Technical University of Crete

School of Production Engineering and Management

Application of numerical approximation methods in control
systems which describe movement of autonomous vehicles in

lane free-roads

Epapuoyn apt@untikav pebdodowv oe cuotiuato EAEYYOL OV
TEPLYPAPOVV TNV KiVI|OT1 OVTOVOU®V OYNUATOV GE OPOLOVG

YOPIg APIOEC

Created by: Tzitzikopoulos Nikolaos Marinos
Supervisor: Dr. Papamichail loannis
Committee:

Dr. Chalkiadakis Georgios
Dr. Doitsidis Lefteris

Chania, 2022

Acknowledgements

Words cannot express my gratitude towards my supervisor and chair of my committee, Dr.
Papamichail loannis, as also my co-supervisor Dr. Theodosis Dionysis for their invaluable
patience and feedback. | would also like to thank the rest of my committee, Dr. Chalkiadakis

Georgios and Dr. Doitsidis Lefteris for attending my presentation and their comments
towards the improvement of my thesis.

Lastly, I am also grateful to my friends and family for their moral support that kept me
motivated through the whole process of my studies.

Abstract

Automobiles have changed people's everyday life and have become essential for the personal
transportation of millions of people. Advancements in technology are growing and enhancing
the driver's experience, from automatic headlights to automatic emergency braking and
autonomous driving, nowadays. Autonomous driving on lane-free roads is a complex system
where the vehicles have to be “connected” with each other and “cooperate” to perform their
movement with safety. Usually, this kind of problems consists of non-linear or stiff
differential equations which cannot be solved analytically, thus in this thesis we utilize
numerical approximation methods to investigate a proposed system of cooperative
autonomous vehicles in lane-free roads [6] to observe the simulation's results along with the
system's control functions. However, such complex systems describing autonomous vehicles
driving on lane-free roads tend to be a challenge for numerical approximation methods,
where high order Runge-Kutta methods may not be applicable while low order Runge-Kutta
methods may present numerical instability if the initial step size is not sufficiently small. To
achieve our goals, we analyze the system's characteristics and utilize a variety of numerical
approximation methods to observe the vehicle's behavior on lane-free roads, as also their
results, and make comparisons between them and their errors. Furthermore, we utilize an
adaptive step size control in order to maintain the numerical solutions inside a defined open
set, as also have the advantage of increasing and decreasing the step size, depending on the
behavior of the system at any given moment. Following, we will use a Lyapunov function of
the system, which represents the energy developed between the vehicles as the step size
evaluator at an adaptive numerical method, in contrast to the regular adaptive methods which
utilize the vehicle's characteristics, their lateral and longitudinal positions, their velocities and
their wheel orientations. Lastly, we will try to investigate certain repulsive potential functions
of the system, bound to keep the integrity of the vehicles hoping for smoother and more
desired trajectories developed.

Iepiinyn

Ta avtokivnto €govv dnpovpynoel ToAAEG aAlayég oty kabnuepvy (on tov avlpdrov
Kot £(ovV Yivel amapaitnTo Yo TNV TPOCOTIKN HETOPOPA ekatoppvpiov. Ot eEgliEelg oty
teyvoloyio av&avovtor Kot PeATidvouv TV odnYIkn eumelpio, omd TOVG OVTOUATOVS
TPOPOAEIC, GTO AVTOUATO EPEVAPICHO EKTAKTNG OVAYKNG, TALOV UEYXPL KOL TNV OWTOVOUN
oonynon. H avtdévoun odfynon oe dpopovg ympig Awpideg eivor éva ohvleto cvoTHa OTOV
TOL OYNUOTO TPEMEL VA €IVl «GUVOEIEUEVO) HETAED TOVS KO VO «GUVEPYALOVTOLY £TGL MOTE
Vo EKTEAOVLV TNV kivnon Ttovg pe aoc@aieln. Xvvibog, Tétolov &idovg mpoPfAnuota
AmOTEAOVVTOAL OO UM YPOUUIKEG 1 OVCKAUTTEG SLPOPIKES EEIGADGELS Ol OTTOIEG OEV UTOPOVV
vo. W00V avoALTIKA, EMOUEVOS GE VTN TN OWTAMUATIKY YPNOUYLOTOOVUE HEBOIOVGS
aplOUNTIKNG oviAVoNg Yo TN JlEPELNON EVOG TPOTEWVOUEVOD GUGTIHOTOS GLUVEPYALOUEVOV
AVTOVOU®V OYNUATOV o€ OpOpovS Ympic Ampideg [6], pe otdY0 va TapATHPHGOLUE TO

OTOTEAECUOTO TOV TPOCOUOIOoE®V Hall pHe TIG Aeltovpyiec €AEyYOL TOL GLGTNUOTOG.
Qo10G60, TETOLL GUGTHLLOTO TOV TEPTYPAPOVY GLTOVOLO OYNUATO TOV KIVOUVTOL GE dPOUOVE
Y®pig Awpideg Telvovy v amotehoVV TPOKANGN Yo nebddovg aplBuntikng avdivong, 0mov
v Tapdostypo Runge-Kutta pébodot vyning tdéng evdéyetat va punv eivat epapuociLot, EVo
Runge-Kutta péfodot yapmAng taéng evoéyetot va mapovstdlovv aplfuntikn aotddeia edv to
apykd péyebog tov Prjnatog dev givarl apketd pkpd. o va emtdyove TOVG GTOYOVS LG,
OVOADOVUE TO YOPOKTNPIOTIKG TOV GLOGTHUOTOC KOl YPNOUYOTOOVUE €vol €0pog UeBOdwV
apOUNTIKNG OVOADONC Y100 VO TOPATNPTCOVLE T GLUTEPLPOPA TOV OYNUAT®OV GE OPOLOVG
YoPig Ampideg, KOO Kol TO OMOTEAECUOTA TOVG KO VO, KAVOVUE GLYKPIGELS UETOED TMV
OMOTEAECUATOV Kol TOV GEOApdTOV Tov pedddwv. Emmiéov, ypnoipwonoodue pebddovg
petaforidpevon peyéBovg tov PLOTOC Yo VoL ST PGOVUE TIG aplOUNTIKEG ADGEIS LEGO OE
éva. KaBopPIGUEVO avolYTO GUVOAD TIHAV, KOOMG LLE QTN TNV TPOKTIKY £YOLUE €mioNG TO
mAgovéKTNUa TG oavEnong kot ¢ pelmong tov peyébovg Prupatoc, avéioyo pe ™
CLUUTEPLPOPE. TOL CULOTAUOTOS O KAOe dedopévn oTiypr. X1 ovvéxewn, Oa
YPNOOTOUWCOVE Lo, Lyapunov cuvaptnon 1oV GLUGTHHOTOS, 1] 0010 AVTUTPOGMOTEVEL TNV
EVEPYELDL TTOV OVOTTOGGETOL UETOED TMV OYNUATOV ©¢ TOV KOOOPIGTIKO Tapdyovta TOL
peyéBoug tov Prpartog oe o aplBuntikny pnébodo petafariopevov Prpatog, oe avtibeon e
TIG KOVOVIKEG «TTPOGOPUOGTIKES» HEBOOOVE OV YPNGLOTOOVY TA YOPUKTNPIOTIKG TOV
oyNuoTog, TG B€oelg TV oYMUATOV GTO dPOLO, TIS TAXVTNTEG KOl TOV TPOGOVATOAMGUO TOV
tpoy®v tovg. Télog, Oa mpoomabricovpe vo SEPELVIIGOLUE OPICUEVEG OMMOTIKEG
OUVOPTNCEL TOL GLOTNUOTOS, 1 Agrtovpyic TV omoiwv givor vo dTnpnoovy v
AKEPALOTNTO TV OYNUATOV, PLE GTOYO OUAAOTEPES KO TTO EMBVUNTEG TPOYLES.

Table of Contents

IO 111 0o [4T o TSP SRN 6
2. Preliminaries for Ordinary Differential Equations and Numerical Analysiscccccevvevvevenreenen. 9
3. Numerical methods for solving ordinary differential equationsccccceeeeceveieecececiere e 11
4. 2D Cooperative CruiSE CONIOL.......cuccveviiiieieceeeerte st eteste et et eve s e e ste s e e e e sesnessesreesnessesnnens 20
5. Numerical investigation 0f SOIULIONSc.ccveoiriiiririeeeeee e 26
6. Comparisons between Numerical Approximation Methodsccceverererenenenieneinenereene 35
7. Investigation for the repulsive potential function Ui and Vi.........cccocveninininciencinnencnee 50
RS (=] €7 001 OSSPSR 63
APPENAIX A .ottt sttt et e et e et e e et et et e s be e testeera e teehe e tebe et e teebeenbeeteeraeteeaeenteareenes 66

APPENAIX B ...ttt ettt ettt e be e ra et e e be et e be et e teebeentesteera e teeaaenreareennas 68

1. Introduction

Transportation has been a problem for humans since ancient times when humans lived as
nomads and had to move around searching for better places to live. As the years passed,
humanity tried to domesticate animals for labor and transportation. A milestone for human
transportation is the invention of the wheel, dating back to around 4000 BC, creating the first
wheeled vehicles. Since then many ways for transportation have been created, but nowadays
the most popular one is the automobile since it provides the ability to move flexibly from
place to place and far-reaching destinations [1, p. 47]. However, traffic collisions are the
largest cause of injury-related deaths worldwide [1, p. 20]. Human factor plays a great part in
vehicular movement and eliminating it could improve the performance of transportation
systems, their safety, reduce congestion and traffic accidents, and improve traffic flow on
highways.

Autonomous vehicles date back to the beginning of the 20" century [2] when scientists
started to dream of vehicles driving autonomously along highways, in order to increase the
safety, efficiency, and convenience of the transportation system. However, communicative
and cooperative systems have not been introduced to vehicles yet. Autonomous vehicles right
now rely on radar and vision systems, while lidar, sonar, and camera systems have also been
used. Another great advancement in technology is non-line of sight propagation [18]. Typical
vision systems image objects that are in line of sight, however advanced measurement
systems, such as femtosecond time-resolved detectors, acoustic systems, etc., are able to
detect and reconstruct objects hidden behind obstacles [3]. This technology could immensely
help autonomous vehicles prevent accidents, along with making safer decisions for their
movement.

As automobiles came into widespread use, head-on collisions became more common and
parallel lanes were introduced on roads, to separate traffic going in different directions and
increase safety. By the increasing use of vehicles multiple lanes were introduced. That made
driving a simpler task, considering drivers have only to acknowledge the width and speed of
their vehicle, as also monitor the distance and speed of the front vehicle. However, lanes
added an extra risky operation which is that of lane changing. When a driver wishes to
properly change lane, he has not only to monitor the front vehicle but also seek an available
gap, by observing the vehicle movement at the next lane and estimating its speed and
acceleration. This task is risky, considering you have to check your mirrors and also check
your blind spot by looking over your shoulder, a small amount of time at which your sight is
not onto the front vehicle. In fact, for 10% of all accidents, lane changes were responsible
[4]. Taking into consideration that autonomous vehicles will not be commanded by a driver,
hence shorter inter-vehicle distances could be utilized. Thus a lane-free concept would highly
impact road-traffic and congestion, through the increase of road capacity. In addition,

cooperation and communication between vehicles will provide them with the necessary
knowledge about their distance from the boundaries of the road and the relative distance from
adjacent vehicles. This is an innovative concept at which as vehicles will utilize the whole
width of the road, they will not collide with other each other and neither with the boundary of
the road. Taking into account, cooperation and communication between vehicles, a “nudging”
effect can take place [5]. By the term “nudging”, we refer to a virtual force that vehicles
apply to the vehicles in front of them without jeopardizing speed limits or traffic safety. With
the proposed nudge effect, an increased flow and road capacity can be achieved see [27].

The movement of autonomous vehicles in lane-free roads forms a demanding and complex
problem. All vehicles have to be connected and communicate with each other through their
sensors, in order to complete their movements with safety. Such a system is usually described
by a great number of non-linear differential equations, which are impossible to be solved
analytically. Thus, numerical methods are essential for investigating such systems and
gaining an approximation of the real solution. Still, numerical methods find challenging to
solve such ordinary differential equations systems, because systems describing the movement
of vehicles in lane-free roads tend to be:

i. Non-linear
ii. Stiff
iii. The state space is defined by an open set

Hence, numerical methods for ordinary differential equations, such as the 4™ order Runge-
Kutta may not be immediately applicable, while lower-order methods, such as Euler and
Heun may present numerical instability if the initial step size is not sufficiently small.
Moreover, the numerical solution may attain values outside the open set defining the system
due to numerical errors. For such cases, an adaptive step size technique is preferred. The
main advantage of this methodology is that of adjusting the step size, depending on the
behavior of the numerical solution gained from each iteration. This way, the numerical
solution approximation speed can be enhanced, along with its precision. The methods
mentioned above will be used to approximate the numerical solution of the problem of the
movement of autonomous vehicles. Subsequently, simulations will be made and the
following will be reviewed:

i. The movement behavior of vehicles in lane-free roads, and
ii. The trends of the numerical solutions and their errors, obtained from the various
numerical approximation methods used.

In this thesis, we are numerically approximating the solution of a vehicular integrated
infrastructure, in which vehicles communicate and cooperate with each other, increasing the
capacity of the road through maintaining shorter inter-vehicle distances and adapting a lane-
free concept [6]. We are going to utilize both stable and adaptive numerical approximation
methods, in order to evaluate and compare their solutions with each other. Furthermore, a

new direction of adaptive technique is introduced. In contrast of the regular adaptive
methods, we intend to utilize a Lyapunov function that represents the energy of the system,
thus we do not depend on the vehicles parameters for the evaluation of the step taken, rather
than from the whole energy produced by the vehicles, their inter — vehicle distances, the
distances from the boundary of the road, their velocities and their wheels orientation. The
thesis is outlined as follows, in chapter 2 is stated the necessary introduction to Ordinary
Differential Equations and Numerical Analysis, as in chapter 3, a detailed review of the
Numerical Approximation Methods utilized for the solution of a set of ODEs is given.
Without these two chapters, it would be impossible to analyze the Cooperative Adaptive
Cruise Control (CACC) given and numerically investigate the solution of its set of ODEs.
Thus, chapters 4 and 5 are created regarding the 2D CACC and its numerical approximation.
Finally, chapters 6 and 7 focus on comparing the results gained by various numerical
methods and investigating certain functions of the system.

2. Preliminaries for Ordinary Differential Equations and Numerical
Analysis

Differential equations are equations that involve one or more derivatives of a function. This
kind of equation could involve an independent variable, a dependent variable, and one or
more derivatives of the dependent variable

2, (D)) +a,1)y'(t) +a,(t)y" M) +...+a,{)y" () +b(t) =0

Ordinary differential equations involve only one independent variable, whilst, equations with
two or more independent variables are called partial differential equations [7]. Linear
differential equations play an important role since they regularly appear in physical
phenomena and can be solved analytically. However, the behavior of complex systems is
usually described by nonlinear differential equations which are hard or even impossible to
solve explicitly [8]. Linear equations have a constant slope, hence forming a line. In contrast,
nonlinear equations have the opposite characteristics of the linear ones; their slope may vary
between points, resulting to a shape different than a line.

For this reason, we utilize numerical methods gaining a quick, but also acceptable
approximation as the solution for the system. The numerical solutions gained, involve two
types of errors, round-off errors and truncation (or discretization) errors. Round-off errors are
the result of the inability of computers to present all real (R) numbers and their precision.
Considering that most numerical methods when solving a system of ODEs calculate
approximate solutions step by step, hence with the approximation comes an error for each
step taken. This error, which also depends on the different equations utilized from each
numerical approximation method, is called truncation (or discretization) error [9].

The error added with every step is called local error, though the propagated error is the added
error due to the previous approximation. Hence the overall difference of the exact and the
approximated solution is the sum of both errors and is called global truncation error [10, p.
56],[9, p. 98][22]. The main difference between numerical approximation methods is the
procedure from which the slope is estimated. All of the methods belong to the Runge-Kutta
family. You can calculate the error exactly, by comparing the approximation with the
analytical solution [21],[23]. However, in many cases, as with our system, this cannot be
achieved due to the absence of the analytical solution. Hence, we can only obtain an
estimation of the errors.

Another difficulty regarding numerical methods is that of stiff equations. Although there is no
precise definition of stiffness, a stiff equation is considered to be numerically unstable for
relatively high step sizes and prone to even small changes at its initial conditions. Stiff
problems pose difficulties to solving by standard explicit methods, whereas some implicit
methods seem to perform better. However, implicit methods take more time to approximate

the solution, since they require the solution of a non-linear algebraic equation system. Such
problems may consist of both rapidly and slowly changing parts, its step size decreases by
stability requirements due to having some eigenvalues A; negative and large in magnitude or
for complex eigenvalues with negative real parts [8],[15, p. 254 — 256].

Stability is another important characteristic that should be taken into account, concerning
numerical approximation methods. A numerical solution is considered to be unstable if the
error grows exponentially for a problem with a bounded solution [10, p. 559]. Stability
depends on three factors: the given differential equations, the step size and the numerical
method utilized. Furthermore, a numerical method converges if its error tend to zero when the
step size tend to zero. By decreasing the step size the iterations on the other hand increase,
hence the computational costs increase. For a method to be considered convergent, it is
required to converge on all problems for all reasonable initial conditions [11, p. 137].

10

3. Numerical methods for solving ordinary differential equations

Two main types of numerical methods exist, the explicit and the implicit methods. The
explicit methods calculate the numerical solution of the ODEs, subject to the exactly previous
approximation of the numerical solution and the values of the equation. It could have the
form of [12].

Yi = F(ti—l'ti' yi—l)

The implicit methods demand either the solution of a non-linear system of algebraic
equations or the solution of the algebraic equation with a root-finding method such as
Newton Raphson. It could have the form of:

G(ti—17ti! Yi Yi): 0

The simplest of all numerical methods is the forward or explicit Euler method (1768), which
is produced from the first two terms of the Taylors sequence [9, p. 708],

Vier = Yi + (& — ti-)t yi)
The term (t; — t;_;) will be called time step and be denoted by
h = ti — ti—l

It is a first-order Runge-Kutta method used to solve initial value problems. This method uses
a constant step size to compute step by step, approximations for y,,y,, etc from an initial
value y(0) =y,, basically constructing the tangent of the slope. The local error (error per
step) of Euler’s method is proportional to the square of the step size h? and the global error
(error given at any time) is proportional to the step size h [9, p. 710-712]. We could use a
table to display the factors of every Runge-Kutta method. This table is called the Butcher
tableau and for the explicit Euler method is as shown below [12, p. 135],[25]:

0
1
Another simple method, often known as improved Euler method, is Heun method [9, p. 720],
ky = f(t;, yi)
kZ = f(tl + h, Vi + klh)
Yi+n =Yi + h/2 (ky +kp)

It is a second order Runge-Kutta method which derives from transforming the trapezoidal
method,

11

Vier = ¥i + h/2 (£, yi) + f(tis1, Vier))

Although this method also uses a constant step size, it can perform better than Euler since it
uses one more approximation to calculate the numerical solution. Heun method has the
following Butcher tableau [12, p. 135],[25]:

0
111

2 Yy

Example 1: Consider the following ordinary differential equation,
y = —y + cos(t) — tsin(t)

whose analytical solution with initial condition y(0) = 2.0 is given analytically from the
equation, y = 2e” ¢+ %tcos(t) + %sin(t) — %tsin(t). The table below shows the
approximation of y(3), for both Euler and Heun method, with step size h = 0.1.

Time step | Real Value | Euler Method | Heun Method

0 2.0 2.0 2
0.1 1.9044 1.9 1.9043
0.2 1.8149 1.8085 1.8147

1 1.0059 1.0202 1.0043
1.1 0.8707 0.8881 0.8690

2 -0.6001 -0.5881 -0.6001
2.1 -0.7599 -0.7528 -0.7595
2.9 -1.5251 -1.5748 -1.5214

3 -1.5265 -1.5838 -1.5224

Notice first that Heun provides a better approximation than the Euler method. Moreover, we
can observe all the values gained at Figure 1,

12

2 : Global Error
. Real Value 0.06 j T j - :
1.5+ ~ * Euler Approximation | { Euler Error
* Heun Approximation Heun Error
0.05 -
1k
0.5 0.04
> 0 =
E 0.3
=
0.5 -
0.0z
-1+
1.5 s 0.01
-2 : - : - ' S — e . _
0 0.5 1 1.5 2 2.5 3 0 = —
Ti 0 0.5 1 1.5 2 25 3
ime

Time

Figure 1: Comparisons between the Real Value and the Figure 2: Error produced by each approximation

Approximations

The example above shows that for simple problems, a small step size can produce rather good
approximations. But when the problem is more complex and/or the time step needs to be
greater, these kind of methods could fail producing a fine approximation.

Even though Euler and Heun methods seem to produce a fine approximation of the analytical
solution both underperform when a stiff problem is introduced. To gain a good
approximation, the step size has to be decreased, increasing significantly execution time of
the algorithm. Considering the nature of our problem, execution time plays an essential role
in driving us to methods using less iteration but also maintaining a good approximation of the
solution [12, p. 164]. Such methods are called automatic or adaptive step size methods. The
idea of adaptive techniques is such to evaluate an approximation made comparing it with a
tolerance to decide the following step size [12],[23], aiming to enhance the precision of the
method. There exist many methods to approximate as also to evaluate the approximation
gained.

Example 2: Consider the following ordinary differential equation,

y(© = =30y(t),y(0) = 1

Here, both Euler and Heun fail to produce a fine approximation of the real solution for a step
size of h = 0.1 and even for h = 0.05 over the period of 1 second.

13

1200

Euler Approximation
1000

Real Value
800 |
600 |
400 -
-
200
0
=200
400
600
0 0.2 0.4 0.6 0.8 1
Time
Figure 3: Approximation of Euler Method with step size
ofh=0.1
1
Euler Approximation
Real Value
0.5 (|
-
0 L
05 . . ‘ ‘
0 0.2 0.4 0.6 0.8 1
Time
Figure 5: Approximation of Euler Method with step size
of h =0.05

10000

Heun Approximation | |
Real Value [

9000 -

8000 -
7000 -
6000 -
= 5000 -
4000 -
3000 -
2000 -

1000 -

0

0 0.2 0.4 0.6 0.8 1
Time

Figure 4: Approximation of Heun Method with step size

ofh=0.1

1

Heun Approximation

0.9 Real Value

t
0.8 l
0.7 j
0.6 \
= 0.5 \

0.4F|
0.3+ |
0.2

0.1

00 0.2 0.4 0.6 0.8 1
Time
Figure 6: Approximation of Heun Method with step size
of h = 0.05

On the other hand, an Adaptive technique with an initial step size h = 0.1, is able to adapt its
step size during each iteration and produce a far more accurate approximation.

14

1

© Adaptive Approximation

0.9 Real Value

0.8 X
0.7
0.6
>~ 0.5 -\
0.4

03+

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2

Time Time
Figure 7: Approximation of Adaptive Method Figure 8: Step Size of Adaptive Method

As already mentioned, when using an approximation method instead of the analytical
procedure, an error in the results is introduced, called truncation error [10, p. 89]. Also, by
using a computer for the approximations round-off errors have to be taken into account.
These errors arise due to the inability of the computers to represent some real numbers.
Generally, in approximation methods we distinguish the error in the local error and the global
error [22]. Local truncation error is difference between the approximation and the real value
at every single step. The propagated truncation error is the result of performing iterations
with values that have been approximated. Lastly, global truncation error is the sum of the
local and the propagated truncation error and it can be found at the last iteration performed
[13, p. 337].

W #:(vo)
—— tmeriea
Yn+1 = @)

y=f

Local Error: y; — ¢; (yo)
Global Error: y, — ¢, (yo)

In most applications though, the exact solution is not available, which is also the reason we
use numerical approximation methods, hence we have to depend on estimations of the error.
The error estimation also derives from the Taylor series and consists from the remainder parts
that are left out of the method used. Euler method which uses the first two parts for the
approximation has an error of the remainder parts as follows [10, p. 103 — 106]:
"(t: v M=D(¢. v,
Yier = Vi + f(E, y)h + %hz ot fn—(,t“yl)

h™ 4+ 0(h™*1)

15

where 0(h™*1) specifies that the local truncation error is proportional to the step size raise to

the power (n + 1), where n represents the order of the method used. By leaving parts of the

Taylor series off of our numerical approximation, it simulates as ignoring parts of the exact

solution, hence the approximation error. Thus for Euler method we have the following error

follows:

"ty yi)
|

E,=———=h?>+ -+

FO D, y)
L NP p(n) n+1
o1 . At 4+ 0(h™1)

,and for a relatively small step size h, all terms except the first can be ignored:

"(t;,y;
E, = —(2‘|y1) h? = 0(h?)

Therefore, Euler method has an approximate local truncation error of 0(h?). This confirms
the general local truncation error equation O(h™*1), since Euler method is a first order

Runge-Kutta method [10, p. 557 — 559].

Since Heun method is a second order Runge-Kutta method, we have to predict that the

approximate local truncation error will be 0(h3). Considering that Heun method is made

from transforming the Trapezoidal rule, they have the same approximate local truncation
error. The Trapezoidal rule has a local truncation error of [10, p. 562 — 566]:

f()

Ey = ———=—h>=0(h®

where & is between t; and t; 4.

16

Richardson Extrapolation

This is a simple error based adaptive technique, which utilizes a Runge-Kutta method to
compute two numerical approximations y; and y,. The first approximation is found with a

step size h, while for the second one the step size is halved, h/z. That way an estimate of the

error is computed as the difference between those two approximations. Considering for the
second approximation where the step size is half, a slightly better approximation is expected.
Since the exact solution most of the times is not available, the error is estimated by the
difference between the two approximations provided by the Richardson extrapolation. The

error is computed by the following equation [12, p. 164 - 165]:

n
S
i=1

Following, if the error is below a designated tolerance we set the new step size as:

hnew = 2hg1q

or if it is over the designated tolerance:

=

old
h
new 2

Embedded Runge-Kutta Methods

In the embedded Runge-Kutta scheme, rather than using one method, two Runge-Kutta
methods are utilized, one of which with order p and the other with order p — 1. The simplest
of all is Heun-Euler method, which utilizes the second order Heun method, defined as y; and
the first order Euler method, defined as y,. By using two consecutive order methods, with the
same step size, less computational costs derive, since Euler method is included in Heun’s
method. Another advantage of this technique is that through the difference between the two
approximations obtained, an estimate of the local error is produced. Hence, as a measure of
error we take:

n
_ 12(3/11 }’u)
err = —
n=1

where sc; = Atol; + max (|yg;l, [y1il) - Rtol; and satisfy |yq; — 9151 < sc;. Relative errors
are considered for Atol;, absolute errors for Rtol; and both are prescribed as the desired
tolerances by the user. Here n is the number of ordinary differential equations that the system

approached contains [12, p. 165 - 167].

17

All techniques adapt the step size in an effort to keep the local error within an appointed
tolerance. This error computational method is used in order to scale the error in such way that
if it is less than 1, the step made is considered accepted, and if greater than 1, the step made is
considered rejected. If the step is accepted the new step size will increase, otherwise it will
decrease.

In the problem described in the following chapter, the new step size is considered accepted
if err < 1 and the code advances to the next step using the new step size hye,,. On the other
hand, the new step size is considered rejected not only if err > 1, but also if the parameters
gain values outside of the open Q set (the set is described at the following chapter). If err > 1
and the values gained respect the Q set, we get the new step size as stated below, else we set
the step size as half of the previous and we perform the iteration again.

Computing the new Step-Size

Method 1: Through the estimated error the new step size can be determined. Generally a safe
way to calculate the new step size is stated below [12, p. 167 - 168]:

/ 1
h,ew = hmin| facmax, max| fac o’ facmin

This function has a minimum factor facmin, which prevents from fast decreases of the step
size as also a maximum factor facmax, which prevents from fast increases. These factors are
much needed, considering that the bigger step size is prone to errors and our step size is also
adaptive, hence our propagated error may grow rapidly.

Method 2: Another way of gaining the new step size is the following,

. / 1
hpew = hmin| P, fac o

which does not allow fast increase or decrease of the step size. Big step increases are
prevented by P, the maximum step size multiplier, while fac is a safety factor, ensuring that
the following error will be acceptable.

Method 3: A rather simple technique is that of doubling and halving the step size in order to
obtain the new one. By using this technique the change of the step size is drastic, fast
increases and decreases at each step, hence fluctuations will be observed. This way, the
computational costs for gaining the approximation are increased. The new step size is
doubled when it is considered accepted,

hpew = 2h

and halved when it is considered rejected,

18

1
hpew = Eh

In Chapter 5 we will study and compare the above methods and we will provide a new
adaptive method designed suitable for the problem at hand.

19

4. 2D Cooperative Cruise Control

New technologies are being introduced in our lives every single day. Vehicle automation and
communication between vehicles are one with great impact since it will improve the
performance of transportation systems, their safety, reduce congestion and traffic accidents,
and improve traffic flow on highways.

Adaptive Cruise Control (ACC) [6], [30] systems are an evolution of Cruise Control systems,
which maintained the speed of the vehicle at a certain desired value. ACC is able to
automatically adjust the vehicle’s speed to maintain a certain distance from a front vehicle or
to maintain a desired speed. These certain technologies require a lot of sensors and
information to be evaluated for a decision to be taken. Cooperative Adaptive Cruise Control
(CACC) [6], [29] systems are wirelessly connecting vehicles, enabling them to exchange
valuable information, therefore the decisions will be taken faster with less complicated
calculations with fewer time needed. Thus shorter inter-vehicle distances will be maintained,
the capacity of the roads and the safety will increase.

In this chapter we consider the two-dimensional movement of autonomous vehicles in lane
free roads [5], [6], [28], [31]. We consider n identical vehicles in a lane free road, whose
movement is described by the following ODEs:

Xj = Vj €0s 6;
yi =Vj sin Gi (4 1)
9i = O'_1Vi tan 81 .

Vi =F

for i=1,...,n. Here, (x;,y;) are the longitudinal and lateral position of the i-th vehicle
respectively, with x; e Rand y; € (—a,a), while we place its reference point at the midpoint
of the rear axle of the vehicle; v; is the speed of the i-th vehicle at the point (x;,y;); 6; €

(—gg) is the heading angle of the i-th vehicle and &; is the steering angle of the front

wheels. Last but not least, F; is the acceleration of the i-th vehicle. This model is known as
the bicycle kinematic model [6], [32].

20

Yi

b T -

Figure 10: Each vehicle is modeled by the
bicycle kinematic model

| (D

Figure 9: Lane-free road of width 2a > 0

In order to make the analysis less complex, we define

u; = o v tan(8;),i=1,..,n 4.2)

Hence, the model can be written like the following simpler form

x; = v; cos(6;)

i— Y
vi:Fi

fori = 1,2,...,n, where F and u are the control inputs. Considering that communication
between vehicles may change over time, the control laws adapted from this methodology are
decentralized and only depend on local sensing capabilities. The controllers are decentralized
in such way that relies on the full state of the vehicle i and also the state of the vehicles that
are within its sensing radius. The distance between vehicles is defined by:

d Z\/(Xi —x)* + p(yi —yj)? (4.4)

For p = 1, we obtain the Euclidean distance while for p > 1 we have an "elliptical” metric
which will allow to approximate more accurately the dimensions of a vehicle. This elliptical
metric allows more vehicles to be placed along the width of the road while maintaining a
certain safety distance between them.

21

Furthermore we define the set

S:={R" X (=3,a)" X (=@, @)" X (0, Vmax)"} (4.5)

, and also follow the notation

W = (X1, oo X3, Y1y oo Y 015 o0, O, V1, o, 1)’ € RAM (4.6)

The set S represents all the possible values the parameters of all n vehicles of the system can
obtain. First of all, each vehicle has to stay within the road boundaries (x;,y;) € R X (—a,a)
for i =1,...,n. All vehicles operate on a lane-free road with speed limit v, > 0, as also
they are not allowed to move backwards at any given moment. For the given constant
@ E (0, 1T/2), the vehicles should not be able to turn perpendicular to the road, hence it

should hold that 6; € (—¢,). This constant performs as an orientation safety constraint,
considering vehicles can achieve high speed, ¢ should restrict the steering angle values close
to zero. Probably the most important property which is not constrained by the set S, is the
collision avoidance between vehicles. Hence, a safety distance factor L > 0 is defined, where
all distances between references points concerning any pair of vehicles should respect.

Thus the state-space of the n vehicles that operate on a lane-free road are described by an
open set 2 c R*":

Q={weS:dy;>Lij=1.,nj#i} (4.7)

To sum up, below are stated the objectives the decentralized feedback laws should follow:

I. all vehicles operating should not collide with each other nor with the boundary of the
road,

ii. their velocities always be positive and remain below the given speed limit, as also
converge to a certain speed set-point,

iii. the orientation of all vehicles always remain bounded by the given value ¢ € (0, g)

and converge to 0,
iv. their accelerations, angular and lateral speeds tend to zero.

Considering all of the above, for every initial condition w(0) € Q, we obtain a unique
solution w(t) € Q for all t > 0 under the effect of all feedback law u; and F; fori =1, ..., n,
from the closed loop system. Furthermore, all of the objectives stated above should be
satisfied, for every initial condition w(0) € Q, as well for their solutions w(t) € Q.

Following, the decentralized control system has to be determined, as well as the constant
parameters utilized by the model [6]. As already stated, the decentralized system shall

22

prevent collision between vehicles and the boundary of the road. Thus, repulsive potential
functions are utilized, in such a manner that the repulsion force between vehicles grows when
the individual distance is decreasing, and the repulsion tends to zero when the vehicles are
distant. Considering that, functions V:(L,+») > R, and U = (—a,a) » R, are C2
functions:

G-d° L<d<2
Vd)=49"gq= » “<%= (4.8)
0, d> 2
f(1 c>4 e avec—1 ac—l< -
Y I avec—1 avec—1 4.9
OF - S}’S
\ NG Ve
and satisfy,

limy+(V(d)) =+ and V(d) =0, for all d=>2A lim, o, +(U®)) =+,
limy,_,,-(U(y)) = 400, and U(0) = 0. The potential functions V and U are designed in a

way to prevents inter vehicle collisions and collisions with the boundary of the road
respectively.

Here A > L are constants which correspond to a large and a small ellipse around each vehicle,
respectively. This ellipse is defined as following:

x% + py? = [2

x% + py? = 22 (4.10)

By appropriately selecting p > 1, the above functions (4.10) create ellipses around every
vehicle as desired, and we can also determine their eccentricity e = fl —%. The two

concentric ellipses are considered to have semi-major axes of L and A and semi-minor axes of
L
VP
capacity as also prevent the vehicles to come close together and with the boundary of the
road. The number of vehicles that can sit side-by-side depends on the size of the road 2a > 0,
the safety distance L, as well as the weight p. The formula which calculates this number N is

the following:

and \/’1—5, respectively. The ellipses are determined in such way to maximize the road

23

_Zaﬁ
L

If there are no vehicles inside the larger ellipse and nor is the vehicle referenced near the
boundary of the road, there is no repulsive force. By contrast, when the vehicle gets closer to
another vehicle, the repulsive force grows, tending to infinity while the inner vehicle distance
tends to L. The selection of both constants is equally important, since L is the safety distance
and no vehicles are allowed to come within this “safety” ellipsoid, and A creates the ellipsoid
from which the vehicles gain their needed information. Thus, if the A is selected large, the
measurement area around the vehicles is increased, as also the inter vehicle distances may be
affected.

Considering the repulsive potential functions, we have to appropriately select the rest of their
constants. The constant g is responsible for the magnitude of the acceleration F;, as also the
repulsive force taking action between the vehicles V. For instance, by choosing small values
of g, the values of V and F; will be smaller away from the safety distance L, but will increase
rapidly when d comes close to L. The constant ¢ > 1, is responsible for the final
configuration of the vehicles alongside the road. If we choose ¢ =1 and y = 0, then
U(y) = 0, hence the vehicles will converge to the middle of the road forming a platoon. On
the other hand, if ¢ > 1 we have that U(y) = 0 for an area around y = 0, and thus the

avc—1 avc—-1
e Y=

In order to satisfy the objectives followed by the decentralized feedback laws, a control
Lyapunov function [6], [30], which also possesses characteristics of barrier functions is
applied. Thus, a function H, the total energy of a set of n vehicles derives:

n

H (w) ::%Z(vi cos(@i)—v*)2 +%Zn:vfsin2(0i)

i=1

+ZU(y)+ ZZV(dIJ)JrAZ[1 j

i=1 j=i 005(0) COS((/’) 1 COS((D)

(4.11)

This Lyapunov function consists of three parts, the kinetic energy, the potential energy and a
penalty term. The Kinetic energy is represented by the first two terms, the potential energy of
the system is based on the third and fourth term and last is a penalty term which blows up
when 6; = + ¢. Also, A > 0 is a parameter of the controller and the Lyapunov function and

v* €(0, Vjqy) 1S the desired longitudinal velocity, and @e (Og) is a constant that should
always satisfy the following inequality:

cos(p) =

max

24

By using the last term, the feedback laws for each vehicle can be designed as shown below:

* A RO (@)Y
Uiz—{v +Vi(COS((9i)—COS((P))2] [ﬂl\lism(gi)w (Y (di’j)d-—,-+8|n(0)F' (412)

_ k(w) ~ X;)
F=- 7)(v cos(4,) -v) (0) ; '(d;;) Q. (4.13)
= JZV (d") j)+v*(vvmaxc(;2ig)—v*) [JZ o) "j)J N

where u,, u, are constants controlling the rotation and acceleration rate respectively, and
f eC'(R)is any function that satisfies max(x,0) < f(x)for all xe®R. We utilize the

following f function [6]:

0 if x<-¢
f(x)=2i (x+g)2 if —e<x<0 (4.15)
¢ g% +2ex if x>0

for every & >0, which allows the longitudinal acceleration to be regulated as desired.

The term k;(w) seen in the acceleration function F;(t) is a controller responsible for
maintaining the vehicles speeds positive and lower than the speed limit. Concerning the
second term of the acceleration function (4.13), is the summation of the repelling forces
acting between all vehicles. As already mentioned in the introduction, there is a nudging
effect, a “pushing” force taking action between vehicles. If V is decreasing then

- X
-V'(d;)(5)>0 and if vehicle j is behind vehicle i, then nudging [5], [6], [27] is

ij

introduced between those two vehicles, meaning j is “pushing” i in order to increase its
velocity. We should also take into account that nudging will not jeopardize traffic safety,
such as vehicles collisions, but also will not force vehicles gain parameters outside the Q set.
Lastly, we have to make clear than only information from vehicles with distance less than
A > 0 are needed by the feedback laws. Furthermore, the only information needed is the
distance from the adjacent vehicles, whilst no other information is required such as their
velocities or their wheel orientations.

25

5. Numerical investigation of solutions

First of all, the computer we used for all of the simulation is a personal computer with 16
gigabytes of RAM and an AMD Ryzen 7 1700 Eight-Core Processor with 3.00 GHz. As for
the software we use Matlab R2018a and C language run in CodeBlocks with MinGW 64 bit
8.1.0 compiler. From now on we will always pronounce the software used for gaining the
results presented.

In order to analyze better the simulations, a set of initial parameters is randomly picked and
the solutions gained from each method are compared with each other. For this numerical
investigation we assume that all vehicles have the same length ¢ = 5m and operate in a lane
free road with an ideal velocity of v = 30"/ and width a = 7.2m. The vehicles must not
exceed the maximum velocity of v, = 35™/s and set ¢ = 0.25, thus we obtain the
optimal eccentricity and safety distance p = 5.11 and L = 5.59m, respectively. Furthermore,
we select £ =0.2, 2 =25m and the design parameters ¢ =15 , g =3*1073. The
simulations were performed for a time period of 500 seconds with an initial step size of
h =0.01.

The results shown below are all gained from random set of initial parameters, where all of
them were gained with respect to the Q set. We gained initial parameters for
10,20,50,100, 150 and 200 vehicles, but for most of the presented results we tend to utilize
a random set of 100 vehicles. The randomly chosen set of initial parameters is set number 2
and is presented at Appendix B.

Euler Method

First of all, we investigate the numerical solution of the Euler Method. In order to
successfully approximate the real solution, the execution time is undermined by using a
considerably small step size of h = 0.01, thus needing 50000 iterations for a 500
seconds simulation. Obviously, by using a smaller step size we would gain a slightly
better approximation in the expense of memory and execution time. Through Figures 11
to 14, the trajectories, velocities and accelerations of the vehicles are presented, all
gained from an algorithm in C language. In Figure 11 are presented all the trajectories of
all the vehicles in order to show that all vehicles remain within the boundaries of the
road. Following, in Figure 12 we present 5 random vehicles trajectories to observe how
vehicles change direction to avoid collisions with others vehicles or the boundaries of
the road.

26

Lateral Position

Figure 11: Vehicles Trajectories for Euler Method

Figure 13: Vehicles Velocities Convergence for Euler

max(|v,(k)-v*))

-8
9 2000 !4[Il][l 6000 8000 10000 12000 14000 16000 18000

Longitudinal Position

0 . ;
0 20 40 60 80

Time

Method

Lateral Position

\ Vehicle 68

L "\/; [-

T — Vehicle 6
Vehicle 15
Vehicle 32 |

Vehicle 84 | -

500 1000 1500 2000 2500 3000 3500 4000 4500
Longitudinal Position

Figure 12: 5 Random Vehicles Trajectories for Euler

Method

10 20 30 40 50
Time

Figure 14: Vehicles Accelerations Convergence for Euler

Method

By using a bigger step size h = 0.1, in order to gain a faster approximation, Euler Method is
unable to approximate the numerical solution and in such way the vehicles crash. This can be
observed below at Figure 15. Note however that the step size h = 0.01, that produced the
“correct” previous approximation, does not imply that an approximation of the solution can
always be obtained, and for a different set of initial conditions, the Euler method may fail
again. For such cases an even smaller step size should be selected.

27

Lateral Position

Longitudinal Position x10°

Figure 15: Failure to approximate for Euler Method

Heun Method

Following, the Heun Method can also approximate the numerical solution for a rather small
step size of h = 0.01. This method needs even more execution time due to the increased
calculations needed. However, Heun is able to produce a better approximation due to the
increased calculations which also affect the ability to approximate a solution with a slightly
higher step size. The same number of iterations is performed as with Euler Method and the
algorithm is written also in C language. The results are presented at Figures 16 to 19.

28

Lateral Position

8 .
& 2000 40oo

6000 8000 10000 12000 14000 16000 18000
Longitudinal Position

Figure 16: Vehicles Trajectories for Heun Method

max(|v,(k)-v*[)

0

\L

——
L

0 20

40 60 80
Time

100

Figure 18: Vehicles Velocities Convergence for Heun

Method

Lateral Position

— Vehicle 6
Vehicle 15
Vehicle 32 | 4
Vehicle 68
Vehicle 84| |

500 1000 1500 2000 2500 3000 3500 4000 4500
Longitudinal Position

Figure 17: 5 Random Vehicles Trajectories for Heun

max(|F)

Method

10 20 30 40 50
Time

Figure 19: Vehicles Accelerations Convergence for Heun

Method

Even though Heun Method is providing better approximations than Euler Method, it still
cannot approximate the numerical solution for a bigger step size such as h = 0.1, and it can
be observed at the following Figure.

29

Lateral Position

Longitudinal Position <10°

Figure 20: Failure to approximate for Heun Method

Adaptive Method

In contrast, the adaptive technique manages to overcome the large initial step size, h = 0.1,
producing a good solution in less iterations, hence is less time. Note however, that the step
size may become smaller than h = 0.01 at certain times, to retain the numerical stability of
the system. Figures 21 to 24, present the trajectories, velocities and accelerations of the
vehicles. This algorithm was also written in C language.

30

Lateral Position

2000 14000 6000 8000 10000 12000 14000 16000 18000
Longitudinal Position

Figure 21: Vehicles Trajectories for Adaptive Method

0

20 40 60 80 100 120
Time

Figure 23: Vehicles Velocities Convergence for Adaptive

Method

Vehicle 6
Vehicle 15

Vehicle 32| -

Vehicle 68

Vehicle 84| |

=
£
z T
il | i T
=
e
z I—
T2 _
- Vo
VA
-4 _I". N
\
S\~
Ve -

8

Longitudinal Position

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 22: 5 Random Vehicles Trajectories for Adaptive

Method

max(|F)

0

0 5 10 15 20

Time

Figure 24: Vehicles Accelerations Convergence for

Adaptive Method

25

Considering that the step size adapts in such way to keep the local error within an appointed
tolerance, we can design our code in such way where for any initial parameters given with
respect to the open Q set, our system will not fail approximating a solution. This has to do
with the fact that if the local error is over the appointed tolerance, our new step size is smaller
than our old step size, thus we can decrease our step size till avoiding our systems failure.

31

Flowchart

True

Calculate k, F, u, x 0

Euler” " Euler” yEuler’

VEuler |

P

<

True

: Y y (Xi-X') Y (YI'Y)
Calculate dlSiJ, Vid, Zj #Vi,j LA ; LV i i ‘

d.

)

d

i;j‘

Calculate disiﬂ, Vid, > ; ﬁ\'fid

(Xi'Xj)

d.

1J

P2 Vg

(Y;'yj)

d.

L

> i< True |
False
Caleulate k, F,u, x,_ .y, 0, v,

Calculate ERR

X, Yo, ern, Vo

Check =1

SET =z+1t,=t, +h

)

(z-1)* new

32

Above is presented a flowchart of the algorithm we used for the Adaptive Method. For a
more detailed algorithm you may look at the pseudo code, at Appendix A.

Adaptive step size through Systems Energy

This technique is similar to the Adaptive Method, but differs in the way it adapts the step
size. For this process the error depends on the systems energy, instead of the parameters of
each vehicle. Hence, the systems energy has to be computed at every step and compared with
another approximation of the systems energy. The second approximation can either be gained
by the Euler Method or the previous systems energy can be used. If the energy of the system
is greater than zero, less than the energy of the previous step and of course all the parameters
are within the open 2 set, the new step size is increased. Otherwise, the step size is decreased
and the iteration is performed again. If the second approximation is gained by the Euler
Method the error is computed as:

2
Heyrer — Hugun
err =
Scy

On the other hand, if the previous approximation of the systems energy is used, the error may
be computed as:

After trials with both errors, we decided to use the one arising between the two different
Runge — Kutta methods. This method allows us to easily normalize the error between 0 and 1,
in order to be able to compare it with the given tolerance of the local error, regarding the
adaptive step size control. Following the embedded Runge — Kutta adaptive method, this
technique as mentioned adapts the step size via the energy of the system. With this method
we can also achieve bigger step sizes, hence produce solutions in less iterations. Using the
systems energy as a decision making attribute, we confirm that the energy decreases step by
step, rather than evaluating whether the difference between the approximations from two
methods is small. This method is more focused on a quick development of stability over our
system. Below, from Figure 25 to 28, are presented the results for the Adaptive Method
through the Systems Energy performed by a code written in Matlab.

Hyyy — H,
H,

err = min (f acmax, max (f acmin, var

33

Lateral Position

Figure 25: Vehicles Trajectories for Adaptive Method

max(|v,(k)-v*[)

Figure 27: Vehicles Velocities Convergence for Adaptive

Longitudinal Position

through Systems Energy

M
9 2000 000 6000 8000 10000 12000 14000 16000 18000

0

0 20 40 60 80
Time

Method through Systems Energy

100

120

Lateral Position

0

\ Vehicle 84

Vehicle 6

Vehicle 15
\ Vehicle 32|
".\ Vehicle 68

2000 3000 4000

Longitudinal Position

1000 5000

Figure 26: 5 Random Vehicles Trajectories for Adaptive

Method through Systems Energy

max(|F)

5 10 15 20 25 30
Time

Figure 28: Vehicles Accelerations Convergence for
Adaptive Method through Systems Energy

34

6. Comparisons between Numerical Approximation Methods

In order to observe the differences and make comparisons between the trajectories obtained
from two different numerical approximation methods, we may plot the trajectories from both
methods. That way, we can visually understand whether there are noticeable differences
created due to bigger step sizes or different methods. On the other hand, if we want to better
understand and evaluate a methods accuracy, we have to research the global error of each
method. The difficulty we face is that there is no way to find the real solution of our system
or it is too slow and demands a lot of computational costs. However, we may depend on an
approximation of the global error. For the approximated global error we may use a really
good approximation with a stable step size, thus we will utilize Heun method with a constant
step size of 10™* and the results will be named as the best approximation we can gain.

Lateral Position

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Longitudinal Position

Figure 29: Best Approximated Vehicles Trajectories

using Heun Method

20

=

L
=

Vehicle Velocity

20 40 60 80
Time

100

Figure 30: Best Approximated Vehicles Velocities using

Heun Method

15 {

10

Vehicle Acceleration

0 20 40

60
Time

80 100

Figure 31: Best Approximated Vehicles Accelerations using Heun Method

35

Above are presented the Vehicles Trajectories, Velocities and Accelerations concerning Heun
method with a constant step size of h = 10~* for 100 seconds simulation. The code used is
written in C language and needed 933 seconds for the simulation. The initial parameters are
shown in Appendix B. Even though we use a really small step size we can still observe high
accelerations, reaching 15/ which is around 1.5g's. All the vehicles remain within the
boundaries of the road and do not collide with each other, as also their velocities tend to
30 ™/ which is the set ideal velocity.

Differences between Heun with step sizeh = 1072 andh = 107

This comparison is made in order to understand how much of a difference will a smaller but
acceptable step size makes. By observing the parameters obtained by those two different step
sizes, we cannot really tell how big the difference is. For example, at Figure 32 we present
the trajectory of vehicle number 85 which presents the highest approximated error.

Lateral Position
. n .

Figure 32: Vehicle 85 Trajectory difference between Best Approximation and Heun Method

Figures 33 and 34, present the differences between the velocities and wheel orientation that
vehicle number 85 gains from Heun Method by the two different step sizes.

36

31

30.8

Velocity
1 T
= s
s o

)
=
[

30

29.8
0 20 40 60 80

Time

Figure 33: Vehicle 85 Velocity difference between Best

Approximation and Heun Method

100

Wheel Orientation

0.06

0.04 1 |}

002\

-0.02

-0.04

2006 {|]

-0.08
0 20 40 60 80

Time
Figure 34: Vehicle 85 Wheel Orientation difference
between Best Approximation and Heun Method

100

By comparing the results obtained using a data interpolation technique, we can find an
approximation of the global error. Thus, we find the differences by interpolating data of the
bigger step size to the smaller step size results and gain an approximation of the global error
to be equal with 7.6047. Below, at Figures 35 and 36, we present the Absolute Local Error
for vehicle 85 and the Absolute summation of the Local Error for all the vehicles.

0.012

Absolute Differences of Heun and Interpolated pneilinnt|

—
~.

N

0.0

=1

0.008
0.006

/

4

Absolute Local Error

Z 0.004

0.002

S~

0
0 20 40 60 80

Time (seconds)
Figure 35: Absolute Local Error Vehicle 85
Method

100

Heun

Absolute Global Error

Absolute sum of the Local Err»r‘

0 20 40 60 80
Time (seconds)

Figure 36: Absolute Global Error Heun Method

100

By adding the final local errors of all the vehicles, hence the global error of each vehicle, we
obtain the Global Error for the whole set of vehicles. Those two Figures show that the
differences by cutting the iterations in half are not that great and hence Heun method
produces a fine approximation for a step size of h = 1072,

37

Differences between Euler, Heun and the Adaptive Method

First of all, the adaptive technique is way faster than using a constant step size. Although
Heun’s Method may seem the better choice when it comes to accuracy, we can find the
global error of the Adaptive Method is rather small. We will use 100 vehicles for 100 seconds
simulation and have a constant step size of 10™* for Heun Method, to gain the best
approximation we can.

Previously, we investigated two approximations gained from Heun Method and we were not
able to detect any great differences. On the other hand, Euler Method seems to have some
differences from our best approximation. This is understandable since Euler Method is
simpler and also is a first order Runge—Kutta Method, whereas Heun Method is a second
order Runge-Kutta Method. Below the trajectories of 9 vehicles are presented where 6 of
them have different trajectories gained from Euler Method, but we have to state that the
overall differences are not that noticeable.

Lateral Position
Lateral Position

X =]
L S 1000 1500 2iM) 2500 Joon 500 4000 Son 1000 15040 2000 250 e 3500
Longitudinal Position Longitudinal Position

Figure 37: Euler, Heun and Adaptive Method Vehicles Figure 38: Euler, Heun and Adaptive Method Vehicles
trajectories differences (1) trajectories differences (2)

However, we still cannot define how great these differences are. Again we utilize a data
interpolation technique to obtain an approximation of the global error. The Adaptive Method
has a total Global Error equal with 8.4923 and Euler Method has 1813.309.This time
vehicle 56 for Euler Method displays the worse approximation with global error equal to
19.3812 and for the Adaptive Method vehicle 31 has a total global error of 0.0914, and can
all be observes at the Figures below.

38

Absalute Differences of Heun and Interpolated positions | 20 j j ! '
4 Absolute sum of the Local Error

14t —

Absolute Local Error
=
-
Absolute Global Error

0 20 Ny 60 8 10 |]III | 2Il] 4Il] 6‘0 B‘l] 100
Time (seconds)

. A . Time (seconds)
Figure 38: Absolute IR;)(e:;IKI)Edrror Vehicle 56 Euler Figure 40: Absolute Global Error Euler Method

* 1"

-

T T T
Absolute Differences of Heun and Interpolated positions

Absolute sum of the Local Error

=l
s
=
z

- 0.08 |

i
T

rs
T

0.05 |

Absolute Local Error

1] T
Absolute Global Error

2
=
[

0

0 20 40 60 80 100 0
Time (seconds)

Figure 41: Absolute Local Error Vehicle 31 Adaptive

Method

0 20 40 60 80 100
Time (seconds)

Figure 42: Absolute Global Error Adaptive Method

From the Figures above it is easily noticeable that the Adaptive Method produces a better
approximation than Euler Method, even though it requires 1240 iterations and is extremely
faster that the constant step size of h = 1072 of Euler Method. The simulation time for the
Adaptive Method was 1.429 seconds and for Euler Method 22.637 seconds, both written
in C language.

39

* 1"

7 0.012
Heun Method Vehicle 31 Differences Heun Method Vehiele 85 Differences
6 Adaptive Method Vehicle 31 Differences Adaptive Method Vehicle 85 Differences
0.01
-
55 =
£ £ 0.008
= =
2 3 0.006
23 2
E E
£ E 0.004
<2 <
| 0.002
,,,,,, B R
0 0
0 20 40 60 80 100 60 80 100
Time (seconds) Time (seconds)
Figure 43: Heun and Adaptive Method Absolute Local Figure 44: Heun and Adaptive Method Absolute Local
Error for Vehicle 31 Error for Vehicle 85

In Figures 43 and 44, we compare the two worse approximations for Heun Method with step
size of h=10"%2 and Adaptive Method. The simulation for Heun Method needed
49.647 seconds. Thus, we come to the conclusion that the Adaptive Method is generally
better than using Heun Method with a constant step size. At Figure 45, we can see how the
step size of the Adaptive Method, adapts through the simulation.

0.8 /
2 0.6 /
ol /
- s
<04 yd

e
0.2 /
S~
T
..p/-/
o ke
0 20 40 60 80 100 120

Time (seconds)

Figure 45: Adaptive Step Size

40

Differences between Adaptive Method, Richardson’s Extrapolation and Adaptive using
the Systems Energy

Comparisons should also be made between the Adaptive Methods, to acknowledge any
advantages and disadvantages they may have, concerning the system given. Therefore,
presented at the Figures below are 9 vehicles trajectories, 5 of which are not the same and 4
of them have almost the same trajectories. For this visual comparison we use as the reference
trajectory, the one produced by the Adaptive Method, since we already know it is a good
approximation. The algorithms for Richardson’s Extrapolation and the Adaptive Method
using the Systems Energy were written in Matlab.

N

sk

B %
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Longitudinal Position Longitudinal Position

Figure 46: Adaptive Method, Richardson’s Figure 47: Adaptive Method, Richardson’s
Extrapolation and Adaptive Method through Systems Extrapolation and Adaptive Method through Systems
Energy Vehicles trajectories differences (1) Energy Vehicles trajectories differences (2)

For a thorough investigation we will again utilize the data interpolation technique, and
analyze the approximations gained with Richardson’s Extrapolation and the Adaptive Method
through the Systems Energy against the Best approximation we have.

Richardson’s Extrapolation produces a good approximation with Global Error equal with
24.5896, with the vehicle with the worst approximation being vehicle number 56 and its
global error equal to 0.4861. The simulation time was 251.901 seconds.

41

=
IS
=
n

|— Absolute Differences of Heun and Interpolated positions — Absolute sum of the Local Error r
035] 0.45 1
0.4

03 =
g £ 0.3s
& 025 | T ——— =
- = 031
g 2
= 02r T 02
= P
S 0ast E o2}
2 E 0.15
“ o <

0.1
0.05 0.05
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (seconds) Time (seconds)
Figure 48: Absolute Local Error Vehicle 56 Richardson’s Figure 49: Absolute Global Error Richardson’s
Extrapolation Method Extrapolation Method

Adaptive Method through Systems Energy has a great simulation time but suffers a little bit
concerning the accuracy. It has a total Global Error of 54.2835 with vehicle number 31
having the worst global error of 0.5520.

0.01 — 0.6
,,..—*"""—-— Absolute sum of the Local Error
——-"—"'--"_
S
- 0.5
0.008 |
£ £
£ Eoal
= &
= 0.006 | =
= Fo03f
= !
EZ 0.004 ¢ =
z Zoxr
< =
0.002 |
011

N| Absolute Differences of Heun and Interpolated positions |
0 , ‘ , , I 0

0 20 40 60 80 100 0 20 40 60 80 100

Time (seconds) Time (seconds)
Figure 50: Absolute Local Error Vehicle 31 Adaptive Figure 51: Absolute Global Error Adaptive Method
Method through Systems Energy through Systems Energy

At the following Figures we can observe the step sizes from Richardson’s Extrapolation and
the Adaptive Method through Systems Energy, respectively.

42

3
2.5 | 25 P
2f | . * |||
7 15+
&' I g H
&* ..‘ n "
1t ﬁ | “| i Ly JI||
| " | / Vad
"'H“‘“J'\ . /
il M'“H' L -
0 ' 0 20 40 60 80 100 120

0 20 40 100 120 Time (seconds)

Figure 53: Adaptive Method through Systems Energy
Step Size

Tlme

Figure 52: Richardson’s Extrapolation Step Size

Adaptive Methods Step Size Upper Bound Differences

Below at Figure 55, are presented the average time needed by the Adaptive Method to
simulate for different step size upper bounds. For the simulations we used 20 sets of 100
vehicles for 500 seconds. The algorithm we used to perform these simulations was written in
Matlab.

Adaptive method simulation time for different step size upper

bound
445 14874430
4.4
4.35
4.25 o 42512 ©4266 4 4053
4.2
415 ¢ 108 —&—Simulation time
4.1
4.05 T T T T T T T T T T T T T T T 1
1y 45 _6 1% 49 0
0\)“‘ 0““\1 o\yﬁ\e’ O\wé 00&\6 0“06 o %0\)05 o
TR U U U R e R e

Figure 54: Adaptive Method’s upper bound simulations

43

0.8

Step Size
=
o

0.4

0.2

0

0 100

200

300
Time (seconds)

400

500

600

Figure 55: Adaptive Method’s Step Size for UB = 1

Absolute Global Error
= = = = = =
I—] —] —] I—] —] —]
ad tad s n o e

=
=
=1

=

Hl /:.
I{‘\,,/—J 7

— Absolute sum of the Local Error

0

100

200 300

400

500

0
0 100

200

300
Time (seconds)

400

500

600

Figure 56: Adaptive Method’s Step Size for UB = 1

Absolute Global Error

s
=
3

2
=
=

2
=
0

=
=
E

=
=
]

s
=
[

=
=
—_

=

— Absolute sum of the Local Error

=

0 100

200 300

400

500

Time (seconds)
Figure 58: Absolute Global Error Adaptive Method for
UB =5

Time (seconds)
Figure 57: Absolute Global Error Adaptive Method for
UB =1

The differences between the Global Errors for Step Size with Upper Bound equal to 1 and 5
are almost equal, as we can observe from the Figures above. We can confirm the above
allegation by using the results from a data interpolation technique, resulting to a Global Error
equal to 4.76405 for UB = 1 and 4.76406 for UB = 5. With UB = 1 the Adaptive Method
needed 1640 iterations with an average time of 4.430 seconds, whilst with UB =5 it only
needed 1401 iterations with average time of 4.194 seconds. Comparing those results, which
we gained for a simulation of 500 seconds, with the ones we got for the 100 seconds
simulations, we observe that we only needed 200 more iterations for 400 more seconds.

At Figure 60 we present the average times needed by the Adaptive Method through Systems
Energy to simulate for different step size upper bounds. This algorithm was also written in
Matlab.

44

Adaptive Method through Systems Energy simulation times for
different step size upper bound

6.2
* ¢ 6.087
6 - 6.097
¢ 5.880
5.8
5.563 2 € 5.683
5.6 * ¢ ¢ 5.673
5.549 5963 ® 5443

5.4 ' 43 o simulation time
5.2

5 T T T T T T T T T T T T T T T T T 1

D L - I 2% 29 4\6
oW oo™ 0\)“6 o\“‘\6 0\9‘\6 0“96 o 9,0\)‘\ 0\)06

2% S 28 28 A S s 28
O 9% W e 9 o o 98 oo

Figure 59: Adaptive Method through Systems Energy upper bound simulations

1 T T T T T 10 T T T T T
0.9+ 1 9t \A
0.8 R 8
0.7 7
@ 0.6 u 6
7 7
§_l].'T« §_ 5t
L4t £t
03 3
0.2 2
0.1 1
0 * . . . * 0 . . * .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (seconds) Time (seconds)
Figure 60: Adaptive Method through Systems Energy Figure 61: Adaptive Method through Systems Energy
Step Size for UB = 1 Step Size for UB = 10

45

2.5 ~ 2.5 y
— Absolute sum of the Loeal Errnr|' — Absolute sum of the Local Errnrr
2 2
= =
= =
= 15 =15
£ £
G G
u w
g 1 s 1
z z
= =
0.5 0.5
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Time (seconds) Time (seconds)
Figure 62: Absolute Global Error Adaptive Method Figure 63: Absolute Global Error Adaptive Method
through Systems Energy for UB = 1 through Systems Energy for UB = 10

Again we observe little differences for the Global Errors for the different Upper Bounds. For
UB = 1 with an average time of 6.097, we gain a Global Error equal to 245.069 and for
UB = 10 and an average time of 5.443 we have a Global Error equal to 244.641. Also we
need 1401 iterations for approximating with an UB = 1, almost 400 more than with UB =
10, which needs 1048 iterations.

46

Adaptive Method Absolute and Relative Error Tolerances Differences

Concerning the Absolute and Relative Error Tolerances, we utilized 20 sets of 100 vehicles
for 500 seconds. It is reasonable that whichever of those two gain a smaller value, the
simulation time increases.

Atol, Rtol Comparisons

100
90 87.405

80
70
60

® Atol, Rtol = 10-4
® Atol, Rtol = 10-5
40 — = Atol, Rtol = 10-6
30
20

10

50

18.651

Different Atol, Rtol

Figure 64: Simulation times for 3 different Atol and Rtol values

For gaining a better insight of the simulation results, we will use only the first 100 seconds
of each simulation, for the set number 2, and compare those results with the Best results we
have using a data interpolation technique. For Atol = 10~% Rtol = 10~* the simulation
time took 4.109 seconds, for Atol = 107>,Rtol = 10~> the simulation time took
15.38 seconds and for Atol = 107% Rtol = 107° the simulation time took
72.941 seconds. Obviously for Atol = 107* Rtol = 10~* we will gain the results from
differences between Adaptive Method and the Best approximation, hence we will not
evaluate the approximation again. For these simulations we utilized a Matlab algorithm.

For Atol = 107>, Rtol = 107> the worst trajectory we obtain is for vehicle number 41 with
Global Error equal to 0.0129. We also have a total Global Error of 1.235.

47

w107

7 0.014
‘ Absolute Differences of Heun and Interpolated positions Absolute sum of the Loeal Errnrl
6 T~ B 0.012 /
i -]
é 5 E 0.01
i =
T4 E 0008
. 3
£s £ 0.006
=2 2 0.004
1 0.002
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (seconds) Time (seconds)
Figure 65: Absolute Local Error Vehicle 41 Adaptive Figure 66: Absolute Global Error Adaptive Method
Method Atol = 1075, Rtol = 1075 Atol = 1075 Rtol = 1075

Concerning h = 107% Rtol = 107° , we also gain the worse trajectory approximation for
vehicle 41 with Global Error equal to 0.00386. The total Global Error was 0.349.

=107 x107

— Absolute sum of the Local Errnr|

Absolute Local Error
1]
Absolute Global Error

Absolute Differences of Heun and Interpolated positions

0 20 40 60 80 100 0 20 40 60 80 100
Time (seconds) Time (seconds)
Figure 67: Absolute Local Error Vehicle 41 Adaptive Figure 68: Absolute Global Error Adaptive
Method Atol = 1075 Rtol = 107° Method Atol = 1075 Rtol = 107°

Time Differences between Matlab and C codes

At the Figure below, we present the time taken for executing the simulations in C language.
For those simulations we used 20 different sets of initial parameters for 10, 20, 50, 100, 150
and 200 vehicles and gained the average simulation time. As we can observe from the
Figure, the quickest simulations are those using the Adaptive Method, next come the Euler
Method and last are the Heun Method. This is understandable since Adaptive Method
produces the approximation with way less iterations and Heun Method has more
computations in order to approximate the solution.

48

Adaptive, Euler and Heun methods for S00 seconds simulations

200 S—

180 : , \ 175.714

| I/

\ 6762
140 - _7'%\< S0 vehides
o oo o 20 i,
R e
{ \ 103.421
100 I = Adaptive Method
80 | o\ \“‘" s / Euler Method
A - S ~ ® Heun Method
60 Y 48936
i 1
40 osn /
\ e / 224
10 vehides,
20 _A\ e
~—_ ~ . 1.284
0 — -
e A .\c‘\a‘“s ¢ AAe® Ae®
\01[6 “qe 0«10‘“ q?:“s \50‘10\“ \[Qw

Figure 69: C language time simulations

We observe the same pattern with C language simulations for the simulations that were
performed in Matlab. The main difference between Figure 46 and 47 is that for Matlab the
simulation execution times are way bigger. For example, for 200 vehicles Heun Method
needs an average of 175.714 seconds when run in C language, while it needs approximately
1706.946 seconds when run in Matlab which is about 10 times more.

Adaptive, Euler and Heun methods for 500 seconds simulations
1800 1706.946
Adaptive Method simulations

1600 |,
1400 I 19879 1400.

15
1200 1165.898

9515
10
998.7.
1000 s 447
m Adaptive Method
800 0o M ue 1&” l 721.309 Euler Method
P Ae® N T 647.1
600 \u"w 10“’»‘: 5v“£&° \@“w \50"&‘ 1@““& ® Heun Method
323.396
400 303.291
51067 117.795
200 0024 114.161
0 __ s | . | — _— —
. A\e® . A\e® . S . A\e® . A\e® . AP
" © e e e e
\qu ’L“qe ‘)Qqe \@qe’ \5“46 ')_que

Figure 70: Matlab Simulations

49

7. Investigation for the repulsive potential function U; and V;

The repulsive potential functions are created and used to reassure the vehicles integrity. The
potential functions V and U prevent inter vehicle collisions and collisions with the boundary
of the road, respectively. Both of them are designed in such way that the repulsive force
comes in smoothly when the vehicle’s distance from a barrier or another vehicle is further
from the “danger” zone and rapidly when the vehicle’s distance between the boundaries of
the road or another vehicle tends to zero. This rapid repulsive force could be translated into a
rapid change of direction, or a great acceleration in the lateral direction or even a great
deceleration. This problem is easily observed at the beginning of our simulations where we
have gained random initial parameters from the Q set, thus vehicles projected trajectories may
cross each other or even the vehicles may be really close to each other. But still, when the
distances tend to L the repulsive force must be great. Below at Figures 70 and 71 we observe
the two ellipses surrounding the vehicles which are “responsible” for enabling the repulsive
force between them.

Figure 71: Vehicles not exchanging information Figure 72: Vehicles exchanging information

In order to smoothen the repulsive effect when a vehicle or the boundaries of the road enter
the faint colored ellipse, we have to gradually increase the repulsive force instead of rapidly
increasing it when they come close to the dark colored ellipse. At all the previous simulations
we have used the functions mentioned at paragraph 4, and more specifically the following
ones:

(A—a)?
vidy= 9 - » b=dsA
0, d>2a
< 1 c>4’ cy< avec—1 da\/c—1< <
az—y2 a2’ asy Ve an Ne y<a
Uly) =

0 ac—1< <a c—1

k) \/E —y— \/E

We are investigating those two functions and we wish to design them in such way, that they
will repulse the vehicles in a more progressive way, while decreasing the produced
accelerations for collision avoidance. Thus, we utilize “bell-shaped” functions that will
gradually increase the repulsive force, before a rapid increase is needed. For these reasons we

50

will equip our function with an extra term, the Gaussian function [14]. It is the archetypal
bell shaped function and can be encountered in many problems.
(%)
f(x) =axe\ 2¢2

where below we use var; = a, var, = b, var; = c. We utilize this extra term in order to
create a local minimum between L and [, so shorter inter-vehicle distances may be
maintained. Following, we present the currently used V function and the one we will
investigate:

50

40

30

=g——F = 20
v(d) d—L d>2
0 |
101|
|
.\\‘
0) ————
6 8§ 10 12 14 16 18 20 22 24
Inter-Vehicle Distance
Figure 73: V Function
0 —
/
It
[
UM
|
V'(d) 20 ‘
-31-d)?*d-L)— (A —-d)? :
) ((A= dyd—1)))}Kdg A
- (d-1) ,d> 2 -30
0
40

6 8 10 12 14 16 18 20 22 24
Inter-Vehicle Distance
Figure 74: Derivative of V Function

o1

Vaew(d)
{ (A—d)’?
={q

+ var,e

0

d—-1L

—(d-vary)?/(2var3), L < d < A

,d> 1

50

40

30

¥ New

20

6

12 14 16 18 20
Inter-Vehicle Distance

Figure 75: New V Function

8 10

_(d-vary)?

Vn,ew (d) = (q

-10

-20

V' New

-30

-40

=50

(d-1L)?

-3 —d)*d-L)-(- d)3>

0

(var?) ,d>2

6

8 10

12

Inter-Vehicle Distance

14

16 18

20

22

24

Figure 76: Derivative of the new V Function

22

var,(d —var,)e v3) | < q<

24

The use of the derivatives is due to the fact that in our control functions, we utilize the

derivatives of the U and the V functions, see paragraph 4 equations (4.12), (4.13), (4.14).

Yet, we still have to evaluate the new V function. This potential function, as we have already
mentioned, is responsible for the vehicles not crashing with each other. Thus, by inserting
this bell shaped function, we expect shorter inter vehicular distances. We performed two

simulations for the Adaptive method, one for 100 seconds and a second for 500 seconds.

52

New V Function
—Old V Function

—
=

—
)

—
=

E

e

0 20 40 60 80 100 120
Time (seconds)
Figure 77: Inter Vehicular Distances 100 Seconds
Simulation

Minimum Inter Vehicular Distances

=

4

20

New V Function
|7 0ld V Function

Minimum Inter Yehicular Distances

5

0 100 200 300 400 500 600
Time (seconds)
Figure 78: Inter Vehicular Distances 500 Seconds
Simulation

From the Figures 77 and 78, we already observe that the New V Function is able to create
shorter minimum inter vehicular distances, for the Adaptive Method. Following, at figures 79
and 80 we present the results for the New V Function for the Adaptive Method through
Systems Energy, where we yet again observe shorter minimum inter vehicular distances.

— New V Function
] Old V Funetion
= 14
g
=
E 12
i
210 ‘r\f
g /
=
= g [
A

E b
£
E 6
-
-

4

0 20 40 60 80 100 120

Time (seconds)
Figure 79: Inter Vehicular Distances 100 Seconds
Simulation

20

New V Function
Old V Function

Minimum Inter Vehicular Distances

0 100 200 300 400 500 600
Time (seconds)
Figure 80: Inter Vehicular Distances 500 Seconds
Simulation

Below are presented the currently used U function and the one we investigate:

f(1 c>4 e avec—1 da c—1< -
————=) —a<y<-— an y<a
oy = | e ve
avec—1 avec—1
0, —————<ys<——

53

1

(2y

|4 2 _42)2
ZORE (=

\

)(az—yz_%) ’

25

Road Space

Figure 81: U Function

3

avec—1

—a<y<-

0, -
Ve

<y<

[

Road Space

-4 -2 0 2
Road Space

Figure 82: Derivative of U Function

and <y<a

For the U function we found from various trials that it will work better if we simplify the
existing U by defining ¢ = 1 and utilizing the Gaussian function twice, once for the negative
parts and once for the positive parts. We use the following parameters for the Gaussian
functions: var; = 0.5, var, = —3, var; = 0.15, var, = vary, vars = —var,, vars = vars.
Thus, the function we will investigate becomes as:

1 1

Unew(y) = (r — =

yZ

4

) + varle—(y—varz)z/(Zvarg) + vame—(y—vars)z/(Zvarﬁz)’_a <y<a

54

3t
5 / \
2} /o
a5 B 3 _-z‘s
1r Road Space
\ A
0 * : j : : - : -
-6 -4 =2 0 2 4 6
Road Space
Figure 83: New U Function
_(y—va‘rzz)2 _(y—varzs)2
U (y) = 4(2y)(1 _i)3 _vary(y — varye (avars) _ var,(y — vars)e (2varg) Ca<y<a
new (a2 —y?)?2/\a2 —y?2 a2 (var?) (var?) ’
2.5
2r |
1.5F 1
e i
0.5 1
= 0f |
0.5 ¢]
1t E
15t 1
a2t i
25
-6 -4 -2 0 2 ES 6
Road Space

Figure 84: Derivative of New U function

As we can see from Figures 81 and 82, the new U function creates two new local
minimums. This change leads to the creation of three lanes alongside the road and for the
simulations we utilize the second set of parameters for 100 vehicles, for 100 and 500
seconds simulations. The results are presented below:

55

Lateral Position

Lateral Position

i 0 20 40 60 80 100 120 0 100 200 300 400 500 600

Time Time
Figure 85: Trajectories of 100 seconds simulation Figure 86: Trajectories of 500 seconds simulation
0.9 4
0.8 35
0.7+ 3
0.6 -
25¢
2 g
& s z
& | &
& 0.4 =
151
03 r
0.2 r
0.1 0.5
0 * . * * - 0 * * - * *
0 20 40 60 80 100 120 0 100 200 300 400 500 600
Time Time
Figure 87: Step Size of 100 seconds simulation Figure 88: Step Size of 500 seconds simulation

The simulations needed 6.685 and 7.761 seconds respectively. Following, we present the
results for the Adaptive Method through Systems Energy for 100 and 500 seconds
simulations:

56

Lateral Position

Lateral Position

) 0 ZII] 4‘I] ﬁII] ﬂll] ll‘]I] 120 0 l[III] ZII]I] 36!] d[lll] SII][I 600
Time Time
Figure 89: Trajectories of 100 seconds simulation Figure 90: Trajectories of 500 seconds simulation
2.5 . ‘ . . ‘ 12 . . ‘ . -
‘II
|
5 M_/ 10 ‘ ‘|
|
8 ['
s L5} ﬂ' % ."| H | ‘ | ” ﬂ ‘
g [3 (i I
2 [a2 H|“||\\M |'|\'| IM
& |- 7 Il H'||'||“.||WN‘|‘|“|'|
WOV
4 | | |I Vl l|| |‘ |V| |‘| ‘} ||
L |y [
0.5 5 P I ‘
_ | ‘
0 L_wuf’-’."‘/k-/\‘ L L ! 0 z/ L L IJ ! L L
0 20 40 60 80 100 120 0 100 200 300 400 500 600
Time Time
Figure 91: Step Size of 100 seconds simulation Figure 92: Step Size of 500 seconds simulation

The simulations needed 7.08 and 7.857 seconds respectively. From all the simulations
performed we observed that the vehicles tend to the local minimum areas created by the new
U Function. Depending on the design of the controller we can shape our system from lane-
free to a lane-based model. For example if we change the power 4 to 1:

1 1
Upew () = (.az " _ ?) + Uarle—(y—varz)z/(warg,z) + vame—(y—vars)z/(zvarﬁz)’ —a<y<a

_(y—vary)? _(y-vars)?
2y) var, (y — var;)e (2vars) var,(y — varg)e (2varg)

U _ (,—a<<y<
new (Y) (a2 _ yZ)Z (var32) (UarGZ) a<y a

, and with small changes at the parameters of the Gaussian functions, var; = 0.5, var, =

1.5 . .
-3, var; = —5 var, = vary, vars = —vary, vars = vars, We receive the following results:

57

5 25
5L
4 1.5
il
3 0.5
= =
2 0.5
-1F
1 1 -1.5
J :
0 : : ' ' : : 25 : : ' ‘ ' : :
) 4 2 0 2 4 6 -6 -4 2 0 2 4 6
Road Space Road Space
Figure 93: New U Function Figure 94: Derivative of New U Function

Next we will present the results for the Adaptive Method, the vehicles trajectories will be
shown at Figure 95 and 96, with axes of time and lateral position, as also the step sizes are
presented at Figures 97 and 98, for 100 and 500 second simulations, respectively.

Lateral Position
Lateral Position

i 0 20 40 60 80 100 120 0 100 200 300 400 500 600
Time Time
Figure 95: Adaptive Method Trajectories of 100 seconds Figure 96: Adaptive Method Trajectories of 500 seconds
simulation simulation

58

L8 8 T T T /.\
all i ’I{ I‘III\\ /
14+ \
or \
1L2r k
w 2 St
I s N
& & -
o / o 3l
0.6 - -
04} / 2
02} d 1
0 — * * - 01— : : - : :
0 20 40 60 80 100 120 0 100 200 300 400 500 600
Time Time
Figure 97: Adaptive Method Step Size of 100 seconds Figure 98: Adaptive Method Step Size of 500 seconds
simulation simulation

The simulations needed 6.677 and 7.061 seconds respectively. At Figures 99 to 102, are
presented the results for the Adaptive Method through Systems Energy for 100 and 500
seconds simulations utilizing the new U Function.

Lateral Position

0 20 40 60 80 100 120
Time

Figure 99: Adaptive Method through Systems Energy

Trajectories for 100 seconds simulation

Lateral Position

] 100 200 300 400 500 600
Time

Figure 100: Adaptive Method through Systems Energy

Trajectories for 500 seconds simulation

59

6 14 T
|
|
12 - |
il |\ |
| |
10 -]
af] / | | |
g g 8 Ay / -
E z / ‘| .J|| ||H |" n .'-‘|'||
z 26l /_/ ||‘I|HH\H|'I‘|‘|\|||H '|||||F
2t A | | ||| [‘| |“| l \|] ” I
AV) | || ! '
1r 1 2l o/ I
/ I\ [
- ____,/ j."
I]l] 20 40 60 80 100 120 l]I] 100 200 300 400 500 600
Time Time
Figure 101: Adaptive Method through Systems Energy Figure 102: Adaptive Method through Systems Energy
Step Size for 100 seconds simulation Step Size for 500 seconds simulation

The simulations needed 5.143 and 5.631 seconds respectively. Lastly, we have to investigate
the new U and V Functions together and we will present results for the two different U
Function set ups we have presented previously. At Figures 103 to 106 we present the results
for the Adaptive Method with 8.379, 13.671, 8.898 and 12.865 seconds needed for the
simulations, respectively.

16 : ; . — 20
——7—‘ New V and U Function New V and U Function
z Old V and U Function] Old V and U Function
g 14y £ —
£ e e
= = -
a a _
z12¢ 515
E E
= 10 | P /
5 | g ||
- -
=gl oa =0k
£ g]
= =
E H
E 6 = ’ﬂv’
— -—
= =
4 . ‘ . . ‘ 5 . . ‘ . .
0 20 40 60 80 100 120 0 100 200 300 400 500 600
Time (seconds) Time (seconds)
Figure 103: Adaptive Method 100 seconds simulation Figure 104: Adaptive Method 500 seconds simulation

60

Minimum Inter Vehicular Distances

—
=

—
w

-
=
T

—
D)

—
)

—

—
=

__,_~‘ New V am:ﬁJ Function
————Old V and U Function | |
-

v

II

|

|

W
i

0 20 40 60 80 100 120

Time (seconds)

Figure 105: Adaptive Method 100 seconds simulation

Minimum Inter Yehicular Distances

New V and U Function

—— Ol V and U Function | |

6
0

100

300 400 500
Time (seconds)

200

600

Figure 106: Adaptive Method 500 seconds simulation

At Figures 103 to 106, we present the results for the Adaptive Method through Systems
Energy with 9.661, 18.12, 7.741 and 12.787 seconds needed for the simulations,

respectively.
16 —
—— New V and U Function
Z 0ld V and U Function
2 14
E
=
512
El
2
=
210 ‘r\j
g f
2
S gl
g
=
£
£ 6
f—
(=
4 . ‘ . . ‘
0 20 40 60 80 100

120
Time (seconds)

Figure 107: Adaptive Method through Systems Energy

100 seconds simulation

20

New V and U Function

Old V and U Funetion

g
g
z v
& ./
FRERS
=
=
=
i
-
5
2
= 10 -
£
s
£
g r’
=
[
5 . . ‘ . .
0 100 200 300 400 500

Time (seconds)

600

Figure 108: Adaptive Method through Systems Energy

100 seconds simulation

61

—
=
[
=

New V and U Function
—— Ol V and U Function | |

New V and U Function

/_ ‘7UI|:I V and U Function

/

/

N
]
|
‘

—
w

—
I

—
D)

—
)

—
=

-]

=

Ik

6 : - ; ! - 6 ! ! - ! !
0 20 40 60 80 100 120 0 100 200 300 400 500 600

Time (seconds) Time (seconds)
Figure 109: Adaptive Method through Systems Energy Figure 110: Adaptive Method through Systems Energy
100 seconds simulation 500 seconds simulation

Minimum Inter Vehicular Distances
Minimum Inter Yehicular Distances

|
[

-

From the results presented above, we observe that even with the vehicles tending to multiple
local minima, the new V Function makes the minimum inter-vehicular distances shorter. By
forcing the U Function to transform our model into a lane-based one, we observe for both
adaptive techniques that the vehicles reach the minimum inter-vehicular distances way faster.
The new functions utilized and the results gained from various simulations are not the
optimum and there is still potential for better potential repulsive functions. The investigation
was performed in order to show that with small changes in the system’s functions we can
achieve different goals we may set.

62

References

[1] European Commission, Directorate-General for Mobility and Transport, (2021). EU
Transport in Figures: Statistical Pocketbook 2021, Publications Office.

[2] “PHANTOM AUTO” WILL TOUR CITY. (1926, December 8). The Milwaukee Journal
Sentinel.

[3] O’Toole, M., Lindell, D. & Wetzstein, G. Confocal Non-line-of-sight Imaging Based on
the Light-cone Transform. Nature 555, 338-341 (2018). https://doi.org/10.1038/nature25489

[4] Yanumula, V. K., Typaldos, P., Troullinos, D., Malekzadeh, M., Papamichail, I., &
Papageorgiou, M. (2021, September 19). Optimal Path Planning for Connected and
Automated Vehicles in Lane-free Traffic. 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). https://doi.org/10.1109/ITSC48978.2021.9564698

[5] Mountakis, K. S., Karafyllis, 1., Papamichail, I., & Wang, Y. (2021, February). Lane-Free
Artificial-Fluid Concept for Vehicular Traffic. Proceeding of the IEEE, 109(2), 114-121.
https://doi.org/10.1109/jpoc.2020.3042681

[6] Karafyllis, I., Theodosis, D., Papageorgiou, M., (2022). Lyapunov Based Two-
Dimensional Cruise Control of Autonomous Vehicles on Lane-Free Roads, Automatica, 145.
110517. https://doi.org/10.1016/j.automatica.2022.110517

[7] Boyce, W. E., Diprima, R. C., (1997). Elementary Differential Equations and Boundary
Value Problems (6" ed.). Wiley.

[8] Gupta, G. K., Sacks-Davis, R., Tischer, P. E., (1985). A Review of Recent Developments
in Solving ODEs. ACM Computing Surveys, 17(1), 5-47. https://doi.org/10.1145/4078.4079

[9] Canale, R. P., Chapra, S. C., (2016). Numerical Methods for Engineers (7" ed.). MC
GRAW HILL

[10] Chapra, S. C., (2012). Applied Numerical Methods with MATLAB for Engineers and
Scientists (3 ed.). MC GRAW HILL

[11] LeVeque, R. J., (2007). Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-dependent Problems (1% ed.). Society for Industrial and Applied
Mathematics.

[12] Hairer, E., Narsett, S., P., Wanner, G., (1987) . Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.

[13] Hairer, E., Lubich, C., Wanner, G., Berlin (2006). Numerical Integrators. Geometric
Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations.
Springer.

[14] Gaussian function., (2022,July 26). In Wikipedia. https://en.wikipedia.org/wiki/x
Gaussian_function

63

[15] Quarteroni, A., Sacco, R., & Saleri, F. (2007). Numerical Solution of Ordinary
Differential Equations. Numerical Mathematics, 37, 479-483. Springer.

[16] Stuart, A., M., Humphries, A., R., (1998). Numerical Methods for Initial Value
Problems. Dynamical Systems and Numerical Analysis, 212-217. Cambridge University
Press.

[17] Karafyllis, 1., Grine, L., (2011). Feedback Stabilization Methods for the Numerical
Solution of Ordinary Differential Equations. Discrete &Amp; Continuous Dynamical Systems
— B, 16(1), 283-317. http://dx.doi.org/10.3934/dcdsb.2011.16.283

[18] Faccio, D., Velten, A., Wetzstein, G., (2020). Non-line-of-sight Imaging. Nature
Reviews Physics, 2(6), 318-327. https://doi.org/10.1038/s42254-020-0174-8

[19] Shampine, L. F., Gear, C. W., (1979). A User’s View of Solving Stiff Ordinary
Differential Equations. SIAM Review, 21(1), 1-17. https://doi.org/10.1137/1021001

[20] Krogh, F. T., (1973). Algorithms for Changing the Step Size. SIAM Journal on
Numerical Analysis, 10(5), 949-965. https://doi.org/10.1137/0710081

[21] Cooper, G. J., (1971). Error Bounds for Numerical Solutions of Ordinary Differential
Equations. Numerische Mathematik, 18(2), 162—170. https://doi.org/10.1007/bf01436325

[22] Shampine, L. F., & Baca, L. S., (1984). Error Estimators for Stiff Differential Equations.
Journal of Computational and Applied Mathematics, 11(2), 197-207.
https://doi.org/10.1016/0377-0427(84)90020-7

[23] Shampine, L. F., & Watts, H. A., (1976). Global Error Estimates for Ordinary
Differential Equations. ACM Transactions on Mathematical Software, 2(2), 172-186.
https://doi.org/10.1145/355681.355687

[24] Shampine, L., (1986). Global Error Estimation with One-step Methods. Computers &
Mathematics with Applications, 12(7), 885-894. https://doi.org/10.1016/0898-
1221(86)90032-5

[25] Fehlberg, E., (1969). Low-Order Classical Runge-Kutta Formulas with Stepsize Control
and their Application to some Heat Transfer Problems. Washington: National Aeronautics
and Space Administration.

[26] Fehlberg, E., (1964). New High-Order Runge-Kutta Formulas with Step Size Control for
Systems of First-and Second-Order Differential Equations. ZAMM - Journal of Applied
Mathematics and Mechanics / Zeitschrift Fir Angewandte Mathematik Und Mechanik,
44(S1). https://doi.org/10.1002/zamm.19640441310

[27] Karafyllis, 1., Theodosis, D., Papageorgiou, M., (2022). Analysis and Control of a Non-local

PDE Traffic Flow Model. International Journal of Control, 95(3), pp. 660-678.
https://doi.org/10.1080/00207179.2020.1808902

64

[28] Chavoshi, K., Kouvelas, A., Cooperative Distributed Control for Lane-less and
Direction-less Movement of Autonomous Vehicles on Highway Networks. (2020) - 9th
Symposium of the European Association for Research in Transportation, 2021.

[29] Diakaki, C., Papageorgiou, M., Papamichail, I., Nikolos, I., (2015). Overview and
Analysis of Vehicle Automation and Communication Systems from a Motorway Traffic
Management Perspective. Transportation Research Part A: Policy and Practice, 75, 147-165.
https://doi.org/10.1016/j.tra.2015.03.015

[30] Karafyllis, I., Theodosis, D., Papageorgiou, M., (2020). Nonlinear Adaptive Cruise
Control of Vehicular Platoons. International Journal of Control, 1-23.
https://doi.org/10.1080/00207179.2021.1982015

[31] Malekzadeh, M., Papamichail, 1., Papageorgiou M., Bogenberger, K., (2021). Optimal
Internal Boundary Control of Lane-Free Automated Vehicle Traffic. Transportation
Research Part C: Emerging Technologies, 126, 103060.
https://doi.org/10.1016/j.trc.2021.103060

[32] Polack, P., Altché, F., d'’Andréa-Novel B., de La Fortelle, A., (2017). The Kinematic
Bicycle Model: A Consistent Model for Planning Feasible Trajectories for Autonomous
Vehicles?. IEEE Intelligent Vehicles Symposium (1v), 812-818.
https://doi.org/10.1109/1VS.2017.7995816

65

Appendix A

Pseudocode

WHILE ¢, < end
FORi «<1toN
FORj «<1toN
IFi#j
CALCULATE dis; ;, distance between pairs of vehicles
CALCULATE V; ;. differential of the repulsive potential function v

(x

Bi-v5)
di']'

CALCULATE Xjxi Va,,~—

i_jj), 2j=i Va, ;
ENDIF
ENDFOR
CALCULATE k,F,u
CALCULATE vk, Ok, ykq, xky
CALCULATE xEuler,yEuler, 0Euler, vEuler
ENDFOR
FORi «<1toN
FORj «<1toN
IFi #j

CALCULATE dis; j, distance between pairs of vehicles using xEuler, yEuler

CALCULATE V; ;, differential of the repulsive potential function v

CALCULATE 3.V, (";‘:"), Yjei Vay, (yd;jy’)
ENDIF
ENDFOR
CALCULATE k,F,u, using Euler positions
CALCULATE vk,, 0k,, vk,, xk,
CALCULATE X741 Vz+1 0241 Va1

CALCULATE SCy;» SCy;) SCy,;, SC;

CALCULATE ERR;

IF X241 Vz+1 0241, Va1 € Q

SET check =1

IF i=N
CALCULATE error = norm2(ERR)
IF error < tolerance AND check = 0
SET z «z+1

SET t, «t,_1 + hZ—l

SET h, < h,_,min (facmax, max (facmin,fac Li—r>)

ELSEIF error > tolerance AND check =0

SET h, < h,min <facmax,max <facmin,fac ’i))

ELSEIF check =1
SET h, « =
ENDIF
ENDIF

ENDFOR

ENDWHILE

67

Appendix B

100 vehicles

Set number 2

Vehicle Number theta velocity lateral position | longitudinal position
1 0.009461077 28.46176834 2.795677104 13.95922391
2 0.022274153 32.33249443 0.469007119 21.72867077
3 -0.012827588 | 33.25486511 2.93900201 34.0442609
4 0.037624081 31.93664185 -0.810419402 34.16065904
5 -0.030685303 | 30.22478331 3.24022497 52.54079626
6 -0.012732311 | 32.86988625 -3.118374889 80.00985026
7 0.0045815 31.3066935 -0.113838372 85.52954368
8 0.038564669 32.68250288 3.698141376 87.14234151
9 0.015381691 31.54133294 -3.405901769 90.49241862

10 -0.024057444 | 28.56636128 2.384259538 102.4482315
11 0.013315795 27.1039155 3.999768156 128.1741163
12 0.015476985 30.30929262 -3.806895361 131.5693419
13 -0.036976015 | 30.53043449 3.142231273 143.1164595
14 -0.03358671 28.04521125 -5.025722004 147.5613519
15 0.000337534 31.21774011 -2.354352534 153.7180209
16 0.008939166 28.3489499 -1.651810968 162.9136272
17 -0.036682388 | 26.47050382 -3.544150308 170.3733734
18 0.010498578 28.52814063 0.247345904 175.7385916
19 -0.018129894 | 32.89376503 -1.195201635 191.1193512
20 -0.039574151 | 29.30102086 0.173286552 200.6381921
21 -0.005595038 | 27.54790138 4.446096428 201.5595497
22 -0.028703245 | 30.46769479 -4.982232146 211.0344743
23 -0.024774765 31.7394609 1.779003384 216.1981843
24 0.015012413 29.04751892 4.632856817 222.1671252
25 0.013612233 34.97679709 -3.394231488 223.1598483
26 0.003426608 33.95185435 -3.345326507 240.1409189
27 -0.000757752 | 34.50953834 1.317700778 244.8656982
28 -0.041221013 | 34.56250569 -1.262033316 252.0324418
29 0.032771144 26.20804273 -1.911199701 277.3921721
30 -0.015325108 | 30.16033988 3.229888802 278.1915658
31 0.012775861 32.37895549 3.182722905 331.4793018
32 0.026598344 33.94214697 0.637952314 358.6830622
33 0.036172517 27.14864803 4.440040607 362.7295813
34 0.025893456 28.9951006 0.411519326 371.5525273

68

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

-0.010455588
0.026505822

-0.039547586

-0.025333

0.015569399

0.010340538
0.031108043
-0.003695277
0.034512677

-0.031460643
-0.02537503

0.033253046
-0.014815582
-0.025891872
-0.019800393
0.003551556
-0.036594849
0.016927012

0.011929654
0.014302297

0.008875057

-0.011141705
0.002830257
-0.016155452
-0.026749175
0.030840708
-0.004125354
0.005146043
0.016201032
0.024664775

0.02570284

0.037252594
0.017229072
0.019238659
-0.026215641
0.033152759
-0.002627178
0.034963998
0.003545107
-0.030110829
0.031564554
0.021231727

28.56656054
28.05802393
30.99978352
30.22836438
28.38106041
34.41965507
34.71996363
27.94150924
27.45733356
30.10480597
28.29339164
28.39339712
3491717151
31.03163141
33.63026149
28.93342377
28.11848866
32.53857002
27.23939207
31.30122553
32.16820464
34.46574392
33.11849695
27.31605581
32.82928988
29.66690079
29.25953269
34.09418776
30.11609372
27.50208778
29.10010234
26.45355505
26.84227613
27.47312731
31.68635192
32.68985521
33.01299337
30.68727506
26.2017949
31.39544601
29.04350005
33.05945149

-4.093874644
2.209049634
3.787452843
4.647419916
0.042079677
-3.863862894
-1.11747964
2.045283169
2.633016506
-3.686900399
3.873198531
-0.848912111
-1.072374817
-2.399110921
0.682216374
-0.456957341
5.019482487
0.702893406
0.48650985
-3.902969666
0.198793106
-2.651047145
2.369254421
-1.57600981
3.469896873
-1.502507104
4.736085731
0.477316119
0.966775102
-4.639215742
-3.489477725
-0.02124958
2.609282177
-0.236263475
-5.078142099
-1.071410071
-0.57672703
-4.008978406
1.764612951
1.496887757
2.900200018
-3.741407197

383.9117973
391.8493022
402.1479023
419.7258383
4245242137
429.7852466
439.0774938
450.1946863
477.0930911
483.1783448
492.8979593
498.7759953
512.7203695
541.6150526
560.46278
568.6998117
583.9593143
585.6881804
596.5249496
598.8613993
609.2554358
620.773699
625.8216007
634.6558945
641.2763575
648.8679973
699.921544
717.0151038
733.3479135
743.6906706
752.5073116
769.6165794
779.2375771
786.4103211
798.134031
807.8979338
819.849151
832.9818901
834.7894176
843.6605763
866.6531158
869.9684439

69

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

0.023188157
-0.022284793
-0.031201653
0.02471655
0.033258962
-0.012583091
0.003260734
-0.008431012
-0.034512555
0.025043853
-0.021593713
-0.003263875
-0.018415623
-0.034303634
0.007374042
-0.042440486
-0.022533052
0.042341403
0.021214642
-0.035266378
-0.036982204
0.02517868
-0.042525563
-0.024458062

34.06285315
29.83315816
34.98330517
33.4769165
31.65957455
33.0901342
34.84547124
27.61389857
29.89965471
29.74180486
34.67527572
26.96795525
33.30135963
30.13573462
31.63056248
33.08475736
34.32231695
34.35002449
34.91061153
34.28305102
29.88015236
32.99903782
29.77300977
31.97467448

4.287692921
-2.177158872
-1.168379112
-0.599870909
0.731629081
-3.354346104
-2.36137265
2.833205277
-2.613563845
-0.085630639
3.148651564
-1.723239876
-3.990598215
0.318075104
-4.946444149
-2.064677993
0.480410417
5.044380789
-0.031039369
-1.399007778
-5.097711134
0.116810275
3.279982584
-2.813049741

875.6433911
884.5514494
894.200159
907.7140815
918.5311996
954.4991991
963.2559502
969.411005
971.8354058
986.916977
999.4958746
1016.304934
1027.437369
1037.118239
1043.86597
1053.545217
1060.95216
1070.330696
1080.77797
1096.595876
1103.095748
1106.610037
1113.377716
1118.725897

70

