

Technical University of Crete

School of Production Engineering and Management

Application of numerical approximation methods in control

systems which describe movement of autonomous vehicles in

lane free-roads

Εθαξκνγή αξηζκεηηθώλ κεζόδσλ ζε ζπζηήκαηα ειέγρνπ πνπ

πεξηγξάθνπλ ηελ θίλεζε απηόλνκσλ νρεκάησλ ζε δξόκνπο

ρσξίο ισξίδεο

Created by: Tzitzikopoulos Nikolaos Marinos

Supervisor: Dr. Papamichail Ioannis

Committee:

Dr. Chalkiadakis Georgios

Dr. Doitsidis Lefteris

Chania, 2022

Acknowledgements

Words cannot express my gratitude towards my supervisor and chair of my committee, Dr.

Papamichail Ioannis, as also my co-supervisor Dr. Theodosis Dionysis for their invaluable

patience and feedback. I would also like to thank the rest of my committee, Dr. Chalkiadakis

Georgios and Dr. Doitsidis Lefteris for attending my presentation and their comments

towards the improvement of my thesis.

Lastly, I am also grateful to my friends and family for their moral support that kept me

motivated through the whole process of my studies.

Abstract

Automobiles have changed people's everyday life and have become essential for the personal

transportation of millions of people. Advancements in technology are growing and enhancing

the driver's experience, from automatic headlights to automatic emergency braking and

autonomous driving, nowadays. Autonomous driving on lane-free roads is a complex system

where the vehicles have to be “connected” with each other and “cooperate” to perform their

movement with safety. Usually, this kind of problems consists of non-linear or stiff

differential equations which cannot be solved analytically, thus in this thesis we utilize

numerical approximation methods to investigate a proposed system of cooperative

autonomous vehicles in lane-free roads [] to observe the simulation's results along with the

system's control functions. However, such complex systems describing autonomous vehicles

driving on lane-free roads tend to be a challenge for numerical approximation methods,

where high order Runge-Kutta methods may not be applicable while low order Runge-Kutta

methods may present numerical instability if the initial step size is not sufficiently small. To

achieve our goals, we analyze the system's characteristics and utilize a variety of numerical

approximation methods to observe the vehicle's behavior on lane-free roads, as also their

results, and make comparisons between them and their errors. Furthermore, we utilize an

adaptive step size control in order to maintain the numerical solutions inside a defined open

set, as also have the advantage of increasing and decreasing the step size, depending on the

behavior of the system at any given moment. Following, we will use a Lyapunov function of

the system, which represents the energy developed between the vehicles as the step size

evaluator at an adaptive numerical method, in contrast to the regular adaptive methods which

utilize the vehicle's characteristics, their lateral and longitudinal positions, their velocities and

their wheel orientations. Lastly, we will try to investigate certain repulsive potential functions

of the system, bound to keep the integrity of the vehicles hoping for smoother and more

desired trajectories developed.

Περίληψη

Τα απηνθίλεηα έρνπλ δεκηνπξγήζεη πνιιέο αιιαγέο ζηελ θαζεκεξηλή δσή ησλ αλζξώπσλ

θαη έρνπλ γίλεη απαξαίηεηα γηα ηελ πξνζσπηθή κεηαθνξά εθαηνκκπξίσλ. Οη εμειίμεηο ζηελ

ηερλνινγία απμάλνληαη θαη βειηηώλνπλ ηελ νδεγηθή εκπεηξία, από ηνπο απηόκαηνπο

πξνβνιείο, ζην απηόκαην θξελάξηζκα έθηαθηεο αλάγθεο, πιένλ κέρξη θαη ηελ απηόλνκε

νδήγεζε. Η απηόλνκε νδήγεζε ζε δξόκνπο ρσξίο ισξίδεο είλαη έλα ζύλζεην ζύζηεκα όπνπ

ηα νρήκαηα πξέπεη λα είλαη «ζπλδεδεκέλα» κεηαμύ ηνπο θαη λα «ζπλεξγάδνληαη» έηζη ώζηε

λα εθηεινύλ ηελ θίλεζή ηνπο κε αζθάιεηα. Σπλήζσο, ηέηνηνπ είδνπο πξνβιήκαηα

απνηεινύληαη από κε γξακκηθέο ή δύζθακπηεο δηαθνξηθέο εμηζώζεηο νη νπνίεο δελ κπνξνύλ

λα ιπζνύλ αλαιπηηθά, επνκέλσο ζε απηή ηε δηπισκαηηθή ρξεζηκνπνηνύκε κεζόδνπο

αξηζκεηηθήο αλάιπζεο γηα ηε δηεξεύλεζε ελόο πξνηεηλόκελνπ ζπζηήκαηνο ζπλεξγαδόκελσλ

απηόλνκσλ νρεκάησλ ζε δξόκνπο ρσξίο ισξίδεο [], κε ζηόρν λα παξαηεξήζνπκε ηα

απνηειέζκαηα ησλ πξνζνκνηώζεσλ καδί κε ηηο ιεηηνπξγίεο ειέγρνπ ηνπ ζπζηήκαηνο.

Ωζηόζν, ηέηνηα ζπζηήκαηα πνπ πεξηγξάθνπλ απηόλνκα νρήκαηα πνπ θηλνύληαη ζε δξόκνπο

ρσξίο ισξίδεο ηείλνπλ λα απνηεινύλ πξόθιεζε γηα κεζόδνπο αξηζκεηηθήο αλάιπζεο, όπνπ

γηα παξάδεηγκα Runge-Kutta κέζνδνη πςειήο ηάμεο ελδέρεηαη λα κελ είλαη εθαξκόζηκνη, ελώ

Runge-Kutta κέζνδνη ρακειήο ηάμεο ελδέρεηαη λα παξνπζηάδνπλ αξηζκεηηθή αζηάζεηα εάλ ην

αξρηθό κέγεζνο ηνπ βήκαηνο δελ είλαη αξθεηά κηθξό. Γηα λα επηηύρνπκε ηνπο ζηόρνπο καο,

αλαιύνπκε ηα ραξαθηεξηζηηθά ηνπ ζπζηήκαηνο θαη ρξεζηκνπνηνύκε έλα εύξνο κεζόδσλ

αξηζκεηηθήο αλάιπζεο γηα λα παξαηεξήζνπκε ηε ζπκπεξηθνξά ησλ νρεκάησλ ζε δξόκνπο

ρσξίο ισξίδεο, θαζώο θαη ηα απνηειέζκαηά ηνπο θαη λα θάλνπκε ζπγθξίζεηο κεηαμύ ησλ

απνηειεζκάησλ θαη ησλ ζθαικάησλ ησλ κεζόδσλ. Επηπιένλ, ρξεζηκνπνηνύκε κεζόδνπο

κεηαβαιιόκελνπ κεγέζνπο ηνπ βήκαηνο γηα λα δηαηεξήζνπκε ηηο αξηζκεηηθέο ιύζεηο κέζα ζε

έλα θαζνξηζκέλν αλνηρηό ζύλνιν ηηκώλ, θαζώο κε απηή ηελ πξαθηηθή έρνπκε επίζεο ην

πιενλέθηεκα ηεο αύμεζεο θαη ηεο κείσζεο ηνπ κεγέζνπο βήκαηνο, αλάινγα κε ηε

ζπκπεξηθνξά ηνπ ζπζηήκαηνο ζε θάζε δεδνκέλε ζηηγκή. Σηε ζπλέρεηα, ζα

ρξεζηκνπνηήζνπκε κηα Lyapunov ζπλάξηεζε ηνπ ζπζηήκαηνο, ε νπνία αληηπξνζσπεύεη ηελ

ελέξγεηα πνπ αλαπηύζζεηαη κεηαμύ ησλ νρεκάησλ σο ηνλ θαζνξηζηηθό παξάγνληα ηνπ

κεγέζνπο ηνπ βήκαηνο ζε κηα αξηζκεηηθή κέζνδν κεηαβαιιόκελνπ βήκαηνο, ζε αληίζεζε κε

ηηο θαλνληθέο «πξνζαξκνζηηθέο» κεζόδνπο πνπ ρξεζηκνπνηνύλ ηα ραξαθηεξηζηηθά ηνπ

νρήκαηνο, ηηο ζέζεηο ησλ νρεκαησλ ζην δξόκν, ηηο ηαρύηεηεο θαη ηνλ πξνζαλαηνιηζκό ησλ

ηξνρώλ ηνπο. Τέινο, ζα πξνζπαζήζνπκε λα δηεξεπλήζνπκε νξηζκέλεο απσζηηθέο

ζπλαξηήζεηο ηνπ ζπζηήκαηνο, ε ιεηηνπξγία ησλ νπνίσλ είλαη λα δηαηεξήζνπλ ηελ

αθεξαηόηεηα ησλ νρεκάησλ, κε ζηόρν νκαιόηεξεο θαη πην επηζπκεηέο ηξνρηέο.

Table of Contents

1. Introduction ... 6

2. Preliminaries for Ordinary Differential Equations and Numerical Analysis 9

3. Numerical methods for solving ordinary differential equations ... 11

4. 2D Cooperative Cruise Control ... 20

5. Numerical investigation of solutions .. 26

6. Comparisons between Numerical Approximation Methods ... 35

7. Investigation for the repulsive potential function and ... 50

References ... 63

Appendix A ... 66

Appendix B ... 68

6

1. Introduction

Transportation has been a problem for humans since ancient times when humans lived as

nomads and had to move around searching for better places to live. As the years passed,

humanity tried to domesticate animals for labor and transportation. A milestone for human

transportation is the invention of the wheel, dating back to around BC, creating the first

wheeled vehicles. Since then many ways for transportation have been created, but nowadays

the most popular one is the automobile since it provides the ability to move flexibly from

place to place and far-reaching destinations [, p.]. However, traffic collisions are the

largest cause of injury-related deaths worldwide [, p.]. Human factor plays a great part in

vehicular movement and eliminating it could improve the performance of transportation

systems, their safety, reduce congestion and traffic accidents, and improve traffic flow on

highways.

Autonomous vehicles date back to the beginning of the century [] when scientists

started to dream of vehicles driving autonomously along highways, in order to increase the

safety, efficiency, and convenience of the transportation system. However, communicative

and cooperative systems have not been introduced to vehicles yet. Autonomous vehicles right

now rely on radar and vision systems, while lidar, sonar, and camera systems have also been

used. Another great advancement in technology is non-line of sight propagation []. Typical

vision systems image objects that are in line of sight, however advanced measurement

systems, such as femtosecond time-resolved detectors, acoustic systems, etc., are able to

detect and reconstruct objects hidden behind obstacles []. This technology could immensely

help autonomous vehicles prevent accidents, along with making safer decisions for their

movement.

As automobiles came into widespread use, head-on collisions became more common and

parallel lanes were introduced on roads, to separate traffic going in different directions and

increase safety. By the increasing use of vehicles multiple lanes were introduced. That made

driving a simpler task, considering drivers have only to acknowledge the width and speed of

their vehicle, as also monitor the distance and speed of the front vehicle. However, lanes

added an extra risky operation which is that of lane changing. When a driver wishes to

properly change lane, he has not only to monitor the front vehicle but also seek an available

gap, by observing the vehicle movement at the next lane and estimating its speed and

acceleration. This task is risky, considering you have to check your mirrors and also check

your blind spot by looking over your shoulder, a small amount of time at which your sight is

not onto the front vehicle. In fact, for of all accidents, lane changes were responsible

[]. Taking into consideration that autonomous vehicles will not be commanded by a driver,

hence shorter inter-vehicle distances could be utilized. Thus a lane-free concept would highly

impact road-traffic and congestion, through the increase of road capacity. In addition,

7

cooperation and communication between vehicles will provide them with the necessary

knowledge about their distance from the boundaries of the road and the relative distance from

adjacent vehicles. This is an innovative concept at which as vehicles will utilize the whole

width of the road, they will not collide with other each other and neither with the boundary of

the road. Taking into account, cooperation and communication between vehicles, a “nudging”

effect can take place [. By the term “nudging”, we refer to a virtual force that vehicles

apply to the vehicles in front of them without jeopardizing speed limits or traffic safety. With

the proposed nudge effect, an increased flow and road capacity can be achieved see [].

The movement of autonomous vehicles in lane-free roads forms a demanding and complex

problem. All vehicles have to be connected and communicate with each other through their

sensors, in order to complete their movements with safety. Such a system is usually described

by a great number of non-linear differential equations, which are impossible to be solved

analytically. Thus, numerical methods are essential for investigating such systems and

gaining an approximation of the real solution. Still, numerical methods find challenging to

solve such ordinary differential equations systems, because systems describing the movement

of vehicles in lane-free roads tend to be:

i. Non-linear

ii. Stiff

iii. The state space is defined by an open set

Hence, numerical methods for ordinary differential equations, such as the th
 order Runge-

Kutta may not be immediately applicable, while lower-order methods, such as Euler and

Heun may present numerical instability if the initial step size is not sufficiently small.

Moreover, the numerical solution may attain values outside the open set defining the system

due to numerical errors. For such cases, an adaptive step size technique is preferred. The

main advantage of this methodology is that of adjusting the step size, depending on the

behavior of the numerical solution gained from each iteration. This way, the numerical

solution approximation speed can be enhanced, along with its precision. The methods

mentioned above will be used to approximate the numerical solution of the problem of the

movement of autonomous vehicles. Subsequently, simulations will be made and the

following will be reviewed:

i. The movement behavior of vehicles in lane-free roads, and

ii. The trends of the numerical solutions and their errors, obtained from the various

numerical approximation methods used.

In this thesis, we are numerically approximating the solution of a vehicular integrated

infrastructure, in which vehicles communicate and cooperate with each other, increasing the

capacity of the road through maintaining shorter inter-vehicle distances and adapting a lane-

free concept []. We are going to utilize both stable and adaptive numerical approximation

methods, in order to evaluate and compare their solutions with each other. Furthermore, a

8

new direction of adaptive technique is introduced. In contrast of the regular adaptive

methods, we intend to utilize a Lyapunov function that represents the energy of the system,

thus we do not depend on the vehicles parameters for the evaluation of the step taken, rather

than from the whole energy produced by the vehicles, their inter – vehicle distances, the

distances from the boundary of the road, their velocities and their wheels orientation. The

thesis is outlined as follows, in chapter is stated the necessary introduction to Ordinary

Differential Equations and Numerical Analysis, as in chapter , a detailed review of the

Numerical Approximation Methods utilized for the solution of a set of ODEs is given.

Without these two chapters, it would be impossible to analyze the Cooperative Adaptive

Cruise Control (CACC) given and numerically investigate the solution of its set of ODEs.

Thus, chapters and are created regarding the D CACC and its numerical approximation.

Finally, chapters and focus on comparing the results gained by various numerical

methods and investigating certain functions of the system.

9

2. Preliminaries for Ordinary Differential Equations and Numerical

Analysis

Differential equations are equations that involve one or more derivatives of a function. This

kind of equation could involve an independent variable, a dependent variable, and one or

more derivatives of the dependent variable

()

0 1 2
() () () () () () ... () () () 0

n

n
a t y t a t y t a t y t a t y t b t      

Ordinary differential equations involve only one independent variable, whilst, equations with

two or more independent variables are called partial differential equations []. Linear

differential equations play an important role since they regularly appear in physical

phenomena and can be solved analytically. However, the behavior of complex systems is

usually described by nonlinear differential equations which are hard or even impossible to

solve explicitly []. Linear equations have a constant slope, hence forming a line. In contrast,

nonlinear equations have the opposite characteristics of the linear ones; their slope may vary

between points, resulting to a shape different than a line.

For this reason, we utilize numerical methods gaining a quick, but also acceptable

approximation as the solution for the system. The numerical solutions gained, involve two

types of errors, round-off errors and truncation (or discretization) errors. Round-off errors are

the result of the inability of computers to present all real numbers and their precision.

Considering that most numerical methods when solving a system of ODEs calculate

approximate solutions step by step, hence with the approximation comes an error for each

step taken. This error, which also depends on the different equations utilized from each

numerical approximation method, is called truncation (or discretization) error [].

The error added with every step is called local error, though the propagated error is the added

error due to the previous approximation. Hence the overall difference of the exact and the

approximated solution is the sum of both errors and is called global truncation error [, p.

],[, p.][]. The main difference between numerical approximation methods is the

procedure from which the slope is estimated. All of the methods belong to the Runge-Kutta

family. You can calculate the error exactly, by comparing the approximation with the

analytical solution [],[]. However, in many cases, as with our system, this cannot be

achieved due to the absence of the analytical solution. Hence, we can only obtain an

estimation of the errors.

Another difficulty regarding numerical methods is that of stiff equations. Although there is no

precise definition of stiffness, a stiff equation is considered to be numerically unstable for

relatively high step sizes and prone to even small changes at its initial conditions. Stiff

problems pose difficulties to solving by standard explicit methods, whereas some implicit

methods seem to perform better. However, implicit methods take more time to approximate

10

the solution, since they require the solution of a non-linear algebraic equation system. Such

problems may consist of both rapidly and slowly changing parts, its step size decreases by

stability requirements due to having some eigenvalues negative and large in magnitude or

for complex eigenvalues with negative real parts [],[, p.].

Stability is another important characteristic that should be taken into account, concerning

numerical approximation methods. A numerical solution is considered to be unstable if the

error grows exponentially for a problem with a bounded solution [, p.]. Stability

depends on three factors: the given differential equations, the step size and the numerical

method utilized. Furthermore, a numerical method converges if its error tend to zero when the

step size tend to zero. By decreasing the step size the iterations on the other hand increase,

hence the computational costs increase. For a method to be considered convergent, it is

required to converge on all problems for all reasonable initial conditions [, p.].

11

3. Numerical methods for solving ordinary differential equations

Two main types of numerical methods exist, the explicit and the implicit methods. The

explicit methods calculate the numerical solution of the ODEs, subject to the exactly previous

approximation of the numerical solution and the values of the equation. It could have the

form of [].

 
11 ,,  iiii yttFy

The implicit methods demand either the solution of a non-linear system of algebraic

equations or the solution of the algebraic equation with a root-finding method such as

Newton Raphson. It could have the form of:

  0,,, 11  iiii yyttG

The simplest of all numerical methods is the forward or explicit Euler method (1768), which

is produced from the first two terms of the Taylors sequence [9, p. 708],

The term will be called time step and be denoted by

It is a first-order Runge-Kutta method used to solve initial value problems. This method uses

a constant step size to compute step by step, approximations for from an initial

value , basically constructing the tangent of the slope. The local error (error per

step) of Euler’s method is proportional to the square of the step size and the global error

(error given at any time) is proportional to the step size [9, p. 710-712]. We could use a

table to display the factors of every Runge-Kutta method. This table is called the Butcher

tableau and for the explicit Euler method is as shown below [, p.],[]:

0

 1

Another simple method, often known as improved Euler method, is Heun method [, p.],

 ⁄

It is a second order Runge-Kutta method which derives from transforming the trapezoidal

method,

12

 ⁄ ()

Although this method also uses a constant step size, it can perform better than Euler since it

uses one more approximation to calculate the numerical solution. Heun method has the

following Butcher tableau [, p.],[]:

0

1 1

 ⁄

 ⁄

Example 1: Consider the following ordinary differential equation,

 ̇

whose analytical solution with initial condition is given analytically from the

equation,

 . The table below shows the

approximation of , for both Euler and Heun method, with step size .

Time step Real Value Euler Method Heun Method

 2.0 2.0 2
0.1 1.9044 1.9 1.9043
0.2 1.8149 1.8085 1.8147

1 1.0059 1.0202 1.0043

1.1 0.8707 0.8881 0.8690

2 -0.6001 -0.5881 -0.6001

2.1 -0.7599 -0.7528 -0.7595

2.9 -1.5251 -1.5748 -1.5214
3 -1.5265 -1.5838 -1.5224

Notice first that Heun provides a better approximation than the Euler method. Moreover, we

can observe all the values gained at Figure 1,

13

Figure 1: Comparisons between the Real Value and the

Approximations

Figure 2: Error produced by each approximation

The example above shows that for simple problems, a small step size can produce rather good

approximations. But when the problem is more complex and/or the time step needs to be

greater, these kind of methods could fail producing a fine approximation.

Even though Euler and Heun methods seem to produce a fine approximation of the analytical

solution both underperform when a stiff problem is introduced. To gain a good

approximation, the step size has to be decreased, increasing significantly execution time of

the algorithm. Considering the nature of our problem, execution time plays an essential role

in driving us to methods using less iteration but also maintaining a good approximation of the

solution [, p.]. Such methods are called automatic or adaptive step size methods. The

idea of adaptive techniques is such to evaluate an approximation made comparing it with a

tolerance to decide the following step size [],[], aiming to enhance the precision of the

method. There exist many methods to approximate as also to evaluate the approximation

gained.

Example 2: Consider the following ordinary differential equation,

 ̇

Here, both Euler and Heun fail to produce a fine approximation of the real solution for a step

size of and even for over the period of .

14

Figure 3: Approximation of Euler Method with step size

of

Figure 4: Approximation of Heun Method with step size

of

Figure 5: Approximation of Euler Method with step size

of

Figure 6: Approximation of Heun Method with step size

of

On the other hand, an Adaptive technique with an initial step size , is able to adapt its

step size during each iteration and produce a far more accurate approximation.

15

Figure 7: Approximation of Adaptive Method

Figure 8: Step Size of Adaptive Method

As already mentioned, when using an approximation method instead of the analytical

procedure, an error in the results is introduced, called truncation error [, p.]. Also, by

using a computer for the approximations round-off errors have to be taken into account.

These errors arise due to the inability of the computers to represent some real numbers.

Generally, in approximation methods we distinguish the error in the local error and the global

error []. Local truncation error is difference between the approximation and the real value

at every single step. The propagated truncation error is the result of performing iterations

with values that have been approximated. Lastly, global truncation error is the sum of the

local and the propagated truncation error and it can be found at the last iteration performed

[, p.].

Local Error:

Global Error:

In most applications though, the exact solution is not available, which is also the reason we

use numerical approximation methods, hence we have to depend on estimations of the error.

The error estimation also derives from the Taylor series and consists from the remainder parts

that are left out of the method used. Euler method which uses the first two parts for the

approximation has an error of the remainder parts as follows [, p.]:

𝑦̇ 𝑓 𝑦

𝜙𝑡 𝑦

𝑦𝑛 Φ 𝑦𝑛

16

where specifies that the local truncation error is proportional to the step size raise to

the power , where represents the order of the method used. By leaving parts of the

Taylor series off of our numerical approximation, it simulates as ignoring parts of the exact

solution, hence the approximation error. Thus for Euler method we have the following error

follows:

,and for a relatively small step size h, all terms except the first can be ignored:

Therefore, Euler method has an approximate local truncation error of . This confirms

the general local truncation error equation , since Euler method is a first order

Runge-Kutta method [, p.].

Since Heun method is a second order Runge-Kutta method, we have to predict that the

approximate local truncation error will be . Considering that Heun method is made

from transforming the Trapezoidal rule, they have the same approximate local truncation

error. The Trapezoidal rule has a local truncation error of [, p.]:

where is between and .

17

Richardson Extrapolation

This is a simple error based adaptive technique, which utilizes a Runge-Kutta method to

compute two numerical approximations and . The first approximation is found with a

step size , while for the second one the step size is halved, ⁄ . That way an estimate of the

error is computed as the difference between those two approximations. Considering for the

second approximation where the step size is half, a slightly better approximation is expected.

Since the exact solution most of the times is not available, the error is estimated by the

difference between the two approximations provided by the Richardson extrapolation. The

error is computed by the following equation [, p. –]:

 √∑()

Following, if the error is below a designated tolerance we set the new step size as:

or if it is over the designated tolerance:

Embedded Runge-Kutta Methods

In the embedded Runge-Kutta scheme, rather than using one method, two Runge-Kutta

methods are utilized, one of which with order and the other with order . The simplest

of all is Heun-Euler method, which utilizes the second order Heun method, defined as and

the first order Euler method, defined as ̂ . By using two consecutive order methods, with the

same step size, less computational costs derive, since Euler method is included in Heun’s

method. Another advantage of this technique is that through the difference between the two

approximations obtained, an estimate of the local error is produced. Hence, as a measure of

error we take:

 √

∑(

 ̂

)

where | | | | and satisfy | ̂ | . Relative errors

are considered for , absolute errors for and both are prescribed as the desired

tolerances by the user. Here is the number of ordinary differential equations that the system

approached contains [, p. –].

18

All techniques adapt the step size in an effort to keep the local error within an appointed

tolerance. This error computational method is used in order to scale the error in such way that

if it is less than 1, the step made is considered accepted, and if greater than 1, the step made is

considered rejected. If the step is accepted the new step size will increase, otherwise it will

decrease.

In the problem described in the following chapter, the new step size is considered accepted

if and the code advances to the next step using the new step size . On the other

hand, the new step size is considered rejected not only if , but also if the parameters

gain values outside of the open set (the set is described at the following chapter). If

and the values gained respect the set, we get the new step size as stated below, else we set

the step size as half of the previous and we perform the iteration again.

Computing the new Step-Size

Method 1: Through the estimated error the new step size can be determined. Generally a safe

way to calculate the new step size is stated below [, p. –]:

 ((√

))

This function has a minimum factor facmin, which prevents from fast decreases of the step

size as also a maximum factor facmax, which prevents from fast increases. These factors are

much needed, considering that the bigger step size is prone to errors and our step size is also

adaptive, hence our propagated error may grow rapidly.

Method 2: Another way of gaining the new step size is the following,

 (√

)

which does not allow fast increase or decrease of the step size. Big step increases are

prevented by , the maximum step size multiplier, while is a safety factor, ensuring that

the following error will be acceptable.

Method 3: A rather simple technique is that of doubling and halving the step size in order to

obtain the new one. By using this technique the change of the step size is drastic, fast

increases and decreases at each step, hence fluctuations will be observed. This way, the

computational costs for gaining the approximation are increased. The new step size is

doubled when it is considered accepted,

and halved when it is considered rejected,

19

In Chapter 5 we will study and compare the above methods and we will provide a new

adaptive method designed suitable for the problem at hand.

20

4. 2D Cooperative Cruise Control

New technologies are being introduced in our lives every single day. Vehicle automation and

communication between vehicles are one with great impact since it will improve the

performance of transportation systems, their safety, reduce congestion and traffic accidents,

and improve traffic flow on highways.

Adaptive Cruise Control (ACC) [], [] systems are an evolution of Cruise Control systems,

which maintained the speed of the vehicle at a certain desired value. ACC is able to

automatically adjust the vehicle’s speed to maintain a certain distance from a front vehicle or

to maintain a desired speed. These certain technologies require a lot of sensors and

information to be evaluated for a decision to be taken. Cooperative Adaptive Cruise Control

(CACC) [], [] systems are wirelessly connecting vehicles, enabling them to exchange

valuable information, therefore the decisions will be taken faster with less complicated

calculations with fewer time needed. Thus shorter inter-vehicle distances will be maintained,

the capacity of the roads and the safety will increase.

In this chapter we consider the two-dimensional movement of autonomous vehicles in lane

free roads [], [], [], []. We consider identical vehicles in a lane free road, whose

movement is described by the following ODEs:

 ̇

 ̇

 ̇

 ̇

(4.1)

for . Here, are the longitudinal and lateral position of the -th vehicle

respectively, with and , while we place its reference point at the midpoint

of the rear axle of the vehicle; is the speed of the -th vehicle at the point ;

 (

) is the heading angle of the -th vehicle and is the steering angle of the front

wheels. Last but not least, is the acceleration of the -th vehicle. This model is known as

the bicycle kinematic model [], [].

21

Figure 9: Lane-free road of width

Figure 10: Each vehicle is modeled by the

bicycle kinematic model

In order to make the analysis less complex, we define

 (4.2)

Hence, the model can be written like the following simpler form

 ̇

 ̇

 ̇

 ̇

(4.3)

for , where and are the control inputs. Considering that communication

between vehicles may change over time, the control laws adapted from this methodology are

decentralized and only depend on local sensing capabilities. The controllers are decentralized

in such way that relies on the full state of the vehicle and also the state of the vehicles that

are within its sensing radius. The distance between vehicles is defined by:

 √ (4.4)

For , we obtain the Euclidean distance while for we have an "elliptical" metric

which will allow to approximate more accurately the dimensions of a vehicle. This elliptical

metric allows more vehicles to be placed along the width of the road while maintaining a

certain safety distance between them.

22

Furthermore we define the set

 {
 } (4.5)

, and also follow the notation

 (4.6)

The set S represents all the possible values the parameters of all vehicles of the system can

obtain. First of all, each vehicle has to stay within the road boundaries

for All vehicles operate on a lane-free road with speed limit , as also

they are not allowed to move backwards at any given moment. For the given constant

 (⁄), the vehicles should not be able to turn perpendicular to the road, hence it

should hold that . This constant performs as an orientation safety constraint,

considering vehicles can achieve high speed, should restrict the steering angle values close

to zero. Probably the most important property which is not constrained by the set , is the

collision avoidance between vehicles. Hence, a safety distance factor is defined, where

all distances between references points concerning any pair of vehicles should respect.

Thus the state-space of the vehicles that operate on a lane-free road are described by an

open set :

 { } (4.7)

To sum up, below are stated the objectives the decentralized feedback laws should follow:

i. all vehicles operating should not collide with each other nor with the boundary of the

road,

ii. their velocities always be positive and remain below the given speed limit, as also

converge to a certain speed set-point,

iii. the orientation of all vehicles always remain bounded by the given value (

)

and converge to 0,

iv. their accelerations, angular and lateral speeds tend to zero.

Considering all of the above, for every initial condition , we obtain a unique

solution for all under the effect of all feedback law and for ,

from the closed loop system. Furthermore, all of the objectives stated above should be

satisfied, for every initial condition , as well for their solutions .

Following, the decentralized control system has to be determined, as well as the constant

parameters utilized by the model []. As already stated, the decentralized system shall

23

prevent collision between vehicles and the boundary of the road. Thus, repulsive potential

functions are utilized, in such a manner that the repulsion force between vehicles grows when

the individual distance is decreasing, and the repulsion tends to zero when the vehicles are

distant. Considering that, functions and are

functions:

 {

 (4.8)

{

 (

)

 √

√

 √

√

 √

√

 √

√

(4.9)

and satisfy,

 () and , for all . () ,

 () , and The potential functions and are designed in a

way to prevents inter vehicle collisions and collisions with the boundary of the road

respectively.

Here are constants which correspond to a large and a small ellipse around each vehicle,

respectively. This ellipse is defined as following:

(4.10)

By appropriately selecting , the above functions create ellipses around every

vehicle as desired, and we can also determine their eccentricity √

. The two

concentric ellipses are considered to have semi-major axes of and and semi-minor axes of

√
 and

√
, respectively. The ellipses are determined in such way to maximize the road

capacity as also prevent the vehicles to come close together and with the boundary of the

road. The number of vehicles that can sit side-by-side depends on the size of the road ,

the safety distance , as well as the weight . The formula which calculates this number is

the following:

24

 √

If there are no vehicles inside the larger ellipse and nor is the vehicle referenced near the

boundary of the road, there is no repulsive force. By contrast, when the vehicle gets closer to

another vehicle, the repulsive force grows, tending to infinity while the inner vehicle distance

tends to . The selection of both constants is equally important, since L is the safety distance

and no vehicles are allowed to come within this “safety” ellipsoid, and creates the ellipsoid

from which the vehicles gain their needed information. Thus, if the is selected large, the

measurement area around the vehicles is increased, as also the inter vehicle distances may be

affected.

Considering the repulsive potential functions, we have to appropriately select the rest of their

constants. The constant is responsible for the magnitude of the acceleration , as also the

repulsive force taking action between the vehicles . For instance, by choosing small values

of , the values of and will be smaller away from the safety distance , but will increase

rapidly when d comes close to . The constant , is responsible for the final

configuration of the vehicles alongside the road. If we choose and , then

 , hence the vehicles will converge to the middle of the road forming a platoon. On

the other hand, if we have that for an area around , and thus the

vehicles converge between
 √

√

 √

√
.

In order to satisfy the objectives followed by the decentralized feedback laws, a control

Lyapunov function [], [], which also possesses characteristics of barrier functions is

applied. Thus, a function , the total energy of a set of vehicles derives:

 
2

2 2

1 1

,

1 1 1

1 1
() : cos() sin ()

2 2

1 1 1
() ()

2 cos() cos() 1 cos()

n n

i i i i

i i

n n n

i i j

i i j i i i

H w v v v

U y V d A

 

  



 

   

  

 
    

  

 

  

(4.11)

This Lyapunov function consists of three parts, the kinetic energy, the potential energy and a

penalty term. The kinetic energy is represented by the first two terms, the potential energy of

the system is based on the third and fourth term and last is a penalty term which blows up

when . Also, is a parameter of the controller and the Lyapunov function and

 is the desired longitudinal velocity, and (

) is a constant that should

always satisfy the following inequality:

25

By using the last term, the feedback laws for each vehicle can be designed as shown below:

  

1

1 ,2

,

()
sin() () () sin()

cos() cos()

i j

i i i i i j i i

j i i ji i

y yA
u v v U y p V d F

dv
  

 







   
         

     


(4.12)

   ,

,

()() 1
cos() ()

cos() cos()

i ji

i i i i j

j ii i i j

x xk w
F v v V d

d


 






     (4.13)

 

max

2 , ,

, ,max

() ()cos()1
() () ()

cos()

i j i ji

i i j i j

j i j ii j i ji

x x x xv
k w V d f V d

v d dv v v





  

 

  
     

   
  (4.14)

where , are constants controlling the rotation and acceleration rate respectively, and

 1
f C  is any function that satisfies max(,0) ()x f x for all x . We utilize the

following function []:

  
2

2

0

1
() 0

2
2 0

if x

f x x if x

x if x



 


 

 


    
  


(4.15)

for every 0  , which allows the longitudinal acceleration to be regulated as desired.

The term seen in the acceleration function is a controller responsible for

maintaining the vehicles speeds positive and lower than the speed limit. Concerning the

second term of the acceleration function (), is the summation of the repelling forces

acting between all vehicles. As already mentioned in the introduction, there is a nudging

effect, a “pushing” force taking action between vehicles. If is decreasing then

,

,

()
'() 0

i j

i j

i j

x x
V d

d


  , and if vehicle is behind vehicle , then nudging [], [], [] is

introduced between those two vehicles, meaning is “pushing” in order to increase its

velocity. We should also take into account that nudging will not jeopardize traffic safety,

such as vehicles collisions, but also will not force vehicles gain parameters outside the set.

Lastly, we have to make clear than only information from vehicles with distance less than

 are needed by the feedback laws. Furthermore, the only information needed is the

distance from the adjacent vehicles, whilst no other information is required such as their

velocities or their wheel orientations.

26

5. Numerical investigation of solutions

First of all, the computer we used for all of the simulation is a personal computer with

gigabytes of RAM and an AMD Ryzen 7 1700 Eight-Core Processor with GHz. As for

the software we use Matlab R2018a and C language run in CodeBlocks with MinGW 64 bit

8.1.0 compiler. From now on we will always pronounce the software used for gaining the

results presented.

In order to analyze better the simulations, a set of initial parameters is randomly picked and

the solutions gained from each method are compared with each other. For this numerical

investigation we assume that all vehicles have the same length and operate in a lane

free road with an ideal velocity of
 ⁄ and width . The vehicles must not

exceed the maximum velocity of
 ⁄ and set , thus we obtain the

optimal eccentricity and safety distance and , respectively. Furthermore,

we select , and the design parameters , . The

simulations were performed for a time period of 500 seconds with an initial step size of

 .

The results shown below are all gained from random set of initial parameters, where all of

them were gained with respect to the set. We gained initial parameters for

 and vehicles, but for most of the presented results we tend to utilize

a random set of vehicles. The randomly chosen set of initial parameters is set number

and is presented at Appendix B.

Euler Method

First of all, we investigate the numerical solution of the Euler Method. In order to

successfully approximate the real solution, the execution time is undermined by using a

considerably small step size of , thus needing iterations for a

seconds simulation. Obviously, by using a smaller step size we would gain a slightly

better approximation in the expense of memory and execution time. Through Figures

to , the trajectories, velocities and accelerations of the vehicles are presented, all

gained from an algorithm in C language. In Figure are presented all the trajectories of

all the vehicles in order to show that all vehicles remain within the boundaries of the

road. Following, in Figure we present 5 random vehicles trajectories to observe how

vehicles change direction to avoid collisions with others vehicles or the boundaries of

the road.

27

Figure 11: Vehicles Trajectories for Euler Method

Figure 12: 5 Random Vehicles Trajectories for Euler

Method

Figure 13: Vehicles Velocities Convergence for Euler

Method

Figure 14: Vehicles Accelerations Convergence for Euler

Method

By using a bigger step size , in order to gain a faster approximation, Euler Method is

unable to approximate the numerical solution and in such way the vehicles crash. This can be

observed below at Figure . Note however that the step size , that produced the

“correct” previous approximation, does not imply that an approximation of the solution can

always be obtained, and for a different set of initial conditions, the Euler method may fail

again. For such cases an even smaller step size should be selected.

28

Figure 15: Failure to approximate for Euler Method

Heun Method

Following, the Heun Method can also approximate the numerical solution for a rather small

step size of . This method needs even more execution time due to the increased

calculations needed. However, Heun is able to produce a better approximation due to the

increased calculations which also affect the ability to approximate a solution with a slightly

higher step size. The same number of iterations is performed as with Euler Method and the

algorithm is written also in C language. The results are presented at Figures to .

29

Figure 16: Vehicles Trajectories for Heun Method

Figure 17: 5 Random Vehicles Trajectories for Heun

Method

Figure 18: Vehicles Velocities Convergence for Heun

Method

Figure 19: Vehicles Accelerations Convergence for Heun

Method

Even though Heun Method is providing better approximations than Euler Method, it still

cannot approximate the numerical solution for a bigger step size such as , and it can

be observed at the following Figure.

30

Figure 20: Failure to approximate for Heun Method

Adaptive Method

In contrast, the adaptive technique manages to overcome the large initial step size, ,

producing a good solution in less iterations, hence is less time. Note however, that the step

size may become smaller than at certain times, to retain the numerical stability of

the system. Figures to , present the trajectories, velocities and accelerations of the

vehicles. This algorithm was also written in C language.

31

Figure 21: Vehicles Trajectories for Adaptive Method

Figure 22: 5 Random Vehicles Trajectories for Adaptive

Method

Figure 23: Vehicles Velocities Convergence for Adaptive

Method

Figure 24: Vehicles Accelerations Convergence for

Adaptive Method

Considering that the step size adapts in such way to keep the local error within an appointed

tolerance, we can design our code in such way where for any initial parameters given with

respect to the open Ω set, our system will not fail approximating a solution. This has to do

with the fact that if the local error is over the appointed tolerance, our new step size is smaller

than our old step size, thus we can decrease our step size till avoiding our systems failure.

32

Flowchart

33

Above is presented a flowchart of the algorithm we used for the Adaptive Method. For a

more detailed algorithm you may look at the pseudo code, at Appendix A.

Adaptive step size through Systems Energy

This technique is similar to the Adaptive Method, but differs in the way it adapts the step

size. For this process the error depends on the systems energy, instead of the parameters of

each vehicle. Hence, the systems energy has to be computed at every step and compared with

another approximation of the systems energy. The second approximation can either be gained

by the Euler Method or the previous systems energy can be used. If the energy of the system

is greater than zero, less than the energy of the previous step and of course all the parameters

are within the open set, the new step size is increased. Otherwise, the step size is decreased

and the iteration is performed again. If the second approximation is gained by the Euler

Method the error is computed as:

 √(

)

On the other hand, if the previous approximation of the systems energy is used, the error may

be computed as:

 ((|

|))

After trials with both errors, we decided to use the one arising between the two different

Runge – Kutta methods. This method allows us to easily normalize the error between 0 and 1,

in order to be able to compare it with the given tolerance of the local error, regarding the

adaptive step size control. Following the embedded Runge – Kutta adaptive method, this

technique as mentioned adapts the step size via the energy of the system. With this method

we can also achieve bigger step sizes, hence produce solutions in less iterations. Using the

systems energy as a decision making attribute, we confirm that the energy decreases step by

step, rather than evaluating whether the difference between the approximations from two

methods is small. This method is more focused on a quick development of stability over our

system. Below, from Figure to , are presented the results for the Adaptive Method

through the Systems Energy performed by a code written in Matlab.

34

Figure 25: Vehicles Trajectories for Adaptive Method

through Systems Energy

Figure 26: 5 Random Vehicles Trajectories for Adaptive

Method through Systems Energy

Figure 27: Vehicles Velocities Convergence for Adaptive

Method through Systems Energy

Figure 28: Vehicles Accelerations Convergence for

Adaptive Method through Systems Energy

35

6. Comparisons between Numerical Approximation Methods

In order to observe the differences and make comparisons between the trajectories obtained

from two different numerical approximation methods, we may plot the trajectories from both

methods. That way, we can visually understand whether there are noticeable differences

created due to bigger step sizes or different methods. On the other hand, if we want to better

understand and evaluate a methods accuracy, we have to research the global error of each

method. The difficulty we face is that there is no way to find the real solution of our system

or it is too slow and demands a lot of computational costs. However, we may depend on an

approximation of the global error. For the approximated global error we may use a really

good approximation with a stable step size, thus we will utilize Heun method with a constant

step size of and the results will be named as the best approximation we can gain.

Figure 29: Best Approximated Vehicles Trajectories

using Heun Method

Figure 30: Best Approximated Vehicles Velocities using

Heun Method

Figure 31: Best Approximated Vehicles Accelerations using Heun Method

36

Above are presented the Vehicles Trajectories, Velocities and Accelerations concerning Heun

method with a constant step size of for seconds simulation. The code used is

written in language and needed for the simulation. The initial parameters are

shown in Appendix B. Even though we use a really small step size we can still observe high

accelerations, reaching
 ⁄ which is around All the vehicles remain within the

boundaries of the road and do not collide with each other, as also their velocities tend to

 ⁄ which is the set ideal velocity.

Differences between Heun with step size and

This comparison is made in order to understand how much of a difference will a smaller but

acceptable step size makes. By observing the parameters obtained by those two different step

sizes, we cannot really tell how big the difference is. For example, at Figure we present

the trajectory of vehicle number which presents the highest approximated error.

Figure 32: Vehicle 85 Trajectory difference between Best Approximation and Heun Method

Figures and , present the differences between the velocities and wheel orientation that

vehicle number gains from Heun Method by the two different step sizes.

37

Figure 33: Vehicle 85 Velocity difference between Best

Approximation and Heun Method

Figure 34: Vehicle 85 Wheel Orientation difference

between Best Approximation and Heun Method

By comparing the results obtained using a data interpolation technique, we can find an

approximation of the global error. Thus, we find the differences by interpolating data of the

bigger step size to the smaller step size results and gain an approximation of the global error

to be equal with Below, at Figures and , we present the Absolute Local Error

for vehicle and the Absolute summation of the Local Error for all the vehicles.

Figure 35: Absolute Local Error Vehicle 85 Heun

Method

Figure 36: Absolute Global Error Heun Method

By adding the final local errors of all the vehicles, hence the global error of each vehicle, we

obtain the Global Error for the whole set of vehicles. Those two Figures show that the

differences by cutting the iterations in half are not that great and hence Heun method

produces a fine approximation for a step size of .

38

Differences between Euler, Heun and the Adaptive Method

First of all, the adaptive technique is way faster than using a constant step size. Although

Heun’s Method may seem the better choice when it comes to accuracy, we can find the

global error of the Adaptive Method is rather small. We will use 100 vehicles for 100 seconds

simulation and have a constant step size of for Heun Method, to gain the best

approximation we can.

Previously, we investigated two approximations gained from Heun Method and we were not

able to detect any great differences. On the other hand, Euler Method seems to have some

differences from our best approximation. This is understandable since Euler Method is

simpler and also is a first order Runge–Kutta Method, whereas Heun Method is a second

order Runge-Kutta Method. Below the trajectories of 9 vehicles are presented where 6 of

them have different trajectories gained from Euler Method, but we have to state that the

overall differences are not that noticeable.

Figure 37: Euler, Heun and Adaptive Method Vehicles

trajectories differences (1)

Figure 38: Euler, Heun and Adaptive Method Vehicles

trajectories differences (2)

However, we still cannot define how great these differences are. Again we utilize a data

interpolation technique to obtain an approximation of the global error. The Adaptive Method

has a total Global Error equal with and Euler Method has .This time

vehicle 56 for Euler Method displays the worse approximation with global error equal to

 and for the Adaptive Method vehicle 31 has a total global error of , and can

all be observes at the Figures below.

39

Figure 39: Absolute Local Error Vehicle 56 Euler

Method

Figure 40: Absolute Global Error Euler Method

Figure 41: Absolute Local Error Vehicle 31 Adaptive

Method

Figure 42: Absolute Global Error Adaptive Method

From the Figures above it is easily noticeable that the Adaptive Method produces a better

approximation than Euler Method, even though it requires 1240 iterations and is extremely

faster that the constant step size of of Euler Method. The simulation time for the

Adaptive Method was and for Euler Method , both written

in language.

40

Figure 43: Heun and Adaptive Method Absolute Local

Error for Vehicle 31

Figure 44: Heun and Adaptive Method Absolute Local

Error for Vehicle 85

In Figures and , we compare the two worse approximations for Heun Method with step

size of and Adaptive Method. The simulation for Heun Method needed

 . Thus, we come to the conclusion that the Adaptive Method is generally

better than using Heun Method with a constant step size. At Figure , we can see how the

step size of the Adaptive Method, adapts through the simulation.

Figure 45: Adaptive Step Size

41

Differences between Adaptive Method, Richardson’s Extrapolation and Adaptive using

the Systems Energy

Comparisons should also be made between the Adaptive Methods, to acknowledge any

advantages and disadvantages they may have, concerning the system given. Therefore,

presented at the Figures below are 9 vehicles trajectories, 5 of which are not the same and 4

of them have almost the same trajectories. For this visual comparison we use as the reference

trajectory, the one produced by the Adaptive Method, since we already know it is a good

approximation. The algorithms for Richardson’s Extrapolation and the Adaptive Method

using the Systems Energy were written in Matlab.

Figure 46: Adaptive Method, Richardson’s

Extrapolation and Adaptive Method through Systems

Energy Vehicles trajectories differences (1)

Figure 47: Adaptive Method, Richardson’s

Extrapolation and Adaptive Method through Systems

Energy Vehicles trajectories differences (2)

For a thorough investigation we will again utilize the data interpolation technique, and

analyze the approximations gained with Richardson’s Extrapolation and the Adaptive Method

through the Systems Energy against the Best approximation we have.

Richardson’s Extrapolation produces a good approximation with Global Error equal with

 , with the vehicle with the worst approximation being vehicle number and its

global error equal to . The simulation time was seconds.

42

Figure 48: Absolute Local Error Vehicle 56 Richardson’s

Extrapolation Method

Figure 49: Absolute Global Error Richardson’s

Extrapolation Method

Adaptive Method through Systems Energy has a great simulation time but suffers a little bit

concerning the accuracy. It has a total Global Error of with vehicle number

having the worst global error of .

Figure 50: Absolute Local Error Vehicle 31 Adaptive

Method through Systems Energy

Figure 51: Absolute Global Error Adaptive Method

through Systems Energy

At the following Figures we can observe the step sizes from Richardson’s Extrapolation and

the Adaptive Method through Systems Energy, respectively.

43

Figure 52: Richardson’s Extrapolation Step Size

Figure 53: Adaptive Method through Systems Energy

Step Size

Adaptive Methods Step Size Upper Bound Differences

 Below at Figure are presented the average time needed by the Adaptive Method to

simulate for different step size upper bounds. For the simulations we used sets of

vehicles for seconds. The algorithm we used to perform these simulations was written in

Matlab.

Figure 54: Adaptive Method’s upper bound simulations

4.430

4.290
4.251

4.194

4.273

4.266
4.305

4.253

4.311

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

Adaptive method simulation time for different step size upper

bound

Simulation time

44

Figure 55: Adaptive Method’s Step Size for

Figure 56: Adaptive Method’s Step Size for

Figure 57: Absolute Global Error Adaptive Method for

Figure 58: Absolute Global Error Adaptive Method for

The differences between the Global Errors for Step Size with Upper Bound equal to 1 and 5

are almost equal, as we can observe from the Figures above. We can confirm the above

allegation by using the results from a data interpolation technique, resulting to a Global Error

equal to for and for . With the Adaptive Method

needed iterations with an average time of seconds, whilst with it only

needed 1401 iterations with average time of 4.194 seconds. Comparing those results, which

we gained for a simulation of seconds, with the ones we got for the seconds

simulations, we observe that we only needed 200 more iterations for 400 more seconds.

At Figure we present the average times needed by the Adaptive Method through Systems

Energy to simulate for different step size upper bounds. This algorithm was also written in

Matlab.

45

Figure 59: Adaptive Method through Systems Energy upper bound simulations

Figure 60: Adaptive Method through Systems Energy

Step Size for

Figure 61: Adaptive Method through Systems Energy

Step Size for

6.097
6.087

5.563

5.549
5.563

5.880

5.673

5.683

5.443

5

5.2

5.4

5.6

5.8

6

6.2

Adaptive Method through Systems Energy simulation times for

different step size upper bound

Simulation time

46

Figure 62: Absolute Global Error Adaptive Method

through Systems Energy for

Figure 63: Absolute Global Error Adaptive Method

through Systems Energy for

Again we observe little differences for the Global Errors for the different Upper Bounds. For

 with an average time of , we gain a Global Error equal to and for

 and an average time of 5.443 we have a Global Error equal to . Also we

need 1401 iterations for approximating with an , almost 400 more than with

 , which needs 1048 iterations.

47

Adaptive Method Absolute and Relative Error Tolerances Differences

Concerning the Absolute and Relative Error Tolerances, we utilized sets of vehicles

for . It is reasonable that whichever of those two gain a smaller value, the

simulation time increases.

Figure 64: Simulation times for 3 different Atol and Rtol values

For gaining a better insight of the simulation results, we will use only the first

of each simulation, for the set number , and compare those results with the Best results we

have using a data interpolation technique. For the simulation

time took , for the simulation time took

 and for the simulation time took

 . Obviously for we will gain the results from

differences between Adaptive Method and the Best approximation, hence we will not

evaluate the approximation again. For these simulations we utilized a Matlab algorithm.

For the worst trajectory we obtain is for vehicle number with

Global Error equal to . We also have a total Global Error of .

4.546

18.651

87.405

0

10

20

30

40

50

60

70

80

90

100

Different Atol, Rtol

Atol, Rtol Comparisons

Atol, Rtol = 10-4

Atol, Rtol = 10-5

Atol, Rtol = 10-6

48

Figure 65: Absolute Local Error Vehicle 41 Adaptive

Method

Figure 66: Absolute Global Error Adaptive Method

Concerning , we also gain the worse trajectory approximation for

vehicle with Global Error equal to . The total Global Error was .

Figure 67: Absolute Local Error Vehicle 41 Adaptive

Method

Figure 68: Absolute Global Error Adaptive

Method

Time Differences between Matlab and C codes

At the Figure below, we present the time taken for executing the simulations in C language.

For those simulations we used different sets of initial parameters for

and vehicles and gained the average simulation time. As we can observe from the

Figure, the quickest simulations are those using the Adaptive Method, next come the Euler

Method and last are the Heun Method. This is understandable since Adaptive Method

produces the approximation with way less iterations and Heun Method has more

computations in order to approximate the solution.

49

Figure 69: C language time simulations

We observe the same pattern with C language simulations for the simulations that were

performed in Matlab. The main difference between Figure 46 and 47 is that for Matlab the

simulation execution times are way bigger. For example, for vehicles Heun Method

needs an average of seconds when run in C language, while it needs approximately

 seconds when run in Matlab which is about times more.

Figure 70: Matlab Simulations

50

7. Investigation for the repulsive potential function and

The repulsive potential functions are created and used to reassure the vehicles integrity. The

potential functions and prevent inter vehicle collisions and collisions with the boundary

of the road, respectively. Both of them are designed in such way that the repulsive force

comes in smoothly when the vehicle’s distance from a barrier or another vehicle is further

from the “danger” zone and rapidly when the vehicle’s distance between the boundaries of

the road or another vehicle tends to zero. This rapid repulsive force could be translated into a

rapid change of direction, or a great acceleration in the lateral direction or even a great

deceleration. This problem is easily observed at the beginning of our simulations where we

have gained random initial parameters from the set, thus vehicles projected trajectories may

cross each other or even the vehicles may be really close to each other. But still, when the

distances tend to L the repulsive force must be great. Below at Figures and we observe

the two ellipses surrounding the vehicles which are “responsible” for enabling the repulsive

force between them.

Figure 71: Vehicles not exchanging information

Figure 72: Vehicles exchanging information

In order to smoothen the repulsive effect when a vehicle or the boundaries of the road enter

the faint colored ellipse, we have to gradually increase the repulsive force instead of rapidly

increasing it when they come close to the dark colored ellipse. At all the previous simulations

we have used the functions mentioned at paragraph , and more specifically the following

ones:

 {

{

 (

)

 √

√

 √

√

 √

√

 √

√

We are investigating those two functions and we wish to design them in such way, that they

will repulse the vehicles in a more progressive way, while decreasing the produced

accelerations for collision avoidance. Thus, we utilize “bell-shaped” functions that will

gradually increase the repulsive force, before a rapid increase is needed. For these reasons we

51

will equip our function with an extra term, the Gaussian function [. It is the archetypal

bell shaped function and can be encountered in many problems.

(

)

where below we use , , . We utilize this extra term in order to

create a local minimum between and , so shorter inter-vehicle distances may be

maintained. Following, we present the currently used function and the one we will

investigate:

 {

Figure 73: V Function

 {(

)

Figure 74: Derivative of V Function

52

 {

 (

)⁄

Figure 75: New V Function

 {(

)

(
)

Figure 76: Derivative of the new V Function

The use of the derivatives is due to the fact that in our control functions, we utilize the

derivatives of the and the functions, see paragraph equations , , .

Yet, we still have to evaluate the new V function. This potential function, as we have already

mentioned, is responsible for the vehicles not crashing with each other. Thus, by inserting

this bell shaped function, we expect shorter inter vehicular distances. We performed two

simulations for the Adaptive method, one for seconds and a second for seconds.

53

Figure 77: Inter Vehicular Distances Seconds

Simulation

Figure 78: Inter Vehicular Distances Seconds

Simulation

From the Figures and , we already observe that the New V Function is able to create

shorter minimum inter vehicular distances, for the Adaptive Method. Following, at figures

and we present the results for the New V Function for the Adaptive Method through

Systems Energy, where we yet again observe shorter minimum inter vehicular distances.

Figure 79: Inter Vehicular Distances Seconds

Simulation

Figure 80: Inter Vehicular Distances Seconds

Simulation

Below are presented the currently used function and the one we investigate:

{

 (

)

 √

√

 √

√

 √

√

 √

√

54

Figure 81: U Function

{

 (

) (

)

 √

√

 √

√

 √

√

 √

√

Figure 82: Derivative of U Function

For the function we found from various trials that it will work better if we simplify the

existing by defining and utilizing the Gaussian function twice, once for the negative

parts and once for the positive parts. We use the following parameters for the Gaussian

functions: , , , , , .

Thus, the function we will investigate becomes as:

 (

)

 (

)⁄
 (

)⁄

55

Figure 83: New U Function

 (

) (

)

Figure 84: Derivative of New U function

As we can see from Figures and , the new U function creates two new local

minimums. This change leads to the creation of three lanes alongside the road and for the

simulations we utilize the second set of parameters for vehicles, for and

seconds simulations. The results are presented below:

56

Figure 85: Trajectories of 100 seconds simulation

Figure 86: Trajectories of 500 seconds simulation

Figure 87: Step Size of 100 seconds simulation

Figure 88: Step Size of 500 seconds simulation

The simulations needed and seconds respectively. Following, we present the

results for the Adaptive Method through Systems Energy for and seconds

simulations:

57

Figure 89: Trajectories of 100 seconds simulation

Figure 90: Trajectories of 500 seconds simulation

Figure 91: Step Size of 100 seconds simulation

Figure 92: Step Size of 500 seconds simulation

The simulations needed and seconds respectively. From all the simulations

performed we observed that the vehicles tend to the local minimum areas created by the new

 Function. Depending on the design of the controller we can shape our system from lane-

free to a lane-based model. For example if we change the power to :

 (

)

 (
)⁄

 (
)⁄

 (

)

(
)

(
)

, and with small changes at the parameters of the Gaussian functions, ,

 ,

√
, , , , we receive the following results:

58

Figure 93: New U Function

Figure 94: Derivative of New U Function

Next we will present the results for the Adaptive Method, the vehicles trajectories will be

shown at Figure and , with axes of time and lateral position, as also the step sizes are

presented at Figures and , for and second simulations, respectively.

Figure 95: Adaptive Method Trajectories of 100 seconds

simulation

Figure 96: Adaptive Method Trajectories of 500 seconds

simulation

59

Figure 97: Adaptive Method Step Size of 100 seconds

simulation

Figure 98: Adaptive Method Step Size of 500 seconds

simulation

The simulations needed and seconds respectively. At Figures to , are

presented the results for the Adaptive Method through Systems Energy for and

seconds simulations utilizing the new Function.

Figure 99: Adaptive Method through Systems Energy

Trajectories for 100 seconds simulation

Figure 100: Adaptive Method through Systems Energy

Trajectories for 500 seconds simulation

60

Figure 101: Adaptive Method through Systems Energy

Step Size for 100 seconds simulation

Figure 102: Adaptive Method through Systems Energy

Step Size for 500 seconds simulation

The simulations needed and seconds respectively. Lastly, we have to investigate

the new and Functions together and we will present results for the two different U

Function set ups we have presented previously. At Figures to we present the results

for the Adaptive Method with , , and seconds needed for the

simulations, respectively.

Figure 103: Adaptive Method 100 seconds simulation

Figure 104: Adaptive Method 500 seconds simulation

61

Figure 105: Adaptive Method 100 seconds simulation

Figure 106: Adaptive Method 500 seconds simulation

At Figures to , we present the results for the Adaptive Method through Systems

Energy with , , and seconds needed for the simulations,

respectively.

Figure 107: Adaptive Method through Systems Energy

100 seconds simulation

Figure 108: Adaptive Method through Systems Energy

100 seconds simulation

62

Figure 109: Adaptive Method through Systems Energy

100 seconds simulation

Figure 110: Adaptive Method through Systems Energy

500 seconds simulation

From the results presented above, we observe that even with the vehicles tending to multiple

local minima, the new Function makes the minimum inter-vehicular distances shorter. By

forcing the U Function to transform our model into a lane-based one, we observe for both

adaptive techniques that the vehicles reach the minimum inter-vehicular distances way faster.

The new functions utilized and the results gained from various simulations are not the

optimum and there is still potential for better potential repulsive functions. The investigation

was performed in order to show that with small changes in the system’s functions we can

achieve different goals we may set.

63

References

[1] European Commission, Directorate-General for Mobility and Transport, (2021). EU

Transport in Figures: Statistical Pocketbook 2021, Publications Office.

[2] “PHANTOM AUTO” WILL TOUR CITY. (1926, December 8). The Milwaukee Journal

Sentinel.

[3] O’Toole, M., Lindell, D. & Wetzstein, G. Confocal Non-line-of-sight Imaging Based on

the Light-cone Transform. Nature 555, 338–341 (2018). https://doi.org/10.1038/nature25489

[4] Yanumula, V. K., Typaldos, P., Troullinos, D., Malekzadeh, M., Papamichail, I., &

Papageorgiou, M. (2021, September 19). Optimal Path Planning for Connected and

Automated Vehicles in Lane-free Traffic. 2021 IEEE International Intelligent Transportation

Systems Conference (ITSC). https://doi.org/10.1109/ITSC48978.2021.9564698

[5] Mountakis, K. S., Karafyllis, I., Papamichail, I., & Wang, Y. (2021, February). Lane-Free

Artificial-Fluid Concept for Vehicular Traffic. Proceeding of the IEEE, 109(2), 114-121.

https://doi.org/10.1109/jpoc.2020.3042681

[6] Karafyllis, I., Theodosis, D., Papageorgiou, M., (2022). Lyapunov Based Two-

Dimensional Cruise Control of Autonomous Vehicles on Lane-Free Roads, Automatica, 145.

110517. https://doi.org/10.1016/j.automatica.2022.110517

[7] Boyce, W. E., Diprima, R. C., (1997). Elementary Differential Equations and Boundary

Value Problems (6
th

 ed.). Wiley.

[8] Gupta, G. K., Sacks-Davis, R., Tischer, P. E., (1985). A Review of Recent Developments

in Solving ODEs. ACM Computing Surveys, 17(1), 5-47. https://doi.org/10.1145/4078.4079

[9] Canale, R. P., Chapra, S. C., (2016). Numerical Methods for Engineers (7
th

 ed.). MC

GRAW HILL

[10] Chapra, S. C., (2012). Applied Numerical Methods with MATLAB for Engineers and

Scientists (3
rd

 ed.). MC GRAW HILL

[11] LeVeque, R. J., (2007). Finite Difference Methods for Ordinary and Partial Differential

Equations: Steady-State and Time-dependent Problems (1
st
 ed.). Society for Industrial and Applied

Mathematics.

[12] Hairer, E., Nørsett, S., P., Wanner, G., (1987) . Solving Ordinary Differential Equations I:

Nonstiff Problems. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.

[13] Hairer, E., Lubich, C., Wanner, G., Berlin (2006). Numerical Integrators. Geometric

Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations.

Springer.

[14] Gaussian function., (2022,July 26). In Wikipedia. https://en.wikipedia.org/wiki/x

Gaussian_function

64

[15] Quarteroni, A., Sacco, R., & Saleri, F. (2007). Numerical Solution of Ordinary

Differential Equations. Numerical Mathematics, 37, 479-483. Springer.

[16] Stuart, A., M., Humphries, A., R., (1998). Numerical Methods for Initial Value

Problems. Dynamical Systems and Numerical Analysis, 212-217. Cambridge University

Press.

 [17] Karafyllis, I., Grüne, L., (2011). Feedback Stabilization Methods for the Numerical

Solution of Ordinary Differential Equations. Discrete &Amp; Continuous Dynamical Systems

– B, 16(1), 283-317. http://dx.doi.org/10.3934/dcdsb.2011.16.283

[18] Faccio, D., Velten, A., Wetzstein, G., (2020). Non-line-of-sight Imaging. Nature

Reviews Physics, 2(6), 318-327. https://doi.org/10.1038/s42254-020-0174-8

[19] Shampine, L. F., Gear, C. W., (1979). A User’s View of Solving Stiff Ordinary

Differential Equations. SIAM Review, 21(1), 1-17. https://doi.org/10.1137/1021001

[20] Krogh, F. T., (1973). Algorithms for Changing the Step Size. SIAM Journal on

Numerical Analysis, 10(5), 949–965. https://doi.org/10.1137/0710081

[21] Cooper, G. J., (1971). Error Bounds for Numerical Solutions of Ordinary Differential

Equations. Numerische Mathematik, 18(2), 162–170. https://doi.org/10.1007/bf01436325

[22] Shampine, L. F., & Baca, L. S., (1984). Error Estimators for Stiff Differential Equations.

Journal of Computational and Applied Mathematics, 11(2), 197–207.

https://doi.org/10.1016/0377-0427(84)90020-7

[23] Shampine, L. F., & Watts, H. A., (1976). Global Error Estimates for Ordinary

Differential Equations. ACM Transactions on Mathematical Software, 2(2), 172–186.

https://doi.org/10.1145/355681.355687

[24] Shampine, L., (1986). Global Error Estimation with One-step Methods. Computers &

Mathematics with Applications, 12(7), 885–894. https://doi.org/10.1016/0898-

1221(86)90032-5

[25] Fehlberg, E., (1969). Low-Order Classical Runge-Kutta Formulas with Stepsize Control

and their Application to some Heat Transfer Problems. Washington: National Aeronautics

and Space Administration.

[26] Fehlberg, E., (1964). New High‐Order Runge‐Kutta Formulas with Step Size Control for

Systems of First‐and Second‐Order Differential Equations. ZAMM - Journal of Applied

Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik,

44(S1). https://doi.org/10.1002/zamm.19640441310

[27] Karafyllis, I., Theodosis, D., Papageorgiou, M., (2022). Analysis and Control of a Non-local

PDE Traffic Flow Model. International Journal of Control, 95(3), pp. 660-678.

https://doi.org/10.1080/00207179.2020.1808902

65

[28] Chavoshi, K., Kouvelas, A., Cooperative Distributed Control for Lane-less and

Direction-less Movement of Autonomous Vehicles on Highway Networks. (2020) - 9th

Symposium of the European Association for Research in Transportation, 2021.

[29] Diakaki, C., Papageorgiou, M., Papamichail, I., Nikolos, I., (2015). Overview and

Analysis of Vehicle Automation and Communication Systems from a Motorway Traffic

Management Perspective. Transportation Research Part A: Policy and Practice, 75, 147-165.

https://doi.org/10.1016/j.tra.2015.03.015

[30] Karafyllis, I., Theodosis, D., Papageorgiou, M., (2020). Nonlinear Adaptive Cruise

Control of Vehicular Platoons. International Journal of Control, 1-23.

https://doi.org/10.1080/00207179.2021.1982015

[31] Malekzadeh, M., Papamichail, I., Papageorgiou M., Bogenberger, K., (2021). Optimal

Internal Boundary Control of Lane-Free Automated Vehicle Traffic. Transportation

Research Part C: Emerging Technologies, 126, 103060.

https://doi.org/10.1016/j.trc.2021.103060

[32] Polack, P., Altché, F., d'Andréa-Novel B., de La Fortelle, A., (2017). The Kinematic

Bicycle Model: A Consistent Model for Planning Feasible Trajectories for Autonomous

Vehicles?. IEEE Intelligent Vehicles Symposium (IV), 812-818.

https://doi.org/10.1109/IVS.2017.7995816

66

Appendix A

Pseudocode

WHILE

 FOR

 FOR

 IF

 CALCULATE , distance between pairs of vehicles

 CALCULATE ̇ , differential of the repulsive potential function

 CALCULATE ∑

()

 , ∑

()

 ENDIF

 ENDFOR

 CALCULATE

CALCULATE

CALCULATE

 ENDFOR

 FOR

 FOR

 IF

 CALCULATE , distance between pairs of vehicles using ,

 CALCULATE ̇ , differential of the repulsive potential function

 CALCULATE ∑

()

 , ∑

()

 ENDIF

 ENDFOR

 CALCULATE , using Euler positions

CALCULATE

CALCULATE

CALCULATE

67

CALCULATE

IF

SET

ENDIF

IF

CALCULATE

IF AND

SET

SET

SET ((√

))

ELSEIF AND

SET ((√

))

ELSEIF

 SET

ENDIF

ENDIF

 ENDFOR

ENDWHILE

68

Appendix B

100 vehicles

Set number 2

Vehicle Number theta velocity lateral position longitudinal position

1 0.009461077 28.46176834 2.795677104 13.95922391

2 0.022274153 32.33249443 0.469007119 21.72867077

3 -0.012827588 33.25486511 2.93900201 34.0442609

4 0.037624081 31.93664185 -0.810419402 34.16065904

5 -0.030685303 30.22478331 3.24022497 52.54079626

6 -0.012732311 32.86988625 -3.118374889 80.00985026

7 0.0045815 31.3066935 -0.113838372 85.52954368

8 0.038564669 32.68250288 3.698141376 87.14234151

9 0.015381691 31.54133294 -3.405901769 90.49241862

10 -0.024057444 28.56636128 2.384259538 102.4482315

11 0.013315795 27.1039155 3.999768156 128.1741163

12 0.015476985 30.30929262 -3.806895361 131.5693419

13 -0.036976015 30.53043449 3.142231273 143.1164595

14 -0.03358671 28.04521125 -5.025722004 147.5613519

15 0.000337534 31.21774011 -2.354352534 153.7180209

16 0.008939166 28.3489499 -1.651810968 162.9136272

17 -0.036682388 26.47050382 -3.544150308 170.3733734

18 0.010498578 28.52814063 0.247345904 175.7385916

19 -0.018129894 32.89376503 -1.195201635 191.1193512

20 -0.039574151 29.30102086 0.173286552 200.6381921

21 -0.005595038 27.54790138 4.446096428 201.5595497

22 -0.028703245 30.46769479 -4.982232146 211.0344743

23 -0.024774765 31.7394609 1.779003384 216.1981843

24 0.015012413 29.04751892 4.632856817 222.1671252

25 0.013612233 34.97679709 -3.394231488 223.1598483

26 0.003426608 33.95185435 -3.345326507 240.1409189

27 -0.000757752 34.50953834 1.317700778 244.8656982

28 -0.041221013 34.56250569 -1.262033316 252.0324418

29 0.032771144 26.20804273 -1.911199701 277.3921721

30 -0.015325108 30.16033988 3.229888802 278.1915658

31 0.012775861 32.37895549 3.182722905 331.4793018

32 0.026598344 33.94214697 0.637952314 358.6830622

33 0.036172517 27.14864803 4.440040607 362.7295813

34 0.025893456 28.9951006 0.411519326 371.5525273

69

35 -0.010455588 28.56656054 -4.093874644 383.9117973

36 0.026505822 28.05802393 2.209049634 391.8493022

37 -0.039547586 30.99978352 3.787452843 402.1479023

38 -0.025333 30.22836438 4.647419916 419.7258383

39 0.015569399 28.38106041 0.042079677 424.5242137

40 0.010340538 34.41965507 -3.863862894 429.7852466

41 0.031108043 34.71996363 -1.11747964 439.0774938

42 -0.003695277 27.94150924 2.045283169 450.1946863

43 0.034512677 27.45733356 2.633016506 477.0930911

44 -0.031460643 30.10480597 -3.686900399 483.1783448

45 -0.02537503 28.29339164 3.873198531 492.8979593

46 0.033253046 28.39339712 -0.848912111 498.7759953

47 -0.014815582 34.91717151 -1.072374817 512.7203695

48 -0.025891872 31.03163141 -2.399110921 541.6150526

49 -0.019800393 33.63026149 0.682216374 560.46278

50 0.003551556 28.93342377 -0.456957341 568.6998117

51 -0.036594849 28.11848866 5.019482487 583.9593143

52 0.016927012 32.53857002 0.702893406 585.6881804

53 0.011929654 27.23939207 0.48650985 596.5249496

54 0.014302297 31.30122553 -3.902969666 598.8613993

55 0.008875057 32.16820464 0.198793106 609.2554358

56 -0.011141705 34.46574392 -2.651047145 620.773699

57 0.002830257 33.11849695 2.369254421 625.8216007

58 -0.016155452 27.31605581 -1.57600981 634.6558945

59 -0.026749175 32.82928988 3.469896873 641.2763575

60 0.030840708 29.66690079 -1.502507104 648.8679973

61 -0.004125354 29.25953269 4.736085731 699.921544

62 0.005146043 34.09418776 0.477316119 717.0151038

63 0.016201032 30.11609372 0.966775102 733.3479135

64 0.024664775 27.50208778 -4.639215742 743.6906706

65 0.02570284 29.10010234 -3.489477725 752.5073116

66 0.037252594 26.45355505 -0.02124958 769.6165794

67 0.017229072 26.84227613 2.609282177 779.2375771

68 0.019238659 27.47312731 -0.236263475 786.4103211

69 -0.026215641 31.68635192 -5.078142099 798.134031

70 0.033152759 32.68985521 -1.071410071 807.8979338

71 -0.002627178 33.01299337 -0.57672703 819.849151

72 0.034963998 30.68727506 -4.008978406 832.9818901

73 0.003545107 26.2017949 1.764612951 834.7894176

74 -0.030110829 31.39544601 1.496887757 843.6605763

75 0.031564554 29.04350005 2.900200018 866.6531158

76 0.021231727 33.05945149 -3.741407197 869.9684439

70

77 0.023188157 34.06285315 4.287692921 875.6433911

78 -0.022284793 29.83315816 -2.177158872 884.5514494

79 -0.031201653 34.98330517 -1.168379112 894.200159

80 0.02471655 33.4769165 -0.599870909 907.7140815

81 0.033258962 31.65957455 0.731629081 918.5311996

82 -0.012583091 33.0901342 -3.354346104 954.4991991

83 0.003260734 34.84547124 -2.36137265 963.2559502

84 -0.008431012 27.61389857 2.833205277 969.411005

85 -0.034512555 29.89965471 -2.613563845 971.8354058

86 0.025043853 29.74180486 -0.085630639 986.916977

87 -0.021593713 34.67527572 3.148651564 999.4958746

88 -0.003263875 26.96795525 -1.723239876 1016.304934

89 -0.018415623 33.30135963 -3.990598215 1027.437369

90 -0.034303634 30.13573462 0.318075104 1037.118239

91 0.007374042 31.63056248 -4.946444149 1043.86597

92 -0.042440486 33.08475736 -2.064677993 1053.545217

93 -0.022533052 34.32231695 0.480410417 1060.95216

94 0.042341403 34.35002449 5.044380789 1070.330696

95 0.021214642 34.91061153 -0.031039369 1080.77797

96 -0.035266378 34.28305102 -1.399007778 1096.595876

97 -0.036982204 29.88015236 -5.097711134 1103.095748

98 0.02517868 32.99903782 0.116810275 1106.610037

99 -0.042525563 29.77300977 3.279982584 1113.377716

100 -0.024458062 31.97467448 -2.813049741 1118.725897

