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ABSTRACT
Mobile sensors have transformed how users interact with modern
smartphones and enhance their overall experience. However, the
absence of sufficient access control for protecting these sensors
enables a plethora of threats. As prior work has shown, malicious
apps and sites can deploy a wide range of attacks that use data
captured from sensors. Unfortunately, as we demonstrate, in the
modern app ecosystem where most apps fetch and render third-
party web content, attackers can use ads for delivering attacks.

In this paper, we introduce a novel attack vector that misuses
the advertising ecosystem for delivering sophisticated and stealthy
attacks that leverage mobile sensors. These attacks do not depend
on any special app permissions or specific user actions, and affect
all Android apps that contain in-app advertisements due to the
improper access control of sensor data in WebView. We outline
how motion sensor data can be used to infer users’ sensitive touch
input (e.g., credit card information) in two distinct attack scenarios,
namely intra-app and inter-app data exfiltration. While the former
targets the app displaying the ad, the latter affects every other
Android app running on the device. To make matters worse, we
have uncovered serious flaws in Android’s app isolation, life cycle
management, and access control mechanisms that enable persistent
data exfiltration even after the app showing the ad is moved to
the background or terminated by the user. Furthermore, as in-app
ads can “piggyback” on the permissions intended for the app’s
core functionality, they can also obtain information from protected
sensors such as the camera, microphone and GPS. To provide a
comprehensive assessment of this emerging threat, we conduct
a large-scale, end-to-end, dynamic analysis of ads shown in apps
available in the official Android Play Store. Our study reveals that
ads in the wild are already accessing and leaking data obtained
from motion sensors, thus highlighting the need for stricter access
control policies and isolation mechanisms.
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1 INTRODUCTION
The ubiquitous nature of mobile devices and the plethora of rich
functionalities they offer has rendered them an integral part of our
daily routines. The advent of smartphones has also transformed how
users experience and interact with web services, and Android has
become the most prevalent mobile operating system currently pow-
ering over 85% of devices worldwide [51]. Android’s app ecosystem
is dominated by free apps and in-app advertisements have become
the de facto source of revenue for app developers [6, 53]. Evenmajor
tech companies heavily rely on mobile advertising, with Facebook
earning 94% of its ad revenue from mobile devices [109].

Recently, mobile motion sensors (e.g., accelerometer and gyro-
scope) have started playing an increasingly important role in the
mobile advertising ecosystem, as motion-based ads allow for more
interactivity and higher user engagement, leading to increased rev-
enue [103]. Even thoughmobile sensors provide functional diversity
that is reshaping how users interact with and consume ads, they also
introduce a significant security and privacy threat. In more detail, a
plethora of prior studies have demonstrated that data obtained from
mobile sensors can be used for identifying and tracking users across
the web [11, 12, 17, 26–29, 33, 39, 45, 50, 52, 61, 66, 82, 86, 115, 116],
inferring physical activities [45, 48, 59, 66, 82] and in more severe
scenarios inferring users’ touch screen input [18, 47, 59, 70, 97, 111].
Das et al. [25] also demonstrated that web scripts accessing mobile
sensors allow for stateless tracking on the mobile web, while Mar-
cantoni et al. [57] described how a plethora of mobile sensor-based
attacks that previously required a malicious app to be installed can
easily migrate to the mobile web using the HTML5 WebAPI.
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However, as users spend the majority of their browsing time
within mobile apps [2], mobile ads will often reach their audience
through in-app ads. These ads are shown inside the context of
a mobile app and allow developers to release their apps for free
while earning revenue from the embedded ads. Unfortunately, this
symbiotic relationship, combined with ads’ ability to access mobile
device sensors, creates the opportunity for delivering a variety of
sensor-based attacks. While prior work has proposed separating the
privileges offered to applications and advertisements [75], Android
has not adopted such an approach. To make matters worse, mobile
motion sensors are not guarded by a specific permission and are
freely accessible to in-app ads. Comparatively, the iOS operating
system blocks in-app ads from accessing motion sensors or explic-
itly requests user approval when websites attempt to access them.
To the best of our knowledge no prior study has explored in-depth
the security risks posed by Android’s access control and permission
system policies that govern how in-app ads can use mobile sensors.

In this paper we introduce a novel attack vector that misuses
the ad ecosystem for delivering sophisticated and stealthy attacks.
Our threat model captures a malicious actor delivering a seem-
ingly legitimate mobile ad campaign, targeting benign mobile apps
downloaded from the official Play Store and targeting the rich data
returned frommotion sensors to perform a plethora of sensor-based
attacks, including stealing login credentials and credit card infor-
mation. While in practice any sensor-based attack demonstrated in
prior work is feasible, we focus on inferring the user’s touch input
due to the severe risk posed to users.

Our empirical investigation captures two separate attack scenar-
ios for inferring sensitive data, namely intra- and inter-application
data exfiltration. In the intra-application attack scenario, a motion-
based ad is able to infer users input when ads are “co-located”
with Views that contain sensitive input information. Even though
Google’s ad placement policies [7] instruct developers to not show
ads in Views that contain sensitive information, we found that de-
velopers do not always adhere to safe practices. More importantly,
we have identified a flaw that allows us to target apps even when
the ads are not “co-located” with the sensitive data. In more detail,
Google’s interstitial ads can be easily misused for capturing sensi-
tive input even if they are not displayed on top of sensitive Views,
since the JavaScript code of interstitial ads is executed from the
moment the ad is preloaded up to the moment the user clicks the
corresponding application element. As such, even if users are ex-
ploring other parts of the app when entering sensitive content (e.g.,
billing information for in-app purchases) they remain vulnerable.

Next, our inter-application attack scenario significantly expands
the attack surface, as it allows attackers to target any other app
currently running on the device, if the app showing advertisements
holds the SYSTEM_ALERT_WINDOW permission. Specifically, if the
host app has been granted the aforementioned permission and
an ad-related WebView is attached to the WindowManager, ads are
essentially allowed to execute JavaScript in the background, there-
fore making every other Android app vulnerable to sensor-based
side-channel attacks. Despite the known risks associated with this
permission [41], in certain cases (i.e., [32, 44]) it is still automati-
cally granted to apps installed from the Play Store. Our experiments
reveal that and it is obtained by 9.28% (416 out of 4,478) of the most

popular apps. To make matters worse, we discovered a critical se-
curity flaw in Android that prevents the user from killing the host
app from the task manager, while users are deceived as the host
app is no longer shown in the list of background apps despite not
having been terminated.

Our empirical analysis demonstrates that in-app advertisements
not only have the potential to access mobile sensors but are also
able to silently leak that data. Due to the severe implications of
these attacks, we build a novel automated framework for analyzing
in-app advertisements, which provides an in-depth view of requests
to access mobile sensors and distinguishes sensor access requested
by in-app advertisements from those requested by the app’s func-
tionality. We bridge the semantic gap for identifying the origin of
sensor calls by combining low-level hooks at the Android layer with
high-level hooks at the Network layer. We leverage our framework
to conduct a study of in-app advertisements in the wild, by analyz-
ing how they access mobile sensors across 4.5K of the most popular
apps obtained from the official Google Play Store. We conduct a
longitudinal study by periodically repeating the dynamical analysis
of the apps in our dataset over a period of several months, so as
to capture a more varied collection of ad campaigns. To further
diversify our study’s view of the ad ecosystem, we repeat a set of
experiments across different countries using VPN services. Our
study reveals that a large number of apps (27.28%) display in-app
ads that perform some form of device tracking or fingerprinting,
we also find several instances of ads accessing and exfiltrating mo-
tion sensor values to third-parties without the user’s knowledge or
consent. As the use of motion sensors in advertisements is gaining
traction, we expect such invasive advertisements to become far
more common in the near future.
In summary, we make the following research contributions:
• We introduce a novel attack vector that abuses the adver-
tising ecosystem for stealthily delivering attacks that abuse
mobile sensors, magnifying the impact and scale of sensor-
based attacks. Our empirical analysis reveals several flaws
in Android’s isolation, life cycle management, and access
control mechanisms that can be exploited for increasing the
attack’s coverage and impact.
• We conduct an extensive investigation of in-app ads access-
ing mobile sensors in the wild and identify several instances,
highlighting the threat posed by our attacks. To facilitate
additional research we publicly share our code.
• To mitigate our attacks, we propose a set of access control
policies and guidelines for the Android OS, app developers,
and ad markets. We have disclosed our findings to Android’s
security team, who acknowledged the potential for abuse.

2 BACKGROUND
This section provides background information and technical details
regarding the display of in-app ads.We also discuss pertinentmobile
sensor-based attacks demonstrated in prior work.

Mobile Sensors. A plethora of studies (e.g., [13, 27, 42, 58, 61,
66, 79, 108, 113, 114]) have demonstrated that apps can use the
data acquired from sensors like the Accelerometer, Gyroscope and
Light sensor for various sophisticated and often highly accurate
attacks [59], without requiring any permission from the operating

Session 4B: Wireless, Mobile, and IoT  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1066



system or the user. Researchers previously presented a taxonomy of
these sensor-based attacks [34, 57], where attacks are classified in
four major categories; Physical Activity Inference, Acoustic Attacks,
Digital Activity Inference and User Tracking. A notable example is
the Touchscreen Input Attack from the Digital Activity Inference
category that shows how sensors can be used to infer what the
user is typing [15, 18, 19, 47, 59, 62, 70, 77, 111]. This attack is made
possible by the changes in the screen’s position and orientation,
and the motion that occur while the user types.

Ads, WebViews & Sensors. Advertisements are usually writ-
ten in JavaScript, which enables the use of a plethora of powerful
API calls. Amongst these API calls are the HTML5 functions re-
sponsible for accessing mobile motion sensors. Specifically the
accelerometer sensor is accessed using the DeviceMotionEvent.-
acceleration [14] DeviceOrientationEvent [88] APIs, while
the DeviceMotionEvent.rotationRate [63] API gives access to
the gyroscope sensor. Moreover, the Generic Sensor API [106]
bridges the gap between native and web applications, is not bound
to the DOM (nor the Navigator orWindow objects) and can be easily
extended with new sensor classes with very few modifications.

Recent work [25, 34] reported that many websites and third-
party scripts access the information provided by these sensors
when accessed through a mobile browser. In practice, the mobile
advertising ecosystem has two different paths for displaying ad-
vertisements to users, either through the advertisements that are
embedded in a website that is accessed using a mobile browser app
(i.e., website-ads) or through embedded advertisements. The latter,
hereby referred to as in-app ads, are displayed inside the context of
a mobile application with the use of an Android WebView [43]. We-
bView is based on the Chrome/Chromium andWebView objects are
able to display web content as part of an activity layout. Specifically,
WebView for Android 7 - 9 is built into Chrome, while in newer
versions Chrome and WebView are separate apps. Even though
WebView lacks some of the features of a full-fledged browser, it can
evaluate JavaScript (e.g., evaluateJavascript()), interact with
cookies (e.g., setCookie()/getCookie()) and access a plethora of
mobile HTML5 APIs. Additionally, since WebView exists in the
same context as the actual application’s process, it also shares all of
the host application’s privileges (including normal and dangerous
permissions). To verify this, we created a mock app and separately
executed all HTML5 APIs that access mobiles sensors. We found
that WebViews are able to call every mobile sensor. Moreover, we
found that all mobile sensors (except GPS and Camera) do not
require the host app to hold any specific Android permissions.
Furthermore, if the app holds the appropriate permissions for addi-
tional capabilities, then WebView automatically and without any
interaction gains access to these as well.

3 MOTIVATION AND EXPLORATION
Here we describe some initial experiments and findings that moti-
vate our attack and our subsequent large-scale study.

Permissions and access control. In the first experiment we
verify that Android’s access control policies and permission man-
agement allow in-app advertisements to access motion sensors and
leak these values using common network techniques. We set up
a test bed consisting of an actual Android device playing the role

of the victim, while a Raspberry Pi was used for deploying an Ad
Server that will deliver the invasive advertisement. We deployed a
simple test application on our device, which includes an embedded
advertisement rendered within a WebView. In our experiments the
ad is successfully displayed and able to access the motion sensors,
while we can send the sensor values back to the Raspberry server
through an XMLHttpRequest or the GET/POST methods. We per-
formed this experiment twice, to verify that ads are not limited
to a one-time sensor reading but can also collect and exfiltrate
continuous sensor readings.

Sensor data leakage in practice. During a preliminary analy-
sis of ads in the wild, we identified an ad campaign accessingmotion
sensors and also sending that data to a remote server. Specifically,
we identified an in-app advertisement from a major telecommuni-
cation provider accessing motion sensors even if the user did not
interact with the ad, and leaking those values to a DoubleVerify
domain through a GET request. Since DoubleVerify provides online
media verification and campaign effectiveness solutions, we believe
that this could potentially be used for bot detection and ad fraud
prevention. Nonetheless, even though we can not assign (nor dis-
prove) malicious or invasive intentions behind this specific case,
we believe that users should explicitly be given the option to allow
or deny access to their sensor data.

Publishing sensor-based ads. Next, we wanted to investigate
whether any business-level or technical “countermeasures” exist in
practice, to prevent ads from accessing sensor data. Prior to conduct-
ing this experiment, a description of our study and experimental
protocol was submitted to and approved for exemption by our uni-
versity’s Institutional Review Board (IRB). Appendix A includes a
detailed ethical analysis of our experiment. For this exploratory ex-
periment, we signed a contract with a DSP and published an in-app
ad campaign accessing motion sensors. At the end of the campaign,
which reached 13K impressions at a cost of ∼ 15e, we obtained a
report from the DSP with information for the ad campaign (e.g.,
apps displayed, impressions, clicks, etc.). It is important to note
that in this experiment we did not gather any user information nor
did we exfiltrate any sensor values. Furthermore, the DSP report
contains only aggregate statistics and information, which cannot
be used to identify or infer any personal user data.

Summary. Based on our findings we argue that it is trivial for
privacy-invasive entities and cybercriminals to abuse the mobile ad
ecosystem for exfiltrating data by delivering advertisements that
capture the rich information provided by these sensors.

4 THREAT MODEL & ATTACK SCENARIOS
Here we introduce our threat model and provide details on how we
exploit flaws in Android’s isolation, life cycle management, and ac-
cess control mechanisms to expand the attack surface and magnify
our impact and coverage. We illustrate our findings through two
distinct scenarios, namely intra-app and inter-app data exfiltration,
and detail how attackers can exfiltrate billing information typed by
the user in popular and widely available Android apps.

4.1 Threat Model
We demonstrate a new attack vector that abuses the mobile ad-
vertising ecosystem for delivering a mobile sensor-based attack
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Figure 1: Overview of our attack vector. A malicious actor
publishes an ad campaign that accesses mobile sensors, for
delivering sophisticated and stealthy attacks.

which affects every Android device (71.93% of mobile users world-
wide [100]). As opposed to prior attacks, our attack vector does not
require any malicious app to be installed on the device, nor does it
rely on a user visiting a malicious website. Furthermore, as these are
embedded in-app advertisements, they cannot be blocked through
ad-blocking browser extensions. Our presented attack uses in-app
advertisements to obtain the device’s motion sensor readings, al-
lowing the attacker to stealthily infer sensitive user information
including any information that is typed on the screen (e.g., creden-
tials, credit card information, and pin numbers). While we use the
inference of user input as our driving scenario, since it is also the
most frequently feasible sensor-based attack [34], our attack vector
can be tailored for any sensor-based attack. This is possible due to
the lack of any restriction in accessing the device’s sensors (except
for the camera and microphone) through an Android permission
or a user prompt.

Figure 1 provides an overview of our attack, where the attacker
creates a seemingly-benign mobile ad campaign. Given that access-
ing sensor-based data is an emerging trend in mobile ads, with
up to a nine-times higher engagement rate than simple mobile
banners [74], the attacker can release their ad campaign through
major legitimate ad platforms. Since ad campaigns can be tailored
to specific needs, the attacker can instruct the Ad Server or DSP to
only display the ad on mobile devices and, specifically, as an in-app
ad. The attacker can even specify a set of select apps to maximize
the impact of the attack, as we describe in §4.2.

The actual context of the advertisement does not really matter
as our attack does not require the user to click on the ad or in-
teract with it in any way. The advertisement will go through the
normal process of publishing and eventually be displayed as an
in-app advertisement across different apps. When the advertise-
ment reaches the user’s device, the JavaScript code leverages the
appropriate HTML5 API calls for accessing the motion sensors and
then exfiltrates this data to a server controlled by the attacker.

Table 1: Feasible intra- and inter-app data exfiltration sce-
narios of in-app ads that access mobile sensors. In the inter-
app scenario, a (✓) denotes that access is still granted after
the corresponding user action.

Motion
sensors

CAM
P.O.1

MIC
P.O.1

GPS
P.O.1 | P.O.2

without
SYSTEM_ALERT_WINDOW

Intra-app data exfiltration

with
SYSTEM_ALERT_WINDOW

Inter-app data exfiltration

U
se
r
A
ct
io
ns

Device Lock ✓ ✓ ✓ ✓

UI Swipe ✓ ✓ ✓ ✗ | ✓

Swipe + Lock ✗ ✗ ✗ ✗

Force Stop ✗ ✗ ✗ ✗

4.2 Intra & Inter-Application Attacks
Here we provide technical details about two distinct attack scenar-
ios that can be used to exfiltrate sensitive data from an Android
device, namely intra and inter-application data exfiltration. We
present notable examples for exfiltrating billing information (e.g.,
credit card number, paypal account, etc.) for both attack scenarios
by targeting (i) the Google Play Billing Library, widely used for
in-app purchases in popular applications, and (ii) the official Play
Store app. Table 1 summarizes the app permission requirements
(if any) and whether sensor access is granted for different mobile
sensors in each attack scenario. CAM, MIC and GPS require that the
app holds the appropriate permissions. Apps targeting API versions
greater than API 28, also need ACCESS_BACKGROUND_LOCATION for
accessing GPS in the background. Additionally, since API 30 allows
different options for dangerous permissions, we tested the permis-
sion option “Allowed only while in use” (P.O.1) for CAM and MIC.
For GPS we tested “Allowed only while in use” (P.O.1) and “Allowed
all the time” (P.O.2). The User Actions rows denote whether sensor
access by in-app ads continues after specific user interactions (e.g.,
UI Swipe) for the inter-application data exfiltration scenario.

Intra-Application Data Exfiltration. In this attack we can
capture the input data of the Android app that is displaying the
sensor-capturing advertisement. This can be done through two dif-
ferent techniques, which we describe next, or using a combination
of both. In practice, advertisements are displayed inside a WebView
object, which is responsible for fetching and loading all the ad re-
sources from the web. Each WebView is displayed as part of an
activity layout and is co-located with other View objects. When
the WebView has finished loading the ad’s content, the appropriate
HTML5 APIs are executed and the advertisement can capture touch
input from the co-located View objects. This is extremely important
since many Views in Android apps contain sensitive input. We note
that apart from the WebView object responsible for displaying the
ad, other WebViews may coexist for handling other app function-
ality such as logging in or completing a payment. Therefore, any
part of the application that is attached to the View that contains the
ad is vulnerable for input hijacking. Even though it is considered
good practice to not show ads in Views with sensitive input, in our
analysis we found several cases of apps violating this guideline.
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Interestingly, the attack’s coverage significantly increases if the
application is using Google’s interstitial ad placements. Interstitial
ads are interactive advertisements that cover the interface of their
host app. These ads appear between content or activities and allow
for a more natural transition. In order to achieve this effect, intersti-
tial ads preload the advertisement’s content before being displayed
on the screen. Our empirical analysis revealed that Google’s library
for interstitial ad placements allows interstitial ads’ code to execute
from the moment they are preloaded until the user has closed the
advertisement. Since an interstitial ad will be displayed only when
a specific element of the app is pressed (and they can be attached to
any element) the code of the advertisement will continue running
until this specific element is pressed. As such, the user may be
exploring other parts of the app, including Views with sensitive
content, while the interstitial ad is capturing the motion sensor
data. It is important to emphasize that loading the interstitial ad
(i.e., loadAd()) as early as possible to ensure it is available during
the show(), is encouraged by the developer documentation [30].

Furthermore, our experiments with Google’s library for intersti-
tial ad placements revealed that these ads continue to execute code
not only in different Views but also in different Activities within
the same app. To make matters worse, the code will continue execut-
ing even if the application Activity that initiated the preloading
mechanism has been destroyed (e.g., activity.finish()). As such,
interstitial ads not only increase the attack’s robustness, but also
increase the attack’s stealthiness since even more security-cautious
users that do not input sensitive data when ads are being displayed
would be deceived. As we discuss in §6, our measurements reveal
that the use of interstitials is commonplace in popular apps.

Case Study - Play Billing library. Apart from login creden-
tials, an attacker using the techniques described above can also
target apps that offer in-app purchases in order to steal the user’s
billing information. Since in-app purchases are the most common
monetizationmodel, with users spending $380 billionworldwide [99],
apps that integrate them are ideal candidates for this attack. As
such, we tested Google’s Play Billing library version 2, as well as the
latest version 3.0.3 and found that in-app ads can capture motion
sensor data while the user is providing input in any of the available
billing options of the library (e.g., credit card, Paypal and Paysafe).

Inter-Application Data Exfiltration. Android apps are exe-
cuted in a sandbox environment and in different processes to pre-
vent unintended data leakage from one app to another. WebViews,
by default, are attached to the app’s UI thread and are not able to ex-
ecute code in the background if the user switches apps. Nonetheless,
Android offers a mechanism for executing code in the background,
specifically, by attaching a View in the WindowManager. Surpris-
ingly, we found that the same applies for WebViews; if the host app
holds the SYSTEM_ALERT_WINDOW permission for it’s core function-
ality, then an ad-related WebView can be configured to run in the
background and continue accessing motion sensors even if the user
switches apps. The SYSTEM_ALERT_WINDOW permission, according
to the official Android SDK [92], falls into a special category of
permissions that require the user to explicitly grant it when re-
quested (the app opens the Android Settings for this specific app
and informs the user of the permission’s abilities). However, if an ap-
plication is downloaded directly from the official Google Play, then

this permission is granted automatically and without any user inter-
action. Specifically, as mentioned in [44], an app’s developer can
issue a request to the Google Play App Review team so that the SYS-
TEM_ALERT_WINDOW permission is granted automatically. Addition-
ally, as mentioned in [32], if apps have the ROLE_CALL_SCREENING
and request the SYSTEM_ALERT_WINDOW they are also automatically
granted the permission. For instance, the com.truecaller app has
this functionality and if during the initial setup the user sets the
app as the default caller id and spam app, then the permission is
automatically granted. Moreover, during this step the app falsely
informs the user that no permissions are needed.

We argue that such instances of relaxed policies, not only confuse
users and developers alike but can lead to misuses with severe ram-
ifications. Furthermore, even experienced users that can identify
suspicious apps that were automatically granted the permission can
be mislead. This is especially true for popular apps that need this
permission for showing pop up messages and providing additional
functionality on top of other apps. Applications requesting this
permission include Skype, Facebook Messenger and Viber. We note
that Viber, a very popular messaging app that is used by banks for
sending two-factor authentication codes, contains ads and is suscep-
tible to our inter-application data exfiltration attack. Furthermore,
our manual investigation revealed that several apps request this
permission for their core functionality. For example, apps request
this permission for playing videos in the background while the user
is performing other tasks. These apps attach a WebView in the Win-
dowManager and are vulnerable to the inter-application scenario,
since the embedded in-app ads (including video ads) have access to
the motion sensors. To better illustrate the magnitude of this attack
scenario, we note that if one application holds this specific permis-
sion and is displaying ads, all apps installed on the device can be
compromised and are vulnerable to input hijacking. Even banking
apps that use the WindowManager.LayoutParams.FLAG_SECURE
option, a security feature to treat the contents of the window as
"secure" [93], are vulnerable to sensor-based inter-app side channel
attacks. As we describe later on, we found that 9.28% of the apps in
our dataset hold this permission, and 69.95% also display ads.

To make matters worse, we have also identified a security vul-
nerability that further magnifies the attack’s impact. In more detail,
when an app’s WebView is executing content in the background,
the Android operating system will not terminate the code even if
the user “kills” the host application using the traditional UI swipe
method. This issue is further complicated and the deceptiveness
of the attack is enhanced by the fact that the app will no longer
appear in the list of background apps, even though the application
and the WebView still exist and are executing code.

In fact, as can be seen in Table 1, we have only identified two
ways for the user to successfully close the app and terminate any
background executed code. One way is to navigate to the Android
Settings, select the app and then select the force-stop option. An-
other way for stopping all app activities is to perform the UI swipe
for the host app and also lock the device. We tested this abnormal
functionality on Pixel devices running (AOSP) API 29 and API 30
using a mock app with a WebView that accesses mobile sensors
using HTML5 WebAPIs. The Pixel 4 device had Android v11 and
the latest security updates at the time of writing (April 2021).
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Figure 2: Overview of our framework’s infrastructure. The
combined components of both layers provide an in-depth
view of requests to access mobile sensors. Components
in the Android layer (left) are responsible for monitoring
system API calls, while components in the Network layer
(right) monitor JavaScript calls and network traffic.

Case Study - Play Store. Even though many popular apps con-
tain sensitive input information, one app that is pre-installed on
every Android device is widely used and contains sensitive input
information. Specifically, we tested the official Play Store app and
found that through the in-app ads of background apps, attackers
can capture the motion sensor values while the user is typing billing
information in the Play Store’s “Payments & Subscriptions” section.

5 SYSTEM DESIGN AND IMPLEMENTATION
Motivated by our preliminary findings, we conduct a large-scale,
end-to-end automated study of in-app advertisements accessing
mobile sensors. We dynamically analyze applications with in-app
advertisements and monitor access to all available mobile sensors
and record any potential leakage of this type of data.

One of the challenges for dynamically analyzing in-app ads is
being able to differentiate sensor accesses issued by embedded
ads from those that originate from the app’s core functionality.
Our framework obtains an in-depth view of sensor data access by
combining logs from two different layers. As can be seen in Figure 2,
for each of these layers (Android and Network) wemonitor different
API calls using multiple components. At the Android layer we
monitor system call usingmodules from theXposed framework [91],
while at the Network Layer we monitor HTML5WebAPI calls using
injected JavaScript code. Our testbed consists of three Nexus 5x
devices, running Android 7.1.1 that we configured with the mitm
proxy’s root certificate that allows us to intercept HTTPS traffic.
In Appendix A, we provide additional technical details concerning
our methodology for monitoring in-app advertisements.

Android Layer. This part of our framework monitors apps’ ac-
cess to sensors by intercepting Android system calls using a custom
Xposed module that detects and hooks requests to sensor-specific
Android API calls. Since values from the accelerometer and the gy-
roscope are expected to change when the device is used by an actual
human and becausemotion sensors have been used by apps to evade
analysis or hide suspicious activity [71], we made our infrastructure
more robust by intercepting the values returned by certain sensors

and slightly modifying them within appropriate and legitimate
bounds. We identify ad hyperlinks inside WebViews by hooking
the appropriate WebView and Chromium APIs. Additionally, we
leverage functionality from prior work [35] for (i) verifying which
of the sensor-specific Android API calls are permission-protected
and (ii) traversing the app’s graph using a breadth-first traversal
for achieving high coverage.

Network Layer. The other major component of our framework
employs a transparent proxy server for intercepting all network
traffic by using mitmproxy [23] and injecting code for intercepting
JavaScript calls. We used the javascript-hooker Node.js mod-
ule [16] which allows us to hook any JavaScript function called
inside a WebView and intercept the method to be called and its
arguments. Using this approach we hook all the functions that
access and retrieve mobile-specific sensor data through the offi-
cial mobile HTML5 WebAPI [40]. We also monitor any calls of the
XMLHttpRequest function, since in-app advertisements can leak
data using this method. The injected JavaScript logs all informa-
tion to the console. To log this information to the Android logcat,
we created an Xposed module and during run-time hooked the
android.webkit.WebChromeClient.onConsoleMessage() func-
tion and performed any necessary instrumentations for redirecting
any console messages to the logcat along with other useful infor-
mation, such as the package name of the app being tested. Using
this technique we can also verify that network flows and JavaScript
accessing motion sensors or other tracking related WebAPIs origi-
nate from the app being tested. Table 7 in Appendix A, provides a
complete list of all the HTML5 WebAPIs monitored by our system.

By combining hooks from low-level sensor-related system calls
as well as JavaScript calls from the network, we can successfully
distinguish sensor access requested by in-app advertisements from
those requested by the app’s functionality. Specifically, if we identify
a sensor system call from the OS without a corresponding sensor
API call at the network layer, then we can deduce that the app itself
requested access to this sensor. On the contrary if we identify both
a sensor call (e.g., for the Accelerometer) at the network layer and
the Android layer then we can successfully deduce that the in-app
advertisement accessed the mobile sensor. It is worth noting that
in cases where both the application and the in-app advertisement
perform the same sensor call, our analysis is not affected. Finally,
to avoid contamination from other apps accessing sensors, we an-
alyzed each app individually and limited other background app
activities using the adb toolkit. We verified that our framework
behaves as expected by executing separately all HTML5 APIs that
access mobile sensors using a mock application.

6 LARGE SCALE MEASUREMENT STUDY
Here we present our findings from our large-scale study on the use
of HTML5 WebAPI calls by embedded in-app ads in the wild.

6.1 Dataset & Experimental Setup
App selection. Our main app dataset consists of free apps down-
loaded from the official Google Play market. First, we selected the
top 100 apps (or as many as were available) from 61 categories.
Next, using two lists of websites that access mobile sensors [25, 34],
we tried to download the corresponding mobile app if it exists in

Session 4B: Wireless, Mobile, and IoT  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1070



Table 2: Number of apps containing in-app ads accessingWe-
bAPIs, analyzed across different countries.

WebAPI #Apps per country
US RU IN UK DE GR

Mobile-specific

window - devicemotion 4 2 3 4 3 11
window - deviceorientation 0 1 0 1 1 1
window - orientationchange 3 1 2 8 4 29
screen - change 0 0 0 1 1 1
getBattery 1 0 1 3 4 10

General

XMLHttpRequest.send 20 19 16 20 87 1056
getTimezoneOffset 8 2 2 5 82 958
toDataURL 0 0 0 0 0 7
getContext 4 3 3 2 7 63
WebGLRenderingContext 0 0 0 1 2 6
setItem 2 1 0 2 92 1,171
getItem 1 1 1 2 81 1,026
removeItem 2 1 0 1 92 1,149
key 0 0 0 0 0 14
createElement(canvas) 7 17 2 8 13 65

the official store. Overall, we downloaded 4,478 apps from Google
Play using the Raccoon [1] framework.

Analysis and location. Since we cannot have a-priori knowl-
edge about when a specific ad campaign that accesses motion sen-
sors will run, nor can we know which apps may be targeted by
such advertisements, we opt for using a large number of apps from
different categories, which we periodically re-examine over the
course of eight months (9/01/2020 - 4/30/2021). Furthermore, to
avoid biasing our study by constraining it to ads displayed in a
specific country, since policies and legislation may govern their be-
havior and differ across jurisdictions, our infrastructure leverages a
VPN service for simulating users browsing from different countries.
For our experiments using the VPN service, we selected a subset
of 200 apps and analyzed them in several countries. Even though
techniques exist for identifying whether an app is hiding behind
a VPN (e.g., GPS coordinates, nearby WIFI access points), we em-
pirically verified that this straightforward approach is effective for
obtaining foreign ads. Overall, we analyzed 4,478 apps in our main
experiment, and 200 apps for each VPN session in other countries.
As such, our analysis includes advertisements from USA, Russia,
India, the United Kingdom, Germany and Greece.

App installation and exercising. Our framework installs and
analyzes each application individually. At installation time we ap-
prove all permissions that the apps may request, including run-time
permissions, using the “adb install -g” option. Finally, using
the UIHarvester module [35], our framework interacts with each
application for five minutes using a breadth-first traversal strategy.

6.2 Intra-app Data Exfiltration
WebAPI Accesses. As can be seen in Table 2, in-app ads access a
plethora of HTML5 WebAPIs, both mobile-specific and not, across
all countries.We found several instances of in-app ads accessingmo-
tion sensors using theWebAPIs addEventListener(devicemotion)
and the addEventListener(deviceorientation), which return
continuous values from the Accelerometer and Gyroscope respec-
tively. We did not find any in-app advertisements accessing the
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Figure 3: Number (top) and ratio (bottom) of apps with
Google’s interstitial ad placements, per ranking bin.

camera, the microphone or the GPS of the device, even though
many of the tested apps had these permissions in their Manifest file
and were, thus, allowed to use them at run-time. Regarding the GPS
sensor, in-app ads may use another non-intrusive way for roughly
estimating the device’s location, by utilizing the getTimezoneOff-
set function to infer the user’s timezone.

We also observe several ads using the navigator.getBattery
API, which provides information about the battery status and can be
used to effectively track users across the web [69]. Moreover, we ob-
serve that in-app ads access functions that are known to be used for
canvas fingerprinting, such as HTMLCanvasElement.toDataURL,
HTMLCanvasElement.getContext, createElement(canvas) and
WebGLRenderingContext. Finally, we find in-app ads reading, writ-
ing and deleting data from local storage using getItem, setItem
and removeItem respectively. Even though we did not further in-
vestigate whether in-app ads access local storage for malicious
activities, since it falls outside of the scope of this paper, we believe
that such functions should be restricted since local storage can be
used for re-identifying mobile devices [101].

Google’s Interstitial Ad Placements. Google’s library for in-
terstitial ad placements allows ads to capture sensor data not only
from the View displaying them but from others as well, thus in-
creasing the attack surface of the intra-app data exfiltration attack.
Our analysis shows that Google’s interstitial ad placements can be
found on average in 14.14% of the apps; Figure 3 shows the number
of apps that contain Google’s interstitial ad placements based on
their numbers of downloads. We observe that interstitial ad place-
ments are more prevalent across apps that have between 100K+
and 100M+ downloads. Apps with 5B+ downloads are rare and
most of them either do not contain ads (e.g., WhatsApp, Messen-
ger) or may use their own tools for interstitial ad placements (e.g.,
Facebook). We argue that Google’s interstitial ad library currently
presents a significant threat to users, as it allows ads to execute
their JavaScript before they are displayed on the screen, affecting
even apps that adhere to secure development practices and separate
sensitive functionality and Views from ad-related content.
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Table 3: Top 10 most popular apps with the SYSTEM_ALERT_-
WINDOW permission. Additional app permissions (CAM, MIC
and GPS) allow in-app ads to silently capture photos, listen
to conversations and retrieve the device’s position even if
the app is in the background.

⇓ DLs Package Name CAM MIC GPS

5B+ com.google.android.music ✗ ✗ ✗

5B+ com.facebook.katana ✓ ✓ ✓

1B+ com.lenovo.anyshare.gps ✓ ✓ ✓

1B+ com.twitter.android ✓ ✓ ✓

1B+ com.facebook.lite ✓ ✓ ✓

1B+ com.skype.raider ✓ ✓ ✓

500M+ com.imo.android.imoim ✓ ✓ ✓

500M+ jp.naver.line.android ✓ ✓ ✓

500M+ com.viber.voip ✓ ✓ ✓

500M+ com.mxtech.videoplayer.ad ✓ ✗ ✓

6.3 Inter-app Data Exfiltration
SYSTEM_ALERT_WINDOW permission. Apps that request this dan-
gerous permission and are downloaded from Google Play may
automatically obtain the permission without any user interaction
or consent. This permission allows WebViews to be attached to
the WindowManager and execute code that can access sensors in
the background. To make matters worse, unaware users do not
know that such background activities remain alive even if they
perform a UI swipe to terminate the app. In our dataset 416 apps
hold this permission and 291 out of them are marked by Google
Play as “Contains Ads” (i.e., in-app ads). Table 3 shows the 10 most
popular apps that contain ads and hold this permission.

Apart from motion sensors that do not require a permission, for
each app we also include other dangerous permissions that provide
access to additional sensors (e.g., CAM, MIC and GPS) and can be
abused by in-app ads. We note that if one of these apps is installed
on the device and a WebView displaying ads is configured to run in
the background (due to intentional or accidental misconfiguration,
by the developer or an integrated third-party ad library), all of the
user’s apps are vulnerable to the touch input inference attack. Based
on our findings we argue that these apps should carefully review
the security implications of obtaining this dangerous permission
and whether it is really needed for their functionality; if it is indeed
necessary, apps should explicitly inform users and ask for consent.

Motion Sensor Leaks. During our experiments with in-app
advertisements, we found several cases where motion sensors were
accessed and the values were leaked to third-party domains. Table 4
presents these results with applications tested multiple times over
several months. Each app that we list may have displayed more
than one in-app ad that accessed motion sensors (e.g., Vodafone
ad) during a single execution. For each in-app ad that listens to
devicemotion and deviceorientation events, since these APIs
return continuous data, we also mark whether the corresponding
app is vulnerable to the intra or the inter-app data exfiltration at-
tack. For the former, an app is marked with a (G) if it displays ads
in sensitive Views (e.g., login), or with a (H) if it uses Google’s
interstitial ad placements. If both are true they are marked with
( ). In the inter-app data exfiltration attack, we mark all apps that

hold the SYSTEM_ALERT_WINDOW permission and give the ability
to in-app ads to run in the background, rendering any other app
running on the device vulnerable. In more detail, this is possible if
the WebView displaying the ad is attached to the WindowManager
using the WindowManager.addView() and provides the TYPE_AP-
PLICATION_OVERLAY/TYPE_PHONE layout parameter. Even though
we statically analyzed these apps for instances of ad-related Web-
Views being attached to the WindowManager we didn’t find any.
Nonetheless, it is well-known that mobile ad fraud is on a constant
rise (e.g., [20, 24, 55]) and since ad libraries are mostly responsible
for ad fraud activities [55], it would not be surprising if ad libraries
are found to abuse the SYSTEM_ALERT_WINDOW permission in the
future. Finally, for each entry we list the ad placement’s domain and
the last column denotes whether we could identify any motion data
leakage in the network traffic and the corresponding JavaScript.

We found that motion sensor values are leaked to DoubleVerify’s
domains. Interestingly, even though DoubleVerify’s policies state
that data is collected to help customers measure the performance of
the advertisement [36], they do not provide a detailed explanation
or analysis on sensor data collection. Furthermore, as the use of
motion sensors in advertisements is gaining traction, we believe
that more publishers will likely appear soon. For entries that are not
marked with sensor data leakage our system automatically iden-
tified that the advertisement accessed the motion sensors but we
were not able to identify such values in the network traffic. This is
due to the fact that most of the analyzed JavaScript code was heavily
obfuscated and performed some form of data transformation, and
also used additional libraries downloaded from the network. We
observe that in-app ads that access motion sensors are not limited
to a specific country since in all of our VPN sessions we identified
such cases. Moreover, in certain cases (e.g., com.genius.android) we
found that apps display in-app ads with access to motion sensors in-
dependently of the origin country. The actual content of the in-app
ads we analyzed varies and we found that the ads accessing sensors
included, among others, Vodafone products, Disney+ promotions
and online gambling services. We observe that in many cases, the
apps displaying ads with access to motion sensors are vulnerable
to at least one of our attack scenarios and, in certain cases, to both.

Browser Apps present an interesting category of apps that re-
quires a tailored approach to their analysis due to inherent charac-
teristics of their functionality, e.g., the ability for multi-tab browsing.
As such, it is important to better understand whether they enforce
some access control policy for in-app ads, which requires man-
ual analysis in a controlled and targeted experiment. In general,
our next experiment aims to identify whether in-app ads are al-
lowed to access motion sensors and if they are displayed (or execute
JavaScript) in webpages with sensitive content.

Out of the most popular browser apps that are marked by Google
Play as “Contain Ads”, we selected those that we found to display
in-app ads after ten minutes of manual interaction. Table 5 lists
the browser apps that we tested, their number of downloads, and
additional dangerous permissions for sensors that they hold. In
order to exclude website-ads from our analysis, for each browser
we visited a website with sensitive content that we know a priori
does not display advertisements (i.e., the Facebook login page) and
checked for in-app ads that are displayed on the screen, and for
network flows that originate from ad domains. To identify whether
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Table 4: Non-browser apps with in-app ads that listen to devicemotion and deviceorientation events. Intra Vuln denotes that
the app either displays ads in sensitive Views (G) or uses Google’s interstitial ad placements (H). If both occur they are marked
with ( ). Inter Vuln denotes apps with the SYSTEM_ALERT_WINDOW permission.

⇓ DLs Package Name Motion
Events

Orientation
Events

Intra
Vuln

Inter
Vuln Ad Placement Sensor

Leaks

USA

10M+ com.bigduckgames.flowbridges ✓ ✗ H ✗ pubads.g.doubleclick.net tps20228.doubleverify
10M+ com.resultadosfutbol.mobile ✓ ✗ H ✗ pubads.g.doubleclick.net -
5M+ com.genius.android ✓ ✗ G ✓ pubads.g.doubleclick.net -
10K+ com.kdrapps.paokfcnet ✓ ✗ H ✗ pubads.g.doubleclick.net tps20512.doubleverify

Russia

5M+ com.genius.android ✓ ✗ G ✓ pubads.g.doubleclick.net tps20512.doubleverify.com
1M+ com.studioeleven.windfinder ✓ ✓ ✗ ✗ pubads.g.doubleclick.net -

India

5M+ com.bingoringtones.birds ✓ ✗ H ✗ pubads.g.doubleclick.net tps20516.doubleverify
500K+ com.appscores.football ✓ ✗ H ✗ pubads.g.doubleclick.net tps20516.doubleverify
500K+ com.promiflash.androidapp ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20519.doubleverify

United Kingdom

100M+ com.melodis.midomiMusicIdentifier.freemium ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20518.doubleverify
10M+ com.livescore ✗ ✓ ✗ ✗ pubads.g.doubleclick.net -
10M+ com.ilmeteo.android.ilmeteo ✓ ✗ H ✗ pubads.g.doubleclick.net tps20518.doubleverify
5M+ com.genius.android ✓ ✗ G ✓ pubads.g.doubleclick.net tps20514.doubleverify
500K+ com.famousbirthdays ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20515.doubleverify

Germany

10M+ com.resultadosfutbol.mobile ✓ ✓ H ✗ pubads.g.doubleclick.net -
5M+ com.genius.android ✓ ✗ G ✓ pubads.g.doubleclick.net tps20515.doubleverify
1M+ com.studioeleven.windfinder ✓ ✗ ✗ ✗ googleads.g.doubleclick.net tps20515.doubleverify

Greece

10M+ com.ilmeteo.android.ilmeteo ✓ ✗ H ✗ pubads.g.doubleclick.net tps20519.doubleverify
5M+ com.genius.android ✓ ✗ G ✓ pubads.g.doubleclick.net tps20512.doubleverify
1M+ com.studioeleven.windfinder ✓ ✗ ✗ ✗ googleads.g.doubleclick.net tps20237.doubleverify
1M+ hurriyet.mobil.android ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20520.doubleverify
1M+ com.mynet.android.mynetapp ✓ ✓ ✗ ✗ embed.dugout.com -
1M+ com.finallevel.radiobox ✓ ✗ ✗ ✗ googleads.g.doubleclick.net tps20515.doubleverify
1M+ netroken.android.persistfree ✓ ✗ ✗ ✓ pubads.g.doubleclick.net tps20515.doubleverify
1M+ com.phototoolappzone.gallery2019 ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20516.doubleverify
500K+ com.famousbirthdays ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20236.doubleverify
500K+ com.kupujemprodajem.android ✓ ✗ ✗ ✗ pubads.g.doubleclick.net tps20514.doubleverify
100K+ de.heise.android.heiseonlineapp ✓ ✗  ✗ googleads.g.doubleclick.net tps20520.doubleverify

browser apps enforce any access control for what an in-app ad (and
its WebView) can access, we injected JavaScript code that accesses
motion sensors only in network flows originating from ad domains.

In Table 5 we list the results of this experiment. We found that
none of these browsers enforce any access control for in-app ads
that access motion sensors, and all of them allow in-app ads to
capture sensor data. Even though most of the browsers we tested
did not display ads while visiting Facebook’s log in page, we found
that in-app ads displayed in the Home tab (or in any other tab) of the
browser continue to access sensors even if the user switches tabs.
As such, all browsers indirectly allow in-app ads to access sensors
while a sensitive View is displayed, even if there is no ad in the
current tab. According to Google’s general policies [7] for web ads,
it is forbidden to place ads in login pages. While this is a security
practice that should be followed by all ads, we find that this is not
the case with mobile apps, as Puffin displayed an in-app advertising
banner on Facebook’s login page. In summary, we found that (i)
all browsers allow access to motion sensors by in-app ads, (ii) all
browsers allow in-app ads to capture sensor data while a sensitive

View is displayed, (iii) two browsers use Google’s interstitial ad
placements and (iv) four browsers hold the SYSTEM_ALERT_WINDOW
permission. As such, all tested browsers are vulnerable to either
the intra or the inter-app data exfiltration scenario, or both.

7 INPUT INFERENCE
Many prior studies have demonstrated the feasibility of input infer-
ence attacks using sensor data. While our main focus is exploring
the feasibility of using the ad ecosystem as a sensor-based-attack
delivery system and the underlying flaws in Android, we also ex-
plore the actual input inference phase of our attack. To that end, we
build an input inference classifier based on Axolotl [83]. Since Ax-
olotl’s learn_location classifier is intended for use with iPhone
devices, we modified it to work with a Google Pixel 4 device by
changing different settings (e.g., display resolution, ppi density, etc.).
Furthermore, as our goal is to predict the label of each keystroke
(i.e., which key was pressed) we have developed a component for
mapping the predicted coordinates into key labels.
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Table 5: Browsers marked by Google Play with in-app ads that listen to devicemotion and deviceorientation events. CAM,
MIC and GPS application permissions allow in-app ads to access additional sensors.

⇓ DLs Browser Package Names Motion
Events

Orientation
Events

Intra
Vuln

Inter
Vuln CAM MIC GPS In-app ads displayed

on FB’s login page

500M+ com.opera.mini.native ✓ ✓ G ✓ ✓ ✗ ✓ ✗
100M+ com.opera.browser ✓ ✓ G ✓ ✓ ✓ ✓ ✗
50M+ com.cloudmosa.puffinFree ✓ ✓  ✗ ✓ ✓ ✓ ✓
10M+ fast.explorer.web.browser ✓ ✓  ✗ ✗ ✗ ✓ ✗
10M+ browser4g.fast.internetwebexplorer ✓ ✓ G ✓ ✓ ✗ ✓ ✗
10M+ com.apusapps.browser ✓ ✓ G ✓ ✗ ✗ ✓ ✗

We use Axolotl’s deep neural network (DNN) model as our base-
line and propose three additional DNNmodels. First, Axolotl’s DNN
model has multiple layers for progressively extracting higher-level
features from the sequential inputs from the accelerometer and
gyroscope sensors. To precisely predict the location of each key-
stroke, this model applies the linear activation function for each
layer and mean squared error (MSE) loss [10] for gradient computa-
tion. This model predicts the coordinates of the point on the screen
that the user pressed, which we then map to the corresponding
key label. Next, we build two novel models that directly predict
key labels based on the input data. Second, we build a DNN model
that uses the Rectified Linear Unit (ReLU) [65] as the hidden layer
activation function and softmax activation for the output layer. To
compute the multi-class classification loss, we use the Categorical
Cross-Entropy Loss to update model weights during training. Our
third model uses Recurrent Neural Network (RNN) techniques that
capture the relationship between recent keystroke information for
prediction. However, vanilla RNNs can be affected by long-term
sequential data, and Long Short Term Memory (LSTM) networks
have been proposed for learning long-term dependencies [46]. As
such we use a Gated Recurrent Unit (GRU), which is a special case of
LSTM but with simpler structures (e.g., uses fewer parameters) [21],
to build our prediction model. Compared to LSTM, GRU also works
well on long-term sequential data but is more efficient. Moreover,
we also use the Dropout technique [98] to make the model less
prone to over-fitting and achieve better performance. Finally, we
also develop a GRU-based model that predicts coordinates, similar
to Axolotl’s approach, instead of key labels.

Our input inference attack captures and uses motion sensor
values from in-app ads. We created two datasets for training our
classifiers using a similar setup. A mock app is used for loading a
webpage that calls the HTML5 functions that access motion sensors
and outputs sensors values to logcat. Additionally, apart from the
accelerometer and gyroscope values, we log the coordinates (i.e.,
x,y) while touching the screen, which are then normalized between
-1 and 1. A value of -2 is used to indicate that no touch occurred at
that time. Using this setup we created two different typing datasets.
One dataset contains samples created using two-handed typing,
while the other contains samples created using one-handed typing.
In both datasets keys were pressed randomly for one hour.

Our motivating attack example paper is inferring the credit card
number and CCV being typed by the user. As such our models
attempt to identify and label any key presses that correspond to a
digit; all other key presses are labelled as “other”. We present the
results from our experimental evaluation in Table 6. In both typing

Table 6: Inference accuracy of the classification models.

Typing Duration MLP-MSE GRU-MSE ReLU GRU

two-handed 5 minutes 47.63% 62.87% 74.32% 74.56%
one-handed 5 minutes 37.73% 40.92% 44.57% 44.49%
two-handed 10 minutes 50.49% 70.53% 78.63% 79.19%
one-handed 10 minutes 39.04% 44.67% 50.07% 50.10%
two-handed 20 minutes 52.19% 79.23% 82.53% 82.87%
one-handed 20 minutes 39.76% 45.76% 52.51% 54.11%
two-handed 30 minutes 52.68% 81.70% 84.79% 85.66%
one-handed 30 minutes 40.17% 51.11% 55.64% 56.67%
two-handed 60 minutes 53.38% 85.25% 87.06% 87.51%
one-handed 60 minutes 40.57% 50.48% 59.70% 59.99%

scenarios, we evaluated our classifiers using different dataset sizes
by sampling 5, 10, 20 and 30 minutes from the corresponding one
hour dataset. In each experiment we used 2/3 of the dataset for
training and 1/3 for testing. Our two models that directly predict
key labels outperform Axolotl’s baseline model (MLP-MSE) and
our version of a coordinate-predicting model (GRU-MSE) across all
experimental setups, with the GRU model that returns key-press
labels exhibiting the highest accuracy in most datasets. As one
might expect, two-handed typing is more consistent and stable,
resulting in a more accurate inference by our system. We observe
that the GRU model is accurate for two-handed typing even when
trained with a small dataset (e.g., 5 minutes) and reaches 87.51%
when trained with enough samples. Additionally, the ReLU and
GRU models performance is comparable across datasets, while in a
single case the ReLU model outperforms GRU.

The intent of this exploratory experiment is to demonstrate the
feasibility of misusing in-app ads for conducting input inference
attacks. While the two models we propose achieve high accuracy,
and we will open-source our code to facilitate additional research,
our goal is not to replicate the extensive experiments conducted by
studies that focused on input inference. Importantly, findings from
prior work further support the generalizability of our results and
the practicality of our proposed attack. Specifically, prior work has
shown that techniques for reconstructing users’ touch input are ef-
fective evenwhen tested against a variation of devices with different
hardware characteristics, screen orientation, display dimensions or
keyboard layouts [19]. In most studies [15, 19, 47, 59, 62] a diverse
training dataset with multiple users was used, and experiments
suggest that inferring PINs is actually more consistent and accurate
when training and testing is done across multiple users and devices
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rather than a single device or user [19]. Hodges et al. [47] demon-
strated that even when using a very short training dataset (i.e., less
than the size of a tweet) the accuracy of these techniques remains
surprisingly high (they report 81% accuracy in bigram prediction).
Similar findings were observed by Miluzzo et al. [62], further sug-
gesting that a pre-trained classifier from a small number of people
could be successfully used to infer other users’ taps at a large scale.

8 DISCUSSION
Here we discuss various dimensions of the emerging threat of in-
app ads accessing rich features of the operating system, and propose
a set of guidelines for better protecting users.

Automatically Identifying Sensor Leaks. While our system
is able to automatically identifyWebAPIs that access mobile sensors
by in-app ads, it is also important to identify whether motion sensor
data is exfiltrated over the network. Several challenges exist for
tracking sensor values from low-level system calls to the network
layer. Prior work (e.g., [72, 85]) proposed mechanisms that identify
device identifiers (e.g., MAC address, Advertising ID, etc.) being
leaked over the network. These techniques can not be applied di-
rectly in our case because mobile sensors provide continuous values
that change based on the device’s position. While one could inter-
cept the appropriate APIs so as to always return the same unique
value, prior work has shown that apps (and by extension in-app ads)
can hide suspicious activity when provided with a constant sensor
value [71]. Another mechanism for identifying leaks in Android
apps is AGRIGENTO [22], which is based on blackbox differential
analysis and detects leaks by observing deviations in the resulting
network traffic even in the presence of obfuscation. Unfortunately,
this approach requires at least two executions and is thus inherently
better suited for experiments that focus on app-specific behavior;
due to the dynamic nature of the advertising ecosystem different
in-app ads may be shown across executions of the same app.

While in our study we manually analyzed the JavaScript code
and the network flows of in-app ads that access motion sensors,
motivated by prior work we propose a more systematic method-
ology for identifying sensor leaks over the network. Specifically,
we developed a tool for identifying sensor leaks (i) by tracking the
raw sensor values provided by the motion sensors of the operating
system and (ii) searching for specific keywords used for labelling
sensor values in network traffic. To track sensor values, first, we
manually identified which Android sensors are triggered when
specific WebAPIs are called. For example, when the function win-
dow.addEventListener("devicemotion",function(event)) is
triggered, the event rotationRate maps to the TYPE_GYROSCOPE
sensor, while the events accelerationIncludingGravity and ac-
celeration, map to TYPE_ACCELEROMETER and TYPE_LINEAR_AC-
CELERATION sensors respectively. Next, we modified the SensorDis-
abler [107] module to return values (within the appropriate range
for each sensor) from a list of predefined values. These steps ensure
that the HTML5 WebAPIs responsible for accessing motion sensors
always return legitimate predefined values which can be identified
in network flows. Since these values can be leaked in an encoded
form we also check for these values in common encoding formats
(e.g., base64). We consider a large-scale measurement and evalua-
tion of this tool in the wild as future work. We also note that our

technique for identifying sensor data in network flows suffers from
certain limitations; we can not handle cases where sensor values in
network traffic have been encrypted or are heavily obfuscated.

Responsibilities, countermeasures and guidelines. Due to
the severity of the attacks enabled by mobile sensors inside in-app
advertisements, it is imperative to inform the advertising commu-
nity and establish guidelines for access control policies. We strongly
believe that users should be given the option to allow or deny ac-
cess to any sensor information. Even though access control policies
enforced using Android permissions exist for sensors such as GPS,
Camera and Mic, we found that it is also crucial to guard with an
Android permission motion sensors. Unfortunately, even if this
policy is enforced by the OS, it only partially solves the problem
since in-app ads exists in the same address space as the actual ap-
plication’s process, and share all of the application’s privileges. As
such, it is also a responsibility of the World Wide Web Consortium
(W3C) to update the HTML5 policies for access to motion sensors
by coupling them with the Permissions API. To bridge the gap be-
tween policies of the OS and the HTML5, Android can establish
a general interface that allows users to distinguish access control
to sensitive data and sensors between the native part of the app
and WebViews dedicated for displaying advertisements (since Web-
Views that are part of the core functionality of the app may require
access to these sensors). These complex policies, if they are to be in-
troduced, require careful design and a strong collaboration between
OS vendors and the W3C. Bellow we list a set of guidelines that
users, developers and the ad ecosystem can follow as a temporary
solution until a more generic policy is enforced.

Ad ecosystem. Advertising entities responsible for creating, sell-
ing and publishing ads must enforce stricter policies. They should
not allow JavaScript in advertisements to access motion sensors
unless there is a specific and well-documented reason to do so in
the ad campaign contract. Furthermore, all ads must be dynami-
cally analyzed in a sandboxed environment before publication, to
eliminate cases of suspicious obfuscated behavior and data leakage.
Ad-related entities that collect sensor data for their own purposes
should provide a detailed explanation in their privacy policies.

Android access control and permissions. We argue that intersti-
tial ads should not be allowed to execute JavaScript before they
are displayed on the screen. Even though the main purpose of
interstitials is to effectively load JavaScript and prepare the ad’s
content so it is ready for display at the desired time, it is challenging
to enforce access control mechanisms for motion sensors at this
layer. We believe that a possible solution for motion-based side
channel attacks is to extend the functionality of the FLAG_SECURE
option to also block access to motion sensors whenever a View
with this option is in the foreground. The FLAG_SECURE option is
already used by system apps when displaying Views with sensitive
content, such as the billing information in the Play Store app and
the Play Billing lib used for in-app purchases. Additionally, user
applications (e.g., banking apps) already use this flag to prevent
other apps from taking screenshots or reading the contents of the
screen, which benefit from this solution. Additionally, apps that
render web content (including in-app ads) should ask users’ for
their consent prior to accessing sensor information. Apps that do
not require access to motion sensors for their core functionality
must also inform users and ask for their consent, since it is possible
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for embedded in-app ads to access these sensors. If users do not
agree, WebViews with in-app ads should have limited functionality
(e.g., setJavaScriptEnabled(False) and only display static ads.

Apps & Devs. Applications with in-app ads should never allow
them to be displayed in sensitive forms (e.g., login). Moreover,
browser apps should enforce navigational and cross tab isolation.
In-app ads displayed while visiting a specific domain must not
exist when visiting another domain. Additionally, the execution
of JavaScript from in-app ads displayed in browser’s Home screen
must terminate when users open a new tab. Developers should
thoroughly review the ad libraries they integrate in their apps. If in-
app ads from the embedded ad libraries are responsible for sensor
data collection then it is also their responsibility to inform users
and ask for consent. Moreover, developers should not allow ad libs
to include additional permissions without a detailed explanation.

Users.The SYSTEM_ALERT_WINDOW is a dangerous permission and
users should carefully revise which of their installed apps have been
granted access. Furthermore, we urge users to be cautious while
operating apps in multi-window mode [31]. The multi-window
mode (i.e., split screen) is used for displaying more than one app
simultaneously and allows in-app ads to capture motion sensor
values while the user is interacting with another app. Additionally,
it is possible for in-app ads to access motion sensors even if the
second application in the split screen mode is the Android Settings
app, which processes sensitive data (e.g., account credentials).

Ethical Considerations.We carefully designed our experiments
to minimize the effect of our experiments. Specifically, in our large-
scale analysis experiments our framework did not click on ads to
avoid incurring additional costs on advertisers. As such, the impact
of our experiments is that of any measurement study that dynami-
cally analyzes free Android apps, which commonly show in-app ads.
Additionally, our IRB-exempted experiment with the ad campaign
did not gather any information that can be used to identify or harm
users in any way, and the only information made available in the
report returned by the DSP was aggregate results about the ad’s
performance (e.g., apps displayed, impressions, clicks).

Disclosure. We submitted a detailed report with our findings
to Google’s Android security team and in their response they rec-
ognize the potential for abuse. They informed us that they are
generally aware of attacks using motion sensors, and their plan to
address them in an upcoming quarterly release. Furthermore, they
informed us that they are investigating ways to provide app devel-
opers with tools that will help them fortify their apps against this
sort of attack. Concerning the issues we described with (i) the SYS-
TEM_ALERT_WINDOW permission, (ii) the library for interstitial ads,
and (iii) background WebViews not being terminated, the security
team replied that they consider these to be functioning as intended.
We disagree with this assessment and argue that these issues not
only mislead app developers and users, but also create opportuni-
ties for attacks with severe implications. We hope that our work
will draw additional focus from researchers and will, eventually,
incentivize better access control and isolation enforcement.

9 LIMITATIONS AND FUTUREWORK
Our study on the collection of sensor data by in-app ads in the
wild relies on our framework dynamically exercising apps. As with

any dynamic analysis experiments with Android apps, our study
presents certain limitations which we discuss bellow.

Element Coverage. Prior work [35] has explored how to im-
prove UI element coverage when automatically exercising Android
apps, and publicly released a tool that outperforms Android’s Mon-
key. Their tool, Reaper, performs a breadth first traversal for identi-
fying an app’s visual and “interactable” elements. However, there
are cases that exercising tools can not cover (e.g., playing a complex
game). Another potential obstacle relates to apps that require the
user to login prior to interacting with the app. While one could
leverage Single Sign-On support , we opted against that as it might
potentially influence the in-app ads delivered to our device.

Advertisement coverage and bias.Due to the inherently com-
plex and dynamic nature of the ad ecosystem, coupled with the
prevalence of personalized and micro-targeted advertisements, it is
likely that our experiments reveal only a limited snapshot of the
ad campaigns (mis)using motion sensors in the wild, and as such
should be considered a lower bound. While providing a compre-
hensive measurement of the use of sensor data from in-app ads,
we leverage a VPN service to diversify our device’s geolocation
and reduce the potential bias in our ad collection process. Nonethe-
less, we note that prior work has demonstrated how to detect that
users are behind a VPN, which could allow ad libraries to infer our
device’s true location [73]. Additionally, persistent and hardware
identifiers can be used to track users even when using a VPN.While
we empirically found that using a VPN is sufficient for obtaining
foreign ads, it is possible that certain apps or ads modified their
behavior based on the use of VPN; in our analysis ads fetched over
VPN sessions were less likely to collect sensor data. Overall, due
to the ramifications of our attacks, and reports on the increase of
sensor-based ads [74], we argue that there is dire need for stricter
access control policies for mobile sensor data.

Network flows and JavaScript. Our study involves the analy-
sis of network traffic and JavaScript code for potentially suspicious
behavior and data leakage. In most cases, the network flows and
JavaScript code were encrypted and obfuscated respectively, while
dynamic code loading for fetching additional libraries further com-
plicated the process. While we also manually examined these cases,
it is possible that we missed additional cases of suspicious behavior.
As such our findings should be considered a lower bound of the
privacy risks posed by in-app ads that access motion sensors.

Interstitial ad libraries. Interstitial ads are very popular and
many third-party libraries provide such functionality. In our study
we focused on Google’s library due to its popularity, and our analy-
sis resulted in the identification of flaws that magnify the impact
of our attacks. In practice, other third-party ad libs that offer inter-
stitials may suffer from similar (or additional flaws).

Ad ecosystem practices. Based on our findings we believe that
it is possible for anyone to abuse the mobile ad ecosystem for
exfiltrating data by delivering an ad that captures the rich infor-
mation provided by sensors. However, we note that different ad
networks and DSPs may have different policies and constraints for
the JavaScript code permitted in ads. Additionally, ad networks and
DSPs may dynamically analyze submitted ads in a sandboxed envi-
ronment before publishing them, to eliminate cases of malvertising.
Given that the ability for ads to access sensor data is an emerging
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trend for increasing user engagement [74] it seems unlikely that
this will be prevented by many ad networks or DSPs.

Malvertising. Our study identifies an emerging threat that orig-
inates from popular apps downloaded from the official Google
Play Store and advertisements fetched from major and legitimate
services, as these affect even the most cautious users. We did not an-
alyze malware or suspicious apps from third-party markets, and as
such do not explore if ads fetched from less reputable or malicious
ad networks are misusing sensor data.

10 RELATEDWORK
To the best of our knowledge, this paper presents the first explo-
ration of how the ad ecosystem can be misused for stealthy sensor-
based attacks. Here, we briefly discuss pertinent prior work on
in-app ads, the HTML5 WebAPI, and the risks posed by WebView.

In-app advertising. In-app ads are an essential part of the mo-
bile ecosystem and the defacto source of revenue for app developers.
This relationship introduces several privacy issues, as PII are ac-
cessed and leaked by embedded ad libraries [22, 35, 72, 84, 85].
Meng et al. [60] collected more than 200K real user profiles and
found that mobile ads are personalized based on both users’ de-
mographic and interest profiles. They conclude that in-app ads
can possibly leak sensitive information and ad networks’ current
protection mechanisms are insufficient. Reardon et al. [81] found
that third-party SDKs and ad companies also use covert and side
channels in order to obtain and leak permission protected data
from apps that do not hold the appropriate permissions. Reyes et
al. [87] performed an analysis of COPPA compliance and found
that the majority of the apps and the embedded third-party SDKs
contain potential COPPA violations. Nguyen et al. [67] performed
a large scale study to understand the current state of the violation
of GDPR’s explicit consent and found that 34.3% of the apps sent
personal data to advertisement providers without the user’s explicit
prior consent. Contrary to the popular belief that ad networks are
responsible for user privacy, a recent study found that the privacy
information presented from ad networks to developers complies
with legal regulations and app developers are the responsible en-
tity [102]. Another issue with in-app advertising is the potential
for ad fraud from the apps or embedded advertising libraries. Inter-
estingly, a recent study revealed that most ad fraud activities (e.g.,
triggering URL requests without user interaction) originate from ad
libraries, with two libs also committing ad fraud by displaying ads
in invisible WebViews that do not appear on the screen [54]. Several
studies have also proposed solutions for preventing privacy leak-
age. Adsplit [94] allows the ad library to run in a separate process
with different permissions, AdDroid [76] separates the privileged
advertising functionality, and CompARTist [49] enforces privilege
separation using compiler-based instrumentation. More restrictive
solutions [4, 5, 72, 85, 95] have also been introduced that completely
block advertising using network filtering or by employing VPNs.

HTML5 WebAPI. The standardized features of the WebAPI al-
low developers to create interactive elements and greatly improve
the web experience, leading to higher user engagement [80]. How-
ever, these rich features can also be misused by privacy-invasive
or malicious entities, such as web tracking and fingerprinting; the
research community has extensively studied and presented such

techniques [3, 37, 38, 68, 90]. For example, Eckersley et al. [37] ex-
plored browser fingerprinting in depth and introduced the Panop-
ticlick project for identifying common fingerprinting features in
web browsers. While traditional fingerprinting techniques [104]
are used heavily to track desktop users, smartphone devices offer
additional features for this purpose. Das et al. [25] presented a
study on web scripts accessing mobile sensors in 100K websites.
Apart from privacy-invasive tracking techniques, the rich features
of mobile devices can also be used for augmenting security. Alaca et
al. [9] explored device fingerprinting for enhancing web authentica-
tion, while Goethem et al. [105] proposed an accelerometer-based
mechanism for multi-factor mobile authentication.

WebView. Numerous studies have showed that misconfigured
hybrid apps pose a significant risk to users’ privacy, and Luo et
al. [56] identified several attacks against WebViews. The most noto-
rious example is the @JavascriptInterface that allows JavaScript
code to access Java methods. Rizzo et al. [89] evaluated the impact
of such possible code injection attacks using static information flow
analysis, while BridgeScope [112] assesses JavaScript interfaces
based on a custom flow analysis. Additionally, Mutchler et al. [64]
performed a large-scale analysis of more than a million mobile apps
and identified that 28% contains at least oneWebView vulnerability.

11 CONCLUSION
The unique hardware capabilities (i.e., sensors) of modern smart-
phones enable a series of features that allow for increased inter-
action with users, which can significantly improve their overall
experience. Unfortunately, novel features also introduce new oppor-
tunities for misuse. In this paper we demonstrated a novel attack
vector that misused the ad ecosystem for delivering sensor-based
attacks. The key differentiating factor of our attack vector is that it
magnifies the impact and scale of sensor-based attacks by allowing
attackers to stealthily reach millions of devices without the need for
a malicious app to be downloaded or users to be tricked into visiting
a malicious page. To make matters worse, we have uncovered a
series of flaws in Android’s app isolation, life cycle management,
and access control mechanisms that enhance our attacks’ coverage,
persistence and stealthiness. Subsequently, we created a realistic
dynamic analysis framework consisting of actual smartphone de-
vices for providing an in-depth view of mobile-sensor access, which
allowed us to analyze a large number of popular apps and ads over
a period of several months. Our findings reveal an emerging threat,
as we were able to identify in-app advertisements accessing and
leaking motion sensor values. Accordingly we propose a set of
guidelines that should be adopted and standardized to better pro-
tect users. We hope that our study will contribute to the ongoing
body of research pushing for better permission and access control
management in Android by highlighting a previously-unexplored
attack vector.
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A APPENDIX
A.1 Additional Technical Details
In our analysis we used Nexus 5X devices running Google’s AOSP
version 7.1.1 and the latest version of Chrome. Our framework in-
stalls and analyzes each application individually (e.g., install app,
analyze, clear app data and uninstall app). Moreover, we limit any
other background app activities using the adb toolkit to avoid con-
tamination from other apps. This is a common technique when
dynamically analyzing Android apps (e.g., [8, 72, 85]).

Network Interception.We intercepted network traffic by us-
ing Mitmproxy’s transparent proxy option. Since apps by default
do not trust the user trust store unless explicitly stated in the net-
work security configuration of the app, we installed Mitmproxy’s
certificate into Android’s system store. Doing so requires mounting
the system partition as writable, adding Mitmproxy’s certificate
and updating the file’s permissions. This approach requires that the
Android device is rooted; for Android versions 10 and 11 altering
the system partition and inserting the Mitmproxy’s certificate in the
system store requires Magisk [110]. As these techniques are com-
mon, due to space constraints, we refer the reader to appropriate
online tutorials (e.g., [96]). Furthermore, WebView for Android 7 - 9
is built into Chrome and the latest version of Chrome no longer al-
lows certificates whose validity is too long (e.g., NET::ERR_CERT_-
VALIDITY_TOO_LONG). As such, we changed the DEFAULT_-
EXP_DUMMY_CERT in Mitmproxy’s certs.py file accordingly
and recompiled Mitmproxy.

Certificate pinning: Even though apps’ core functionality can
implement certificate pinning to better protect network communi-
cation with their backend servers, we empirically found that our

methodology formonitoring and interceptingWebViews’ ad-related
network traffic was effective as certificate pinning is inherently un-
suitable for ad-network deployments. This is due to the complexity
of the ad ecosystem and the various entities that take part during
the process of rendering an advertisement, which make it difficult
(if not impossible) to list all the domains that an embedded ad li-
brary should be able to reach (i.e., the list of domains is not known
in advance). In fact, recent work [78] found that many embedded
ad libraries tend to weaken the app’s network security policies (e.g.,
asking developers to allow cleartext network communication).

HTML5WebAPIs.Table 7 provides a complete list of theHTML5
WebAPIs monitored by our system. This list is based on the func-
tions that access and retrieve mobile-specific sensor data through
the official mobile HTML5 WebAPI [40], as well as prior work on
mobile sensors attacks and device tracking (e.g., [25, 34, 69]).

A.2 Ad Campaign - Ethical Considerations
This straightforward exploratory experiment aimed to provide an
initial indication of whether any countermeasures exist against
ads accessing sensor measurements. While this experiment did
not collect any user or device data, it is important to detail the
ethical considerations behind our experimental design and set up.
When framing our experiment within the guidelines and conceptual
framework provided by the Menlo and Belmont reports, the main
dimension that is pertinent1 in our case is that of beneficence, which
emphasizes that subjects should not be harmed and that any ethical
research should strive to maximize the potential benefits while
minimizing probable harms. During our design phase we assessed
our experiment accordingly to ensure its ethical nature.

In more detail, our experiment involved an ad being delivered to
users’ devices. The harms that could potentially occur from such
an experiment would stem from either the ad adversely affecting
the user’s device or the ad exfiltrating personal data or other data
that could be used to identify the user (e.g., device identifiers like
the Advertising ID). However, our experiment did not incur any
such harm and our ad did not adversely affect the users’ devices
in any way or introduce any long-term implications. Our ad used
the appropriate API calls to read sensor data, yet did not store or
exfiltrate any of that data nor did it attempt to infer user inputs or
actions. Moreover, as users come across numerous ads during their
everyday browsing activities, we believe that the act of showing
them an ad doesn’t incur any harm or result in an experience that
deviates from their normal browsing experience.

As such, our experiment did not pose any harm to users, while at
the same time we believe that the potential benefits of our research
are substantial, as we have identified a novel attack vector and a
series of serious flaws that pose an important privacy threat to users.
We hope that our research will result in more attention from the
wider research and developer communities and will ultimately lead
to changes in the underlying ecosystems and additional safeguards
being deployed for protecting users.

1The guideline of respect for persons, which revolves around informed consent, is not
applicable in this scenario. Regarding the guideline of justice, all users were essentially
treated equally and no additional burden was incurred by specific users. Additionally,
any benefits that result from this research will be equally distributed to all users.
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Table 7: Full list of WebAPIs monitored by our framework.

WebAPI Information

Mobile-specific

Sensor APIs - Accelerometer Provides acceleration applied to the device along all three axes.
Sensor APIs - Gyroscope Provides the angular velocity of the device along all three axes.
Sensor APIs - AbsoluteOrientationSensor Describes the device’s physical orientation regarding Earth’s reference coordinate system.
Sensor APIs - RelativeOrientationSensor Describes the device’s physical orientation without regard to the Earth’s reference coordinate system.
window.addEventListener(devicemotion) Fired at a regular interval, indicating the amount of physical force of acceleration the device is receiving.
window.addEventListener(deviceorientation) Fired when new data is available about the current orientation (compared to the Earth’s coordinate frame).
window.addEventListener(deviceorientationabsolute) Event handler containing information about an absolute device orientation change.
window.addEventListener(deviceproximity) Provides information about the distance of a nearby physical object.
window.addEventListener(userproximity) Provides a rough approximation of the distance, expressed through a boolean.
window.addEventListener(devicelight) Provides information from photo sensors or similar detectors about ambient light levels near the device.
window.addEventListener(orientationchange) Fired when the orientation of the device has changed.
screenOrientation.addEventListener(change) Event handler fired when the screen changes orientation.
screen.orientation.lock Locks the orientation of the containing document to its default orientation.
screen.orientation.lockOrientation Locks the screen into a specified orientation.
navigator.getBattery Provides information about the system’s battery.
navigator.vibrate Pulses the vibration hardware on the device, if such hardware exists.
navigator.geolocation.watchPosition Registers a handler function that will be called automatically each time the position of the device changes.
navigator.geolocation.getCurrentPosition Get the current position of the device.

General

XMLHttpRequest.send The XMLHttpRequest method send() sends a request to the server.
XMLHttpRequest.response The XMLHttpRequest response property returns the response’s body content.
Date.prototype.getTimezoneOffset Returns the time zone difference, in minutes, from current locale (host system settings) to UTC.
HTMLCanvasElement.toDataURL Returns a URI containing a representation of the image in the format specified by the type parameter.
HTMLCanvasElement.getContext Returns an object that provides methods and properties for drawing on the canvas.
WebGLRenderingContext Interface to OpenGL ES 2.0 graphics rendering context for the drawing surface of a <canvas> element.
Storage.setItem When passed a key name and value, will add (or update) that key to the given Storage object.
Storage.getItem When passed a key name, will return that key’s value, or null if the key does not exist.
Storage.removeItem When passed a key name, will remove that key from the given Storage object if it exists.
Storage.key When passed a number n, returns the name of the nth key in a given Storage object.
document.createElement(canvas) The HTML5 <canvas> tag is used to draw graphics, on the fly, with JavaScript.
document.createElement(webgl) A different context of <canvas> element.
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