulation. The code used is 

written in   language and needed             for the simulation. The initial parameters are 

shown in Appendix B. Even though we use a really small step size we can still observe high 

accelerations, reaching    
 ⁄  which is around         All the vehicles remain within the 

boundaries of the road and do not collide with each other, as also their velocities tend to 

   
 ⁄  which is the set ideal velocity. 

Differences between Heun with step size          and        

This comparison is made in order to understand how much of a difference will a smaller but 

acceptable step size makes. By observing the parameters obtained by those two different step 

sizes, we cannot really tell how big the difference is. For example, at Figure    we present 

the trajectory of vehicle number    which presents the highest approximated error. 

 

 

Figure 32: Vehicle 85 Trajectory difference between Best Approximation and Heun Method 

Figures    and   , present the differences between the velocities and wheel orientation that 

vehicle number    gains from Heun Method by the two different step sizes. 
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Figure 33: Vehicle 85 Velocity difference between Best 

Approximation and Heun Method 

 
Figure 34: Vehicle 85 Wheel Orientation difference 

between Best Approximation and Heun Method 
 

By comparing the results obtained using a data interpolation technique, we can find an 

approximation of the global error. Thus, we find the differences by interpolating data of the 

bigger step size to the smaller step size results and gain an approximation of the global error 

to be equal with         Below, at Figures    and   , we present the Absolute Local Error 

for vehicle    and the Absolute summation of the Local Error for all the vehicles. 

 
Figure 35: Absolute Local Error Vehicle 85 Heun 

Method 

 
Figure 36: Absolute Global Error Heun Method 

 

By adding the final local errors of all the vehicles, hence the global error of each vehicle, we 

obtain the Global Error for the whole set of vehicles. Those two Figures show that the 

differences by cutting the iterations in half are not that great and hence Heun method 

produces a fine approximation for a step size of       . 
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Differences between Euler, Heun and the Adaptive Method 

First of all, the adaptive technique is way faster than using a constant step size. Although 

Heun’s Method may seem the better choice when it comes to accuracy, we can find the 

global error of the Adaptive Method is rather small. We will use 100 vehicles for 100 seconds 

simulation and have a constant step size of      for Heun Method, to gain the best 

approximation we can. 

Previously, we investigated two approximations gained from Heun Method and we were not 

able to detect any great differences. On the other hand, Euler Method seems to have some 

differences from our best approximation. This is understandable since Euler Method is 

simpler and also is a first order Runge–Kutta Method, whereas Heun Method is a second 

order Runge-Kutta Method. Below the trajectories of 9 vehicles are presented where 6 of 

them have different trajectories gained from Euler Method, but we have to state that the 

overall differences are not that noticeable. 

 
Figure 37: Euler, Heun and Adaptive Method Vehicles 

trajectories differences (1) 

 
Figure 38: Euler, Heun and Adaptive Method Vehicles 

trajectories differences (2) 
 

However, we still cannot define how great these differences are. Again we utilize a data 

interpolation technique to obtain an approximation of the global error. The Adaptive Method 

has a total Global Error equal with        and Euler Method has         .This time 

vehicle 56 for Euler Method displays the worse approximation with global error equal to 

        and for the Adaptive Method vehicle 31 has a total global error of       , and can 

all be observes at the Figures below. 
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Figure 39: Absolute Local Error Vehicle 56 Euler 

Method 

 
Figure 40: Absolute Global Error Euler Method 

 

 
Figure 41: Absolute Local Error Vehicle 31 Adaptive 

Method 

 
Figure 42: Absolute Global Error Adaptive Method 

 

From the Figures above it is easily noticeable that the Adaptive Method produces a better 

approximation than Euler Method, even though it requires 1240 iterations and is extremely 

faster that the constant step size of        of Euler Method. The simulation time for the 

Adaptive Method was               and for Euler Method               , both written 

in   language. 
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Figure 43: Heun and Adaptive Method Absolute Local 

Error for Vehicle 31 

 
Figure 44: Heun and Adaptive Method Absolute Local 

Error for Vehicle 85 
 

In Figures    and   , we compare the two worse approximations for Heun Method with step 

size of        and Adaptive Method. The simulation for Heun Method needed 

              . Thus, we come to the conclusion that the Adaptive Method is generally 

better than using Heun Method with a constant step size. At Figure   , we can see how the 

step size of the Adaptive Method, adapts through the simulation. 

 

Figure 45: Adaptive Step Size 
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Differences between Adaptive Method, Richardson’s Extrapolation and Adaptive using 

the Systems Energy 

Comparisons should also be made between the Adaptive Methods, to acknowledge any 

advantages and disadvantages they may have, concerning the system given. Therefore, 

presented at the Figures below are 9 vehicles trajectories, 5 of which are not the same and 4 

of them have almost the same trajectories. For this visual comparison we use as the reference 

trajectory, the one produced by the Adaptive Method, since we already know it is a good 

approximation. The algorithms for Richardson’s Extrapolation and the Adaptive Method 

using the Systems Energy were written in Matlab. 

 
Figure 46: Adaptive Method, Richardson’s 

Extrapolation and Adaptive Method through Systems 

Energy Vehicles trajectories differences (1) 

 
Figure 47: Adaptive Method, Richardson’s 

Extrapolation and Adaptive Method through Systems 

Energy Vehicles trajectories differences (2) 

 

For a thorough investigation we will again utilize the data interpolation technique, and 

analyze the approximations gained with Richardson’s Extrapolation and the Adaptive Method 

through the Systems Energy against the Best approximation we have.  

Richardson’s Extrapolation produces a good approximation with Global Error equal with 

       , with the vehicle with the worst approximation being vehicle number    and its 

global error equal to       . The simulation time was         seconds. 
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Figure 48: Absolute Local Error Vehicle 56 Richardson’s 

Extrapolation Method 

 
Figure 49: Absolute Global Error Richardson’s 

Extrapolation Method 
 

Adaptive Method through Systems Energy has a great simulation time but suffers a little bit 

concerning the accuracy. It has a total Global Error of         with vehicle number    

having the worst global error of       . 

 

 
Figure 50: Absolute Local Error Vehicle 31 Adaptive 

Method through Systems Energy 

 
Figure 51: Absolute Global Error Adaptive Method 

through Systems Energy 
 

At the following Figures we can observe the step sizes from Richardson’s Extrapolation and 

the Adaptive Method through Systems Energy, respectively. 
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Figure 52: Richardson’s Extrapolation Step Size 

 
Figure 53: Adaptive Method through Systems Energy 

Step Size 
 

Adaptive Methods Step Size Upper Bound Differences 

 Below at Figure     are presented the average time needed by the Adaptive Method to 

simulate for different step size upper bounds. For the simulations we used    sets of     

vehicles for     seconds. The algorithm we used to perform these simulations was written in 

Matlab.  

 

Figure 54: Adaptive Method’s upper bound simulations 
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Figure 55: Adaptive Method’s Step Size for        

 
Figure 56: Adaptive Method’s Step Size for        

 

 
Figure 57: Absolute Global Error Adaptive Method for 

       

 
Figure 58: Absolute Global Error Adaptive Method for 

       
 

The differences between the Global Errors for Step Size with Upper Bound equal to 1 and 5 

are almost equal, as we can observe from the Figures above. We can confirm the above 

allegation by using the results from a data interpolation technique, resulting to a Global Error 

equal to         for      and         for     . With      the Adaptive Method 

needed      iterations with an average time of       seconds, whilst with      it only 

needed 1401 iterations with average time of 4.194 seconds. Comparing those results, which 

we gained for a simulation of     seconds, with the ones we got for the     seconds 

simulations, we observe that we only needed 200 more iterations for 400 more seconds. 

At Figure    we present the average times needed by the Adaptive Method through Systems 

Energy to simulate for different step size upper bounds. This algorithm was also written in 

Matlab. 
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Figure 59: Adaptive Method through Systems Energy upper bound simulations 

 
Figure 60: Adaptive Method through Systems Energy 

Step Size for        

 
Figure 61: Adaptive Method through Systems Energy 

Step Size for         
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Figure 62: Absolute Global Error Adaptive Method 

through Systems Energy for        

 
Figure 63: Absolute Global Error Adaptive Method 

through Systems Energy for         
 

Again we observe little differences for the Global Errors for the different Upper Bounds. For 

     with an average time of      , we gain a Global Error equal to         and for 

      and an average time of 5.443 we have a Global Error equal to        . Also we 

need 1401 iterations for approximating with an     , almost 400 more than with    

  , which needs 1048 iterations. 
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Adaptive Method Absolute and Relative Error Tolerances Differences 

Concerning the Absolute and Relative Error Tolerances, we utilized    sets of     vehicles 

for            . It is reasonable that whichever of those two gain a smaller value, the 

simulation time increases. 

 

Figure 64: Simulation times for 3 different Atol and Rtol values 

For gaining a better insight of the simulation results, we will use only the first             

of each simulation, for the set number  , and compare those results with the Best results we 

have using a data interpolation technique. For                       the simulation 

time took              , for                       the simulation time took 

              and for                        the simulation time took 

              . Obviously for                       we will gain the results from 

differences between Adaptive Method and the Best approximation, hence we will not 

evaluate the approximation again. For these simulations we utilized a Matlab algorithm. 

For                       the worst trajectory we obtain is for vehicle number    with 

Global Error equal to       . We also have a total Global Error of      . 
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Figure 65: Absolute Local Error Vehicle 41 Adaptive 

Method                       

 
Figure 66: Absolute Global Error Adaptive Method 

                      
 

Concerning                    , we also gain the worse trajectory approximation for 

vehicle    with Global Error equal to        . The total Global Error was      . 

 
Figure 67: Absolute Local Error Vehicle 41 Adaptive 

Method                        

 
Figure 68: Absolute Global Error Adaptive 

Method                       
 

Time Differences between Matlab and C codes 

At the Figure below, we present the time taken for executing the simulations in C language. 

For those simulations we used    different sets of initial parameters for                  

and     vehicles and gained the average simulation time. As we can observe from the 

Figure, the quickest simulations are those using the Adaptive Method, next come the Euler 

Method and last are the Heun Method.  This is understandable since Adaptive Method 

produces the approximation with way less iterations and Heun Method has more 

computations in order to approximate the solution. 
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Figure 69: C language time simulations 

We observe the same pattern with C language simulations for the simulations that were 

performed in Matlab. The main difference between Figure 46 and 47 is that for Matlab the 

simulation execution times are way bigger. For example, for     vehicles Heun Method 

needs an average of         seconds when run in C language, while it needs approximately 

         seconds when run in Matlab which is about    times more. 

 

Figure 70: Matlab Simulations 
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7. Investigation for the repulsive potential function    and    

 

The repulsive potential functions are created and used to reassure the vehicles integrity. The 

potential functions   and   prevent inter vehicle collisions and collisions with the boundary 

of the road, respectively. Both of them are designed in such way that the repulsive force 

comes in smoothly when the vehicle’s distance from a barrier or another vehicle is further 

from the “danger” zone and rapidly when the vehicle’s distance between the boundaries of 

the road or another vehicle tends to zero. This rapid repulsive force could be translated into a 

rapid change of direction, or a great acceleration in the lateral direction or even a great 

deceleration. This problem is easily observed at the beginning of our simulations where we 

have gained random initial parameters from the   set, thus vehicles projected trajectories may 

cross each other or even the vehicles may be really close to each other. But still, when the 

distances tend to L the repulsive force must be great. Below at Figures    and    we observe 

the two ellipses surrounding the vehicles which are “responsible” for enabling the repulsive 

force between them. 

 
Figure 71: Vehicles not exchanging information 

 
Figure 72: Vehicles exchanging information 

 

In order to smoothen the repulsive effect when a vehicle or the boundaries of the road enter 

the faint colored ellipse, we have to gradually increase the repulsive force instead of rapidly 

increasing it when they come close to the dark colored ellipse. At all the previous simulations 

we have used the functions mentioned at paragraph  , and more specifically the following 

ones: 
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We are investigating those two functions and we wish to design them in such way, that they 

will repulse the vehicles in a more progressive way, while decreasing the produced 

accelerations for collision avoidance. Thus, we utilize “bell-shaped” functions that will 

gradually increase the repulsive force, before a rapid increase is needed. For these reasons we 
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will equip our function with an extra term, the Gaussian function [   . It is the archetypal 

bell shaped function and can be encountered in many problems. 

        
( 

      

   )
 

where below we use         ,         ,         . We utilize this extra term in order to 

create a local minimum between   and  , so shorter inter-vehicle distances may be 

maintained. Following, we present the currently used   function and the one we will 

investigate: 
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Figure 73: V Function 
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Figure 74: Derivative of V Function 
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Figure 75: New V Function 
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Figure 76: Derivative of the new V Function 

 

The use of the derivatives is due to the fact that in our control functions, we utilize the 

derivatives of the   and the   functions, see paragraph   equations       ,       ,       .  

Yet, we still have to evaluate the new V function. This potential function, as we have already 

mentioned, is responsible for the vehicles not crashing with each other. Thus, by inserting 

this bell shaped function, we expect shorter inter vehicular distances. We performed two 

simulations for the Adaptive method, one for     seconds and a second for     seconds. 
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Figure 77: Inter Vehicular Distances     Seconds 

Simulation 

 
Figure 78: Inter Vehicular Distances     Seconds 

Simulation 
 

From the Figures    and   , we already observe that the New V Function is able to create 

shorter minimum inter vehicular distances, for the Adaptive Method. Following, at figures    

and    we present the results for the New V Function for the Adaptive Method through 

Systems Energy, where we yet again observe shorter minimum inter vehicular distances.  

 
Figure 79: Inter Vehicular Distances     Seconds 

Simulation 

 
Figure 80: Inter Vehicular Distances     Seconds 

Simulation 
 

Below are presented the currently used   function and the one we investigate: 
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Figure 81: U Function 
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Figure 82: Derivative of U Function 

For the   function we found from various trials that it will work better if we simplify the 

existing   by defining     and utilizing the Gaussian function twice, once for the negative 

parts and once for the positive parts. We use the following parameters for the Gaussian 

functions:         ,        ,          ,          ,           ,          . 

Thus, the function we will investigate becomes as:  
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Figure 83: New U Function 

 

  
        (

  

        ) (
 

      
 

  )
 

 
             

 
        

 

      
  

     
  

 
             

 
        

 

      
  

     
  

        

 

Figure 84: Derivative of New U function 

As we can see from Figures    and   , the new U function creates two new local 

minimums. This change leads to the creation of three lanes alongside the road and for the 

simulations we utilize the second set of parameters for     vehicles, for     and     

seconds simulations. The results are presented below: 
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Figure 85: Trajectories of 100 seconds simulation 

 
Figure 86: Trajectories of 500 seconds simulation 

 

 
Figure 87: Step Size of 100 seconds simulation 

 
Figure 88: Step Size of 500 seconds simulation 

 

The simulations needed       and       seconds respectively. Following, we present the 

results for the Adaptive Method through Systems Energy for     and     seconds 

simulations: 
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Figure 89: Trajectories of 100 seconds simulation 

 
Figure 90: Trajectories of 500 seconds simulation 

  

 
Figure 91: Step Size of 100 seconds simulation 

 
Figure 92: Step Size of 500 seconds simulation 

 

The simulations needed      and       seconds respectively. From all the simulations 

performed we observed that the vehicles tend to the local minimum areas created by the new 

  Function. Depending on the design of the controller we can shape our system from lane-

free to a lane-based model. For example if we change the power   to  : 
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, and with small changes at the parameters of the Gaussian functions,         ,      

  ,      
   

√ 
,          ,           ,          , we receive the following results: 
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Figure 93: New U Function 

 
Figure 94: Derivative of New U Function 

 

Next we will present the results for the Adaptive Method, the vehicles trajectories will be 

shown at Figure    and   , with axes of time and lateral position, as also the step sizes are 

presented at Figures    and   , for     and     second simulations, respectively.  

 
Figure 95: Adaptive Method Trajectories of 100 seconds 

simulation 

 
Figure 96: Adaptive Method Trajectories of 500 seconds 

simulation 
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Figure 97: Adaptive Method Step Size of 100 seconds 

simulation 

 
Figure 98: Adaptive Method Step Size of 500 seconds 

simulation 
 

The simulations needed       and       seconds respectively. At Figures    to    , are 

presented the results for the Adaptive Method through Systems Energy for     and     

seconds simulations utilizing the new   Function. 

 
Figure 99: Adaptive Method through Systems Energy 

Trajectories for 100 seconds simulation 

 
Figure 100: Adaptive Method through Systems Energy 

Trajectories for 500 seconds simulation 
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Figure 101: Adaptive Method through Systems Energy 

Step Size for 100 seconds simulation 

 
Figure 102: Adaptive Method through Systems Energy 

Step Size for 500 seconds simulation 
 

The simulations needed       and       seconds respectively. Lastly, we have to investigate 

the new   and   Functions together and we will present results for the two different U 

Function set ups we have presented previously. At Figures     to     we present the results 

for the Adaptive Method with      ,       ,       and        seconds needed for the 

simulations, respectively. 

 
Figure 103: Adaptive Method 100 seconds simulation 

 
Figure 104: Adaptive Method 500 seconds simulation 
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Figure 105: Adaptive Method 100 seconds simulation 

 
Figure 106: Adaptive Method 500 seconds simulation 

 

At Figures     to    , we present the results for the Adaptive Method through Systems 

Energy with      ,      ,       and        seconds needed for the simulations, 

respectively. 

 
Figure 107: Adaptive Method through Systems Energy 

100 seconds simulation 

 
Figure 108: Adaptive Method through Systems Energy 

100 seconds simulation 
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Figure 109: Adaptive Method through Systems Energy 

100 seconds simulation 

 
Figure 110: Adaptive Method through Systems Energy 

500 seconds simulation 
 

From the results presented above, we observe that even with the vehicles tending to multiple 

local minima, the new   Function makes the minimum inter-vehicular distances shorter. By 

forcing the U Function to transform our model into a lane-based one, we observe for both 

adaptive techniques that the vehicles reach the minimum inter-vehicular distances way faster. 

The new functions utilized and the results gained from various simulations are not the 

optimum and there is still potential for better potential repulsive functions. The investigation 

was performed in order to show that with small changes in the system’s functions we can 

achieve different goals we may set. 
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Appendix A 

 

Pseudocode 

WHILE        

 FOR           

  FOR           

   IF      

    CALCULATE       , distance between pairs of vehicles  

    CALCULATE  ̇   , differential of the repulsive potential function   

    CALCULATE ∑      

(     )

    
   , ∑      

(     )

    
    

   ENDIF 

  ENDFOR 

  CALCULATE       

CALCULATE                 

CALCULATE                             

 ENDFOR 

 FOR           

  FOR           

   IF      

    CALCULATE       , distance between pairs of vehicles using       ,        

    CALCULATE  ̇   , differential of the repulsive potential function   

    CALCULATE ∑      

(     )

    
   , ∑      

(     )

    
    

   ENDIF 

  ENDFOR 

  CALCULATE      , using Euler positions 

CALCULATE                 

CALCULATE                     

CALCULATE     
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CALCULATE      

IF                       

SET         

ENDIF 

IF     

CALCULATE                  

IF                 AND         

SET        

SET                

SET             (          (          √
 

   
)) 

ELSEIF                  AND         

SET           (          (          √
 

   
)) 

ELSEIF         

 SET      
  

 
 

ENDIF 

ENDIF 

 ENDFOR 

ENDWHILE 
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Appendix B 

 

100 vehicles  

Set number 2 

Vehicle Number theta velocity lateral position longitudinal position 

1 0.009461077 28.46176834 2.795677104 13.95922391 

2 0.022274153 32.33249443 0.469007119 21.72867077 

3 -0.012827588 33.25486511 2.93900201 34.0442609 

4 0.037624081 31.93664185 -0.810419402 34.16065904 

5 -0.030685303 30.22478331 3.24022497 52.54079626 

6 -0.012732311 32.86988625 -3.118374889 80.00985026 

7 0.0045815 31.3066935 -0.113838372 85.52954368 

8 0.038564669 32.68250288 3.698141376 87.14234151 

9 0.015381691 31.54133294 -3.405901769 90.49241862 

10 -0.024057444 28.56636128 2.384259538 102.4482315 

11 0.013315795 27.1039155 3.999768156 128.1741163 

12 0.015476985 30.30929262 -3.806895361 131.5693419 

13 -0.036976015 30.53043449 3.142231273 143.1164595 

14 -0.03358671 28.04521125 -5.025722004 147.5613519 

15 0.000337534 31.21774011 -2.354352534 153.7180209 

16 0.008939166 28.3489499 -1.651810968 162.9136272 

17 -0.036682388 26.47050382 -3.544150308 170.3733734 

18 0.010498578 28.52814063 0.247345904 175.7385916 

19 -0.018129894 32.89376503 -1.195201635 191.1193512 

20 -0.039574151 29.30102086 0.173286552 200.6381921 

21 -0.005595038 27.54790138 4.446096428 201.5595497 

22 -0.028703245 30.46769479 -4.982232146 211.0344743 

23 -0.024774765 31.7394609 1.779003384 216.1981843 

24 0.015012413 29.04751892 4.632856817 222.1671252 

25 0.013612233 34.97679709 -3.394231488 223.1598483 

26 0.003426608 33.95185435 -3.345326507 240.1409189 

27 -0.000757752 34.50953834 1.317700778 244.8656982 

28 -0.041221013 34.56250569 -1.262033316 252.0324418 

29 0.032771144 26.20804273 -1.911199701 277.3921721 

30 -0.015325108 30.16033988 3.229888802 278.1915658 

31 0.012775861 32.37895549 3.182722905 331.4793018 

32 0.026598344 33.94214697 0.637952314 358.6830622 

33 0.036172517 27.14864803 4.440040607 362.7295813 

34 0.025893456 28.9951006 0.411519326 371.5525273 
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35 -0.010455588 28.56656054 -4.093874644 383.9117973 

36 0.026505822 28.05802393 2.209049634 391.8493022 

37 -0.039547586 30.99978352 3.787452843 402.1479023 

38 -0.025333 30.22836438 4.647419916 419.7258383 

39 0.015569399 28.38106041 0.042079677 424.5242137 

40 0.010340538 34.41965507 -3.863862894 429.7852466 

41 0.031108043 34.71996363 -1.11747964 439.0774938 

42 -0.003695277 27.94150924 2.045283169 450.1946863 

43 0.034512677 27.45733356 2.633016506 477.0930911 

44 -0.031460643 30.10480597 -3.686900399 483.1783448 

45 -0.02537503 28.29339164 3.873198531 492.8979593 

46 0.033253046 28.39339712 -0.848912111 498.7759953 

47 -0.014815582 34.91717151 -1.072374817 512.7203695 

48 -0.025891872 31.03163141 -2.399110921 541.6150526 

49 -0.019800393 33.63026149 0.682216374 560.46278 

50 0.003551556 28.93342377 -0.456957341 568.6998117 

51 -0.036594849 28.11848866 5.019482487 583.9593143 

52 0.016927012 32.53857002 0.702893406 585.6881804 

53 0.011929654 27.23939207 0.48650985 596.5249496 

54 0.014302297 31.30122553 -3.902969666 598.8613993 

55 0.008875057 32.16820464 0.198793106 609.2554358 

56 -0.011141705 34.46574392 -2.651047145 620.773699 

57 0.002830257 33.11849695 2.369254421 625.8216007 

58 -0.016155452 27.31605581 -1.57600981 634.6558945 

59 -0.026749175 32.82928988 3.469896873 641.2763575 

60 0.030840708 29.66690079 -1.502507104 648.8679973 

61 -0.004125354 29.25953269 4.736085731 699.921544 

62 0.005146043 34.09418776 0.477316119 717.0151038 

63 0.016201032 30.11609372 0.966775102 733.3479135 

64 0.024664775 27.50208778 -4.639215742 743.6906706 

65 0.02570284 29.10010234 -3.489477725 752.5073116 

66 0.037252594 26.45355505 -0.02124958 769.6165794 

67 0.017229072 26.84227613 2.609282177 779.2375771 

68 0.019238659 27.47312731 -0.236263475 786.4103211 

69 -0.026215641 31.68635192 -5.078142099 798.134031 

70 0.033152759 32.68985521 -1.071410071 807.8979338 

71 -0.002627178 33.01299337 -0.57672703 819.849151 

72 0.034963998 30.68727506 -4.008978406 832.9818901 

73 0.003545107 26.2017949 1.764612951 834.7894176 

74 -0.030110829 31.39544601 1.496887757 843.6605763 

75 0.031564554 29.04350005 2.900200018 866.6531158 

76 0.021231727 33.05945149 -3.741407197 869.9684439 
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77 0.023188157 34.06285315 4.287692921 875.6433911 

78 -0.022284793 29.83315816 -2.177158872 884.5514494 

79 -0.031201653 34.98330517 -1.168379112 894.200159 

80 0.02471655 33.4769165 -0.599870909 907.7140815 

81 0.033258962 31.65957455 0.731629081 918.5311996 

82 -0.012583091 33.0901342 -3.354346104 954.4991991 

83 0.003260734 34.84547124 -2.36137265 963.2559502 

84 -0.008431012 27.61389857 2.833205277 969.411005 

85 -0.034512555 29.89965471 -2.613563845 971.8354058 

86 0.025043853 29.74180486 -0.085630639 986.916977 

87 -0.021593713 34.67527572 3.148651564 999.4958746 

88 -0.003263875 26.96795525 -1.723239876 1016.304934 

89 -0.018415623 33.30135963 -3.990598215 1027.437369 

90 -0.034303634 30.13573462 0.318075104 1037.118239 

91 0.007374042 31.63056248 -4.946444149 1043.86597 

92 -0.042440486 33.08475736 -2.064677993 1053.545217 

93 -0.022533052 34.32231695 0.480410417 1060.95216 

94 0.042341403 34.35002449 5.044380789 1070.330696 

95 0.021214642 34.91061153 -0.031039369 1080.77797 

96 -0.035266378 34.28305102 -1.399007778 1096.595876 

97 -0.036982204 29.88015236 -5.097711134 1103.095748 

98 0.02517868 32.99903782 0.116810275 1106.610037 

99 -0.042525563 29.77300977 3.279982584 1113.377716 

100 -0.024458062 31.97467448 -2.813049741 1118.725897 

 


