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Περίληψη 
 

Η κυκλοφοριακή συμφόρηση αποτελεί ένα ολοένα και σοβαρότερο κοινωνικό πρόβλημα που 

συμβάλλει σε υπερβολικές καθυστερήσεις, σημαντική περιβαλλοντική ρύπανση και μειωμένη 

ασφάλεια της κυκλοφορίας. Η εισαγωγή αυτοματοποιημένων και διασυνδεδεμένων οχημάτων θα 

μπορούσε να αποτελέσει αποτελεσματική λύση για την αντιμετώπιση του προβλήματος αυτού, 

δεδομένου ότι μπορούν να ενθαρρυνθούν ώστε να λαμβάνουν καταλληλότερες αποφάσεις με 

βάση τις πληροφορίες που λαμβάνουν από την υποδομή, τα άλλα οχήματα και τους αισθητήρες 

τους.  

Ο σχεδιασμός της διαδρομής που οφείλουν να ακολουθούν τα οχήματα σε μεγάλους, πολύπλοκους 

κυκλικούς κόμβους χωρίς λωρίδες κυκλοφορίας αποτελεί πρόκληση λόγω των γεωμετρικών 

χαρακτηριστικών τους και των συχνών συγκρούσεων μεταξύ των εισερχόμενων, πλοηγούμενων 

αλλά και εξερχόμενων οχημάτων. Μια θεμελιώδης δυσκολία είναι ο ορθός προσδιορισμός των 

επιθυμητών προσανατολισμών των οχημάτων στον κυκλικό κόμβο, έτσι ώστε τα οχήματα να 

εισέρχονται στον κυκλικό κόμβο και να κινούνται προς τις αντίστοιχες εξόδους τους ομαλά και 

με ασφάλεια. Ο καθορισμός των προσανατολισμών των οχημάτων θα πρέπει να λαμβάνει υπόψη 

την προκύπτουσα απόσταση διαδρομής, τη γωνιακή διαφορά από τα άλλα οχήματα και την 

εκμετάλλευση ολόκληρης της διαθέσιμης επιφάνειας του κυκλικού κόμβου για την 

αποτελεσματική ροή της κυκλοφορίας.  

Η παρούσα διπλωματική εργασία προτείνει μια προσέγγιση βέλτιστου ελέγχου για τον 

προσδιορισμό των βέλτιστων προσανατολισμών οχημάτων σε κάθε σημείο του κυκλικού κόμβου, 

με βάση τον εκάστοτε επιλεγμένο κλάδο εξόδου, ώστε να ελαχιστοποιείται ένα σταθμισμένο 

άθροισμα της απόστασης διαδρομής και της απόκλισης από την κυκλική κίνηση. Παρουσιάζονται 

αναλυτικές λύσεις για τις δύο ακραίες περιπτώσεις, που αφορούν ξεχωριστά τη συντομότερη 

διαδρομή και την ελάχιστη απόκλιση από την κυκλική γωνία, αντίστοιχα. Ενώ, για τη γενική λύση 

του σταθμισμένου αθροίσματος των ανωτέρω, χρησιμοποιείται ένας αλγόριθμος βασισμένος στον 

δυναμικό προγραμματισμό (αναδρομικός Dijkstra) για να προσδιοριστούν οι βέλτιστοι 

προσανατολισμοί σε ένα δισδιάστατο χώρο-διακριτό πλέγμα της επιφάνειας του κυκλικού 

κόμβου. Υπό το πρίσμα της βέλτιστης λύσης, προτείνεται επίσης μια υπολογιστικά ελαφριά 

σχεδόν βέλτιστη προσέγγιση. Ως μια σύνθετη περίπτωση μελέτης, οι μέθοδοι εφαρμόζονται στον 

διάσημο κυκλικό κόμβο Place Charles de Gaulle στο Παρίσι, ο οποίος διαθέτει πλάτος 38 m και 

περιλαμβάνει 12 αμφίδρομους ακτινικούς δρόμους, άρα συνολικά 144 ζεύγη προέλευσης-

προορισμού για τα οχήματα.  

  



 
 

 

Abstract 
 

Road traffic congestion is an increasingly grave social problem that contributes to excessive 

delays, substantial environmental pollution, and decreased traffic safety. The introduction of 

automated and connected vehicles could be an effective solution to tackle this problem since they 

can be promoted to make more appropriate decisions based on information received from the 

infrastructure, other vehicles, and their sensors.  

Path planning for vehicles on large, complex, lane-free roundabouts is challenging due to the 

geometrical features and frequent conflicts among entering, navigating, and exiting vehicles. A 

fundamental difficulty is to properly determine the desired vehicle orientations on the roundabout 

so that vehicles enter the roundabout and move towards their corresponding exits smoothly and 

safely. The specification of vehicle orientations should consider the resulting trip distance, the 

angle difference from other vehicles, and the exploitation of the available roundabout surface for 

efficient traffic flow.  

This diploma thesis proposes an optimal control approach to determine optimal vehicle 

orientations at each point on the roundabout, in dependence on the exit branch, to minimize a 

weighted summation of the trip distance and the deviation from the circular motion. Analytical 

solutions for two extreme cases, addressing only the shortest path or the minimum deviation from 

the circular angle, respectively, are derived. A Dynamic Programming-based (backward Dijkstra) 

algorithm is employed for the general weighted problem solution to deliver the optimal 

orientations in a 2-D space-discretized grid of the roundabout surface. In light of the optimal 

solution, a computationally light near-optimal approach is also proposed. As a challenging case 

study, the methods are applied to the famous roundabout of Place Charles de Gaulle in Paris, which 

features a road width of 38 m and comprises 12 bidirectional radial streets, hence a total of 144 

origin-destination movements for the vehicles.  
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1   Introduction 
 

In the last few decades, significant advancements in vehicle automation have been made and this 

might soon lead to full automation. To tackle traffic congestion and its consequences, like 

excessive delays, environmental pollution, and reduced traffic safety, traffic control of various 

kinds [1], [2] has been developed for decades. More recently, the development of a variety of 

Vehicle Automation and Communication Systems (VACS) that significantly improve vehicles’ 

individual capabilities, have been considered in a new generation of traffic management tools [3], 

[4]. This trend continues with the development of high-automation or virtually driverless vehicles 

that are tested in real traffic conditions, see e.g., [5]. Recent studies have emphasized the 

advantages of employing linked vehicles, which could constitute the new normal in the not-too-

far future. Soon, vehicles may communicate with each other and with the infrastructure; and drive 

automatically, based on their own sensors, communications, and appropriate movement control 

strategies. The majority of research involves the assumption that cars must conform to horizontal 

road lines that are designated by lanes. However, statistics show that switching lanes is a risky 

activity that causes a large portion of accidents nowadays.  

Recently, the TrafficFluid concept was proposed [6], which is a novel paradigm for vehicular 

traffic, applicable at high levels of vehicle automation and communication. The TrafficFluid 

concept is based on two combined principles: (a) Lane-free traffic, whereby vehicles are not bound 

to fixed traffic lanes, as in conventional traffic, but may drive anywhere on the 2-D surface of the 

road; and (b) Vehicle nudging, whereby vehicles communicate their presence to other vehicles in 

front of them (or are sensed by them), and this may influence the movement of vehicles in front. 

Over the last couple of years, a number of movement strategies for automated vehicles on lane-

free highways were developed, in accordance with the TrafficFluid paradigm, using different 

methodologies, such as: ad-hoc strategies [6], [7], optimal model predictive control [8], 

reinforcement learning [9], nonlinear feedback control [10]; and a generic simulation environment 

for lane-free traffic has also been developed [11]; see [12] for a brief review. Most of these 

strategies require availability of a desired vehicle orientation that determines the local vehicle 

movement direction if no collision-avoidance maneuver is required. 

Roundabout is a key element in urban traffic which improves traffic efficiency in light traffic 

conditions [13]; but may become a bottleneck point in higher demands. Hence, efficient operation 

of roundabouts, which is indeed considered challenging because of the geometric complexities, 

can enhance traffic in its surrounding area. Several works in the literature focus on controlling 

automated vehicles on roundabouts, most of which addressing simple infrastructures. Specifically, 

a noticeable number of works consider single-lane roundabouts using various control approaches. 
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Some research [14]-[16] suggests priority management approaches, whereby a suitable policy, like 

“First-Come-First-Served”, is utilized to assign the priorities to vehicles. If two vehicles have a 

conflict in the roundabout, the vehicle with a lower priority should stop or decrease its speed to let 

the higher-priority vehicle pass. Also, several presented methodologies [17]-[22] formulate the 

vehicles’ movements, either for complete navigation or only for the merging part, on roundabouts 

as an optimal model predictive control problem aiming to minimize different criteria, including 

travel time, fuel consumption, and distance from the destination. Furthermore, a hierarchical 

structure is proposed in [23], to determine the optimum roundabout inflow and guarantee vehicles’ 

safety.  

Other works propose control approaches for two-lane roundabouts. In [24], two fuzzy controllers, 

designed based on real data, drivers’ knowledge, and common reasoning, are employed to control 

steering angle and angular speed for a two-lane roundabout. Also, [25] - [27] combine optimal 

control and game theory to make decisions at the merging points or change lanes on the 

roundabout. An optimization embedded reinforcement learning method is suggested in [28] to 

make lane changing decisions at a four-lane roundabout.  

A lane-free roundabout was first addressed in [29], where a comprehensive control strategy for 

vehicles on the basis of the bicycle model for vehicle dynamics was presented. A nonlinear 

controller, which had been developed in [10] and guarantees several features for straight lane-free 

roads, including collision and boundary-violation avoidance, desired speed tracking, and 

convergence of acceleration and orientation to zero, was modified to appropriately control vehicles 

in the roundabout. Since the modified controller requires a desired vehicle orientation, a heuristic 

approach to determine desired orientations proposed in [29] to be fed to the nonlinear controller. 

The approach was applied to the overly complex roundabout of Place Charles de Gaulle (Paris), 

which, due to its high complexity, is anyhow a lane-free road infrastructure even for today’s 

conventional traffic.   

This thesis aims to present a more transparent, systematic, and potentially more efficient way to 

determine the desired orientation of vehicles moving on lane-free roundabouts, based on the 

current vehicle location and its destination. For this goal, an optimal control problem is formulated 

and solved that minimizes a weighted summation of two criteria: (a) the trip distance to the 

destination, and (b) deviation from the circular angle. Regarding (b), it should be noted that, if all 

vehicle orientations are close to the circular angle, then they will be close to each other, something 

that mitigates the strength of any required collision-avoidance maneuvers. The defined problem is 

solved analytically for two extreme cases, namely the shortest path and the minimum deviation 

from the circular angle, respectively. For intermediate cases, it is difficult to find the solution 

analytically. Therefore, a backward Dijkstra algorithm is suggested to determine the optimal 

orientation in a discretized grid of the roundabout surface. The resulted desired orientations can be 

stored as an offline database, such that the vehicles can extract their current desired orientation 

based on their position and exit, while moving on the roundabout. The methodologies are applied 

to a specific, overly complex case study, the roundabout of Place Charles de Gaulle.   
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This thesis is composed of 5 chapters. The formulation of the optimum control problem, analytical 

solution of two extreme cases, the shortest path problem and the minimum deviation problem, are 

presented in Chapter 2. In Chapter 3, a Dynamic Programming-based approach is presented to 

solve the general problem in a discretized grid covering the surface of the roundabout. In Chapter 

4, the case study is introduced and the results of applying the approaches are presented. Finally, 

conclusion remarks and future works are discussed in Chapter 5.   
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2 Optimal desired orientations 
 

In this chapter, a systematic approach for determining the desired orientation at any point within a 

circular roundabout - individually for each exit branch - is provided. The problem of specifying 

desired orientations for the vehicle advancement is formulated as an optimal control problem that 

minimizes a cost function consisting of two weighted terms: (a) the trip distance to the destination; 

and (b) the deviation from circular angle. By connecting the desired orientations, a complete path 

from any point in the roundabout to any exit may be obtained. 

It is important to highlight that the considered problem does not concern the actual vehicle’s 

movement, but merely the desired orientations to be provided to the vehicle in order to generate 

its movement strategy. In other words, the specified orientations would coincide with the actual 

vehicle path, only if there are no other vehicles around that might cause it to deviate from the 

desired path to avoid collisions. For the same reason, the addressed problem does not involve 

vehicle acceleration or speed, as it aims at merely specifying optimal orientations and resulting 

paths, whereon the vehicle may drive at acceleration and speed specified by its movement strategy. 

Therefore, this approach does not need a vehicle model to be explicitly considered. 

2.1 Optimal Control Problem  

The optimal control problem may first be presented in a continuous framework. The vehicle’s 

potential positions on the roundabout are represented by a radius r  and an angle   in polar 

coordinates, with the center of the roundabout being their origin. Since the ultimate goal is to 

determine the desired orientations without referring to the vehicle dynamics,   (rather than the 

time t ) is considered as the independent variable. Thus, the following state equation occurs: 

  :r dr d u= =      (2-1) 

where u  is the radius change rate, which may be considered as the control signal. For example, if 

0u = , then (2-1) states that the radius does not change, hence the vehicle orientation    equals the 

circular angle, i.e., it coincides with the tangent of the circle with the current radius r ; while the 

deviation s  from the circular angle is zero. More generally, the formula ( 2)s   = − +   is used 

where ( 2) +   is the circular angle. 
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Furthermore, it is important to observe how the orientations of the vehicles alter as they move to 

an adjacent radius from their circular angle and how that affects collusions. More specifically, 

abrupt radius changes and large deviations are more likely to result in conflicts between vehicles. 

In order to avoid that, the deviations from the circular angle need to be restricted. 

s s        (2-2) 

where s  is an upper limit for the deviation. Based on elementary geometric considerations, the 

relationship between the deviation s  and the control signal u  may also be derived as: 

  
1tan ( / )s u r−= −       (2-3) 

The admissible state region for a circular roundabout is obviously in out[ , ]r R R , where  inR  and 

outR  are the inner and outer roundabout radiuses, respectively. For every initial angle and admissible 

state 0 0( , )r  , the final angle e  is determined by the angle of the specific destination branch 

considered; while the final state, at the exit angle e  is, for all branches,  e out( )r R = , since all 

branches are located at the outer radius of the roundabout. The control objective to be minimized is 
specified as: 

( )e

0

2 2 2( / )J u r w u r d



= + +      (2-4) 

where the first term reflects the trip distance from the origin to the exit point; the second term 

penalizes quadratically the deviation from the circular angle (see (2-2)) and w  is the weighting 

coefficient that determines the relative importance of the two terms. Some control constraints may 

be added to the problem to suppress strong deviations from the circular angle. In conclusion, the 

optimal control problem reads as follows: 

n

e

i out

out

1

M

 

inimize 

sub

 

ject to:

t

    

                 

              

an ( / )

      ( )

                 

J

R r R

R

u r s

r u

r 

−



=



=



      (2-5) 

If the maximum-deviation constraint is disregarded, problem (4) can be analytically solved for two 

extreme cases: (a) the shortest path problem, i.e., for 0w = ; and (b) the minimum deviation 

problem, i.e., for w→ . 
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2.2 Extreme case 1: The shortest path problem 

The shortest path has a clear physical meaning and can be readily derived. For better 

comprehension, two distinct cases are distinguished: visible and invisible destinations. The details 

for each destination type will be explained in the following parts.   

2.2.1 Visible destination 

In this case, where the origin and destination are relatively close to each other, the quickest and 

easiest way to get there is to take a direct path that is close to or on the outer roundabout boundary, 

without reaching the inner part of the roundabout. The geometry of the roundabout determines if 

a destination is visible from an origin or not.  

If the straight line connecting a roundabout point, considered as the origin ( , )r  , with the 

destination lies completely within the roundabout, then the destination is considered “visible”; and 

the shortest path obviously coincides with that straight line; while the slope of the line is the desired 

orientation at ( , )r  . The visible area for an exit branch, grey-shaded in Figure 2-1, is described 

by: 

 in out vis( , ); ,0 ( )V r R r R r  =             (2-6) 

where [0,2 )    is the vehicle angular distance from the exit point, and  vis ( )r  is a radius-

dependent visibility threshold. The visible area is delineated upstream by the inner-circle tangent 

connected to the exit point, which is displayed with a light blue colour in Figure 2-1. Using 

trigonometric relationships,  vis ( )r  can be derived as below:   

 1

vis in vis in( ) cos ( ) ( )r R r R − = +         (2-7) 

where: 

           
1

vis in in out( ) cos ( )R R R − =        (2-8) 

2.2.2  Invisible destination  

In this case, since the destination is not visible, the vehicle cannot go directly to the exit branch. 

That means that the vehicle will need to follow a circular motion around the roundabout until it 

reaches a position where the exit branch can be seen. Then, it will follow an almost direct path to 

the exit. The shortest path from a roundabout point (origin) ( , )r   to an invisible destination consists 

of three parts (Figure 2-2). The first part is the tangent of the inner circle that is connected to the 
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origin, with touch point in tan( , ( ))R r +   that can be determined through finding tan ( )r  using 

the formula below:   

1

tan in( ) cos ( )r R r − =      (2-9) 

 

Figure 2-1- The visible area (grey-shaded) for a visible exit destination 
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Figure 2-2 - The shortest path for an invisible destination 

The desired orientation in this part is the slope of the tangent. In the second part, the path follows 

the inner boundary, i.e., the desired orientation is the circular angle, until the destination gets visible. 

After that, same as the case of visible destination, the desired orientation is the slope of a line 

connected to the exit point.  

In conclusion, the desired orientation at every point on the roundabout ( , )r  , with either visible 

or invisible destination out e( , )R  , is:  

1 out e
vis

out e

vis

d,SP

in

1 in tan

in tan

sin sin
tan ( ) 0 ( )

cos cos

( )
( , )

& 2

sin( ( )) sin
tan ( ) otherwise

cos( ( )) cos )

R r
r

R r

r
r

r R

R r r

R r r

 
 

 

 
  

  

  

−

−

−
    −


   

= +
=

 +  −


+  −

  (2-10) 

where the first condition corresponds to the points in the visible area of an exit point, while the 

second and third conditions are applied when the destination is invisible. It should be noted that the 

desired orientation for the first and third conditions are calculated by transforming the points’ 

positions to Cartesian coordinates and calculating the ratio between their difference in y  coordinate 

( y ) and their difference in x  coordinate ( x ). 
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2.3 Extreme case 2: The Minimum deviation problem 

By dropping the first term of the cost function, the solution minimizes the deviation from the 

circular angle. In this case, (2-5) can be written as below:  

   0

21

2

subject to: 

e

J z d

r rz




=

= −

      (2-11) 

where, for convenience, z  is defined as : tan( )z s=  and treated as the control input. The 

Hamiltonian of this problem reads:  

  
2

2

z
H rz= −      (2-12) 

Considering Pontryagin's principle, the optimal solution should satisfy the following conditions:  

    
2

2

0
H

z r
z

d H
r

d r

dr H
r

d









 


= − =


 

= − =


 
= = −


          (2-13) 

An intuitive solution is to have a constant deviation for the whole path, from origin to destination, 

i.e.: 

0 e( ) ;z c   =         (2-14) 

This indeed satisfies the mentioned conditions in (2-13) and is the optimal solution of (2-11). To 

calculate the constant value, the following state equation is solved:  

 ( )0 0( ) exp ( )r cr r r c  = −  = − −     (2-15) 

Then, by substituting the final condition, the constant value can be found as presented below:   

               

( )out 0 0

out 0

0

exp ( )

ln( ) ln( )

e

e

R r c

R r
c

 

 

= − −

−
 = −

−

     (2-16) 
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Finally, the desired orientation for the minimum-deviation problem is: 

 1 out
d,MD

ln( ) ln( )
( , ) tan

2e

R r
r


  

 

−  −
= − + + 

− 
     (2-17) 
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3  Determining the desired orientations using 

Backward Dijkstra algorithm 
 

The solutions of the extreme cases, i.e., the shortest path and the minimum deviation problems 

which are presented in Chapter 2, may not be desirable due to sharp vehicle movements or uneven 

exploitation of the roundabout area. In fact, for the shortest path case, many vehicles may tend to 

move along the inner circle; while for the minimum deviation case, the outer boundary would be 

more crowded. Therefore, it is interesting to have a combination of these two cases by choosing a 

finite and non-zero weight w  value in (2-4). However, finding the analytical solution in this 

general case is not straightforward. To overcome this issue, a Dynamic Programming-based 

approach, called backward Dijkstra algorithm, is proposed to compute a numerical closed-loop 

solution for the space-discretized problem. In a discretized grid for a given exit node, the algorithm 

finds the best orientation such that a cost function will be minimized.  

3.1 Network Discretization  

Firstly, a network of points, representing possible vehicle positions, will be created that covers the 

entire surface of the roundabout. One, or even more, of them may be considered as the exit point(s) 

that can be shown by:  

o eut( , ) ( ),Rr  =       (3-1)  

To implement a Dynamic Programming-based method, the roundabout’s surface has to be 

discretized to form a grid of nodes, with resolution defined by a selectable radius step size r  and 

angle step size  . The angle step size should be sufficiently small so that at least one node is 

located at each (entrance and exit) radial branch. Obviously, the higher the density, the higher 

computational effort required, which is not a considerable problem for an offline approach. For 

the edges (transitions) between the nodes of the grid, it is reasonable to assume that vehicle paths 

on the roundabout point only forward, in discrete   steps.  

On the roundabout, vehicles move in a counter-clockwise direction and navigate through the 

roundabout in angle steps. A vehicle at the current position ( ),r   will select the optimal radius in 

the following angle to move towards, among a certain number of alternatives. The following radius 

must fall within the roundabout's inner and outer radii in order to qualify as the next radius; 

otherwise, it will not be considered. For each transition, from the current angle step to the next 

one, the following apply:  
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( 1) ( )

( 1) ( )

k k

r k r k q r

  + = + 

+ = + 
     (3-2) 

where  , , 1,0,1, ,q q q −  reflects corresponding edges (transitions) to next-step nodes in the 

grid, with corresponding orientations; and q  and q  are lower and upper limits, respectively, for 

the admissible orientations, similarly to s  in (2-5) and k  is the discrete angle step forward. It 

should be noted that k  does not refer to a time step; it is angle step, instead.  

Clearly, the allowable range of radiuses is  in out[ , ]r R R , and any transitions leading out of the 

roundabout are suppressed while constructing the grid. For instance, for nodes on the outer 

boundary, it is not allowed to select a bigger radius, i.e., 0q  , otherwise outer-boundary violation 

would occur.  In Figure 3-1, a very low-density grid, with 9.5r =  and 8  = , is portrayed.  

Since there are only 5 radiuses in the roundabout, changing radius results in a large deviation from 

the circular angle. Therefore, they can change their radius up to one step as shown in Figure 3-2. 

 

Figure 3-1 - A low-density grid  
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Figure 3-2 - Possible transitions graph- 1q = −  and 1q =  

A denser network is shown in Figure 3-3, where 3.8r =  and 16  = . Furthermore, in this 

grid, a vehicle is allowed to change its radius up to 2 steps, as can be seen in Figure 3-4. 

 
Figure 3-3 - A denser grid 
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Figure 3-4 - Possible transitions graph- 2q = −  and 2q =  

3.2 Defining the Criterion 

Following the cost function introduced in Chapter 2, the employed criterion for transitions between 

two nodes in the discrete grid, where the radius changes by q  steps, is defined as: 

, ,

2
( ) ( ) tan ( ( ))

r q r q
J k d sk w k= +      ( 3-3 )  

where , ( )r qd k  and , ( )r qs k  are the transition distance and deviation from the circular angle, 

respectively, if the vehicle decides to change its radius by q  steps. These terms are calculated as 

presented below. 

3.2.1 Distance and deviation calculation  

As mentioned, in order to make the optimal decision using the backward Dijkstra algorithm, it is 

needed to calculate the distance between the vehicle’s current and next potential positions. The 

Euclidian distances for all one-step transitions are calculated using the following formula: 

    
2 2

1 2 1 2( ) ( )d x x y y= − + −      (3-4) 

where 1 1( , )x y  and 2 2( , )x y  represent the current and next position of a vehicle. To express the 

distance based on ( ),r  , the following relations between Cartesian and polar coordinates variables 

are employed:   

     
cos( )

sin( )

x r

y r





= 

= 
      (3-5) 

Additionally, the following equations may be used to get polar coordinates based on Cartesian 

variables: 
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and 0 =  corresponds to the positive axis of x-coordinate, and it increases counterclockwise. 

Using polar coordinates, the formula becomes:   

                  
2 2

1 2 1 2 1 22 cos( )d r r r r  = + −   −      (3-7) 

To prevent extra distance computations, the symmetry of the roundabout and the grid is now taken 

into consideration. More specifically, if a vehicle is located at ( ),r   and wishes to continue onto 

the next step, it will travel in accordance with this, at an angle  +  and on a radius of r q r+ 

.  As a result, the following distance describes any vehicle with the current radius r and q-step 

transition:  

2 2 2

,

2 2
,

2 2 2 2
,

2 2
,

2( ) (1 cos( ))

 

 

( ) 2 ( ) cos(( ) )

2 2 2 cos( ) 2 cos( )

( ) 2 ( ) cos(

 

  )

r q

r q

r q

r q

r r q r q rd

d r r q r r r q r

d r r q r q r r r q r

d r r q r r r q r



  

 



+    −  + =



= + +  −  +   +  − 



= +   +  −   −    

= + +  −  +   
   (3-8)  

Additionally, using trigonometric relationships, the deviation from the circular angle can be 

obtained by (see Figure 3-5):  

         1
, tanr q

q r
s

r 
−  
 
 

=
− 


     (3-9) 
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Figure 3-5 - Deviation calculation 

 

3.2.2 Calculation of upper and lower limits for transition steps   

Additionally, a vehicle at a certain point in the roundabout’s surface, has a limited number of 

alternatives to change its radius. To determine the admissible steps that a vehicle can change, the 

maximum deviation may be replaced in (3-10). Then, q q= − can be calculated as below:  

,0

2
,0

tan( )

tan( ) tan( )2 (1 cos )

r

r

s

s s

q r

d

d r
q

r r



=
 − 
  
 

   − 
= =   

    

      (3-10) 

It should be noted that a vehicle on the inner boundary i.e., its radius equals inR , can only choose 

its transition among  0,1, ,q q . On the other hand, the options for a vehicle navigating along 

the outer boundary are  , , 1,0q q − .  
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3.3 Dijkstra’s Algorithm 

Dijkstra's algorithm [30] is an algorithm used for finding the shortest paths between a source node 

and every other node in a network for a given source node. The algorithm may also be used to 

identify the shortest routes from a single source node to a single destination node by terminating 

it once the shortest route has been identified. Network routing protocols are a prominent example 

of how shortest-path algorithms, in general, and in this case, are employed.  

The algorithm exists in many variants. Dijkstra's original algorithm calculates the shortest path 

between two given nodes or given a single node as the "source" node, finds the shortest paths from 

the source to all other nodes in the graph, thus producing the shortest path tree. However, in this 

thesis, the goal is to find the optimal orientation (transition) at each discrete point (node) of the 

roundabout grid towards a specific destination point. To this end, a modified version of the Dijkstra 

algorithm in a Dynamic Programming-based way is introduced, whereby starting from the 

destination point and moving backwards iteratively, the optimal transition for all nodes of the 

roundabout grid is determined. The algorithm determines the optimal orientations at each node, 

such that the summation of the defined cost criterion from any origin to the exit point is minimized, 

i.e., the algorithm delivers a (discrete) closed-loop solution.  

This algorithm doesn't attempt any direct "exploration" in the direction of the goal. Instead, the 

subsequent intersection's distance (in this case criterion) from the starting point is the only factor 

taken into account. As a consequence, until it reaches the destination, this algorithm advances 

outward from the starting point, interactively taking into account every node that is closer in terms 

of minimizing the criterion. When seen in this light, it becomes evident why the algorithm must 

always choose the minimum. It could also highlight one of the algorithm's flaws, namely that it 

operates quite slowly in some topologies. 

3.3.1 Backwards Dijkstra’s Algorithm (Single Exit Point) 

In this case, a "destination" node will be specified, which represents an exit branch of the 

roundabout, and a backward search will be implemented. This modification is inspired by the 

backward DP method and it produces an optimal orientation towards the specific destination for 

every roundabout discrete point. There may be an initial node (with all its adjacent link arrows 

pointing out of it), however, it is not necessary. There is one single final (destination) node with 

all its adjacent link arrows pointing towards it. The algorithm steps are the following: 

1. Mark all nodes unvisited. Create a set of all the unvisited nodes called the unvisited set. 

2. Assign to every node a tentative cost function value: set it to zero for the final node and to 

infinity for all other nodes. The tentative cost function of a node v is the summation of the 

best path, corresponding to the minimum cost function, discovered so far between the node 

v and the final node. Since initially no path is known from any other vertex than the sink 
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itself (which is a path of cost zero), all other tentative distances are initially set to infinity. 

Set the final node as current.  

3. For the current node, consider all of its unvisited neighbors and calculate their tentative 

cost function values through the current node. Compare the newly calculated tentative cost 

function to the one currently assigned to the neighbor and assign it the smaller one, along 

with the corresponding optimal direction. For example, if the current node A is marked 

with a cost function of 6, and the edge connecting it with a neighbor B has cost function 2, 

then the total cost function to B through A will be 6 + 2 = 8. If B was previously marked 

with a cost function greater than 8 then change it to 8; and change the optimal direction to 

point towards A. Otherwise, the current value and optimal direction will be kept. 

4. When done considering all of the unvisited neighbors of the current node, mark the current 

node as visited and remove it from the unvisited set. A visited node will never be checked 

again. 

5. If the initial node (if any) has been marked visited (when planning a route between two 

specific nodes) or if the smallest tentative cost function among the nodes in the unvisited 

set is infinity (when planning a complete traversal; occurs when there is no connection 

between the initial node and remaining unvisited nodes) or if all nodes have been marked 

visited, then stop. The algorithm has finished. 

6. Otherwise, select the unvisited node that is marked with the smallest tentative distance, set 

it as the new current node, and go back to step 3. 

 

3.3.3 Backwards Dijkstra’s Algorithm (Multiple Exit Points) 

If the branches are sufficiently wide, more than one exit point can be considered in a branch. This 

may lead to expediting transit times, preventing collisions, and better management of vehicle 

traffic at the exits, since it allows vehicles to fully utilize the exit branch width rather than being 

forced to exit from a single point. In this case, more than one points are considered as potential 

exit points with all their adjacent link arrows pointing towards them. There may be an initial node 

(with all its adjacent link arrows pointing out of it), however, it is not necessary. The algorithm 

steps are the following:  

1. Mark all nodes unvisited. Create a set of all the unvisited nodes called the unvisited set. 

2. Assign to every node a tentative cost value: set it to zero for the respective final cost for 

our final nodes and to infinity for all other nodes. The tentative cost of a node v is the cost 

of the shortest path discovered so far between the node v and any of the final nodes. Since 

initially no path is known from any vertex other than the final nodes (which are paths of 

cost zero), all other tentative costs are initially set to infinity. Set the final node with the 

smallest final cost as current.  

3. For the current node, consider all of its unvisited neighbors and calculate their tentative 

costs through the current node. Compare the newly calculated tentative cost to the one 

currently assigned to the neighbor and assign it the smaller one, along with the 

https://en.wikipedia.org/wiki/Set_(abstract_data_type)
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corresponding optimal direction. For example, if the current node A is marked with a cost 

of 6, and the edge connecting it with a neighbor B has a cost equal to 2, then the cost 

to B through A will be 6 + 2 = 8. If B was previously marked with a cost greater than 8 

then change it to 8; and change the optimal direction to point towards A. Otherwise, the 

current value and optimal direction will be kept. 

4. When all of the unvisited neighbors of the current node are considered, mark the current 

node as visited and remove it from the unvisited set. A visited node will never be checked 

again (this is valid and optimal in connection with the behavior in step 6.: that the next 

nodes to visit will always be in the order of 'smallest cost to final node first' so any visits 

after would have a greater cost). 

5. If the initial node (if any) has been marked visited (when planning a route between the 

initial node and any of the final nodes) or if the smallest tentative cost among the nodes in 

the unvisited set is infinity (when planning a complete traversal; occurs when there is no 

connection between the remaining unvisited nodes and any final node) or if all nodes have 

been marked visited, then stop. The algorithm has finished. 

6. Otherwise, select the unvisited node that is marked with the smallest tentative cost, set it 

as the new current node, and go back to step 3. 

3.3.4 Real-time implementation 

Due to the high computational effort of the numerical solution via the backward Dijkstra algorithm, 

specifically for a dense grid, it is not possible to run it online. Hence, a real-time scheme has to be 

implemented to determine the optimal orientation for each vehicle based on its current position 

and exit branch.  

This may be achieved by storing the desired orientations for each roundabout location and exit 

branch, calculated offline by the backward Dijkstra algorithm, as a database which is accessible 

for the vehicles moving on the roundabout. At each location in the roundabout, a vehicle, 

depending on its exit branch, recalls the optimal desired orientation for its current location from 

the corresponding table.  

 

3.4 Sub-Optimal Online Approach 

In the light of the optimal results of the previous section, an alternative, sub-optimal method with 

negligible online computational effort may be proposed, which uses the optimal orientations related 

to the mentioned extreme cases that can be computed online very fast. Specifically, this can be 

achieved by finding the desired orientation at any location and calculating the weighted average of 

the orientations resulted from the shortest path and the minimum deviation cases as below: 

   d,SP d,MD
ˆ ( , ) ( , ) (1 ) ( , )d r r r      = + −     (3-11) 
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where 
d,SP( , )r   and 

d,MD( , )r   are the respective desired orientations corresponding to the 

shortest path (2-10) and the minimum deviation problems (2-17). Moreover, 0 1  is a 

selectable parameter. Note that the orientations derived from (3-11) combine the outcome of the 

two respective extreme problems, which is different than combining the two criteria as in the 

numerically solved general problem. 

If desired, one may offline optimize   such that (3-11) yields an orientation close, as much as 

possible, to the result of the backward Dijkstra algorithm for a specific weight w . Specifically,   

can be found by employing a Least Square (LS) approach, where (3-11) is employed to construct a 

regression equation as below:  

 
d d,MD d,SP d,MD( )=θ -θ θ -θ      (3-12) 

where dθ  is a vector containing the desired orientation, determined by the backward Dijkstra 

algorithm, at all points of the roundabout grid; while 
d,SPθ and 

d,MDθ  contain the shortest path and 

the minimum deviation orientations, respectively, at those points. Then,   can be calculated by 

the LS solution:  

 ( )
1

d,SP d,MD d,SP d,MD d,SP d,MD d d,MD( ) ( ) ( ) ( )T T
−

= θ -θ θ -θ θ -θ θ -θ    ( 3-13) 

The easiness of producing desired orientations with this approach offers an additional advantage, 

namely the possibility to modify in real time the value of  , and hence the produced orientations, 

in dependence of the current traffic conditions in the roundabout. Specifically, if the traffic density 

in the roundabout is low, vehicle conflicts are accordingly few, hence it may be preferrable to tend 

towards shortest paths (  small) to save trip time and fuel consumption. In contrast, if the traffic 

density in the roundabout is high, vehicle conflicts are accordingly frequent, hence it may be 

preferrable to tend towards minimum-deviation paths (  big) to mitigate the required vehicle 

maneuver intensity. 
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4 Results 
 

In this section, the results of employing the suggested approaches in the previous chapters to 

determine the desired orientation in our case study, the roundabout of Place Charles de Gaulle, are 

presented. First, the structure of the roundabout is introduced, and then the results of analytical 

solutions, backward Dijkstra algorithm, and sub-optimal approach are presented.    

4.1 The Place Charles de Gaulle roundabout 

The Place Charles de Gaulle, traditionally known as the Place de l' Étoile, is a significant 

roundabout located in Paris, France, which is shown in Figure 4-1. It is the meeting place of twelve 

roadways (hence its original name, which translates to "Square of the Star"), including the 

Champs-Élysées, which is marked as Branch 1 in Figure 4-2. The Arc de Triomphe, which is 

located in the middle of Place Charles de Gaulle, is traversed by the Axe historique (or "historical 

axis") of Paris [31].  

The Place Charles de Gaulle roundabout is considered an overly complex case due to the absence 

of lanes. It has an outer radius of 84 m and an inner of 46 m, respectively and comprises 12 

bidirectional branches which results in 144 different Origin- Destination (OD) pairs. One may 

consider a different sub-problem for each OD or address them in groups considering one problem 

per destination which contains all results of the related (12 D problems).  

 
Figure 4-1 - The Place Charles de Gaulle [32] 
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Figure 4-2 - Roundabout’s Branches and Structure 

4.2 Analytical solution for determining desired orientations in the 

extreme cases  

As mentioned in Chapter 2, the defined problem is solved analytically for two extreme cases: the 

shortest path and the minimum deviation problems. Despite the infrastructure complexity, it is 

easy to generate the desired orientations for the two extreme cases in the continuous framework. 

However, to obtain clear and understandable  outputs, the desired orientation is shown in a 

discretized grid, which is also used to display the result of the backward Dijkstra algorithm.  

Figure 4-3 illustrates the results of the shortest path problem. Since the deviation limit is not taken 

into account to find the analytical shortest path, big deviations may be noticed. In particular, it can 

be observed that at points from which the destination is not visible, vehicles head directly to the 

inner circle via a tangent line that cause some sharp steering such that the deviation form circular 

angle may even reach 60◦. However, one may saturate the orientations accordingly so that the 

desired threshold is satisfied. Vehicles continue to navigate on the inner circle until reaching the 

area where the destination is visible. At that point, they will attempt to follow a direct route to the 

destination. It is worth mentioning that the figure shows the orientations for one exit branch; if the 

orientations for all branches were plotted, many conflicts would be visible among vehicles with 

different destinations. Moreover, if many vehicles try to reach the inner boundary, the inner part 

of the roundabout would be much more crowded that the outer area.  
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Figure 4-3 - Analytical solution of the shortest path problem  

On the other hand, Figure 4-4 illustrates the desired orientations for the case of minimum deviation, 

where vehicles have a gradual deviation from their origin to the exit point. In particular, the desired 

orientation at points which are very far from the exit points have minor differences from the 

circular motions especially if they are close to the outer boundary, in which case their motion 

appears circular. It should be noted that only vehicles located on the outer boundary have 

completely circular movement. Obviously, smooth motions cause less conflicts among vehicles 

exiting from various branches. The weak point of employing these results is that all entering 

vehicles will move along the outer boundary while the inner part will not be taken into advantage.  

4.3 Backward Dijkstra algorithm results for a single exit point 

Finding the analytical solution in this general case is not straightforward. For intermediate 

scenarios, where a compromise between shortest path and minimum deviation from the circular 

angle is needed, it is difficult to find the solution analytically. Therefore, the backward Dijkstra 

algorithm is suggested to determine the optimal orientations in a discretized grid of the roundabout 

surface.   
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Figure 4-4 - Analytical solution of the minimum deviation problem 

In this section, the roundabout surface is discretized by 1.52r m =  and 3 = , which leads to 

a total of 2925 grid nodes. Also, the maximum admissible deviation is 15 , which leads to a 

maximum of 2 possible transitions at each node and 13923 possible segments between nodes. This 

setting is chosen to generate visually understandable results, while a higher resolution can be 

selected for the real-time implementation. The generated grid for this setting is shown in Figure 

4-5, which is indeed a complicated graph.  

All presented results concern one specific exit branch and the similar results can be obtained for 

other branches. The computation time to run the backward Dijkstra algorithm for this big 

roundabout (for one destination) amounts to approximately 78 seconds on an Intel(R) Core (TM) 

i7-5960X CPU @ 3.00GHz with 16.0 GB of installed RAM.  

In the following figures, the optimal routes are portrayed for different weight values in the 

employed criterion, showing the different orientations a vehicle can base its movements on the 

roundabout, in order to exit from Branch 1. The optimal orientations for each node of the grid 

towards a single exit point can be seen in Figure 4-6 to Figure 4-9. The blank spaces in the figures 

indicate nodes that cannot be feasibly connected to the destination, as this would violate the 

maximum-deviation limit. 
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Figure 4-6 illustrates the results of the backward Dijkstra algorithm for the shortest path case, with 

0w = . It can be observed that at points from which the destination is not visible, vehicles try to 

reach the inner circle as fast as possible, provided that their deviation from the circular angle does 

not violate the defied threshold. If a higher threshold for deviation from the circular angle is 

considered, the results will be more identical to the analytical. In the visible area, vehicles will 

attempt to navigate to the destination by taking the most direct route possible.  

 

Figure 4-5 – The generated grid with the given setting 

The result of the backward Dijkstra algorithm for 10w =  is depicted in Figure 4-7 where vehicles 

at very far origins have a tendency to reach the inner boundary. On the other hand, in closer origins, 

they do not get very close to the inner boundary. Consequently, the traffic will be more evenly 

distributed in the whole roundabout area.  

Additionally, Figure 4-8 shows the results of the backward Dijkstra algorithm, with 20w = . As 

compared with Figure 4-7, less vehicles tend to reach inner boundary which led to less crowded 

inner parts while more vehicles will move in the outer parts.  

Correspondingly, Figure 4-9 illustrates the desired orientations for the case of minimum deviation, 

i.e., w→ , where vehicles mostly have circular motions and get close to the exit branch 

smoothly. If the origin is located on the outer boundary, e.g., when a vehicle enters the roundabout, 

the vehicle will move along the outer boundary. This case, axiomatically, leads to a highly crowded 

outer boundary while the inner parts are left unused.   
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Figure 4-6 –Optimal Desired Orientations- w=0 

 
Figure 4-7 – Optimal Desired Orientations- w=10 
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Figure 4-8 – Optimal Desired Orientations- w=20 

 
Figure 4-9 – Optimal Desired Orientations- w → inf 
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Note that, in contract of the analytical solution, a vehicle has a limited number of choices for the 

next angle step that results in a few deviation angles. Therefore, the extremely smooth results seen 

in Figure 4-4 cannot be obtained using the backward Dijkstra algorithm unless the roundabout is 

discretized with a significantly high resolution. In fact, with smaller r  and  , the results 

become more identical to the analytical responses. That is why in the given network the orientation 

is completely circular, for most parts of the roundabout, and they deviate from the circular angle 

only when they are sufficiently close to the exit point.     

4.4 Optimal paths  

To achieve clearer results, different origin-destination pairs are chosen for which the optimal path 

determined by the backward Dijkstra algorithm are depicted. More specifically, considering 

Branches 4 and 10 as origins in the visible and invisible areas, respectively, and Branch 1 as the 

constant destination, the optimal paths for a vehicle starting from different points on the 

roundabout’s surface are shown, in Figure 4-10 to Figure 4-15. However, the similar results can 

be drawn for any other destination. A higher resolution grid ( 0.38r m =  and same   and 

allowable deviation) has been employed in this case compared to the previous results to achieve 

smoother paths. 

For the visible destination case (Figure 4-10 - Figure 4-12), it can be seen that for 0w = , which 

depicts the shortest path, the created paths navigate quasi-linearly to the exit point. In contrast, 

when w→ , which illustrates the minimum deviation from the circular angle, the paths gradually 

approach the outer boundary and reaches the exit point. It should be mentioned that, using higher 

resolution makes the results smoother and a vehicle can slightly deviate from the circular angle 

from a further point that leads to a more similar path to the analytical solution. If the starting point 

is on the outer radius (Figure 4-12), the vehicle’s path follows the outer radius without deviating. 

When 10w = , the paths lie between those corresponding to the mentioned extreme cases. The 

larger value for the weight value, the closer path to the minimum deviation case while a smaller 

weight makes the path closer to the shortest one.  
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Figure 4-10  – Optimal paths for a visible OD with different weights - starting from the inner circle 

 

Figure 4-11 – Optimal paths for a visible OD with different weights - starting from the middle of the roundabout 
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Figure 4-12  – Optimal paths for a visible OD with different weights - starting from the outer circle 

 

The resulted paths for an invisible pair are shown in Figure 4-13 to Figure 4-15. In the shortest 

path case, 0w = , if the origin is on the inner boundary (Figure 4-13), it will move along that till 

the destination become visible. Otherwise, it will reach the inner circle via a quasi-tangent line 

keep moving along it until the destination becomes visible. After that, they navigate quasi-linearly 

to the exit. On the other hand, when w→ , a vehicle gradually gets closer to the outer boundary, 

if it is not located on the outer radius, and reach it at the exit angle. If the starting point is on the 

outer radius (Figure 4-15), the vehicles follow the outer radius without deviating. When 10w = , 

the path lies between those corresponding to the mentioned extreme cases. More specifically, if 

the origin is on the inner circle, the path leaves the inner circle sooner compared to the shortest 

path. For vehicles starting from a point in the middle or outer parts of the roundabout, they may 

not reach the inner boundary. Finally, for the origins located on the outer boundary, vehicles leave 

the outer circle to follow a shorter path as opposed to the path which corresponds to the minimum 

deviation case; however, the distance followed, in this case, will be longer compared to the shortest 

path.  
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Figure 4-13 – Optimal paths for an invisible OD with different weights - starting from the inner circle 

 

Figure 4-14 – Optimal paths for a visible OD with different weights - starting from the middle of the roundabout 
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Figure 4-15  – Optimal paths for a visible OD with different weights - starting from the outer circle 

4.5 Comparison between the results of the analytical solution and the 

backwards Dijkstra’s algorithm 

In this section, the results generated by the analytical solution and the Dynamic Programming 

based approach are compared for both visible and invisible OD pairs. Figure 4-16 demonstrates 

the shortest paths for an invisible OD pair. Marked in blue is the result of the analytical solution 

in which the path reaches the inner boundary through a tangent line, follows the inner circle, and 

exits through a tangent line. Whereas the orange one is the resulted path from the backward 

Dijkstra algorithm which is not very close to the analytically optimal path. This difference is due 

to considering the deviation threshold in the backward Dijkstra algorithm. Particularly, when the 

vehicle aims to reach the inner circle or when the destination gets visible, the analytical approach 

generates a big deviation from the circular angle while the DP-based approach produces a smoother 

angle to meet the deviation constraint. Considering a larger threshold for the deviation, e.g., 60◦, 

the generated path would be closer to the analytical one. In addition, the deviation from the circular 

angle during the vehicle’s movement is presented in Figure 4-17. It can be observed that the 

deviation of the analytical solution consists of three distinct parts. In the first part, deviation is 

positive which marks the vehicle’s movement towards the inner circle. Then, in the second part, 

the vehicle moves along the inner boundary and consequently its deviation is equal to zero. Finally, 

the vehicle’s deviation is negative when it moves towards the outer area. Although the resulted 

path of the backward Dijkstra follows the general concept of the analytical trajectories, some 
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unsmooth changes can be noticed due to discretization since a continuous range of desired 

orientation and consequently deviation cannot be achieved.  

Similarly, the optimal paths determined by the analytical solution and backward Dijkstra algorithm 

for the minimum deviation problem can be seen in Figure 4-18. Since the minimum deviation 

responses do not need extreme deviations, the results are very similar. Hence, the analytical 

solution does not violate the considered threshold. Furthermore, Figure 4-19 displays the deviation 

caused by these methods. The analytical approach results in a constant deviation value while 

moving from the origin to the destination, whilst the deviation related to the backward Dijkstra 

oscillates around the analytical value because of the limited alternatives it is provided with. 

The analytical and DP- based shortest paths, correspondingly, for a visible OD are drawn in Figure 

4-20. The optimal path determined by the algorithm is a curve compared to the analytical solution, 

which was a direct line, due to obeying to the deviation restriction. The resulted deviations are 

shown in Figure 4-21 where the analytical trajectory has bigger values, and the algorithm’s result 

features some oscillations. The results related to the minimum deviation case of this visible pair 

can be seen in Figure 4-22 and Figure 4-23 where the two responses are very similar.   

 

 
Figure 4-16 – Comparing analytical and backward Dijkstra paths- the shortest path, an invisible OD  
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Figure 4-17 – Comparing analytical and backward Dijkstra deviations- the shortest path, an invisible OD 

 
Figure 4-18 - Comparing analytical and backward Dijkstra paths- the minimum deviation, an invisible OD 
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Figure 4-19 – Comparing analytical and backward Dijkstra deviations- the minimum deviation, an invisible OD 

  

Figure 4-20 – Comparing analytical and backward Dijkstra paths- the shortest path, a visible OD 
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Figure 4-21 – Comparing analytical and backward Dijkstra deviations- the shortest path, a visible OD 

 
Figure 4-22 – Comparing analytical and backward Dijkstra paths- the minimum deviation, a visible OD 
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Figure 4-23 – Comparing analytical and backward Dijkstra deviations- the minimum deviation, a visible OD 

 

4.6 Optimal Orientations considering multiple exit points 

In this section, a similar procedure to section 4.3 is followed to determine the optimal network 

orientations, however, here vehicles are allowed to exit from multiple exit points rather than just 

one, if the exit branch is sufficiently wide. This may expedite transit times, prevent collisions, and 

better manage vehicle traffic at the exit. At the same time, the roundabout's surface is utilized more 

effectively. 

As can be seen in Figure 4-24 to Figure 4-27, a greater proportion of the road network is accessible 

by vehicles. This occurs as a result of the vehicles' utilization of multiple exit points, which allows 

them to fully take advantage of the exit's width rather than being forced to exit from a single point. 

The density of the network, as well as the design of the roundabout, or more particularly the width 

of the exit in each case, are directly related to the existence of multiple exit points and the number 

of these exit points.  

The density of the grid generated, remains the same as before, 1.52r m =  and 3 = , which 

leads to a total of 2975 grid nodes. Also, the maximum admissible deviation is 15 , which allows 
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a maximum of 2 possible radius transitions and 14161 possible segments between nodes. This 

setting is chosen to generate visually understandable results, while a higher resolution can be 

selected for the real-time implementation. All presented results concern one specific exit branch, 

in this case Branch 1. The computation time to run the backward Dijkstra algorithm for this 

roundabout (for one destination) and in this case 3 exit points, amounts to approximately 601 

seconds. The time required for the stimulation is significantly higher than the previous case. That 

is due to the fact that the orientations in the roundabout are calculated for a vehicle to exit from all 

three exit points and then compared with one other in order for the best exit point to be selected 

for each discrete possible vehicle’s position.  

Figure 4-24 portrays the results of the backward Dijkstra algorithm for the shortest path case, i.e., 

0w = . In contrast to the previous section, here vehicles are offered additional space in the 

roundabout in which they can navigate, especially near the exit branch. Similar to the above 

presented results, at points from which the destination is not visible, vehicles attempt to reach the 

inner circle as directly as possible, provided that their deviation from the circular angle does not 

violate the defined limit. Furthermore, where the destination is visible, orientations indicate an 

almost straight path towards it. Figure 4-25 depicts the results of the backward Dijkstra algorithm 

for 10w= . Vehicles at extremely distant origins have a propensity to reach the inner circle, 

whereas those at closer origins are unlikely to get very close to it. Traffic distribution across the 

roundabout area is notably more equitable. The results of the backward Dijkstra algorithm are also 

displayed in Figure 4-26, with 20w = .  

Finally, Figure 4-27 shows the desired orientations in the case of minimum deviation. In this 

scenario, vehicles typically follow circular routes and approach the exit branch gradually. The 

orientations and induced paths follow the outside border for nodes that are close to the outer 

boundary, such as when a vehicle enters a roundabout.  

As mentioned, the blank spaces in the figures indicate nodes that cannot be feasibly connected to 

the destination, as this would violate the maximum-deviation limit. In this case, however, they are 

significantly less. 
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Figure 4-24 – Plot of Optimal Orientations for Destination Branch 1 (allowable deviation=15o and weight=0) 

 
Figure 4-25 – Plot of Optimal Orientations for Destination Branch 1 (allowable deviation=15o and weight=10) 
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Figure 4-26 – Plot of Optimal Orientations for Destination Branch 1 (allowable deviation=15o and weight=20) 

 
Figure 4-27 – Plot of Optimal Orientations for Destination Branch 1 (allowable deviation=15o and weight→ inf) 
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4.7 Sub-Optimal online approach 

To investigate the accuracy of the presented sub-optimal approach for the real-time 

implementation, its results may be compared to the ones of backward Dijkstra algorithm. To obtain 

the optimal value of parameter   for a certain weight, results are collected from the backward 

Dijkstra algorithm, and it is calculated with the use of (4-15). Considering 10w = , the optimal 

value of the parameter is 0.25.    

The optimal path is generated by the backward Dijkstra for a given OD and three different values, 

0, 10 and infinite are illustrated in Figure 4-28. In addition, the sub-optimal path is generated by 

0.25 =  that is an alternative for the optimal path while the weight is 10. As can be seen, the sub-

optimal path is sufficiently close to the related optimal path. Hence, one may use the instant 

combination of the shortest path and the minimum deviation analytical solutions instead of 

recalling the results of offline optimal orientations.  

 

Figure 4-28 – Comparing the results of sub-optimal approach and backward Dijkstra  
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5 Conclusion and Future works  
 

5.1 Concluding remarks 

This thesis suggests a transparent and systematic approach to determine the optimal orientations 

of vehicles navigating on large lane-free roundabouts, which is considered to be a challenging task 

due to its intricate geometrical features and numerous potential vehicle conflicts. The suggested 

method determines the desired orientations by minimizing a weighted summation of the travel 

distance and deviation from the circular angle through solving an optimum control problem. The 

vehicle motion is firstly formulated as an optimal control problem in the continuous framework 

where the angle of polar coordinates is considered as the independent variable instead of time.  

For two extreme cases, the shortest path and the minimum deviation from the circular angle, 

respectively, an analytical solution is obtained. The shortest path solution can be described using 

simple geometric concepts for two distinct cases. If the destination is visible from the origin, the 

shortest path would be a direct line connecting them and the desired orientation, as a result, will 

be the slope of that line. For invisible origin-destination pairs, the shortest path contains three parts. 

First, it connects the origin to the inner circle through a tangent. Then, it continues along the inner 

boundary till the destination gets visible, and lastly a direct line connects it to the exit point. 

Correspondingly, the obtained solution for the minimum deviation problem is to maintain a 

constant deviation from the circular angle from origin to destination. This translates to a vehicle 

smoothly moving closer to the outer boundary and reaching it at the exit point. If it is already 

located on the outer circle then it moves along the outer boundary.  

For general weighted scenarios, it is not easy to obtain the analytical solution so, the backward 

Dijkstra algorithm is suggested to determine the optimal path, instead. For this goal, the 

roundabout surface is discretized to create a grid in which the algorithm considers a node as the 

destination and finds the best path from any possible origin to reach the destination such that the 

total criterion is minimized along this path. The algorithm is presented for two cases: a) considering 

only one exit point on the exit branch and b) considering multiple exit points. Obviously, 

employing the second strategy results in longer execution time; however, it facilitates exploiting a 

bigger area of the roundabout surface. Since running the backward Dijkstra is time-consuming, 

appropriate strategies are considered for real-time implementation. The first approach is storing 

the results in a database that is accessible for the vehicles navigating on the roundabout. They may 

recall the optimal desired orientation based on their instantaneous position on the roundabout and 

their intended exit branch. Alternatively, one can instantly combine the shortest path and the 

minimum deviation analytical solutions using a weighted average. The average parameter may be 

calculated through solving a single parameter optimization problem using Least Square approach. 
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The presented methodologies are applied to determine the desired orientation in an excessively 

complicated case study, the Charles de Gaulle roundabout in Paris, France, which comprises 12 

bidirectional branches that results in 144 different origin-destination pairs. Moreover, its inner and 

outer radiuses are 46 m and 84 m, respectively, featuring a width of 38 m. Initially, the desired 

orientations are obtained at each point in the roundabout for a given destination. Then, based on 

the achieved orientations, some optimal paths are presented for both visible and invisible ODs, 

and a variety of starting points. Finally, the sub-optimal approach is compared with results of 

backward Dijkstra algorithm.  

5.2 Future works 

Considering the fact that most of the existing control schemes consider simple cases, it is 

substantial to focus on developing efficient strategies for vehicles moving on roundabouts. In 

particular, large and lane-free roundabouts have recently become the center of researchers’ 

attention. Below a number of recommendations for future research are given: 

1- Microscopic simulation of the presented approaches to check the effectiveness of 

employing the optimal desired orientation, especially in high density traffic. 

2- Finding the optimal orientation for non-circular roundabouts like elliptic ones. 
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