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ABSTRACT
We study the properties of nonlinear Bloch waves in a diamond chain waveguide lattice in the presence of a synthetic magnetic flux. In the
linear limit, the lattice exhibits a completely flat (wavevector k-independent) band structure, resulting in perfect wave localization, known
as Aharonov–Bohm caging. We find that in the presence of nonlinearity, the Bloch waves become sensitive to k, exhibiting bifurcations and
instabilities. Performing numerical beam propagation simulations using the tight-binding model, we show how the instabilities can result
in either the spontaneous or controlled formation of localized modes, which are immobile and remain pinned in place due to the synthetic
magnetic flux.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037767., s

I. INTRODUCTION

Nonlinear waves are general solutions of nonlinear partial
differential equations such as the Korteweg–de Vries, cubic non-
linear Schrödinger, sine-Gordon, or Boussinesq equations,1 which
describe wave processes in diverse fields ranging from nonlinear
optics, hydrodynamics, and plasma to biological systems; the theory
of general relativity; and the topological theory of knots. Nonlinear
wave systems can exhibit singularities, coherent structures, solitary
waves, and instabilities. The latter is responsible for the phenomena
of wave breaking in hydrodynamics,2 filamentation of laser beams in
nonlinear media,3 wave collapse,4 Langmuir waves in plasma,5 and
ocean turbulence.6

Studies of nonlinear wave dynamics in periodic lattice sys-
tems date from the investigations of Fermi, Pasta, Ulam, and Tsin-
gou,7,8 who posed a question regarding energy relaxation in a

one-dimensional string of nonlinearly interacting particles. More
recently, the study of nonlinearities in periodic photonic struc-
tures attracts broad interest, offering new routes to manipulate light
propagation.8–11 Apart from supporting lattice solitons, nonlineari-
ties in lattices can induce coupling between different Bloch modes
and bands, giving rise to fundamental phenomena such as mod-
ulation instability12,13 and spontaneous pattern formation within
and/or between different bands.14 In short, nonlinear wave dynam-
ics properties can be manipulated by engineering the photonic band
structure and vice versa.

Nowadays, a new front for nonlinear wave dynamics in lat-
tices has been opened by recent advances in creating artificial
gauge fields for light, which can be used to manipulate photonic
band structures to control their dispersion and topological prop-
erties,15–18 leading to many opportunities for both fundamental
studies and device applications, such as the creation of edge states
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protected against backscattering. The number of studies of non-
linear effects in the presence of artificial gauge fields is growing
rapidly,19–23 but a general understanding of how nonlinear phenom-
ena differ from those in conventional systems is still far from being
complete.

The aim of this study is to shed further light on the effect
of artificial gauge fields on nonlinear wave dynamics in photonic
lattices, focusing on the diamond chain lattice. Application of syn-
thetic gauge flux to the diamond chain can give rise to a peculiar
band structure where all three of its Bloch bands are completely flat
(independent of the wavevector k), known as an Aharonov–Bohm
cage.24,25 The fully flat spectrum results in perfect (compact) local-
ization of arbitrary localized excitations of the lattice, which has
been observed using fs laser-written waveguide (WG) arrays.26–28

Recent theoretical studies indicate that this Aharonov–Bohm caging
can persist for localized excitations in the presence of nonlinear
interactions.29–31

In this article, we study the effect of nonlinearity on delo-
calized nonlinear Bloch wave excitations of the Aharonov–Bohm
cage lattice, comparing against the properties of the flux-free dia-
mond chain lattice. We find that nonlinearity generically lifts the
degeneracy of the flat band Bloch waves, resulting in nonlinear
Bloch wave solutions, which are dispersive and have k-dependent
stability properties. At low intensities, two of the bands are lin-
early stable for small wavenumbers (in the vicinity of k = 0),
while at larger wavenumbers, all bands exhibit instabilities, strongest
at k = π/2, which result in the spontaneous formation of local-
ized modes. To complement the linear stability analysis, we carry
out numerical simulations of light propagation under the tight-
binding approximation. We show how the combination of the
synthetic gauge flux and nonlinearity offers the ability to shape
the optical field profile using controlled perturbations, enabling
the generation of localized nonlinear modes from the nonlinear
Bloch waves.

The outline of this article is as follows: Sec. II introduces the
tight-binding model for the nonlinear diamond chain in the pres-
ence of a synthetic gauge flux, computing its nonlinear Bloch modes
and their linear stability. In Sec. III, we validate the linear stability
analysis against direct numerical propagation simulations of per-
turbed nonlinear Bloch waves. Section IV shows how the application
of a controlled perturbation to unstable nonlinear Bloch waves can
be used to create localized nonlinear modes in a controlled way.
Section V concludes this paper.

II. MODEL AND NONLINEAR BLOCH MODES
We consider light propagation in the magnetic flux-dressed

diamond chain with Kerr nonlinearity under the tight-binding
(nearest neighbor coupling) approximation, illustrated schemati-
cally in Fig. 1(a), described by the discrete nonlinear Schrödinger
equation29,30

i
dan
dz
= −e−iϕ/2bn − bn−1 + g∣an∣2an,

i
dbn
dz
= −eiϕ/2an − e−iϕ/2cn − cn+1 − an+1 + g∣bn∣2bn,

i
dcn
dz
= −eiϕ/2bn − bn−1 + g∣cn∣2cn,

(1)

where z is the propagation coordinate (in units of the inter-
waveguide coupling strength). We write the wave field as a three
component vector with complex amplitudes ψn = (an bn cn)T , g
is the Kerr nonlinearity strength, and ϕ is the artificial magnetic
flux, which can be introduced to fs laser-written waveguide arrays by
bending the waveguides, introducing auxiliary waveguides, or using
higher order waveguide modes carrying orbital angular momen-
tum.26–28 The model equations can be derived from the system

FIG. 1. (a) Scheme of the diamond chain lattice with synthetic magnetic flux ϕ. Green, red, and blue circles denote sublattices a, b, and c, respectively. The rectangle frame
(orange color) indicates the unit cell consisting of three sites. (b) The proposed experimental setup: the injected wave, Ψ, interferes with a weak light field ξ at the input of
the waveguide array (WG) and propagates along it. The far-field (FF) pattern can be analyzed at the exit of the WG to detect the formation of localized nonlinear modes.
(c) Linear band structure of the flux-free (ϕ = 0) lattice, with two dispersive bands and one flat band. (d) Linear band structure in the presence of flux ϕ = π, where all three
bands are flat forming an Aharonov–Bohm cage. [(e) and (f)] Nonlinear Bloch bands of the flux-free (e) and π flux (f) lattices with nonlinearity strengths g = 0.3 (gray) and g
= 1 (black).
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Hamiltonian H = HL + HNL, where

HL = −
N

∑
n=1
[(b∗nan + c∗nbn)e

iϕ/2 + b∗n−1cn + a∗nbn−1] + c.c.,

HNL =
g
2

N

∑
n=1
(∣an∣4 + ∣bn∣4 + ∣cn∣4)

(2)

are the linear and nonlinear energies, respectively, and N is the
total number of unit cells in the lattice, and we assume periodic
boundary conditions. H is conserved, along with the total norm
N = ∑

N
n=1(∣an∣

2 + ∣bn∣2 + ∣cn∣2) = 1. We fix N without loss of
generality as changes in N are equivalent to rescaling g.

In the following, we consider parameter values representative
of experiments in fs laser-written waveguide arrays,22,26–28,32 where
the typical inter-waveguide coupling strength is κ = 0.85 cm−1 and
propagation lengths up to L = 10 cm are feasible,27 corresponding to
a normalized total propagation length of κL = 8.5. For waveguides
inscribed in fused silica glass, the effective nonlinear coefficient is
γ = 1.7 cm−1 MW−1, and probe beam powers up to P = 4 MW
are accessible.32 Consequently, the normalized nonlinear coefficient
g = Pγ/κ can go up to 8. Note that in this study, we are mainly
focused on the weakly nonlinear regime g < 1, which gives the free-
dom to potentially increase the coupling strength to observe longer
dimensionless propagation lengths.

To obtain the Bloch band structure of Eq. (1), we transform to
Fourier space and seek stationary solutions of the form ψn(z) = (a0,
b0, c0)ei(kn−λz), where k is the wavevector and λ is the propagation
constant along z. This yields the set of nonlinear algebraic equations

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣a0∣
2g −e−ik − e−iϕ/2 0

−eik − eiϕ/2 ∣b0∣
2g −eik − e−iϕ/2

0 −e−ik − eiϕ/2 ∣c∣2g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a0
b0
c0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= λ
⎡
⎢
⎢
⎢
⎢
⎢
⎣

a0
b0
c0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

To solve this system, we decompose the site amplitudes into their
intensities and phases,

a0 =
√
Iaeiθa(k,ϕ), c0 =

√
Iceiθc(k,ϕ), b0 =

√
1 − Ia − Ib, (4)

where the b site amplitude is fixed by our choice of normalization
N, and we have set its phase to zero. After straightforward algebraic
calculations, we find the expressions for the phases θa = −(ϕ/2 + k)/2
± π/2, θc = (ϕ/2 − k)/2 ∓ π/2. Substituting these solutions back into
Eq. (3), we obtain a set of coupled real polynomial equations that
can be solved numerically to obtain the eigenvalues (propagation
constants) λ = λ(k, ϕ, g).

The Bloch wave spectrum in the linear limit g = 0 is shown
in Figs. 1(c) and 1(d). When ϕ ≠ π, the spectrum consists of one
flat band at λ = 0 and two k-dependent dispersive bands. Owing to
the degeneracy of the flat band, one can construct compact local-
ized eigenmodes as a superposition of its Bloch waves.29,30 When ϕ
= π, which corresponds to the Aharonov–Bohm caging, the other
two bands also become flat, corresponding to a k-independent spec-
trum λ = 0, ±2. In this limit, any excitation of the system can be
decomposed in terms of compact localized modes, and therefore, it
remains compactly localized for all z.

Next, we consider the properties of the weakly nonlinear Bloch
modes in Figs. 1(e) and 1(f). In the flux-free case, ϕ = 0, the nonlinear
bands keep the form of their linear counterparts, being only shifted
upward in the presence of weak g > 0 with respect to the linear bands.
Thus, the middle band remains flat and touches the dispersive bands
at the BZ boundaries. On the other hand, when ϕ = π, the presence of
nonlinearity immediately makes all the Bloch bands dispersive, with
the central band more strongly affected than the outer bands. Thus,
nonlinearity lifts the degeneracy of the flat bands of the Aharonov–
Bohm cage.

Figure 2 illustrates the modal properties as a function of the
nonlinearity strength g. At small g, the deviation of the magnitude
of the corresponding nonlinear eigenvalues from the linear ones is
proportional to the nonlinearity strength. At stronger g, we observe
the formation of new mode branches due to nonlinear bifurcations.
New branches bifurcate from the upper band for strong g > 1 in the
flux-free lattice and from all bands in the π flux lattice. The upper
band bifurcation occurs at g = 4 at the neighborhood of k = 0 and
moves toward smaller values of g as k increases. In general, bifurca-
tions occur for smaller values of g in the π flux lattice, compared to
the flux-free lattice.

FIG. 2. Eigenvalues λ vs g for k = 0, k
= π/4, and k = π/2. The flux value on
plots in the first (second) row is ϕ = 0 (ϕ
= π). The number of solutions changes
at critical values of g-bifurcation points.
The color bar denotes the values of the
instability growth rate, i.e., the maximum
imaginary part of the linear perturbation
eigenvalues λp.
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We investigate the mode stability by applying the standard lin-
ear stability analysis,30 which characterizes the evolution of small
perturbations with wavevector p to the nonlinear Bloch waves. The
imaginary part of the perturbation mode eigenvalues λp determines
the growth rate of the corresponding perturbation; any positive
Im(λp) implies that the nonlinear Bloch wave is unstable. Further
details are provided in the Appendix.

The growth rate of the most unstable perturbation mode is plot-
ted in Fig. 2. The lower band in the flux-free lattice is stable, while
the other bands are unstable, with instability growth rates insensitive
to k in the region of weak nonlinearity. On the other hand, in the π
flux lattice, the mode stability becomes strongly k-dependent. The
two outer bands are stable in the vicinity of k = 0, while the middle
band is unstable throughout the Brillouin zone. The bifurcations of
the outer bands give rise to new stable modes. They also appear as
loops around |k| = π in Fig. 1(e).

In summary, we have found that the nonlinear Bloch waves in
the π flux lattice are sensitive to both k and g, exhibiting k-dependent
linear stability properties and nonlinear bifurcations. Thus, non-
linearity lifts the degeneracy of the Bloch wave spectrum in the
Aharonov–Bohm cage lattice.

III. DYNAMICS OF NONLINEAR BLOCH WAVES
To validate the stability properties discussed in Sec. II, we now

consider the propagation dynamics of the nonlinear Bloch waves.
We solve the discrete nonlinear Schrödinger equation (1) numeri-
cally. We use the fourth order Runge–Kutta method, with perturbed
nonlinear Bloch waves of the form Ψn + δψn as the initial state at
z = 0. Here, δψn = ξn exp(i θn), with ξn and θn being random
amplitudes and phases, respectively.

To characterize the development of instabilities, we use the
inverse participation ratio, ⟨P⟩, averaged with respect to differ-
ent realizations of the initial random perturbation field and inte-
grated over z, which is a standard measure for characterizing the
localization of a wave field,

⟨P⟩ = ⟨
N
ℓ/2 ∫

ℓ

ℓ/2
dz ∑

N
n=1 ∣ψn(z)∣4

(∑
N
n=1 ∣ψn(z)∣2)

2 ⟩, (5)

where ℓ is the propagation length and ⟨..⟩ denotes the ensemble aver-
aging, and |ψn|2 = |an|2 + |bn|2 + |cn|2. The minimum value of ⟨P⟩
(≈1) is attained for beams with a spatially uniform intensity. Over the
course of the instability development, the fragmentation of the non-
linear Bloch wave will result in an increase in P. Thus, ⟨P⟩ provides
an independent estimate of the strength of the instabilities.

In Fig. 3, we compare the maximal perturbation growth rate
obtained from the linear stability analysis with the time-averaged
participation number for the three bands. In general, the dynam-
ical calculations confirm the results of the linear stability analysis.
The eigenvalues and instability growth rates are symmetric about
k = π/2. We observe stable propagation of nonlinear waves from
the outer bands of the π-flux diamond chain lattice at (and in
the neighborhood of) the Brillouin zone center k = 0 and bound-
ary k = π. Moreover, in the presence of weak nonlinearity, the
small perturbation growth rates result in the persistence of the

FIG. 3. The maximum instability growth rate [(a), (c), and (e)] and z-averaged
inverse participation ratio [(b), (d), and (f)] as functions of nonlinearity strength
g and the wavenumber k of the nonlinear Bloch waves from band 1 [(a) and
(b)], 2 [(c) and (d)], and 3 [(e) and (f)]. P is averaged with respect to 100 differ-
ent realizations of the initial random perturbation field. The propagation length is
z = 10π, and the total number of lattice cells is N = 40.

nonlinear Bloch waves over the short propagation distances acces-
sible in experiments, characterized by ⟨P⟩ ≈ 1. As k → π/2, the
perturbation growth rate increases for all three bands, and ⟨P⟩
attains its maximal value. Figures 4(a), 4(c), and 4(e) quantify this
k-dependence of ⟨P⟩ for different nonlinearity strengths.

In Figs. 4(b), 4(d), and 4(f), the dynamics of the weakly unsta-
ble nonlinear modes for the three different bands in the π flux lat-
tice with g = 0.3 are illustrated. We observe that the final stage of
the dynamics exhibits self-trapping, with the formation of localized
intensity peaks, with random positions dictated by the initial pertur-
bation. The localization is reflected in the integral participation ratio
profile [Figs. 4(a), 4(c), and 4(e)] averaged over different initial ran-
dom perturbation field realizations. Interestingly, the intensity max-
ima are not independent of z but exhibit persistent periodic oscilla-
tions. This is in contrast to regular (non-flat band) nonlinear lattices,
which typically exhibit stationary solitons under the modulational
instability.

Upon closer inspection, we find that the localized breathing
structures have a transverse (n) periodicity of four lattice cells, with
z-periodicity proportional to the energy difference between the flat
bands. Thus, the peculiarity of the nonlinear Bloch wave propaga-
tion in the π flux weakly nonlinear diamond chain lattice is its ability
to spontaneously form localized periodic breathers. The b “hub”
sites play a pivotal role in the formation of these breathers due to
their ability to block wave spreading even in the presence of local
nonlinearities.29,30 Thus, after the development of the instability, the
resulting localized peaks remain confined (caged) between two a or
c sites. In the flux-free lattice ϕ = 0, we do not observe the formation
of periodic breathers.
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FIG. 4. ⟨P⟩ vs k for three nonlinear bands in the π flux lattice and g = 0.3,
0.6, 1 is presented in (a), (c), and (e), respectively. [(b), (d), and (e)] Exam-
ples of the perturbed nonlinear Bloch waves’ dynamics for g = 0.3: (b) (a, b, c)
= (−i/

√

2, 1/
√

2, 0), k = π/2 (upper band), (d) (0, 0, 1), k = π/2 (middle band),
and (f) (i/

√

2, 1/
√

2, 0), k = π/2 (lower band).

IV. CONTROLLED GENERATION OF LOCALIZED
NONLINEAR MODES

The results of Sec. III indicate the ability of the Aharonov–
Bohm cage to trap the random localized breathers generated by the
instability. Here, we perform a numerical experiment demonstrating
the possibility to seed the modulational instability in order to gener-
ate breathers in a controlled way by perturbing the initial nonlinear
Bloch wave. This provides a mechanism to create a structured light
beam from a uniform intensity Bloch wave using nonlinearity.

We inject the nonlinear wave corresponding to the mode from
the lowest band in the lattice with N = 40, g = 0.3, which is charac-
terized by the amplitude Ψn = (−1/

√
2, 1/
√

2, 0). As in Sec. III, we
include a small random perturbation to account for imperfections
of the input laser beam, which are inevitably present in experiment.
In addition, we kick the input nonlinear Bloch wave by a weak spa-
tially localized wavepacket with k = 0 [ξ in Fig. 1(b)], δξn = (ξa ,n, ξb ,n,
ξc ,n)exp(i η), where ξj ,n are randomly distributed amplitudes and η is
a fixed phase. Such a kick can be generated by injecting the perturb-
ing beam at normal incidence (k = 0) into the lattice after passing it
through an amplitude mask. The spatial region in which the kick is
applied is indicated by arrows in Figs. 5(a) and 5(b).

Without the initial kick, an irregular pattern of light spots was
formed during the propagation, as shown in Fig. 4(d). By turning on
the kick, an intensity modulation with a period of four lattice cells
is provided to seed the instability, which grows rapidly and gen-
erates a regular array of intensity peaks, while the intensity in the
un-kicked region remains much weaker, as illustrated in Fig. 5(a).

FIG. 5. Effect of the synthetic magnetic flux on the kicked nonlinear Bloch wave
dynamics, where a constant perturbation is between the arrows. (a) Aharonov–
Bohm cage lattice, g = 0.3, ϕ = π, a = −1/

√

2, b = 1/
√

2, c = 0, k = π/2.
(b) Flux-free lattice, g = 0.3, ϕ = 0, a = 1/2 − i/2, b = 0, c = −a, k = π/2. (c)
Spatial correlation function C20,n for the wave fields shown in (a) and (b), and
Fig. 4 at the lattice output facet, z = 30. (d) Field intensity distribution at z = 30 in
panel (a), exhibiting periodical intensity maxima within the perturbed region. (e)
Average intensity of cells at z = 30 for the same parameters as (a) (ϕ = π) and (b)
(ϕ = 0). Shaded areas indicate the standard deviation obtained from the ensemble
of random initial perturbations.

We repeat the simulations for the lattice in the absence of the syn-
thetic magnetic flux in Fig. 5(b). Here, instead of the formation
of a periodic wave train, the envelope spreads beyond the initially
perturbed region, and small irregular oscillations persist across the
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entire lattice. This indicates the decisive role of the synthetic mag-
netic flux and Aharonov–Bohm caging in driving the structured
light formation.

To further characterize the wave localization following the
development of the instability, we consider the spatial coherence of
the final state characterized by the spatial correlation function

Cn,m(z) = ⟨
⟨ψn(z)∣ψm(z)⟩
√
InIm

⟩, m ≠ n = 1, . . . ,N, (6)

where ⟨..⟩ denotes averaging over different realizations of the initial
uniform random perturbations and |ψn⟩ is a three component vector
(Sec. II). |Cn ,m| = 1 indicates perfect coherence between the two cells,
with relative phase independent of the initial random perturbation,
while |Cn ,m| ≈ 0 indicates a random field profile sensitive to the initial
perturbation.

Figure 5(c) shows the spatial correlations between the mid-
dle unit cell (n = 20) and the other unit cells. In the case of the
π flux diamond chain without the initial kick, there is low coher-
ence between different unit cells, whose amplitudes are sensitive to
the local initial perturbations [blue line in Fig. 5(c)]. On the other
hand, when the kick is applied, strong spatial correlations persist
within the kicked region (red line), indicating the caging of the gen-
erated localized structures. In the flux-free case, the spatial corre-
lations remain high and do not decay with the separation between
the sites (orange line), indicating the preservation of long-range
order.

To confirm this interpretation, we compare the averages and
standard deviation (SD) of the final intensity obtained for an ensem-
ble of 1000 random initial perturbations for the flux and flux-free
cases in Fig. 5(e). In general, the flux-free case ϕ = 0 is characterized
by a lower SD than the ϕ = π flux case due to its slower develop-
ment of the modulation instability for the selected set of parameters.
However, in this case, the SD level is the same for both kicked and
non-kicked areas, while in the ϕ = π case, the values of SD are signif-
icantly reduced in the kicked region as compared to the non-kicked
one.

The peculiarity of the nonlinear train dynamics can be sum-
marized as follows: The light field is modulated by slight kick/tilt
at z = 0, which drives the restoration of the cage-shaped period-
icity. Thus, the hump states b preserve their pivotal role in lim-
iting the spreading of energy in the Aharonov–Bohm cage lattice,
resulting in a characteristic four-cell spatial periodicity, shown in
Fig. 5(d). This four-cell periodicity originates from the periodic-
ity of the initial field with wavenumber k = π. By changing the
phase of the kicking beam, the positions of the cage centers can
be shifted from one b site to the neighboring sites, preserving the
overall spatial periodicity. The center of each hump is therefore
in each fourth b site in the train, and the localized train pro-
file can be interpreted as the result of the interplay between the
linear light trapping (Aharonov–Bohm caging) and the nonlin-
ear localization (self-trapping). This opens interesting opportunities
for the experimental design of localized wave trains in waveguide
arrays.

One way to generate the requisite initial field profiles in exper-
iments is using a spatial light modulator (SLM),33,34 which enables
manipulation of both the amplitude and phase profile of the probe
beam. Alternatively, to achieve the required intensity modulation,

one could shift the initial position (z = 0) of the c-sublattice waveg-
uides slightly deeper into the glass sample such that the input probe
beam only couples strongly into the a and b sublattices. Then, the
relative phase between the a and b sublattices can be controlled via
the angle of the input beam or by adjusting the optical path length of
the a and b sublattices at the input facets.

The perturbation can be created either from the noise inevitably
present in experiments or by simultaneous injection of a second per-
turbation field δψn, as illustrated schematically in Fig. 1(b). After
propagation through the sample, the beam intensity profile may be
measured either in the near or far-field.

V. CONCLUSIONS
Managing the light propagation in periodic media by non-

linearity is one of the main issues in photonics. We have studied
the dynamics of nonlinear waves in the diamond chain waveguide
lattice in the presence of a synthetic magnetic flux and nonlin-
earity, which exhibits perfect wave localization (Aharonov–Bohm
caging) in the linear limit. We considered the persistence of the
lattice’s Bloch waves in the presence of nonlinearity. Applying
the linear stability analysis and direct numerical simulations of the
nonlinear Bloch wave propagation, we have shown how the dis-
persionless (k-independent propagation constant) Bloch waves in
the linear limit become strongly k-dependent in the presence of
nonlinearity; some ranges of wavenumbers exhibit stable propaga-
tion within certain ranges of the nonlinearity strength, while oth-
ers are always unstable. In the weakly nonlinear regime, we have
demonstrated the generation of transient nonlinear wave trains as
a result of the modulational instability and the way they can be
created in a controlled way by suitably perturbing the nonlinear
Bloch waves.

A promising experimental platform for observing the non-
linear Bloch wave dynamics studied here is offered by fs laser-
written waveguide arrays.26–28 The schemes for creating photonic
Aharonov–Bohm cages based on the dynamic modulation22 or aux-
iliary waveguides27 can be used in the nonlinear regime as long as
the nonlinear energy shifts remain small compared to the modula-
tion frequency or auxiliary waveguide detuning, which are typically
much stronger than the effective inter-site coupling strength. On the
other hand, in the case of the orbital angular momentum mode-
based method of Ref. 28, our tight-binding model is not likely to
be applicable due to the occurrence of two degenerate copies of the
AB cage Hamiltonian, which will become coupled due to the Kerr
nonlinearity.

For our study, we considered a specific choice of the synthetic
gauge potential. While the linear and nonlinear eigenvalue spectra
are independent of the gauge choice (provided the gauge-invariant
flux remains the same), for a fixed initial perturbation, the details of
the modulation instability dynamics can be sensitive to the choice of
gauge, as has recently been theoretically considered in Ref. 35. Thus,
depending on the specific gauge realized in experiments, one may
need to adjust the form of the controlled perturbation in order to
create the nonlinear wave trains.
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APPENDIX: LINEAR STABILITY ANALYSIS
The initial development of the modulation instability can be

studied using the linear stability analysis,30 which can be used to cal-
culate the growth rate of small perturbations to a nonlinear mode. It
starts by considering the evolution of a small perturbation added to
a stationary state,

ψn(z) = (Ψn + δψn(z))e−iλz , (A1)

where Ψn = (an bn cn)T is the stationary mode profile with propaga-
tion constant λ and δψn(z) = [δan δbn δcn]T is a weak perturbation.

By substituting Eq. (A1) into the model equations [Eq. (1)] and lin-
earizing the nonlinear terms for g|δψn|2

≪ 1, a set of linear ordinary
differential equations for the perturbations can be obtained,

i
dδψn

dz
= (−λ +

∂HL

∂Ψ∗n
+ 2g∣Ψn∣

2
)δψn + gΨ2

nδψ
∗

n , (A2)

where HL was given by Eq. (2). The solution to this equation can be
decomposed into perturbation modes of the form

δψn(z) = νn(p) ei(pn−λpz) + η∗n(p) e
−i(pn−λ∗p z), (A3)

where νn, ηn are three component vectors, p is the wavevector of the
small perturbations, and λp are the complex eigenvalues indicating
the stability properties of small perturbations. Collecting terms with
the same time dependence and taking the complex conjugate of one
set of terms, we obtain the linear stability eigenvalue problem λpδψ
= M̃δψ, where

δψ = (νa(p − k), νb(p − k), νc(p − k),ηa(p + k),

×ηb(p + k),ηc(p + k))T ,

while the eigenvalue matrix M̃ can be explicitly written as

M̃ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2g∣a0∣
2
− λ −e−iϕ − e−ip 0 ga2

0 0 0
−eiϕ − eip 2g∣b0∣

2
− λ −e−iϕ − eip 0 gb2

0 0
0 −eiϕ − e−ip 2g∣c0∣

2
− λ 0 0 gc2

0
−ga∗2

0 0 0 −2g∣a0∣
2 + λ eiϕ + eip 0

0 −gb∗2
0 0 e−iϕ + e−ip −2g∣b0∣

2 + λ eiϕ + e−ip

0 0 −gc∗2
0 0 e−iϕ + eip −2g∣c0∣

2 + λ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A4)

and the other parameters were defined in the main text in Sec. II.
The imaginary part of λp is proportional to the instability growth
rate of the perturbation. The pure imaginary λp denotes the expo-
nential instability, while the complex λp with nonzero imaginary part
denotes the oscillatory instability.
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30G. Gligorić, P. P. Beličev, D. Leykam, and A. Maluckov, “Nonlinear symmetry
breaking of Aharonov-Bohm cages,” Phys. Rev. A 99, 013826 (2019).
31C. Danieli, A. Andreanov, T. Mithun, and S. Flach, “Nonlinear caging in all-
bands-flat lattices,” arXiv:2004.11871 [cond-mat.quant-gas] (2020).
32M. Heinrich, R. Keil, F. Dreisow, A. Tünnermann, A. Szameit, and S. Nolte,
“Nonlinear discrete optics in femtosecond laser-written photonic lattices,” Appl.
Phys. B 104, 469–480 (2011).
33P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Dynamically reconfigurable optical
lattices,” Opt. Express 13, 1384 (2005).
34P. S. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light: Sci.
Appl. 8, 110 (2019).
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